WO2014045382A1 - 車両のブレーキ制御装置 - Google Patents

車両のブレーキ制御装置 Download PDF

Info

Publication number
WO2014045382A1
WO2014045382A1 PCT/JP2012/074161 JP2012074161W WO2014045382A1 WO 2014045382 A1 WO2014045382 A1 WO 2014045382A1 JP 2012074161 W JP2012074161 W JP 2012074161W WO 2014045382 A1 WO2014045382 A1 WO 2014045382A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
linear control
control valve
hydraulic pressure
Prior art date
Application number
PCT/JP2012/074161
Other languages
English (en)
French (fr)
Inventor
大輔 中田
由 高橋
司 深沢
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/074161 priority Critical patent/WO2014045382A1/ja
Publication of WO2014045382A1 publication Critical patent/WO2014045382A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input

Definitions

  • the present invention relates to a brake control device for a vehicle including a control hydraulic pressure circuit that adjusts hydraulic pressure of hydraulic fluid pressurized by a power hydraulic pressure source by a linear control valve and transmits the pressure to a wheel cylinder.
  • the hydraulic pressure of hydraulic fluid pressurized by the pedal pressure of the brake pedal is transmitted to the wheel cylinder, and the hydraulic pressure of hydraulic fluid pressurized by the power hydraulic pressure source is regulated by a linear control valve.
  • the control hydraulic pressure circuit that transmits to the wheel cylinder is provided in parallel, and during normal times, the linear control mode that uses the control hydraulic pressure circuit is selected, and when any abnormality is detected, the pedal force hydraulic pressure circuit 2.
  • FIG. 1 shows a schematic system configuration of the brake control device according to the present embodiment.
  • the mechanical configuration is basically the same as that proposed in Patent Document 1, here, This will be described with reference to FIG.
  • a switching valve 64 that is an electromagnetic on-off valve is provided. After the switching valve 64 is upstream, that is, a flow path between the linear control valve 67 and the switching valve 64.
  • the individual flow paths leading from the wheel side main flow path 521 to the rear wheel wheel cylinders 42RR, 42RL are branched, and the front wheel side main flow path 522, which is the downstream flow path from the switching valve 64, leads to the front wheel wheel cylinders 42FR, 42FL.
  • the flow path is branched.
  • a front wheel control pressure sensor 103 is provided in the front wheel side main flow path 522.
  • the pedal force hydraulic circuit includes a master channel 53 that transmits hydraulic pressure from the master cylinder 22 to the front wheel cylinders 42FR and 42FL, and a regulator flow that transmits hydraulic pressure from the regulator 23 to the rear wheel cylinders 42RR and 42RL.
  • the master flow path 53 is connected to the front wheel side main flow path 522, and the regulator flow path 54 is connected to the rear wheel side main flow path 521.
  • the master channel 53 and the regulator channel 54 are provided with a master cut valve 65 and a regulator cut valve 66, respectively.
  • the master cut valve 65 and the regulator cut valve 66 are closed and the switching valve 64 is opened so that the hydraulic pressure detected by the front wheel control pressure sensor 103 follows the target hydraulic pressure.
  • the opening degree of the linear control valve 67 is controlled. Thereby, a common control hydraulic pressure is transmitted to the wheel cylinders 42 of the front wheels and the rear wheels.
  • the pedal effort hydraulic pressure mode the master cut valve 65 and the regulator cut valve 66 are opened, and the switching valve 64 and the linear control valve 67 are closed.
  • the main flow path 52 is separated into the rear wheel side main flow path 521 and the front wheel side main flow path 522, and the hydraulic pressure of the master cylinder 22 is transmitted to the wheel cylinders 42FR and 42FL of the front wheels via the front wheel side main flow path 522. Then, the hydraulic pressure of the regulator 23 is transmitted to the wheel cylinders 42RR and 42RL of the rear wheel via the rear wheel side main flow path 521.
  • the linear control valve has a certain relationship between the differential pressure (difference in hydraulic pressure) between the upstream hydraulic pressure (inlet hydraulic pressure) and the downstream hydraulic pressure (exit hydraulic pressure) and the valve opening current.
  • the valve opening current is a current value when the valve body starts to open when the current flowing to the solenoid is increased from the closed state.
  • FIG. 5 shows the valve opening current characteristic representing the relationship between the differential pressure ⁇ P between the upstream side and the downstream side of the normally closed electromagnetic linear control valve and the valve opening current iopen.
  • the brake control device stores such valve opening current characteristics of the linear control valve 67, and controls the current flowing through the linear control valve 67 with reference to the valve opening current characteristics.
  • the brake control device measures the valve opening current characteristic with the switching valve 64 opened, and stores the measured valve opening current characteristic.
  • the hydraulic pressure is controlled by the linear control valve 67 with the switching valve 64 closed.
  • the case where the presence or absence of an abnormality of the switching valve 64 (leak abnormality due to clogging of foreign matter or the like) is checked.
  • the switching valve 64 is inspected by closing the switching valve 64 and sealing the rear wheel side main flow path 521 and the front wheel side main flow path 522 with different fluid pressures, respectively, and detecting the front wheel control pressure sensor 103 in this state. This is possible by examining the presence or absence of a change in the hydraulic pressure in the front wheel side main flow path 522.
  • the front wheel side main flow path 522 provided with the front wheel control pressure sensor 103 is disconnected from the main flow path 52 communicating with the linear control valve 67, so that the hydraulic pressure of the rear wheel side main flow path 521 is Need to be estimated.
  • the fluid pressure in the rear wheel main flow path 521 can be estimated from the current of the linear control valve 67 and the valve opening current characteristics.
  • the switching valve 64 is closed, the downstream flow path of the linear control valve 67 is used. Since the hydraulic rigidity of the cylinder increases, an error occurs in the hydraulic pressure estimation. Therefore, the current value of the pressure-reducing linear control valve 67B becomes excessive due to the error in estimating the hydraulic pressure.
  • the present invention has been made to solve the above problem, and an object thereof is to suppress self-excited vibration that occurs when the linear control valve is opened with the switching valve closed.
  • a feature of the present invention that solves the above-described problem is that a wheel cylinder (42FR, 42FL, 42RR, 42RL) that is provided on each of a plurality of wheels and receives the hydraulic pressure of hydraulic fluid to apply braking force to the wheels, and a brake operation
  • the differential pressure with respect to the downstream side is adjusted according to the energization current, and the linear control valve (67) for adjusting the hydraulic pressure of each wheel cylinder; the downstream side of the linear control valve; and some of the wheel cylinders
  • a switching valve (64) that is provided on the upstream side and that switches a flow path for supplying hydraulic fluid from the linear control valve to the part of the wheel cylinders between an open state and a closed state, and is supplied to the linear control valve Liquid
  • the vehicle brake control device comprising: the opened valve current characteristic storage means (110); and the energization control means (100) for energizing the linear control valve with a current value set based on the opened valve current characteristic.
  • a fluid pressure estimating means S20 for estimating a fluid pressure in a flow path between the linear control valve and the switching valve, and according to an open / closed state of the switching valve
  • the current correction means corrects the current value energized to the linear control valve to the side on which the linear control valve is difficult to open. (S25).
  • the vehicle brake control device of the present invention adjusts the hydraulic fluid pressurized by the power hydraulic pressure source by the linear control valve and supplies it to each wheel cylinder.
  • the linear control valve may include a pressure-increasing linear control valve and a pressure-decreasing linear control valve separately.
  • a switching valve is provided downstream of the linear control valve and upstream of some wheel cylinders. The switching valve switches between an open state and a closed state of a flow path for supplying hydraulic fluid from the linear control valve to some wheel cylinders by opening and closing.
  • the energization control unit energizes the linear control valve with a current value set based on the valve opening current characteristic.
  • the valve opening current characteristic represents the relationship between the differential pressure between the upstream and downstream sides of the linear control valve and the valve opening current that represents the current value when the linear control valve opens from the closed state. It is stored in the valve current characteristic storage means. Since the energization control of the linear control valve is normally performed in a state where the switching valve is opened, the valve opening current characteristic is a characteristic in a state where the switching valve is opened.
  • the brake control device When controlling the energization of the linear control valve based on the valve opening current characteristics, it is necessary to detect the hydraulic pressure on the upstream side and the downstream side of the linear control valve. For this reason, the brake control device includes first hydraulic pressure detection means and second hydraulic pressure detection means.
  • the first hydraulic pressure detecting means detects the hydraulic pressure supplied to the linear control valve. That is, the hydraulic pressure output from the power hydraulic pressure source is detected.
  • the second hydraulic pressure detection means detects the hydraulic pressure in the flow path on the downstream side of the switching valve.
  • a situation where the switching valve is closed and the energization of the linear control valve is controlled can be considered.
  • a certain differential pressure is applied between the upstream side and the downstream side, and whether there is a fluctuation in the hydraulic pressure downstream of the switching valve with the differential pressure applied.
  • the present invention switches to the linear control valve when the switching valve is closed.
  • Fluid pressure estimating means for estimating the fluid pressure in the flow path between the valve and the valve is provided.
  • the hydraulic pressure estimation means estimates the hydraulic pressure based on the current value energized to the linear control valve.
  • the linear control valve Since there is a correlation between the current value energized in the linear control valve and the differential pressure between the upstream and downstream sides of the linear control valve, the linear control valve is energized with reference to the correlation information that sets this correlation.
  • the hydraulic pressure can be estimated from the measured current value.
  • storage means may be used as correlation information, and the information for exclusive estimations etc. may be used.
  • the hydraulic rigidity of the downstream flow path of the linear control valve (the flow path on which the hydraulic pressure is adjusted by the linear control valve) differs between when the switching valve is opened and when it is closed. Therefore, when the linear control valve is opened with the switching valve closed, if the current value is set based on the valve opening current characteristic stored in the valve opening current characteristic storage means, the linear control valve valve The body may open vigorously and self-excited vibration may occur. An error also occurs in the hydraulic pressure estimated by the hydraulic pressure estimating means. This also overlaps, resulting in an inappropriate current value when the linear control valve is opened.
  • the present invention includes a current correction means.
  • the current correction means is a current value for energizing the linear control valve when the linear control valve is opened (starts opening) in accordance with the open / closed state of the switch valve. To the side where the linear control valve is difficult to open. For example, when a normally closed linear control valve is used as the linear control valve, the current value for starting energization is set to a current value smaller than the current value set by the energization control means based on the valve opening current characteristics.
  • the current value at which the energization starts to decrease is larger than the current value set by the energization control means based on the valve opening current characteristics. Correct it to a value.
  • self-excited vibration abnormal noise
  • Another feature of the present invention is that, when the current correction means opens the linear control valve while the switching valve is closed, the current correction means The side on which the linear control valve is difficult to open so as to compensate that the hydraulic rigidity of the downstream flow path changes to change the valve opening current of the linear control valve. There is to correct it.
  • the linear control valve is energized so as to compensate for the change in the hydraulic rigidity of the downstream flow path of the linear control valve due to the opening and closing of the switching valve and the change in the valve opening current of the linear control valve.
  • the current value to be corrected can be corrected to a more appropriate current value, and the self-excited vibration generated when the linear control valve is opened with the switching valve closed can be further appropriately suppressed. it can.
  • the current correction means changes the hydraulic pressure estimated by the hydraulic pressure estimation means (S251), so that the linear control valve opens a current value for energizing the linear control valve. It is to correct to the side that is difficult to speak.
  • the current value to energize the linear control valve is set based on the valve opening current characteristic by the energization control means, it is set based on the valve opening current characteristic by changing the estimated hydraulic pressure downstream of the linear control valve.
  • the corrected current value can be corrected. Therefore, in the present invention, by changing the hydraulic pressure estimated by the hydraulic pressure estimating means, the current value energized to the linear control valve is corrected to the side where the linear control valve is difficult to open. As a result, according to the present invention, it is possible to suppress self-excited vibration that occurs when the linear control valve is opened while the switching valve is closed.
  • the hydraulic pressure estimation means so as to compensate that the hydraulic rigidity of the downstream flow path of the linear control valve changes according to the opening / closing of the switching valve and the opening current of the linear control valve changes. It is desirable to change the estimated hydraulic pressure.
  • Another feature of the present invention is that, when the current correction means opens the linear control valve while the switching valve is closed, the linear correction valve is closed when the switching valve is closed.
  • a current value at which the control valve is not opened is set as an initial current value, and a current value for energizing the linear control valve is set so that the current value gradually changes from the initial current value in a direction in which the linear control valve opens. There is.
  • the linear control valve does not open at the initial current value, but is changed by a subsequent change in current value (increase if it is a normally closed type linear control valve, decrease if it is a normally open type linear control valve). Open the valve. Therefore, the linear control valve does not open suddenly. As a result, it is possible to suppress self-excited vibration that occurs when the linear control valve is opened.
  • the current value correcting means is configured to open the linear control valve including a variation in hydraulic pressure error estimated by the hydraulic pressure estimating means and a variation in change in the valve opening current characteristic.
  • the current value is not set to the initial current value.
  • the initial current value is set in consideration of the variation in the hydraulic pressure error estimated by the hydraulic pressure estimation means and the variation in the valve opening current characteristic due to the closing of the switching valve, Self-excited vibration that occurs when the linear control valve is opened can be reliably suppressed.
  • the linear control valve (67) includes a pressure increasing linear control valve (67A) for increasing the hydraulic pressure of the wheel cylinder, and a pressure reducing linear control valve for decreasing the hydraulic pressure of the wheel cylinder. (67B), the pressure increasing linear control valve is opened with the switching valve closed to increase the fluid pressure upstream of the switching valve, and the fluid upstream of the switching valve.
  • the switching valve By closing the pressure-increasing linear control valve when it is determined that the pressure has reached an estimated hydraulic pressure (Prear) that is higher than the hydraulic pressure downstream of the switching valve by a differential pressure for inspection, the switching valve Differential pressure applying means (S11 to S19) for applying a differential pressure for inspection between the upstream side and the downstream side of the valve, and the differential pressure for inspection is applied between the upstream side and the downstream side of the switching valve.
  • Prear estimated hydraulic pressure
  • Switching valve abnormality determining means for determining abnormality of the switching valve on the basis of the switching valve abnormality, and after the abnormality determination of the switching valve, the pressure-reducing linear control valve is opened and the liquid upstream of the switching valve is Upstream pressure reducing means (S25 to S31) for reducing pressure, and the current correcting means (S25) is configured to reduce the pressure reducing linear control valve when the upstream pressure reducing means opens the pressure reducing linear control valve. The purpose is to correct the value of the current flowing through the control valve so that the pressure-reducing linear control valve is difficult to open.
  • the present invention includes a pressure increasing linear control valve and a pressure reducing linear control valve as linear control valves. Therefore, the valve opening current characteristic storage means stores the valve opening current characteristic in a state where the switching valve is open for each of the pressure increasing linear control valve and the pressure reducing linear control valve.
  • the present invention has a function of detecting a leakage abnormality of the switching valve, and for this purpose, includes a differential pressure applying means, a switching valve abnormality determining means, and an upstream pressure reducing means.
  • the differential pressure applying means opens the pressure-increasing linear control valve with the switching valve closed to increase the fluid pressure upstream of the switching valve, and the fluid pressure upstream of the switching valve is downstream of the switching valve.
  • the differential control valve When it is determined that the estimated hydraulic pressure that is higher than the hydraulic pressure by the test differential pressure has been reached, the differential control valve is closed between the upstream side and the downstream side of the switching valve by closing the pressure increasing linear control valve. Apply pressure.
  • the switching valve abnormality determining means switches based on the presence or absence of a fluctuation in the hydraulic pressure detected by the second hydraulic pressure detecting means in a state where a differential pressure for inspection is applied between the upstream side and the downstream side of the switching valve. Determine valve abnormality. When a leakage abnormality has occurred in the switching valve, the fluid pressure detected by the second fluid pressure detecting means varies, so that the leakage abnormality of the switching valve can be detected based on the presence or absence of the fluid pressure variation.
  • the upstream pressure reducing means opens the pressure-reducing linear control valve after the determination of whether or not the switching valve is abnormal, and reduces the hydraulic pressure upstream of the switching valve. In this case, the pressure-reducing linear control valve is opened while the switching valve is closed. For this reason, the actual valve opening current characteristic of the pressure-reducing linear control valve is different from the valve opening current characteristic stored in the valve opening current characteristic storage means. In addition, an error may occur in the estimated value of the differential pressure for inspection applied by the differential pressure applying means.
  • the current correcting means corrects the current value energized to the pressure reducing linear control valve to the side where the pressure reducing linear control valve is difficult to open.
  • Another feature of the present invention is a normally closed linear control valve that closes when the pressure-reducing linear control valve is in a non-energized state, wherein the current correction means includes the switching valve being closed. With the current value lower than the valve opening current at which the pressure-reducing linear control valve starts to open as the initial current value, the current value of the pressure-reducing linear control valve gradually increases from this initial current value Is to set.
  • the current value for starting energization of the pressure-reducing linear control valve is set to a current value lower than the valve-opening current at which the pressure-reducing linear control valve starts to open while the switching valve is closed. to correct. Therefore, the pressure-reducing linear control valve does not open vigorously with the start of energization. Thereby, the pressure-reducing linear control valve can be opened slowly, and the self-excited vibration generated when the pressure-reducing linear control valve is opened can be suppressed.
  • FIG. 1 is a schematic system configuration diagram of a vehicle brake control device according to an embodiment. It is explanatory drawing showing the hydraulic flow path in linear control mode. It is explanatory drawing showing the hydraulic flow path in pedal effort hydraulic mode. It is explanatory drawing showing the hydraulic flow path at the time of a leak abnormality test
  • FIG. 1 is a schematic system configuration diagram of a vehicle brake control device according to the present embodiment.
  • the brake control device of the present embodiment includes a brake pedal 10, a master cylinder unit 20, a power hydraulic pressure generating device 30, a hydraulic pressure control valve device 50, and disc brake units 40FR, 40FL, 40RR provided on each wheel, respectively. , 40RL and a brake ECU 100 for controlling the brake.
  • the disc brake units 40FR, 40FL, 40RR, 40RL include brake discs 41FR, 41FL, 41RR, 41RL and wheel cylinders 42FR, 42FL, 42RR, 42RL built in the brake caliper.
  • the wheel cylinders 42FR, 42FL, 42RR, and 42RL are connected to the hydraulic pressure control valve device 50, and the hydraulic pressure of the hydraulic fluid (brake fluid) supplied from the hydraulic pressure control valve device 50 is transmitted.
  • the brake pads are pressed against the brake discs 41FR, 41FL, 41RR, 41RL that rotate with the brake disks 41, thereby applying braking force to the wheels.
  • the master cylinder unit 20 includes a hydraulic booster 21, a master cylinder 22, a regulator 23, and a reservoir 24.
  • the hydraulic booster 21 is connected to the brake pedal 10, amplifies the pedal effort applied to the brake pedal 10, and transmits it to the master cylinder 22.
  • the hydraulic pressure booster 21 amplifies the pedal depression force and transmits it to the master cylinder 22 when hydraulic fluid is supplied from the power hydraulic pressure generator 30 via the regulator 23.
  • the master cylinder 22 generates a master cylinder pressure having a predetermined boost ratio with respect to the pedal effort.
  • a reservoir 24 for storing hydraulic fluid is provided above the master cylinder 22 and the regulator 23.
  • the master cylinder 22 communicates with the reservoir 24 when the depression of the brake pedal 10 is released.
  • the regulator 23 communicates with both the reservoir 24 and the accumulator 32 of the power hydraulic pressure generator 30, and generates a hydraulic pressure substantially equal to the master cylinder pressure using the reservoir 24 as a low pressure source and the accumulator 32 as a high pressure source.
  • the hydraulic pressure of the regulator 23 is referred to as regulator pressure.
  • the master cylinder pressure and the regulator pressure need not be exactly the same.
  • the regulator pressure may be set to be slightly higher than the master cylinder pressure.
  • the power hydraulic pressure generator 30 is a power hydraulic pressure source, and includes a pump 31 and an accumulator 32.
  • the pump 31 has a suction port connected to the reservoir 24, a discharge port connected to the accumulator 32, and pressurizes the hydraulic fluid by driving the motor 33.
  • the accumulator 32 converts the pressure energy of the hydraulic fluid pressurized by the pump 31 into the pressure energy of an enclosed gas such as nitrogen and stores it.
  • the accumulator 32 is connected to a relief valve 25 provided in the master cylinder unit 20. The relief valve 25 opens to return the working fluid to the reservoir 24 when the pressure of the working fluid increases abnormally.
  • the brake control device includes the master cylinder 22 and the regulator 23 that use the driver's brake depression force (the force to depress the brake pedal 10) as a hydraulic pressure source that applies hydraulic pressure to the wheel cylinder 42, and the driver. And a power hydraulic pressure generator 30 that applies a hydraulic pressure regardless of the brake pedal force.
  • the master cylinder 22, the regulator 23, and the power hydraulic pressure generator 30 are connected to the hydraulic control valve device 50 via the master pipe 11, the regulator pipe 12, and the accumulator pipe 13, respectively.
  • the reservoir 24 is connected to the hydraulic control valve device 50 through the reservoir pipe 14.
  • the hydraulic control valve device 50 is a main flow that connects the four individual flow paths 51FR, 51FL, 51RR, 51RL connected to the wheel cylinders 42FR, 42FL, 42RR, 42RL, and the individual flow paths 51FR, 51FL, 51RR, 51RL.
  • Master channel 53, regulator channel 54, and accumulator channel 55 are connected in parallel to main channel 52.
  • the ABS holding valves 61FR, 61FL, 61RR, 61RL are provided in the middle of the individual flow paths 51FR, 51FL, 51RR, 51RL, respectively.
  • the ABS holding valve 61 is a normally-open electromagnetic on-off valve that maintains a valve open state by a biasing force of a spring when the solenoid is not energized and is closed only when the solenoid is energized. In the open state, the ABS holding valve 61 can flow the hydraulic fluid in both directions and has no directionality.
  • return check valves 62FR, 62FL, 62RR, and 62RL are provided in parallel to the ABS holding valves 61FR, 61FL, 61RR, and 61RL in the individual flow paths 51FR, 51FL, 51RR, and 51RL, respectively.
  • the return check valve 62 is a valve that blocks the flow of hydraulic fluid from the main flow path 52 toward the wheel cylinder 42 and allows the flow of hydraulic fluid from the wheel cylinder 42 toward the main flow path 52. That is, when the hydraulic pressure of the wheel cylinder 42 (referred to as wheel cylinder pressure) is higher than the hydraulic pressure of the main flow path 52, the valve body is mechanically opened and the hydraulic fluid in the wheel cylinder 42 is caused to flow toward the main flow path 52.
  • the valve element is configured to close when the wheel cylinder pressure becomes equal to the hydraulic pressure in the main flow path 52. Therefore, when the ABS holding valve 61 is closed and the wheel cylinder pressure is held, if the control hydraulic pressure in the main flow path 52 decreases and falls below the wheel cylinder pressure, the ABS holding valve 61 is closed. The wheel cylinder pressure can be reduced to the control fluid pressure of the main flow path 52 while maintaining the state.
  • each decompression individual channel 56 is connected to a reservoir channel 57.
  • the reservoir channel 57 is connected to the reservoir 24 via the reservoir pipe 14.
  • ABS pressure reducing valves 63FR, 63FL, 63RR, 63RL are provided in the middle of the individual pressure reducing flow paths 56FR, 56FL, 56RR, 56RL, respectively.
  • Each ABS pressure reducing valve 63 is a normally closed electromagnetic on-off valve that maintains a closed state by a biasing force of a spring when the solenoid is not energized and opens only when the solenoid is energized.
  • Each ABS pressure reducing valve 63 reduces the wheel cylinder pressure by flowing the hydraulic fluid from the wheel cylinder 42 to the reservoir flow path 57 via the pressure reducing individual flow path 56 in the open state.
  • the ABS holding valve 61 and the ABS pressure reducing valve 63 are controlled to open and close when an anti-lock brake control is operated to reduce the wheel cylinder pressure and prevent the wheel from being locked when the wheel is locked and slips.
  • the main flow path 52 is provided with a switching valve 64 in the middle thereof.
  • the switching valve 64 is a normally closed electromagnetic on-off valve that maintains a valve closed state by a biasing force of a spring when the solenoid is not energized and opens only when the solenoid is energized.
  • the main flow path 52 has the switching valve 64 as a boundary, the rear wheel side main flow path 521 connected to the rear wheel individual flow paths 51RR and 51RL, and the front wheel side main flow path 522 connected to the front wheel individual flow paths 51FR and 51FL. It is divided into and.
  • the master flow path 53 is provided with a master cut valve 65 in the middle thereof.
  • the master cut valve 65 is a normally-open electromagnetic on-off valve that maintains a valve open state by the biasing force of a spring when the solenoid is not energized and is closed only when the solenoid is energized.
  • the master cut valve 65 is in the closed state, the flow of hydraulic fluid between the master cylinder 22 and the front wheel side main flow path 522 is blocked, and when the master cut valve 65 is in the open state, the master cylinder 22 and the front wheel The flow of hydraulic fluid between the side main flow path 522 is allowed in both directions.
  • a simulator flow path 71 is branched from the position where the master cut valve 65 is provided on the master cylinder 22 side.
  • a stroke simulator 70 is connected to the simulator flow path 71 via a simulator cut valve 72.
  • the simulator cut valve 72 is a normally closed electromagnetic on-off valve that maintains a closed state by a biasing force of a spring when the solenoid is not energized and is opened only when the solenoid is energized.
  • the simulator cut valve 72 is in the closed state, the flow of hydraulic fluid between the master flow path 53 and the stroke simulator 70 is interrupted, and when the simulator cut valve 72 is in the open state, the stroke of the master flow path 53 and The flow of the hydraulic fluid between the simulator 70 is allowed in both directions.
  • the stroke simulator 70 includes a plurality of pistons and springs.
  • the stroke simulator 70 is operated by introducing an amount of hydraulic fluid corresponding to the amount of brake operation. And a reaction force according to the pedal operation amount is generated to improve the driver's brake operation feeling.
  • the regulator flow path 54 is provided with a regulator cut valve 66 in the middle thereof.
  • the regulator cut valve 66 is a normally open electromagnetic on-off valve that maintains the valve open state by the biasing force of the spring when the solenoid is not energized and is closed only when the solenoid is energized.
  • the regulator cut valve 66 is in the closed state, the flow of hydraulic fluid between the regulator 23 and the rear wheel side main flow path 521 is interrupted, and when the regulator cut valve 66 is in the open state, the regulator 23 and the rear wheel The flow of hydraulic fluid between the side main flow path 521 is allowed in both directions.
  • the accumulator flow channel 55 is connected to the main flow channel 52 (rear wheel side main flow channel 521) via a pressure-increasing linear control valve 67A.
  • the pressure-increasing linear control valve 67 ⁇ / b> A is arranged such that its upstream side is connected to the accumulator channel 55 and its downstream side is connected to the main channel 52.
  • the main flow path 52 (rear wheel side main flow path 521) is connected to the reservoir flow path 57 via a pressure-reducing linear control valve 67B.
  • the pressure-reducing linear control valve 67B is arranged such that its upstream side is connected to the main flow path 52 and its downstream side is connected to the reservoir flow path 57.
  • the pressure-increasing linear control valve 67A and the pressure-decreasing linear control valve 67B constitute a linear control valve 67 that adjusts the hydraulic pressure in the wheel cylinder 42.
  • the pressure-increasing linear control valve 67A and the pressure-decreasing linear control valve 67B maintain the valve closed state by the biasing force of the spring when the solenoid is not energized, and increase the opening as the energization amount (current value) to the solenoid increases.
  • This is a normally closed electromagnetic linear control valve.
  • the pressure-increasing linear control valve 67A and the pressure-decreasing linear control valve 67B include a spring reaction force f1 that urges the valve body (plunger) 92 in the valve closing direction, and an upstream side (inlet side).
  • the valve closing state is maintained by the valve closing force (f1 ⁇ f2) which is the difference between the hydraulic pressure f2 in which the valve body 92 is urged in the valve opening direction.
  • the valve closing force f1 ⁇ f2
  • the valve body 92 is opened at an opening degree corresponding to the balance of the forces acting on the valve body 92. Therefore, by controlling the energization amount (current value) to the solenoid 93, the opening degree of the valve body 92 can be adjusted, and the hydraulic pressure downstream of the linear control valve 67 can be controlled.
  • the downstream side of the linear control valve 67 is a fluid pressure control target flow path, which is the downstream side of the pressure-increasing linear control valve 67A and the upstream side of the pressure-decreasing linear control valve 67B.
  • the power hydraulic pressure generating device 30 and the hydraulic pressure control valve device 50 are driven and controlled by the brake ECU 100.
  • the brake ECU 100 includes a microcomputer as a main part, and also includes a pump drive circuit, an electromagnetic valve drive circuit, an input interface for inputting various sensor signals, a communication interface, and the like.
  • the brake ECU 100 also includes a nonvolatile memory 110 that stores valve opening current characteristics described later.
  • the electromagnetic open / close valve and the electromagnetic linear control valve provided in the hydraulic pressure control valve device 50 are all connected to the brake ECU 100, and the open / close state and opening degree (in the case of an electromagnetic linear control valve) by a solenoid drive signal output from the brake ECU 100. Is controlled.
  • the motor 33 provided in the power hydraulic pressure generator 30 is also connected to the brake ECU 100 and driven and controlled by a motor drive signal output from the brake ECU 100.
  • the hydraulic pressure control valve device 50 is provided with an accumulator pressure sensor 101, a regulator pressure sensor 102, and a front wheel control pressure sensor 103.
  • the accumulator pressure sensor 101 detects an accumulator pressure Pacc that is the pressure of the working fluid in the accumulator flow path 55 upstream of the pressure-increasing linear control valve 67A.
  • the accumulator pressure sensor 101 outputs a signal representing the detected accumulator pressure Pacc to the brake ECU 100.
  • the regulator pressure sensor 102 detects the regulator pressure Preg that is the pressure of the hydraulic fluid in the regulator flow path 54 upstream (regulator 23 side) from the regulator cut valve 66.
  • the regulator pressure sensor 102 outputs a signal representing the detected regulator pressure Preg to the brake ECU 100.
  • the front wheel control pressure sensor 103 outputs a signal representing the front wheel control pressure Pfront that is the pressure of the hydraulic fluid in the front wheel side main flow path 522 to the brake ECU 100.
  • a stroke sensor 104 provided on the brake pedal 10 is connected to the brake ECU 100.
  • the stroke sensor 104 detects a pedal stroke that is a depression amount (operation amount) of the brake pedal 10 and outputs a signal representing the detected pedal stroke Sp to the brake ECU 100.
  • brake control executed by the brake ECU 100 will be described.
  • at least two braking modes a linear control mode and a pedal effort hydraulic pressure mode, are set, and the brake ECU 100 switches between the braking modes.
  • the vehicle provided with the brake control device of the present embodiment is a hybrid vehicle including a motor driven by a battery power source and an internal combustion engine driven by gasoline fuel.
  • regenerative braking is performed in which a motor is generated by the rotational force of a wheel and braking power is obtained by regenerating the generated power in a battery.
  • regenerative braking and hydraulic braking are used in combination by generating a braking force, which is the total braking force required to brake the vehicle, excluding the regenerative braking force by the brake control device.
  • Brake regeneration cooperative control can be performed.
  • Brake regenerative cooperative control is executed in the linear control mode.
  • the depressing force when the driver depresses the brake pedal 10 is used only for detecting the brake operation amount and is not transmitted to the wheel cylinder 42, but instead output from the power hydraulic pressure generator 30.
  • the hydraulic pressure is regulated by the linear control valves 67A and 67B and transmitted to the wheel cylinder 42.
  • the pedal effort hydraulic pressure mode is a braking mode that is executed when some abnormality occurs in the brake control device, and hydraulic pressure pressurized by the brake pedal depression force is transmitted to the wheel cylinder 42.
  • the brake ECU 100 switches between the linear control mode and the pedal effort hydraulic pressure mode by switching the flow path of the hydraulic fluid through the hydraulic pressure control valve device 50.
  • the linear control mode is a braking mode that is normally performed (when no abnormality is detected), and it is not always necessary to execute the brake regeneration cooperative control.
  • the master cut valve 65 and the regulator cut valve 66 are kept closed by energizing the solenoid, and the switching valve 64 is kept open by energizing the solenoid. Further, the simulator cut valve 72 is maintained in an open state by energizing the solenoid. Further, the pressure-increasing linear control valve 67A and the pressure-decreasing linear control valve 67B are controlled to the opening degree corresponding to the energization amount when the solenoid is in the energization control state.
  • the ABS holding valve 61 and the ABS pressure reducing valve 63 are opened and closed as necessary, such as anti-lock brake control. Normally, the ABS holding valve 61 is maintained in an open state, and the ABS pressure reducing valve 63 is in a closed state. Maintained.
  • the master cut valve 65 and the regulator cut valve 66 are closed, so that the hydraulic pressure output from the master cylinder unit 20 is not transmitted to the wheel cylinder 42. Further, the switching valve 64 is maintained in the open state, and the pressure-increasing linear control valve 67A and the pressure-decreasing linear control valve 67B are placed in the energization control state. Therefore, in the linear control mode, as shown in FIG. 2, a hydraulic circuit L ⁇ b> 1 that connects the power hydraulic pressure generator 30 and the four-wheel wheel cylinder 42 is formed.
  • the hydraulic pressure (accumulator pressure) output from the power hydraulic pressure generator 30 is adjusted by the pressure-increasing linear control valve 67A and the pressure-decreasing linear control valve 67B and transmitted to the four-wheel wheel cylinder 42.
  • the wheel cylinder pressure is the same for all four wheels. This wheel cylinder pressure can be detected by the front wheel control pressure sensor 103.
  • the brake ECU 100 starts the brake regeneration cooperative control in response to the braking request.
  • the braking request is generated when a braking force is to be applied to the vehicle, for example, when the driver depresses the brake pedal 10.
  • the brake ECU 100 calculates the required braking force based on the pedal stroke Sp detected by the stroke sensor 104 and the regulator pressure Preg detected by the regulator pressure sensor 102.
  • the required braking force is set to a larger value as the pedal stroke Sp is larger and the regulator pressure Preg is larger.
  • the pedal stroke Sp and the regulator pressure Preg are multiplied by the weighting coefficients Ks and Kr, respectively, and in the range where the pedal stroke Sp is small, the weighting coefficient Ks of the pedal stroke Sp is set large.
  • the required braking force may be calculated by setting the weighting coefficient Kr of the regulator pressure Preg large.
  • the brake ECU 100 transmits information representing the calculated required braking force to the hybrid ECU.
  • the hybrid ECU calculates a braking force generated by power regeneration from the required braking force, and transmits information representing the regenerative braking force, which is the calculation result, to the brake ECU 100. Accordingly, the brake ECU 100 calculates a required hydraulic braking force that is a braking force that should be generated by the brake control device by subtracting the regenerative braking force from the required braking force.
  • the regenerative braking force generated by the power regeneration performed by the hybrid ECU not only changes depending on the rotation speed of the motor, but also changes due to the regenerative current control depending on the state of charge (SOC) of the battery. Accordingly, an appropriate required hydraulic braking force can be calculated by subtracting the regenerative braking force from the required braking force.
  • the brake ECU 100 calculates the target hydraulic pressure of each wheel cylinder 42 based on the calculated required hydraulic braking force, and reduces the pressure increase linear control valve 67A and the pressure by the feedback control so that the wheel cylinder pressure becomes equal to the target hydraulic pressure.
  • hydraulic fluid is supplied from the power hydraulic pressure generator 30 to each wheel cylinder 42 via the pressure-increasing linear control valve 67A, and braking force is generated on the wheels. Further, if necessary, the hydraulic fluid is discharged from the wheel cylinder 42 via the pressure-reducing linear control valve 67B, and the braking force generated on the wheel is adjusted.
  • the brake ECU 100 stores the valve opening current characteristics of the pressure-increasing linear control valve 67A and the pressure-decreasing linear control valve 67B in the nonvolatile memory 110 in order to control the energization of the pressure-increasing linear control valve 67A and the pressure-decreasing linear control valve 67B. is doing.
  • a constant pressure ⁇ P which is a pressure difference between the upstream hydraulic pressure (inlet hydraulic pressure) and the downstream hydraulic pressure (exit hydraulic pressure)
  • the valve opening current is constant.
  • the valve opening current represents a current value when the valve body starts to open when the current flowing through the solenoid is increased from the state in which the normally closed electromagnetic linear control valve is closed.
  • FIG. 5 shows the valve opening current characteristics of the normally closed electromagnetic linear control valve.
  • the valve opening current iopen of the normally closed electromagnetic linear control valve is represented by a linear function of the differential pressure ⁇ P.
  • the pressure increasing linear control valve 67A and the pressure reducing linear control valve 67B have different valve opening current characteristics, but the characteristics that the valve opening current iopen decreases as the differential pressure ⁇ P increases are the same.
  • the differential pressure ⁇ P is the difference between the hydraulic pressure in the accumulator channel 55 on the upstream side and the hydraulic pressure in the rear wheel side main channel 521 on the downstream side.
  • the differential pressure ⁇ P is the difference between the hydraulic pressure in the rear wheel side main flow path 521 on the upstream side and the reservoir pressure (atmospheric pressure) on the downstream side, that is, the rear wheel side main flow path 521. It becomes the hydraulic pressure of.
  • the brake ECU 100 controls the pressure-increasing linear control valve 67A and the pressure-decreasing linear control valve 67B so that the wheel cylinder pressure becomes equal to the target hydraulic pressure, for example, the target hydraulic pressure P * and the front wheels are set to the valve opening current iopen.
  • the brake ECU 100 drives the motor 33 to pressurize the hydraulic fluid by the pump 31, and the accumulator pressure Pacc is always set. Control to maintain pressure range.
  • the motor 33 is controlled not only in the linear control mode but also in the pedal effort hydraulic pressure mode.
  • the brake ECU 100 keeps the simulator cut valve 72 open. For this reason, the hydraulic fluid sent from the master cylinder 22 is supplied to the stroke simulator 70 as the driver depresses the brake pedal 10. As a result, a reaction force corresponding to the pedaling force of the driver can be applied to the brake pedal 10, and a good pedal operation feeling can be given to the driver.
  • the brake ECU 100 switches from the linear control mode to the non-braking mode when no braking request is received.
  • the master cut valve 65, the regulator cut valve 66, and the switching valve 64 are maintained in an open state, and the simulator cut valve 72, the pressure increasing linear control valve 67A, and the pressure reducing linear control valve 67B are closed. The valve state is maintained.
  • the pedal force hydraulic mode In the pedal effort hydraulic pressure mode, the energization of the electromagnetic open / close valve and the electromagnetic linear control valve in the hydraulic control valve device 50 is stopped. Therefore, the master cut valve 65 and the regulator cut valve 66 which are normally open solenoid valves are maintained in the open state.
  • the switching valve 64 which is a normally closed electromagnetic valve, the simulator cut valve 72, and the pressure increasing linear control valve 67A and the pressure reducing linear control valve 67B, which are normally closed electromagnetic linear control valves, are maintained in a closed state. Further, the ABS holding valve 61 is maintained in an open state, and the ABS pressure reducing valve 63 is maintained in a closed state.
  • the communication between the power hydraulic pressure generating device 30 and each wheel cylinder 42 is cut off.
  • the master cylinder 22 and the front wheel wheel cylinders 42FR, 42FL Are formed, and a front wheel pedal force hydraulic circuit LR that communicates the regulator 23 with the wheel cylinders 42RR of the rear wheels 42RL is formed.
  • the front wheel pressing force hydraulic circuit LF and the rear wheel pressing force hydraulic circuit LR are provided independently of each other because the switching valve 64 is maintained in the closed state. Accordingly, the master cylinder pressure is transmitted to the front wheel wheel cylinders 42FR and 42FL, and the regulator pressure is transmitted to the rear wheel wheel cylinders 42RR and 42RL.
  • the pedal effort hydraulic pressure mode is a braking mode that is executed when any abnormality is detected in the brake control device. Therefore, during normal braking (when no abnormality is detected), the linear control mode is selected.
  • the brake control device of this embodiment has a function of periodically performing a leakage abnormality inspection of the switching valve 64.
  • 6A and 6B show a switching valve leakage abnormality inspection routine executed by the brake ECU 100.
  • FIG. FIG. 7 shows the transition of the hydraulic pressure in the downstream flow path (rear wheel side main flow path 521) of the linear control valve 67 controlled by the execution of the switching valve leakage abnormality inspection routine.
  • the switching valve leakage abnormality inspection routine starts after a set time has elapsed since the ignition switch was switched from the on state to the off state.
  • the brake ECU 100 closes the master cut valve 65 and the regulator cut valve 66 and opens the switching valve 64 in step S11.
  • the brake ECU 100 starts energizing the pressure-increasing linear control valve 67A in step S12.
  • the current ia * energized to the pressure-increasing linear control valve 67A is set as shown in the following equation (1).
  • ia * iaopen1 + Ka ⁇ t (1)
  • iaopen1 is the valve opening current of the pressure-increasing linear control valve 67A
  • Ka is the current increase coefficient
  • t is the elapsed time.
  • the initial value of t is zero.
  • the valve opening current characteristic of the pressure-increasing linear control valve 67A and the valve opening current characteristic of the pressure-decreasing linear control valve 67B are stored in the nonvolatile memory 110 of the brake ECU 100, respectively. Since the pressure-increasing linear control valve 67A and the pressure-decreasing linear control valve 67B are used at the time of linear control, the measurement of the valve opening current characteristic is the state in which the switching valve 64 is opened as in the linear control, that is, The linear control valves 67A and 67B are communicated with all the wheel cylinders 42.
  • FIG. 8 shows the measurement principle of the valve opening current characteristic of the pressure reducing linear control valve 67B as an example.
  • the depressurization linear control valve 67B When the depressurization linear control valve 67B is energized from the state in which the wheel cylinder pressure is maintained at a high pressure so that the current value gradually increases, the depressurization linear control valve 67B starts to open during energization. Since the wheel cylinder pressure (front wheel control pressure Pfront) decreases as the pressure-reducing linear control valve 67B opens, the timing at which the pressure-reducing linear control valve 67B starts to open is detected by detecting a decrease in the wheel cylinder pressure. can do.
  • the differential pressure ⁇ P at that time in the case of the pressure-reducing linear control valve 67B, the wheel cylinder pressure and A valve opening current iopen is obtained. Therefore, as shown in FIG. 9, the valve opening current characteristic is obtained by measuring the valve opening current iopen with respect to a plurality of differential pressures ⁇ P and plotting the measured data on the plane coordinates.
  • the brake ECU 100 When calculating the current ia * in step S12, the brake ECU 100 reads the accumulator pressure Pacc detected by the accumulator pressure sensor 101 and the front wheel control pressure Pfront detected by the front wheel control pressure sensor 103, and increases the linear control valve. Based on the valve opening current characteristic of 67A, the valve opening current iaopen1 with respect to the differential pressure (Pacc-Pfront) between the accumulator pressure Pacc and the front wheel control pressure Pfront is calculated, and this valve opening current iaopen1 is increased by time (Ka ⁇ t). Is added. Then, the pressure increasing linear control valve 67A is energized with the calculated current ia *.
  • step S12 is repeated as will be described later, but for the valve opening current iaopen1 used in the calculation formula of the current ia *, the valve opening current at the start of energization, that is, when step S12 is first executed.
  • the valve opening current is determined by the differential pressure (Pacc ⁇ Pfront), and is not changed according to the subsequent differential pressure. Therefore, the current ia * increases in a linear function with time.
  • the brake ECU 100 determines whether or not the switching valve flag F is “0” in step S13.
  • This switching valve flag F is identification data indicating whether or not the switching valve 64 is open, and indicates that the switching valve 64 is open by “0”, and the switching valve 64 by “1”. Indicates that the valve is closed.
  • the switching valve flag F is set to “0”.
  • step S14 the brake ECU 100 reads the front wheel control pressure Pfront detected by the front wheel control pressure sensor 103, and the front wheel control pressure Pfront is equal to or higher than the set pressure P1. Determine whether or not.
  • the brake ECU 100 returns the process to step S12. Accordingly, the processes in steps S12 to S14 are repeated.
  • the current ia * of the pressure-increasing linear control valve 67A gradually increases with time, and the front wheel control pressure Pfront increases accordingly.
  • the change in hydraulic pressure from time t1 to time t2 shown in FIG. 7 is due to the processing of steps S12 to S14.
  • step S16 the switching valve flag F is set to “1”.
  • the switching valve 64 After the switching valve 64 is closed, the rear wheel side main flow path 521 and the front wheel side main flow path 522 are disconnected. Therefore, the front wheel side main flow path 522 is not in communication with the pressure-increasing linear control valve 67A.
  • the hydraulic pressure on the upstream side (rear wheel side main flow path 521) of the switching valve 64 is set differential pressure compared to the hydraulic pressure on the downstream side (front wheel side main flow path 522).
  • the state in which the value is increased by ⁇ Pcheck is determined, and in this state, the presence or absence of an abnormality is determined based on whether or not the front wheel control pressure Pfront detected by the front wheel control pressure sensor 103 varies.
  • the brake ECU 100 maintains the pressure-increasing linear control valve 67A in an open state and increases the hydraulic pressure in the rear wheel side main flow path 521 by the set differential pressure ⁇ Pcheck.
  • the front wheel control pressure sensor 103 cannot detect the hydraulic pressure in the rear wheel side main flow path 521. Therefore, the brake ECU 100 estimates the hydraulic pressure in the rear wheel side main flow path 521 and controls the hydraulic pressure in the rear wheel side main flow path 521.
  • step S17 the brake ECU 100 sets a set current istop necessary to increase the hydraulic pressure in the rear wheel side main flow path 521 by the set differential pressure ⁇ Pcheck.
  • the pressure-increasing linear control valve 67A when a current is passed through the solenoid, the valve-opening state can be maintained while the pressure difference between the upstream side and the downstream side is larger than the differential pressure determined by the valve-opening current characteristic. Accordingly, the differential pressure of the pressure-increasing linear control valve 67A is determined according to the value of the current flowing through the solenoid.
  • the differential pressure ⁇ Pa of the pressure increasing linear control valve 67A is expressed by the following equation (2).
  • ⁇ Pa Pacc ⁇ (Pfront1 + ⁇ Pcheck) (2)
  • Pfront1 is referred to as switching time pressure Pfront1.
  • the switching pressure Pfront1 is stored when it is determined “Yes” in step S14.
  • the valve opening current characteristic of the pressure-increasing linear control valve 67A if the valve opening current for obtaining this differential pressure ⁇ Pa flows, the hydraulic pressure on the upstream side of the switching valve 64 is set as compared with the downstream hydraulic pressure. It can be maintained in a state where the pressure difference ⁇ Pcheck is increased.
  • the valve opening current characteristic stored in the brake ECU 100 is a characteristic in a state in which the switching valve 64 is opened, and is different from the characteristic in the case where the switching valve 64 is closed. .
  • step S18 the brake ECU 100 determines in step S18 whether or not the current ia * has reached the set current istop. If the current ia * has not reached the set current istop, the process returns to step S12. . As a result, the current ia * of the pressure-increasing linear control valve 67A is increased. In this case, since the switching valve flag F is set to “1”, the determination in step S13 is “No”, and the processing in steps S14 to S16 is skipped.
  • the brake ECU 100 increases the current ia * of the pressure-increasing linear control valve 67A with time until the current ia * reaches the set current istop.
  • the brake ECU 100 advances the process to step S19 and stops energization of the pressure-increasing linear control valve 67A (time t3 shown in FIG. 7).
  • step S20 the brake ECU 100 sets the estimated pressure Prear of the rear wheel side main flow path 521 to a value of (Pfront1 + ⁇ Pcheck). Since this estimated pressure Prear is set based on the valve opening current characteristic of the pressure-increasing linear control valve 67A, it is lower than the actual hydraulic pressure as will be described later.
  • step S21 the brake ECU 100 reads the front wheel control pressure Pfront detected by the front wheel control pressure sensor 103, and determines whether or not the change amount ⁇ Pfront of the front wheel control pressure Pfront is greater than or equal to the determination reference value X. This process is repeated for a predetermined time.
  • the brake ECU 100 stores the front wheel control pressure Pfront read when the determination process of step S21 is performed for the first time, the change amount ⁇ Pfront that is the hydraulic pressure amount changed from the stored front wheel control pressure Pfront, and the determination reference value X And compare.
  • step S22 the brake ECU 100 determines whether or not a predetermined time has elapsed.
  • the brake ECU 100 leaks to the switching valve 64 in step S23. It is determined that an abnormality has occurred, and an error code indicating a leakage abnormality of the switching valve 64 is stored in the nonvolatile memory 110. On the other hand, if the change amount ⁇ Pfront is less than the determination reference value X even after the predetermined time has elapsed, the brake ECU 100 determines in step S24 that there is no leakage abnormality in the switching valve 64.
  • the brake ECU 100 starts energization of the pressure-reducing linear control valve 67B in subsequent step S25 (time t4 shown in FIG. 7).
  • the current ib * energized to the pressure-reducing linear control valve 67B is set as shown in the following equation (3).
  • ib * ibopen1 + Kb ⁇ t ⁇ A (3)
  • ibopen1 is a valve opening current with respect to the differential pressure between the upstream side and the downstream side of the pressure-reducing linear control valve 67B at the time when the process of step S24 is started.
  • the valve opening current ibopen1 is This is the valve opening current for the estimated pressure Prear.
  • the valve opening current ibopen1 is derived from the valve opening current characteristics of the pressure-reducing linear control valve 67B stored in advance.
  • Kb represents a current increase coefficient
  • t represents an elapsed time. The initial value of t is set to zero (the time when the calculation in step S25 is first executed is set to zero).
  • A is a current adjustment value for correcting the current value at the start of energization of the pressure-reducing linear control valve 67B so as to be smaller than the actual valve opening current of the pressure-reducing linear control valve 67B. Therefore, the current adjustment value A is set to a positive value.
  • the hydraulic rigidity represents the degree to which the hydraulic pressure varies with respect to the amount of liquid supplied to the flow path (or the amount of liquid discharged from the flow path). In the state in which the switching valve 64 is closed, the hydraulic rigidity is increased because the volume of the control target flow path of the linear control valve 67 is smaller than in the open state.
  • the control target flow path when the switching valve 64 is opened is referred to as a four-wheel target flow path
  • the control target flow path when the switching valve 64 is closed is referred to as a two-wheel target flow path.
  • the hydraulic rigidity of the four-wheel target flow path is referred to as four-wheel hydraulic rigidity
  • the hydraulic rigidity of the two-wheel target flow path is referred to as two-wheel hydraulic rigidity.
  • the valve opening current characteristic of the linear control valve 67 varies depending on the hydraulic rigidity.
  • FIG. 10 shows the relationship between the hydraulic rigidity and the valve opening current characteristic for the pressure-reducing linear control valve 67B.
  • the solid line represents the valve opening current characteristic when the hydraulic rigidity is the four-wheel hydraulic rigidity (referred to as the four-wheel valve opening current characteristic), and the broken line is the opening when the hydraulic rigidity is the two-wheel hydraulic rigidity.
  • It represents a valve current characteristic (referred to as a two-wheel valve opening current characteristic).
  • the valve opening current is generally smaller in the two-wheel valve opening current characteristic than in the four-wheel valve opening current characteristic.
  • the brake control device of this embodiment uses the front wheel control pressure sensor 103 provided in the front wheel side main flow path 522 as a common sensor for detecting the wheel cylinder pressure of the four wheels, The fluid pressure in the flow path cannot be detected. Therefore, the two-wheel valve opening current characteristics cannot be measured and stored.
  • the brake ECU 100 sets the estimated pressure Prear of the rear wheel side main flow path 521 in step S20 after the switching valve 64 is closed.
  • This estimated pressure Prear has a valve opening current characteristic due to four-wheel hydraulic rigidity. It is calculated based on. Therefore, when the current ia * of the pressure-increasing linear control valve 67A is increased after the switching valve 64 is closed, the switching valve 64 is opened (when the hydraulic rigidity is low). The increase speed of the hydraulic pressure with respect to the increase in current becomes faster, and the actual hydraulic pressure becomes higher than the estimated pressure Prear. In other words, the estimated pressure Prear becomes lower than the actual hydraulic pressure.
  • valve opening current ibopen1 of the pressure-reducing linear control valve 67B of the above formula (3) is set according to the estimated pressure Prear. For this reason, if the estimated pressure Prear becomes lower than the actual hydraulic pressure, the valve opening current ibopen1 is set to a current value higher than an appropriate value.
  • valve opening current of the pressure-reducing linear control valve 67B is generally smaller in the two-wheel valve opening current characteristic than in the four-wheel valve opening current characteristic.
  • the valve opening current ibopen1 of the pressure-reducing linear control valve 67B is estimated as the difference between the error E1 resulting from the change in the valve opening current characteristic and the estimated pressure Prear and the actual fluid pressure, as shown in FIG. And an error E2 caused by the error.
  • the current adjustment value A a value obtained in advance through experiments or the like is set. For example, the difference between the calculated valve opening current ibopen1 of the pressure reducing linear control valve 67B set in step S25 and the actual valve opening current of the pressure reducing linear control valve 67B under the same conditions is obtained by experiments. This difference corresponds to an error E (E1 + E2). Such an error E varies depending on the environment such as individual vehicles, individual linear control valves 67, hydraulic fluid temperature, and the like. Therefore, the current adjustment value A is set based on the error E that becomes the maximum within the range of the error E variation.
  • step S25 the current ib * of the linear control valve for pressure reduction calculated first is set to a value smaller than the actual valve opening current when the switching valve 64 is closed.
  • the current adjustment value is calculated by dividing the error E1 caused by the change in the valve opening current characteristic and the error E2 caused by the estimation error of the estimated pressure Prear, and these are added together to obtain the current adjustment value A. May be.
  • step S25 When the brake ECU 100 calculates the current ib * to be supplied to the pressure-reducing linear control valve 67B in step S25, the brake ECU 100 supplies the pressure-reducing linear control valve 67B with the calculated current ib *. In a succeeding step S26, it is determined whether or not the switching valve flag F is “1”. At this time, since the switching valve 64 is closed and the switching valve flag is set to “1”, the brake ECU 100 advances the process to step S27. In step S27, the brake ECU 100 determines whether or not the current ib * has become equal to or less than the set current ib0.
  • the set current ib0 is a current value when the upstream hydraulic pressure and the downstream hydraulic pressure of the switching valve 64 are assumed to be equal, and is set in advance.
  • the brake ECU 100 returns the process to step S25. Accordingly, the processes in steps S25 to S27 are repeated.
  • the brake ECU 100 stops energizing the switching valve 64 and opens the switching valve 64 in step S28, and in step S29.
  • the switching valve flag F is set to “0”.
  • the brake ECU 100 reads the front wheel control pressure Pfront detected by the front wheel control pressure sensor 103, and determines whether or not the front wheel control pressure Pfront has decreased to a set pressure P0 or less.
  • the set pressure P0 is a low hydraulic pressure at which the brake pad is not pressed against the brake disc 41, and is set to atmospheric pressure, for example.
  • the brake ECU 100 While the front wheel control pressure Pfront does not reach the set pressure P0 or less, the brake ECU 100 returns the process to step S25. In this case, the processes of steps S25, S26, and S30 are repeated. As a result, when the current ib * of the pressure-reducing linear control valve 67B gradually decreases and the front wheel control pressure Pfront becomes equal to or lower than the set pressure P0 (time t6 shown in FIG. 7), the brake ECU 100 reduces the pressure in step S31. The energization of the linear control valve 67B is stopped, and the switching valve leakage abnormality inspection routine is ended.
  • the linear control valve 67 is opened (the valve opening is started) in accordance with the open / closed state of the switching valve 64 while the switching valve 64 is closed.
  • the current value set based on the four-wheel valve opening current characteristic is corrected using the current adjustment value A so as to be reduced. That is, the linear control valve 67 is compensated so that the hydraulic rigidity of the downstream flow path of the linear control valve 67 changes in accordance with the opening / closing of the switching valve 64 and the opening current of the linear control valve 67 changes.
  • the current value to be energized is corrected. Therefore, as shown in FIG.
  • FIG. 12 shows the fluctuation state of the hydraulic pressure in the downstream side passage (rear wheel side main passage 521) when the linear control valve 67 is opened.
  • This fluid pressure pulsation represents self-excited vibration. Therefore, according to the present embodiment, it is possible to suppress self-excited vibration (abnormal noise) that occurs when the linear control valve 67 is opened with the switching valve 64 closed (time t4 shown in FIG. 7). it can.
  • the maximum is in the range of the variation E of the valve opening current (the variation of the error E1 caused by the change in the valve opening current characteristic and the variation of the error E2 caused by the hydraulic pressure estimation). Since the current adjustment value A is set based on the error E, the current flowing through the linear control valve 67 can be reliably increased from a value smaller than the actual valve opening current of the linear control valve 67. Thereby, generation
  • the current value ib * of the pressure-reducing linear control valve 67B is calculated by correcting the current value (ibopen1 + Kb ⁇ t) set from the four-wheel valve opening current characteristics with the current adjustment value A.
  • the current value may be substantially corrected by changing the estimated pressure Prear without using the current adjustment value A.
  • the valve opening current error E is calculated as the estimated differential pressure ⁇ P of the pressure reducing linear control valve 67B (in this case, the rear wheel side). If converted into an error Pe of the estimated pressure of the main flow path 521, this error Pe can be used as the estimated pressure adjustment value Pe.
  • the estimated pressure Prear is changed using the estimated pressure adjustment value Pe obtained in advance through experiments or the like.
  • a value (Prear + Pe) obtained by adding the estimated pressure adjustment value Pe to the estimated pressure Prear set in step S20 may be set as the estimated pressure Prear4 corresponding to the four-wheel valve opening current characteristics.
  • an appropriate valve opening current ibopen1 can be calculated using the estimated pressure Prear4 and the four-wheel valve opening current characteristics.
  • the estimated pressure adjustment value Pe is set to a maximum value in the range of the variation E of the valve opening current (the variation of the error Pe of the estimated differential pressure ⁇ P), as in the embodiment.
  • the brake ECU 100 executes the processes of steps S251 and S252 as shown in FIG. 13 instead of the process of step S25.
  • the hydraulic pressure on the downstream side of the pressure-increasing linear control valve 67A is estimated using the four-wheel valve opening current characteristic while the switching valve 64 is closed. You may estimate using. For example, the error in the estimated pressure Prear may be reduced by correcting the set current istop used in step S18 to be smaller than the current value obtained from the four-wheel valve opening current characteristics.
  • a normally closed electromagnetic linear control valve is employed as the linear control valve 67.
  • a normally open electromagnetic linear control valve that maintains the valve open state when the solenoid is not energized is employed.
  • the normally open electromagnetic linear control valve is, for example, opened by a force that urges the valve body in the valve opening direction by a spring and a differential pressure ⁇ P between the upstream side (inlet side) and the downstream side (outlet side).
  • the valve opening state is maintained by the sum of the force biased in the direction, and the valve body is biased in the valve closing direction by the electromagnetic force generated by energizing the solenoid.
  • the normally open electromagnetic linear control valve has a valve opening current characteristic in which the valve opening current increases as the differential pressure ⁇ P increases.
  • the current adjustment value A in equation (3) may be set to a negative value. That is, it is only necessary to correct the current value to be larger than the current value set based on the valve opening current characteristic.
  • the switching valve 64 is provided at a position where the main flow path 52 is separated into the front wheel side main flow path 522 and the rear wheel side main flow path 521, but the position where the switching valve 64 is provided is arbitrarily set. Can do.
  • a switching valve may be provided at a position where the main flow path 52 is separated into a flow path communicating with the wheel cylinder of one front wheel (or rear wheel) and a flow path communicating with the remaining three wheel cylinders. .
  • the switching valve is in a position that separates into a flow path communicating with the wheel cylinder of one front wheel and the wheel cylinder of one rear wheel and a flow path communicating with the wheel cylinder of the other front wheel and the wheel cylinder of the other rear wheel.
  • a brake control device applied to a four-wheel vehicle has been described.
  • a switching valve may be provided at a position where the main flow path is separated into a flow path communicating with the front wheel wheel cylinder and a flow path communicating with the rear wheel wheel cylinder.
  • the present invention is not limited to the above-described embodiment and modification, and various modifications can be made without departing from the object of the present invention.
  • the current value correction in the case where the pressure-reducing linear control valve 67B is opened while the switching valve 64 is closed has been described, but the pressure-increasing linear control valve 67A is opened.
  • the current value can be corrected so as to compensate for the change in the valve opening current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)

Abstract

 ブレーキECU(100)は、切替弁(64)を閉弁した状態で切替弁(64)の上流側と下流側との間に差圧ΔPcheck を発生させ、その状態で、前輪制御圧センサ(103)により検出される液圧の変動に基づいて切替弁(64)の検査を行う。リニア制御弁(67)の開弁電流特性は、切替弁(64)の開閉状態に応じて変化する。そこで、ブレーキECU(100)は、切替弁(64)の検査終了後に、減圧用リニア制御弁(67B)を開弁するときには、減圧用リニア制御弁(67B)に流す電流を補正して、初期値が開弁電流を超えないようにする。これにより、減圧用リニア制御弁(67B)の開弁時に発生する自励振動を抑制することができる。

Description

車両のブレーキ制御装置
 本発明は、動力液圧源により加圧された作動液の液圧をリニア制御弁により調圧してホイールシリンダに伝達する制御液圧回路を備えた車両のブレーキ制御装置に関する。
 従来から、ブレーキペダルの踏力により加圧された作動液の液圧をホイールシリンダに伝達する踏力液圧回路と、動力液圧源により加圧された作動液の液圧をリニア制御弁により調圧してホイールシリンダに伝達する制御液圧回路とを並列に備え、通常時においては、制御液圧回路を使用するリニア制御モードを選択し、何らかの異常が検出されている時においては、踏力液圧回路を使用した踏力液圧モードに切り換えるブレーキ制御装置が知られている。
 例えば、特許文献1に提案されたブレーキ制御装置では、図1に示すように、増圧用リニア制御弁67Aと減圧用リニア制御弁67Bとで構成されるリニア制御弁67の下流側に主流路52が接続され、この主流路52から各ホイールシリンダ42FR,42FL,42RR,42RLへ作動液を供給する個別流路51FR,51FL,51RR,51RLが分岐された構成が採用されている。尚、図1は、本実施形態のブレーキ制御装置の概略システム構成を表しているが、機械的な構成については、特許文献1に提案されたものと基本的に共通しているため、ここでは図1を使って説明する。
 主流路52には、その途中に、電磁開閉弁である切替弁64が設けられ、この切替弁64よりも上流側、つまり、リニア制御弁67と切替弁64との間の流路となる後輪側主流路521から後輪のホイールシリンダ42RR,42RLへ通じる個別流路が分岐され、切替弁64よりも下流側流路となる前輪側主流路522から前輪のホイールシリンダ42FR,42FLへ通じる個別流路が分岐される。前輪側主流路522には前輪制御圧センサ103が設けられる。
 踏力液圧回路は、マスタシリンダ22から前輪の各ホイールシリンダ42FR,42FLに液圧を伝達するマスタ流路53と、レギュレータ23から後輪の各ホイールシリンダ42RR,42RLに液圧を伝達するレギュレータ流路54との2系統にて構成されており、マスタ流路53が前輪側主流路522に接続され、レギュレータ流路54が後輪側主流路521に接続される。マスタ流路53とレギュレータ流路54とには、それぞれマスタカット弁65とレギュレータカット弁66が設けられる。
 リニア制御モードにおいては、マスタカット弁65、レギュレータカット弁66が閉弁され、切替弁64が開弁された状態で、前輪制御圧センサ103により検出される液圧が目標液圧に追従するようにリニア制御弁67の開度が制御される。これにより、前輪および後輪の各ホイールシリンダ42に共通の制御液圧が伝達される。一方、踏力液圧モードにおいては、マスタカット弁65、レギュレータカット弁66が開弁され、切替弁64、リニア制御弁67が閉弁される。これにより、主流路52が後輪側主流路521と前輪側主流路522とに分離され、マスタシリンダ22の液圧が前輪側主流路522を経由して前輪の各ホイールシリンダ42FR,42FLに伝達され、レギュレータ23の液圧が後輪側主流路521を経由して後輪の各ホイールシリンダ42RR,42RLに伝達される。
特開2010-6182号公報
 リニア制御弁は、その上流側液圧(入口側液圧)と下流側液圧(出口側液圧)との差圧(液圧の差)と、開弁電流とのあいだに一定の関係を有する。開弁電流とは、例えば、常閉式電磁リニア制御弁であれば、閉弁している状態から、ソレノイドに流す電流を増加させていったときに弁体が開弁を開始するときの電流値を表す。図5は、常閉式電磁リニア制御弁の上流側と下流側との差圧ΔPと、開弁電流iopenとの関係を表す開弁電流特性を表している。ブレーキ制御装置は、このようなリニア制御弁67の開弁電流特性を記憶しており、この開弁電流特性を参照してリニア制御弁67に流す電流を制御する。
 リニア制御モードにおいては、切替弁64が開弁された状態でリニア制御弁67の通電が制御される。このため、ブレーキ制御装置は、切替弁64を開弁した状態で開弁電流特性が測定され、この測定された開弁電流特性を記憶している。
 ところで、切替弁64を閉弁した状態でリニア制御弁67により液圧を制御するケースが考えられる。例えば、切替弁64の異常(異物詰まり等による漏れ異常)の有無を検査する場合が該当する。切替弁64の検査は、切替弁64を閉弁して、後輪側主流路521と前輪側主流路522とをそれぞれ異なる液圧にて密閉し、この状態で前輪制御圧センサ103により検出される前輪側主流路522の液圧の変化の有無を調べることで可能となる。この場合、切替弁64を閉弁した状態で増圧用リニア制御弁67Aに通電して後輪側主流路521の液圧を上昇させることにより、後輪側主流路521と前輪側主流路522との間に検査用の差圧を発生させて液圧の有無を調べ、その検査終了後に、減圧用リニア制御弁67Bに通電して後輪側主流路521の液圧を低下させる。
 しかしながら、減圧用リニア制御弁67Bに通電を開始したときに、弁体が勢いよく開いてしまい、作動液の自励振動により異音が発生するという問題が生じる。これは、切替弁64の開閉状態に応じてリニア制御弁67に連通する主流路52の液圧剛性が変化するため、切替弁64を開弁した状態で測定された開弁電流特性に基づいて減圧用リニア制御弁67Bの電流値を設定すると、その電流値が過剰になるためである。また、切替弁64を閉弁した状態では、前輪制御圧センサ103を備えた前輪側主流路522がリニア制御弁67に連通する主流路52から切り離されるため、後輪側主流路521の液圧を推定する必要がある。後輪側主流路521の液圧推定は、リニア制御弁67の電流と開弁電流特性とから推定できるが、切替弁64が閉弁されている場合にはリニア制御弁67の下流側流路の液圧剛性が高くなるため、液圧推定に誤りが生じる。従って、この液圧推定の誤差によっても、減圧用リニア制御弁67Bの電流値が過剰となってしまう。
 本発明は、上記問題を解決するためになされたものであり、切替弁を閉弁した状態でリニア制御弁を開弁するときに発生する自励振動を抑制することを目的とする。
 上記課題を解決する本発明の特徴は、複数の車輪のそれぞれに設けられ作動液の液圧を受けて車輪に制動力を与えるホイールシリンダ(42FR,42FL,42RR,42RL)と、ブレーキ操作が行われていなくても高圧の液圧を発生させ得る動力液圧源(30)と、前記動力液圧源から各ホイールシリンダへ作動液を供給する共通の流路に設けられ、自身の上流側と下流側との差圧が通電電流に応じて調整されて、各ホイールシリンダの液圧を調整するリニア制御弁(67)と、前記リニア制御弁の下流側で、かつ、一部のホイールシリンダの上流側に設けられ、前記リニア制御弁から前記一部のホイールシリンダへ作動液を供給する流路を開いた状態と閉じた状態とに切り替える切替弁(64)と、前記リニア制御弁に供給される液圧を検出する第1液圧検出手段(101)と、前記切替弁の下流側の流路の液圧を検出する第2液圧検出手段(103)と、前記切替弁が開弁している状態における、前記リニア制御弁の上流側と下流側との差圧と、前記リニア制御弁が閉弁状態から開弁するときの電流値を表す開弁電流との関係を表す開弁電流特性を記憶した開弁電流特性記憶手段(110)と、前記開弁電流特性に基づいて設定した電流値で前記リニア制御弁に通電する通電制御手段(100)とを備えた車両のブレーキ制御装置において、
 前記切替弁が閉弁している状態で、前記リニア制御弁と前記切替弁との間の流路の液圧を推定する液圧推定手段(S20)と、前記切替弁の開閉状態に応じて、前記切替弁が閉弁している状態で前記リニア制御弁を開弁する場合には、前記リニア制御弁に通電する電流値を前記リニア制御弁が開弁しにくい側に補正する電流補正手段(S25)を備えたことにある。
 本発明の車両のブレーキ制御装置は、動力液圧源で加圧された作動液をリニア制御弁により調圧して各ホイールシリンダへ供給する。リニア制御弁は、例えば、増圧用のリニア制御弁と減圧用のリニア制御弁とを別個に備えていてもよい。リニア制御弁の下流側で、かつ、一部のホイールシリンダの上流側には、切替弁が設けられる。切替弁は、開閉によりリニア制御弁から一部のホイールシリンダへ作動液を供給する流路を開いた状態と閉じた状態とに切り替える。通電制御手段は、開弁電流特性に基づいて設定した電流値でリニア制御弁に通電する。開弁電流特性は、リニア制御弁の上流側と下流側との差圧と、リニア制御弁が閉弁状態から開弁するときの電流値を表す開弁電流との関係を表すもので、開弁電流特性記憶手段に記憶されている。リニア制御弁の通電制御は、通常、切替弁を開弁した状態で行われるため、開弁電流特性は、切替弁が開弁している状態における特性となっている。
 開弁電流特性に基づいてリニア制御弁の通電を制御する場合には、リニア制御弁の上流側と下流側の液圧を検出する必要がある。そのため、ブレーキ制御装置は、第1液圧検出手段と第2液圧検出手段とを備えている。第1液圧検出手段は、リニア制御弁に供給される液圧を検出する。つまり、動力液圧源の出力する液圧を検出する。第2液圧検出手段は、切替弁の下流側の流路の液圧を検出する。各ホイールシリンダの液圧を制御する場合は、切替弁が開状態とされ、各ホイールシリンダには共通の液圧が付与される。従って、第2液圧検出手段によりリニア制御弁の下流側の流路全体の液圧を検出することができる。
 切替弁を閉弁状態にしてリニア制御弁の通電を制御する状況が考えられる。一例として、切替弁を閉弁した状態で、その上流側と下流側との間に一定の差圧を付与し、差圧を付与した状態で切替弁の下流側の液圧の変動の有無を検出することにより、切替弁の漏れ検査を行う場合にそうした状況となる。切替弁を閉弁している状態では、リニア制御弁の下流側流路の液圧を検出することができないため、本発明では、切替弁が閉弁している状態で、リニア制御弁と切替弁との間の流路の液圧を推定する液圧推定手段を備えている。例えば、液圧推定手段は、リニア制御弁に通電した電流値に基づいて液圧を推定する。リニア制御弁に通電した電流値と、リニア制御弁の上流側と下流側との差圧とには相関関係があるため、この相関関係を設定した関係付け情報を参照してリニア制御弁に通電した電流値から液圧を推定することができる。この場合、関係付け情報として、開弁電流特性記憶手段に記憶されている開弁電流特性を用いてもよいし、専用の推定用情報等を用いても良い。
 切替弁が開弁されている状態と閉弁されている状態とでは、リニア制御弁の下流側流路(リニア制御弁により液圧が調整される側の流路)の液圧剛性が異なる。従って、切替弁が閉弁されている状態でリニア制御弁を開弁する場合、開弁電流特性記憶手段により記憶されている開弁電流特性に基づいて電流値を設定すると、リニア制御弁の弁体が勢いよく開弁して、自励振動が発生するおそれがある。また、液圧推定手段により推定される液圧にも誤差が生じる。このことも重なって、リニア制御弁を開弁するときの電流値が不適切となってしまう。
 そこで、本発明は、電流補正手段を備えている。電流補正手段は、切替弁の開閉状態に応じて、切替弁が閉弁している状態でリニア制御弁を開弁する(開弁を開始する)場合には、リニア制御弁に通電する電流値をリニア制御弁が開弁しにくい側に補正する。例えば、リニア制御弁として、常閉型リニア制御弁を用いている場合には、通電を開始する電流値を、通電制御手段が開弁電流特性に基づいて設定した電流値よりも小さな電流値になるように補正する。また、例えば、リニア制御弁として、常開型リニア制御弁を用いている場合には、通電を減らし始める電流値を、通電制御手段が開弁電流特性に基づいて設定した電流値よりも大きな電流値になるように補正する。この結果、本発明によれば、切替弁を閉弁した状態でリニア制御弁を開弁するときに発生する自励振動(異音)を抑制することができる。
 本発明の他の特徴は、前記電流補正手段は、前記切替弁が閉弁している状態で前記リニア制御弁を開弁する場合には、前記切替弁の開閉に応じて前記リニア制御弁の下流側流路の液圧剛性が変化して前記リニア制御弁の開弁電流が変化することを補償するように、前記リニア制御弁に通電する電流値を前記リニア制御弁が開弁しにくい側に補正することにある。
 本発明によれば、切替弁の開閉に応じてリニア制御弁の下流側流路の液圧剛性が変化してリニア制御弁の開弁電流が変化することを補償するようにリニア制御弁に通電する電流値を補正するため、一層適正な電流値に補正することができ、切替弁を閉弁した状態でリニア制御弁を開弁するときに発生する自励振動をさらに適切に抑制することができる。
 本発明の他の特徴は、前記電流補正手段は、前記液圧推定手段により推定される液圧を変更することにより(S251)、前記リニア制御弁に通電する電流値を前記リニア制御弁が開弁しにくい側に補正することにある。
 リニア制御弁に通電する電流値は、通電制御手段により開弁電流特性に基づいて設定されるため、リニア制御弁の下流側の推定液圧を変更することにより、開弁電流特性に基づいて設定される電流値を補正することができる。そこで、本発明においては、液圧推定手段により推定される液圧を変更することにより、リニア制御弁に通電する電流値をリニア制御弁が開弁しにくい側に補正する。この結果、本発明によれば、切替弁を閉弁した状態でリニア制御弁を開弁するときに発生する自励振動を抑制することができる。この場合、例えば、切替弁の開閉に応じてリニア制御弁の下流側流路の液圧剛性が変化してリニア制御弁の開弁電流が変化することを補償するように、液圧推定手段により推定される液圧を変更することが望ましい。
 本発明の他の特徴は、前記電流補正手段は、前記切替弁が閉弁している状態で前記リニア制御弁を開弁する場合には、前記切替弁が閉弁されている状態で前記リニア制御弁が開弁しない電流値を初期電流値として、この初期電流値から前記リニア制御弁が開弁する方向に電流値が徐々に変化するように前記リニア制御弁に通電する電流値を設定することにある。
 本発明によれば、リニア制御弁は、初期電流値では開弁せず、その後の電流値の変化(常閉タイプのリニア制御弁であれば増加、常開タイプのリニア制御弁では減少)によって開弁する。従って、リニア制御弁が急激に開弁することがない。この結果、リニア制御弁を開弁するときに発生する自励振動を抑制することができる。
 本発明の他の特徴は、前記電流値補正手段は、前記液圧推定手段により推定される液圧の誤差のバラツキと前記開弁電流特性の変化のバラツキを含めて前記リニア制御弁が開弁しない電流値を前記初期電流値に設定することにある。
 本発明によれば、液圧推定手段により推定される液圧の誤差のバラツキと、切替弁の閉弁による開弁電流特性の変化のバラツキとが考慮されて初期電流値が設定されるため、リニア制御弁を開弁するときに発生する自励振動を確実に抑制することができる。
 本発明の他の特徴は、前記リニア制御弁(67)は、前記ホイールシリンダの液圧を増加させる増圧用リニア制御弁(67A)と、前記ホイールシリンダの液圧を減少させる減圧用リニア制御弁(67B)とを備えており、前記切替弁を閉弁した状態で前記増圧用リニア制御弁を開弁して前記切替弁の上流側の液圧を増加させ、前記切替弁の上流側の液圧が前記切替弁の下流側の液圧に対して検査用差圧だけ高い推定液圧(Prear)に達したと判断したときに前記増圧用リニア制御弁を閉弁することにより、前記切替弁の上流側と下流側との間に検査用差圧を付与する差圧付与手段(S11~S19)と、前記切替弁の上流側と下流側との間に前記検査用差圧が付与された状態で、前記第2液圧検出手段により検出される液圧の変動の有無に基づいて前記切替弁の異常を判定する切替弁異常判定手段(S21~S24)と、前記切替弁の異常判定の後に、前記減圧用リニア制御弁を開弁して前記切替弁の上流側の液圧を低下させる上流側減圧手段(S25~S31)とを備え、前記電流補正手段(S25)は、前記上流側減圧手段が前記減圧用リニア制御弁を開弁する場合には、前記減圧用リニア制御弁に通電する電流値を前記減圧用リニア制御弁が開弁しにくい側に補正することにある。
 本発明は、リニア制御弁として、増圧用リニア制御弁と減圧用リニア制御弁とを備えている。従って、開弁電流特性記憶手段は、増圧用リニア制御弁と減圧用リニア制御弁とのそれぞれについて、切替弁が開弁している状態での開弁電流特性を記憶している。本発明は、切替弁の漏れ異常を検出する機能を有し、そのために、差圧付与手段と切替弁異常判定手段と上流側減圧手段とを備えている。差圧付与手段は、切替弁を閉弁した状態で増圧用リニア制御弁を開弁して切替弁の上流側の液圧を増加させ、切替弁の上流側の液圧が切替弁の下流側の液圧に対して検査用差圧だけ高い推定液圧に達したと判断したときに増圧用リニア制御弁を閉弁することにより、切替弁の上流側と下流側との間に検査用差圧を付与する。切替弁異常判定手段は、切替弁の上流側と下流側との間に検査用差圧が付与された状態で、第2液圧検出手段により検出される液圧の変動の有無に基づいて切替弁の異常を判定する。切替弁に漏れ異常が生じている場合には、第2液圧検出手段により検出される液圧の変動が生じるため、液圧の変動の有無により切替弁の漏れ異常を検出することができる。
 上流側減圧手段は、切替弁の異常有無の判定の後に、減圧用リニア制御弁を開弁して切替弁の上流側の液圧を低下させる。この場合、切替弁が閉弁している状態で減圧用リニア制御弁を開弁させることになる。このため、減圧用リニア制御弁の実際の開弁電流特性が、開弁電流特性記憶手段により記憶されている開弁電流特性と相違してしまう。また、差圧付与手段により付与した検査用差圧の推定値に誤差が生じることもある。
 そこで、電流補正手段は、上流側減圧手段が減圧用リニア制御弁を開弁する場合に、減圧用リニア制御弁に通電する電流値を減圧用リニア制御弁が開弁しにくい側に補正する。この結果、本発明によれば、切替弁の漏れ異常検査を終了して減圧用リニア制御弁を開弁するときに発生する自励振動を抑制することができる。
 本発明の他の特徴は、前記減圧用リニア制御弁は、非通電状態にある場合に閉弁する常閉型リニア制御弁であって、前記電流補正手段は、前記切替弁が閉弁されている状態で前記減圧用リニア制御弁が開弁を開始する開弁電流よりも低い電流値を初期電流値として、この初期電流値から電流値が徐々に増加する前記減圧用リニア制御弁の電流値を設定することにある。
 この発明によれば、減圧用リニア制御弁に通電を開始する電流値を、切替弁が閉弁されている状態で減圧用リニア制御弁が開弁を開始する開弁電流よりも低い電流値に補正する。従って、通電開始にあわせて減圧用リニア制御弁が勢いよく開弁してしまうことがない。これにより、減圧用リニア制御弁をゆっくりと開弁することができ、減圧用リニア制御弁を開弁するときに発生する自励振動を抑制することができる。
 尚、上記説明においては、発明の理解を助けるために、実施形態に対応する発明の構成に対して、実施形態で用いた符号を括弧書きで添えているが、発明の各構成要件は前記符号によって規定される実施形態に限定されるものではない。
本実施形態における車両のブレーキ制御装置の概略システム構成図である。 リニア制御モードにおける液圧流路を表す説明図である。 踏力液圧モードにおける液圧流路を表す説明図である。 漏れ異常検査時における液圧流路を表す説明図である。 開弁電流特性を表すグラフである。 切替弁漏れ異常検査ルーチンの一部(前半)を表すフローチャートである。 切替弁漏れ異常検査ルーチンの一部(後半)を表すフローチャートである。 リニア制御弁の下流側流路の液圧の推移を表すグラフである。 開弁電流特性の測定原理を表すグラフである。 開弁電流特性を表すグラフである。 液圧剛性に応じた開弁電流特性を表すグラフである。 リニア制御弁に流す電流の推移を表すグラフである。 自励振動を表すグラフである。 切替弁漏れ異常検査ルーチンの変形個所を表すフローチャートである。 リニア制御弁の作動原理図である。
 以下、本発明の一実施形態に係る車両のブレーキ制御装置について図面を用いて説明する。図1は、本実施形態に係る車両のブレーキ制御装置の概略システム構成図である。
 本実施形態のブレーキ制御装置は、ブレーキペダル10と、マスタシリンダユニット20と、動力液圧発生装置30と、液圧制御弁装置50と、各車輪にそれぞれ設けられるディスクブレーキユニット40FR,40FL,40RR,40RLと、ブレーキ制御を司るブレーキECU100とを備える。ディスクブレーキユニット40FR,40FL,40RR,40RLは、ブレーキディスク41FR,41FL,41RR,41RLとブレーキキャリパに内蔵されたホイールシリンダ42FR,42FL,42RR,42RLとを備える。尚、車輪毎に設けられる構成については、その符号の末尾に、右前輪についてはFR、左前輪についてはFL、右後輪についてはRR、左後輪についてはRLを付しているが、以下、車輪位置を特定しない場合には、末尾の符号を省略する。
 ホイールシリンダ42FR,42FL,42RR,42RLは、液圧制御弁装置50に接続され、液圧制御弁装置50から供給される作動液(ブレーキフルード)の液圧が伝達され、この液圧により、車輪と共に回転するブレーキディスク41FR,41FL,41RR,41RLにブレーキパッドを押し付けて車輪に制動力を付与する。
 マスタシリンダユニット20は、液圧ブースタ21、マスタシリンダ22、レギュレータ23、リザーバ24を備える。液圧ブースタ21は、ブレーキペダル10に連結されており、ブレーキペダル10に加えられたペダル踏力を増幅してマスタシリンダ22に伝達する。液圧ブースタ21は、動力液圧発生装置30からレギュレータ23を介して作動液が供給されることにより、ペダル踏力を増幅してマスタシリンダ22に伝達する。マスタシリンダ22は、ペダル踏力に対して所定の倍力比を有するマスタシリンダ圧を発生する。
 マスタシリンダ22とレギュレータ23との上部には、作動液を貯留するリザーバ24が設けられている。マスタシリンダ22は、ブレーキペダル10の踏み込みが解除されているときにリザーバ24と連通する。レギュレータ23は、リザーバ24と動力液圧発生装置30のアキュムレータ32との双方に連通し、リザーバ24を低圧源とするとともにアキュムレータ32を高圧源として、マスタシリンダ圧とほぼ等しい液圧を発生する。以下、レギュレータ23の液圧を、レギュレータ圧と呼ぶ。尚、マスタシリンダ圧とレギュレータ圧とは厳密に同一にする必要はなく、例えば、レギュレータ圧をマスタシリンダ圧よりも若干高圧になるように設定してもよい。
 動力液圧発生装置30は、動力液圧源であって、ポンプ31とアキュムレータ32とを備える。ポンプ31は、その吸入口がリザーバ24に接続され、吐出口がアキュムレータ32に接続され、モータ33を駆動することにより作動液を加圧する。アキュムレータ32は、ポンプ31により加圧された作動液の圧力エネルギーを窒素等の封入ガスの圧力エネルギーに変換して蓄える。また、アキュムレータ32は、マスタシリンダユニット20に設けられたリリーフバルブ25に接続されている。リリーフバルブ25は、作動液の圧力が異常に高まった場合には、開弁して作動液をリザーバ24に戻す。
 このように、ブレーキ制御装置は、ホイールシリンダ42に作動液の液圧を付与する液圧源として、ドライバーのブレーキ踏力(ブレーキペダル10を踏み込む力)を利用したマスタシリンダ22およびレギュレータ23と、ドライバーのブレーキ踏力とは無関係に液圧を付与する動力液圧発生装置30とを備えている。マスタシリンダ22、レギュレータ23、動力液圧発生装置30は、マスタ配管11、レギュレータ配管12、アキュムレータ配管13を介してそれぞれ液圧制御弁装置50に接続される。また、リザーバ24は、リザーバ配管14を介して液圧制御弁装置50に接続される。
 液圧制御弁装置50は、各ホイールシリンダ42FR,42FL,42RR,42RLに接続される4つの個別流路51FR,51FL,51RR,51RLと、個別流路51FR,51FL,51RR,51RLを連通する主流路52と、主流路52とマスタ配管11とを接続するマスタ流路53と、主流路52とレギュレータ配管12とを接続するレギュレータ流路54と、主流路52とアキュムレータ配管13とを接続するアキュムレータ流路55とを備える。マスタ流路53とレギュレータ流路54とアキュムレータ流路55とは、主流路52に対して並列に接続される。
 各個別流路51FR,51FL,51RR,51RLには、その途中にそれぞれABS保持弁61FR,61FL,61RR,61RLが設けられる。ABS保持弁61は、ソレノイドの非通電時にスプリングの付勢力により開弁状態を維持し、ソレノイドの通電中においてのみ閉弁状態となる常開式電磁開閉弁である。ABS保持弁61は、開弁状態においては、作動液を双方向に流すことができ方向性を有さない。
 また、各個別流路51FR,51FL,51RR,51RLには、ABS保持弁61FR,61FL,61RR,61RLと並列にリターンチェック弁62FR,62FL,62RR,62RLが設けられる。リターンチェック弁62は、主流路52からホイールシリンダ42に向かう作動液の流れを遮断し、ホイールシリンダ42から主流路52に向かう作動液の流れを許容する弁である。つまり、ホイールシリンダ42の液圧(ホイールシリンダ圧と呼ぶ)が主流路52の液圧よりも高圧となる場合に機械的に弁体が開いてホイールシリンダ42の作動液を主流路52側に流し、ホイールシリンダ圧が主流路52の液圧と等しくなると弁体が閉弁するように構成されている。従って、ABS保持弁61が閉弁されてホイールシリンダ圧が保持されているときに、主流路52における制御液圧が低下してホイールシリンダ圧を下回った場合には、ABS保持弁61を閉弁状態に維持したままホイールシリンダ圧を主流路52の制御液圧にまで減圧することができる。
 また、各個別流路51FR,51FL,51RR,51RLには、それぞれ減圧用個別流路56FR,56FL,56RR,56RLが接続される。各減圧用個別流路56は、リザーバ流路57に接続される。リザーバ流路57は、リザーバ配管14を介してリザーバ24に接続される。各減圧用個別流路56FR,56FL,56RR,56RLには、その途中にそれぞれABS減圧弁63FR,63FL,63RR,63RLが設けられている。各ABS減圧弁63は、ソレノイドの非通電時にスプリングの付勢力により閉弁状態を維持し、ソレノイドの通電中においてのみ開弁状態となる常閉式電磁開閉弁である。各ABS減圧弁63は、開状態において作動液をホイールシリンダ42から減圧用個別流路56を介してリザーバ流路57に流すことでホイールシリンダ圧を低下させる。
 ABS保持弁61およびABS減圧弁63は、車輪がロックしてスリップした場合に、ホイールシリンダ圧を下げて車輪のロックを防止するアンチロックブレーキ制御の作動時などにおいて開閉制御される。
 主流路52には、その途中に切替弁64が設けられる。切替弁64は、ソレノイドの非通電時にスプリングの付勢力により閉弁状態を維持し、ソレノイドの通電中においてのみ開弁状態となる常閉式電磁開閉弁である。主流路52は、切替弁64を境として、後輪の個別流路51RR,51RLに接続される後輪側主流路521と、前輪の個別流路51FR,51FLに接続される前輪側主流路522とに区分けされる。切替弁64が閉弁状態にあるときには、後輪側主流路521と前輪側主流路522との間の作動液の流通が遮断され、切替弁64が開弁状態にあるときには、後輪側主流路521と前輪側主流路522との間の作動液の流通が双方向に許容される。
 マスタ流路53には、その途中にマスタカット弁65が設けられる。マスタカット弁65は、ソレノイドの非通電時にスプリングの付勢力により開弁状態を維持し、ソレノイドの通電中においてのみ閉弁状態となる常開式電磁開閉弁である。マスタカット弁65が閉弁状態にあるときには、マスタシリンダ22と前輪側主流路522との間の作動液の流通が遮断され、マスタカット弁65が開弁状態にあるときには、マスタシリンダ22と前輪側主流路522との間の作動液の流通が双方向に許容される。
 マスタ流路53には、マスタカット弁65が設けられる位置よりもマスタシリンダ22側において、シミュレータ流路71が分岐して設けられる。シミュレータ流路71には、シミュレータカット弁72を介してストロークシミュレータ70が接続される。シミュレータカット弁72は、ソレノイドの非通電時にスプリングの付勢力により閉弁状態を維持し、ソレノイドの通電中においてのみ開弁状態となる常閉式電磁開閉弁である。シミュレータカット弁72が閉弁状態にあるときには、マスタ流路53とストロークシミュレータ70との間の作動液の流通が遮断され、シミュレータカット弁72が開弁状態にあるときには、マスタ流路53とストロークシミュレータ70との間の作動液の流通が双方向に許容される。
 ストロークシミュレータ70は、複数のピストンやスプリングを備えており、シミュレータカット弁72が開弁状態にあるときに、ブレーキ操作量に応じた量の作動液を内部に導入してブレーキペダル10のストローク操作を可能にするとともに、ペダル操作量に応じた反力を発生させて、ドライバーのブレーキ操作フィーリングを良好にするものである。
 レギュレータ流路54には、その途中にレギュレータカット弁66が設けられる。レギュレータカット弁66は、ソレノイドの非通電時にスプリングの付勢力により開弁状態を維持し、ソレノイドの通電中においてのみ閉弁状態となる常開式電磁開閉弁である。レギュレータカット弁66が閉弁状態にあるときには、レギュレータ23と後輪側主流路521との間の作動液の流通が遮断され、レギュレータカット弁66が開弁状態にあるときには、レギュレータ23と後輪側主流路521との間の作動液の流通が双方向に許容される。
 アキュムレータ流路55は、増圧用リニア制御弁67Aを介して主流路52(後輪側主流路521)に接続される。増圧用リニア制御弁67Aは、その上流側がアキュムレータ流路55に接続され、その下流側が主流路52に接続されるように配置される。また、主流路52(後輪側主流路521)は、減圧用リニア制御弁67Bを介してリザーバ流路57に接続される。減圧用リニア制御弁67Bは、その上流側が主流路52に接続され、その下流側がリザーバ流路57に接続されるように配置される。この増圧用リニア制御弁67Aと減圧用リニア制御弁67Bとにより、ホイールシリンダ42の液圧を調整するリニア制御弁67が構成されている。
 増圧用リニア制御弁67Aおよび減圧用リニア制御弁67Bは、ソレノイドの非通電時にスプリングの付勢力により閉弁状態を維持し、ソレノイドへの通電量(電流値)の増加にしたがって開度を増加させる常閉式電磁リニア制御弁である。増圧用リニア制御弁67Aおよび減圧用リニア制御弁67Bは、図14に示すように、スプリング91が弁体(プランジャ)92を閉弁方向に付勢するバネ反力f1と、上流側(入口側)と下流側(出口側)の差圧ΔPにより弁体92が開弁方向に付勢される液圧力f2との差分である閉弁力(f1-f2)により閉弁状態を維持し、ソレノイド93への通電により発生する弁体92を開弁させる電磁力f3が、この閉弁力を上回った場合に、弁体92に働く力のバランスに応じた開度で開弁する。従って、ソレノイド93への通電量(電流値)を制御することにより弁体92の開度を調整して、リニア制御弁67の下流側の液圧を制御することができる。尚、リニア制御弁67の下流側とは、液圧の制御対象流路であって、増圧用リニア制御弁67Aの下流側であり、減圧用リニア制御弁67Bの上流側となる。
 動力液圧発生装置30および液圧制御弁装置50は、ブレーキECU100により駆動制御される。ブレーキECU100は、マイコンを主要部として備えるとともに、ポンプ駆動回路、電磁弁駆動回路、各種のセンサ信号を入力する入力インターフェース、通信インターフェース等を備えている。また、ブレーキECU100は、後述する開弁電流特性を記憶する不揮発性メモリ110を備えている。液圧制御弁装置50に設けられた電磁開閉弁、電磁リニア制御弁は、全てブレーキECU100に接続され、ブレーキECU100から出力されるソレノイド駆動信号により開閉状態および開度(電磁リニア制御弁の場合)が制御される。また、動力液圧発生装置30に設けられたモータ33についても、ブレーキECU100に接続され、ブレーキECU100から出力されるモータ駆動信号により駆動制御される。
 液圧制御弁装置50には、アキュムレータ圧センサ101、レギュレータ圧センサ102、前輪制御圧センサ103が設けられる。アキュムレータ圧センサ101は、増圧用リニア制御弁67Aよりも上流側のアキュムレータ流路55における作動液の圧力であるアキュムレータ圧Paccを検出する。アキュムレータ圧センサ101は、検出したアキュムレータ圧Paccを表す信号をブレーキECU100に出力する。レギュレータ圧センサ102は、レギュレータカット弁66よりも上流側(レギュレータ23側)のレギュレータ流路54における作動液の圧力であるレギュレータ圧Pregを検出する。レギュレータ圧センサ102は、検出したレギュレータ圧Pregを表す信号をブレーキECU100に出力する。前輪制御圧センサ103は、前輪側主流路522における作動液の圧力である前輪制御圧Pfrontを表す信号をブレーキECU100に出力する。
 また、ブレーキECU100には、ブレーキペダル10に設けられたストロークセンサ104が接続される。ストロークセンサ104は、ブレーキペダル10の踏み込み量(操作量)であるペダルストロークを検出し、検出したペダルストロークSpを表す信号をブレーキECU100に出力する。
 次に、ブレーキECU100が実行するブレーキ制御について説明する。本実施形態においては、リニア制御モードと踏力液圧モードとの少なくとも2つの制動モードが設定されており、ブレーキECU100が、この制動モードを切り替える。
 本実施形態のブレーキ制御装置が設けられる車両は、バッテリ電源により駆動されるモータと、ガソリン燃料により駆動される内燃機関とを備えたハイブリッド車両である。ハイブリッド車両においては、車輪の回転力でモータを発電させ、この発電電力をバッテリに回生させることにより制動力を得る回生制動を行っている。こうした回生制動を行う場合には、車両を制動させるために必要な総制動力から回生による制動力分を除いた制動力をブレーキ制御装置で発生させることにより、回生制動と液圧制動とを併用したブレーキ回生協調制御を行うことができる。
 ブレーキ回生協調制御は、リニア制御モードにおいて実行される。リニア制御モードにおいては、ドライバーがブレーキペダル10を踏み込んだ踏力は、ブレーキ操作量の検出用に使用されるだけで、ホイールシリンダ42に伝達されず、代わりに、動力液圧発生装置30の出力する液圧がリニア制御弁67A,67Bにより調圧されてホイールシリンダ42に伝達される。一方、踏力液圧モードは、ブレーキ制御装置内において何らかの異常が発生しているときに実行される制動モードであって、ブレーキペダル踏力により加圧された液圧がホイールシリンダ42に伝達される。ブレーキECU100は、液圧制御弁装置50により作動液の流れる流路を切り換えることにより、リニア制御モードと踏力液圧モードとを切り換える。尚、リニア制御モードは、通常時(異常が検出されていない時)に行われる制動モードであって、必ずしもブレーキ回生協調制御を実行することを必須としない。
 リニア制御モードにおいては、マスタカット弁65、レギュレータカット弁66は、ソレノイドへの通電により閉弁状態に維持され、切替弁64は、ソレノイドへの通電により開弁状態に維持される。また、シミュレータカット弁72は、ソレノイドへの通電により開弁状態に維持される。また、増圧用リニア制御弁67Aおよび減圧用リニア制御弁67Bは、ソレノイドが通電制御状態におかれて、通電量に応じた開度に制御される。また、ABS保持弁61およびABS減圧弁63については、アンチロックブレーキ制御など必要に応じて開閉され、通常においては、ABS保持弁61は開弁状態に維持され、ABS減圧弁63は閉弁状態に維持される。
 リニア制御モードにおいては、マスタカット弁65およびレギュレータカット弁66が閉弁されるため、マスタシリンダユニット20から出力される液圧は、ホイールシリンダ42に伝達されない。また、切替弁64が開弁状態に維持され、増圧用リニア制御弁67Aおよび減圧用リニア制御弁67Bが通電制御状態におかれる。従って、リニア制御モードにおいては、図2に示すように、動力液圧発生装置30と4輪のホイールシリンダ42とを連通する液圧回路L1が形成される。このため、動力液圧発生装置30の出力する液圧(アキュムレータ圧)が増圧用リニア制御弁67Aと減圧用リニア制御弁67Bにより調圧されて4輪のホイールシリンダ42に伝達される。この場合、各ホイールシリンダ42は、主流路52により連通されているため、ホイールシリンダ圧が4輪全て同じ値となる。このホイールシリンダ圧は、前輪制御圧センサ103により検出することができる。
 ブレーキECU100は、制動要求を受けてブレーキ回生協調制御を開始する。制動要求は、例えばドライバーがブレーキペダル10を踏み込み操作した場合など、車両に制動力を付与すべきときにおいて発生する。ブレーキECU100は、制動要求を受けると、ストロークセンサ104により検出されるペダルストロークSpとレギュレータ圧センサ102により検出されるレギュレータ圧Pregとに基づいて要求制動力を演算する。要求制動力は、ペダルストロークSpが大きいほど、レギュレータ圧Pregが大きいほど大きな値に設定される。この場合、例えば、ペダルストロークSpとレギュレータ圧Pregとにそれぞれ重み付け係数Ks,Krを乗算するようにして、ペダルストロークSpが小さい範囲においては、ペダルストロークSpの重み付け係数Ksを大きく設定し、ペダルストロークSpが大きい範囲においては、レギュレータ圧Pregの重み付け係数Krを大きく設定して要求制動力を演算するとよい。
 ブレーキECU100は、演算した要求制動力を表す情報をハイブリッドECUに送信する。ハイブリッドECUは、要求制動力のうち、電力回生により発生させた制動力を演算して、その演算結果である回生制動力を表す情報をブレーキECU100に送信する。これにより、ブレーキECU100は、要求制動力から回生制動力を減算することによりブレーキ制御装置で発生させるべき制動力である要求液圧制動力を演算する。ハイブリッドECUで行う電力回生により発生する回生制動力は、モータの回転速度により変化するだけでなく、バッテリの充電状態(SOC)等によっても回生電流制御により変化する。従って、要求制動力から回生制動力を減算することにより、適切な要求液圧制動力を演算することができる。
 ブレーキECU100は、演算した要求液圧制動力に基づいて、各ホイールシリンダ42の目標液圧を演算し、ホイールシリンダ圧が目標液圧と等しくなるように、フィードバック制御により増圧用リニア制御弁67Aと減圧用リニア制御弁67Bの駆動電流を制御する。つまり、前輪制御圧センサ103により検出される前輪制御圧Pfront(=ホイールシリンダ圧)が目標液圧に追従するように、増圧用リニア制御弁67Aと減圧用リニア制御弁67Bの各ソレノイドに流す電流を制御する。
 これにより、作動液が動力液圧発生装置30から増圧用リニア制御弁67Aを介して各ホイールシリンダ42に供給され、車輪に制動力が発生する。また、必要に応じてホイールシリンダ42から作動液が減圧用リニア制御弁67Bを介して排出され、車輪に発生する制動力が調整される。
 ブレーキECU100は、増圧用リニア制御弁67Aと減圧用リニア制御弁67Bの通電を制御するために、増圧用リニア制御弁67Aと減圧用リニア制御弁67Bの開弁電流特性を不揮発性メモリ110に記憶している。常閉式電磁リニア制御弁においては、上流側液圧(入口側液圧)と下流側液圧(出口側液圧)との圧力差である差圧ΔPと、開弁電流とのあいだに一定の関係が存在する。開弁電流とは、常閉式電磁リニア制御弁が閉弁している状態から、ソレノイドに流す電流を増加させていったときに弁体が開弁を開始するときの電流値を表す。図5に常閉式電磁リニア制御弁の開弁電流特性を示す。図示するように、常閉式電磁リニア制御弁の開弁電流iopenは、差圧ΔPの一次関数で表される。増圧用リニア制御弁67Aと減圧用リニア制御弁67Bとでは、開弁電流特性の数値は異なるが、差圧ΔPの増加に従って開弁電流iopenが減少するという特性は同じである。増圧用リニア制御弁67Aの場合、差圧ΔPは、上流側であるアキュムレータ流路55の液圧と下流側である後輪側主流路521の液圧との差となる。減圧用リニア制御弁67Bの場合、差圧ΔPは、上流側である後輪側主流路521の液圧と下流側であるリザーバ圧(大気圧)との差、つまり、後輪側主流路521の液圧となる。
 ブレーキECU100は、ホイールシリンダ圧が目標液圧と等しくなるように増圧用リニア制御弁67Aと減圧用リニア制御弁67Bとを制御する場合、例えば、開弁電流iopenに、目標液圧P*と前輪制御圧Pfrontとの偏差(P*-Pfront)にフィードバックゲインGを乗算した値を加算して制御電流i*を設定する(i*=iopen+G×(P*-Pfront))。この場合、ブレーキECU100は、不揮発性メモリ110に記憶されている開弁電流特性を参照して、その時点における差圧ΔP(=Pacc-Pfront)に基づいて開弁電流iopenを計算する。
 また、ブレーキECU100は、アキュムレータ圧センサ101により検出されるアキュムレータ圧Paccが予め設定した最低設定圧を下回る場合にはモータ33を駆動してポンプ31により作動液を加圧し、常にアキュムレータ圧Paccが設定圧範囲内に維持されるように制御する。尚、このモータ33の制御については、リニア制御モードだけでなく踏力液圧モードにおいても実施される。
 また、リニア制御モードにおいては、ブレーキECU100は、シミュレータカット弁72を開弁状態に維持する。このため、ドライバーのブレーキペダル10の踏み込み操作に伴って、マスタシリンダ22から送出される作動液がストロークシミュレータ70に供給される。これにより、ドライバーのペダル踏力に応じた反力をブレーキペダル10に作用させることができ、ドライバーに対して良好なペダル操作フィーリングを与えることができる。
 尚、ブレーキECU100は、制動要求を受けていない場合においては、リニア制御モードから非制動モードに切り換える。非制動モードにおいては、マスタカット弁65、レギュレータカット弁66、切替弁64は、それぞれ開弁状態に維持され、シミュレータカット弁72、増圧用リニア制御弁67A、減圧用リニア制御弁67Bは、閉弁状態に維持される。
 次に、踏力液圧モードについて説明する。踏力液圧モードにおいては、液圧制御弁装置50における電磁開閉弁および電磁リニア制御弁への通電が停止される。従って、常開式電磁弁であるマスタカット弁65、レギュレータカット弁66は、開弁状態に維持される。また、常閉式電磁弁である切替弁64、シミュレータカット弁72、および、常閉式電磁リニア制御弁である増圧用リニア制御弁67A、減圧用リニア制御弁67Bは、閉弁状態に維持される。また、ABS保持弁61は開弁状態に維持され、ABS減圧弁63は閉弁状態に維持される。
 このため、踏力液圧モードにおいては、動力液圧発生装置30と各ホイールシリンダ42との連通が遮断され、代わりに、図3に示すように、マスタシリンダ22と前輪のホイールシリンダ42FR,42FLとを連通する前輪踏力液圧回路LF、および、レギュレータ23と後輪のホイールシリンダ42RR,42RLとを連通する後輪踏力液圧回路LRが形成される。前輪踏力液圧回路LFと後輪踏力液圧回路LRとは、切替弁64が閉弁状態に維持されることから互いに独立して設けられることになる。従って、マスタシリンダ圧が前輪のホイールシリンダ42FR,42FLに伝達され、レギュレータ圧が後輪のホイールシリンダ42RR,42RLに伝達される。
 踏力液圧モードは、ブレーキ制御装置内において何らかの異常が検出されているときに実行される制動モードである。従って、通常の(異常が検出されていない時)制動時においては、リニア制御モードが選択される。
 次に、切替弁64の漏れ異常検査について説明する。本実施形態のブレーキ制御装置は、切替弁64の漏れ異常検査を定期的に行う機能を備えている。図6A、図6Bは、ブレーキECU100の実行する切替弁漏れ異常検査ルーチンを表す。また、図7は、切替弁漏れ異常検査ルーチンの実行により制御されるリニア制御弁67の下流側流路(後輪側主流路521)の液圧の推移を表す。切替弁漏れ異常検査ルーチンは、イグニッションスイッチがオン状態からオフ状態に切り替わったときから設定時間経過後に起動する。本ルーチンが起動すると、ブレーキECU100は、ステップS11において、マスタカット弁65とレギュレータカット弁66とを閉弁し、切替弁64を開弁する。
 続いて、ブレーキECU100は、ステップS12において、増圧用リニア制御弁67Aへの通電を開始する。このとき、増圧用リニア制御弁67Aに通電する電流ia*を次式(1)に示すように設定する。
 ia*=iaopen1+Ka・t ・・・(1)
ここで、iaopen1は、増圧用リニア制御弁67Aの開弁電流、Kaは、電流増加係数、tは経過時間を表す。tの初期値はゼロとする。
 増圧用リニア制御弁67Aの開弁電流特性、および、減圧用リニア制御弁67Bの開弁電流特性は、それぞれ、ブレーキECU100の不揮発性メモリ110に記憶されている。増圧用リニア制御弁67Aおよび減圧用リニア制御弁67Bは、リニア制御時に使用されるものであるため、開弁電流特性の測定は、リニア制御時と同様に切替弁64を開弁した状態、つまり、リニア制御弁67A,67Bと全てのホイールシリンダ42とが連通した状態で行われる。図8は、その一例として減圧用リニア制御弁67Bの開弁電流特性の測定原理を表す。ホイールシリンダ圧を高圧に保持した状態から、電流値が徐々に増加するように減圧用リニア制御弁67Bへ通電すると、その通電途中で減圧用リニア制御弁67Bが開弁し始める。減圧用リニア制御弁67Bの開弁とともにホイールシリンダ圧(前輪制御圧Pfront)が低下するため、ホイールシリンダ圧の低下を検出することにより、減圧用リニア制御弁67Bが開弁し始めたタイミングを検出することができる。例えば、ホイールシリンダ圧が保持圧から予め設定した設定値Dだけ低下したときの電流値を測定することにより、そのときの差圧ΔP(減圧用リニア制御弁67Bの場合には、ホイールシリンダ圧となる)に対する開弁電流iopenが得られる。従って、図9に示すように、複数の差圧ΔPに対する開弁電流iopenを測定し、測定されたデータを平面座標上にプロットすることにより開弁電流特性が得られる。
 ブレーキECU100は、ステップS12において、電流ia*を計算する場合、アキュムレータ圧センサ101により検出されるアキュムレータ圧Paccと前輪制御圧センサ103により検出される前輪制御圧Pfrontとを読み込み、増圧用リニア制御弁67Aの開弁電流特性に基づいて、アキュムレータ圧Paccと前輪制御圧Pfrontとの差圧(Pacc-Pfront)に対する開弁電流iaopen1を計算し、この開弁電流iaopen1に時間増加分(Ka×t)を加算する。そして、算出された電流ia*にて増圧用リニア制御弁67Aに通電する。
 このステップS12の処理は、後述するように繰り返されるが、この電流ia*の計算式に用いる開弁電流iaopen1については、通電開始時における開弁電流、つまり、最初にステップS12が実行されたときの差圧(Pacc-Pfront)にて決まる開弁電流であり、その後の差圧に応じて変更されるものではない。従って、電流ia*は、時間の経過とともに一次関数的に増加する。
 続いて、ブレーキECU100は、ステップS13において、切替弁フラグFが「0」であるか否かを判断する。この切替弁フラグFは、切替弁64が開弁しているか否かを表す識別データであって、「0」により切替弁64が開弁していることを表し、「1」により切替弁64が閉弁していることを表す。本ルーチンの起動時においては、切替弁フラグFは「0」に設定されている。
 ブレーキECU100は、切替弁フラグFが「0」であることを確認すると、ステップS14において、前輪制御圧センサ103により検出される前輪制御圧Pfrontを読み込み、前輪制御圧Pfrontが設定圧P1以上であるか否かを判断する。増圧用リニア制御弁67Aの通電開始時においては、まだ、前輪制御圧Pfrontが設定圧P1に達していないため、ブレーキECU100は、その処理をステップS12に戻す。従って、ステップS12~S14の処理が繰り返される。これにより、増圧用リニア制御弁67Aの電流ia*が時間の経過とともに徐々に増加し、それに伴って前輪制御圧Pfrontが増加していく。図7に示した時刻t1から時刻t2までの液圧の変化は、このステップS12~S14の処理によるものである。
 こうして前輪制御圧Pfrontが増加して設定圧P1以上になると(図7に示す時刻t2)、ブレーキECU100は、ステップS15において、切替弁64への通電を停止して切替弁64を閉弁し、ステップS16において、切替弁フラグFを「1」に設定する。
 切替弁64を閉弁した後においては、後輪側主流路521と前輪側主流路522とが切り離される。従って、前輪側主流路522は、増圧用リニア制御弁67Aと連通しない状態となる。切替弁64の漏れ異常検査においては、後述するように、切替弁64の上流側(後輪側主流路521)の液圧を下流側(前輪側主流路522)液圧に比べて設定差圧ΔPcheckだけ高くなる状態に保持し、その状態で前輪制御圧センサ103により検出される前輪制御圧Pfrontの変動の有無により異常の有無を判定する。そのために、ブレーキECU100は、切替弁64を閉弁した後においても、増圧用リニア制御弁67Aを開弁状態に維持して後輪側主流路521の液圧を設定差圧ΔPcheckだけ増加させる。この場合、前輪制御圧センサ103では後輪側主流路521の液圧を検出することができない。そこで、ブレーキECU100は、後輪側主流路521の液圧を推定して後輪側主流路521の液圧を制御する。
 ブレーキECU100は、ステップS17において、後輪側主流路521の液圧を設定差圧ΔPcheckだけ増加させるために必要な設定電流istopを設定する。増圧用リニア制御弁67Aにおいては、ソレノイドに電流を流した場合、その上流側と下流側との圧力差が、開弁電流特性で決まる差圧より大きい間は開弁状態を保つことができる。従って、増圧用リニア制御弁67Aの差圧は、ソレノイドに流す電流値に応じて決まってくる。一方、切替弁64を閉弁した後に、後輪側主流路521の液圧を設定差圧ΔPcheckだけ増加させるためには、増圧用リニア制御弁67Aの差圧ΔPaを次式(2)のように設定すればよい。
 ΔPa=Pacc-(Pfront1+ΔPcheck) ・・・(2)
 ここでPfront1は、ステップS15で切替弁64を閉弁するときの前輪制御圧センサ103により検出された前輪制御圧Pfront(=P1)を表している。以下、Pfront1を切替時圧Pfront1と呼ぶ。尚、切替時圧Pfront1は、ステップS14において「Yes」と判定されたときに記憶される。
 従って、増圧用リニア制御弁67Aの開弁電流特性を参照して、この差圧ΔPaが得られる開弁電流を流せば、切替弁64の上流側の液圧を下流側液圧に比べて設定差圧ΔPcheckだけ高くなる状態に保持できる。後述するように、ブレーキECU100に記憶されている開弁電流特性は、切替弁64を開弁した状態での特性であるため、切替弁64を閉弁している場合での特性とは相違する。そのため、増圧用リニア制御弁67Aの差圧ΔPaの推定には誤差が生じるが、このステップS17においては、ブレーキECU100に記憶されている増圧用リニア制御弁67Aの開弁電流特性を参照して差圧ΔPaに対応する開弁電流を求め、その求めた開弁電流を設定電流istopとして設定する。尚、差圧ΔPaの推定誤差による影響については、後述する減圧用リニア制御弁67Bの開弁時の電流値の補正により対処される。
 続いて、ブレーキECU100は、ステップS18において、電流ia*が設定電流istopに到達したか否かを判断し、電流ia*が設定電流istopに到達していない場合は、その処理をステップS12に戻す。これにより、増圧用リニア制御弁67Aの電流ia*が増加される。この場合、切替弁フラグFが「1」に設定されているため、ステップS13の判断は「No」となり、ステップS14~S16の処理が飛ばされる。
 このようにして、ブレーキECU100は、切替弁64を閉弁した後は、電流ia*が設定電流istopに到達するまで増圧用リニア制御弁67Aの電流ia*を時間経過とともに増加させる。電流ia*が設定電流istopに到達すると(S18:Yes)、ブレーキECU100は、その処理をステップS19に進めて、増圧用リニア制御弁67Aの通電を停止する(図7に示す時刻t3)。
 続いて、ブレーキECU100は、ステップS20において、後輪側主流路521の推定圧Prearを(Pfront1+ΔPcheck)の値に設定する。この推定圧Prearは、増圧用リニア制御弁67Aの開弁電流特性に基づいて設定されたものであるため、後述するように実際の液圧よりも低い値となっている。
 続いて、ブレーキECU100は、ステップS21において、前輪制御圧センサ103により検出される前輪制御圧Pfrontを読み込み、前輪制御圧Pfrontの変化量ΔPfrontが判定基準値X以上であるか否かを判断する。この処理は、所定時間のあいだ繰り返される。ブレーキECU100は、最初にステップS21の判断処理を行うときに読み込んだ前輪制御圧Pfrontを記憶しておき、その記憶した前輪制御圧Pfrontから変化した液圧量である変化量ΔPfrontと判定基準値Xとを比較する。ブレーキECU100は、ステップS22において、所定時間経過したか否かを判断し、所定時間経過しないうちに変化量ΔPfrontが判定基準値X以上になった場合には、ステップS23において、切替弁64に漏れ異常が生じていると判定し、切替弁64の漏れ異常を表すエラーコードを不揮発性メモリ110に記憶する。一方、所定時間経過しても変化量ΔPfrontが判定基準値X未満であれば、ブレーキECU100は、ステップS24において、切替弁64に漏れ異常が発生していないと判定する。
 ブレーキECU100は、切替弁64の漏れ異常の判定が完了すると、続くステップS25において、減圧用リニア制御弁67Bの通電を開始する(図7に示す時刻t4)。このとき、減圧用リニア制御弁67Bに通電する電流ib*を次式(3)に示すように設定する。
 ib*=ibopen1+Kb・t-A ・・・(3)
 ここで、ibopen1は、ステップS24の処理を開始する時点における、減圧用リニア制御弁67Bの上流側と下流側の差圧に対する開弁電流である。この場合、減圧用リニア制御弁67Bの上流側の液圧を推定圧Prearとし、下流側の液圧をリザーバ圧(大気圧)とするため、開弁電流ibopen1は、減圧用リニア制御弁67Bの推定圧Prearに対する開弁電流となる。開弁電流ibopen1は、予め記憶されている減圧用リニア制御弁67Bの開弁電流特性から導かれる。また、Kbは、電流増加係数、tは経過時間を表す。tの初期値はゼロとする(ステップS25の計算を最初に実行する時点をゼロとする)。また、Aは、減圧用リニア制御弁67Bの通電開始時における電流値を、減圧用リニア制御弁67Bの実際の開弁電流よりも小さくするように補正するための電流調整値である。従って、電流調整値Aは、正の値に設定される。
 ここで電流調整値Aを設けた理由について説明する。切替弁64が開弁している状態では、リニア制御弁67と4輪のホイールシリンダ42FR,42FL,42RR,42RLとの間に作動液の流れる流路が形成される。この流路が、リニア制御弁67の制御対象流路となる。一方、切替弁64が閉弁している状態では、その流路の一部である、切替弁64と前輪のホイールシリンダ42RR,42RLとの間の流路が切り離される。このため、切替弁64の開閉状態に応じて、リニア制御弁67の制御対象流路における液圧剛性が変化する。液圧剛性とは、流路に供給した液量(あるいは、流路から排出した液量)に対して液圧が変動する程度を表す。切替弁64が閉弁している状態においては、開弁している状態に比べて、リニア制御弁67の制御対象流路の容積が少なくなるため液圧剛性が高くなる。以下、切替弁64が開弁しているときの制御対象流路を4輪対象流路と呼び、切替弁64が閉弁しているときの制御対象流路を2輪対象流路と呼ぶ。また、4輪対象流路の液圧剛性を4輪液圧剛性と呼び、2輪対象流路の液圧剛性を2輪液圧剛性と呼ぶ。
 リニア制御弁67の開弁電流特性は、液圧剛性に応じて異なる。図10は、減圧用リニア制御弁67Bについての液圧剛性と開弁電流特性との関係を表している。実線は、液圧剛性が4輪液圧剛性となる場合の開弁電流特性(4輪開弁電流特性と呼ぶ)を表し、破線は、液圧剛性が2輪液圧剛性となる場合の開弁電流特性(2輪開弁電流特性と呼ぶ)を表す。図示するように、開弁電流は、4輪開弁電流特性に比べて2輪開弁電流特性のほうが小さくなることが一般的である。
 切替弁64の開閉によって開弁電流特性が変化した場合、その液圧剛性に応じた開弁電流特性を使って、増圧用リニア制御弁67Aの電流ia*および減圧用リニア制御弁67Bの電流ib*を計算すべきである。しかし、本実施形態のブレーキ制御装置は、前輪側主流路522に設けた前輪制御圧センサ103を、4輪のホイールシリンダ圧を検出するための共通のセンサとして使用しているため、2輪対象流路の液圧を検出することができない。従って、2輪開弁電流特性を測定して記憶しておくことができない。
 ブレーキECU100は、切替弁64を閉弁した後に、ステップS20で後輪側主流路521の推定圧Prearを設定しているが、この推定圧Prearは、4輪液圧剛性による開弁電流特性に基づいて計算されたものである。このため、切替弁64を閉弁した後に増圧用リニア制御弁67Aの電流ia*を増加していった場合、切替弁64が開弁されている場合(液圧剛性が低い場合)に比べて、電流の増加に対する液圧の増加速度が速くなり、実際の液圧は、推定圧Prearよりも高くなる。換言すれば、推定圧Prearは、実際の液圧よりも低くなってしまう。
 上記式(3)の減圧用リニア制御弁67Bの開弁電流ibopen1は、推定圧Prearに応じて設定される。このため、推定圧Prearが実際の液圧よりも低くなってしまうと、開弁電流ibopen1は、適正値よりも高い電流値に設定されてしまう。
 また、減圧用リニア制御弁67Bの開弁電流は、図10に示すように、4輪開弁電流特性に比べて2輪開弁電流特性のほうが小さくなることが一般的である。
 従って、減圧用リニア制御弁67Bの開弁電流ibopen1には、図10に示すように、開弁電流特性の変化に起因する誤差E1と、推定圧Prearと実際の液圧との差である推定誤差に起因する誤差E2とが含まれる。
 この誤差E(=E1+E2)の含まれた開弁電流ibopen1を使って減圧用リニア制御弁67Bの通電開始時の電流値を設定してしまうと、電流値が実際の開弁電流よりも過大になってしまい、図7に示す時刻t4において自励振動が発生してしまう。そこで、本実施形態では、この誤差Eに相当する電流過剰分を電流調整値Aとして設定して、上記式(3)で誤差Eを除去するようにしている。
 電流調整値Aは、予め実験等により求めた値が設定される。例えば、ステップS25にて設定される計算上の減圧用リニア制御弁67Bの開弁電流ibopen1と、それと同じ条件での実際の減圧用リニア制御弁67Bの開弁電流との差を実験により求める。この差が誤差E(E1+E2)に相当する。こうした誤差Eには、個々の車両、個々のリニア制御弁67、作動液温度などの環境等に応じてバラツキが生じる。そこで、電流調整値Aは、誤差Eのバラツキの範囲で最大となる誤差Eに基づいて設定される。従って、ステップS25において、最初に計算される減圧用リニア制御弁の電流ib*は、切替弁64が閉弁されているときの実際の開弁電流よりも小さな値に設定される。尚、開弁電流特性の変化に起因する誤差E1と、推定圧Prearの推定誤差に起因する誤差E2とを分けて電流調整値を計算し、それらを合算して電流調整値Aを求めるようにしてもよい。
 ブレーキECU100は、ステップS25において、減圧用リニア制御弁67Bに通電する電流ib*を計算すると、算出された電流ib*にて減圧用リニア制御弁67Bに通電する。続くステップS26において、切替弁フラグFが「1」であるか否かを判断する。この時点においては、切替弁64は、閉弁されており切替弁フラグは「1」に設定されているため、ブレーキECU100は、その処理をステップS27に進める。ブレーキECU100は、ステップS27において、電流ib*が設定電流ib0以下になったか否かを判断する。この設定電流ib0は、切替弁64の上流側液圧と下流側液圧とが等しくなると想定されるときの電流値であり予め設定されている。減圧用リニア制御弁67Bの通電が開始された当初においては、まだ、電流ib*が設定電流ib0以下になっていないため、ブレーキECU100は、その処理をステップS25に戻す。従って、ステップS25~S27の処理が繰り返される。
 こうして電流ib*が設定電流ib0以下になると(図7に示す時刻t5)、ブレーキECU100は、ステップS28おいて、切替弁64への通電を停止して切替弁64を開弁し、ステップS29において、切替弁フラグFを「0」に設定する。続いて、ブレーキECU100は、ステップS30において、前輪制御圧センサ103により検出される前輪制御圧Pfrontを読み込み、前輪制御圧Pfrontが設定圧P0以下にまで低下したか否かを判断する。この設定圧P0は、ブレーキディスク41にブレーキパッドが押しつけられない低い液圧であり、例えば、大気圧に設定されている。前輪制御圧Pfrontが設定圧P0以下に達しないあいだは、ブレーキECU100は、その処理をステップS25に戻す。この場合、ステップS25,S26,S30の処理が繰り返されることになる。これにより、減圧用リニア制御弁67Bの電流ib*が徐々に低下して、前輪制御圧Pfrontが設定圧P0以下になると(図7に示す時刻t6)、ブレーキECU100は、ステップS31において、減圧用リニア制御弁67Bの通電を停止して、切替弁漏れ異常検査ルーチンを終了する。
 以上説明した本実施形態のブレーキ制御装置によれば、切替弁64の開閉状態に応じて、切替弁64が閉弁している状態でリニア制御弁67を開弁する(開弁を開始する)場合には、4輪開弁電流特性に基づいて設定される電流値を、電流調整値Aを使って低減するように補正する。つまり、切替弁64の開閉に応じてリニア制御弁67の下流側流路の液圧剛性が変化してリニア制御弁67の開弁電流が変化することを補償するように、リニア制御弁67に通電する電流値を補正する。従って、図11に示すように、リニア制御弁67に流す電流を、リニア制御弁67の実際の開弁電流よりも小さい値から徐々に増加させることができる。一方、電流値補正をしない場合は、図11に破線にて示すように、リニア制御弁67に流す電流が、実際の開弁電流よりも大きな値から増加することになる。従って、本実施形態によれば、電流値補正をしない場合(破線にて示す推移)に比べて、リニア制御弁67をゆっくりと開弁させることができる。図12は、リニア制御弁67の開弁時における下流側流路(後輪側主流路521)の液圧の変動状態を表す。電流値補正をしない場合には、液圧が脈動するが、本実施形態の場合には、液圧の脈動がほとんどなくなる。この液圧の脈動は、自励振動を表している。従って、本実施形態によれば、切替弁64を閉弁した状態でリニア制御弁67を開弁するとき(図7に示す時刻t4)に発生する自励振動(異音)を抑制することができる。
 また、本実施形態によれば、開弁電流の誤差Eのバラツキ(開弁電流特性の変化に起因する誤差E1のバラツキと、液圧推定に起因する誤差E2のバラツキ)の範囲で最大となる誤差Eに基づいて電流調整値Aが設定されるため、リニア制御弁67に流す電流を、リニア制御弁67の実際の開弁電流よりも確実に小さい値から増加させることができる。これにより、確実に、自励振動の発生を抑制することができる。
 <変形例1>
 上述した実施形態においては、4輪開弁電流特性から設定される電流値(ibopen1+Kb×t)を電流調整値Aで補正することによって、減圧用リニア制御弁67Bの電流ib*を算出しているが、電流調整値Aを使わずに、推定圧Prearを変更することによって実質的に電流値を補正するようにしてもよい。例えば、図10に示す例を使えば、開弁電流の誤差がEであったとすると、この開弁電流誤差Eを、減圧用リニア制御弁67Bの推定差圧ΔP(この場合は、後輪側主流路521の推定圧)の誤差Peに変換すれば、この誤差Peを推定圧調整値Peとして使用することができる。そこで、この変形例1においては、上記電流調整値Aと同様に、予め実験等により求めておいた推定圧調整値Peを使って推定圧Prearを変更する。この場合、ステップS20で設定した推定圧Prearに推定圧調整値Peを加算した値(Prear+Pe)を、4輪開弁電流特性に対応した推定圧Prear4とすればよい。これにより、推定圧Prear4と4輪開弁電流特性とを使って、適切な開弁電流ibopen1を計算することができる。また、推定圧調整値Peは、実施形態と同様に、開弁電流の誤差Eのバラツキ(推定差圧ΔPの誤差Peのバラツキ)の範囲で最大となる値に設定される。
 従って、この変形例1では、ブレーキECU100は、ステップS25の処理に代えて、図13に示すように、ステップS251,S252の処理を実行する。ブレーキECU100は、ステップS251において、推定圧Prearを4輪開弁電流特性に対応した推定圧Prear4(=Prear+Pe)に変更し、ステップS252において、推定圧Prear4と4輪開弁電流特性を使った電流値の計算処理(ib*=ibopen1+Kb×t)を実行する。この変形例1によれば、上記実施形態と同様の作用効果が得られる。
 <変形例2>
 上述した実施形態においては、切替弁64を閉弁している状態で、増圧用リニア制御弁67Aの下流側の液圧を4輪開弁電流特性を使って推定しているが、他の手法を用いて推定してもよい。例えば、ステップS18で使用する設定電流istopを4輪開弁電流特性から求められる電流値よりも小さい側に補正することにより、推定圧Prearの誤差を少なくするようにしてもよい。
 <変形例3>
 上述した実施形態においては、リニア制御弁67として常閉式電磁リニア制御弁を採用しているが、それに代えて、ソレノイドの非通電時に開弁状態を維持する常開式電磁リニア制御弁を採用することもできる。常開式電磁リニア制御弁は、例えば、スプリングにより弁体が開弁方向に付勢される力と、上流側(入口側)と下流側(出口側)の差圧ΔPにより弁体が開弁方向に付勢される力との和により開弁状態を維持し、ソレノイドへの通電により発生する電磁力により弁体を閉弁方向に付勢する。従って、常開式電磁リニア制御弁は、差圧ΔPが大きいほど開弁電流が大きくなる開弁電流特性を有する。リニア制御弁67として常開式電磁リニア制御弁を用いた場合には、式(3)における電流調整値Aを負の値にすればよい。つまり、開弁電流特性に基づいて設定される電流値よりも大きな電流値になるように補正すればよい。
 <変形例4>
 上述した実施形態においては、主流路52を前輪側主流路522と後輪側主流路521とに分離する位置に切替弁64を設けているが、切替弁64を設ける位置は任意に設定することができる。例えば、主流路52を、一方の前輪(あるいは後輪)のホイールシリンダに連通する流路と、残りの3輪のホイールシリンダに連通する流路とに分離する位置に切替弁を設けてもよい。また、一方の前輪のホイールシリンダおよび一方の後輪のホイールシリンダに連通する流路と、他方の前輪のホイールシリンダおよび他方の後輪のホイールシリンダに連通する流路とに分離する位置に切替弁を設けてもよい。また、本実施形態においては、4輪の車両に適用するブレーキ制御装置について説明しているが、3輪など、4輪以外の車両に適用することもできる。例えば、3輪車両の場合には、主流路を、前輪のホイールシリンダに連通する流路と、後輪のホイールシリンダに連通する流路とに分離する位置に切替弁を設けるとよい。
 以上、本実施形態および変形例のブレーキ制御装置について説明したが、本発明は上記実施形態および変形例に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。例えば、本実施形態においては、切替弁64が閉弁している状態で、減圧用リニア制御弁67Bを開弁する場合の電流値補正について説明したが、増圧用リニア制御弁67Aを開弁する場合についても同様に、開弁電流が変化することを補償するように電流値補正をすることができる。

Claims (7)

  1.  複数の車輪のそれぞれに設けられ作動液の液圧を受けて車輪に制動力を与えるホイールシリンダと、
     ブレーキ操作が行われていなくても高圧の液圧を発生させ得る動力液圧源と、
     前記動力液圧源から各ホイールシリンダへ作動液を供給する共通の流路に設けられ、自身の上流側と下流側との差圧が通電電流に応じて調整されて、各ホイールシリンダの液圧を調整するリニア制御弁と、
     前記リニア制御弁の下流側で、かつ、一部のホイールシリンダの上流側に設けられ、前記リニア制御弁から前記一部のホイールシリンダへ作動液を供給する流路を開いた状態と閉じた状態とに切り替える切替弁と、
     前記リニア制御弁に供給される液圧を検出する第1液圧検出手段と、
     前記切替弁の下流側の流路の液圧を検出する第2液圧検出手段と、
     前記切替弁が開弁している状態における、前記リニア制御弁の上流側と下流側との差圧と、前記リニア制御弁が閉弁状態から開弁するときの電流値を表す開弁電流との関係を表す開弁電流特性を記憶した開弁電流特性記憶手段と、
     前記開弁電流特性に基づいて設定した電流値で前記リニア制御弁に通電する通電制御手段と
     を備えた車両のブレーキ制御装置において、
     前記切替弁が閉弁している状態で、前記リニア制御弁と前記切替弁との間の流路の液圧を推定する液圧推定手段と、
     前記切替弁の開閉状態に応じて、前記切替弁が閉弁している状態で前記リニア制御弁を開弁する場合には、前記リニア制御弁に通電する電流値を前記リニア制御弁が開弁しにくい側に補正する電流補正手段を備えたことを特徴とする車両のブレーキ制御装置。
  2.  前記電流補正手段は、前記切替弁が閉弁している状態で前記リニア制御弁を開弁する場合には、前記切替弁の開閉に応じて前記リニア制御弁の下流側流路の液圧剛性が変化して前記リニア制御弁の開弁電流が変化することを補償するように、前記リニア制御弁に通電する電流値を前記リニア制御弁が開弁しにくい側に補正することを特徴とする請求項1記載の車両のブレーキ制御装置。
  3.  前記電流補正手段は、前記液圧推定手段により推定される液圧を変更することにより、前記リニア制御弁に通電する電流値を前記リニア制御弁が開弁しにくい側に補正することを特徴とする請求項1または2記載の車両のブレーキ制御装置。
  4.  前記電流補正手段は、前記切替弁が閉弁している状態で前記リニア制御弁を開弁する場合には、前記切替弁が閉弁されている状態で前記リニア制御弁が開弁しない電流値を初期電流値として、この初期電流値から前記リニア制御弁が開弁する方向に電流値が徐々に変化するように前記リニア制御弁に通電する電流値を設定することを特徴とする請求項1ないし請求項3の何れか一項記載の車両のブレーキ制御装置。
  5.  前記電流値補正手段は、前記液圧推定手段により推定される液圧の誤差のバラツキと前記開弁電流特性の変化のバラツキを含めて前記リニア制御弁が開弁しない電流値を前記初期電流値に設定することを特徴とする請求項4記載の車両のブレーキ制御装置。
  6.  前記リニア制御弁は、前記ホイールシリンダの液圧を増加させる増圧用リニア制御弁と、前記ホイールシリンダの液圧を減少させる減圧用リニア制御弁とを備えており、
     前記切替弁を閉弁した状態で前記増圧用リニア制御弁を開弁して前記切替弁の上流側の液圧を増加させ、前記切替弁の上流側の液圧が前記切替弁の下流側の液圧に対して検査用差圧だけ高い推定液圧に達したと判断したときに前記増圧用リニア制御弁を閉弁することにより、前記切替弁の上流側と下流側との間に検査用差圧を付与する差圧付与手段と、
     前記切替弁の上流側と下流側との間に前記検査用差圧が付与された状態で、前記第2液圧検出手段により検出される液圧の変動の有無に基づいて前記切替弁の異常を判定する切替弁異常判定手段と、
     前記切替弁の異常判定の後に、前記減圧用リニア制御弁を開弁して前記切替弁の上流側の液圧を低下させる上流側減圧手段とを備え、
     前記電流補正手段は、前記上流側減圧手段が前記減圧用リニア制御弁を開弁する場合には、前記減圧用リニア制御弁に通電する電流値を前記減圧用リニア制御弁が開弁しにくい側に補正することを特徴とする請求項1ないし請求項5の何れか一項記載の車両のブレーキ制御装置
  7.  前記減圧用リニア制御弁は、非通電状態にある場合に閉弁する常閉型リニア制御弁であって、
     前記電流補正手段は、前記切替弁が閉弁されている状態で前記減圧用リニア制御弁が開弁を開始する開弁電流よりも低い電流値を初期電流値として、この初期電流値から電流値が徐々に増加する前記減圧用リニア制御弁の電流値を設定することを特徴とする請求項6記載の車両のブレーキ制御装置。
PCT/JP2012/074161 2012-09-21 2012-09-21 車両のブレーキ制御装置 WO2014045382A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074161 WO2014045382A1 (ja) 2012-09-21 2012-09-21 車両のブレーキ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074161 WO2014045382A1 (ja) 2012-09-21 2012-09-21 車両のブレーキ制御装置

Publications (1)

Publication Number Publication Date
WO2014045382A1 true WO2014045382A1 (ja) 2014-03-27

Family

ID=50340736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074161 WO2014045382A1 (ja) 2012-09-21 2012-09-21 車両のブレーキ制御装置

Country Status (1)

Country Link
WO (1) WO2014045382A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016012331A1 (de) * 2014-07-21 2016-01-28 Continental Teves Ag & Co. Ohg Anordnung für eine hydraulische kraftfahrzeug-bremsanlage sowie bremsanlage mit einer solchen anordnung
WO2021226887A1 (zh) * 2020-05-13 2021-11-18 华为技术有限公司 液压调节单元、制动系统及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355516A (ja) * 1991-05-31 1992-12-09 Nec Corp A/d変換器内蔵半導体集積回路
JP2005035466A (ja) * 2003-07-18 2005-02-10 Toyota Motor Corp 液圧制御装置および液圧制御方法
JP2007131247A (ja) * 2005-11-11 2007-05-31 Toyota Motor Corp ブレーキ制御装置
JP2009255847A (ja) * 2008-04-18 2009-11-05 Toyota Motor Corp ブレーキ制御装置及びブレーキ制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355516A (ja) * 1991-05-31 1992-12-09 Nec Corp A/d変換器内蔵半導体集積回路
JP2005035466A (ja) * 2003-07-18 2005-02-10 Toyota Motor Corp 液圧制御装置および液圧制御方法
JP2007131247A (ja) * 2005-11-11 2007-05-31 Toyota Motor Corp ブレーキ制御装置
JP2009255847A (ja) * 2008-04-18 2009-11-05 Toyota Motor Corp ブレーキ制御装置及びブレーキ制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016012331A1 (de) * 2014-07-21 2016-01-28 Continental Teves Ag & Co. Ohg Anordnung für eine hydraulische kraftfahrzeug-bremsanlage sowie bremsanlage mit einer solchen anordnung
WO2021226887A1 (zh) * 2020-05-13 2021-11-18 华为技术有限公司 液压调节单元、制动系统及控制方法

Similar Documents

Publication Publication Date Title
JP4497230B2 (ja) 制動制御装置および制動制御方法
JP4506793B2 (ja) ブレーキ制御装置
US20110006593A1 (en) Brake control apparatus
JP4470867B2 (ja) ブレーキ制御装置
JP5924416B2 (ja) 車両のブレーキ制御装置
US9352730B2 (en) Vehicle brake control device
US20120158266A1 (en) Brake control device
JP5843021B2 (ja) 車両のブレーキ制御装置
WO2013150631A1 (ja) 車両のブレーキ装置
JP5724707B2 (ja) ブレーキ制御装置
JP4946985B2 (ja) ブレーキ制御装置
JP2013111998A (ja) 車両のブレーキ制御装置
JP4692440B2 (ja) ブレーキ制御装置
WO2014045382A1 (ja) 車両のブレーキ制御装置
JP2008087617A (ja) ブレーキ制御装置
JP4877207B2 (ja) ブレーキ装置
JP5251436B2 (ja) ブレーキ制御装置
JP5761509B2 (ja) 車両のブレーキ制御装置
JP2009107437A (ja) ブレーキ制御装置およびブレーキ制御方法
KR20150143008A (ko) 차량의 능동 유압 부스터 시스템 및 그 제어방법
JP2007230420A (ja) ブレーキ制御装置
JP5273278B2 (ja) ハイドロブレーキ制御装置
JP5062070B2 (ja) 制動制御装置および制動制御方法
JP2010036626A (ja) センサ異常判定装置およびセンサ異常判定方法
JP4678023B2 (ja) ブレーキ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP