WO2014045493A1 - 解析方法および解析装置 - Google Patents

解析方法および解析装置 Download PDF

Info

Publication number
WO2014045493A1
WO2014045493A1 PCT/JP2013/003502 JP2013003502W WO2014045493A1 WO 2014045493 A1 WO2014045493 A1 WO 2014045493A1 JP 2013003502 W JP2013003502 W JP 2013003502W WO 2014045493 A1 WO2014045493 A1 WO 2014045493A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
particles
area
particle system
analysis
Prior art date
Application number
PCT/JP2013/003502
Other languages
English (en)
French (fr)
Inventor
良孝 大西
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to EP13838960.6A priority Critical patent/EP2899656A4/en
Publication of WO2014045493A1 publication Critical patent/WO2014045493A1/ja
Priority to US14/658,383 priority patent/US20150186572A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0003Determining electric mobility, velocity profile, average speed or velocity of a plurality of particles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD

Definitions

  • the present invention relates to an analysis technique for analyzing a particle system.
  • Molecular dynamics method (Molecular Dynamics Method, hereinafter referred to as MD method) and quantum molecular dynamics method (Quantum Molecular) are methods for exploring phenomena in general material science using computers based on classical mechanics and quantum mechanics.
  • MD method Molecular dynamics Method
  • QMD method quantum molecular dynamics method
  • RMD method renormalized group molecular dynamics
  • the MD method and the RMD method can usually handle only heat conduction by lattice vibration (phonon). Therefore, as for the heat conduction of a metal or the like to which the contribution of free electrons is large, the MD method or the RMD method often gives analysis results that are different from the actual results.
  • Patent Document 1
  • a temperature parameter is obtained by giving a temperature parameter to a particle and solving a heat conduction equation by a finite volume method (FVM).
  • FVM finite volume method
  • the Voronoi analysis may be executed once at the initial setting.
  • the shape changes every moment like a fluid it is necessary to perform Voronoi analysis for each calculation step. Since the Voronoi analysis generally generates a calculation load proportional to the fourth power of the number of particles, the calculation time can increase dramatically as the number of particles handled increases.
  • the present invention has been made in view of these problems, and an object of the present invention is to provide an analysis technique capable of reducing a calculation load when analyzing a particle system including a plurality of particles.
  • An aspect of the present invention relates to an analysis method.
  • This analysis method is an analysis method for analyzing a particle system defined in a virtual space, and determines an area between two particles included in the particle system without depending on the position of other particles; Updating the state of the particle system using the determined area.
  • the analysis apparatus describes an analysis target by describing the analysis target as a particle system including a plurality of particles, and numerically calculating a motion equation of the particles.
  • continuum approximation is introduced as part of the analysis of the particle system, and the area between the particles is used in the processing related to the continuum approximation.
  • a more rigorous method such as Voronoi analysis is not used, but a simpler method with less calculation amount is used instead.
  • FIG. 1 is a schematic diagram showing a Voronoi surface 6 when the particle system has an fcc structure.
  • the first particle 2 is the closest particle of the second particle 4.
  • a Voronoi surface 6 is defined between the first particle 2 and the second particle 4.
  • the area S 0 of the Voronoi surface 6 is given by the following formula 1.
  • r 0 is the most stable distance between the first particle 2 and the second particle 4.
  • the area S 0 of the Voronoi surface 6 may be treated as a cross-sectional area of the particle.
  • the first particle 2 is the i-th particle of the particle system and the second particle 4 is the j-th particle of the particle system
  • the first particle 2 It is assumed that the cross-sectional area ⁇ S ij between the particle 2 and the second particle 4 can be obtained only from the distance r ij between the first particle 2 and the second particle 4. That is, it is assumed that the cross-sectional area ⁇ S ij does not depend on the positions of other particles than the first particle 2 and the second particle 4.
  • FIG. 2 is a graph showing an example of a relationship assumed between the cross-sectional area ⁇ S ij between the first particle 2 and the second particle 4 and the distance r ij between the particles.
  • the cross-sectional area ⁇ S ij is set to be smaller as the interparticle distance r ij is larger.
  • the cross-sectional area ⁇ S ij may be a linear function 8 of the interparticle distance r ij .
  • the cross-sectional area ⁇ S ij may be a nonlinear function of the interparticle distance r ij , and may be a quadratic or higher function 10 in particular.
  • the cross-sectional area [Delta] S ij if the distance between particles r ij greater than the cutoff distance r c to be described later, is set to be substantially zero.
  • the user assumes a one-to-one relationship as shown in FIG. 2 for the cross-sectional area between particles and the distance between particles, and the assumed relationship, that is, a function is stored in the analysis device. sign up.
  • the analysis device uses the registered relationship, and the cross-sectional area depends on the position of other particles. Without deciding.
  • the analysis device continues the numerical operation using the determined cross-sectional area and updates the state of the particle system.
  • the calculation load related to the derivation of the cross-sectional area between particles is reduced as compared to the case where the cross-sectional area is derived relatively strictly every time. Can do. As a result, the user can obtain the analysis result faster.
  • FIG. 3 is a block diagram showing the function and configuration of the analysis apparatus 100 according to the embodiment.
  • Each block shown here can be realized by hardware such as a computer CPU (central processing unit) or a device such as a computer, and software can be realized by a computer program or the like.
  • the functional block realized by those cooperation is drawn. Therefore, it is understood by those skilled in the art who have touched this specification that these functional blocks can be realized in various forms by a combination of hardware and software.
  • the analysis device 100 is connected to the input device 102 and the display 104.
  • the input device 102 may be a keyboard, a mouse, or the like for receiving user input related to processing executed by the analysis device 100.
  • the input device 102 may be configured to receive input from a network such as the Internet or a recording medium such as a CD or a DVD.
  • the analysis apparatus 100 includes a particle system acquisition unit 108, a temperature application unit 134, a repetition calculation unit 120, a display control unit 118, and a particle data holding unit 114.
  • the particle system acquisition unit 108 is based on input information acquired from the user via the input device 102, and is a particle system composed of N (N is a natural number) particles defined in one, two, or three-dimensional virtual space. Get the data.
  • the particles of the particle system may correspond to molecules or atoms.
  • the particle system acquisition unit 108 arranges N particles in the virtual space based on the input information, and gives a speed to each of the arranged particles. That is, the particle system acquisition unit 108 gives the initial position and initial velocity to the particle system.
  • the particle system acquisition unit 108 registers the particle ID that identifies the arranged particle, the position of the particle, and the velocity of the particle in the particle data holding unit 114 in association with each other.
  • the temperature imparting unit 134 imparts a temperature to the particle-based particles acquired by the particle-based acquiring unit 108 based on input information acquired from the user via the input device 102.
  • the temperature applied in this way is one of the particle parameters.
  • the temperature imparting unit 134 requests the user to input an initial value of the temperature of the particle-based particles via the display 104.
  • the temperature assigning unit 134 registers the input initial temperature value in the particle data holding unit 114 in association with the particle ID.
  • the iterative calculation unit 120 numerically calculates a governing equation that governs the motion of each particle in the particle system represented by the data held by the particle data holding unit 114.
  • the iterative computation unit 120 performs iterative computation according to the discretized particle motion equation.
  • the iterative calculation unit 120 includes a temperature calculation unit 110, a force calculation unit 122, a particle state calculation unit 124, a state update unit 126, and an end condition determination unit 128.
  • the temperature calculation unit 110 calculates the temperature of each particle in the particle system using continuum approximation. In particular, the temperature calculation unit 110 calculates the temperature of the particles based on the discretized heat conduction equation.
  • the temperature calculation unit 110 includes an area determination unit 112 and a heat conduction calculation unit 116.
  • the area determining unit 112 determines the cross-sectional area between two particles included in the particle system regardless of the position of other particles.
  • the area determining unit 112 refers to the particle data held by the particle data holding unit 114, and the i-th particle and j-th particle in the particle system (1 ⁇ i, j ⁇ N) inter-particle distance.
  • r ij is calculated.
  • the area determining unit 112 substitutes the calculated inter-particle distance r ij for the quadratic or higher-order function 10 shown in FIG. 2 to obtain the cross-sectional area ⁇ S ij between the i-th particle and the j-th particle. Calculate.
  • the heat conduction computing unit 116 computes the temperature of each particle based on the discretized heat conduction equation.
  • an analysis of a temperature field using a finite volume method may be executed.
  • a process of deriving the discretized heat conduction equation used in the heat conduction calculating unit 116 will be described.
  • the heat conduction equation is given by the following differential equation (Equation 2).
  • density
  • Cv specific heat
  • T temperature
  • t time
  • K thermal conductivity
  • Q is a calorific value per unit volume.
  • Equation 4 When Equation 4 is discretized, It becomes.
  • V i is the i-th ball in the volume of the radius r 0 about the position of the particle (4 ⁇ r 0 3/3)
  • ⁇ S ij is the i-th, which is determined by the area determination unit 112 particles and j th
  • the cross-sectional area between the particles, r ij is the distance between the i-th particle and the j-th particle.
  • T i n is the temperature of the i-th particle at the n-th iteration
  • K ij is the thermal conductivity between the i-th particle and the j-th particle.
  • the thermal conductivity K ij is corrected from the literature value in accordance with the cross-sectional area approximation process in the area determining unit 112.
  • the coefficient used in this correction depends on the state of the structure of the particle system, and if it is about 0.2 to 2.0 factor times, it almost agrees well with the theoretical value.
  • Equation 5 is a discretized heat conduction equation used in the heat conduction computing unit 116.
  • the temperature of the i-th particle in the (n + 1) th calculation is determined from the cross-sectional area determined by the area determination unit 112, the temperature of each particle determined by the n-th calculation, and the interparticle distance by Equation 5. can do. Note that the initial temperature applied by the temperature applying unit 134 is used as T i 0 .
  • the force calculation unit 122 calculates the force acting on the particle when it is assumed that the particle is immersed in the heat bath at the temperature calculated by the temperature calculation unit 110 for the particle.
  • the force calculator 122 includes an interparticle action calculator 130 and a heat bath action calculator 132.
  • the interparticle action calculation unit 130 refers to the particle system data held by the particle data holding unit 114, and calculates the force acting on the particles based on the distance between the particles for each particle in the particle system.
  • Interparticle effect calculation unit 130, the particles of the i-th particle system (1 ⁇ i ⁇ N), the i-th distance between the particles of the predetermined cutoff distance r c particles smaller than (hereinafter, a proximity particles Determine).
  • Interparticle effect calculation unit 130 the particles exert a force on the i-th particle distance between the i-th particle is limited to a small particle i.e. proximate particles than the cutoff distance r c.
  • the interparticle action calculation unit 130 ignores the interaction between particles other than the neighboring particles and the i-th particle.
  • the interparticle action computing unit 130 determines that the neighboring particle is i-th based on the potential energy function between the neighboring particle and the i-th particle and the distance between the neighboring particle and the i-th particle. Calculate the force acting on the particle. In particular, the interparticle action calculation unit 130 calculates the force from the gradient value of the potential energy function at the distance value between the adjacent particle and the i-th particle. The inter-particle action calculation unit 130 calculates the force acting on the i-th particle by adding the force exerted by the adjacent particle on the i-th particle for all the adjacent particles. The force calculated by the interparticle action computing unit 130 is a force based on the interaction between particles.
  • the viscosity of the heat bath is the force acting on the particles.
  • the damping constant ⁇ of the viscous force is calculated using the Debye frequency ⁇ D and the particle mass m, It is expressed.
  • the following table shows the values of the attenuation constant ⁇ of typical metallic materials.
  • particles are associated with atoms.
  • the attenuation constant ⁇ is on the order of 1.0 ⁇ 10 ⁇ 12 (kg / s).
  • Debye frequency omega D is dependent on the mass of the particle, the mass of the particle is beta times the mass of the atom, the attenuation constant ⁇ is the beta 0.5 times.
  • the damping constant ⁇ is 2.99 ⁇ 10 ⁇ 11 (kg / s) according to Table 1.
  • Random force Corresponds to the force with which particles in the heat bath collide. Random force is Standard deviation ⁇ .
  • the heat bath action calculating unit 132 calculates a viscous force and a random force based on Expression 6 and Expression 7 for the i-th (1 ⁇ i ⁇ N) particles of the particle system.
  • the heat bath action calculating unit 132 adds the viscous force and random force calculated for the i-th particle to the force acting on the i-th particle based on the interaction between the particles, thereby calculating the total of the acting on the i-th particle. Calculate force.
  • the total force F i acting on the i-th particle is expressed by the following formula 8.
  • phi ij is the potential energy function between i-th particle and j-th particle
  • v i is the velocity of the i-th particle
  • the F random a random force with standard deviation sigma.
  • the arrow above the symbol indicates a vector quantity.
  • the particle state calculation unit 124 refers to the particle system data held in the particle data holding unit 114, and for each particle of the particle system, the total equation calculated by the heat bath action calculation unit 132 into the discrete particle motion equation. To calculate at least one of the position and velocity of the particles. In the present embodiment, the particle state calculation unit 124 calculates both the position and velocity of the particle.
  • the particle state calculation unit 124 calculates the velocity of the particles from the discrete particle motion equation including the total force calculated by the heat bath action calculation unit 132.
  • the particle state calculation unit 124 uses the predetermined minute time step ⁇ t based on a predetermined numerical analysis method such as the jumping method or the Euler method for the i-th particle in the particle system to move the particle.
  • a predetermined numerical analysis method such as the jumping method or the Euler method for the i-th particle in the particle system to move the particle.
  • the particle state calculation unit 124 calculates the position of the particle based on the calculated particle velocity.
  • the particle state calculation unit 124 calculates, for the i-th particle in the particle system, a relational expression between the position and velocity of the particle that is discretized using the time step ⁇ t based on a predetermined numerical analysis technique.
  • the particle position is calculated by applying the velocity. For this calculation, the position of the particle calculated in the previous cycle of repetition calculation is used.
  • the state update unit 126 updates the state of each particle in the particle system based on the calculation result in the particle state calculation unit 124.
  • the state update unit 126 updates the position and velocity of each particle of the particle system held in the particle data holding unit 114 with the position and velocity calculated by the particle state calculation unit 124.
  • the termination condition determination unit 128 determines whether or not the repetition calculation in the repetition calculation unit 120 should be terminated. Termination conditions for ending the repetitive calculation are, for example, that the repetitive calculation has been performed a predetermined number of times, that an end instruction has been received from the outside, or that the particle system has reached a steady state. When the end condition is satisfied, the end condition determination unit 128 ends the repetitive calculation in the repetitive calculation unit 120. The end condition determination unit 128 returns the process to the temperature calculation unit 110 when the end condition is not satisfied. Then, the temperature calculation unit 110 calculates the temperature again at the particle position updated by the state update unit 126.
  • the display control unit 118 causes the display 104 to display the state of the particle system over time and the state at a certain time based on the position, velocity, and temperature of each particle of the particle system represented by the data held in the particle data holding unit 114. .
  • This display may be performed in the form of a still image or a moving image.
  • FIG. 4 is a data structure diagram showing an example of the particle data holding unit 114.
  • the particle data holding unit 114 holds the particle ID, the particle position, the particle velocity, and the particle temperature in association with each other.
  • examples of the holding unit are a hard disk and a memory. Based on the description in this specification, each unit is realized by a CPU (not shown), an installed application program module, a system program module, a memory that temporarily stores the contents of data read from the hard disk, and the like. It is understood by those skilled in the art who have touched this specification that they can do this.
  • FIG. 5 is a flowchart illustrating an example of a series of processes in the analysis apparatus 100.
  • the analysis apparatus 100 determines the initial state of the particle system, that is, the initial position, initial velocity, and initial temperature of each particle (S202). Based on the one-to-one relationship between the cross-sectional area between the particles and the inter-particle distance, which is registered in advance, the analysis apparatus 100 determines the cross-sectional area between the particles regardless of the position of other particles (S204). .
  • the analysis apparatus 100 analyzes the temperature field using the FVM (S206), and updates the temperature of each particle.
  • the analysis apparatus 100 calculates the force acting on each particle based on the potential energy function between the particles (S208).
  • the analyzing apparatus 100 adds a viscous force and a random force to the force calculated in step S208 (S210).
  • the analyzing apparatus 100 calculates the velocity and position of the particle from the equation of motion of the particle including the force calculated in step S210 (S212).
  • the analysis apparatus 100 updates the position and speed of the particles held in the particle data holding unit 114 with the calculated position and speed (S214).
  • the analysis apparatus 100 determines whether the end condition is satisfied (S216). If the end condition is not satisfied (N in S216), the process returns to step S204. If the end condition is satisfied (Y in S216), the process ends.
  • the cross-sectional area ⁇ S ij between the two particles when calculating the discretized heat conduction equation is calculated based on the distance r ij between the two particles. It is decided without depending on it. Therefore, the calculation load can be considerably reduced as compared with the case where the cross-sectional area is obtained by a stricter technique such as Voronoi analysis.
  • the calculation load when determining the cross-sectional area by the method according to the present embodiment basically depends on the structure of the particle system. do not do. Therefore, the method according to the present embodiment can be more suitably applied to the case where the structure of the particle system is considerably separated from the fcc structure or the structure of the particle system changes greatly with time. More specifically, the analysis technique according to the present embodiment can be suitably applied when the analysis target exhibits a fluid behavior.
  • the analysis apparatus 100 can meet such a demand by providing analysis results earlier than that at the expense of strictness to some extent.
  • the cross-sectional area is set to be smaller as the distance between the particles increases, the cross-sectional area is substantially zero when the particular distance between the particles is greater than the cutoff distance r c.
  • the temperature of the particle calculated by the temperature calculation unit 110 is greatly different from the dispersion of the velocity of the particle, which is the original definition of temperature.
  • the present inventor has conceived that the temperature calculation unit 110 obtains the temperature and then reflects the kinetic energy derived from the temperature in the particle motion.
  • the force term in the equation of motion is corrected based on the temperature by assuming that the particles are immersed in a heat bath having a temperature calculated by the temperature calculation unit 110.
  • the temperature calculated by the temperature calculation unit 110 can be reflected in the velocity field of the particles, and can be derived in a natural manner by the temperature field calculated by the temperature calculation unit 110.
  • a model with fewer physical contradictions can be provided.
  • the present inventor performed confirmation calculation of the method according to the present embodiment.
  • the MD method used in the present embodiment basically only the lattice vibration of particles can be handled as heat conduction, so the contribution of free electrons is not reflected. Therefore, when dealing with metal analysis objects by the MD method, that is, the material constants of the particles (for example, the Debye temperature, the Debye frequency, the atomic weight, and the density in the heat conduction equation so that the particles of the particle system imitate the metal particles) And the specific heat and thermal conductivity) are set, the method according to the present embodiment is very effective.
  • FIG. 6 is a schematic diagram showing the particle system 300 used in the unsteady analysis as the confirmation calculation.
  • the particle system 300 mimics an amorphous metal rod. Amorphous metals generally cannot ignore the contribution of free electrons to heat conduction, and the crystal structure also changes fluidically.
  • the temperature at both ends of the rod is fixed at 0 (K), and the initial temperature distribution is given by the following equation (9).
  • L is the length of the rod
  • r is the distance from the end
  • T (r) is the temperature at the distance r.
  • FIG. 7 is a graph showing a calculation result using the technique according to the present embodiment. According to the method according to the present embodiment, after 1 ( ⁇ s) has elapsed since the particle system 300 began to develop over time, after 2 ( ⁇ s), after 3 ( ⁇ s), and after 4 ( ⁇ s) have elapsed. It can be seen that the calculated value of the temperature distribution (displayed with dots) and the theoretical value (displayed with solid lines) are in good agreement.
  • the iterative calculation unit 120 calculates both the position and velocity of particles, but the present invention is not limited to this.
  • a numerical analysis method such as the Verlet method in which the particle position is directly calculated from the force acting on the particle when calculating the particle position, and the velocity of the particle does not have to be calculated explicitly.
  • the technical idea according to the present embodiment may be applied to such a method.
  • 100 analysis device 102 input device, 104 display, 108 particle system acquisition unit, 114 particle data holding unit, 118 display control unit, 120 repetitive calculation unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Dispersion Chemistry (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 解析装置100は、仮想空間に定義される粒子系を解析する解析装置であって、粒子系に含まれる2つの粒子の間の面積を、他の粒子の位置に依らずに決定する面積決定部112と、面積決定部によって決定された面積を使用して熱伝導方程式を演算する熱伝導演算部116と、熱伝導演算部116における演算結果を使用して粒子に働く力を演算する力演算部122と、力演算部122によって演算された力を使用して粒子の状態を演算する粒子状態演算部124と、粒子状態演算部124における演算結果を使用して粒子系の状態を更新する状態更新部126と、を備える。

Description

解析方法および解析装置
 本発明は、粒子系を解析する解析技術に関する。
 古典力学や量子力学等を基に計算機を用いて物質科学全般の現象を探るための方法として、分子動力学法(Molecular Dynamics Method、以下MD法と称す)や、量子分子動力学法(Quantum Molecular Dynamics Method)や、MD法をマクロスケールの系を扱えるように発展させた繰り込み群分子動力学法(Renormalized Molecular Dynamics、以下RMD法と称す)に基づくシミュレーションが知られている。
 解析対象の熱伝導現象について、MD法やRMD法では通常、格子振動(フォノン)による熱伝導しか扱えない。したがって自由電子の寄与が大きい金属などの熱伝導については、MD法やRMD法では実際とは乖離した解析結果が出ることが多い。
 そこで本出願人は特許文献1においてその解決法のひとつを提案している。
特開2010-170309号公報
John C. Tully、「Dynamics of gas-surface interaction: 3D generalized Langevin model applied to fcc and bcc surface」、J. Chem. Phys.、1975、73
 特許文献1に記載の手法では、粒子に温度のパラメータを持たせ、有限体積法(Finite Volume Method、FVM)により熱伝導方程式を解くことで温度場を求めている。この場合、粒子間に断面積を定義する必要があり、特許文献1に記載の手法では、ボロノイ解析によりこの断面積を定義している。
 例えば解析対象が弾性体で基本的に形状変化しない場合は、初期設定時に一度ボロノイ解析を実行すればよい。しかしながら、流体のように形状が時々刻々と変化する場合には、演算ステップ毎にボロノイ解析を行う必要がある。ボロノイ解析は一般に粒子数の4乗に比例する計算負荷を発生させるため、扱う粒子数の増大と共に計算時間が飛躍的に増大しうる。
 本発明はこうした課題に鑑みてなされたものであり、その目的は、複数の粒子を含む粒子系を解析する際の計算負荷を低減できる解析技術の提供にある。
 本発明のある態様は解析方法に関する。この解析方法は、仮想空間に定義される粒子系を解析する解析方法であって、粒子系に含まれる2つの粒子の間の面積を、他の粒子の位置に依らずに決定するステップと、決定された面積を使用して粒子系の状態を更新するステップと、を含む。
 この態様によると、粒子系に含まれる2つの粒子の間の面積を決定する際の計算負荷を低減できる。
 なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を装置、方法、システム、コンピュータプログラム、コンピュータプログラムを格納した記録媒体などの間で相互に置換したものもまた、本発明の態様として有効である。
 本発明によれば、複数の粒子を含む粒子系を解析する際の計算負荷を低減できる。
粒子系がfcc構造を有する場合のボロノイ面を示す模式図である。 第1粒子と第2粒子との間の断面積とそれらの粒子の間の距離との間に仮定される関係の一例を示すグラフである。 実施の形態に係る解析装置の機能および構成を示すブロック図である。 図3の粒子データ保持部の一例を示すデータ構造図である。 図3の解析装置における一連の処理の一例を示すフローチャートである。 確認計算としての非定常解析で使用された粒子系を示す模式図である。 実施の形態に係る手法を使用した計算結果を示すグラフである。
 以下、各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。
 実施の形態に係る解析装置は、解析対象を複数の粒子を含む粒子系で記述し、粒子の運動方程式を数値的に演算することにより粒子系を解析する。解析装置では、粒子系の解析の一部に連続体近似が導入されており、その連続体近似に係る処理において粒子間の面積が使用される。解析装置では、この粒子間の面積を求める際、ボロノイ解析等のより厳密な手法を用いず、代わりにより簡易で計算量の少ない手法を用いる。
 以下、本実施の形態の原理を説明する。
 粒子系の粒子を比較的密に詰めると、粒子系は面心立方格子(fcc)を形成する傾向にある。したがって、fcc構造を起点とする。
 図1は、粒子系がfcc構造を有する場合のボロノイ面6を示す模式図である。fcc構造を有する粒子系において、第1粒子2は第2粒子4の最近接粒子となっている。この粒子系を粒子の位置を母点としてボロノイ分割した場合、第1粒子2と第2粒子4との間にはボロノイ面6が定義される。このボロノイ面6の面積Sは以下の式1により与えられる。
Figure JPOXMLDOC01-appb-M000001
 ただし、rは第1粒子2と第2粒子4との最安定距離である。なお、ボロノイ面6の面積Sは粒子の断面積として扱われてもよい。
 第1粒子2を粒子系のi番目の粒子、第2粒子4を粒子系のj番目の粒子とするとき、本実施の形態では、粒子系の構造がfcc構造とは異なる場合でも、第1粒子2と第2粒子4との間の断面積ΔSijを第1粒子2と第2粒子4との距離rijのみから求めることができると仮定する。すなわち、断面積ΔSijは第1粒子2、第2粒子4以外の他の粒子の位置に依存しないと仮定する。
 図2は、第1粒子2と第2粒子4との間の断面積ΔSijとそれらの粒子の間の距離rijとの間に仮定される関係の一例を示すグラフである。大局的には、断面積ΔSijは粒子間距離rijが大きいほど小さくなるよう設定される。断面積ΔSijは粒子間距離rijの線形関数8とされてもよい。または、断面積ΔSijは粒子間距離rijの非線形関数とされてもよく、特に2次以上の関数10とされてもよい。また、断面積ΔSijは粒子間距離rijが後述のカットオフ距離rよりも大きい場合、実質的にゼロとなるよう設定される。
 本実施の形態に係る解析装置では、ユーザは、粒子間の断面積と粒子間距離とに図2に示されるような1対1の関係を仮定し、仮定された関係すなわち関数を解析装置に登録する。解析装置は、数値演算の過程で粒子系に含まれる2つの粒子の間の断面積を求める必要がある場合、登録された関係を使用することで、その断面積を他の粒子の位置に依らずに決定する。解析装置は、決定された断面積を使用して数値演算を継続し、粒子系の状態を更新する。これにより、2つの粒子の間の断面積を求める必要がある場合に毎回比較的厳密にその断面積を導出する場合と比較して、粒子間の断面積の導出に係る計算負荷を低減することができる。その結果、ユーザはより速く解析結果を得ることができる。
 図3は、実施の形態に係る解析装置100の機能および構成を示すブロック図である。ここに示す各ブロックは、ハードウエア的には、コンピュータのCPU(central processing unit)をはじめとする素子や機械装置で実現でき、ソフトウエア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウエア、ソフトウエアの組合せによっていろいろなかたちで実現できることは、本明細書に触れた当業者には理解されるところである。
 本実施の形態ではMD法に倣って粒子系を解析する場合について説明するが、RMD法に倣って粒子系を解析する場合や、DEM(Distinct Element Method)やSPH(Smoothed Particle Hydrodynamics)やMPS(Moving Particle Semi-implicit)などの粒子法に倣って粒子系を解析する場合にも、本実施の形態に係る技術的思想を適用できることは本明細書に触れた当業者には明らかである。
 解析装置100は入力装置102およびディスプレイ104と接続される。入力装置102は、解析装置100で実行される処理に関係するユーザの入力を受けるためのキーボード、マウスなどであってもよい。入力装置102は、インターネットなどのネットワークやCD、DVDなどの記録媒体から入力を受けるよう構成されていてもよい。
 解析装置100は、粒子系取得部108と、温度付与部134と、繰り返し演算部120と、表示制御部118と、粒子データ保持部114と、を備える。
 粒子系取得部108は、入力装置102を介してユーザから取得する入力情報に基づき、1、2または3次元の仮想空間内に定義されるN(Nは自然数)個の粒子からなる粒子系のデータを取得する。粒子系の粒子は分子または原子に対応してもよい。
 粒子系取得部108は、入力情報に基づき仮想空間内にN個の粒子を配置し、配置されたそれぞれの粒子に速度を付与する。すなわち、粒子系取得部108は、粒子系に初期位置および初期速度を付与する。粒子系取得部108は、配置された粒子を特定する粒子IDと、その粒子の位置と、その粒子の速度と、を対応付けて粒子データ保持部114に登録する。
 温度付与部134は、入力装置102を介してユーザから取得する入力情報に基づき、粒子系取得部108によって取得された粒子系の粒子に温度を付与する。このように付与される温度は粒子のパラメータのひとつである。例えば、温度付与部134は、ディスプレイ104を介してユーザに、粒子系の粒子の温度の初期値の入力を求める。温度付与部134は、入力された温度の初期値を粒子IDと対応付けて粒子データ保持部114に登録する。
 以下では粒子系の粒子は全て同質または同等なものとして設定され、かつ、ポテンシャルエネルギ関数は2体のポテンシャルであって粒子によらずに同じ形を有するものとして設定される場合について説明する。しかしながら、他の場合にも本実施の形態に係る技術的思想を適用できることは、本明細書に触れた当業者には明らかである。
 繰り返し演算部120は、粒子データ保持部114によって保持されるデータが表す粒子系の各粒子の運動を支配する支配方程式を数値的に演算する。特に繰り返し演算部120は、離散化された粒子の運動方程式にしたがった繰り返し演算を行う。
 繰り返し演算部120は、温度演算部110と、力演算部122と、粒子状態演算部124と、状態更新部126と、終了条件判定部128と、を含む。
 温度演算部110は、連続体近似を用いて粒子系の各粒子の温度を演算する。特に温度演算部110は、離散化された熱伝導方程式に基づき粒子の温度を演算する。温度演算部110は、面積決定部112と、熱伝導演算部116と、を有する。
 面積決定部112は、粒子系に含まれる2つの粒子の間の断面積を、他の粒子の位置に依らずに決定する。特に面積決定部112は、粒子データ保持部114によって保持される粒子系のデータを参照し、粒子系のi番目の粒子とj番目の粒子と(1≦i、j≦N)の粒子間距離rijを演算する。面積決定部112は、図2に示される2次以上の関数10に演算された粒子間距離rijを代入することにより、i番目の粒子とj番目の粒子との間の断面積ΔSijを演算する。
 熱伝導演算部116は、離散化された熱伝導方程式に基づいて各粒子の温度を演算する。熱伝導演算部116では、有限体積法を用いた温度場の解析が実行されてもよい。
 以下、熱伝導演算部116で使用される離散化された熱伝導方程式の導出過程を示す。
 熱伝導方程式は以下の微分方程式(式2)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 ここで、ρは密度、Cvは比熱、Tは温度、tは時間、Kは熱伝導率、Qは単位体積当たりの発熱量である。
 式2の両辺を体積積分すると、
Figure JPOXMLDOC01-appb-M000003
となる。式3の右辺第1項にガウスの定理を適用すると、
Figure JPOXMLDOC01-appb-M000004
となる。
 式4を離散化すると、
Figure JPOXMLDOC01-appb-M000005
となる。ここで、ΔVはi番目の粒子の位置を中心とする半径rの球の体積(4πr /3)、ΔSijは面積決定部112によって決定されるi番目の粒子とj番目の粒子との間の断面積、rijはi番目の粒子とj番目の粒子との距離である。また、T は繰り返し演算のn回目におけるi番目の粒子の温度、Kijはi番目の粒子とj番目の粒子との間の熱伝導率である。熱伝導率Kijは、面積決定部112における断面積の近似処理に伴い文献値から補正される。この補正で使用される係数は粒子系の構造の状態に依存し、0.2~2.0ファクター倍程度とすると大抵の場合理論値と良い一致を示す。
 式5は、熱伝導演算部116で使用される離散化された熱伝導方程式である。式5により、面積決定部112によって決定される断面積と、n回目の演算により決定された各粒子の温度と、粒子間距離と、から、n+1回目の演算におけるi番目の粒子の温度を決定することができる。なお、T には、温度付与部134によって付与された初期温度を使用する。
 力演算部122は、粒子をその粒子について温度演算部110によって演算された温度の熱浴に浸すと仮定した場合の、その粒子に働く力を演算する。力演算部122は、粒子間作用演算部130と、熱浴作用演算部132と、を有する。
 粒子間作用演算部130は、粒子データ保持部114によって保持される粒子系のデータを参照し、粒子系の各粒子について、粒子間の距離に基づきその粒子に働く力を演算する。粒子間作用演算部130は、粒子系のi番目(1≦i≦N)の粒子について、そのi番目の粒子との距離が所定のカットオフ距離rよりも小さな粒子(以下、近接粒子と称す)を決定する。粒子間作用演算部130は、i番目の粒子に力を及ぼす粒子をi番目の粒子との距離がカットオフ距離rよりも小さな粒子すなわち近接粒子に制限する。粒子間作用演算部130は、近接粒子以外の粒子とi番目の粒子との相互作用は無視する。
 粒子間作用演算部130は、各近接粒子について、その近接粒子とi番目の粒子との間のポテンシャルエネルギ関数およびその近接粒子とi番目の粒子との距離に基づいて、その近接粒子がi番目の粒子に及ぼす力を演算する。特に粒子間作用演算部130は、その近接粒子とi番目の粒子との距離の値におけるポテンシャルエネルギ関数のグラジエント(Gradient)の値から力を算出する。粒子間作用演算部130は、近接粒子がi番目の粒子に及ぼす力を全ての近接粒子について足し合わせることによって、i番目の粒子に働く力を算出する。粒子間作用演算部130によって算出される力は、粒子間の相互作用に基づく力である。
 i番目の粒子について温度演算部110によって演算された温度Tで実質的に定温の熱浴にi番目の粒子を浸すと仮定した場合、Langevin法(非特許文献1参照)によるとi番目の粒子に以下の2つの力が働く。
 (1)ダンパーによる力(粘性力)
 熱浴の粘性が粒子に作用する力である。粘性力の減衰定数αは、デバイ周波数ωと粒子の質量mとを用いて、
Figure JPOXMLDOC01-appb-M000006
と表される。以下の表は、代表的な金属物質の減衰定数αの値を示す。この表では粒子を原子に対応付けている。
Figure JPOXMLDOC01-appb-T000001
 この表に示される通り、粒子が金属原子に対応する場合、減衰定数αは1.0x10-12(kg/s)のオーダーとなる。なお、デバイ周波数ωは粒子の質量に依存するので、粒子の質量が原子の質量のβ倍になると、減衰定数αはβ0.5倍となる。例えば、鉄の物性を持ちながら質量が鉄原子の100倍大きい粒子を用いる場合、表1に従うと減衰定数αは2.99x10-11(kg/s)となる。
 (2)ランダム力
 熱浴中の粒子が衝突する力に相当する。ランダム力は、
Figure JPOXMLDOC01-appb-M000007
の標準偏差σを有する。
 熱浴作用演算部132は、粒子系のi番目(1≦i≦N)の粒子について、式6および式7に基づき粘性力とランダム力とを演算する。熱浴作用演算部132は、粒子間の相互作用に基づくi番目の粒子に働く力に、i番目の粒子について演算された粘性力およびランダム力を加えることによって、i番目の粒子に働くトータルの力を演算する。i番目の粒子に働くトータルの力Fは以下の式8で表される。
Figure JPOXMLDOC01-appb-M000008
 ここで、φijはi番目の粒子とj番目の粒子との間のポテンシャルエネルギ関数、vはi番目の粒子の速度、Frandomは標準偏差σを有するランダム力である。記号の上の矢印はベクトル量であることを示す。
 粒子状態演算部124は粒子データ保持部114に保持される粒子系のデータを参照し、粒子系の各粒子について、離散化された粒子の運動方程式に熱浴作用演算部132によって演算されたトータルの力を適用することによって粒子の位置および速度のうちの少なくともひとつを演算する。本実施の形態では、粒子状態演算部124は粒子の位置および速度の両方を演算する。
 粒子状態演算部124は、熱浴作用演算部132によって演算されたトータルの力を含む離散化された粒子の運動方程式から粒子の速度を演算する。粒子状態演算部124は、粒子系のi番目の粒子について、蛙跳び法やオイラー法などの所定の数値解析の手法に基づき所定の微小な時間刻みΔtを使用して離散化された粒子の運動方程式に、i番目の粒子について熱浴作用演算部132によって演算されたトータルの力を代入することによって、粒子の速度を演算する。この演算には以前の繰り返し演算のサイクルで演算された粒子の速度が使用される。
 粒子状態演算部124は、演算された粒子の速度に基づいて粒子の位置を算出する。粒子状態演算部124は、粒子系のi番目の粒子について、所定の数値解析の手法に基づき時間刻みΔtを使用して離散化された粒子の位置と速度の関係式に、演算された粒子の速度を適用することによって、粒子の位置を演算する。この演算には以前の繰り返し演算のサイクルで演算された粒子の位置が使用される。
 状態更新部126は、粒子状態演算部124における演算結果に基づき粒子系の各粒子の状態を更新する。状態更新部126は、粒子データ保持部114に保持される粒子系の各粒子の位置および速度のそれぞれを、粒子状態演算部124によって演算された位置および速度で更新する。
 終了条件判定部128は、繰り返し演算部120における繰り返し演算を終了すべきか否かを判定する。繰り返し演算を終了すべき終了条件は、例えば繰り返し演算が所定の回数行われたことや、外部から終了の指示を受け付けたことや、粒子系が定常状態に達したことである。終了条件判定部128は、終了条件が満たされる場合、繰り返し演算部120における繰り返し演算を終了させる。終了条件判定部128は、終了条件が満たされない場合、処理を温度演算部110に戻す。すると温度演算部110は、状態更新部126によって更新された粒子の位置で再び温度を演算する。
 表示制御部118は、粒子データ保持部114に保持されるデータが表す粒子系の各粒子の位置、速度、温度に基づき、ディスプレイ104に粒子系の時間発展の様子やある時刻における状態を表示させる。この表示は、静止画または動画の形式で行われてもよい。
 図4は、粒子データ保持部114の一例を示すデータ構造図である。粒子データ保持部114は、粒子IDと、粒子の位置と、粒子の速度と、粒子の温度と、を対応付けて保持する。
 上述の実施の形態において、保持部の例は、ハードディスクやメモリである。また、本明細書の記載に基づき、各部を、図示しないCPUや、インストールされたアプリケーションプログラムのモジュールや、システムプログラムのモジュールや、ハードディスクから読み出したデータの内容を一時的に記憶するメモリなどにより実現できることは本明細書に触れた当業者には理解されるところである。
 以上の構成による解析装置100の動作を説明する。
 図5は、解析装置100における一連の処理の一例を示すフローチャートである。解析装置100は、粒子系の初期状態すなわち各粒子の初期位置、初期速度および初期温度を決定する(S202)。解析装置100は、予め登録されている、粒子間の断面積と粒子間距離との1対1の関係に基づき、他の粒子の位置に依らずに粒子間の断面積を決定する(S204)。解析装置100は、FVMを使用して温度場を解析し(S206)、各粒子の温度を更新する。解析装置100は、粒子間のポテンシャルエネルギ関数に基づく各粒子に働く力を演算する(S208)。解析装置100は、ステップS208で演算された力に、粘性力およびランダム力を付加する(S210)。解析装置100は、ステップS210で演算された力を含む粒子の運動方程式から粒子の速度と位置を演算する(S212)。解析装置100は、粒子データ保持部114に保持される粒子の位置、速度を演算された位置、速度で更新する(S214)。解析装置100は、終了条件が満たされるか否かを判定する(S216)。終了条件が満たされない場合(S216のN)、処理はステップS204に戻される。終了条件が満たされる場合(S216のY)、処理は終了する。
 本実施の形態に係る解析装置100によると、離散化された熱伝導方程式を演算する際の2粒子間の断面積ΔSijは、その2粒子間の距離rijに基づき他の粒子の位置に依らずに決定される。したがって、例えばボロノイ解析等のより厳密な手法により断面積を求める場合と比較して、計算の負荷をかなり低減することができる。
 一般に粒子系の構造がfcc構造から離れるほどボロノイ解析による計算負荷は大きくなるが、本実施の形態に係る手法によって断面積を決定する際の計算負荷は基本的には粒子系の構造には依存しない。したがって、本実施の形態に係る手法は、粒子系の構造がfcc構造からかなり離れる場合や、粒子系の構造が時間と共に大きく変化する場合により好適に適用されうる。より具体的には、解析対象が流体的な振る舞いを示す場合に、本実施の形態に係る解析手法が好適に適用されうる。
 定量的で正確な解析結果を得たい場合などには、ボロノイ解析等を使用して断面積を決定するほうが好ましい。しかしながら、解析装置100による解析結果の利用方法としては、例えば定性的な議論をする際の参考にする場合など、それほど正確な結果は必要とされずむしろより早く結果を得たい場合も多くある。そこで、本実施の形態に係る解析装置100は、ある程度厳密性を犠牲にしてその分より早く解析結果を提供することで、そのような要望に対応できる。
 また、本実施の形態に係る手法では、断面積は粒子間距離が大きくなるほど小さくなるよう設定され、特に粒子間距離がカットオフ距離rを超えると断面積は実質的にゼロになる。これは、比較的遠い粒子の間での熱のやり取りは小さい、という物理的見地に合致する仮定である。また、ある粒子と相互作用する粒子をカットオフ距離r内の粒子に制限しているので、ある粒子と熱をやり取りする粒子を同じくカットオフ距離r内の粒子に制限することもまた、物理的見地に合致する仮定である。このように物理的見地に合致する仮定の下で得られる解析結果は、より高い物理的な整合性を有することが期待される。
 また、温度演算部110では連続体近似により各粒子の温度が導出されるので、温度演算部110によって演算される粒子の温度は、本来の温度の定義である粒子の速度の分散と大きく異なることが多い。本発明者はそのような非整合性を軽減または除去するために、温度演算部110によって温度を求めた後、その温度に由来する運動エネルギを粒子の運動に反映させることに想到した。ここで、例えば温度スケーリングなどで粒子の速度を強制的に温度に対応する速度に変更することが考えられるが、これは運動を強制的に拘束するため、非物理的である。
 そこで、本実施の形態に係る解析装置100では、粒子を温度演算部110によって演算された温度の熱浴に浸すと仮定することで、運動方程式の力の項を温度に基づき修正している。これにより、温度演算部110によって演算された温度を粒子の速度場に反映させることができ、温度演算部110によって演算された温度場により自然な形で導くことができる。その結果、物理的な矛盾がより少ないモデルを提供できる。
 本発明者は、本実施の形態に係る手法の確認計算を行った。本実施の形態が使用するMD法では、基本的に熱伝導として粒子の格子振動のみしか扱えないため、自由電子の寄与が反映されない。したがって、MD法で金属の解析対象を扱う場合、すなわち粒子系の粒子が金属の粒子を模するように粒子についての物質定数(例えば、デバイ温度やデバイ周波数や原子量、および、熱伝導方程式における密度や比熱や熱伝導率)が設定される場合、本実施の形態に係る手法が非常に有効である。
 図6は、確認計算としての非定常解析で使用された粒子系300を示す模式図である。粒子系300はアモルファス金属の棒を模している。アモルファス金属では一般に自由電子からの熱伝導への寄与が無視できず、また結晶構造も流体的に変化する。この棒の両端の温度は0(K)で固定され、初期の温度分布は以下の式9により与えられる。
Figure JPOXMLDOC01-appb-M000009
 ここで、Lは棒の長さ、rは端からの距離、T(r)は距離rにおける温度である。
 この場合、時間tが経過すると、温度分布の理論式は以下の式10により与えられる。
Figure JPOXMLDOC01-appb-M000010
 ここで、aは熱拡散定数であり、以下の式11で与えられる関係が成り立つ。
Figure JPOXMLDOC01-appb-M000011
 図7は、本実施の形態に係る手法を使用した計算結果を示すグラフである。本実施の形態に係る手法によると、粒子系300が時間発展を始めてから1(μs)経過後、2(μs)経過後、3(μs)経過後および4(μs)経過後のいずれにおいても、温度分布の計算値(点で表示)と理論値(実線で表示)とが良く一致していることが分かる。
 以上、実施の形態に係る解析装置100の構成と動作について説明した。この実施の形態は例示であり、その各構成要素や各処理の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 実施の形態では、繰り返し演算部120において粒子の位置と速度の両方を演算する場合について説明したが、これに限られない。例えば、数値解析の手法にはVerlet法のように、粒子の位置を演算する際に粒子に働く力から粒子の位置を直接演算し、粒子の速度は陽に計算しなくてもよい手法もあり、本実施の形態に係る技術的思想をそのような手法に適用してもよい。
 100 解析装置、 102 入力装置、 104 ディスプレイ、 108 粒子系取得部、 114 粒子データ保持部、 118 表示制御部、 120 繰り返し演算部。
 本発明によれば、複数の粒子を含む粒子系を解析する際の計算負荷を低減できる。

Claims (6)

  1.  仮想空間に定義される粒子系を解析する解析方法であって、
     粒子系に含まれる2つの粒子の間の面積を、他の粒子の位置に依らずに決定するステップと、
     決定された面積を使用して粒子系の状態を更新するステップと、を含むことを特徴とする解析方法。
  2.  前記決定するステップにおいて決定される面積は、2つの粒子の間の距離が大きいほど小さいことを特徴とする請求項1に記載の解析方法。
  3.  前記決定するステップにおいて決定される面積は、2つの粒子の間の距離の非線形関数であることを特徴とする請求項1または2に記載の解析方法。
  4.  前記更新するステップは、
     ポテンシャルエネルギ関数を使用して粒子に働く力を演算する際、その粒子に力を及ぼす粒子をその粒子との距離が所定のカットオフ距離よりも小さな粒子に制限するステップと、
     演算された粒子に働く力を含み粒子の運動を支配する支配方程式に基づき粒子の状態を更新するステップと、を含み、
     前記決定するステップにおいて決定される面積は、2つの粒子の間の距離がカットオフ距離よりも大きい場合、実質的にゼロとなることを特徴とする請求項1から3のいずれかに記載の解析方法。
  5.  仮想空間に定義される粒子系を解析する解析装置であって、
     粒子系に含まれる2つの粒子の間の面積を、他の粒子の位置に依らずに決定する面積決定部と、
     前記面積決定部によって決定された面積を使用して粒子系の状態を更新する状態更新部と、を備えることを特徴とする解析装置。
  6.  仮想空間に定義される粒子系を解析する機能をコンピュータに実現させるコンピュータプログラムであって、
     粒子系に含まれる2つの粒子の間の面積を、他の粒子の位置に依らずに決定する機能と、
     決定された面積を使用して粒子系の状態を更新する機能と、を前記コンピュータに実現させることを特徴とするコンピュータプログラム。
PCT/JP2013/003502 2012-09-21 2013-06-04 解析方法および解析装置 WO2014045493A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13838960.6A EP2899656A4 (en) 2012-09-21 2013-06-04 ANALYSIS DEVICE AND ANALYSIS PROCEDURE
US14/658,383 US20150186572A1 (en) 2012-09-21 2015-03-16 Analyzing method and analyzing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012208721A JP6053418B2 (ja) 2012-09-21 2012-09-21 解析方法および解析装置
JP2012-208721 2012-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/658,383 Continuation US20150186572A1 (en) 2012-09-21 2015-03-16 Analyzing method and analyzing device

Publications (1)

Publication Number Publication Date
WO2014045493A1 true WO2014045493A1 (ja) 2014-03-27

Family

ID=50340836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003502 WO2014045493A1 (ja) 2012-09-21 2013-06-04 解析方法および解析装置

Country Status (4)

Country Link
US (1) US20150186572A1 (ja)
EP (1) EP2899656A4 (ja)
JP (1) JP6053418B2 (ja)
WO (1) WO2014045493A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6869621B2 (ja) * 2017-08-30 2021-05-12 住友重機械工業株式会社 シミュレーション方法及びシミュレーション装置
CN111307669B (zh) * 2020-02-29 2022-07-05 上海健康医学院 一种稀疏两相流中颗粒局部结构的测量方法
SE545151C2 (en) * 2020-10-26 2023-04-18 Compular Ab Method and device for determining bonds in particle trajectories

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003169A (ja) * 2008-06-20 2010-01-07 Fuji Xerox Co Ltd 解析システムおよびプログラム
JP2010032327A (ja) * 2008-07-28 2010-02-12 Panasonic Corp 被検出物質検出方法および被検出物質検出装置ならびに深さ位置計測方法および深さ位置計測装置
JP2010170309A (ja) 2009-01-22 2010-08-05 Sumitomo Heavy Ind Ltd シミュレーション方法及びプログラム
JP2010198399A (ja) * 2009-02-26 2010-09-09 Fuji Xerox Co Ltd 粒子挙動解析装置、プログラム
JP2011175327A (ja) * 2010-02-23 2011-09-08 Sumitomo Heavy Ind Ltd シミュレーション方法及びプログラム
JP2012163398A (ja) * 2011-02-04 2012-08-30 Sumitomo Heavy Ind Ltd 解析装置およびシミュレーション方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125235A (en) * 1997-06-10 2000-09-26 Photon Research Associates, Inc. Method for generating a refined structural model of a molecule
WO2003048724A2 (en) * 2001-11-29 2003-06-12 The Board Of Trustees Of The University Of Illinois Method for matching molecular spatial patterns
US6833185B2 (en) * 2002-07-12 2004-12-21 The University Of Western Ontario Fluidization additives to fine powders
JP5052985B2 (ja) * 2007-07-31 2012-10-17 住友重機械工業株式会社 分子シミュレーション方法、分子シミュレーション装置、分子シミュレーションプログラム、及び該プログラムを記録した記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003169A (ja) * 2008-06-20 2010-01-07 Fuji Xerox Co Ltd 解析システムおよびプログラム
JP2010032327A (ja) * 2008-07-28 2010-02-12 Panasonic Corp 被検出物質検出方法および被検出物質検出装置ならびに深さ位置計測方法および深さ位置計測装置
JP2010170309A (ja) 2009-01-22 2010-08-05 Sumitomo Heavy Ind Ltd シミュレーション方法及びプログラム
JP2010198399A (ja) * 2009-02-26 2010-09-09 Fuji Xerox Co Ltd 粒子挙動解析装置、プログラム
JP2011175327A (ja) * 2010-02-23 2011-09-08 Sumitomo Heavy Ind Ltd シミュレーション方法及びプログラム
JP2012163398A (ja) * 2011-02-04 2012-08-30 Sumitomo Heavy Ind Ltd 解析装置およびシミュレーション方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIRA KONO ET AL.: "Dynamic Load Balancing Algorithm for Parallel Particle Method with Centrodial Voronoi Tessellation", IPSJ SIG NOTES, 2011 (HEISEI 23) NENDO ·2·, vol. 130, no. 66, 15 August 2011 (2011-08-15), pages 1 - 8, XP055256806 *
JOHN C. TULLY: "Dynamics of gas-surface interaction: 3D generalized Langevin model applied to fcc and bcc surface", J. CHEM. PHYS., 1975, pages 73
See also references of EP2899656A4 *

Also Published As

Publication number Publication date
US20150186572A1 (en) 2015-07-02
JP6053418B2 (ja) 2016-12-27
EP2899656A1 (en) 2015-07-29
JP2014063388A (ja) 2014-04-10
EP2899656A4 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
US11194941B2 (en) Lattice Boltzmann collision operators enforcing isotropy and Galilean invariance
Kang et al. A direct-forcing immersed boundary method for the thermal lattice Boltzmann method
Shadloo et al. Numerical modeling of Kelvin–Helmholtz instability using smoothed particle hydrodynamics
Servin et al. Examining the smooth and nonsmooth discrete element approaches to granular matter
Bondarev et al. Analysis of the accuracy of OpenFOAM solvers for the problem of supersonic flow around a cone
JP6129193B2 (ja) 解析装置
Li et al. Framework for simulation of natural convection in practical applications
Lorenz et al. Combined lattice–Boltzmann and rigid-body method for simulations of shear-thickening dense suspensions of hard particles
JP6053418B2 (ja) 解析方法および解析装置
WO2014045416A1 (ja) シミュレーションプログラム、シミュレーション方法及びシミュレーション装置
Höcker et al. Towards the simulations of inertial dense particulate flows with a volume-averaged lattice Boltzmann method
Horton et al. Benchmarking of computational fluid methodologies in resolving shear-driven flow fields
JP5930987B2 (ja) 解析装置およびコンピュータプログラム
Junior et al. Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows.
Kumaran Dense shallow granular flows
Palhares Junior et al. Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows
Lee et al. An extrapolation-based boundary treatment for using the lattice Boltzmann method to simulate fluid-particle interaction near a wall
JP6091402B2 (ja) 解析装置および解析方法
JP5669589B2 (ja) 解析装置
Mackay et al. Computational modelling of compressible nonisothermal viscoelastic fluids
Kobayashi et al. Feasibility of the LES for engineering problems
Kang et al. An accurate and efficient method for automatic deformation of unstructured polyhedral grids to simulate the flow induced by the motion of solid objects
Bogomolov et al. On gas dynamic hierarchy
JP6029457B2 (ja) 解析装置および解析方法
Ekpe Numerical Solutions to Two-Dimensional Navier-Stokes Equations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838960

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013838960

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE