WO2014045502A1 - 伝送システム - Google Patents
伝送システム Download PDFInfo
- Publication number
- WO2014045502A1 WO2014045502A1 PCT/JP2013/004273 JP2013004273W WO2014045502A1 WO 2014045502 A1 WO2014045502 A1 WO 2014045502A1 JP 2013004273 W JP2013004273 W JP 2013004273W WO 2014045502 A1 WO2014045502 A1 WO 2014045502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- transmission
- level
- value
- video
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/025—Systems for the transmission of digital non-picture data, e.g. of text during the active part of a television frame
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
- H04L25/4917—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/38—Transmitter circuitry for the transmission of television signals according to analogue transmission standards
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/44—Receiver circuitry for the reception of television signals according to analogue transmission standards
- H04N5/46—Receiver circuitry for the reception of television signals according to analogue transmission standards for receiving on more than one standard at will
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/08—Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division
- H04N7/083—Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division with signal insertion during the vertical and the horizontal blanking interval, e.g. MAC data signals
Definitions
- the present disclosure relates to a transmission device, a reception device, and a transmission system, and in particular, when transmitting a high-resolution video signal, the transmission rate is increased by performing multi-level transmission in the amplitude direction during an active period including the video signal. It is related to the technology.
- An object of the present disclosure is to solve the above-described problems and to transmit and maintain a video frame rate on a regular basis while suppressing power consumption of the transmission system and heat generation of the transmission / reception device during the blanking period. And providing a transmission system.
- a transmission apparatus includes a first multi-value signal generator that converts a non-video signal other than a natural number a ⁇ natural number M-bit video signal into a multi-value signal of multi-value 2 aM and outputs the multi-value signal,
- a second multi-value signal generator for converting the video signal of natural number a ⁇ natural number N bits into a multi-value signal of multi-value number 2 aN larger than the multi-value number 2 aM and outputting the multi-value number 2; a transmission driver circuit that transmits the multilevel signal of aM during at least a part of the blanking period and transmits the multilevel signal of multilevel number 2 aN during the active period.
- the receiving apparatus receives a transmission signal transmitted by converting a non-video signal other than a natural number a ⁇ natural number M-bit video signal into a multi-value signal of multi-value number 2 aM during a blanking period.
- the transmission signal transmitted by converting the video signal of natural number a ⁇ natural number N bits into the multi-value signal of multi-value number 2 aN larger than the multi-value number 2 aM is received during the active period, and the received signal is Based on the multi-level receiver circuit that outputs the received signal and the potential level of the received signal, it is determined whether the received signal is a multi-level signal with the multi-level number 2 aM or the multi-level number 2 aN.
- the multilevel signal detector that determines and generates a control signal indicating the determination result, and the potential level of the received signal and the control signal, the multilevel signal of the multilevel number 2 aM and the multilevel number 2 aN multi-valued signals, respectively, A non-video signal and a logic circuit that demodulates and outputs the a ⁇ N-bit video signal.
- a transmission system includes the transmission device and the reception device.
- the transmission device, the reception device, and the transmission system in the active period, the multi-level number of transmission signals is increased and the fundamental frequency is transmitted as it is with the multi-level signal, while in the blanking period, the active period is the active period. Because the multi-level signal with a multi-level number smaller than the multi-level number is transmitted, it is possible to reduce the power consumption of the transmission system and suppress the heat generation of the transmission / reception device, while maintaining the video frame rate constantly. it can.
- FIG. 3 is a diagram illustrating a frame format at the time of transmission data transmission according to the first embodiment of the present disclosure. It is a wave form diagram which shows the binary transmission signal of the blanking period of FIG. 1A. It is a wave form diagram which shows the transmission signal of 4 values of the active period of FIG. 1A. It is a block diagram which shows the structure of the transmitter 1 of the transmission system using the multi-value amplitude modulation system which concerns on 1st Embodiment of this indication.
- FIG. 4 is a transmission waveform diagram of a non-video signal converted into a binary signal and a video signal converted into a quaternary signal in the transmission system according to the first embodiment of the present disclosure.
- the present inventors cannot constantly transmit another frame simultaneously with one frame, and even during a blanking period in which a high transmission rate is unnecessary.
- we conducted intensive research As a result, it is possible to transmit while maintaining the frame rate of the image constantly while suppressing the power consumption of the transmission system and the heat generation of the transmission / reception device during the blanking period, and determining the control signal only from the potential level of the received signal.
- the present inventors have found a transmission device, a reception device, and a transmission system that can be used. Furthermore, the present inventors can accurately follow the fluctuation of the potential level of the multilevel signal, determine the potential level of the multilevel signal with high accuracy, and perform video signal transmission with high resolution and high frame rate. Discovered possible transmitters, receivers and transmission systems.
- FIG. 1A is a diagram illustrating a frame format at the time of data transmission according to the first embodiment of the present disclosure.
- HSYNC represents a horizontal synchronization signal
- VSYNC represents a vertical synchronization signal
- Vblank represents a vertical blanking period
- Hblank represents a horizontal blanking period.
- the period of Vblank or Hblank is a blanking period for transmitting non-video data.
- Non-video data is, for example, audio data and / or control data.
- Vactive represents a period other than the vertical blanking period
- Hactive represents a period other than the horizontal blanking period.
- the periods of Vactive and Hactive are active periods for transmitting video data.
- FIG. 1B is a waveform diagram showing the binary transmission signal 101 (FIG. 1A) in the blanking period of FIG. 1A
- FIG. 1C is a waveform showing the four-value transmission signal 102 (FIG. 1A) in the active period of FIG. 1A.
- FIG. 1B is a waveform diagram showing the binary transmission signal 101 (FIG. 1A) in the blanking period of FIG. 1A
- FIG. 1C is a waveform showing the four-value transmission signal 102 (FIG. 1A) in the active period of FIG. 1A.
- FIG. 1A the operation at the time of data transmission in the frame format will be described.
- the frame format there are two periods, an active period 100 including only video data and a blanking period including data such as audio data other than video data.
- the amount of data transmitted during the active period in which video data is always transmitted is greater than the amount of data transmitted during the blanking period.
- 1B and 1C a binary signal obtained by converting non-video data including an audio signal or the like into a binary value in the amplitude direction is transmitted in the blanking period, and the video signal is amplified in the active period 100.
- a quaternary signal converted into a quaternary value in the direction transmission is performed using a multi-value signal in the transmission line 2 while keeping the fundamental frequency as it is.
- FIG. 2A is a block diagram illustrating a configuration of the transmission device 1 of the transmission system using the multi-value amplitude modulation method according to the first embodiment of the present disclosure.
- the transmission apparatus 1 includes a non-video signal generation unit 11, a video signal generation unit 12, a control signal generation unit 14, a selector 13, a binary signal generator 17, and a multilevel signal generator 18. , And an adder 15 and a transmission driver circuit 16.
- the non-video signal generator 11 generates a signal not including a 1-bit video signal (auxiliary signal including an audio signal or the like) and outputs the signal to the selector 13.
- the video signal generator 12 generates a video signal that is a plurality of N-bit parallel data, and outputs the video signal to the multilevel signal generator 18.
- the control signal generator 14 Based on the input video signal, the control signal generator 14 generates a control signal DE indicating either a blanking period or an active period, and outputs the control signal to the selector 13.
- the control signal generator 14 generates a control signal DE of “0” when it is in the blanking period and outputs it to the selector 13, and generates a control signal DE of “1” when it is in the active period.
- the selector 13 selects either the non-video signal input from the non-video signal generation unit 11 or the “0” signal indicating “0” based on the control signal DE input from the control signal generation unit 14.
- the selected signal is output to the binary signal generator 17.
- the selector 13 outputs a “0” signal to the binary signal generator 17 in the case of the control signal DE of “1”, and binarizes the non-video signal in the case of the control signal DE of “0”.
- the binary signal generator 17 converts the 1-bit non-video signal input from the selector 13 into a binary signal and outputs it to the adder 15.
- the binary signal has a potential level of either + 1.0V or ⁇ 1.0V.
- the quaternary signal has a potential level of + 1.5V, + 0.5V, -0.5V, and -1.5V.
- the adder 15 adds the binary signal input from the binary signal generator 17 and the quaternary signal input from the multi-level signal generator 18, and sends the addition result signal to the transmission driver circuit 16. Output to.
- the transmission driver circuit 16 buffers and amplifies the addition result signal without changing the amplitude level of the addition result signal, and outputs the amplified signal to the transmission line 2 as a transmission signal.
- FIG. 2B is a transmission waveform diagram of a non-video signal converted into a binary signal and a video signal converted into a quaternary signal in the transmission system according to the first embodiment of the present disclosure.
- the transmission apparatus 1 transmits the binary signal 103 in which the potential level of the transmission signal is +1.0 V or ⁇ 1.0 V in the blanking period, and the potential level of the transmission signal is +1.5 V in the active period. , + 0.5V, -0.5V, or -1.5V is transmitted.
- the potential levels +1.0 V and ⁇ 1.0 V of the binary signal 103 are different from the threshold levels V1 and V3 other than the threshold level V2 of 0 V of the quaternary signal 104 in the binary signal generator 17.
- the threshold levels V1, V2, and V3 are set so as to be the same, and the potential level of the quaternary signal 104 is determined.
- FIG. 2C is a block diagram illustrating a configuration of the reception device 3 of the transmission system using the multi-value amplitude modulation method according to the first embodiment of the present disclosure.
- the receiving device 3 includes a multi-value receiver circuit 31, a comparison circuit 32, a buffer memory circuit 33, a multi-value signal detector 34, a logic circuit 35, a control signal receiving unit 36, and a video signal reception.
- a unit 37 and a non-video signal receiving unit 38 are provided.
- the buffer memory circuit 33 is connected to each of the comparators 32-1, 32-2, and 32-3. And buffer memories 33-1, 33-2, 33-3.
- the multi-value receiver circuit 31 receives the transmission signal from the transmission line 2 and buffers and amplifies the transmission signal without changing the amplitude level of the transmission signal, so that each comparator 32-1, 32-2, 32 Output to -3.
- Each of the comparators 32-1, 32-2, and 32-3 receives the reception signal from the multi-level receiver circuit 31, and sets the potential level of the reception signal of each of the comparators 32-1, 32-2, and 32-3. Compared with the threshold levels +1.0 V, 0 V, and ⁇ V, each comparison result signal is output to the buffer memories 33-1, 33-2, and 33-3.
- Each buffer memory 33-1, 33-2, 33-3 temporarily stores each comparison result signal input from the comparators 32-1, 32-2, 32-3, and stores each comparison result signal.
- the signal is output to the logic circuit 35.
- the buffer memories 33-1, 33-2, and 33-3 are buffer memories 33-1 and 33- of the comparison result signals input from the comparators 32-1, 32-2, and 32-3. 3 is output to the multilevel signal detector 34
- the multi-level signal detector 34 inputs signals stored in the buffer memories 33-1 and 33-3 for a predetermined period such as one horizontal period from the buffer memories 33-1 and 33-3, and receives the received signal Whether the signal is a binary signal or a quaternary signal is determined from the potential level, a control signal DE indicating the determination result is generated, and the control signal DE is output to the logic circuit 35 and the control signal receiving unit 36.
- the potential level of the binary signal is slightly lowered from + 1.0V and is, for example, (1.0 ⁇ ) V such as + 0.9V (where, for example, 0 ⁇ ⁇ 0.2), and the potential level of the binary signal is slightly lowered from the absolute value of ⁇ 1.0 V, for example, ( ⁇ 1.0 + ⁇ ) V (for example, 0 ⁇ Assuming that ⁇ 0.2), the multi-level signal detector 34 determines that the signal from the buffer memory 33-1 is “1” and the signal from the buffer memory 33-3 in a predetermined period such as one horizontal period.
- the received signal If there is a received signal whose value is “0”, it is determined that the received signal is a quaternary signal, and a control signal DE of “1” is output. In other cases, the received signal is 2 It is determined that the signal is a value signal, and a control signal DE of “0” is output.
- the logic circuit 35 Based on the control signal DE from the multi-level signal detector 34, the logic circuit 35 uses the comparison result signal from the comparison circuit 32 temporarily stored in the buffer memory circuit 33, and receives the received signal in the blanking period.
- the binary signal is demodulated into a 1-bit non-video signal.
- the quaternary signal among the received signals is demodulated into a 2-bit video signal.
- the demodulated 1-bit non-video signal and the demodulated 2 bits Are output to the video signal receiver 37 and the non-video signal receiver 38.
- FIG. 2D is a table showing a relationship between input signals and output signals of the logic circuit 35 of FIG. 2C.
- N 2 in this embodiment
- a “0” control signal DE When a “0” control signal DE is input from the multilevel signal detector 34, it is demodulated into a 1-bit non-video signal by the logic circuit 35 and output to the non-video signal receiving unit 38. Specifically, as shown in FIG. 2D, when the output signal output from the comparator 32-2 is “0”, it is demodulated into a non-video signal of “0” and output from the comparator 32-2. When the signal is “1”, it is demodulated into a non-video signal of “1”.
- the transmission system is characterized in that the multi-value number of the transmission signal is selectively switched based on the control signal DE in the blanking period and the active period.
- the non-video signal is converted into a binary signal and transmitted in the blanking period, and the video signal is converted into a quaternary signal and transmitted in the active period.
- the control signal DE is determined from the potential level of the received signal, and is demodulated into a 2-bit video signal and a 1-bit non-video signal based on the control signal DE and the potential level of the received signal.
- the quaternary signal can be transmitted in the active period and transmitted using the multi-level signal without changing the fundamental frequency, and the binary signal is transmitted in the blanking period.
- the determination of the active period and the blanking period can be made only by the multi-valued number of transmission signals, it is possible to reduce the number of demodulation circuits compared to the conventional transmission system.
- the transmission device 1 sets the potential level of the transmission signal during the blanking period to be the same as the threshold level for determining the potential level of the transmission signal during the active period. Therefore, it accurately follows the potential level of multilevel signals that fluctuate due to differences in voltage levels, reference voltage differences, temperature changes, transmission line losses, etc. Since the determination can be made with high accuracy, it is possible to accurately receive the data of the multilevel signal during the active period.
- FIG. 2E is a block diagram illustrating a configuration of the reception device 3D of the transmission system using the multi-value amplitude modulation method according to the modification of the first embodiment of the present disclosure.
- the receiving device 3D shown in FIG. 2E includes a voltage detection and control device 39 instead of the multilevel signal detector 34 as compared with the receiving device 3 shown in FIG. Resistors VR1 and VR3 are provided.
- the voltage detection and control device 39 receives the reception signal from the multilevel receiver circuit 31, determines whether the signal is a binary signal or a quaternary signal from the potential level of the reception signal, and A control signal DE indicating the determination result is generated and output to the logic circuit 35 and the control signal receiver 36. Further, when the voltage detection and control device 39 receives a binary signal from the multi-level receiver circuit 31, the voltage detection and control device 39 considers a transmission loss in the transmission line 2 from +1.0 V slightly from the potential level of the binary signal. A first detection voltage having a decreased value and a second detection voltage having a value slightly decreased from an absolute value of ⁇ 1.0 V are detected.
- the voltage detection and control device 39 detects the quaternary signal from the multi-value receiver circuit 31, the voltage detection and control device 39 generates the threshold level setting signal RS indicating the first detection voltage to change the resistance value of the variable resistor VR1.
- the threshold level setting signal RS indicating the second detection voltage
- the voltage applied to the inverting input terminal of the comparator 32-1 is set to be the same voltage as the first detection voltage.
- the resistance value of the variable resistor VR3 is changed to set the voltage applied to the inverting input terminal of the comparator 32-3 to be the same voltage as the second detection voltage.
- the operational effects of the transmission system including the transmission device 1, the transmission line 2, and the reception device 3D configured as described above are the same as those of the transmission system according to the first embodiment.
- FIG. 3A is a block diagram illustrating a configuration of a transmission device 1A of a transmission system using a multi-value amplitude modulation method according to the second embodiment of the present disclosure.
- the transmitting apparatus 1A according to the second embodiment illustrated in FIG. 3A is different from the transmitting apparatus 1 according to the first embodiment illustrated in FIG. 2A in the following points.
- the non-video signal generator 11 generates a 1-bit non-video signal in FIG. 2A, but generates an a ⁇ 1 bit non-video signal in FIG. 3A.
- a is a plurality, and so on. However, the case where a is 1 is the first embodiment described above.
- the video signal generator 12 generates a plurality of N-bit video signals in FIG.
- the transmitting apparatus 1A is characterized in that a non-video signal and video signal of a plurality of a frames are superimposed and transmitted at a time.
- the multi-level signal generator 17A converts the a ⁇ 1 bit non-video signal input from the selector 13 into a multi-level signal having a multi-level number 2a , and the multi-level signal having the multi-level number 2a .
- the signal is output to the adder 15.
- the signal is output to the adder 15.
- Other configurations are the same as those of the first embodiment.
- FIG. 3B is a block diagram illustrating a configuration of the reception device 3A of the transmission system using the multi-value amplitude modulation method according to the second embodiment of the present disclosure.
- the receiving apparatus 3A according to the second embodiment illustrated in FIG. 3B is different from the receiving apparatus 3A according to the first embodiment illustrated in FIG. 2C in the following points.
- a comparison circuit 32A shown in FIG. 3B is provided instead of the comparison circuit 32 shown in FIG. 2C.
- the comparison circuit 32A includes a comparator 32-1 having a first threshold level,..., A comparator 32- (2 aN-1 ) having a (2 aN-1 ) th threshold level, ..., and a configured with a comparator 32- (2 aN -1) containing (2 aN -1) pieces of comparators having a threshold level (2 aN -1). Note that the (2 aN-1 ) th threshold level of the intermediate position comparator 32- (2 aN-1 ) is set to 0V. (2)
- the buffer memory circuit 33A of FIG. 3B is provided instead of the buffer memory circuit 33 of FIG. 2C.
- the buffer memory circuit 33A, each comparator 32-1, ..., 32- (2 aN -1), ..., and 32 are connected correspondingly to the (2 aN -1), the buffer memory 33 ⁇ 1,..., 33- (2 aN ⁇ 1 ),..., 33- (2 aN ⁇ 1), and (2 aN ⁇ 1) buffer memories.
- the multilevel signal detector 34A of FIG. 3B is provided instead of the multilevel signal detector 34 of FIG. 2C.
- a logic circuit 35A shown in FIG. 3B is provided instead of the logic circuit 35 shown in FIG. 2C.
- the multi-level receiver circuit 31 receives the transmission signal from the transmission line 2 and buffers and amplifies the transmission signal without changing the amplitude level of the transmission signal, so that each comparator 32-1,..., 32- ( 2 aN ⁇ 1 ),..., 32- (2 aN ⁇ 1).
- Each of the comparators 32-1,..., 32- ( 2aN-1 ),..., 32- ( 2aN- 1) receives the received signal from the multilevel receiver circuit 31, and compares the potential level of the received signal with each other.
- the signal of each comparison result is buffered by the buffer memories 33-1,.
- Each of the buffer memories 33-1,..., 33- (2 aN-1 ),..., 33- (2 aN ⁇ 1) has comparators 32-1 ,. -The signal of each comparison result input from (2 aN -1) is temporarily stored, and the signal of each comparison result is output to the logic circuit 35A.
- each of the buffer memories 33-1,..., 33- (2 aN-1 ),..., 33- (2 aN ⁇ 1) is connected to each of the comparators 32-1 ,. output ..., 32 only stored signal to multi-level signal detector 34A in the buffer memory of the (2 aN -1) input from the comparison result signal 33-1,33- (2 aN -1) .
- Multi-level signal detector 34A is stored only in the buffer memory 33-1,33- (2 aN -1) a predetermined time period such as a buffer memory 33-1,33- (2 aN -1) from example 1 horizontal period
- the control signal DE indicating the determination result is determined by determining whether the signal is a multi-level signal having a multi-level number 2 a or a multi-level signal having a multi-level number 2 aN from the potential level of the received signal. Is output to the logic circuit 35A and the control signal receiver 36.
- the transmission loss in the transmission line 2 among the potential levels of the multilevel signal of multilevel number 2a , it slightly decreases from the maximum potential level, and the absolute value of the minimum potential level.
- the multilevel signal detector 34A assumes that the signal from the buffer memory 33-1 is “1” and the buffer memory 33- (2 aN ⁇ 1) in a predetermined period such as one horizontal period.
- a received signal whose signal from “0” is “0”
- it is determined that the received signal is a multi-level signal with a multi-level number of 2 aN
- a control signal DE of “1” is output, while other than that In this case, it is determined that the received signal is a multilevel signal having a multilevel number 2a , and a control signal DE of “0” is output.
- the logic circuit 35A Based on the control signal DE input from the multi-level signal detector 34A, the logic circuit 35A receives a comparison signal from the comparison result from the comparison circuit 32A temporarily stored in the buffer memory circuit 33A in the blanking period.
- the multi-level signal of the multi-level number 2 a demodulated to a non-image signal of a ⁇ 1-bit, demodulates the multi-valued signal of 2 aN of the received signal in the active period on the video signal of a ⁇ N bits out of, the The demodulated a ⁇ 1 bit non-video signal and the demodulated a ⁇ N bit video signal are output to the video signal receiver 37 and the non-video signal receiver 38.
- the non-video signal in order to transmit a plurality of frames of video signals and non-video signals at the same time, in the transmission device 1A, the non-video signal is converted into a multi-level signal having a multi-level number 2a during the blanking period. In the active period, the video signal is converted into a multilevel signal having a multilevel value of 2 aN and transmitted.
- the receiving device 3A determines the control signal DE from the potential level of the received signal and performs control. Based on the potential level of the signal DE and the received signal, it is demodulated into an a ⁇ N bit video signal and an a ⁇ 1 bit non-video signal. Other functions and effects are the same as those of the first embodiment.
- a multi-level signal having a multi-level number of 2 aN can be transmitted in the active period and transmitted using a large multi-level signal without changing the fundamental frequency, and the multi-level signal can be transmitted in the blanking period. Since the multi-value signal of Formula 2a is transmitted, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device as compared with the conventional transmission system. Furthermore, since the determination of the active period and the blanking period can be made only by the multi-valued number of transmission signals, it is possible to reduce the number of demodulation circuits compared to the conventional transmission system.
- the frame format of FIG. A plurality of frames of video signals and non-video signals can be transmitted and received at the same time. Further, at the time FullHD transmission, by transmitting the transmission signals using a multi-level signal of the multi-level number 2 4N, transmission of 4K2K can be performed with the same frame format is and the same transmission rate.
- FIG. 3C is a block diagram illustrating a configuration of a reception device 3E of the transmission system using the multi-value amplitude modulation method according to the modification of the second embodiment of the present disclosure.
- the receiving device 3E shown in FIG. 3C includes a voltage detection and control device 39A instead of the multilevel signal detector 34A as compared with the receiving device 3A shown in FIG. 3B, and is further connected in series to the voltage source.
- Variable resistors VR1,..., VR (2 aN ⁇ 1) are provided.
- the voltage detection and control device 39A receives the reception signal from the multi-level receiver circuit 31, and determines whether the multi-level signal is a multi-level signal with a multi-level number 2 a or a multi-level number 2 aN from the potential level of the received signal. It is determined whether the signal is a multilevel signal, and a control signal DE indicating the determination result is generated and output to the logic circuit 35A and the control signal receiving unit 36. Further, when the voltage detection and control device 39A receives a multi-value signal having a multi-value number 2a from the multi-value receiver circuit 31, the first detection voltage, the second detection voltage, ... from the potential level of the received signal. , it detects the detection voltage of the 2 a.
- the voltage detection and control device 39A when detecting a multi-level signal of the multi-level number 2 aN from the multi-level receiver circuit 31, a first detection voltage, a second detection voltage, ..., detected voltage of the 2 a , VR (2 aN ⁇ ) corresponding to the first detection voltage, the second detection voltage,..., The second a detection voltage. 1), the voltages applied to the inverting input terminals of the respective comparators 32-1,..., 32- ( 2aN- 1) are changed to the first detection voltage, the second detection voltage ,. so that the detection voltage of 2 a respectively set.
- the operational effects of the transmission system including the transmission device 1A, the transmission line 2, and the reception device 3E configured as described above are the same as those of the transmission system according to the second embodiment.
- FIG. 4 is a diagram illustrating a frame format of transmission data according to the third embodiment of the present disclosure.
- a transmission signal having a small multi-level number is transmitted in the vertical blanking period 300b, which is a part of the blanking period, and in a period 300a other than the vertical blanking period 300b, the multi-level number in the vertical blanking period 300b.
- transmission is performed using a large number of transmission signals.
- FIG. 5A is a block diagram illustrating a configuration of a transmission device 1B of a transmission system using a multi-value amplitude modulation scheme according to the third embodiment of the present disclosure.
- the transmitting apparatus 1B illustrated in FIG. 5A is different from the transmitting apparatus 1A according to the third embodiment illustrated in FIG. 3A in the following points.
- (1) instead of the control signal generator 14, the control signal generator 40 of FIG. 5A is provided.
- the switching signal generator 41, the coupling capacitor 42 of FIG. 5A, and the switching circuit 50 are further provided.
- the switching circuit 50 includes a switch SW1 and a switch SW2.
- the coupling capacitor 42 is provided between the transmission driver circuit 16 and the transmission line 2 in order to cut a direct current component.
- the control signal generator 40 generates a horizontal synchronization signal HSYNC, a vertical synchronization signal VSYNC, and a control signal DE and outputs them to the switching signal generator 41.
- the switching signal generator 41 determines whether it is the vertical blanking period 300b or the other period 300a by counting the clocks. A counter (not shown).
- the switching signal generation unit 41 converts the non-video signal transmission signal to (A) In the vertical blanking period 300b, a multilevel signal with a multilevel number 2a is transmitted, or (B) In a period 300a other than the vertical blanking period 300b, a multilevel signal with a multilevel number 2aN is transmitted. Specify whether to do the period, (C) In the period 300a, the switching signal CD for designating whether to transmit the transmission signal of the video signal as a multi-level signal having a multi-level number of 2 aN is generated and output to the switches SW1 and SW2 of the switching circuit 50. To do.
- the switch SW1 is switched to the contact a and the switch SW2 is switched to the contact d based on the switching signal CD.
- the switch SW1 is switched to the contact b and the switch SW2 based on the switch signal CD. Is switched to contact c.
- the switch SW2 is switched to the contact point d based on the switching signal CD.
- FIG. 5B is a block diagram illustrating a configuration of the reception device 3B of the transmission system using the multi-level amplitude modulation method according to the third embodiment of the present disclosure.
- the receiving device 3B shown in FIG. 5B is different from the receiving device 3A shown in FIG. 3B in the following points.
- a coupling capacitor 45 for cutting a direct current component is further provided between the transmission line 2 and the multilevel receiver circuit 31.
- a synchronization signal detector 43 is further provided.
- the logic circuit 35A the logic circuit 35B of FIG. 5B is provided.
- the control signal receiving unit 44 of FIG. 5B is provided.
- the horizontal synchronization signal HSYNC or the vertical synchronization signal VSYNC is detected by determining whether or not the signal pattern of the horizontal synchronization signal HSYNC and the signal pattern of the vertical synchronization signal VSYNC are included based on the output signal that has been output.
- the horizontal synchronization signal HSYNC or vertical synchronization signal VSYNC thus output is output to the logic circuit 35B and the control signal receiving unit 44.
- the multi-level signal detector 34A generates a control signal DE and outputs it to the logic circuit 35B and the control signal receiving unit 44, as in the second embodiment.
- the logic circuit 35B determines whether it is the vertical blanking period 300b or a period 300a other than the vertical blanking period 300b, and according to the determination result.
- the multi-level signal of multi-level number 2a is demodulated into a ⁇ 1 bit non-video signal in the vertical blanking period 300b, and the multi-level number of 2 aN is demodulated in the period 300a other than the vertical blanking period 300b.
- the multi-level signal is demodulated into an a ⁇ N bit video signal, and the demodulated a ⁇ 1 bit non-video signal and the demodulated a ⁇ N bit video signal are converted into the video signal receiving unit 37 and the non-video signal. Output to the receiver 38.
- the switching signal generator 41 generates a switching signal CD that designates the blanking period 300b and the other period 300a. Based on the switching signal CD, the non-video signal is converted into the vertical blanking period 300b and the non-video signal. It is characterized in that it is divided into periods other than 300a and transmitted with different multi-value numbers.
- a non-video signal can be transmitted using a multi-level signal having a large multi-level number while transmitting a multi-level signal having a multi-level number 2 aN and keeping the fundamental frequency as it is, and the vertical blanking period 300b. Then, since the multi-value signal of multi-value number 2a is transmitted as the non-video signal, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device as compared with the conventional transmission system.
- the video signal and non-video signal of a frames can be superimposed and data processing in units of bits can be performed. It is possible to simultaneously transmit and receive video signals and non-video signals of a plurality of frames at a time while keeping one frame format as it is. Further, at the time FullHD transmission, by transmitting the transmission signals using a multi-level signal of the multi-level number 2 4N, transmission of 4K2K can be performed with the same frame format is and the same transmission rate.
- the control signal DE, the vertical synchronization signal VSYNC, and the horizontal synchronization signal HSYNC can be detected based on the output signal output from the comparison circuit 32A. Since the period in which binary transmission can be performed can be arbitrarily set by referring to the above signal, it is possible to easily apply the blanking period reduction method in the conventional binary transmission. Furthermore, since the capacitors 42 and 45 are inserted and the center level of the threshold level is set to the floating state to obtain a stable ground level, the center level can be discriminated with high accuracy and easily. .
- the present disclosure is not limited thereto, and the transmission signal is transmitted in a DC coupling state without inserting the coupling capacitors 42 and 45. May be.
- FIG. 6A is a block diagram illustrating a configuration of a transmission device 1D of a transmission system using a multi-value amplitude modulation method according to the fourth embodiment of the present disclosure.
- the transmission device 1C illustrated in FIG. 6A differs from the transmission device 1B illustrated in FIG. 5A in the following points.
- (1) instead of the transmission driver circuit 16, the differential transmission driver circuit 16C of FIG. 6A is provided.
- (2) instead of the coupling capacitor 42, the capacitor circuit 46 of FIG. 6A is provided.
- the capacitor circuit 46 includes a coupling capacitor 46a and a coupling capacitor 46b.
- the differential transmission line 200 of FIG. 6A is provided instead of the transmission line 2.
- the differential transmission driver circuit 16C buffers and amplifies the addition result signal output from the adder 15 without changing the amplitude level of the addition result signal, and couples the addition result signal.
- the transmission signal is output to the differential transmission line 200 via the capacitors 46a and 46b.
- FIG. 6B is a block diagram illustrating a configuration of a reception device 3 ⁇ / b> C of the transmission system using the multi-value amplitude modulation method according to the fourth embodiment of the present disclosure.
- the receiving device 3C illustrated in FIG. 6B is different from the transmitting device 3B illustrated in FIG. 5B in the following points.
- the differential multilevel receiver circuit 31C of FIG. 6B is provided instead of the multilevel receiver circuit 31A.
- the capacitor circuit 47 of FIG. 6B is provided.
- the capacitor circuit 47 includes a coupling capacitor 47a and a coupling capacitor 47b.
- the differential multilevel receiver circuit 31C receives the transmission signal received from the differential transmission line 200 via the capacitor circuit 47, and buffers and amplifies the transmission signal without changing the amplitude level of the transmission signal.
- each comparator 32-1 as, ..., 32- (2 aN- 1), ..., and outputs the 32- (2 aN -1).
- the transmission system according to the present embodiment includes the differential transmission driver circuit 16C and the differential multi-level receiver circuit 31C, the video signal and the non-video signal can be transmitted by the differential transmission method, and can be transmitted at higher speed. Simplification, low noise, and high noise resistance are possible.
- the present disclosure is not limited to this, and the transmission signal may be transmitted in a DC coupling state without inserting the capacitor circuits 46 and 47. Good.
- the comparison circuits 32 and 32A have a predetermined reference voltage and a plurality of threshold values generated in the receivers 3, 3A, 3B, and 3C.
- the present disclosure is not limited to this, and a plurality of voltage levels of the received non-video signal other than the active period are determined based on the control signal DE generated in the multilevel signal detectors 34 and 34A. It may be detected and used as the plurality of threshold levels.
- FIG. 7 is a transmission waveform diagram of a transmission signal of a four-value converted non-video signal and an eight-value converted video signal of a transmission device according to a modification of the present disclosure.
- the transmission apparatus that transmits the transmission waveform diagram of the transmission signal as shown in FIG. 7 differs from the transmission apparatus 1 of FIG. 2A according to the first embodiment in the following points. (1) Instead of transmitting a video signal to be transmitted in the active period as a quaternary signal having any one of four potential levels + 1.5V, + 0.5V, -0.5V, and -1.5V.
- the threshold levels V11, V12, V13, V14, V15, V16, and V17 for determining the potential level of the 8-level signal are the threshold levels V1 for determining the potential level of the 4-level signal.
- V2, and V3 are set to be increased by four.
- the transmission device is characterized by having the following configuration as compared with the transmission device 1 according to the first embodiment.
- a non-video signal generator 11 that generates a 1-bit non-video signal
- a non-video signal generator that generates a multi-bit non-video signal is provided.
- the non-video signal transmitted during the blanking period is converted into a quaternary signal having any one of four potential levels ⁇ 3.0 V and ⁇ 1.0 V, or four potential levels ⁇ 2
- a control unit is provided for switching to any one of four-value signals having a potential level of .0V or ⁇ 1.0V.
- a quaternary signal is transmitted as a transmission signal in the blanking period, and an quaternary signal is transmitted as the transmission signal in the active period.
- a quaternary signal may be transmitted as a transmission signal, and in an interval 300a other than the vertical blanking period 300b, an 8-level signal may be transmitted as a transmission signal. In this case, the same effects as those of the third embodiment are obtained.
- a transmission system has been described in which a non-video signal of a natural number a ⁇ 1 bit is transmitted as a transmission signal, which is a multilevel signal converted into a multilevel number 2a .
- the present disclosure is not limited to the above-described embodiment.
- a transmission system that transmits a non-video signal having a natural number M bits that is, a multi-valued a ⁇ M-bit non-video signal.
- the present invention can also be applied to a transmission system that transmits a multilevel signal converted into Equation 2 aM as a transmission signal.
- video transmission is performed without changing the video format, and the natural numbers a, N, and M described above are constant.
- the transmission apparatus is A non-video signal of natural number a ⁇ natural number M bits and a video signal of a ⁇ natural number N bits are each expressed in binary or more values in an active period including video data or a blanking period including data other than the video data.
- a transmission device that transmits a multilevel signal converted into a number of values as a transmission signal, A first multi-value signal generator that converts the non-video signal into a multi-value signal having a multi-value number of 2 aM and outputs the multi-value signal; A second multilevel signal generator for converting the video signal into a multilevel signal having a multilevel number of 2 aN and outputting the multilevel signal; A transmission driver circuit that transmits the multilevel signal of the multilevel number 2 aM and the multilevel signal of the multilevel number 2 aN as a transmission signal; The multi-value number 2 aM of the non-video signal is set to be smaller than the multi-value number 2 aN of the video signal.
- a multi-level signal having a multi-level number of 2 aN can be transmitted in the active period and transmitted using a large multi-level signal without changing the fundamental frequency, and the multi-level signal can be transmitted in the blanking period. Since the multi-value signal of Formula 2 aM is transmitted, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device as compared with the conventional transmission system. In addition, since video processing and non-video signals of a plurality of frames can be superimposed and data processing can be performed in bit units, the video signal and non-video signals of a plurality of frames can be processed at the same time while keeping the frame format of FIG. Can be transmitted and received simultaneously. Further, at the time FullHD transmission, by transmitting a multi-level signal of the multi-level number 2 4N as a transmission signal, transmission of 4K2K can be performed with the same frame format is and the same transmission rate.
- the transmission device is the transmission device according to the first aspect.
- a control signal generation unit that generates and outputs a control signal indicating either a blanking period or an active period is further provided.
- a multi-level signal having a multi-level number of 2 aN can be transmitted in the active period and transmitted using a large multi-level signal without changing the fundamental frequency, and the multi-level signal can be transmitted in the blanking period. Since the multi-value signal of Formula 2 aM is transmitted, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device as compared with the conventional transmission system.
- the transmission device is the transmission device according to the first aspect, Each potential level of the transmission signal in the blanking period is set to be the same as each threshold level for determining each potential level of the transmission signal in the active period.
- the transmission device sets the potential level of the transmission signal during the blanking period to be the same as the threshold level for determining the potential level of the transmission signal during the active period.
- the transmission device acquires the potential level of multi-level signals that fluctuate due to voltage levels between transmitters and receivers, differences in reference voltages, temperature changes, loss in transmission lines, etc. Since the determination can be made, it is possible to accurately receive the data of the multilevel signal during the active period.
- the transmission device is the transmission device according to the second or third aspect, Based on the control signal, the transmission device transmits the non-video signal as a multi-value signal of 2 aM in the blanking period, and transmits the video signal as a multi-value value of 2 aN in the active period. It transmits by a value signal, It is characterized by the above-mentioned.
- a multi-level signal having a multi-level number of 2 aN can be transmitted in the active period and transmitted using a large multi-level signal without changing the fundamental frequency, and the multi-level signal can be transmitted in the blanking period. Since the multi-value signal of Formula 2 aM is transmitted, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device as compared with the conventional transmission system.
- a transmission device is the transmission device according to the second or third aspect,
- the control signal generator further generates a horizontal synchronization signal and a vertical synchronization signal, Based on the horizontal synchronization signal and the vertical synchronization signal, a switching signal generation unit that generates and outputs a switching signal indicating whether it is a vertical blanking period or a period other than the vertical blanking period, Based on the switching signal, the transmission device transmits the non-video signal as a multi-level signal having a multi-level number of 2 aM in the vertical blanking period, and multi-level number 2 in a period other than the vertical blanking period.
- the video signal is transmitted as an aN multilevel signal, and the video signal is transmitted as a multilevel signal having a multilevel value of 2 aN during the active period.
- the transmission driver circuit of the transmission device transmits a multilevel signal with a multilevel number of 2 aM during at least a part of the blanking period, and transmits a multilevel signal with a multilevel number of 2 aN in the active period.
- the multi-level signal having a large multi-level number is transmitted while transmitting the non-video signal, the multi-level signal having a multi-level number of 2 aN , and leaving the fundamental frequency as it is, except during the vertical blanking period.
- a non-video signal is transmitted as a multi-level signal having a multi-level number of 2 aM. Therefore, the conventional technique for reducing the blanking period can be easily applied. .
- a transmission device is the transmission device according to any one of the first to fifth aspects, A coupling capacitor for cutting a direct current component of the transmission signal is further provided.
- the center level of the threshold level is set to a stable ground level by making the floating level, the center level can be determined with high accuracy and easily.
- a transmission device is the transmission device according to any one of the first to sixth aspects,
- the transmission driver circuit is a differential transmission driver circuit.
- the transmission device since the video signal and the non-video signal can be transmitted by the differential transmission method, it is possible to facilitate higher-speed transmission, reduce noise, and tolerate high noise.
- a receiving apparatus is A non-video signal of natural number a ⁇ natural number M bits and a video signal of a ⁇ natural number N bits are each expressed in binary or more values in an active period including video data or a blanking period including data other than the video data.
- a receiving device that receives a transmission signal that is a multilevel signal converted into a number of values, A multi-value receiver circuit that receives and outputs the transmission signal as a reception signal; Multi-level signal detection that determines whether the multi-level signal is a multi-level number 2 aM or multi-level number 2 aN from the potential level of the received signal and generates a control signal indicating the determination result And Based on the potential level of the received signal and the control signal, the multi-level signal of multi-level number 2 aM and the multi-level signal of multi-level number 2 aN of the received signal are each an a ⁇ M-bit non-video signal. And a logic circuit that demodulates and outputs an a ⁇ N-bit video signal, The multi-value number 2 aM of the non-video signal is set to be smaller than the multi-value number 2 aN of the video signal.
- the determination of the active period and the blanking period can be made based only on the multi-value number of the transmission signal, so that the number of demodulation circuits is reduced compared to the conventional transmission system. It becomes possible to do.
- a receiving device is the receiving device according to the eighth aspect, Based on the control signal, the logic circuit demodulates a multilevel signal having a multilevel value of 2 aM among the received signals into an a ⁇ M bit non-video signal in the blanking period, and in the active period, A multi-level signal having a multi-level number of 2 aN among received signals is demodulated into an a ⁇ N-bit video signal.
- a multilevel signal having a multilevel value of 2 aN can be received in the active period, and a multilevel signal having a multilevel value of 2 aM can be received in the blanking period. Compared to the above, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device.
- a receiving device is the receiving device according to the eighth aspect,
- the logic circuit detects the horizontal synchronization signal or the vertical synchronization signal by determining whether the signal pattern of the horizontal synchronization signal and the signal pattern of the vertical synchronization signal are included based on the potential level of the received signal.
- a synchronization signal detector for outputting to Based on the horizontal synchronization signal and the vertical synchronization signal, the logic circuit determines the vertical signal among the received signals depending on whether it is a vertical blanking period or a period other than the vertical blanking period.
- the multilevel signal of 2 aM is demodulated into an a ⁇ M bit non-video signal, and in the period other than the vertical blanking period, the multilevel signal of 2 aN is converted to an a ⁇ N bit.
- the video signal is demodulated.
- the multilevel signal having a multilevel value of 2 aM is demodulated into an a ⁇ M bit non-video signal in the vertical blanking period, and other than the vertical blanking period. Since the multi-level signal having a multi-level number of 2 aN can be demodulated into an a ⁇ N-bit video signal during the period, it is possible to easily apply the conventional technique for reducing the blanking period.
- a receiving apparatus is the receiving apparatus according to the eighth aspect, wherein the receiving apparatus according to any one of the eighth to tenth aspects is A coupling capacitor for cutting a direct current component of the received signal is further provided.
- the center level of the threshold level is set to the stable ground level by making the floating level, the center level can be discriminated with high accuracy and easily.
- a receiving apparatus is the receiving apparatus according to any one of the eighth to eleventh aspects,
- the multi-value receiver circuit is a differential multi-value receiver circuit.
- the receiving device since the video signal and the non-video signal can be transmitted by the differential transmission method, it is possible to facilitate the high-speed transmission, reduce the noise, and increase the noise resistance.
- a transmission system is characterized by including the transmission device according to the first aspect and the reception device according to the eighth aspect.
- a multi-level signal having a multi-level number of 2 aN can be transmitted in the active period and transmitted using a large multi-level signal without changing the fundamental frequency, and the multi-level signal can be transmitted in the blanking period. Since the multi-value signal of Formula 2 aM is transmitted, it is possible to reduce the power consumption of the transmission system and to suppress the heat generation of the transmission / reception device as compared with the conventional transmission system. In addition, since video processing and non-video signals of a plurality of frames can be superimposed and data processing can be performed in bit units, the video signal and non-video signals of a plurality of frames can be processed at the same time while keeping the frame format of FIG. Can be transmitted and received simultaneously.
- transmission using a multi-level signal of the multi-level number 2 4N as a transmission signal if transmission using a multi-level signal of the multi-level number 2 4N as a transmission signal, transmission of 4K2K can be performed with the same frame format is and the same transmission rate. Furthermore, since the determination of the active period and the blanking period can be made based only on the multi-valued number of transmission signals, it is possible to reduce the number of demodulation circuits compared to the conventional transmission system.
- the transmission device in the active period, while increasing the multi-value number of the transmission signal and transmitting the fundamental frequency as it is, the multi-value signal is transmitted,
- the blanking period transmission is performed using a multi-value signal having a multi-value number smaller than the multi-value number in the active period, so that the power consumption of the transmission system can be reduced and the heat generation of the transmission / reception device can be suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Dc Digital Transmission (AREA)
- Television Systems (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
Description
図1Aは、本開示の第1の実施形態に係るデータ伝送時のフレームフォーマットを示す図である。図1Aにおいて、HSYNCは水平同期信号を表し、VSYNCは垂直同期信号を表す。また、Vblankは垂直ブランキング期間を表し、Hblankは水平ブランキング期間を表す。VblankまたはHblankの期間は非映像データを伝送するブランキング期間である。非映像データは、例えば、音声データおよび/または制御データである。さらに、Vactiveは上記垂直ブランキング期間以外の期間を表し、Hactiveは上記水平ブランキング期間以外の期間を表す。VactiveかつHactiveの期間は映像データを伝送するアクティブ期間である。
ここで、多値信号検出器34から「1」の制御信号DEが入力された場合には、ロジック回路35によってNビット(本実施形態では,N=2)の映像信号に復調されて映像信号受信部37に出力される。詳細には、図2Dに示すように、比較器32-1、32-2、32-3から出力された出力信号がすべて「0」の場合には「00」の映像信号に復調され、比較器32-1、32-2から出力された出力信号がすべて「0」でかつ比較器32-3から出力された出力信号が「1」の場合には「01」の映像信号に復調される。また、比較器32-1から出力された出力信号が「0」でかつ比較器32-2、32-3から出力された出力信号が「1」の場合には「10」の映像信号に復調され、比較器32-1、32-2、32-3から出力された出力信号がすべて「1」の場合には「11」の映像信号に復調される。
図3Aは、本開示の第2の実施形態に係る多値振幅変調方式を用いた伝送システムの送信装置1Aの構成を示すブロック図である。図3Aに示す第2の実施形態に係る送信装置1Aは、図2Aに示す第1の実施形態に係る送信装置1に比較して、以下のことが異なる。
(1)非映像信号発生部11は、図2Aにおいて1ビットの非映像信号を発生していたが、図3Aにおいては、a×1ビットの非映像信号を発生する。ここで、aは複数であって、以下同様である。ただし、aが1の場合が上述した第1の実施形態である。
(2)映像信号発生部12は、図2Aにおいて複数Nビットの映像信号を発生していたが、図3Aにおいては、a×Nビットの映像信号を発生する。
(3)図2Aの2値信号発生器17の代わりに、図3Aの多値信号発生器17Aを備える。
従って、第2の実施形態に係る送信装置1Aは、一度に複数a枚のフレームの非映像信号及び映像信号を重畳して送信することを特徴としている。
(1)図2Cの比較回路32の代わりに、図3Bの比較回路32Aを備える。ここで、比較回路32Aは、第1のしきい値レベルを有する比較器32-1、…、第(2aN-1)のしきい値レベルを有する比較器32-(2aN-1)、…、及び第(2aN-1)のしきい値レベルを有する比較器32-(2aN-1)を含む(2aN-1)個の比較器を備えて構成される。なお、中間位置の比較器32-(2aN-1)の第(2aN-1)のしきい値レベルは0Vに設定される。
(2)図2Cのバッファメモリ回路33の代わりに、図3Bのバッファメモリ回路33Aを備える。ここで、バッファメモリ回路33Aは、各比較器32-1、…、32-(2aN-1)、…、及び32-(2aN-1)にそれぞれ対応して接続される、バッファメモリ33-1、…、33-(2aN-1)、…、33-(2aN-1)を含む(2aN-1)個のバッファメモリを備えて構成される。
(3)図2Cの多値信号検出器34の代わりに、図3Bの多値信号検出器34Aを備える。
(4)図2Cのロジック回路35の代わりに、図3Bのロジック回路35Aを備える。
図4は、本開示の第3の実施形態に係る伝送データのフレームフォーマットを示す図である。図4において、ブランキング期間の一部である垂直ブランキング期間300bでは多値数の小さい送信信号を送信し、垂直ブランキング期間300b以外の期間300aでは、垂直ブランキング期間300bにおける多値数よりも大きい多値数の送信信号で伝送を行うことを特徴としている。
(1)制御信号発生部14の代わりに、図5Aの制御信号発生部40を備える。
(2)切替信号発生部41、図5Aのカップリングキャパシタ42及びスイッチング回路50をさらに備える。ここで、スイッチング回路50は、スイッチSW1とスイッチSW2とを備えて構成される。また、カップリングキャパシタ42は、送信ドライバ回路16と伝送線路2との間に直流成分をカットするために設けられる。
(A)垂直ブランキング期間300bにおいて、多値数2aの多値信号で送信するか、もしくは
(B)垂直ブランキング期間300b以外の期間300aにおいて、多値数2aNの多値信号で送信するかを
期間指定するともに、
(C)上記期間300aにおいて、映像信号の送信信号を、多値数2aNの多値信号で送信するかを
期間指定する切替信号CDを発生してスイッチング回路50のスイッチSW1及びスイッチSW2に出力する。
(1)伝送線路2と多値レシーバ回路31との間に直流成分をカットするためのカップリングキャパシタ45をさらに備える。
(2)同期信号検出器43をさらに備える。
(3)ロジック回路35Aに代えて、図5Bのロジック回路35Bを備える。
(4)制御信号受信部36に代えて、図5Bの制御信号受信部44を備える。
図6Aは、本開示の第4の実施形態に係る多値振幅変調方式を用いた伝送システムの送信装置1Dの構成を示すブロック図である。図6Aに示す送信装置1Cは、図5Aに示す送信装置1Bに比較して、以下の点が異なる。
(1)送信ドライバ回路16の代わりに、図6Aの差動送信ドライバ回路16Cを備える。
(2)カップリングキャパシタ42の代わりに、図6Aのキャパシタ回路46を備える。ここで、キャパシタ回路46は、カップリングキャパシタ46a及びカップリングキャパシタ46bを備えて構成される。
(3)伝送線路2の代わりに、図6Aの差動伝送線路200を備える。
(1)多値レシーバ回路31Aの代わりに、図6Bの差動多値レシーバ回路31Cを備える。
(2)キャパシタ45の代わりに、図6Bのキャパシタ回路47を備える。ここで、キャパシタ回路47は、カップリングキャパシタ47a及びカップリングキャパシタ47bを備えて構成される。
図7は本開示の変形例に係る送信装置の4値変換された非映像信号及び8値変換された映像信号の送信信号の伝送波形図である。図7に示すような送信信号の伝送波形図を送信する送信装置は、第1の実施形態に係る図2Aの送信装置1に比較して、以下の点が異なる。
(1)アクティブ期間において送信する映像信号を4つの電位レベル+1.5V、+0.5V、-0.5V及び-1.5Vの電位レベルのいずれかの電位レベルを有する4値信号で送信する代わりに、8つの電位レベル+3.5V、+2.5V、+1.5V、+0.5V、-0.5V、-1.5V、-2.5V及び-3.5Vのいずれかの電位レベルを有する8値信号で送信することを特徴としている。従って、8値信号の電位レベルの判別を行うためのしきい値レベルV11、V12、V13、V14、V15、V16及びV17は、4値信号の電位レベルの判別を行うためのしきい値レベルV1、V2、V3よりも4つだけ増加して設定される。
(2)ブランキング期間において送信する非映像信号を2つの電位レベル+1.0V及び-1.0Vのいずれかの電位レベルを有する2値信号で送信する代わりに、4つの電位レベル±3.0V、±1.0Vのいずれかの電位レベルを有する4値信号と、4つの電位レベル±2.0V、±1.0Vのいずれかの電位レベルを有する4値信号とを交互に送信することを特徴としている。これによって、(1)に示すしきい値レベルV11、V12、V13、V14、V15、V16及びV17を、しきい値レベルV14=0Vを除き、ブランキング期間に送信される非映像信号の信号レベル±3.0V、±2.0V、±1.0Vと同一となるように設定することが可能となる。
(1)1ビットの非映像信号を発生する非映像信号発生部11の代わりに、複数ビットの非映像信号を発生する非映像信号発生部を備える。
(2)ブランキング期間に送信する非映像信号を、4つの電位レベル±3.0V、±1.0Vのいずれかの電位レベルを有する4値信号に変換するか、もしくは4つの電位レベル±2.0V、±1.0Vのいずれかの電位レベルを有する4値信号に変換するかのいずれかに切り替えるための制御部を備える。
以上のように構成された上述の伝送システムにおいては、自然数a×1ビットの非映像信号を、多値数2aに変換した多値信号を送信信号として送信する伝送システムについて説明した。しかしながら、本開示は上述した実施形態に限定されず、たとえば上述した実施形態の変形例として、自然数Mビットの非映像信号を送信する伝送システム、すなわち、a×Mビットの非映像信号を多値数2aMに変換された多値信号を送信信号として送信する伝送システムにも適用することができる。なお、上述した実施形態及び変形例においては、映像フォーマットが変更されない映像伝送であって、上述した自然数a,N,Mは一定である。
自然数a×自然数Mビットの非映像信号と、a×自然数Nビットの映像信号とをそれぞれ、映像データを含むアクティブ期間、もしくは上記映像データ以外のデータを含むブランキング期間において、2値以上の多値数に変換された多値信号を送信信号として送信する送信装置であって、
上記非映像信号を多値数2aMの多値信号に変換して出力する第1の多値信号発生器と、
上記映像信号を多値数2aNの多値信号に変換して出力する第2の多値信号発生器と、
上記多値数2aMの多値信号と上記多値数2aNの多値信号とを、送信信号として送信する送信ドライバ回路とを備え、
上記非映像信号の多値数2aMは上記映像信号の多値数2aNよりも小さいように設定されたことを特徴とする。
ブランキング期間又はアクティブ期間のいずれかであることを示す制御信号を発生して出力する制御信号発生部をさらに備えたことを特徴とする。
上記ブランキング期間における上記送信信号の各電位レベルは、上記アクティブ期間における上記送信信号の各電位レベルを判別する各しきい値レベルと同一となるように設定されることを特徴とする。
上記送信装置は、上記制御信号に基づいて、上記ブランキング期間では上記非映像信号を多値数2aMの多値信号で送信し、上記アクティブ期間では上記映像信号を多値数2aNの多値信号で送信することを特徴とする。
上記制御信号発生部はさらに水平同期信号及び垂直同期信号を発生し、
上記水平同期信号及び上記垂直同期信号に基づいて、垂直ブランキング期間であるか、もしくは上記垂直ブランキング期間以外の期間であるかを示す切替信号を生成して出力する切替信号発生部を備え、
上記送信装置は、上記切替信号に基づいて、上記非映像信号を、上記垂直ブランキング期間では多値数2aMの多値信号で送信し、上記垂直ブランキング期間以外の期間では多値数2aNの多値信号で送信し、上記映像信号を上記アクティブ期間では上記映像信号を多値数2aNの多値信号で送信することを特徴とする。
上記送信信号の直流成分をカットするカップリングキャパシタをさらに備えたことを特徴とする。
上記送信ドライバ回路は差動の送信ドライバ回路であることを特徴とする。
自然数a×自然数Mビットの非映像信号と、a×自然数Nビットの映像信号とをそれぞれ、映像データを含むアクティブ期間、もしくは上記映像データ以外のデータを含むブランキング期間において、2値以上の多値数に変換された多値信号である送信信号を受信する受信装置であって、
上記送信信号を受信信号として受信して出力する多値レシーバ回路と、
上記受信信号の電位レベルから多値数2aMの多値信号であるか、多値数2aNの多値信号であるかを判定して、判定結果を示す制御信号を発生する多値信号検出器と、
上記受信信号の電位レベルと上記制御信号とに基づいて、上記受信信号の多値数2aMの多値信号と多値数2aNの多値信号とをそれぞれ、a×Mビットの非映像信号とa×Nビットの映像信号に復調して出力するロジック回路とを備え、
上記非映像信号の多値数2aMは上記映像信号の多値数2aNよりも小さいように設定されたことを特徴とする。
上記ロジック回路は、上記制御信号に基づいて、上記ブランキング期間では、上記受信信号のうち多値数2aMの多値信号をa×Mビットの非映像信号に復調し、上記アクティブ期間では上記受信信号のうち多値数2aNの多値信号をa×Nビットの映像信号に復調することを特徴とする。
上記受信信号の電位レベルに基づいて、水平同期信号の信号パターン及び垂直同期信号の信号パターンを含むか否かを判断することにより、上記水平同期信号又は上記垂直同期信号を検出して上記ロジック回路に出力する同期信号検出器をさらに備え、
上記ロジック回路は、上記水平同期信号及び上記垂直同期信号に基づいて、垂直ブランキング期間であるか、もしくは上記垂直ブランキング期間以外の期間であるかに応じて、上記受信信号のうち、上記垂直ブランキング期間では多値数2aMの多値信号をa×Mビットの非映像信号に復調し、上記垂直ブランキング期間以外の期間では多値数2aNの多値信号をa×Nビットの映像信号に復調することを特徴とする。
上記受信信号の直流成分をカットするカップリングキャパシタをさらに備えたことを特徴とする。
上記多値レシーバ回路は差動の多値レシーバ回路であることを特徴とする。
2,200…伝送線路、
3,3A,3B,3C…受信装置、
11…非映像信号発生部、
12…映像信号発生部、
13…セレクタ、
14,40…制御信号発生部、
15…加算器、
16…送信ドライバ回路、
16C…差動送信ドライバ回路、
17…2値信号発生器、
17A,18…多値信号発生器、
31…多値レシーバ回路、
31C…差動多値レシーバ回路、
32,32A…比較回路、
32-1,32-2,32-3,32-(2aN-1),32-(2aN-1)…比較器、
33,33A…バッファメモリ回路、
33-1,33-2,33-3,33-(2aN-1),33-(2aN-1)…バッファメモリ、
34,34A…多値信号検出器、
35,35A,35B…ロジック回路、
36,44…制御信号受信部、
37…映像信号受信部、
38…非映像信号受信部、
39,39A…電圧検出及び制御装置、
41…切替信号発生部、
42,45,46a,46b,47a,47b…カップリングキャパシタ、
43…同期信号検出器
46,47…キャパシタ回路、
50…スイッチング回路、
100…アクティブ期間
300a…垂直ブランキング期間300b以外の期間、
300b…垂直ブランキング期間。
Claims (15)
- 自然数a×自然数Mビットの映像信号以外の非映像信号を多値数2aMの多値信号に変換して出力する第1の多値信号発生器と、
自然数a×自然数Nビットの上記映像信号を上記多値数2aMよりも大きい多値数2aNの多値信号に変換して出力する第2の多値信号発生器と、
上記多値数2aMの多値信号をブランキング期間の少なくとも一部の期間に送信し、上記多値数2aNの多値信号をアクティブ期間に送信する送信ドライバ回路とを備えた送信装置。 - 映像フォーマットが変更されない映像伝送において、上記自然数a、N、Mが一定である請求項1記載の送信装置。
- ブランキング期間又はアクティブ期間のいずれかであることを示す制御信号を発生して出力する制御信号発生部をさらに備えた請求項1又は2記載の送信装置。
- 上記送信装置は、上記制御信号に基づいて、上記ブランキング期間では上記非映像信号を多値数2aMの多値信号で送信し、上記アクティブ期間では上記映像信号を多値数2aNの多値信号で送信する請求項3記載の送信装置。
- 上記制御信号発生部はさらに水平同期信号及び垂直同期信号を発生し、
上記送信装置は、上記水平同期信号及び上記垂直同期信号に基づいて、垂直ブランキング期間であるか、もしくは上記垂直ブランキング期間以外の期間であるかを示す切替信号を生成して出力する切替信号発生部を備え、
上記送信装置は、上記切替信号に基づいて、上記非映像信号を、上記垂直ブランキング期間では多値数2aMの多値信号で送信し、上記垂直ブランキング期間以外の期間では多値数2aNの多値信号で送信し、上記アクティブ期間では上記映像信号を多値数2aNの多値信号で送信する請求項3又は4記載の送信装置。 - 上記ブランキング期間における送信信号の各電位レベルはそれぞれ、上記アクティブ期間における送信信号の各電位レベルを判別する各しきい値レベルと同一となるように設定される請求項1~5のうちいずれか1つに記載の送信装置。
- 上記送信信号の直流成分をカットするカップリングキャパシタをさらに備えた請求項1~6のうちのいずれか1つに記載の送信装置。
- 上記送信ドライバ回路は差動の送信ドライバ回路である請求項1~7のうちのいずれか1つに記載の送信装置。
- 自然数a×自然数Mビットの映像信号以外の非映像信号が多値数2aMの多値信号に変換されて送信された送信信号をブランキング期間に受信し、自然数a×自然数Nビットの上記映像信号が上記多値数2aMよりも大きい多値数2aNの多値信号に変換されて送信された送信信号をアクティブ期間に受信し、受信した信号を受信信号として出力する多値レシーバ回路と、
上記受信信号の電位レベルから、上記受信信号が上記多値数2aMの多値信号であるか上記多値数2aNの多値信号であるかを判定し、判定結果を示す制御信号を発生する多値信号検出器と、
上記受信信号の電位レベルと上記制御信号とに基づいて、上記多値数2aMの多値信号と上記多値数2aNの多値信号とをそれぞれ、a×Mビットの上記非映像信号とa×Nビットの上記映像信号に復調して出力するロジック回路とを備えた受信装置。 - 映像フォーマットが変更されない映像伝送において、上記自然数a、N、Mが一定である請求項9記載の受信装置。
- 上記ロジック回路は、上記制御信号に基づいて、上記ブランキング期間では、上記受信信号のうち多値数2aMの多値信号をa×Mビットの非映像信号に復調し、上記アクティブ期間では上記受信信号のうち多値数2aNの多値信号をa×Nビットの映像信号に復調する請求項9又は10記載の受信装置。
- 上記受信信号の電位レベルに基づいて、水平同期信号の信号パターン及び垂直同期信号の信号パターンを含むか否かを判断することにより、上記水平同期信号又は上記垂直同期信号を検出して上記ロジック回路に出力する同期信号検出器をさらに備え、
上記ロジック回路は、上記水平同期信号及び上記垂直同期信号に基づいて、垂直ブランキング期間であるか、もしくは上記垂直ブランキング期間以外の期間であるかを判断し、当該判断結果に応じて、上記受信信号のうち、上記垂直ブランキング期間では多値数2aMの多値信号をa×Mビットの前記非映像信号に復調し、上記垂直ブランキング期間以外の期間では多値数2aNの多値信号をa×Nビットの前記映像信号に復調することを特徴とする請求項9又は10記載の受信装置。 - 上記受信信号の直流成分をカットするカップリングキャパシタをさらに備えたことを特徴とする請求項9~12のうちのいずれか1つに記載の受信装置。
- 上記多値レシーバ回路は差動の多値レシーバ回路である請求項9~13のうちのいずれか1つに記載の受信装置。
- 請求項1記載の受信装置と請求項9記載の送信装置を備えた伝送システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014536563A JP6245479B2 (ja) | 2012-09-21 | 2013-07-10 | 伝送システム |
CN201380042511.3A CN104521228B (zh) | 2012-09-21 | 2013-07-10 | 发送装置、接收装置、传输系统以及传输方法 |
US14/420,421 US9648273B2 (en) | 2012-09-21 | 2013-07-10 | Transmission system for transmitting high-resolution video signal by performing multi-value transmission changing in amplitude direction |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-208739 | 2012-09-21 | ||
JP2012208739 | 2012-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014045502A1 true WO2014045502A1 (ja) | 2014-03-27 |
Family
ID=50340845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/004273 WO2014045502A1 (ja) | 2012-09-21 | 2013-07-10 | 伝送システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US9648273B2 (ja) |
JP (1) | JP6245479B2 (ja) |
CN (1) | CN104521228B (ja) |
WO (1) | WO2014045502A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104599654A (zh) * | 2015-02-05 | 2015-05-06 | 京东方科技集团股份有限公司 | 信号转换装置及方法、信号生成系统和显示设备 |
JP2021100242A (ja) * | 2019-12-20 | 2021-07-01 | アンリツ株式会社 | 信号発生装置及び信号発生方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12087393B2 (en) * | 2021-04-29 | 2024-09-10 | Micron Technology, Inc. | Multi-driver signaling |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08223229A (ja) * | 1995-02-17 | 1996-08-30 | Sony Corp | ベースバンド伝送システムおよび送信装置ならびに受信装置 |
JPH09258686A (ja) * | 1996-03-22 | 1997-10-03 | Sharp Corp | 画像データ伝送方法 |
JP2000232630A (ja) * | 1998-12-07 | 2000-08-22 | Matsushita Electric Ind Co Ltd | 送信方法と受信方法と送信装置と受信装置 |
JP2008224936A (ja) * | 2007-03-12 | 2008-09-25 | Toyo Univ | 表示装置 |
JP2009186502A (ja) * | 2008-02-01 | 2009-08-20 | Sharp Corp | 差動信号の伝送方式 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU740560B2 (en) * | 1996-06-26 | 2001-11-08 | Sony Electronics Inc. | System and method for overlay of a motion video signal on an analog video signal |
US6181711B1 (en) * | 1997-06-26 | 2001-01-30 | Cisco Systems, Inc. | System and method for transporting a compressed video and data bit stream over a communication channel |
EP1065878A1 (en) * | 1998-12-07 | 2001-01-03 | Matsushita Electric Industrial Co., Ltd. | Serial digital interface system transmission/reception method and device therefor |
JP2001119383A (ja) * | 1999-10-18 | 2001-04-27 | Sony Corp | データ伝送方法及びデータ伝送装置 |
JP3648685B2 (ja) * | 2001-01-30 | 2005-05-18 | 松下電器産業株式会社 | データ伝送方法及びデータ送信装置 |
JP3895115B2 (ja) * | 2001-02-01 | 2007-03-22 | ソニー株式会社 | データ伝送方法、データ送信装置、およびデータ受信装置 |
JP3903721B2 (ja) * | 2001-03-12 | 2007-04-11 | ソニー株式会社 | 情報送信装置および方法、情報受信装置および方法、情報送受信システムおよび方法、記録媒体およびプログラム |
US7558326B1 (en) * | 2001-09-12 | 2009-07-07 | Silicon Image, Inc. | Method and apparatus for sending auxiliary data on a TMDS-like link |
US6954234B2 (en) * | 2001-10-10 | 2005-10-11 | Koninklijke Philips Electronics N.V | Digital video data signal processing system and method of processing digital video data signals for display by a DVI-compliant digital video display |
KR100586669B1 (ko) | 2003-08-27 | 2006-06-08 | 닛뽕빅터 가부시키가이샤 | 전송 시스템 |
JP4487675B2 (ja) | 2003-08-27 | 2010-06-23 | 日本ビクター株式会社 | 伝送システム |
US7308058B2 (en) | 2003-10-27 | 2007-12-11 | Rambus Inc. | Transparent multi-mode PAM interface |
JP4254492B2 (ja) * | 2003-11-07 | 2009-04-15 | ソニー株式会社 | データ伝送システム、データ送信装置、データ受信装置、データ伝送方法、データ送信方法及びデータ受信方法 |
US20070172000A1 (en) | 2005-12-27 | 2007-07-26 | Katsuaki Hamamoto | Modulation method and demodulation method achieving high-quality modulation-and-demodulation performance, and modulation apparatus, demodulation apparatus receiving apparatus using the same |
JP2007208319A (ja) | 2006-01-30 | 2007-08-16 | Sanyo Electric Co Ltd | 復調方法およびそれを用いた復調装置 |
RU2372741C2 (ru) * | 2006-05-16 | 2009-11-10 | Сони Корпорейшн | Система передачи данных, устройство передачи, устройство приема, способ передачи данных и программа |
TWI397055B (zh) * | 2007-05-28 | 2013-05-21 | Realtek Semiconductor Corp | 模式偵測電路與方法 |
KR101495865B1 (ko) * | 2008-09-18 | 2015-02-25 | 삼성디스플레이 주식회사 | 표시 장치 및 이의 구동방법 |
WO2013076881A1 (ja) * | 2011-11-25 | 2013-05-30 | パナソニック株式会社 | ベースバンド映像データの送信装置および受信装置ならびに送受信システム |
-
2013
- 2013-07-10 CN CN201380042511.3A patent/CN104521228B/zh not_active Expired - Fee Related
- 2013-07-10 JP JP2014536563A patent/JP6245479B2/ja not_active Expired - Fee Related
- 2013-07-10 WO PCT/JP2013/004273 patent/WO2014045502A1/ja active Application Filing
- 2013-07-10 US US14/420,421 patent/US9648273B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08223229A (ja) * | 1995-02-17 | 1996-08-30 | Sony Corp | ベースバンド伝送システムおよび送信装置ならびに受信装置 |
JPH09258686A (ja) * | 1996-03-22 | 1997-10-03 | Sharp Corp | 画像データ伝送方法 |
JP2000232630A (ja) * | 1998-12-07 | 2000-08-22 | Matsushita Electric Ind Co Ltd | 送信方法と受信方法と送信装置と受信装置 |
JP2008224936A (ja) * | 2007-03-12 | 2008-09-25 | Toyo Univ | 表示装置 |
JP2009186502A (ja) * | 2008-02-01 | 2009-08-20 | Sharp Corp | 差動信号の伝送方式 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104599654A (zh) * | 2015-02-05 | 2015-05-06 | 京东方科技集团股份有限公司 | 信号转换装置及方法、信号生成系统和显示设备 |
CN104599654B (zh) * | 2015-02-05 | 2016-10-19 | 京东方科技集团股份有限公司 | 信号转换装置及方法、信号生成系统和显示设备 |
JP2021100242A (ja) * | 2019-12-20 | 2021-07-01 | アンリツ株式会社 | 信号発生装置及び信号発生方法 |
JP7132997B2 (ja) | 2019-12-20 | 2022-09-07 | アンリツ株式会社 | 信号発生装置及び信号発生方法 |
Also Published As
Publication number | Publication date |
---|---|
US20150208027A1 (en) | 2015-07-23 |
CN104521228B (zh) | 2017-12-19 |
JP6245479B2 (ja) | 2017-12-13 |
US9648273B2 (en) | 2017-05-09 |
CN104521228A (zh) | 2015-04-15 |
JPWO2014045502A1 (ja) | 2016-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101266067B1 (ko) | 클럭 임베디드 신호를 이용한 직렬 통신 방법 및 장치 | |
EP2015533B1 (en) | Multiple differential transmission system | |
JP4254492B2 (ja) | データ伝送システム、データ送信装置、データ受信装置、データ伝送方法、データ送信方法及びデータ受信方法 | |
JP4129050B2 (ja) | 多重差動伝送システム | |
US9191251B2 (en) | Multilevel signal transmission system capable of transmitting multilevel data signal without signal distortion and correctly determining voltage level | |
KR101949528B1 (ko) | 표시 장치용 데이터 전송 시스템, 표시 장치용 데이터 전송 방법 및 표시 장치 | |
US8625706B2 (en) | Signal processing apparatus, information processing apparatus, multilevel coding method, and data transmission method | |
US8494081B2 (en) | Transmission device | |
JP6245479B2 (ja) | 伝送システム | |
US7190728B2 (en) | Digital data transmitter, transmission line encoding method, and decoding method | |
US8659647B2 (en) | Image pickup device and image pickup system with bit value inversion | |
JP2009231954A (ja) | 多値信号受信器 | |
US20090323828A1 (en) | Information processing apparatus and signal determination method | |
JPWO2013157195A1 (ja) | 多値信号伝送システム | |
JP3556174B2 (ja) | デジタルビデオデータの伝送方法、受信方法、伝送装置及び受信装置 | |
US8488713B2 (en) | Information processing apparatus, encoding method and signal transmission method | |
US20100054346A1 (en) | Information Processing Apparatus, Signal Transmission Method and Decoding Method | |
JP2007318807A (ja) | 多重差動伝送システム | |
US20100054359A1 (en) | Information processing apparatus, decoding processing method and signal transmission method | |
US11641291B2 (en) | Signal transmission device and signal transmission method | |
JP4362425B2 (ja) | データスライス回路 | |
WO2024075743A1 (ja) | 送信装置、受信装置および送受信システム | |
JPWO2005074219A1 (ja) | データ送信装置、データ受信装置、伝送路符号化方法および復号方法 | |
JP2008011559A (ja) | 多重差動伝送システム | |
US20060165194A1 (en) | Data sending device, data receiving device, and data transmission method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13838528 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014536563 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14420421 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13838528 Country of ref document: EP Kind code of ref document: A1 |