WO2014045502A1 - 伝送システム - Google Patents

伝送システム Download PDF

Info

Publication number
WO2014045502A1
WO2014045502A1 PCT/JP2013/004273 JP2013004273W WO2014045502A1 WO 2014045502 A1 WO2014045502 A1 WO 2014045502A1 JP 2013004273 W JP2013004273 W JP 2013004273W WO 2014045502 A1 WO2014045502 A1 WO 2014045502A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
level
value
video
Prior art date
Application number
PCT/JP2013/004273
Other languages
English (en)
French (fr)
Inventor
康充 高井
新保 努武
柴田 修
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014536563A priority Critical patent/JP6245479B2/ja
Priority to CN201380042511.3A priority patent/CN104521228B/zh
Priority to US14/420,421 priority patent/US9648273B2/en
Publication of WO2014045502A1 publication Critical patent/WO2014045502A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/025Systems for the transmission of digital non-picture data, e.g. of text during the active part of a television frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4917Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/38Transmitter circuitry for the transmission of television signals according to analogue transmission standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/46Receiver circuitry for the reception of television signals according to analogue transmission standards for receiving on more than one standard at will
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/08Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division
    • H04N7/083Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division with signal insertion during the vertical and the horizontal blanking interval, e.g. MAC data signals

Definitions

  • the present disclosure relates to a transmission device, a reception device, and a transmission system, and in particular, when transmitting a high-resolution video signal, the transmission rate is increased by performing multi-level transmission in the amplitude direction during an active period including the video signal. It is related to the technology.
  • An object of the present disclosure is to solve the above-described problems and to transmit and maintain a video frame rate on a regular basis while suppressing power consumption of the transmission system and heat generation of the transmission / reception device during the blanking period. And providing a transmission system.
  • a transmission apparatus includes a first multi-value signal generator that converts a non-video signal other than a natural number a ⁇ natural number M-bit video signal into a multi-value signal of multi-value 2 aM and outputs the multi-value signal,
  • a second multi-value signal generator for converting the video signal of natural number a ⁇ natural number N bits into a multi-value signal of multi-value number 2 aN larger than the multi-value number 2 aM and outputting the multi-value number 2; a transmission driver circuit that transmits the multilevel signal of aM during at least a part of the blanking period and transmits the multilevel signal of multilevel number 2 aN during the active period.
  • the receiving apparatus receives a transmission signal transmitted by converting a non-video signal other than a natural number a ⁇ natural number M-bit video signal into a multi-value signal of multi-value number 2 aM during a blanking period.
  • the transmission signal transmitted by converting the video signal of natural number a ⁇ natural number N bits into the multi-value signal of multi-value number 2 aN larger than the multi-value number 2 aM is received during the active period, and the received signal is Based on the multi-level receiver circuit that outputs the received signal and the potential level of the received signal, it is determined whether the received signal is a multi-level signal with the multi-level number 2 aM or the multi-level number 2 aN.
  • the multilevel signal detector that determines and generates a control signal indicating the determination result, and the potential level of the received signal and the control signal, the multilevel signal of the multilevel number 2 aM and the multilevel number 2 aN multi-valued signals, respectively, A non-video signal and a logic circuit that demodulates and outputs the a ⁇ N-bit video signal.
  • a transmission system includes the transmission device and the reception device.
  • the transmission device, the reception device, and the transmission system in the active period, the multi-level number of transmission signals is increased and the fundamental frequency is transmitted as it is with the multi-level signal, while in the blanking period, the active period is the active period. Because the multi-level signal with a multi-level number smaller than the multi-level number is transmitted, it is possible to reduce the power consumption of the transmission system and suppress the heat generation of the transmission / reception device, while maintaining the video frame rate constantly. it can.
  • FIG. 3 is a diagram illustrating a frame format at the time of transmission data transmission according to the first embodiment of the present disclosure. It is a wave form diagram which shows the binary transmission signal of the blanking period of FIG. 1A. It is a wave form diagram which shows the transmission signal of 4 values of the active period of FIG. 1A. It is a block diagram which shows the structure of the transmitter 1 of the transmission system using the multi-value amplitude modulation system which concerns on 1st Embodiment of this indication.
  • FIG. 4 is a transmission waveform diagram of a non-video signal converted into a binary signal and a video signal converted into a quaternary signal in the transmission system according to the first embodiment of the present disclosure.
  • the present inventors cannot constantly transmit another frame simultaneously with one frame, and even during a blanking period in which a high transmission rate is unnecessary.
  • we conducted intensive research As a result, it is possible to transmit while maintaining the frame rate of the image constantly while suppressing the power consumption of the transmission system and the heat generation of the transmission / reception device during the blanking period, and determining the control signal only from the potential level of the received signal.
  • the present inventors have found a transmission device, a reception device, and a transmission system that can be used. Furthermore, the present inventors can accurately follow the fluctuation of the potential level of the multilevel signal, determine the potential level of the multilevel signal with high accuracy, and perform video signal transmission with high resolution and high frame rate. Discovered possible transmitters, receivers and transmission systems.
  • FIG. 1A is a diagram illustrating a frame format at the time of data transmission according to the first embodiment of the present disclosure.
  • HSYNC represents a horizontal synchronization signal
  • VSYNC represents a vertical synchronization signal
  • Vblank represents a vertical blanking period
  • Hblank represents a horizontal blanking period.
  • the period of Vblank or Hblank is a blanking period for transmitting non-video data.
  • Non-video data is, for example, audio data and / or control data.
  • Vactive represents a period other than the vertical blanking period
  • Hactive represents a period other than the horizontal blanking period.
  • the periods of Vactive and Hactive are active periods for transmitting video data.
  • FIG. 1B is a waveform diagram showing the binary transmission signal 101 (FIG. 1A) in the blanking period of FIG. 1A
  • FIG. 1C is a waveform showing the four-value transmission signal 102 (FIG. 1A) in the active period of FIG. 1A.
  • FIG. 1B is a waveform diagram showing the binary transmission signal 101 (FIG. 1A) in the blanking period of FIG. 1A
  • FIG. 1C is a waveform showing the four-value transmission signal 102 (FIG. 1A) in the active period of FIG. 1A.
  • FIG. 1A the operation at the time of data transmission in the frame format will be described.
  • the frame format there are two periods, an active period 100 including only video data and a blanking period including data such as audio data other than video data.
  • the amount of data transmitted during the active period in which video data is always transmitted is greater than the amount of data transmitted during the blanking period.
  • 1B and 1C a binary signal obtained by converting non-video data including an audio signal or the like into a binary value in the amplitude direction is transmitted in the blanking period, and the video signal is amplified in the active period 100.
  • a quaternary signal converted into a quaternary value in the direction transmission is performed using a multi-value signal in the transmission line 2 while keeping the fundamental frequency as it is.
  • FIG. 2A is a block diagram illustrating a configuration of the transmission device 1 of the transmission system using the multi-value amplitude modulation method according to the first embodiment of the present disclosure.
  • the transmission apparatus 1 includes a non-video signal generation unit 11, a video signal generation unit 12, a control signal generation unit 14, a selector 13, a binary signal generator 17, and a multilevel signal generator 18. , And an adder 15 and a transmission driver circuit 16.
  • the non-video signal generator 11 generates a signal not including a 1-bit video signal (auxiliary signal including an audio signal or the like) and outputs the signal to the selector 13.
  • the video signal generator 12 generates a video signal that is a plurality of N-bit parallel data, and outputs the video signal to the multilevel signal generator 18.
  • the control signal generator 14 Based on the input video signal, the control signal generator 14 generates a control signal DE indicating either a blanking period or an active period, and outputs the control signal to the selector 13.
  • the control signal generator 14 generates a control signal DE of “0” when it is in the blanking period and outputs it to the selector 13, and generates a control signal DE of “1” when it is in the active period.
  • the selector 13 selects either the non-video signal input from the non-video signal generation unit 11 or the “0” signal indicating “0” based on the control signal DE input from the control signal generation unit 14.
  • the selected signal is output to the binary signal generator 17.
  • the selector 13 outputs a “0” signal to the binary signal generator 17 in the case of the control signal DE of “1”, and binarizes the non-video signal in the case of the control signal DE of “0”.
  • the binary signal generator 17 converts the 1-bit non-video signal input from the selector 13 into a binary signal and outputs it to the adder 15.
  • the binary signal has a potential level of either + 1.0V or ⁇ 1.0V.
  • the quaternary signal has a potential level of + 1.5V, + 0.5V, -0.5V, and -1.5V.
  • the adder 15 adds the binary signal input from the binary signal generator 17 and the quaternary signal input from the multi-level signal generator 18, and sends the addition result signal to the transmission driver circuit 16. Output to.
  • the transmission driver circuit 16 buffers and amplifies the addition result signal without changing the amplitude level of the addition result signal, and outputs the amplified signal to the transmission line 2 as a transmission signal.
  • FIG. 2B is a transmission waveform diagram of a non-video signal converted into a binary signal and a video signal converted into a quaternary signal in the transmission system according to the first embodiment of the present disclosure.
  • the transmission apparatus 1 transmits the binary signal 103 in which the potential level of the transmission signal is +1.0 V or ⁇ 1.0 V in the blanking period, and the potential level of the transmission signal is +1.5 V in the active period. , + 0.5V, -0.5V, or -1.5V is transmitted.
  • the potential levels +1.0 V and ⁇ 1.0 V of the binary signal 103 are different from the threshold levels V1 and V3 other than the threshold level V2 of 0 V of the quaternary signal 104 in the binary signal generator 17.
  • the threshold levels V1, V2, and V3 are set so as to be the same, and the potential level of the quaternary signal 104 is determined.
  • FIG. 2C is a block diagram illustrating a configuration of the reception device 3 of the transmission system using the multi-value amplitude modulation method according to the first embodiment of the present disclosure.
  • the receiving device 3 includes a multi-value receiver circuit 31, a comparison circuit 32, a buffer memory circuit 33, a multi-value signal detector 34, a logic circuit 35, a control signal receiving unit 36, and a video signal reception.
  • a unit 37 and a non-video signal receiving unit 38 are provided.
  • the buffer memory circuit 33 is connected to each of the comparators 32-1, 32-2, and 32-3. And buffer memories 33-1, 33-2, 33-3.
  • the multi-value receiver circuit 31 receives the transmission signal from the transmission line 2 and buffers and amplifies the transmission signal without changing the amplitude level of the transmission signal, so that each comparator 32-1, 32-2, 32 Output to -3.
  • Each of the comparators 32-1, 32-2, and 32-3 receives the reception signal from the multi-level receiver circuit 31, and sets the potential level of the reception signal of each of the comparators 32-1, 32-2, and 32-3. Compared with the threshold levels +1.0 V, 0 V, and ⁇ V, each comparison result signal is output to the buffer memories 33-1, 33-2, and 33-3.
  • Each buffer memory 33-1, 33-2, 33-3 temporarily stores each comparison result signal input from the comparators 32-1, 32-2, 32-3, and stores each comparison result signal.
  • the signal is output to the logic circuit 35.
  • the buffer memories 33-1, 33-2, and 33-3 are buffer memories 33-1 and 33- of the comparison result signals input from the comparators 32-1, 32-2, and 32-3. 3 is output to the multilevel signal detector 34
  • the multi-level signal detector 34 inputs signals stored in the buffer memories 33-1 and 33-3 for a predetermined period such as one horizontal period from the buffer memories 33-1 and 33-3, and receives the received signal Whether the signal is a binary signal or a quaternary signal is determined from the potential level, a control signal DE indicating the determination result is generated, and the control signal DE is output to the logic circuit 35 and the control signal receiving unit 36.
  • the potential level of the binary signal is slightly lowered from + 1.0V and is, for example, (1.0 ⁇ ) V such as + 0.9V (where, for example, 0 ⁇ ⁇ 0.2), and the potential level of the binary signal is slightly lowered from the absolute value of ⁇ 1.0 V, for example, ( ⁇ 1.0 + ⁇ ) V (for example, 0 ⁇ Assuming that ⁇ 0.2), the multi-level signal detector 34 determines that the signal from the buffer memory 33-1 is “1” and the signal from the buffer memory 33-3 in a predetermined period such as one horizontal period.
  • the received signal If there is a received signal whose value is “0”, it is determined that the received signal is a quaternary signal, and a control signal DE of “1” is output. In other cases, the received signal is 2 It is determined that the signal is a value signal, and a control signal DE of “0” is output.
  • the logic circuit 35 Based on the control signal DE from the multi-level signal detector 34, the logic circuit 35 uses the comparison result signal from the comparison circuit 32 temporarily stored in the buffer memory circuit 33, and receives the received signal in the blanking period.
  • the binary signal is demodulated into a 1-bit non-video signal.
  • the quaternary signal among the received signals is demodulated into a 2-bit video signal.
  • the demodulated 1-bit non-video signal and the demodulated 2 bits Are output to the video signal receiver 37 and the non-video signal receiver 38.
  • FIG. 2D is a table showing a relationship between input signals and output signals of the logic circuit 35 of FIG. 2C.
  • N 2 in this embodiment
  • a “0” control signal DE When a “0” control signal DE is input from the multilevel signal detector 34, it is demodulated into a 1-bit non-video signal by the logic circuit 35 and output to the non-video signal receiving unit 38. Specifically, as shown in FIG. 2D, when the output signal output from the comparator 32-2 is “0”, it is demodulated into a non-video signal of “0” and output from the comparator 32-2. When the signal is “1”, it is demodulated into a non-video signal of “1”.
  • the transmission system is characterized in that the multi-value number of the transmission signal is selectively switched based on the control signal DE in the blanking period and the active period.
  • the non-video signal is converted into a binary signal and transmitted in the blanking period, and the video signal is converted into a quaternary signal and transmitted in the active period.
  • the control signal DE is determined from the potential level of the received signal, and is demodulated into a 2-bit video signal and a 1-bit non-video signal based on the control signal DE and the potential level of the received signal.
  • the quaternary signal can be transmitted in the active period and transmitted using the multi-level signal without changing the fundamental frequency, and the binary signal is transmitted in the blanking period.
  • the determination of the active period and the blanking period can be made only by the multi-valued number of transmission signals, it is possible to reduce the number of demodulation circuits compared to the conventional transmission system.
  • the transmission device 1 sets the potential level of the transmission signal during the blanking period to be the same as the threshold level for determining the potential level of the transmission signal during the active period. Therefore, it accurately follows the potential level of multilevel signals that fluctuate due to differences in voltage levels, reference voltage differences, temperature changes, transmission line losses, etc. Since the determination can be made with high accuracy, it is possible to accurately receive the data of the multilevel signal during the active period.
  • FIG. 2E is a block diagram illustrating a configuration of the reception device 3D of the transmission system using the multi-value amplitude modulation method according to the modification of the first embodiment of the present disclosure.
  • the receiving device 3D shown in FIG. 2E includes a voltage detection and control device 39 instead of the multilevel signal detector 34 as compared with the receiving device 3 shown in FIG. Resistors VR1 and VR3 are provided.
  • the voltage detection and control device 39 receives the reception signal from the multilevel receiver circuit 31, determines whether the signal is a binary signal or a quaternary signal from the potential level of the reception signal, and A control signal DE indicating the determination result is generated and output to the logic circuit 35 and the control signal receiver 36. Further, when the voltage detection and control device 39 receives a binary signal from the multi-level receiver circuit 31, the voltage detection and control device 39 considers a transmission loss in the transmission line 2 from +1.0 V slightly from the potential level of the binary signal. A first detection voltage having a decreased value and a second detection voltage having a value slightly decreased from an absolute value of ⁇ 1.0 V are detected.
  • the voltage detection and control device 39 detects the quaternary signal from the multi-value receiver circuit 31, the voltage detection and control device 39 generates the threshold level setting signal RS indicating the first detection voltage to change the resistance value of the variable resistor VR1.
  • the threshold level setting signal RS indicating the second detection voltage
  • the voltage applied to the inverting input terminal of the comparator 32-1 is set to be the same voltage as the first detection voltage.
  • the resistance value of the variable resistor VR3 is changed to set the voltage applied to the inverting input terminal of the comparator 32-3 to be the same voltage as the second detection voltage.
  • the operational effects of the transmission system including the transmission device 1, the transmission line 2, and the reception device 3D configured as described above are the same as those of the transmission system according to the first embodiment.
  • FIG. 3A is a block diagram illustrating a configuration of a transmission device 1A of a transmission system using a multi-value amplitude modulation method according to the second embodiment of the present disclosure.
  • the transmitting apparatus 1A according to the second embodiment illustrated in FIG. 3A is different from the transmitting apparatus 1 according to the first embodiment illustrated in FIG. 2A in the following points.
  • the non-video signal generator 11 generates a 1-bit non-video signal in FIG. 2A, but generates an a ⁇ 1 bit non-video signal in FIG. 3A.
  • a is a plurality, and so on. However, the case where a is 1 is the first embodiment described above.
  • the video signal generator 12 generates a plurality of N-bit video signals in FIG.
  • the transmitting apparatus 1A is characterized in that a non-video signal and video signal of a plurality of a frames are superimposed and transmitted at a time.
  • the multi-level signal generator 17A converts the a ⁇ 1 bit non-video signal input from the selector 13 into a multi-level signal having a multi-level number 2a , and the multi-level signal having the multi-level number 2a .
  • the signal is output to the adder 15.
  • the signal is output to the adder 15.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 3B is a block diagram illustrating a configuration of the reception device 3A of the transmission system using the multi-value amplitude modulation method according to the second embodiment of the present disclosure.
  • the receiving apparatus 3A according to the second embodiment illustrated in FIG. 3B is different from the receiving apparatus 3A according to the first embodiment illustrated in FIG. 2C in the following points.
  • a comparison circuit 32A shown in FIG. 3B is provided instead of the comparison circuit 32 shown in FIG. 2C.
  • the comparison circuit 32A includes a comparator 32-1 having a first threshold level,..., A comparator 32- (2 aN-1 ) having a (2 aN-1 ) th threshold level, ..., and a configured with a comparator 32- (2 aN -1) containing (2 aN -1) pieces of comparators having a threshold level (2 aN -1). Note that the (2 aN-1 ) th threshold level of the intermediate position comparator 32- (2 aN-1 ) is set to 0V. (2)
  • the buffer memory circuit 33A of FIG. 3B is provided instead of the buffer memory circuit 33 of FIG. 2C.
  • the buffer memory circuit 33A, each comparator 32-1, ..., 32- (2 aN -1), ..., and 32 are connected correspondingly to the (2 aN -1), the buffer memory 33 ⁇ 1,..., 33- (2 aN ⁇ 1 ),..., 33- (2 aN ⁇ 1), and (2 aN ⁇ 1) buffer memories.
  • the multilevel signal detector 34A of FIG. 3B is provided instead of the multilevel signal detector 34 of FIG. 2C.
  • a logic circuit 35A shown in FIG. 3B is provided instead of the logic circuit 35 shown in FIG. 2C.
  • the multi-level receiver circuit 31 receives the transmission signal from the transmission line 2 and buffers and amplifies the transmission signal without changing the amplitude level of the transmission signal, so that each comparator 32-1,..., 32- ( 2 aN ⁇ 1 ),..., 32- (2 aN ⁇ 1).
  • Each of the comparators 32-1,..., 32- ( 2aN-1 ),..., 32- ( 2aN- 1) receives the received signal from the multilevel receiver circuit 31, and compares the potential level of the received signal with each other.
  • the signal of each comparison result is buffered by the buffer memories 33-1,.
  • Each of the buffer memories 33-1,..., 33- (2 aN-1 ),..., 33- (2 aN ⁇ 1) has comparators 32-1 ,. -The signal of each comparison result input from (2 aN -1) is temporarily stored, and the signal of each comparison result is output to the logic circuit 35A.
  • each of the buffer memories 33-1,..., 33- (2 aN-1 ),..., 33- (2 aN ⁇ 1) is connected to each of the comparators 32-1 ,. output ..., 32 only stored signal to multi-level signal detector 34A in the buffer memory of the (2 aN -1) input from the comparison result signal 33-1,33- (2 aN -1) .
  • Multi-level signal detector 34A is stored only in the buffer memory 33-1,33- (2 aN -1) a predetermined time period such as a buffer memory 33-1,33- (2 aN -1) from example 1 horizontal period
  • the control signal DE indicating the determination result is determined by determining whether the signal is a multi-level signal having a multi-level number 2 a or a multi-level signal having a multi-level number 2 aN from the potential level of the received signal. Is output to the logic circuit 35A and the control signal receiver 36.
  • the transmission loss in the transmission line 2 among the potential levels of the multilevel signal of multilevel number 2a , it slightly decreases from the maximum potential level, and the absolute value of the minimum potential level.
  • the multilevel signal detector 34A assumes that the signal from the buffer memory 33-1 is “1” and the buffer memory 33- (2 aN ⁇ 1) in a predetermined period such as one horizontal period.
  • a received signal whose signal from “0” is “0”
  • it is determined that the received signal is a multi-level signal with a multi-level number of 2 aN
  • a control signal DE of “1” is output, while other than that In this case, it is determined that the received signal is a multilevel signal having a multilevel number 2a , and a control signal DE of “0” is output.
  • the logic circuit 35A Based on the control signal DE input from the multi-level signal detector 34A, the logic circuit 35A receives a comparison signal from the comparison result from the comparison circuit 32A temporarily stored in the buffer memory circuit 33A in the blanking period.
  • the multi-level signal of the multi-level number 2 a demodulated to a non-image signal of a ⁇ 1-bit, demodulates the multi-valued signal of 2 aN of the received signal in the active period on the video signal of a ⁇ N bits out of, the The demodulated a ⁇ 1 bit non-video signal and the demodulated a ⁇ N bit video signal are output to the video signal receiver 37 and the non-video signal receiver 38.
  • the non-video signal in order to transmit a plurality of frames of video signals and non-video signals at the same time, in the transmission device 1A, the non-video signal is converted into a multi-level signal having a multi-level number 2a during the blanking period. In the active period, the video signal is converted into a multilevel signal having a multilevel value of 2 aN and transmitted.
  • the receiving device 3A determines the control signal DE from the potential level of the received signal and performs control. Based on the potential level of the signal DE and the received signal, it is demodulated into an a ⁇ N bit video signal and an a ⁇ 1 bit non-video signal. Other functions and effects are the same as those of the first embodiment.
  • a multi-level signal having a multi-level number of 2 aN can be transmitted in the active period and transmitted using a large multi-level signal without changing the fundamental frequency, and the multi-level signal can be transmitted in the blanking period. Since the multi-value signal of Formula 2a is transmitted, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device as compared with the conventional transmission system. Furthermore, since the determination of the active period and the blanking period can be made only by the multi-valued number of transmission signals, it is possible to reduce the number of demodulation circuits compared to the conventional transmission system.
  • the frame format of FIG. A plurality of frames of video signals and non-video signals can be transmitted and received at the same time. Further, at the time FullHD transmission, by transmitting the transmission signals using a multi-level signal of the multi-level number 2 4N, transmission of 4K2K can be performed with the same frame format is and the same transmission rate.
  • FIG. 3C is a block diagram illustrating a configuration of a reception device 3E of the transmission system using the multi-value amplitude modulation method according to the modification of the second embodiment of the present disclosure.
  • the receiving device 3E shown in FIG. 3C includes a voltage detection and control device 39A instead of the multilevel signal detector 34A as compared with the receiving device 3A shown in FIG. 3B, and is further connected in series to the voltage source.
  • Variable resistors VR1,..., VR (2 aN ⁇ 1) are provided.
  • the voltage detection and control device 39A receives the reception signal from the multi-level receiver circuit 31, and determines whether the multi-level signal is a multi-level signal with a multi-level number 2 a or a multi-level number 2 aN from the potential level of the received signal. It is determined whether the signal is a multilevel signal, and a control signal DE indicating the determination result is generated and output to the logic circuit 35A and the control signal receiving unit 36. Further, when the voltage detection and control device 39A receives a multi-value signal having a multi-value number 2a from the multi-value receiver circuit 31, the first detection voltage, the second detection voltage, ... from the potential level of the received signal. , it detects the detection voltage of the 2 a.
  • the voltage detection and control device 39A when detecting a multi-level signal of the multi-level number 2 aN from the multi-level receiver circuit 31, a first detection voltage, a second detection voltage, ..., detected voltage of the 2 a , VR (2 aN ⁇ ) corresponding to the first detection voltage, the second detection voltage,..., The second a detection voltage. 1), the voltages applied to the inverting input terminals of the respective comparators 32-1,..., 32- ( 2aN- 1) are changed to the first detection voltage, the second detection voltage ,. so that the detection voltage of 2 a respectively set.
  • the operational effects of the transmission system including the transmission device 1A, the transmission line 2, and the reception device 3E configured as described above are the same as those of the transmission system according to the second embodiment.
  • FIG. 4 is a diagram illustrating a frame format of transmission data according to the third embodiment of the present disclosure.
  • a transmission signal having a small multi-level number is transmitted in the vertical blanking period 300b, which is a part of the blanking period, and in a period 300a other than the vertical blanking period 300b, the multi-level number in the vertical blanking period 300b.
  • transmission is performed using a large number of transmission signals.
  • FIG. 5A is a block diagram illustrating a configuration of a transmission device 1B of a transmission system using a multi-value amplitude modulation scheme according to the third embodiment of the present disclosure.
  • the transmitting apparatus 1B illustrated in FIG. 5A is different from the transmitting apparatus 1A according to the third embodiment illustrated in FIG. 3A in the following points.
  • (1) instead of the control signal generator 14, the control signal generator 40 of FIG. 5A is provided.
  • the switching signal generator 41, the coupling capacitor 42 of FIG. 5A, and the switching circuit 50 are further provided.
  • the switching circuit 50 includes a switch SW1 and a switch SW2.
  • the coupling capacitor 42 is provided between the transmission driver circuit 16 and the transmission line 2 in order to cut a direct current component.
  • the control signal generator 40 generates a horizontal synchronization signal HSYNC, a vertical synchronization signal VSYNC, and a control signal DE and outputs them to the switching signal generator 41.
  • the switching signal generator 41 determines whether it is the vertical blanking period 300b or the other period 300a by counting the clocks. A counter (not shown).
  • the switching signal generation unit 41 converts the non-video signal transmission signal to (A) In the vertical blanking period 300b, a multilevel signal with a multilevel number 2a is transmitted, or (B) In a period 300a other than the vertical blanking period 300b, a multilevel signal with a multilevel number 2aN is transmitted. Specify whether to do the period, (C) In the period 300a, the switching signal CD for designating whether to transmit the transmission signal of the video signal as a multi-level signal having a multi-level number of 2 aN is generated and output to the switches SW1 and SW2 of the switching circuit 50. To do.
  • the switch SW1 is switched to the contact a and the switch SW2 is switched to the contact d based on the switching signal CD.
  • the switch SW1 is switched to the contact b and the switch SW2 based on the switch signal CD. Is switched to contact c.
  • the switch SW2 is switched to the contact point d based on the switching signal CD.
  • FIG. 5B is a block diagram illustrating a configuration of the reception device 3B of the transmission system using the multi-level amplitude modulation method according to the third embodiment of the present disclosure.
  • the receiving device 3B shown in FIG. 5B is different from the receiving device 3A shown in FIG. 3B in the following points.
  • a coupling capacitor 45 for cutting a direct current component is further provided between the transmission line 2 and the multilevel receiver circuit 31.
  • a synchronization signal detector 43 is further provided.
  • the logic circuit 35A the logic circuit 35B of FIG. 5B is provided.
  • the control signal receiving unit 44 of FIG. 5B is provided.
  • the horizontal synchronization signal HSYNC or the vertical synchronization signal VSYNC is detected by determining whether or not the signal pattern of the horizontal synchronization signal HSYNC and the signal pattern of the vertical synchronization signal VSYNC are included based on the output signal that has been output.
  • the horizontal synchronization signal HSYNC or vertical synchronization signal VSYNC thus output is output to the logic circuit 35B and the control signal receiving unit 44.
  • the multi-level signal detector 34A generates a control signal DE and outputs it to the logic circuit 35B and the control signal receiving unit 44, as in the second embodiment.
  • the logic circuit 35B determines whether it is the vertical blanking period 300b or a period 300a other than the vertical blanking period 300b, and according to the determination result.
  • the multi-level signal of multi-level number 2a is demodulated into a ⁇ 1 bit non-video signal in the vertical blanking period 300b, and the multi-level number of 2 aN is demodulated in the period 300a other than the vertical blanking period 300b.
  • the multi-level signal is demodulated into an a ⁇ N bit video signal, and the demodulated a ⁇ 1 bit non-video signal and the demodulated a ⁇ N bit video signal are converted into the video signal receiving unit 37 and the non-video signal. Output to the receiver 38.
  • the switching signal generator 41 generates a switching signal CD that designates the blanking period 300b and the other period 300a. Based on the switching signal CD, the non-video signal is converted into the vertical blanking period 300b and the non-video signal. It is characterized in that it is divided into periods other than 300a and transmitted with different multi-value numbers.
  • a non-video signal can be transmitted using a multi-level signal having a large multi-level number while transmitting a multi-level signal having a multi-level number 2 aN and keeping the fundamental frequency as it is, and the vertical blanking period 300b. Then, since the multi-value signal of multi-value number 2a is transmitted as the non-video signal, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device as compared with the conventional transmission system.
  • the video signal and non-video signal of a frames can be superimposed and data processing in units of bits can be performed. It is possible to simultaneously transmit and receive video signals and non-video signals of a plurality of frames at a time while keeping one frame format as it is. Further, at the time FullHD transmission, by transmitting the transmission signals using a multi-level signal of the multi-level number 2 4N, transmission of 4K2K can be performed with the same frame format is and the same transmission rate.
  • the control signal DE, the vertical synchronization signal VSYNC, and the horizontal synchronization signal HSYNC can be detected based on the output signal output from the comparison circuit 32A. Since the period in which binary transmission can be performed can be arbitrarily set by referring to the above signal, it is possible to easily apply the blanking period reduction method in the conventional binary transmission. Furthermore, since the capacitors 42 and 45 are inserted and the center level of the threshold level is set to the floating state to obtain a stable ground level, the center level can be discriminated with high accuracy and easily. .
  • the present disclosure is not limited thereto, and the transmission signal is transmitted in a DC coupling state without inserting the coupling capacitors 42 and 45. May be.
  • FIG. 6A is a block diagram illustrating a configuration of a transmission device 1D of a transmission system using a multi-value amplitude modulation method according to the fourth embodiment of the present disclosure.
  • the transmission device 1C illustrated in FIG. 6A differs from the transmission device 1B illustrated in FIG. 5A in the following points.
  • (1) instead of the transmission driver circuit 16, the differential transmission driver circuit 16C of FIG. 6A is provided.
  • (2) instead of the coupling capacitor 42, the capacitor circuit 46 of FIG. 6A is provided.
  • the capacitor circuit 46 includes a coupling capacitor 46a and a coupling capacitor 46b.
  • the differential transmission line 200 of FIG. 6A is provided instead of the transmission line 2.
  • the differential transmission driver circuit 16C buffers and amplifies the addition result signal output from the adder 15 without changing the amplitude level of the addition result signal, and couples the addition result signal.
  • the transmission signal is output to the differential transmission line 200 via the capacitors 46a and 46b.
  • FIG. 6B is a block diagram illustrating a configuration of a reception device 3 ⁇ / b> C of the transmission system using the multi-value amplitude modulation method according to the fourth embodiment of the present disclosure.
  • the receiving device 3C illustrated in FIG. 6B is different from the transmitting device 3B illustrated in FIG. 5B in the following points.
  • the differential multilevel receiver circuit 31C of FIG. 6B is provided instead of the multilevel receiver circuit 31A.
  • the capacitor circuit 47 of FIG. 6B is provided.
  • the capacitor circuit 47 includes a coupling capacitor 47a and a coupling capacitor 47b.
  • the differential multilevel receiver circuit 31C receives the transmission signal received from the differential transmission line 200 via the capacitor circuit 47, and buffers and amplifies the transmission signal without changing the amplitude level of the transmission signal.
  • each comparator 32-1 as, ..., 32- (2 aN- 1), ..., and outputs the 32- (2 aN -1).
  • the transmission system according to the present embodiment includes the differential transmission driver circuit 16C and the differential multi-level receiver circuit 31C, the video signal and the non-video signal can be transmitted by the differential transmission method, and can be transmitted at higher speed. Simplification, low noise, and high noise resistance are possible.
  • the present disclosure is not limited to this, and the transmission signal may be transmitted in a DC coupling state without inserting the capacitor circuits 46 and 47. Good.
  • the comparison circuits 32 and 32A have a predetermined reference voltage and a plurality of threshold values generated in the receivers 3, 3A, 3B, and 3C.
  • the present disclosure is not limited to this, and a plurality of voltage levels of the received non-video signal other than the active period are determined based on the control signal DE generated in the multilevel signal detectors 34 and 34A. It may be detected and used as the plurality of threshold levels.
  • FIG. 7 is a transmission waveform diagram of a transmission signal of a four-value converted non-video signal and an eight-value converted video signal of a transmission device according to a modification of the present disclosure.
  • the transmission apparatus that transmits the transmission waveform diagram of the transmission signal as shown in FIG. 7 differs from the transmission apparatus 1 of FIG. 2A according to the first embodiment in the following points. (1) Instead of transmitting a video signal to be transmitted in the active period as a quaternary signal having any one of four potential levels + 1.5V, + 0.5V, -0.5V, and -1.5V.
  • the threshold levels V11, V12, V13, V14, V15, V16, and V17 for determining the potential level of the 8-level signal are the threshold levels V1 for determining the potential level of the 4-level signal.
  • V2, and V3 are set to be increased by four.
  • the transmission device is characterized by having the following configuration as compared with the transmission device 1 according to the first embodiment.
  • a non-video signal generator 11 that generates a 1-bit non-video signal
  • a non-video signal generator that generates a multi-bit non-video signal is provided.
  • the non-video signal transmitted during the blanking period is converted into a quaternary signal having any one of four potential levels ⁇ 3.0 V and ⁇ 1.0 V, or four potential levels ⁇ 2
  • a control unit is provided for switching to any one of four-value signals having a potential level of .0V or ⁇ 1.0V.
  • a quaternary signal is transmitted as a transmission signal in the blanking period, and an quaternary signal is transmitted as the transmission signal in the active period.
  • a quaternary signal may be transmitted as a transmission signal, and in an interval 300a other than the vertical blanking period 300b, an 8-level signal may be transmitted as a transmission signal. In this case, the same effects as those of the third embodiment are obtained.
  • a transmission system has been described in which a non-video signal of a natural number a ⁇ 1 bit is transmitted as a transmission signal, which is a multilevel signal converted into a multilevel number 2a .
  • the present disclosure is not limited to the above-described embodiment.
  • a transmission system that transmits a non-video signal having a natural number M bits that is, a multi-valued a ⁇ M-bit non-video signal.
  • the present invention can also be applied to a transmission system that transmits a multilevel signal converted into Equation 2 aM as a transmission signal.
  • video transmission is performed without changing the video format, and the natural numbers a, N, and M described above are constant.
  • the transmission apparatus is A non-video signal of natural number a ⁇ natural number M bits and a video signal of a ⁇ natural number N bits are each expressed in binary or more values in an active period including video data or a blanking period including data other than the video data.
  • a transmission device that transmits a multilevel signal converted into a number of values as a transmission signal, A first multi-value signal generator that converts the non-video signal into a multi-value signal having a multi-value number of 2 aM and outputs the multi-value signal; A second multilevel signal generator for converting the video signal into a multilevel signal having a multilevel number of 2 aN and outputting the multilevel signal; A transmission driver circuit that transmits the multilevel signal of the multilevel number 2 aM and the multilevel signal of the multilevel number 2 aN as a transmission signal; The multi-value number 2 aM of the non-video signal is set to be smaller than the multi-value number 2 aN of the video signal.
  • a multi-level signal having a multi-level number of 2 aN can be transmitted in the active period and transmitted using a large multi-level signal without changing the fundamental frequency, and the multi-level signal can be transmitted in the blanking period. Since the multi-value signal of Formula 2 aM is transmitted, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device as compared with the conventional transmission system. In addition, since video processing and non-video signals of a plurality of frames can be superimposed and data processing can be performed in bit units, the video signal and non-video signals of a plurality of frames can be processed at the same time while keeping the frame format of FIG. Can be transmitted and received simultaneously. Further, at the time FullHD transmission, by transmitting a multi-level signal of the multi-level number 2 4N as a transmission signal, transmission of 4K2K can be performed with the same frame format is and the same transmission rate.
  • the transmission device is the transmission device according to the first aspect.
  • a control signal generation unit that generates and outputs a control signal indicating either a blanking period or an active period is further provided.
  • a multi-level signal having a multi-level number of 2 aN can be transmitted in the active period and transmitted using a large multi-level signal without changing the fundamental frequency, and the multi-level signal can be transmitted in the blanking period. Since the multi-value signal of Formula 2 aM is transmitted, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device as compared with the conventional transmission system.
  • the transmission device is the transmission device according to the first aspect, Each potential level of the transmission signal in the blanking period is set to be the same as each threshold level for determining each potential level of the transmission signal in the active period.
  • the transmission device sets the potential level of the transmission signal during the blanking period to be the same as the threshold level for determining the potential level of the transmission signal during the active period.
  • the transmission device acquires the potential level of multi-level signals that fluctuate due to voltage levels between transmitters and receivers, differences in reference voltages, temperature changes, loss in transmission lines, etc. Since the determination can be made, it is possible to accurately receive the data of the multilevel signal during the active period.
  • the transmission device is the transmission device according to the second or third aspect, Based on the control signal, the transmission device transmits the non-video signal as a multi-value signal of 2 aM in the blanking period, and transmits the video signal as a multi-value value of 2 aN in the active period. It transmits by a value signal, It is characterized by the above-mentioned.
  • a multi-level signal having a multi-level number of 2 aN can be transmitted in the active period and transmitted using a large multi-level signal without changing the fundamental frequency, and the multi-level signal can be transmitted in the blanking period. Since the multi-value signal of Formula 2 aM is transmitted, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device as compared with the conventional transmission system.
  • a transmission device is the transmission device according to the second or third aspect,
  • the control signal generator further generates a horizontal synchronization signal and a vertical synchronization signal, Based on the horizontal synchronization signal and the vertical synchronization signal, a switching signal generation unit that generates and outputs a switching signal indicating whether it is a vertical blanking period or a period other than the vertical blanking period, Based on the switching signal, the transmission device transmits the non-video signal as a multi-level signal having a multi-level number of 2 aM in the vertical blanking period, and multi-level number 2 in a period other than the vertical blanking period.
  • the video signal is transmitted as an aN multilevel signal, and the video signal is transmitted as a multilevel signal having a multilevel value of 2 aN during the active period.
  • the transmission driver circuit of the transmission device transmits a multilevel signal with a multilevel number of 2 aM during at least a part of the blanking period, and transmits a multilevel signal with a multilevel number of 2 aN in the active period.
  • the multi-level signal having a large multi-level number is transmitted while transmitting the non-video signal, the multi-level signal having a multi-level number of 2 aN , and leaving the fundamental frequency as it is, except during the vertical blanking period.
  • a non-video signal is transmitted as a multi-level signal having a multi-level number of 2 aM. Therefore, the conventional technique for reducing the blanking period can be easily applied. .
  • a transmission device is the transmission device according to any one of the first to fifth aspects, A coupling capacitor for cutting a direct current component of the transmission signal is further provided.
  • the center level of the threshold level is set to a stable ground level by making the floating level, the center level can be determined with high accuracy and easily.
  • a transmission device is the transmission device according to any one of the first to sixth aspects,
  • the transmission driver circuit is a differential transmission driver circuit.
  • the transmission device since the video signal and the non-video signal can be transmitted by the differential transmission method, it is possible to facilitate higher-speed transmission, reduce noise, and tolerate high noise.
  • a receiving apparatus is A non-video signal of natural number a ⁇ natural number M bits and a video signal of a ⁇ natural number N bits are each expressed in binary or more values in an active period including video data or a blanking period including data other than the video data.
  • a receiving device that receives a transmission signal that is a multilevel signal converted into a number of values, A multi-value receiver circuit that receives and outputs the transmission signal as a reception signal; Multi-level signal detection that determines whether the multi-level signal is a multi-level number 2 aM or multi-level number 2 aN from the potential level of the received signal and generates a control signal indicating the determination result And Based on the potential level of the received signal and the control signal, the multi-level signal of multi-level number 2 aM and the multi-level signal of multi-level number 2 aN of the received signal are each an a ⁇ M-bit non-video signal. And a logic circuit that demodulates and outputs an a ⁇ N-bit video signal, The multi-value number 2 aM of the non-video signal is set to be smaller than the multi-value number 2 aN of the video signal.
  • the determination of the active period and the blanking period can be made based only on the multi-value number of the transmission signal, so that the number of demodulation circuits is reduced compared to the conventional transmission system. It becomes possible to do.
  • a receiving device is the receiving device according to the eighth aspect, Based on the control signal, the logic circuit demodulates a multilevel signal having a multilevel value of 2 aM among the received signals into an a ⁇ M bit non-video signal in the blanking period, and in the active period, A multi-level signal having a multi-level number of 2 aN among received signals is demodulated into an a ⁇ N-bit video signal.
  • a multilevel signal having a multilevel value of 2 aN can be received in the active period, and a multilevel signal having a multilevel value of 2 aM can be received in the blanking period. Compared to the above, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device.
  • a receiving device is the receiving device according to the eighth aspect,
  • the logic circuit detects the horizontal synchronization signal or the vertical synchronization signal by determining whether the signal pattern of the horizontal synchronization signal and the signal pattern of the vertical synchronization signal are included based on the potential level of the received signal.
  • a synchronization signal detector for outputting to Based on the horizontal synchronization signal and the vertical synchronization signal, the logic circuit determines the vertical signal among the received signals depending on whether it is a vertical blanking period or a period other than the vertical blanking period.
  • the multilevel signal of 2 aM is demodulated into an a ⁇ M bit non-video signal, and in the period other than the vertical blanking period, the multilevel signal of 2 aN is converted to an a ⁇ N bit.
  • the video signal is demodulated.
  • the multilevel signal having a multilevel value of 2 aM is demodulated into an a ⁇ M bit non-video signal in the vertical blanking period, and other than the vertical blanking period. Since the multi-level signal having a multi-level number of 2 aN can be demodulated into an a ⁇ N-bit video signal during the period, it is possible to easily apply the conventional technique for reducing the blanking period.
  • a receiving apparatus is the receiving apparatus according to the eighth aspect, wherein the receiving apparatus according to any one of the eighth to tenth aspects is A coupling capacitor for cutting a direct current component of the received signal is further provided.
  • the center level of the threshold level is set to the stable ground level by making the floating level, the center level can be discriminated with high accuracy and easily.
  • a receiving apparatus is the receiving apparatus according to any one of the eighth to eleventh aspects,
  • the multi-value receiver circuit is a differential multi-value receiver circuit.
  • the receiving device since the video signal and the non-video signal can be transmitted by the differential transmission method, it is possible to facilitate the high-speed transmission, reduce the noise, and increase the noise resistance.
  • a transmission system is characterized by including the transmission device according to the first aspect and the reception device according to the eighth aspect.
  • a multi-level signal having a multi-level number of 2 aN can be transmitted in the active period and transmitted using a large multi-level signal without changing the fundamental frequency, and the multi-level signal can be transmitted in the blanking period. Since the multi-value signal of Formula 2 aM is transmitted, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device as compared with the conventional transmission system. In addition, since video processing and non-video signals of a plurality of frames can be superimposed and data processing can be performed in bit units, the video signal and non-video signals of a plurality of frames can be processed at the same time while keeping the frame format of FIG. Can be transmitted and received simultaneously.
  • transmission using a multi-level signal of the multi-level number 2 4N as a transmission signal if transmission using a multi-level signal of the multi-level number 2 4N as a transmission signal, transmission of 4K2K can be performed with the same frame format is and the same transmission rate. Furthermore, since the determination of the active period and the blanking period can be made based only on the multi-valued number of transmission signals, it is possible to reduce the number of demodulation circuits compared to the conventional transmission system.
  • the transmission device in the active period, while increasing the multi-value number of the transmission signal and transmitting the fundamental frequency as it is, the multi-value signal is transmitted,
  • the blanking period transmission is performed using a multi-value signal having a multi-value number smaller than the multi-value number in the active period, so that the power consumption of the transmission system can be reduced and the heat generation of the transmission / reception device can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Dc Digital Transmission (AREA)
  • Television Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

 自然数a×自然数Mビットの映像信号以外の非映像信号を多値数2aMの多値信号に変換して出力する第1の多値信号発生器(17A)と、自然数a×自然数Nビットの上記映像信号を上記多値数2aMよりも大きい多値数2aNの多値信号に変換して出力する第2の多値信号発生器(18)と、上記多値数2aMの多値信号をブランキング期間の少なくとも一部の期間に送信し、上記多値数2aNの多値信号をアクティブ期間に送信する送信ドライバ回路(16)とを備える。

Description

伝送システム
 本開示は、送信装置、受信装置及び伝送システムに関し、特に高解像度の映像信号を伝送する場合において、映像信号を含むアクティブ期間に対して振幅方向の多値伝送を行うことによって、伝送レートを高速化する技術に関する。
 近年、映像の高画質化にともない、映像信号の高ビット化、高精細化が進んでおり、デジタルインターフェースで伝送されるデータ量も増大している。大量のデータを伝送するために、周波数の高速化が進展しているが、高周波化の影響で伝送線路の減衰などで信号伝送が困難となってきている。この問題を回避するために、周波数の高速化は行わず、映像信号の圧縮手法や、電圧方向にデータを多重化する多値信号伝送方式が知られている。
 また、従来の電圧方向にデータを多重化する手法として、特許文献1に示すような多値伝送方式が挙げられる。これにより、誤り率に応じて多値数を変化させビット誤りを抑制し、多値伝送の誤り率が低減される。
米国特許第7,308,058号明細書
 しかしながら、上述した従来の多値伝送方式では、誤り率によって伝送速度が変動し、映像フレームを定常的に伝送することはできず、かつ、高速の伝送速度が不要であるブランキング期間においても多値信号を伝送することにより伝送システムの消費電力が大きくなるという課題があった。
 本開示の目的は以上の課題を解決し、ブランキング期間での伝送システムの消費電力や送受信装置の発熱を抑制しつつ、定常的に映像のフレームレートを維持して伝送できる送信装置、受信装置及び伝送システムを提供することにある。
 第1の開示に係る送信装置は、自然数a×自然数Mビットの映像信号以外の非映像信号を多値数2aMの多値信号に変換して出力する第1の多値信号発生器と、自然数a×自然数Nビットの上記映像信号を上記多値数2aMよりも大きい多値数2aNの多値信号に変換して出力する第2の多値信号発生器と、上記多値数2aMの多値信号をブランキング期間の少なくとも一部の期間に送信し、上記多値数2aNの多値信号をアクティブ期間に送信する送信ドライバ回路とを備える。
 第2の開示に係る受信装置は、自然数a×自然数Mビットの映像信号以外の非映像信号が多値数2aMの多値信号に変換されて送信された送信信号をブランキング期間に受信し、自然数a×自然数Nビットの上記映像信号が上記多値数2aMよりも大きい多値数2aNの多値信号に変換されて送信された送信信号をアクティブ期間に受信し、受信した信号を受信信号として出力する多値レシーバ回路と、上記受信信号の電位レベルから、上記受信信号が上記多値数2aMの多値信号であるか上記多値数2aNの多値信号であるかを判定し、判定結果を示す制御信号を発生する多値信号検出器と、上記受信信号の電位レベルと上記制御信号とに基づいて、上記多値数2aMの多値信号と上記多値数2aNの多値信号とをそれぞれ、a×Mビットの上記非映像信号とa×Nビットの上記映像信号に復調して出力するロジック回路とを備える。
 第3の開示に係る伝送システムは、上記送信装置及び上記受信装置を備える。
 本開示に係る送信装置、受信装置、伝送システムによれば、アクティブ期間では送信信号の多値数を大きくして基本周波数をそのままに多値信号で伝送する一方で、ブランキング期間ではアクティブ期間での多値数よりも小さい多値数の多値信号で伝送するので、伝送システムの低消費電力化及び送受信装置の発熱の抑制を可能としつつ、定常的に映像のフレームレートを維持して伝送できる。
本開示の第1の実施形態に係る伝送データ伝送時のフレームフォーマットを示す図である。 図1Aのブランキング期間の2値の送信信号を示す波形図である。 図1Aのアクティブ期間の4値の送信信号を示す波形図である。 本開示の第1の実施形態に係る多値振幅変調方式を用いた伝送システムの送信装置1の構成を示すブロック図である。 本開示の第1の実施形態に係る伝送システムの2値信号に変換された非映像信号と4値信号に変換された映像信号との伝送波形図である。 本開示の第1の実施形態に係る多値振幅変調方式を用いた伝送システムの受信装置3の構成を示すブロック図である。 図2Cのロジック回路35の入力信号と出力信号との関係を示す表である。 本開示の第1の実施形態の変形例に係る多値振幅変調方式を用いた伝送システムの受信装置3Dの構成を示すブロック図である。 本開示の第2の実施形態に係る多値振幅変調方式を用いた伝送システムの送信装置1Aの構成を示すブロック図である。 本開示の第2の実施形態に係る多値振幅変調方式を用いた伝送システムの受信装置3Aの構成を示すブロック図である。 本開示の第2の実施形態の変形例に係る多値振幅変調方式を用いた伝送システムの受信装置3Eの構成を示すブロック図である。 本開示の第3の実施形態に係る伝送データのフレームフォーマットを示す図である。 本開示の第3の実施形態に係る多値振幅変調方式を用いた伝送システムの送信装置1Bの構成を示すブロック図である。 本開示の第3の実施形態に係る多値振幅変調方式を用いた伝送システムの受信装置3Bの構成を示すブロック図である。 本開示の第4の実施形態に係る多値振幅変調方式を用いた伝送システムの送信装置1Cの構成を示すブロック図である。 本開示の第4の実施形態に係る多値振幅変調方式を用いた伝送システムの受信装置3Cの構成を示すブロック図である。 本開示の変形例に係る伝送システムの4値変換された非映像信号及び8値変換された映像信号の送信信号の伝送波形図である。
 本発明者らは、誤り率によって伝送速度が変動する技術では、1フレームと同時にもう1フレームを定常的に送信することはできず、かつ、高速の伝送速度が不要であるブランキング期間においても多値信号を伝送することにより伝送システムの消費電力が大きくなる課題を解決すべく、鋭意研究を行った。この結果、ブランキング期間での伝送システムの消費電力や送受信装置の発熱を抑制しつつ、定常的に映像のフレームレートを維持して伝送でき、かつ、受信信号の電位レベルのみから制御信号を判定することが可能な送信装置、受信装置及び伝送システムを見出した。さらに、本発明者らは、多値信号の電位レベルの変動に対して的確に追従し、多値信号の電位レベルを高精度判定でき、高解像度及び高いフレームレートの映像信号伝送を行うことが可能な送信装置、受信装置及び伝送システムを見出した。
 以下、本開示に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付して説明を省略する。
第1の実施形態.
 図1Aは、本開示の第1の実施形態に係るデータ伝送時のフレームフォーマットを示す図である。図1Aにおいて、HSYNCは水平同期信号を表し、VSYNCは垂直同期信号を表す。また、Vblankは垂直ブランキング期間を表し、Hblankは水平ブランキング期間を表す。VblankまたはHblankの期間は非映像データを伝送するブランキング期間である。非映像データは、例えば、音声データおよび/または制御データである。さらに、Vactiveは上記垂直ブランキング期間以外の期間を表し、Hactiveは上記水平ブランキング期間以外の期間を表す。VactiveかつHactiveの期間は映像データを伝送するアクティブ期間である。
 図1Bは、図1Aのブランキング期間の2値の送信信号101(図1A)を示す波形図であり、図1Cは図1Aのアクティブ期間の4値の送信信号102(図1A)を示す波形図である。
 図1Aにおいて、フレームフォーマットにおけるデータ伝送時の動作を説明する。フレームフォーマットでは映像データのみを含むアクティブ期間100と、映像データ以外の音声データ等のデータを含むブランキング期間との2つの期間が存在する。映像データが常に送信されるアクティブ期間に伝送されるデータ量は、ブランキング期間に伝送されるデータ量よりも多い。また、図1B及び図1Cに示すように、ブランキング期間では音声信号等を含む非映像データを振幅方向に2値に変換してなる2値信号を伝送し、アクティブ期間100では映像信号を振幅方向に4値に変換してなる4値信号を伝送することにより、基本周波数をそのままにして伝送線路2において多値信号を用いて伝送を行う。
 図2Aは、本開示の第1の実施形態に係る多値振幅変調方式を用いた伝送システムの送信装置1の構成を示すブロック図である。図2Aにおいて、送信装置1は、非映像信号発生部11と、映像信号発生部12と、制御信号発生部14と、セレクタ13と、2値信号発生器17と、多値信号発生器18と、加算器15と、送信ドライバ回路16とを備えて構成される。
 図2Aにおいて、非映像信号発生部11は、1ビットの映像信号を含まない信号(音声信号等を含む補助信号)を発生してセレクタ13に出力する。映像信号発生部12は、複数Nビットのパラレルデータである映像信号を発生して多値信号発生器18に出力する。制御信号発生部14は、入力される映像信号に基づいて、ブランキング期間とアクティブ期間とのいずれかであることを示す制御信号DEを発生し、当該制御信号をセレクタ13に出力する。ここで、制御信号発生部14は、ブランキング期間であるときは「0」の制御信号DEを発生してセレクタ13に出力し、アクティブ期間であるときは「1」の制御信号DEを発生してセレクタ13に出力する。
 セレクタ13は、制御信号発生部14から入力された制御信号DEに基づいて、非映像信号発生部11から入力された非映像信号と「0」を示す「0」信号とのいずれかを選択して選択された信号を2値信号発生器17に出力する。ここで、セレクタ13は、「1」の制御信号DEの場合には「0」信号を2値信号発生器17に出力し、「0」の制御信号DEの場合には非映像信号を2値信号発生器17に出力する。次いで、2値信号発生器17は、セレクタ13から入力された1ビットの非映像信号を2値信号に変換して加算器15に出力する。ここで、2値信号は、+1.0Vと-1.0Vとのいずれかの電位レベルを有する。また、多値信号発生器18は例えばN=2の場合であって、映像信号発生部12から入力された映像信号を、4値信号に変換して加算器15に出力する。ここで、4値信号は+1.5V、+0.5V、-0.5V及び-1.5Vのいずれかの電位レベルを有する。さらに、加算器15は、2値信号発生器17から入力された2値信号と多値信号発生器18から入力された4値信号とを加算して、加算結果の信号を、送信ドライバ回路16に出力する。送信ドライバ回路16は、加算結果の信号を、加算結果の信号の振幅レベルを変化することなく緩衝増幅して送信信号として伝送線路2に出力する。
 図2Bは、本開示の第1の実施形態に係る伝送システムの2値信号に変換された非映像信号と4値信号に変換された映像信号との伝送波形図である。ここで、送信装置1は、ブランキング期間では、送信信号の電位レベルが+1.0V又は-1.0Vである2値信号103を送信し、アクティブ期間では、送信信号の電位レベルが+1.5V、+0.5V、-0.5V、又は-1.5Vである4値信号104を送信する。ここで、2値信号103の電位レベル+1.0V及び-1.0Vは、2値信号発生器17において、4値信号104の0Vのしきい値レベルV2以外のしきい値レベルV1及びV3と同一となるように設定され、これらのしきい値レベルV1,V2,V3を用いて4値信号104の電位レベルの判別を行う。
 図2Cは、本開示の第1の実施形態に係る多値振幅変調方式を用いた伝送システムの受信装置3の構成を示すブロック図である。図2Cにおいて、受信装置3は、多値レシーバ回路31と、比較回路32と、バッファメモリ回路33と、多値信号検出器34と、ロジック回路35と、制御信号受信部36と、映像信号受信部37と、非映像信号受信部38とを備えて構成される。さらに、比較回路32は、第1のしきい値レベルV1=+1.0Vを有する比較器32-1と、第2のしきい値レベルV2=0Vを有する比較器32-2と、第3のしきい値レベルV3=-1.0Vを有する比較器32-3とを備えて構成され、バッファメモリ回路33は、各比較器32-1、32-2、32-3に対応して接続されるバッファメモリ33-1、33-2、33-3とを備えて構成される。
 図2Cにおいて、多値レシーバ回路31は、伝送線路2から送信信号を受信しかつ送信信号の振幅レベルを変化することなく緩衝増幅して受信信号として各比較器32-1、32-2、32-3に出力する。各比較器32-1、32-2、32-3は、多値レシーバ回路31からの受信信号を入力し、受信信号の電位レベルを各比較器32-1、32-2、32-3のしきい値レベル+1.0V、0V、-Vと比較し、各比較結果の信号をバッファメモリ33-1、33-2、33-3に出力する。各バッファメモリ33-1、33-2、33-3は、比較器32-1、32-2、32-3から入力された各比較結果の信号を一時的に保存して、各比較結果の信号をロジック回路35に出力する。また、各バッファメモリ33-1、33-2、33-3は、各比較器32-1、32-2、32-3から入力された比較結果の信号のうちバッファメモリ33-1、33-3に保存された信号のみを多値信号検出器34に出力する。
 多値信号検出器34は、バッファメモリ33-1、33-3から例えば1水平期間などの所定の期間だけ当該バッファメモリ33-1、33-3に保存された信号を入力し、受信信号の電位レベルから2値信号であるか4値信号であるかを判定して、判定結果を示す制御信号DEを発生し、当該制御信号DEをロジック回路35及び制御信号受信部36に出力する。ここで、伝送線路2での伝送損失を考慮して、2値信号の電位レベルが+1.0Vから若干低下して例えば+0.9Vなどの(1.0-α)V(ここで、例えば0<α<0.2)となり、2値信号の電位レベルが-1.0Vの絶対値から若干低下して例えば-0.9Vなどの(-1.0+α)V(ここで、例えば0<α<0.2)となると仮定し、多値信号検出器34は、例えば1水平期間などの所定の期間において、バッファメモリ33-1からの信号が「1」及びバッファメモリ33-3からの信号が「0」である受信信号が存在する場合には、受信信号が4値信号であると判定して「1」の制御信号DEを出力する一方、それ以外の場合には、受信信号が2値信号であると判定して「0」の制御信号DEを出力する。
 ロジック回路35は、多値信号検出器34からの制御信号DEに基づいて、バッファメモリ回路33に一時的に保存された比較回路32からの比較結果の信号から、ブランキング期間では受信信号のうち2値信号を1ビットの非映像信号に復調し、アクティブ期間では受信信号のうち4値信号を2ビットの映像信号に復調し、当該復調された1ビットの非映像信号及び復調された2ビットの映像信号を、映像信号受信部37及び非映像信号受信部38に出力する。
 図2Dは、図2Cのロジック回路35の入力信号と出力信号との関係を示す表である。
ここで、多値信号検出器34から「1」の制御信号DEが入力された場合には、ロジック回路35によってNビット(本実施形態では,N=2)の映像信号に復調されて映像信号受信部37に出力される。詳細には、図2Dに示すように、比較器32-1、32-2、32-3から出力された出力信号がすべて「0」の場合には「00」の映像信号に復調され、比較器32-1、32-2から出力された出力信号がすべて「0」でかつ比較器32-3から出力された出力信号が「1」の場合には「01」の映像信号に復調される。また、比較器32-1から出力された出力信号が「0」でかつ比較器32-2、32-3から出力された出力信号が「1」の場合には「10」の映像信号に復調され、比較器32-1、32-2、32-3から出力された出力信号がすべて「1」の場合には「11」の映像信号に復調される。
 また、多値信号検出器34から「0」の制御信号DEが入力された場合には、ロジック回路35によって1ビットの非映像信号に復調されて非映像信号受信部38に出力される。詳細には、図2Dに示すように、比較器32-2から出力された出力信号が「0」のときは「0」の非映像信号に復調され、比較器32-2から出力された出力信号が「1」のときは「1」の非映像信号に復調される。
 以上のように構成された、送信装置1、伝送線路2及び受信装置3を備えた伝送システムの作用効果について以下に説明する。
 本実施形態に係る伝送システムは、ブランキング期間とアクティブ期間とにおいて、送信信号の多値数を制御信号DEに基づき選択的に切り替えることを特徴としている。具体的には、送信装置1において、ブランキング期間では非映像信号を2値信号に変換して送信し、アクティブ期間では映像信号を4値信号に変換して送信する一方で、受信装置3では、受信信号の電位レベルから制御信号DEを判定し、制御信号DE及び受信信号の電位レベルに基づいて、2ビットの映像信号及び1ビットの非映像信号に復調する。
 以上の実施形態に係る伝送システムによれば、アクティブ期間では4値信号を送信して基本周波数をそのままにして多値信号を用いて伝送できるとともに、ブランキング期間では2値信号を送信するので、従来の伝送システムに比較して、伝送システムの低消費電力化、送受信装置の発熱の抑制が可能となる。さらに、アクティブ期間とブランキング期間との判定を送信信号の多値数のみで判定することができるので、従来の伝送システムに比較して、復調回路を削減することが可能となる。加えて、一度に複数a枚のフレームの非映像信号及び映像信号を重畳して基本周波数をそのままに定常的に伝送することが可能となる。
 また、本実施形態に係る伝送システムによれば、送信装置1がブランキング期間の送信信号の電位レベルをアクティブ期間の送信信号の電位レベルを判別するしきい値レベルと同一となるように設定したので、送受信装置間での電圧レベル、基準電圧の違い、温度変化、伝送線路における損失などが原因で変動する多値信号の電位レベルに対して的確に追従し、多値信号の電位レベルを高精度に判定することができるので、アクティブ期間での多値信号のデータ受信を正確に行うことが可能となる。
 図2Eは、本開示の第1の実施形態の変形例に係る多値振幅変調方式を用いた伝送システムの受信装置3Dの構成を示すブロック図である。図2Eに示す受信装置3Dは、図2Cに示す受信装置3に比較して、多値信号検出器34の代わりに電圧検出及び制御装置39を備え、さらに、電圧源に直列に接続された可変抵抗VR1及びVR3を備えたことを特徴とする。
 図2Eにおいて、電圧検出及び制御装置39は、多値レシーバ回路31からの受信信号を受信して、受信信号の電位レベルから2値信号であるか4値信号であるかを判定して、当該判定結果を示す制御信号DEを発生してロジック回路35及び制御信号受信部36に出力する。また、電圧検出及び制御装置39は、多値レシーバ回路31から2値信号を受信するとき、2値信号の電位レベルから、例えば伝送線路2での伝送損失を考慮して、+1.0Vから若干低下した値を有する第1の検出電圧と、-1.0Vの絶対値から若干低下した値を有する第2の検出電圧とを検出する。さらに、電圧検出及び制御装置39は、多値レシーバ回路31から4値信号を検出するとき、第1の検出電圧を示すしきい値レベル設定信号RSを発生させて可変抵抗VR1の抵抗値を変化させることによって、比較器32-1の反転入力端子に印加される電圧を第1の検出電圧と同一電圧となるように設定する一方で、第2の検出電圧を示すしきい値レベル設定信号RSを発生させて可変抵抗VR3の抵抗値を変化させることによって、比較器32-3の反転入力端子に印加される電圧を第2の検出電圧と同一電圧となるように設定する。
 以上のように構成された、送信装置1、伝送線路2及び受信装置3Dを備えた伝送システムの作用効果については第1の実施形態に係る伝送システムと同様である。
第2の実施形態.
 図3Aは、本開示の第2の実施形態に係る多値振幅変調方式を用いた伝送システムの送信装置1Aの構成を示すブロック図である。図3Aに示す第2の実施形態に係る送信装置1Aは、図2Aに示す第1の実施形態に係る送信装置1に比較して、以下のことが異なる。
(1)非映像信号発生部11は、図2Aにおいて1ビットの非映像信号を発生していたが、図3Aにおいては、a×1ビットの非映像信号を発生する。ここで、aは複数であって、以下同様である。ただし、aが1の場合が上述した第1の実施形態である。
(2)映像信号発生部12は、図2Aにおいて複数Nビットの映像信号を発生していたが、図3Aにおいては、a×Nビットの映像信号を発生する。
(3)図2Aの2値信号発生器17の代わりに、図3Aの多値信号発生器17Aを備える。
 従って、第2の実施形態に係る送信装置1Aは、一度に複数a枚のフレームの非映像信号及び映像信号を重畳して送信することを特徴としている。
 図3Aにおいて、多値信号発生器17Aは、セレクタ13から入力されたa×1ビットの非映像信号を、多値数2の多値信号に変換し、当該多値数2の多値信号を加算器15に出力する。また、多値信号発生器18は、映像信号発生部12から入力されたa×Nビットの映像信号を、多値数2aNの多値信号に変換し、当該多値数2aNの多値信号を加算器15に出力する。その他の構成は第1の実施形態と同様である。
 図3Bは、本開示の第2の実施形態に係る多値振幅変調方式を用いた伝送システムの受信装置3Aの構成を示すブロック図である。図3Bに示す第2の実施形態に係る受信装置3Aは、図2Cに示す第1の実施形態に係る受信装置3Aに比較して、以下の点が異なる。
(1)図2Cの比較回路32の代わりに、図3Bの比較回路32Aを備える。ここで、比較回路32Aは、第1のしきい値レベルを有する比較器32-1、…、第(2aN-1)のしきい値レベルを有する比較器32-(2aN-1)、…、及び第(2aN-1)のしきい値レベルを有する比較器32-(2aN-1)を含む(2aN-1)個の比較器を備えて構成される。なお、中間位置の比較器32-(2aN-1)の第(2aN-1)のしきい値レベルは0Vに設定される。
(2)図2Cのバッファメモリ回路33の代わりに、図3Bのバッファメモリ回路33Aを備える。ここで、バッファメモリ回路33Aは、各比較器32-1、…、32-(2aN-1)、…、及び32-(2aN-1)にそれぞれ対応して接続される、バッファメモリ33-1、…、33-(2aN-1)、…、33-(2aN-1)を含む(2aN-1)個のバッファメモリを備えて構成される。
(3)図2Cの多値信号検出器34の代わりに、図3Bの多値信号検出器34Aを備える。
(4)図2Cのロジック回路35の代わりに、図3Bのロジック回路35Aを備える。
 図3Bにおいて、多値レシーバ回路31は、伝送線路2から送信信号を受信しかつ送信信号の振幅レベルを変化することなく緩衝増幅して受信信号として各比較器32-1、…、32-(2aN-1)、…、32-(2aN-1)に出力する。各比較器32-1、…、32-(2aN-1)、…、32-(2aN-1)は、多値レシーバ回路31から受信信号を入力し、受信信号の電位レベルを各比較器32-1、…、32-(2aN-1)、…、32-(2aN-1)のしきい値レベルと比較し、各比較結果の信号をバッファメモリ33-1、…、33-(2aN-1)、…、33-(2aN-1)に出力する。各バッファメモリ33-1、…、33-(2aN-1)、…、33-(2aN-1)は、比較器32-1、…、32-(2aN-1)、…、32-(2aN-1)から入力された各比較結果の信号を一時的に保存して、各比較結果の信号をロジック回路35Aに出力する。また、各バッファメモリ33-1、…、33-(2aN-1)、…、33-(2aN-1)は、各比較器32-1、…、32-(2aN-1)、…、32-(2aN-1)から入力された比較結果の信号のうちバッファメモリ33-1、33-(2aN-1)に保存された信号のみを多値信号検出器34Aに出力する。
 多値信号検出器34Aは、バッファメモリ33-1、33-(2aN-1)から例えば1水平期間などの所定の期間だけ当該バッファメモリ33-1、33-(2aN-1)に保存された信号を入力し、受信信号の電位レベルから多値数2の多値信号であるか、多値数2aNの多値信号であるかを判定して、判定結果を示す制御信号DEを発生してロジック回路35A及び制御信号受信部36に出力する。ここで、伝送線路2での伝送損失を考慮して、多値数2の多値信号の電位レベルのうち、その最大の電位レベルから若干低下し、また、その最小の電位レベルの絶対値から若干低下すると仮定して、多値信号検出器34Aは、例えば1水平期間などの所定の期間において、バッファメモリ33-1からの信号が「1」及びバッファメモリ33-(2aN-1)からの信号が「0」である受信信号が存在する場合には、受信信号が多値数2aNの多値信号であると判定して「1」の制御信号DEを出力する一方、それ以外の場合には、受信信号が多値数2の多値信号であると判定して「0」の制御信号DEを出力する。
 ロジック回路35Aは、多値信号検出器34Aから入力された制御信号DEに基づいて、バッファメモリ回路33Aに一時的に保存された比較回路32Aからの比較結果の信号から、ブランキング期間では受信信号のうち多値数2の多値信号をa×1ビットの非映像信号に復調し、アクティブ期間では受信信号のうち2aNの多値信号をa×Nビットの映像信号に復調し、当該復調されたa×1ビットの非映像信号及び復調されたa×Nビットの映像信号を、映像信号受信部37及び非映像信号受信部38に出力する。
 以上のように構成された、送信装置1A、伝送線路2及び受信装置3Aを備えた伝送システムの作用効果について以下に説明する。
 本実施形態に係る伝送システムでは、複数a枚のフレームの映像信号および非映像信号を同時に伝送するために、送信装置1Aにおいて、ブランキング期間では非映像信号を多値数2の多値信号に変換して送信し、アクティブ期間では映像信号を多値数2aNの多値信号に変換して送信する一方で、受信装置3Aでは、受信信号の電位レベルから制御信号DEを判定し、制御信号DE及び受信信号の電位レベルに基づいて、a×Nビットの映像信号及びa×1ビットの非映像信号に復調する。その他の作用効果は第1の実施形態と同様である。
 以上の実施形態に係る伝送システムによれば、アクティブ期間では多値数2aNの多値信号を送信して基本周波数をそのままに大きい多値信号を用いて伝送できるとともに、ブランキング期間では多値数2の多値信号を送信するので、従来の伝送システムに比較して、伝送システムの低消費電力化、送受信装置の発熱の抑制が可能となる。さらに、アクティブ期間とブランキング期間との判定を送信信号の多値数のみで判定することができるので、従来の伝送システムに比較して、復調回路を削減することが可能となる。
 また、本実施形態に係る伝送システムによれば、a枚のフレームの映像信号及び非映像信号を重畳してビット単位でのデータ処理が可能となるので、図1のフレームフォーマットをそのままにして、一度に複数のフレームの映像信号及び非映像信号を同時に送受信することが可能となる。また、FullHD伝送時において、多値数24Nの多値信号を用いて送信信号を送信すれば、同じフレームフォーマットでかつ同じ伝送レートで4K2Kの伝送が可能となる。
 図3Cは、本開示の第2の実施形態の変形例に係る多値振幅変調方式を用いた伝送システムの受信装置3Eの構成を示すブロック図である。図3Cに示す受信装置3Eは、図3Bに示す受信装置3Aに比較して、多値信号検出器34Aの代わりに電圧検出及び制御装置39Aを備え、さらに、それぞれ電圧源に直列に接続された可変抵抗VR1、…、VR(2aN-1)を備えたことを特徴とする。
 図3Cにおいて、電圧検出及び制御装置39Aは、多値レシーバ回路31からの受信信号を受信して、受信信号の電位レベルから多値数2の多値信号であるか多値数2aNの多値信号であるかを判定して、判定結果を示す制御信号DEを発生してロジック回路35A及び制御信号受信部36に出力する。また、電圧検出及び制御装置39Aは、多値レシーバ回路31から多値数2の多値信号を受信するとき、受信信号の電位レベルから、第1の検出電圧、第2の検出電圧、…、第2の検出電圧を検出する。さらに、電圧検出及び制御装置39Aは、多値レシーバ回路31から多値数2aNの多値信号を検出するとき、第1の検出電圧、第2の検出電圧、…、第2の検出電圧のそれぞれ示すしきい値レベル設定信号RSを発生させて、当該第1の検出電圧、第2の検出電圧、…、第2の検出電圧に対応する可変抵抗VR1、…、VR(2aN-1)を変化させることによって、各比較器32-1、…、32-(2aN-1)の反転入力端子に印加される電圧を第1の検出電圧、第2の検出電圧、…、第2の検出電圧となるようにそれぞれ設定する。
 以上のように構成された、送信装置1A、伝送線路2及び受信装置3Eを備えた伝送システムの作用効果については第2の実施形態に係る伝送システムと同様である。
第3の実施形態.
 図4は、本開示の第3の実施形態に係る伝送データのフレームフォーマットを示す図である。図4において、ブランキング期間の一部である垂直ブランキング期間300bでは多値数の小さい送信信号を送信し、垂直ブランキング期間300b以外の期間300aでは、垂直ブランキング期間300bにおける多値数よりも大きい多値数の送信信号で伝送を行うことを特徴としている。
 図5Aは、本開示の第3の実施形態に係る多値振幅変調方式を用いた伝送システムの送信装置1Bの構成を示すブロック図である。図5Aに示す送信装置1Bは、図3Aに示す第3の実施形態に係る送信装置1Aに比較して、以下の点が異なる。
(1)制御信号発生部14の代わりに、図5Aの制御信号発生部40を備える。
(2)切替信号発生部41、図5Aのカップリングキャパシタ42及びスイッチング回路50をさらに備える。ここで、スイッチング回路50は、スイッチSW1とスイッチSW2とを備えて構成される。また、カップリングキャパシタ42は、送信ドライバ回路16と伝送線路2との間に直流成分をカットするために設けられる。
 図5Aにおいて、制御信号発生部40は、水平同期信号HSYNC、垂直同期信号VSYNC及び制御信号DEを発生して切替信号発生部41に出力する。切替信号発生部41は、水平同期信号HSYNC、垂直同期信号VSYNC及び制御信号DEに基づいて、クロックを計数することにより垂直ブランキング期間300bであるか、それ以外の期間300aであるかを判断するためのカウンタ(図示せず)を有する。ここで、切替信号発生部41は、非映像信号の送信信号を、
(A)垂直ブランキング期間300bにおいて、多値数2の多値信号で送信するか、もしくは
(B)垂直ブランキング期間300b以外の期間300aにおいて、多値数2aNの多値信号で送信するかを
期間指定するともに、
(C)上記期間300aにおいて、映像信号の送信信号を、多値数2aNの多値信号で送信するかを
期間指定する切替信号CDを発生してスイッチング回路50のスイッチSW1及びスイッチSW2に出力する。
 垂直ブランキング期間300bにおいて、非映像信号を多値数2の多値信号で送信するときは、切替信号CDに基づいて、スイッチSW1が接点aに切り替えられかつスイッチSW2が接点dに切り替えられる。一方、垂直ブランキング期間300b以外の期間300aにおいて、非映像信号を多値数2aNの多値信号で送信するときは、切替信号CDに基づいて、スイッチSW1が接点bに切り替えられかつスイッチSW2が接点cに切り替えられる。さらに、上記期間300aにおいて、映像信号を多値数2aNの多値信号で送信するときは、切替信号CDに基づいて、スイッチSW2が接点dに切り替えられる。
 図5Bは、本開示の第3の実施形態に係る多値振幅変調方式を用いた伝送システムの受信装置3Bの構成を示すブロック図である。図5Bに示す受信装置3Bは、図3Bに示す受信装置3Aに比較して、以下の点が異なる。
(1)伝送線路2と多値レシーバ回路31との間に直流成分をカットするためのカップリングキャパシタ45をさらに備える。
(2)同期信号検出器43をさらに備える。
(3)ロジック回路35Aに代えて、図5Bのロジック回路35Bを備える。
(4)制御信号受信部36に代えて、図5Bの制御信号受信部44を備える。
 図5Bにおいて、同期信号検出器43は、各バッファメモリ33-1、…、33-(2aN-1)、…、33-(2aN-1)に一時的に保存された比較回路32Aから出力された出力信号に基づいて、水平同期信号HSYNCの信号パターン、垂直同期信号VSYNCの信号パターンを含むか否かを判断することにより、水平同期信号HSYNC又は垂直同期信号VSYNCを検出し、当該検出された水平同期信号HSYNC又は垂直同期信号VSYNCをロジック回路35B及び制御信号受信部44に出力する。また、多値信号検出器34Aは、第2の実施形態と同様に、制御信号DEを発生してロジック回路35B及び制御信号受信部44に出力する。ロジック回路35Bは、水平同期信号HSYNC及び垂直同期信号VSYNCに基づいて、垂直ブランキング期間300bであるか、もしくは垂直ブランキング期間300b以外の期間300aであるかを判断し、当該判断結果に応じて、受信信号のうち、垂直ブランキング期間300bでは多値数2の多値信号をa×1ビットの非映像信号に復調し、垂直ブランキング期間300b以外の期間300aでは多値数2aNの多値信号をa×Nビットの映像信号に復調し、当該復調されたa×1ビットの非映像信号及び当該復調されたa×Nビットの映像信号を、映像信号受信部37及び非映像信号受信部38に出力する。
 以上のように構成された、送信装置1B、伝送線路2及び受信装置3Bを備えた伝送システムの作用効果について以下に説明する。
 本実施形態に係る送信装置1Bにおいて、水平同期信号HSYNCと垂直同期信号VSYNCと制御信号DEとに基づいて、非映像信号のうちの一部のみを多値数が小さい多値信号で送信する垂直ブランキング期間300bと、それ以外の期間300aとを指定する切替信号CDを切替信号発生部41により発生し、当該切替信号CDに基づいて、非映像信号を、上記垂直ブランキング期間300bと、それ以外の期間300aとに区分して、多値数を異ならせて送信することを特徴としている。従って、上記期間300aでは、非映像信号を、多値数2aNの多値信号を送信して基本周波数をそのままに多値数の大きい多値信号を用いて伝送できるとともに、垂直ブランキング期間300bでは、非映像信号を多値数2の多値信号を送信するので、従来の伝送システムに比較して、伝送システムの低消費電力化、送受信装置の発熱の抑制が可能となる。
 また、本実施形態に係る伝送システムによれば、第2の実施形態と同様に、a枚のフレームの映像信号及び非映像信号を重畳してビット単位でのデータ処理が可能となるので、図1のフレームフォーマットをそのままにして、一度に複数のフレームの映像信号及び非映像信号を同時に送受信することが可能となる。また、FullHD伝送時において、多値数24Nの多値信号を用いて送信信号を送信すれば、同じフレームフォーマットでかつ同じ伝送レートで4K2Kの伝送が可能となる。
 さらに、本実施形態に係る伝送システムによれば、比較回路32Aから出力された出力信号に基づいて、制御信号DE、垂直同期信号VSYNC及び水平同期信号HSYNCを検出することができるので、例えば、これらの信号を参照すれば2値伝送できる期間を任意に設定することができるので、従来技術の2値伝送におけるブランキング期間の削減手法を容易に適用することが可能となる。またさらに、キャパシタ42及び45を挿入して、しきい値レベルの中心レベルをフローティング状態にすることにより安定したグランドレベルとしたので、センターレベルの判別を高精度かつ容易に行うことが可能となる。
 以上の実施形態において、カップリングキャパシタ42及び45を挿入した場合について説明したが、本開示はこれに限らず、これらカップリングキャパシタ42及び45を挿入せず、送信信号を直流結合状態で伝送してもよい。
 第4の実施形態.
 図6Aは、本開示の第4の実施形態に係る多値振幅変調方式を用いた伝送システムの送信装置1Dの構成を示すブロック図である。図6Aに示す送信装置1Cは、図5Aに示す送信装置1Bに比較して、以下の点が異なる。
(1)送信ドライバ回路16の代わりに、図6Aの差動送信ドライバ回路16Cを備える。
(2)カップリングキャパシタ42の代わりに、図6Aのキャパシタ回路46を備える。ここで、キャパシタ回路46は、カップリングキャパシタ46a及びカップリングキャパシタ46bを備えて構成される。
(3)伝送線路2の代わりに、図6Aの差動伝送線路200を備える。
 図6Aにおいて、差動送信ドライバ回路16Cは、加算器15から出力された加算結果の信号を、当該加算結果の信号の振幅レベルを変化することなく緩衝増幅し、当該加算結果の信号をカップリングキャパシタ46a、46bを介して送信信号として差動伝送線路200に出力する。
 図6Bは、本開示の第4の実施形態に係る多値振幅変調方式を用いた伝送システムの受信装置3Cの構成を示すブロック図である。図6Bに示す受信装置3Cは、図5Bに示す送信装置3Bに比較して、以下の点が異なる。
(1)多値レシーバ回路31Aの代わりに、図6Bの差動多値レシーバ回路31Cを備える。
(2)キャパシタ45の代わりに、図6Bのキャパシタ回路47を備える。ここで、キャパシタ回路47は、カップリングキャパシタ47a及びカップリングキャパシタ47bを備えて構成される。
 図6Bにおいて、差動多値レシーバ回路31Cは、差動伝送線路200から受信された送信信号をキャパシタ回路47を介して受信しかつ送信信号の振幅レベルを変化することなく緩衝増幅して受信信号として各比較器32-1、…、32-(2aN-1)、…、32-(2aN-1)に出力する。
 以上のように構成された、送信装置1C、伝送線路200及び受信装置3Cを備えた伝送システムの作用効果について以下に説明する。
 本実施形態に係る伝送システムは、差動送信ドライバ回路16C及び差動多値レシーバ回路31Cを備えたので、映像信号及び非映像信号を差動伝送方式で伝送することができ、より高速送信の容易化、低ノイズ化、高ノイズ耐性が可能となる。
 以上の実施形態において、キャパシタ回路46及び47を挿入した場合について説明したが、本開示はこれに限らず、これらキャパシタ回路46及び47を挿入せず、送信信号を直流結合状態で伝送してもよい。
 以上の実施形態において、図2C、図3B、図5B、図6Bにおいては、比較回路32,32Aは所定の基準電圧であって受信装置3,3A,3B,3Cにおいて発生した複数のしきい値レベルを用いて比較しているが、本開示はこれに限らず、多値信号検出器34,34Aにおいて発生した制御信号DEに基づいてアクティブ期間以外の受信した非映像信号の複数の電圧レベルを検出してそれを上記複数のしきい値レベルとして用いてもよい。
第1の実施形態の変形例.
 図7は本開示の変形例に係る送信装置の4値変換された非映像信号及び8値変換された映像信号の送信信号の伝送波形図である。図7に示すような送信信号の伝送波形図を送信する送信装置は、第1の実施形態に係る図2Aの送信装置1に比較して、以下の点が異なる。
(1)アクティブ期間において送信する映像信号を4つの電位レベル+1.5V、+0.5V、-0.5V及び-1.5Vの電位レベルのいずれかの電位レベルを有する4値信号で送信する代わりに、8つの電位レベル+3.5V、+2.5V、+1.5V、+0.5V、-0.5V、-1.5V、-2.5V及び-3.5Vのいずれかの電位レベルを有する8値信号で送信することを特徴としている。従って、8値信号の電位レベルの判別を行うためのしきい値レベルV11、V12、V13、V14、V15、V16及びV17は、4値信号の電位レベルの判別を行うためのしきい値レベルV1、V2、V3よりも4つだけ増加して設定される。
(2)ブランキング期間において送信する非映像信号を2つの電位レベル+1.0V及び-1.0Vのいずれかの電位レベルを有する2値信号で送信する代わりに、4つの電位レベル±3.0V、±1.0Vのいずれかの電位レベルを有する4値信号と、4つの電位レベル±2.0V、±1.0Vのいずれかの電位レベルを有する4値信号とを交互に送信することを特徴としている。これによって、(1)に示すしきい値レベルV11、V12、V13、V14、V15、V16及びV17を、しきい値レベルV14=0Vを除き、ブランキング期間に送信される非映像信号の信号レベル±3.0V、±2.0V、±1.0Vと同一となるように設定することが可能となる。
 従って、以上の変形例に係る送信装置は、第1の実施形態に係る送信装置1に比較して、以下の構成を備えることを特徴としている。
(1)1ビットの非映像信号を発生する非映像信号発生部11の代わりに、複数ビットの非映像信号を発生する非映像信号発生部を備える。
(2)ブランキング期間に送信する非映像信号を、4つの電位レベル±3.0V、±1.0Vのいずれかの電位レベルを有する4値信号に変換するか、もしくは4つの電位レベル±2.0V、±1.0Vのいずれかの電位レベルを有する4値信号に変換するかのいずれかに切り替えるための制御部を備える。
 なお、その他の構成は第1の実施形態と同様であって、以上の変形例に係る作用効果は、第1の実施形態に係る作用効果と同様である。
 また、上述した変形例では、ブランキング期間では4値信号を送信信号として送信し、アクティブ期間では8値信号を送信信号として送信したが、第3の実施形態に係る図4に示すように、垂直ブランキング期間300bでは4値信号を送信信号として送信し、垂直ブランキング期間300b以外の期間300aでは8値信号を送信信号として送信しても構わない。この場合においては、第3の実施形態に係る作用効果と同様である。
変形例.
 以上のように構成された上述の伝送システムにおいては、自然数a×1ビットの非映像信号を、多値数2に変換した多値信号を送信信号として送信する伝送システムについて説明した。しかしながら、本開示は上述した実施形態に限定されず、たとえば上述した実施形態の変形例として、自然数Mビットの非映像信号を送信する伝送システム、すなわち、a×Mビットの非映像信号を多値数2aMに変換された多値信号を送信信号として送信する伝送システムにも適用することができる。なお、上述した実施形態及び変形例においては、映像フォーマットが変更されない映像伝送であって、上述した自然数a,N,Mは一定である。
 以上説明したように、第1の態様に係る送信装置は、
 自然数a×自然数Mビットの非映像信号と、a×自然数Nビットの映像信号とをそれぞれ、映像データを含むアクティブ期間、もしくは上記映像データ以外のデータを含むブランキング期間において、2値以上の多値数に変換された多値信号を送信信号として送信する送信装置であって、
 上記非映像信号を多値数2aMの多値信号に変換して出力する第1の多値信号発生器と、
 上記映像信号を多値数2aNの多値信号に変換して出力する第2の多値信号発生器と、
 上記多値数2aMの多値信号と上記多値数2aNの多値信号とを、送信信号として送信する送信ドライバ回路とを備え、
 上記非映像信号の多値数2aMは上記映像信号の多値数2aNよりも小さいように設定されたことを特徴とする。
 第1の態様に係る送信装置によれば、アクティブ期間では多値数2aNの多値信号を送信して基本周波数をそのままに大きい多値信号を用いて伝送できるとともに、ブランキング期間では多値数2aMの多値信号を送信するので、従来の伝送システムに比較して、伝送システムの低消費電力化、送受信装置の発熱の抑制が可能となる。また、複数のフレームの映像信号及び非映像信号を重畳してビット単位でのデータ処理が可能となるので、図1のフレームフォーマットをそのままにして、一度に複数のフレームの映像信号及び非映像信号を同時に送受信することが可能となる。さらに、FullHD伝送時において、送信信号として多値数24Nの多値信号を送信すれば、同じフレームフォーマットでかつ同じ伝送レートで4K2Kの伝送が可能となる。
 第2の態様に係る送信装置は、第1の態様に係る送信装置において、
 ブランキング期間又はアクティブ期間のいずれかであることを示す制御信号を発生して出力する制御信号発生部をさらに備えたことを特徴とする。
 第2の態様に係る送信装置によれば、アクティブ期間では多値数2aNの多値信号を送信して基本周波数をそのままに大きい多値信号を用いて伝送できるとともに、ブランキング期間では多値数2aMの多値信号を送信するので、従来の伝送システムに比較して、伝送システムの低消費電力化、送受信装置の発熱の抑制が可能となる。
 第3の態様に係る送信装置は、第1の態様に係る送信装置において、
 上記ブランキング期間における上記送信信号の各電位レベルは、上記アクティブ期間における上記送信信号の各電位レベルを判別する各しきい値レベルと同一となるように設定されることを特徴とする。
 第3の態様に係る送信装置によれば、送信装置がブランキング期間の送信信号の電位レベルをアクティブ期間の送信信号の電位レベルを判別するしきい値レベルと同一となるように設定したので、送受信装置間での電圧レベル、基準電圧の違い、温度変化、伝送線路における損失などが原因で変動する多値信号の電位レベルに対して的確に追従し、多値信号の電位レベルを高精度に判定することができるので、アクティブ期間での多値信号のデータ受信を正確に行うことが可能となる。
 第4の態様に係る送信装置は、第2又は第3の態様に係る送信装置において、
 上記送信装置は、上記制御信号に基づいて、上記ブランキング期間では上記非映像信号を多値数2aMの多値信号で送信し、上記アクティブ期間では上記映像信号を多値数2aNの多値信号で送信することを特徴とする。
 第4の態様に係る送信装置によれば、アクティブ期間では多値数2aNの多値信号を送信して基本周波数をそのままに大きい多値信号を用いて伝送できるとともに、ブランキング期間では多値数2aMの多値信号を送信するので、従来の伝送システムに比較して、伝送システムの低消費電力化、送受信装置の発熱の抑制が可能となる。
 第5の態様に係る送信装置は、第2又は第3の態様に係る送信装置において、
 上記制御信号発生部はさらに水平同期信号及び垂直同期信号を発生し、
 上記水平同期信号及び上記垂直同期信号に基づいて、垂直ブランキング期間であるか、もしくは上記垂直ブランキング期間以外の期間であるかを示す切替信号を生成して出力する切替信号発生部を備え、
 上記送信装置は、上記切替信号に基づいて、上記非映像信号を、上記垂直ブランキング期間では多値数2aMの多値信号で送信し、上記垂直ブランキング期間以外の期間では多値数2aNの多値信号で送信し、上記映像信号を上記アクティブ期間では上記映像信号を多値数2aNの多値信号で送信することを特徴とする。
 すなわち、送信装置の送信ドライバ回路は、多値数2aMの多値信号をブランキング期間の少なくとも一部の期間に送信し、多値数2aNの多値信号をアクティブ期間に送信する。
 第5の態様に係る送信装置によれば、垂直ブランキング期間以外では、非映像信号を、多値数2aNの多値信号を送信して基本周波数をそのままに多値数の大きい多値信号を用いて伝送できるとともに、垂直ブランキング期間では、非映像信号を多値数2aMの多値信号を送信するので、従来技術のブランキング期間の削減手法を容易に適用することが可能となる。
 第6の態様に係る送信装置は、第1~5のうちのいずれか1つの態様に係る送信装置において、
 上記送信信号の直流成分をカットするカップリングキャパシタをさらに備えたことを特徴とする。
 第6の態様に係る送信装置によれば、しきい値レベルの中心レベルをフローティング状態にすることにより安定したグランドレベルとしたので、センターレベルの判別を高精度かつ容易に行うことが可能となる。
 第7の態様に係る送信装置は、第1~6のうちのいずれか1つの態様に係る送信装置において、
 上記送信ドライバ回路は差動の送信ドライバ回路であることを特徴とする。
 第7の態様に係る送信装置によれば、映像信号及び非映像信号を差動伝送方式で伝送することができるので、より高速送信の容易化、低ノイズ化、高ノイズ耐性が可能となる。
 第8の態様に係る受信装置は、
 自然数a×自然数Mビットの非映像信号と、a×自然数Nビットの映像信号とをそれぞれ、映像データを含むアクティブ期間、もしくは上記映像データ以外のデータを含むブランキング期間において、2値以上の多値数に変換された多値信号である送信信号を受信する受信装置であって、
 上記送信信号を受信信号として受信して出力する多値レシーバ回路と、
 上記受信信号の電位レベルから多値数2aMの多値信号であるか、多値数2aNの多値信号であるかを判定して、判定結果を示す制御信号を発生する多値信号検出器と、
 上記受信信号の電位レベルと上記制御信号とに基づいて、上記受信信号の多値数2aMの多値信号と多値数2aNの多値信号とをそれぞれ、a×Mビットの非映像信号とa×Nビットの映像信号に復調して出力するロジック回路とを備え、
 上記非映像信号の多値数2aMは上記映像信号の多値数2aNよりも小さいように設定されたことを特徴とする。
 第8の態様に係る受信装置によれば、アクティブ期間とブランキング期間との判定を送信信号の多値数のみで判定することができるので、従来の伝送システムに比較して、復調回路を削減することが可能となる。
 第9の態様に係る受信装置は、第8の態様に係る受信装置において、
 上記ロジック回路は、上記制御信号に基づいて、上記ブランキング期間では、上記受信信号のうち多値数2aMの多値信号をa×Mビットの非映像信号に復調し、上記アクティブ期間では上記受信信号のうち多値数2aNの多値信号をa×Nビットの映像信号に復調することを特徴とする。
 第9の態様に係る受信装置によれば、アクティブ期間では多値数2aNの多値信号を受信し、ブランキング期間では多値数2aMの多値信号を受信できるので、従来の伝送システムに比較して、伝送システムの低消費電力化、送受信装置の発熱の抑制が可能となる。
 第10の態様に係る受信装置は、第8の態様に係る受信装置において、
 上記受信信号の電位レベルに基づいて、水平同期信号の信号パターン及び垂直同期信号の信号パターンを含むか否かを判断することにより、上記水平同期信号又は上記垂直同期信号を検出して上記ロジック回路に出力する同期信号検出器をさらに備え、
 上記ロジック回路は、上記水平同期信号及び上記垂直同期信号に基づいて、垂直ブランキング期間であるか、もしくは上記垂直ブランキング期間以外の期間であるかに応じて、上記受信信号のうち、上記垂直ブランキング期間では多値数2aMの多値信号をa×Mビットの非映像信号に復調し、上記垂直ブランキング期間以外の期間では多値数2aNの多値信号をa×Nビットの映像信号に復調することを特徴とする。
 第10の態様に係る受信装置によれば、受信信号のうち、垂直ブランキング期間では多値数2aMの多値信号をa×Mビットの非映像信号に復調し、垂直ブランキング期間以外の期間では多値数2aNの多値信号をa×Nビットの映像信号に復調することができるので、従来技術のブランキング期間の削減手法を容易に適用することが可能となる。
 第11の態様に係る受信装置は、第8の態様に係る受信装置において、第8~10のうちのいずれか1つの態様に係る受信装置において、
 上記受信信号の直流成分をカットするカップリングキャパシタをさらに備えたことを特徴とする。
 第11の態様に係る受信装置によれば、しきい値レベルの中心レベルをフローティング状態にすることにより安定したグランドレベルとしたので、センターレベルの判別を高精度かつ容易に行うことが可能となる。
 第12の態様に係る受信装置は、第8~11のうちのいずれか1つの態様に係る受信装置において、
 上記多値レシーバ回路は差動の多値レシーバ回路であることを特徴とする。
 第12の態様に係る受信装置によれば、映像信号及び非映像信号を差動伝送方式で伝送することができるので、より高速送信の容易化、低ノイズ化、高ノイズ耐性が可能となる。
 第13の態様に係る伝送システムは、第1の態様に係る送信装置と、第8の態様に係る受信装置を備えたことを特徴とする。
 第13の態様に係る伝送システムによれば、アクティブ期間では多値数2aNの多値信号を送信して基本周波数をそのままに大きい多値信号を用いて伝送できるとともに、ブランキング期間では多値数2aMの多値信号を送信するので、従来の伝送システムに比較して、伝送システムの低消費電力化、送受信装置の発熱の抑制が可能となる。また、複数のフレームの映像信号及び非映像信号を重畳してビット単位でのデータ処理が可能となるので、図1のフレームフォーマットをそのままにして、一度に複数のフレームの映像信号及び非映像信号を同時に送受信することが可能となる。さらに、FullHD伝送時において、送信信号として多値数24Nの多値信号を用いて送信すれば、同じフレームフォーマットでかつ同じ伝送レートで4K2Kの伝送が可能となる。またさらに、アクティブ期間とブランキング期間との判定を送信信号の多値数のみで判定することができるので、従来の伝送システムに比較して、復調回路を削減することが可能となる。
 以上詳述したように、本開示に係る送信装置、受信装置、伝送システムによれば、アクティブ期間では送信信号の多値数を大きくして基本周波数をそのままに多値信号で伝送する一方で、ブランキング期間ではアクティブ期間での多値数よりも小さい多値数の多値信号で伝送するので、伝送システムの低消費電力化及び送受信装置の発熱の抑制が可能となる。
1,1A,1B,1C…送信装置、
2,200…伝送線路、
3,3A,3B,3C…受信装置、
11…非映像信号発生部、
12…映像信号発生部、
13…セレクタ、
14,40…制御信号発生部、
15…加算器、
16…送信ドライバ回路、
16C…差動送信ドライバ回路、
17…2値信号発生器、
17A,18…多値信号発生器、
31…多値レシーバ回路、
31C…差動多値レシーバ回路、
32,32A…比較回路、
32-1,32-2,32-3,32-(2aN-1),32-(2aN-1)…比較器、
33,33A…バッファメモリ回路、
33-1,33-2,33-3,33-(2aN-1),33-(2aN-1)…バッファメモリ、
34,34A…多値信号検出器、
35,35A,35B…ロジック回路、
36,44…制御信号受信部、
37…映像信号受信部、
38…非映像信号受信部、
39,39A…電圧検出及び制御装置、
41…切替信号発生部、
42,45,46a,46b,47a,47b…カップリングキャパシタ、
43…同期信号検出器
46,47…キャパシタ回路、
50…スイッチング回路、
100…アクティブ期間
300a…垂直ブランキング期間300b以外の期間、
300b…垂直ブランキング期間。

Claims (15)

  1.  自然数a×自然数Mビットの映像信号以外の非映像信号を多値数2aMの多値信号に変換して出力する第1の多値信号発生器と、
     自然数a×自然数Nビットの上記映像信号を上記多値数2aMよりも大きい多値数2aNの多値信号に変換して出力する第2の多値信号発生器と、
     上記多値数2aMの多値信号をブランキング期間の少なくとも一部の期間に送信し、上記多値数2aNの多値信号をアクティブ期間に送信する送信ドライバ回路とを備えた送信装置。
  2.  映像フォーマットが変更されない映像伝送において、上記自然数a、N、Mが一定である請求項1記載の送信装置。
  3.  ブランキング期間又はアクティブ期間のいずれかであることを示す制御信号を発生して出力する制御信号発生部をさらに備えた請求項1又は2記載の送信装置。
  4.  上記送信装置は、上記制御信号に基づいて、上記ブランキング期間では上記非映像信号を多値数2aMの多値信号で送信し、上記アクティブ期間では上記映像信号を多値数2aNの多値信号で送信する請求項3記載の送信装置。
  5.  上記制御信号発生部はさらに水平同期信号及び垂直同期信号を発生し、
     上記送信装置は、上記水平同期信号及び上記垂直同期信号に基づいて、垂直ブランキング期間であるか、もしくは上記垂直ブランキング期間以外の期間であるかを示す切替信号を生成して出力する切替信号発生部を備え、
     上記送信装置は、上記切替信号に基づいて、上記非映像信号を、上記垂直ブランキング期間では多値数2aMの多値信号で送信し、上記垂直ブランキング期間以外の期間では多値数2aNの多値信号で送信し、上記アクティブ期間では上記映像信号を多値数2aNの多値信号で送信する請求項3又は4記載の送信装置。
  6.  上記ブランキング期間における送信信号の各電位レベルはそれぞれ、上記アクティブ期間における送信信号の各電位レベルを判別する各しきい値レベルと同一となるように設定される請求項1~5のうちいずれか1つに記載の送信装置。
  7.  上記送信信号の直流成分をカットするカップリングキャパシタをさらに備えた請求項1~6のうちのいずれか1つに記載の送信装置。
  8.  上記送信ドライバ回路は差動の送信ドライバ回路である請求項1~7のうちのいずれか1つに記載の送信装置。
  9.  自然数a×自然数Mビットの映像信号以外の非映像信号が多値数2aMの多値信号に変換されて送信された送信信号をブランキング期間に受信し、自然数a×自然数Nビットの上記映像信号が上記多値数2aMよりも大きい多値数2aNの多値信号に変換されて送信された送信信号をアクティブ期間に受信し、受信した信号を受信信号として出力する多値レシーバ回路と、
     上記受信信号の電位レベルから、上記受信信号が上記多値数2aMの多値信号であるか上記多値数2aNの多値信号であるかを判定し、判定結果を示す制御信号を発生する多値信号検出器と、
     上記受信信号の電位レベルと上記制御信号とに基づいて、上記多値数2aMの多値信号と上記多値数2aNの多値信号とをそれぞれ、a×Mビットの上記非映像信号とa×Nビットの上記映像信号に復調して出力するロジック回路とを備えた受信装置。
  10.  映像フォーマットが変更されない映像伝送において、上記自然数a、N、Mが一定である請求項9記載の受信装置。
  11.  上記ロジック回路は、上記制御信号に基づいて、上記ブランキング期間では、上記受信信号のうち多値数2aMの多値信号をa×Mビットの非映像信号に復調し、上記アクティブ期間では上記受信信号のうち多値数2aNの多値信号をa×Nビットの映像信号に復調する請求項9又は10記載の受信装置。
  12.  上記受信信号の電位レベルに基づいて、水平同期信号の信号パターン及び垂直同期信号の信号パターンを含むか否かを判断することにより、上記水平同期信号又は上記垂直同期信号を検出して上記ロジック回路に出力する同期信号検出器をさらに備え、
     上記ロジック回路は、上記水平同期信号及び上記垂直同期信号に基づいて、垂直ブランキング期間であるか、もしくは上記垂直ブランキング期間以外の期間であるかを判断し、当該判断結果に応じて、上記受信信号のうち、上記垂直ブランキング期間では多値数2aMの多値信号をa×Mビットの前記非映像信号に復調し、上記垂直ブランキング期間以外の期間では多値数2aNの多値信号をa×Nビットの前記映像信号に復調することを特徴とする請求項9又は10記載の受信装置。
  13.  上記受信信号の直流成分をカットするカップリングキャパシタをさらに備えたことを特徴とする請求項9~12のうちのいずれか1つに記載の受信装置。
  14.  上記多値レシーバ回路は差動の多値レシーバ回路である請求項9~13のうちのいずれか1つに記載の受信装置。
  15.  請求項1記載の受信装置と請求項9記載の送信装置を備えた伝送システム。
PCT/JP2013/004273 2012-09-21 2013-07-10 伝送システム WO2014045502A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014536563A JP6245479B2 (ja) 2012-09-21 2013-07-10 伝送システム
CN201380042511.3A CN104521228B (zh) 2012-09-21 2013-07-10 发送装置、接收装置、传输系统以及传输方法
US14/420,421 US9648273B2 (en) 2012-09-21 2013-07-10 Transmission system for transmitting high-resolution video signal by performing multi-value transmission changing in amplitude direction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-208739 2012-09-21
JP2012208739 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014045502A1 true WO2014045502A1 (ja) 2014-03-27

Family

ID=50340845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004273 WO2014045502A1 (ja) 2012-09-21 2013-07-10 伝送システム

Country Status (4)

Country Link
US (1) US9648273B2 (ja)
JP (1) JP6245479B2 (ja)
CN (1) CN104521228B (ja)
WO (1) WO2014045502A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104599654A (zh) * 2015-02-05 2015-05-06 京东方科技集团股份有限公司 信号转换装置及方法、信号生成系统和显示设备
JP2021100242A (ja) * 2019-12-20 2021-07-01 アンリツ株式会社 信号発生装置及び信号発生方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12087393B2 (en) * 2021-04-29 2024-09-10 Micron Technology, Inc. Multi-driver signaling

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223229A (ja) * 1995-02-17 1996-08-30 Sony Corp ベースバンド伝送システムおよび送信装置ならびに受信装置
JPH09258686A (ja) * 1996-03-22 1997-10-03 Sharp Corp 画像データ伝送方法
JP2000232630A (ja) * 1998-12-07 2000-08-22 Matsushita Electric Ind Co Ltd 送信方法と受信方法と送信装置と受信装置
JP2008224936A (ja) * 2007-03-12 2008-09-25 Toyo Univ 表示装置
JP2009186502A (ja) * 2008-02-01 2009-08-20 Sharp Corp 差動信号の伝送方式

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU740560B2 (en) * 1996-06-26 2001-11-08 Sony Electronics Inc. System and method for overlay of a motion video signal on an analog video signal
US6181711B1 (en) * 1997-06-26 2001-01-30 Cisco Systems, Inc. System and method for transporting a compressed video and data bit stream over a communication channel
EP1065878A1 (en) * 1998-12-07 2001-01-03 Matsushita Electric Industrial Co., Ltd. Serial digital interface system transmission/reception method and device therefor
JP2001119383A (ja) * 1999-10-18 2001-04-27 Sony Corp データ伝送方法及びデータ伝送装置
JP3648685B2 (ja) * 2001-01-30 2005-05-18 松下電器産業株式会社 データ伝送方法及びデータ送信装置
JP3895115B2 (ja) * 2001-02-01 2007-03-22 ソニー株式会社 データ伝送方法、データ送信装置、およびデータ受信装置
JP3903721B2 (ja) * 2001-03-12 2007-04-11 ソニー株式会社 情報送信装置および方法、情報受信装置および方法、情報送受信システムおよび方法、記録媒体およびプログラム
US7558326B1 (en) * 2001-09-12 2009-07-07 Silicon Image, Inc. Method and apparatus for sending auxiliary data on a TMDS-like link
US6954234B2 (en) * 2001-10-10 2005-10-11 Koninklijke Philips Electronics N.V Digital video data signal processing system and method of processing digital video data signals for display by a DVI-compliant digital video display
KR100586669B1 (ko) 2003-08-27 2006-06-08 닛뽕빅터 가부시키가이샤 전송 시스템
JP4487675B2 (ja) 2003-08-27 2010-06-23 日本ビクター株式会社 伝送システム
US7308058B2 (en) 2003-10-27 2007-12-11 Rambus Inc. Transparent multi-mode PAM interface
JP4254492B2 (ja) * 2003-11-07 2009-04-15 ソニー株式会社 データ伝送システム、データ送信装置、データ受信装置、データ伝送方法、データ送信方法及びデータ受信方法
US20070172000A1 (en) 2005-12-27 2007-07-26 Katsuaki Hamamoto Modulation method and demodulation method achieving high-quality modulation-and-demodulation performance, and modulation apparatus, demodulation apparatus receiving apparatus using the same
JP2007208319A (ja) 2006-01-30 2007-08-16 Sanyo Electric Co Ltd 復調方法およびそれを用いた復調装置
RU2372741C2 (ru) * 2006-05-16 2009-11-10 Сони Корпорейшн Система передачи данных, устройство передачи, устройство приема, способ передачи данных и программа
TWI397055B (zh) * 2007-05-28 2013-05-21 Realtek Semiconductor Corp 模式偵測電路與方法
KR101495865B1 (ko) * 2008-09-18 2015-02-25 삼성디스플레이 주식회사 표시 장치 및 이의 구동방법
WO2013076881A1 (ja) * 2011-11-25 2013-05-30 パナソニック株式会社 ベースバンド映像データの送信装置および受信装置ならびに送受信システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223229A (ja) * 1995-02-17 1996-08-30 Sony Corp ベースバンド伝送システムおよび送信装置ならびに受信装置
JPH09258686A (ja) * 1996-03-22 1997-10-03 Sharp Corp 画像データ伝送方法
JP2000232630A (ja) * 1998-12-07 2000-08-22 Matsushita Electric Ind Co Ltd 送信方法と受信方法と送信装置と受信装置
JP2008224936A (ja) * 2007-03-12 2008-09-25 Toyo Univ 表示装置
JP2009186502A (ja) * 2008-02-01 2009-08-20 Sharp Corp 差動信号の伝送方式

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104599654A (zh) * 2015-02-05 2015-05-06 京东方科技集团股份有限公司 信号转换装置及方法、信号生成系统和显示设备
CN104599654B (zh) * 2015-02-05 2016-10-19 京东方科技集团股份有限公司 信号转换装置及方法、信号生成系统和显示设备
JP2021100242A (ja) * 2019-12-20 2021-07-01 アンリツ株式会社 信号発生装置及び信号発生方法
JP7132997B2 (ja) 2019-12-20 2022-09-07 アンリツ株式会社 信号発生装置及び信号発生方法

Also Published As

Publication number Publication date
US20150208027A1 (en) 2015-07-23
CN104521228B (zh) 2017-12-19
JP6245479B2 (ja) 2017-12-13
US9648273B2 (en) 2017-05-09
CN104521228A (zh) 2015-04-15
JPWO2014045502A1 (ja) 2016-08-18

Similar Documents

Publication Publication Date Title
KR101266067B1 (ko) 클럭 임베디드 신호를 이용한 직렬 통신 방법 및 장치
EP2015533B1 (en) Multiple differential transmission system
JP4254492B2 (ja) データ伝送システム、データ送信装置、データ受信装置、データ伝送方法、データ送信方法及びデータ受信方法
JP4129050B2 (ja) 多重差動伝送システム
US9191251B2 (en) Multilevel signal transmission system capable of transmitting multilevel data signal without signal distortion and correctly determining voltage level
KR101949528B1 (ko) 표시 장치용 데이터 전송 시스템, 표시 장치용 데이터 전송 방법 및 표시 장치
US8625706B2 (en) Signal processing apparatus, information processing apparatus, multilevel coding method, and data transmission method
US8494081B2 (en) Transmission device
JP6245479B2 (ja) 伝送システム
US7190728B2 (en) Digital data transmitter, transmission line encoding method, and decoding method
US8659647B2 (en) Image pickup device and image pickup system with bit value inversion
JP2009231954A (ja) 多値信号受信器
US20090323828A1 (en) Information processing apparatus and signal determination method
JPWO2013157195A1 (ja) 多値信号伝送システム
JP3556174B2 (ja) デジタルビデオデータの伝送方法、受信方法、伝送装置及び受信装置
US8488713B2 (en) Information processing apparatus, encoding method and signal transmission method
US20100054346A1 (en) Information Processing Apparatus, Signal Transmission Method and Decoding Method
JP2007318807A (ja) 多重差動伝送システム
US20100054359A1 (en) Information processing apparatus, decoding processing method and signal transmission method
US11641291B2 (en) Signal transmission device and signal transmission method
JP4362425B2 (ja) データスライス回路
WO2024075743A1 (ja) 送信装置、受信装置および送受信システム
JPWO2005074219A1 (ja) データ送信装置、データ受信装置、伝送路符号化方法および復号方法
JP2008011559A (ja) 多重差動伝送システム
US20060165194A1 (en) Data sending device, data receiving device, and data transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536563

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14420421

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838528

Country of ref document: EP

Kind code of ref document: A1