WO2014044485A2 - Verfahren zur diagnose von streckenkomponenten eines streckennetzes des schienenverkehrs - Google Patents

Verfahren zur diagnose von streckenkomponenten eines streckennetzes des schienenverkehrs Download PDF

Info

Publication number
WO2014044485A2
WO2014044485A2 PCT/EP2013/067508 EP2013067508W WO2014044485A2 WO 2014044485 A2 WO2014044485 A2 WO 2014044485A2 EP 2013067508 W EP2013067508 W EP 2013067508W WO 2014044485 A2 WO2014044485 A2 WO 2014044485A2
Authority
WO
WIPO (PCT)
Prior art keywords
measured values
control center
route component
route
measuring device
Prior art date
Application number
PCT/EP2013/067508
Other languages
English (en)
French (fr)
Other versions
WO2014044485A3 (de
Inventor
Erhard Fischer
Thomas Müller
Frank Popp
Dirk Punstein
Christian Schulze
Ekkehard TÖNSING
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47172268&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014044485(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to AU2013320505A priority Critical patent/AU2013320505B2/en
Priority to EP13758769.7A priority patent/EP2877384B1/de
Priority to ES13758769.7T priority patent/ES2691976T3/es
Priority to BR112015005836-1A priority patent/BR112015005836B1/pt
Priority to DK13758769.7T priority patent/DK2877384T3/en
Priority to MX2015003452A priority patent/MX346448B/es
Priority to PL13758769T priority patent/PL2877384T3/pl
Priority to CN201380048646.0A priority patent/CN104661891B/zh
Priority to RU2015114325A priority patent/RU2644055C2/ru
Priority to CA2885121A priority patent/CA2885121C/en
Priority to US14/429,213 priority patent/US10131369B2/en
Priority to IN1708DEN2015 priority patent/IN2015DN01708A/en
Priority to MA37918A priority patent/MA20150426A1/fr
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2014044485A2 publication Critical patent/WO2014044485A2/de
Publication of WO2014044485A3 publication Critical patent/WO2014044485A3/de
Priority to TNP2015000081A priority patent/TN2015000081A1/fr
Priority to ZA2015/01702A priority patent/ZA201501702B/en
Priority to SA515360150A priority patent/SA515360150B1/ar

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • B61L27/57Trackside diagnosis or maintenance, e.g. software upgrades for vehicles or vehicle trains, e.g. trackside supervision of train conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/0081On-board diagnosis or maintenance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/03Endless-tracks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles

Definitions

  • the invention relates to a method and a system for diagnosing an operating state of one or more route components of a railway network, each comprising at least one measuring device for detecting
  • Measured values include at least one measured variable, wherein the operating state is characterized by at least one measured variable.
  • track components of a rail network of railways which have measuring devices to detect measured values of a measured variable.
  • a current measuring device is arranged on a switch in order to record measured values of a motor current for setting the switch. Subsequently, the measured values are evaluated by, for example, each being compared with a predetermined threshold value. If a measured value of the route component exceeds the threshold value, a malfunction of the route component is concluded.
  • An inventive method for diagnosing the operating state of one or more route components of a rail network of rail transport which track components each at least a first measuring device for detecting of first measured values of at least one measured variable, which serve to describe the operating state of the respective route component, comprises the following method steps:
  • Rail vehicles in particular suitable for passenger traffic, comprises at least a first measuring device, sometimes also referred to as a sensor. This is arranged in particular in or on the route component.
  • a first measuring device sometimes also referred to as a sensor.
  • This is arranged in particular in or on the route component.
  • measuring devices are listed here: current / voltage detection, temperature sensor and / or position sensors.
  • the first measured values, acquired by the first measuring device of the at least one track component, are dependent on an operating state or a change in operating state of the at least one track component and therefore serve to describe the operating state.
  • the operating state of the at least one route component completely describes the properties of the route component at a given point in time, provided that they are not already fixed as such with the invariable properties of the route component. For a complete description of the properties of the stratified At the given time, additional information may be required in addition to the first measurement values for the measured variable.
  • the further, second measured values are detected by the second measuring device independently of the operating state or operating state changes of the at least one route component.
  • the second measuring device is arranged, for example, as part of a measuring point free of the at least one track component, in particular spaced from it.
  • the second measuring device does not necessarily have to be stationary, for example it is arranged on a vehicle, in particular a rail vehicle.
  • the second measuring device (s) are track-side immovable measuring devices.
  • the second measurements may be collected from a central location, such as the weather service, and refer to the immediate or indirect environment of the route component.
  • second measured values are measured values for the at least one measured variable, to which the first measured values of the route component are also detected, and / or the further, second measured values are measured values for further measured variables.
  • the second measured values are independent of the values of the first measured values.
  • a temperature sensor as the first measuring device of the route component detects measured values of the measured variable temperature of the route component.
  • a temperature sensor that is free and independent of the track component, positioned near the track component for example, senses the temperature of the air around it.
  • the temperature of the path component increases, depending on the increasing temperature of the ambient air.
  • an increasing temperature of the route component only insignificantly influences the temperature of the ambient air and is therefore negligible - the temperature
  • the air of the environment in this illustrative example is considered independent of the temperature of the route component.
  • the second measured values in addition to the first measured values, can also be transmitted to the control center and included in the evaluation of the first measured values.
  • the second measured values can also be evaluated separately from the first measured values in a previous method step and only a result of this evaluation is taken into account in the evaluation of the first measured values by means of the predetermined algorithm.
  • a plurality of second measured values for measured variables for describing the weather, such as temperature, pressure or moisture are recorded. From this, a weather forecast is derived.
  • the evaluation of the second measured values can therefore lead to predictions for temperature values, which are taken into account in the evaluation of the first measured values.
  • An evaluation of the first measured values in the control center by means of the predetermined algorithm thus takes place in indirect or direct dependence on the second measured values.
  • both the first and the second measured values are evaluated by means of the predetermined algorithm. In any case, this is at least a result of the evaluation depending on the first, as well as the second measured values.
  • the predetermined algorithm may be suitable for trend analysis of a measurement series of at least first measured values of a predetermined measurement variable. If the temperature changes over time, it can be predicted when a given limit temperature is likely to be exceeded.
  • Other example algorithms are included in the following open, non-exhaustive list: frequency analysis, current history, voltage history, delay.
  • the transmission of the first measured values from the route component to the control center takes place, for example, wirelessly. A wireless transmission takes place at least in sections, ie the transmission does not have to be wireless over the entire path from the route component to the control center.
  • a wireless transmission takes place, for example, via a dial-up connection, such as via a GSM, UMTS or LTE network, between the route component and a transmitting and receiving system of this network. Between the receiving plant and the control center, the further transmission of the measurement data can also be made by wire.
  • the first measured values are transmitted in a predetermined cycle from the route component to the control center. In this case, the transmission of the first measured values from the route component to the control center takes place, in particular, free from predetermined operating states or operating state changes of the route component.
  • the route component has a transmitter and the taxiing center has a receiver. Instead of the transmission can also be spoken of a transfer. Transmitter and receiver are designed complementary to each other.
  • the control center is track and thus land side and in particular stationary and located away from the track component.
  • the second measured values can also be transmitted from the at least one further, second measuring device to the control center, in particular cyclically. If the first and second measured values are sent cyclically, the cycle can be identical. On the other hand, if the second measured values are recorded by a second measuring device at the control center, a transmission seems to be obsolete. Of course, a wireless transmission of the second measured values to the control center is also possible.
  • the evaluation of the measured values takes place by means of a predetermined algorithm.
  • the control center in particular has a controller which is suitable for Evaluation of the first and possibly the second measured values by means of the predetermined algorithm.
  • the algorithm is advantageous as software. This has the advantage of a simple and fast adaptation of the algorithm.
  • the algorithm and measured values can be kept in a memory as well as intermediate results of the evaluation.
  • the evaluation leads to at least one result. This at least one result is provided by the control center. In addition, it is transmitted to a rail vehicle and output there in a predefined form, for example visualized, and / or the result of the evaluation is output on the line, in particular in the control center, in a predefined form, for example visualized. Alternatively, an issue with the customer is possible.
  • the result of the evaluation can also be made available on the Internet, to access it from different places.
  • a visualization is done, for example, as a display on a screen.
  • the acoustic output, tactile feedback or SMS are also considered as additional output forms.
  • the result of an evaluation of the first and second measured values by means of the predetermined algorithm can take on several corresponding forms. It may be a simple stop signal, which is issued as an audible alarm to the driver of the rail vehicle. On the other hand, it can be a diagnosis or failure prognosis for the at least one route component which is output to a maintenance crew for the preparation of a service plan for the route component. As another example, here is a life expectancy forecast.
  • the method is suitable for predictive maitenance, and thus suitable for making predictions about the probability of a technical failure of a route component and / or to prevent it, to plan appropriate maintenance intervals.
  • the control center and the rail vehicle have mutually complementary transmission and reception systems. The results are then transmitted wirelessly from the control center arranged on the track side to the rail vehicle, in particular in certain areas.
  • control center has, in addition to the possibility of unrestricted access to the result, the further advantage of unlimited access.
  • multiple results of different times for a given time period are stored in the control center and provided for output.
  • this memory does not have to be carried in the rail vehicle.
  • the output of one or more results can also take place as a function of events, as well as depending on the result of the evaluation itself, or depending on conditions or changes in the state of the route component. This is referred to as event-controlled.
  • the result of the evaluation may be "positive” or "negative".
  • the result itself is provided by the control center, even if it is “positive.”
  • Submit and / or output the result is "positive” but not; only a result "negative” is transmitted and / or output, for example as a "stop signal" for the driver.
  • the output of at least one result and / or the transmission of at least one result from the control center to at least one rail vehicle can therefore depend on the output of the evaluation.
  • the transmission of first measured values from the route component to the control center takes place free of predetermined states or state changes of the route component. It is therefore not an event-driven transmission, but It is cyclically executed.
  • the second measured values can also be transmitted cyclically.
  • the route network comprises at least one group of identically designed route components, wherein
  • first measured values for at least one predetermined measured variable for each of the identically designed route components are detected by means of at least one first measuring device of each route component
  • the transmitted first measured values are transmitted from the route components to a trackside control center
  • At least one result of the evaluation is provided for output from the control center.
  • the measured values of the identically designed route components in the control center are compared with one another. Subsequently, a faulty state of one of the identically designed route components can be deduced if a measured value of the route component differs at least by a predetermined amount from the other measured values of the other of the identically designed route components.
  • the measured values for the identical route components, which are compared with each other, are detected in particular at the same time.
  • a signal is output by at least the predefined first dimension in the case of a deviation of a measured value of a route component from the other measured values of the other of the identically designed route components.
  • the signal may take the form of a acoustic alarm or a visual representation. For example, another signal generates an appointment within a predetermined deadline in a service schedule of the route component.
  • control center To compare the measured values of the identically designed route components, the following method steps can be carried out in the control center, for example:
  • a faulty state of a first route component is concluded and optionally a signal is output if the distance between a first measured value of the first route component and a first measured value of a further, identically configured, second route component exceeds a predefined first dimension.
  • At least the first measure, depending on the further, second measured values, becomes the measured variable and / or one or more further ones
  • Specified measured variables which further, second measured values by means of at least one further, second measuring device is detected, which is independent of the route components and thus independent of the operating conditions of the track components and which other, second measured values of course, regardless of the operating conditions of the identically designed route components are recorded.
  • Measured variables for which first measured values and / or second measured values can be detected are, for example, speed, rotational speed, current and / or voltage, temperature, pressure or acceleration. Appropriate measuring devices are to be provided comparably. Speeds and / or temperatures can be detected for example by engines, transmissions or wheels.
  • the distances between the individual first measured values are calculated from the identically designed route components to the measured variable which characterizes the operating states of the route components. If the measured variable is the temperature and the corresponding first measured values are recorded for the identically designed route components which are respectively positioned at comparable locations in the route network, then the predetermined first measure is independent of an ambient temperature of the route components, since with increasing ambient temperature all Measured values for the identically designed route components should also be shifted upwards. However, if the identically designed route components are positioned at very different locations in or on the route network, the ambient temperature have an influence on the first measured values of the temperature of the individual route components.
  • the first measured values of the temperature of a first route component may be substantially increased, at a substantially higher ambient temperature around the first route component, as compared to a second route component, at a substantially lower ambient temperature about the second route component.
  • measured values for other measured variables can also be taken into account.
  • the temperature of a track component arranged outdoors is essentially dependent on the solar radiation, in contrast to a track component arranged in a shadowed manner but otherwise identically configured.
  • at least one first measure can be obtained for each first measured value for the predefined measured variable from the identically designed route components or further dimensions are given.
  • the first dimensions can thus vary from
  • first temperature sensor at a first location of each route component and a second, second temperature sensor at a second location of each route component different from the first location only the first measured values of the first temperature sensors can be compared with one another and analogously the first measured values of the second temperature sensor.
  • all the first measured values for the predefined measured variable, and as already explained above, also other second measured values for the same and / or other measured variables can be compared with one another in order to ascertain a faulty state of a path vector. For example, by comparing second measured values to further measured variables with the first measured values to the predetermined measured variable in order to derive therefrom the predetermined first measure.
  • the central evaluation of the measured values of several track components makes it very easy to define a maintenance order of the track components.
  • a route component for carrying out the method according to the invention thus comprises at least one first measuring device for detecting first measured values of at least one measured variable and at least one transmitter for transmitting the measured values from the route component to the control center.
  • Sensor is considered to be the equivalent name for measuring equipment.
  • a further measuring point independent of the route component comprises at least one further, second measuring device for detecting further second measured values independent of the operating state of the route component and a transmitter for transmitting the measured values from the further measuring point to the control center.
  • the at least one further, wide measuring device is arranged further spaced from the arranged at least one track component. The distance is chosen so large that the second measured values are independent of the operating state of the route component and thus, in particular, of the values of the first measured values.
  • a control center for carrying out the method according to the invention comprises at least one receiver for the purpose of averaging the measured values from the route component to the control center and at least one controller for evaluating the first measured values by means of a predetermined algorithm taking into account the further, second measured values.
  • the controller is suitable for evaluating the first and second measured values by means of the predetermined algorithm.
  • the controller is further developed for evaluating the first measured values by means of mutually different algorithms.
  • the algorithms are available, for example, as software. They are easily replaceable and / or changeable.
  • the controller may furthermore be suitable for processing further second measured values, which are detected by means of the further, second measuring devices, which are independent of the link component.
  • a system or a device for carrying out the method according to the invention is formed. It may further include at least one memory on which the algorithms are stored and which the controller can access. Furthermore, it can have at least one means, for example an input device, in particular a so-called human-machine interface for changing the predetermined algorithm.
  • the controller is then suitable for evaluating the first and second measured values by means of mutually different algorithms.
  • FIG. 1 schematically shows a system of two track components, a rail vehicle and a Kotroll- Center for carrying out the method according to the invention
  • Fig. 2 shows a trend analysis
  • FIG. 1 schematically shows a system comprising a route network, a rail vehicle 1 and a control center 2.
  • the rail vehicle 1 has different or identically configured vehicle components and in each case at least one second measuring device 3, 4 for acquiring second measured values for at least one predetermined measured variable for each vehicle component, for example a tachometer for detecting the current speed of the rail vehicle 1.
  • the rail vehicle comprises 1, a transmitter 5 for transmitting the second measured values to the control center 2.
  • the second measured values are transmitted from the second measuring devices 3, 4 via a data bus in the rail vehicle 1 to the transmitter 5.
  • the control center 2 in turn comprises a receiver 6 for receiving the measured values from the rail vehicle 1.
  • Transmitter 5 and receiver 6 are of course compatible with one another.
  • the receiver 6 is shown as a base station of a mobile network, which is arranged at a distance from the control center 2.
  • the fixed control center 2 thus has a plurality of possible receivers.
  • the measured values transmitted from the rail vehicle 1 to the receiver 6 are transmitted in this exemplary embodiment via the Internet from the receiver 6 to the at least one controller 7 of the control center for comparing the measured values.
  • first measured values are taken into account by the controller 7 for evaluation.
  • the first measured values are here detected by the infrastructure of the rail vehicle 1, in particular by the route and the overhead line, by first measuring devices 8, 9, and transmitted by means of further transmitters 10, 11 to the control center 2. All first measured values are transmitted in particular encrypted. However, other, possibly unencrypted second measured values, for example, the weather, can also be included in the evaluation and thereby taken into account.
  • reference numeral 12 outlines additional measurement sources, such as a weather service.
  • RDT * stands for Remote Data Transfer.
  • FIG. 2 illustrates by means of a graph a simple trend analysis as an example of an algorithm for the evaluation of measured values.
  • Plotted is a time course of a motor current of a motor for opening and closing a turnout as a route component over successive turnout cycles.
  • the measured values for three turnout cycles 16, 17 and 18 are evaluated in the control center. It is possible to predict a motor current profile 19 for the next switch opening cycle. Additionally or alternatively, a trend represented by the straight line 20 can be calculated. If a threshold value 21 is specified, in particular as a function of further, not considered, second measured values whose exceeding by the motor current can indicate a faulty state of the switch, the result of the trend analysis is that the motor current is expected to be at the next switch opening cycle
  • Threshold exceeds. This can be output as the result of the evaluation. However, the evaluation could further advise stopping the switch to prevent damage and / or include maintenance of the switch in a maintenance schedule. The output of the result of the evaluation can also be that the switch is automatically taken out of operation without the intervention of personnel.

Abstract

Die Erfindung betrifft ein Verfahren und ein System zur Diagnose des Betriebszustands einer oder mehrerer Streckenkomponenten eines Streckennetzes des Schienenverkehrs, welche Streckenkomponenten jeweils zumindest eine erste Messeinrichtung zur Erfassung von ersten Messwerten zumindest einer Messgröße zur Beschreibung des Betriebszustands der Streckenkomponente umfassen, umfassend folgende Verfahrensschritte: Erfassen der ersten Messwerten mittels der ersten Messeinrichtung; Erfassen von weiteren, vom Betriebszustand der Streckenkomponente unabhängigen, zweiten Messwerten mittels zumindest einer weiteren, zweiten Messeinrichtung; Übermitteln der Messwerte zu einem streckenseitig angeordneten Kontrollzentrum; Auswerten der Messwerte im Kontrollzentrum mittels eines vorgegebenen Algorithmus, und Bereitstellen zumindest eines Ergebnisses der Auswertung zur Ausgabe.

Description

Beschreibung
Verfahren zur Diagnose von Streckenkomponenten eines Streckennetzes des Schienenverkehrs
Die Erfindung betrifft ein Verfahren und ein System zur Diagnose eines Betriebszustands einer oder mehrerer Streckenkomponenten eines Streckennetzes des Schienenverkehrs, welche jeweils zumindest eine Messeinrichtung zur Erfassung von
Messwerten zumindest einer Messgröße umfassen, wobei der Betriebszustand durch zumindest eine Messgröße charakterisiert wird . Es sind Streckenkomponenten eines Streckennetzes des Schienenverkehrs bekannt geworden, welche Messeinrichtungen aufweisen, um Messwerte einer Messgröße zu erfassen. So ist beispielsweise ein Strommessgerät an einer Weiche angeordnet, um Messwerte eines Motorstroms zum Stellen der Weiche aufzuneh- men. Anschließend werden die Messwerte ausgewertet, indem sie beispielsweise jeweils mit einem vorher festgelegten Schwellwert verglichen werden. Übersteigt ein Messwert der Streckenkomponente den Schwellwert, so wird auf eine Fehlfunktion der Streckenkomponente geschlossen.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und ein System vorzuschlagen, um präzise Vorhersagen zur Instandhaltung zu treffen. Gelöst wird die Aufgabe durch die Gegenstände der unabhängigen Patentansprüche 1 und 8. Weiterbildungen und Ausgestaltungen der Erfindung finden sich in den Merkmalen der abhängigen Patentansprüche wieder. Ein erfindungsgemäßes Verfahren zur Diagnose des Betriebszustands einer oder mehrerer Streckenkomponenten eines Streckennetzes des Schienenverkehrs, welche Streckenkomponenten jeweils zumindest eine erste Messeinrichtung zur Erfassung von ersten Messwerten zumindest einer Messgröße umfassen, welche zur Beschreibung des Betriebszustands der jeweiligen Streckenkomponente dienen, umfasst folgende Verfahrensschritte :
- Erfassen von ersten Messwerten mittels der zumindest einen, ersten Messeinrichtung von der zumindest einen Streckenkomponente,
- Erfassen von weiteren, von dem Betriebszustand der zumindest einen Streckenkomponente unabhängigen, zweiten Messwerten mittels zumindest einer weiteren, zweiten Messeinrichtung,
- Übermitteln zumindest der ersten der Messwerte zu einem streckenseitig angeordneten Kontrollzentrum,
- Auswerten der ersten Messwerte im Kontrollzentrum mittels eines vorgegebenen Algorithmus unter Berücksichtigung der zweiten Messwerte, und
- Bereitstellen zumindest eines Ergebnisses der Auswertung zur Ausgabe . Zumindest eine Streckenkomponente eines Streckennetzes für
Schienenfahrzeuge, insbesondere geeignet für den Personenverkehr, umfasst zumindest eine erste Messeinrichtung, gelegentlich auch als Messaufnehmer bezeichnet. Diese ist insbesondere in oder an der Streckenkomponente angeordnet. Als nicht abschließende Auflistung von Messeinrichtungen seien hier aufgeführt: Strom-/Spannungserfassung, Temperaturfühler und/oder Lagesensorik .
Die ersten Messwerte, erfasst von der ersten Messeinrichtung der zumindest einen Streckenkomponente, sind abhängig von einem Betriebszustand oder einer Betriebszustandsänderung der zumindest einen Streckenkomponente und dienen daher zur Beschreibung des Betriebszustands. Der Betriebszustand der zumindest einen Streckenkomponente beschreibt zu einem vorgege- benen Zeitpunkt die Eigenschaften der Streckenkomponente vollständig, sofern sie nicht schon mit den unveränderlichen Eigenschaften der Streckenkomponente als solches festliegen. Zur vollständigen Beschreibung der Eigenschaften der Stre- ckenkomponente zum vorgegebenen Zeitpunkt können neben den ersten Messwerten zur Messgröße weitere Informationen erforderlich sein. Die weiteren, zweiten Messwerte werden dagegen unabhängig vom Betriebszustand oder Betriebszustandsanderungen der zumindest einen Streckenkomponente von der zweiten Messeinrichtung er- fasst. Die zweite Messeinrichtung ist dabei beispielsweise als Teil einer Messstelle frei von der zumindest einen Stre- ckenkomponente, insbesondere beabstandet von ihr, angeordnet. Die zweite Messeinrichtung muss nicht zwingend stationär sein, beispielsweise ist sie auf einem Fahrzeug, insbesondere einem Schienenfahrzeug, angeordnet. Insbesondere handelt es sich bei der oder den zweiten Messeinrichtungen jedoch um streckenseitig angeordnete, unbewegliche Messeinrichtungen. So können die zweiten Messwerte beispielsweise von einer zentralen Stelle, wie dem Wetterdienst, erfasst werden und beziehen sich auf die unmittelbare oder die mittelbare Umgebung der Streckenkomponente.
Diese weiteren, zweiten Messwerte sind Messwerte zu der mindestens einen Messgröße, zu welcher auch die ersten Messwerte der Streckenkomponente erfasst werden, und/oder die weiteren, zweiten Messwerte sind Messwerte zu weiteren Messgrößen. Die zweiten Messwerte sind unabhängig von den Werten der ersten Messwerte. Der umgekehrte Fall gilt nicht notwendigerweise. So erfasst beispielsweise ein Temperaturfühler als erste Messeinrichtung der Streckenkomponente Messwerte der Messgröße Temperatur der Streckenkomponente. Ein von der Strecken- komponente freier und unabhängiger Temperaturfühler, beispielsweise in der Nähe der Streckenkomponente positioniert, erfasst seinerseits die Temperatur der Luft in seiner Umgebung. Die Temperatur der Streckenkomponente steigt an, in Abhängigkeit der ansteigenden Temperatur der Luft der Umgebung. Eine ansteigende Temperatur der Streckenkomponente beein- flusst hingegen die Temperatur der Luft der Umgebung nur unwesentlich und ist daher zu vernachlässigen - die Temperatur der Luft der Umgebung gilt in diesem Anschauungsbeispiel als unabhängig von der Temperatur der Streckenkomponente.
Die zweiten Messwerte können, zusätzlich zu den ersten Mess- werten, ebenfalls zum Kontrollzentrum übermittelt werden und in die Auswertung der ersten Messwerte mit einfließen. Andererseits können die zweiten Messwerte auch in einem vorherigen Verfahrenschritt separat von den ersten Messwerten ausgewertet werden und lediglich ein Ergebnis dieser Auswertung wird bei der Auswertung der ersten Messwerte mittels des vorgegebenen Algorithmus berücksichtigt. Beispielsweise werden mehrere zweite Messwerte zu Messgrößen zur Beschreibung des Wetters wie Temperatur, Druck oder Feuchtigkeit erfasst. Daraus wird eine Wetterprognose abgeleitet. Die Auswertung der zweiten Messwerte kann also zu Prognosen für Temperaturwerte führen, welche bei der Auswertung der ersten Messwerte berücksichtigt werden. Eine Auswertung der ersten Messwerte im Kontrollzentrum mittels des vorgegebenen Algorithmus erfolgt also in mittelbarer oder unmittelbarer Abhängigkeit von den zweiten Messwerten.
Gemäß einer Weiterbildung der Erfindung werden sowohl die ersten, als auch die zweiten Messwerte mittels des vorgegebenen Algorithmus ausgewertet. In jedem Fall ist das zumindest eine Ergebnis der Auswertung abhängig von den ersten, wie auch von den zweiten Messwerten.
Zur Auswertung können viele verschiedene Algorithmen Verwendung finden. So kann gemäß einem Ausführungsbeispiel der Er- findung der vorgegebene Algorithmus geeignet sein zur Trendanalyse einer Messreihe zumindest von ersten Messwerten einer vorgegebenen Messgröße. Ändert sich die Temperatur mit der Zeit kann hiermit vorausgesagt werden, wann eine vorgegebene Grenztemperatur voraussichtlich überschritten werden wird. Weitere Beispiel -Algorithmen sind in der nachfolgenden, offenen, nicht abschließenden Auflistung enthalten: Frequenzanalyse, Stromverlauf, Spannungsverlauf, Laufzeit. Die Übermittlung der ersten Messwerte von der Streckenkomponente zum Kontrollzentrum erfolgt beispielsweise drahtlos. Eine drahtlose Übermittlung geschieht dabei zumindest abschnittsweise, d.h. die Übermittlung muss nicht über den ge- samten Weg von der Streckenkomponente zum KontrollZentrum drahtlos sein. Eine drahtlose Übermittlung findet beispielsweise per DFÜ-Verbindung, wie über ein GSM-, UMTS- oder LTE- Netz, zwischen der Streckenkomponente und einer Sende- und Empfangsanlage dieses Netzes statt. Zwischen der Empfangsan- läge und dem Kontrollzentrum kann die weitere Übermittlung der Messdaten auch drahtgebunden erfolgen. Die ersten Messwerte werden weitergebildet in einem vorgegebenen Zyklus von der Streckenkomponente zum Kontrollzentrum übermittelt. Die Übermittlung der ersten Messwerte von der Streckenkomponente zum Kontrollzentrum erfolgt dabei insbesondere frei von vorgegebenen Betriebszuständen oder Betriebszustandsänderungen der Streckenkomponente. Zur Übermittlung der ersten Messwerte von der Streckenkomponente zum Kontrollzentrum weist die Streckenkomponente einen Sender und das Kotrollzentrum einen Empfänger auf. Anstelle von der Übermittlung kann auch von einer Übertragung gesprochen werden. Sender und Empfänger sind zueinander komplementär ausgestaltet. Das Kontrollzentrum ist strecken- und damit landseitig und insbesondere ortsfest und entfernt von der Streckenkomponente angeordnet.
Analog zur Übermittlung der ersten Messwerte können auch die zweiten Messwerte von der zumindest einen weiteren, zweiten Messeinrichtung zum Kontrollzentrum, insbesondere zyklisch, übermittelt werden. Werden erste und zweite Messwerte zyk- lisch übermittelt kann der Zyklus identisch sein. Werden die zweiten Messwerte hingegen von einer zweiten Messeinrichtung am Kontrollzentrum erfasst, scheint eine Übermittlung hinfällig. Eine drahtlose Übertragung der zweiten Messwerte zum Kontrollzentrum ist natürlich ebenfalls möglich.
Dort findet die Auswertung der Messwerte mittels eines vorgegebenen Algorithmus statt. Dafür weist das Kontrollzentrum insbesondere einen Controller auf, welcher geeignet ist zur Auswertung der ersten und gegebenenfalls der zweiten Messwerte mittels des vorgegebenen Algorithmus. Der Algorithmus liegt vorteilhaft als Software vor. Dies birgt den Vorteil einer einfachen und schnellen Anpassung des Algorithmus. Al- gorithmus und Messwerte können in einem Speicher gehalten werden, wie auch Zwischenergebnisse der Auswertung. Die Auswertung führt zu zumindest einem Ergebnis. Dieses zumindest eine Ergebnis wird vom Kontrollzentrum bereitgestellt. Es wird zusätzlich auf ein Schienenfahrzeug übermittelt und dort in vorgegebener Form ausgegeben, beispielsweise visuali- siert, und/oder das Ergebnis der Auswertung wird streckensei - tig, insbesondere im Kontrollzentrum in vorgegebener Form ausgegeben, beispielsweise visualisiert . Alternativ ist auch eine Ausgabe beim Kunden möglich. Das Ergebnis der Auswertung kann auch über das Internet zur Verfügung gestellt werden, um von unterschiedlichen Stellen darauf zurückzugreifen. Eine Visualisierung erfolgt beispielsweise als Darstellung auf einem Bildschirm. Neben Visualisierungen kommen auch die akus- tische Ausgabe, taktile Rückmeldung oder SMS als weitere Ausgabeformen in Betracht. Das Ergebnis einer Auswertung der ersten und zweiten Messwerte mittels des vorgegebenen Algorithmus kann als solches mehrere entsprechende Formen annehmen. Es kann ein einfaches Stop-Signal sein, welches als akustischer Alarm dem Fahrzeugführer des Schienenfahrzeugs ausgegeben wird. Andererseits kann es sich um eine Diagnose oder Ausfall-Prognose für die zumindest eine Streckenkomponente handeln, welche einer Wartungsmannschaft zur Erstellung eines Wartungsplans für die Streckenkomponente ausgegeben wird. Als weiteres Beispiel sei hier eine Lebensdauerprognose genannt. Das Verfahren ist geeignet für eine vorausschauende Instandhaltung, englisch predictive maitenance, und damit geeignet, Vorhersagen über die Wahrscheinlichkeit eines technischen Ausfalls einer Streckenkomponente zu treffen und/oder um diesem vorzubeugen, entsprechende Wartungsintervalle zu planen . Zur Übermittlung des Ergebnisses vom Kontrollzentrum zum Schienenfahrzeug weisen Kontrollzentrum und Schienenfahrzeug zueinander komplementäre Sende- und Empfangsanlagen auf. Die Ergebnisse werden dann vom streckenseitig angeordneten Kont- rollzentrum zum Schienenfahrzeug insbesondere streckenweise drahtlos übermittelt.
Das Bereitstellen des Ergebnisses durch das Kontrollzentrum hat neben der Möglichkeit des örtlich unbeschränkten Zugriffs auf das Ergebnis den weiteren Vorteil eines zeitlich unbeschränkten Zugriffs. So werden gemäß einer weiteren Ausführungsform mehrere Ergebnisse unterschiedlicher Zeitpunkte für einen vorgegebenen Zeitraum im Kontrollzentrum gespeichert und zur Ausgabe bereitgestellt. Der Speicher muss einerseits damit nicht im Schienenfahrzeug mitgeführt werden. Andererseits kann die Ausgabe eines oder mehrerer Ergebnisse auch in Abhängigkeit von Ereignissen, wie auch in Abhängigkeit vom Ergebnis der Auswertung selbst, oder in Abhängigkeit von Zuständen oder Zustandsänderungen der Streckenkomponente erfol- gen. Dies wird aus als eventgesteuert bezeichnet.
Verfolgt beispielsweise die Auswertung das Ziel einer Feststellung der augenblicklichen, sicheren Betriebstüchtigkeit der Streckenkomponente, kann das Ergebnis der Auswertung „po- sitiv" oder „negativ" lauten. Das Ergebnis selbst wird vom Kontrollzentrum bereitgestellt, selbst, wenn es „positiv" ist. Übermitteln und/oder Ausgegeben wird das Ergebnis „positiv" aber nicht; nur ein Ergebnis „negativ" wird übermittelt und/oder ausgegeben, beispielsweise als „Stop-Signal " für den Fahrzeugführer. Die Ausgabe zumindest eines Ergebnisses und/oder die Übermittlung zumindest eines Ergebnisses vom Kontrollzentrum zu zumindest einem Schienenfahrzeug kann daher vom Ausgang der Auswertung abhängen. Die Übermittlung von ersten Messwerten von der Streckenkomponente zum Kontroll - Zentrum dagegen erfolgt frei von vorgegebenen Zuständen oder Zustandsänderungen der Streckenkomponente. Es handelt sich dabei also nicht um eine eventgesteuerte Übermittlung, son- dern sie wird zyklisch durchgeführt. Analog können die zweiten Messwerte ebenfalls zyklisch übermittelt werden.
Gemäß einer weiteren Weiterbildung des erfindungsgemäßen Ver- fahrens umfasst das Streckennetz zumindest eine Gruppe identisch ausgestalteter Streckenkomponenten, wobei
- erste Messwerte zu zumindest einer vorgegebenen Messgröße für jede der identisch ausgestalteten Streckenkomponenten mittels jeweils zumindest einer ers- ten Messeinrichtung jeder Streckenkomponente erfasst werden,
- die erfassten ersten Messwerte von den Streckenkomponenten zu einem streckenseitig angeordneten Kontrollzentrum übermittelt werden,
- die erfassten ersten Messwerte im Kontrollzentrum mittels des vorgegebenen Algorithmus ausgewertet werden, und
- zumindest ein Ergebnis der Auswertung zur Ausgabe vom Kontrollzentrum bereitgestellt wird.
Als einfache Auswertung mittels des vorgegebenen Algorithmus werden die Messwerte von den identisch ausgestalteten Streckenkomponenten im Kontrollzentrum miteinander verglichen. Anschließend kann auf einen fehlerhaften Zustand einer der identisch ausgestalteten Streckenkomponenten geschlossen werden, wenn ein Messwert der Streckenkomponente mindestens um ein vorgegebenes Maß von den anderen Messwerten der Anderen der identisch ausgestalteten Streckenkomponenten abweicht. Die Messwerte zu den identischen Streckenkomponenten, welche miteinander verglichen werden, werden insbesondere zeitgleich erfasst .
Gemäß einer weiteren Weiterbildung wird ein Signal bei einer Abweichung eines Messwerts einer Streckenkomponente von den anderen Messwerten der Anderen der identisch ausgestalteten Streckenkomponenten um zumindest das vorgegebene erste Maß ausgegeben. Das Signal kann beispielsweise die Form eines akustischen Alarms oder einer visuellen Darstellung annehmen. Ein weiteres Signal generiert beispielsweise einen Termin innerhalb einer vorgegebenen Frist in einem Wartungsterminkalender der Streckenkomponente.
Zum Vergleichen der Messwerte von den identisch ausgestalteten Streckenkomponenten können im Kontrollzentrum beispielsweise folgende Verfahrensschritte ausgeführt werden:
Speichern der von den Streckenkomponenten zum Kontroll - Zentrum übermittelten ersten Messwerte,
Berechnen von Abständen der ersten Messwerte zueinander, Vergleichen der Abstände mit dem vorgegebenen ersten
Maß. Auf einen fehlerhaften Zustand einer ersten Streckenkomponente wird geschlossen, und gegebenenfalls ein Signal ausgegeben, wenn der Abstand eines ersten Messwerts der ersten Streckenkomponente zu einem ersten Messwert einer weiteren, identisch ausgestalteten, zweiten Streckenkomponente ein vorgege- benes erstes Maß übersteigt.
Neben der einfachen Bestimmung der Abstände der einzelnen, zeitgleich erfassten ersten Messwerte der identisch ausgestalteten Streckenkomponenten zueinander, sind viele weitere Algorithmen denkbar, um eine Abweichung zumindest eines Mess- werts von den anderen Messwerten zu erkennen. Bekannte Algorithmen hierfür sind beispielsweise die Bestimmung der einzelnen Residuen zu einer Modellfunktion erhalten durch die Methode der kleinsten Fehlerquadrate, die Bestimmung der ein- zelnen Abweichungen zum Erwartungswert und weitere Modelle der statistischen Analyse.
Des Weiteren können mehrere Maße vorgegeben werden, um bei Abweichung unterschiedliche Schlüsse zu ziehen und gegebenen- falls entsprechende Ergebnisse auszugeben. So kann bei einer Abweichung zumindest eines ersten Messwerts um ein erstes Maß lediglich eine vorzunehmende Wartung angezeigt werden, bei einer Abweichung um ein zweites Maß hingegen kann ein nahen- der Ausfall der entsprechenden Streckenkomponente angezeigt und vor diesem mit einem Signal gewarnt werden.
Gemäß einer weiteren Weiterbildung wird zumindest das erste Maß in Abhängigkeit von den weiteren, zweiten Messwerten zu der Messgröße und/oder zu einer oder mehrerer weiteren
Messgrößen vorgegeben, welche weiteren, zweiten Messwerte mittels der zumindest einen weiteren, zweiten Messeinrichtung erfasst wird, welche unabhängig von den Streckenkomponenten und damit auch unabhängig von den Betriebszuständen der Streckenkomponenten ist und welche weiteren, zweiten Messwerte selbstverständlich auch unabhängig von den Betriebszuständen der identisch ausgestalteten Streckenkomponenten erfasst sind .
Messgrößen, zu welchen erste Messwerte und/oder zweite Messwerte erfasst werden können, sind beispielsweise Geschwindigkeit, Drehzahl, Strom und/oder Spannung, Temperatur, Druck oder Beschleunigung. Entsprechende Messeinrichtungen sind vergleichbar vorzusehen. Drehzahlen und/oder Temperaturen können beispielsweise von Motoren, Getrieben oder Rädern erfasst werden.
Gemäß einem Veranschaulichungsbeispiel werden die Abstände zwischen den einzelnen ersten Messwerten von den identisch ausgestalteten Streckenkomponenten zu der Messgröße, welche die Betriebszustände der Streckenkomponenten charakterisiert, errechnet. Handelt es sich bei der Messgröße um die Temperatur und werden die entsprechenden ersten Messwerte zu den identisch ausgestalteten Streckenkomponenten erfasst, welche jeweils an vergleichbaren Stellen im Streckennetz positioniert sind, so ist das vorgegebene erste Maß unabhängig von einer Umgebungstemperatur der Streckenkomponenten, da bei steigender Umgebungstemperatur alle Messwerte zu den iden- tisch ausgestalteten Streckenkomponenten ebenfalls nach oben verschoben werden. Sind jedoch die identisch ausgestalteten Streckenkomponenten an stark unterschiedlichen Stellen im oder am Streckennetz positioniert, kann die Umgebungstempera- tur einen Einfluss auf die ersten Messwerte der Temperatur der einzelnen Streckenkomponenten haben. So können die ersten Messwerte der Temperatur einer ersten Streckenkomponente wesentlich angehoben sein, bei einer wesentlich höheren Umge- bungstemperatur um die erste Streckenkomponente, im Vergleich zu einer zweiten Streckenkomponente, bei einer wesentlich geringeren Umgebungstemperatur um die zweite Streckenkomponente. Zusätzlich können auch Messwerte zu anderen Messgrößen berücksichtigt werden. So ist beispielsweise die Temperatur einer im Freien angeordneten Streckenkomponente im Wesentlichen abhängig von der Sonneneinstrahlung, im Gegensatz zu einer abgeschattet angeordneten, ansonsten jedoch identisch ausgestalteten Streckenkomponente. Für jeden ersten Messwert zur vorgegebenen Messgröße von den identisch ausgestalteten Streckenkomponenten kann, in Abhängigkeit von zweiten Messwerten zu einer oder mehrerer weiterer Messgrößen und/oder in Abhängigkeit von Messwerten zur selben Messgröße, welche unabhängig von den identisch ausgestalteten Streckenkomponenten erfasst werden, zumindest ein erstes Maß oder weitere Maße vorgegebenen werden. Die ersten Maße können sich somit von
Messwert zu Messwert zur vorgegebenen Messgröße von den identisch ausgestalteten Streckenkomponenten und/oder von zugehöriger Streckenkomponente zu Streckenkomponente voneinander unterscheiden .
Weisen nun identisch ausgestaltete Streckenkomponenten jeweils zwei Temperaturfühler auf, einen ersten Temperaturfühler an einer ersten Stelle einer jeden Streckenkomponente und einen weiteren, zweiten Temperaturfühler an einer von der ersten Stelle verschiedenen, zweiten Stelle jeder Streckenkomponente, so können ausschließlich die ersten Messwerte der ersten Temperaturfühler miteinander verglichen werden und analog die ersten Messwerte der zweiten Temperaturfühler. Dies ist jedoch nicht zwingend erforderlich. Gleichermaßen können alle ersten Messwerte zur vorgegebenen Messgröße, und wie oben bereits ausgeführt, auch weitere, zweite Messwerte zur selben und/oder anderen Messgrößen miteinander verglichen werden, um auf einen fehlerhaften Zustand einer Streckenkom- ponente zu schließen, beispielsweise indem zweite Messwerte zu weiteren Messgrößen mit den ersten Messwerten zur vorgegebenen Messgröße verglichen werden, um daraus das vorgegebene erste Maß abzuleiten.
Wie bereits ausgeführt, werden nicht nur die ersten Messwerte zu den identischen Streckenkomponenten, welche miteinander verglichen werden, zeitgleich erfasst, sondern auch die zweiten Messwerte. Dies schließt nicht aus, dass Ausreißer einer Messreihe aus einander folgenden Messwerten herausgefiltert oder die Messreihe geglättet wird.
Durch das zentrale Auswerten der Messwerte von mehreren Stre- ckenkomponenten lässt sich sehr einfach eine Wartungsreihenfolge der Streckenkomponenten festlegen.
Eine Streckenkomponente zur Ausführung des erfindungsgemäßen Verfahrens umfasst somit zumindest eine erste Messeinrichtung zur Erfassung von ersten Messwerten zumindest einer Messgröße und zumindest einen Sender zur Übermittlung der Messwerte von der Streckenkomponente zum Kontrollzentrum. Messaufnehmer gilt als äquivalente Bezeichnung für Messeinrichtung. Eine weitere, von der Streckenkomponente unabhängige Mess- stelle umfasst zumindest eine weitere, zweite Messeinrichtung zur Erfassung von weiteren, vom Betriebszustand der Streckenkomponente unabhängigen, zweiten Messwerten und einen Sender zur Übermittlung der Messwerte von der weiteren Messstelle zum Kontrollzentrum. Die zumindest eine weitere, weite Messeinrichtung ist weitergebildet beabstandet von der zumindest einen Streckenkomponente angeordnet. Der Abstand ist dabei so groß gewählt, dass die zweiten Messwerte unabhängig von dem Betriebszustand der Streckenkomponente und dadurch insbeson- dere von den Werten der ersten Messwerte sind.
Ein Kontrollzentrum zur Ausführung des erfindungsgemäßen Verfahrens umfasst dagegen zumindest einen Empfänger zur Über- mittlung der Messwerte von der Streckenkomponente zum Kontrollzentrum und zumindest einen Controller zum Auswerten der ersten Messwerte mittels eines vorgegebenen Algorithmus unter Berücksichtigung der weiteren, zweiten Messwerte. Gegebenen- falls ist der Controller geeignet zur Auswertung der ersten und zweiten Messwerte mittels des vorgegebenen Algorithmus.
Der Controller ist weitergebildet zur Auswertung der ersten Messwerte mittels voneinander verschiednen Algorithmen geeig- net . Die Algorithmen liegen beispielsweise als Software vor. Sie sind leicht ersetzbar und/oder veränderbar. Der Controller kann fürderhin geeignet sein, weitere zweite Messwerte zu verarbeiten, welche mittels der weiteren, zweiten Messeinrichtungen erfasst werden, welche unabhängig von der Stre- ckenkomponente sind.
Aus zumindest einer Streckenkomponente der genannten Art, einer Messstelle der genannten Art und zumindest einem Kontrollzentrum der genannten Art wird ein System oder eine Vor- richtung zur Ausführung des erfindungsgemäßen Verfahrens gebildet. Es kann weiterhin zumindest einen Speicher umfassen, auf welchem die Algorithmen abgespeichert sind, und auf welchen der Controller zugreifen kann. Des Weiteren kann es zumindest ein Mittel, beispielsweise ein Eingabegerät, aufwei- sen, insbesondere eine sogenannte Mensch-Maschine- Schnittstelle, zur Veränderung des vorgegebenen Algorithmus. Der Controller ist dann geeignet zur Auswertung der ersten und zweiten Messwerte mittels voneinander verschiednen Algorithmen .
Die Erfindung lässt zahlreiche Ausführungsformen zu. Sie wird anhand der nachfolgenden Figuren näher erläutert, in welchen jeweils ein Ausgestaltungsbeispiel dargestellt ist. Gleiche Elemente in den Figuren sind mit gleichen Bezugszeichen ver- sehen.
Fig. 1 zeigt schematisch ein System aus zwei Streckenkomponenten, einem Schienenfahrzeug und einem Kotroll- Zentrum zur Ausführung des erfindungsgemäßen Verfahrens ,
Fig. 2 zeigt eine Trendanalyse.
In der Fig. 1 ist ein System aus einem Streckennetz, einem Schienenfahrzeug 1 und einem Kontrollzentrum 2 schematisch dargestellt . Das Schienenfahrzeug 1 weist verschiedene oder identisch ausgestaltete Fahrzeugkomponenten auf und jeweils zumindest eine zweite Messeinrichtung 3, 4 zum Erfassen von zweiten Messwerten zu zumindest einer vorgegebenen Messgröße für jede Fahrzeugkomponente, beispielsweise ein Tachometer zur Erfassung der aktuellen Geschwindigkeit des Schienenfahrzeugs 1. Darüber hinaus umfasst das Schienenfahrzeug 1 einen Sender 5 zum Senden der zweiten Messwerte an das Kontrollzentrum 2. Die zweiten Messwerte werden von den zweiten Messeinrichtungen 3, 4 über einen Daten-Bus im Schienenfahrzeug 1 an den Sender 5 übermittelt.
Das Kontrollzentrum 2 umfasst wiederum einen Empfänger 6 zum Empfangen der Messwerte vom Schienenfahrzeug 1. Sender 5 und Empfänger 6 sind selbstverständlich zueinander kompatibel. Hier ist der Empfänger 6 als Basisstation eines Mobilfunknetzes dargestellt, welcher beabstandet vom Kontrollzentrum 2 angeordnet ist. Das ortsfeste Kontrollzentrum 2 weist somit eine Vielzahl von möglichen Empfängern auf. Die vom Schienenfahrzeug 1 zum Empfänger 6 übermittelten Messwerte werden in diesem Ausgestaltungsbeispiel über das Internet vom Empfänger 6 zum zumindest einen Controller 7 des Kontrollzentrums zum Vergleichen der Messwerte übermittelt.
Neben den Messwerten zu den Fahrzeugkomponenten, erfasst durch die zweiten Messeinrichtungen 3, 4, werden erste Messwerte vom Controller 7 zur Auswertung berücksichtigt. Die ersten Messwerte werden hier von der Infrastruktur des Schienenfahrzeugs 1, insbesondere von der Strecke und der Oberleitung, durch erste Messeinrichtungen 8, 9 erfasst, und mittels weiteren Sendern 10, 11 an das Kontrollzentrum 2 übermittelt. Sämtliche ersten Messwerte werden insbesondere verschlüsselt übermittelt. Jedoch auch weitere, gegebenenfalls unverschlüsselte zweite Messwerte, beispielsweise zum Wetter, können in die Auswertung mit einfließen und dadurch Berücksichtigung finden. Hier skizziert das Bezugszeichen 12 zusätzliche Messwertquellen, wie z.B. ein Wetterdienst. RDT* steht im Übrigen für Remote Data Transfer.
Fig. 2 veranschaulicht mittels eines Graphen eine einfache Trendanalyse als Beispiel für einen Algorithmus zur Auswer- tung von Messwerten. Aufgetragen ist ein zeitlicher Verlauf eines Motorstroms eines Motors zum Öffnen und Schließen einer Weiche als Streckenkomponente über aufeinander nachfolgende Weichenöffnungszyklen. Die Messwerte zu drei Weichenöffnungs- zyklen 16, 17 und 18 werden im Kontrollzentrum ausgewertet. Es lässt sich ein Motorstromverlauf 19 für den nächsten Weichenöffnungszyklus prognostizieren. Zusätzlich oder alternativ kann ein Trend, dargestellt durch die Gerade 20, errechnet werden. Ist ein Schwellwert 21 vorgegeben, insbesondere in Abhängigkeit von weiteren, hier nicht näher betrachteten, zweiten Messwerten, dessen Überschreiten durch den Motorstrom auf einen fehlerhaften Zustand der Weiche schließen lässt, so ist das Ergebnis der Trendanalyse, dass der Motorstrom voraussichtlich beim nächsten Weichenöffnungszyklus den
Schwellwert übersteigt. Dies kann als Ergebnis der Auswertung ausgegeben werden. Die Auswertung könnte jedoch weitergehend die Stilllegung der Weiche anraten, um Schaden abzuwenden, und/oder die Wartung der Weiche in einen Wartungsplan eintragen. Die Ausgabe des Ergebnisses der Auswertung kann auch darin bestehen, dass die Weiche ohne Zutun von Personal automa- tisch außer Betrieb genommen wird.

Claims

Patentansprüche
Verfahren zur Diagnose des Betriebszustands zumindest einer Streckenkomponente eines Streckennetzes für den Schienenverkehr, welche Streckenkomponente zumindest eine erste Messeinrichtung zur Erfassung von ersten Messwerten zumindest einer Messgröße zur Beschreibung des Betriebszustands der Streckenkomponente umfasst, gekennzeichnet durch folgende Verfahrensschritte:
- Erfassen der ersten Messwerten mittels der ersten Messeinrichtung,
- Erfassen von weiteren, vom Betriebszustand der Streckenkomponente unabhängigen, zweiten Messwerten mittels zumindest einer weiteren, zweiten Messeinrichtung,
- Übermitteln zumindest der ersten zu einem strecken- seitig angeordneten Kontrollzentrum,
- Auswerten zumindest der ersten Messwerte im Kontrollzentrum mittels eines vorgegebenen Algorithmus unter Berücksichtigung der zweiten Messwerte, und
- Bereitstellen zumindest eines Ergebnisses der Auswertung zur Ausgabe .
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Ergebnis der Auswertung auf ein Schienenfahrzeug übermittelt wird und, dass das Ergebnis der Auswertung auf dem Schienenfahrzeug ausgegeben wird.
Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Ergebnis der Auswertung stre- ckenseitig ausgegeben wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die ersten Messwerte zyklisch zum Kontrollzentrum übermittelt werden. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die ersten Messwerte drahtlos zum Kontrollzentrum übermittelt werden.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der vorgegebene Algorithmus geeignet ist zu einer Trendanalyse der ersten Messwerte.
Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Messgröße, zu welchen erste und/oder zweite Messwerte erfasst werden, ausgewählt sind aus einer Gruppe von folgenden Messgrößen: Geschwindigkeit des Schienenfahrzeugs, Beschleunigung des Schienenfahrzeugs, Drehzahl eines Antriebsmotors, elektrischer Motorstrom, elektrische Spannung eines Motors, thermodynamische Temperatur eines Getriebes.
System zur Diagnose des Betriebszustand einer Streckenkomponente aus zumindest einer Streckenkomponente, zumindest einem Kontrollzentrum und zumindest einer weiteren Messstelle, welche Streckenkomponente zumindest eine erste Messeinrichtung zur Erfassung von ersten Messwerten zumindest einer Messgröße zur Beschreibung des Betriebszustands der Streckenkomponente und zumindest einen Sender zur Übermittlung der ersten Messwerte von der Streckenkomponente zum Kontrollzentrum umfasst, und welche Messstelle zumindest eine weitere, zweite Messeinrichtung zur Erfassung von weiteren, von dem Betriebszustand der Streckenkomponente unabhängigen, zweiten Messwerten zumindest einer Messgröße umfasst, und welches Kontrollzentrum zumindest einen Empfänger zur Übermittlung der ersten Messwerte von der ersten Messeinrichtung der Streckenkomponente zum Kontroll - Zentrum und zumindest einen Controller zum Auswerten der ersten Messwerte mittels eines vorgegebenen Algorithmus unter Berücksichtigung der zweiten Messwerte umfasst .
9. System nach Anspruch 8, dadurch gekennzeichnet, dass der Controller geeignet ist zur Auswertung der ersten Messwerte mittels mehrerer, voneinander verschiedenen vorgegebenen Algorithmen.
10. System nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die zumindest eine weitere, zweite Messeinrichtung beabstandet von der Streckenkomponente angeordnet ist.
PCT/EP2013/067508 2012-09-18 2013-08-23 Verfahren zur diagnose von streckenkomponenten eines streckennetzes des schienenverkehrs WO2014044485A2 (de)

Priority Applications (16)

Application Number Priority Date Filing Date Title
EP13758769.7A EP2877384B1 (de) 2012-09-18 2013-08-23 Verfahren zur diagnose von streckenkomponenten eines streckennetzes des schienenverkehrs
CA2885121A CA2885121C (en) 2012-09-18 2013-08-23 Method for diagnosing railroad components of a railroad network for rail transport
RU2015114325A RU2644055C2 (ru) 2012-09-18 2013-08-23 Способ диагностики компонентов пути сети железнодорожных линий рельсового транспорта
BR112015005836-1A BR112015005836B1 (pt) 2012-09-18 2013-08-23 Método e sistema para diagnosticar o estado de operação de pelo menos um componente de via férrea
DK13758769.7T DK2877384T3 (en) 2012-09-18 2013-08-23 A method of diagnosing stretch components of a rail network of rail traffic
MX2015003452A MX346448B (es) 2012-09-18 2013-08-23 Procedimiento para el diagnóstico de componentes ferroviarios de una red de líneas del tráfico ferroviario.
PL13758769T PL2877384T3 (pl) 2012-09-18 2013-08-23 Sposób diagnozowania komponentów kolejowych sieci kolejowej dla transportu szynowego
CN201380048646.0A CN104661891B (zh) 2012-09-18 2013-08-23 用于对轨道交通的铁路网络的铁路部件进行诊断的方法
ES13758769.7T ES2691976T3 (es) 2012-09-18 2013-08-23 Procedimiento para el diagnóstico de componentes de vía de una red de vías del transporte ferroviario
AU2013320505A AU2013320505B2 (en) 2012-09-18 2013-08-23 Method for diagnosing railroad components of a railroad network for rail transport
IN1708DEN2015 IN2015DN01708A (de) 2012-09-18 2013-08-23
US14/429,213 US10131369B2 (en) 2012-09-18 2013-08-23 Method for diagnosing railroad components of a railroad network for rail transport
MA37918A MA20150426A1 (fr) 2012-09-18 2013-08-23 Procédé permettant de diagnostiquer des éléments de tronçon d'un réseau ferroviaire
TNP2015000081A TN2015000081A1 (en) 2012-09-18 2015-03-06 Method for diagnosing railroad components of a railroad network for rail transport
ZA2015/01702A ZA201501702B (en) 2012-09-18 2015-03-12 Method for diagnosing railroad components of a railroad network for rail transport
SA515360150A SA515360150B1 (ar) 2012-09-18 2015-03-17 طريقة لتشخيص مكونات السكك الحديدية لشبكة سكة حديدية للنقل بالسكك الحديدية

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP12184836 2012-09-18
EP12184836.0 2012-09-18
DE102013201488.0 2013-01-30
DE102013201488.0A DE102013201488A1 (de) 2012-09-18 2013-01-30 Verfahren zur Diagnose von Streckenkomponenten eines Streckennetzes des Schienenverkehrs

Publications (2)

Publication Number Publication Date
WO2014044485A2 true WO2014044485A2 (de) 2014-03-27
WO2014044485A3 WO2014044485A3 (de) 2014-09-18

Family

ID=47172268

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2013/067505 WO2014044484A2 (de) 2012-09-18 2013-08-23 Diagnoseverfahren für schienenfahrzeuge
PCT/EP2013/067508 WO2014044485A2 (de) 2012-09-18 2013-08-23 Verfahren zur diagnose von streckenkomponenten eines streckennetzes des schienenverkehrs

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/067505 WO2014044484A2 (de) 2012-09-18 2013-08-23 Diagnoseverfahren für schienenfahrzeuge

Country Status (19)

Country Link
US (2) US10131369B2 (de)
EP (2) EP2877384B1 (de)
CN (2) CN104718121B (de)
AU (2) AU2013320504B2 (de)
BR (2) BR112015005803A2 (de)
CA (2) CA2885110C (de)
DE (2) DE102013201494A1 (de)
DK (2) DK2877383T3 (de)
ES (2) ES2691976T3 (de)
IN (2) IN2015DN01757A (de)
MA (2) MA20150426A1 (de)
MX (2) MX346448B (de)
PL (2) PL2877383T3 (de)
PT (2) PT2877383T (de)
RU (2) RU2608992C2 (de)
SA (2) SA515360150B1 (de)
TN (2) TN2015000080A1 (de)
WO (2) WO2014044484A2 (de)
ZA (2) ZA201501704B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105083323A (zh) * 2014-05-22 2015-11-25 通用电气公司 用于处理故障的系统及方法
EP2877384B1 (de) 2012-09-18 2018-07-18 Siemens Aktiengesellschaft Verfahren zur diagnose von streckenkomponenten eines streckennetzes des schienenverkehrs
EP3594084A1 (de) 2018-07-13 2020-01-15 Schweizerische Bundesbahnen SBB Verfahren und vorrichtung zur überwachung eines eisenbahnnetzes und eisenbahnnetz

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO2785692T3 (de) * 2014-08-06 2018-02-24
DE102014113371A1 (de) 2014-09-17 2016-03-17 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren zur Überwachung und Diagnose von Komponenten eines Schienenfahrzeugs, mit erweiterbarer Auswertungssoftware
DE102014226910A1 (de) 2014-12-23 2016-06-23 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Ausführung eines Testvorgangs betreffend ein Schienenfahrzeug
CN105043761B (zh) * 2015-06-30 2017-10-27 株洲南车时代电气股份有限公司 一种机车锁轴故障诊断方法
DE102016207311B4 (de) * 2016-04-28 2022-12-01 Schunk Bahn- Und Industrietechnik Gmbh Regelsystem und Verfahren zur Regelung einer Andruckkraft eines Schleifstücks
JPWO2017199427A1 (ja) * 2016-05-20 2018-10-18 三菱電機株式会社 設備監視装置、無線センサ、および、収集局
DE102016109497A1 (de) * 2016-05-24 2017-11-30 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren und Vorrichtung zum Ermitteln des Verschleißzustandes von Komponenten eines Schienenfahrzeugs
DE102016211485A1 (de) * 2016-06-27 2017-12-28 Robert Bosch Gmbh Sensoreinheit und Verfahren zur Funktionsprüfung eines Sensors der Sensoreinheit
DE102016116419A1 (de) 2016-09-02 2018-03-08 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren und Vorrichtung zum Überwachen von Fahrzeugzuständen in Schienenfahrzeugen
DE102017205312A1 (de) * 2017-03-29 2018-10-04 Siemens Aktiengesellschaft Messanordnung und Verfahren zum Erzeugen eines Ausgangsmesssignals mit zumindest einem Beschleunigungssensor
DE102017213040A1 (de) * 2017-07-28 2019-01-31 Siemens Aktiengesellschaft Eisenbahnanlage mit Messeinrichtung
RU2673853C1 (ru) * 2017-08-02 2018-12-04 Акционерное общество "Научно-исследовательский институт железнодорожного транспорта" (АО "ВНИИЖТ") Автоматизированная система контроля за работой специального подвижного состава
CN108627353A (zh) * 2018-06-27 2018-10-09 中车株洲电力机车有限公司 一种轨道车辆的测试方法及系统
CN108645634B (zh) * 2018-08-06 2020-10-27 珠海大横琴科技发展有限公司 一种轨道车辆故障诊断装置
RU2733594C2 (ru) * 2018-09-27 2020-10-05 Общество с ограниченной ответственностью "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ САУТ" (ООО "НПО САУТ") Микропроцессорная система управления и диагностики электропоезда
PL3853623T3 (pl) * 2018-10-16 2022-11-14 Siemens Mobility GmbH Sposób monitorowania akumulatora w pojeździe szynowym
CN110209104A (zh) * 2019-05-24 2019-09-06 武汉烽火技术服务有限公司 智能监控与运行维护的系统及方法
EP3994635A1 (de) * 2019-07-02 2022-05-11 Konux GmbH Überwachung, vorhersage und aufrechterhaltung des zustandes von eisenbahnelementen mit digitalen zwillingen
CN110525486B (zh) * 2019-08-14 2021-08-10 朔黄铁路发展有限责任公司 列车运行状态识别方法、装置、系统和存储介质
EP3792138A1 (de) * 2019-09-13 2021-03-17 Knorr-Bremse Gesellschaft mit beschränkter Haftung Verfahren und vorrichtung zum bereitstellen einer instandhaltungsinformation über ein türsystem für ein fahrzeug und türsystem für ein fahrzeug
US11361303B2 (en) * 2020-08-06 2022-06-14 Mastercard International Incorporated Method and system for facilitating secure payment transactions
DE102020212127A1 (de) 2020-09-25 2022-03-31 Siemens Mobility GmbH Verfahren zur Überprüfung einer technischen Funktion einer elektrischen und/oder mechanischen ersten Vorrichtung eines Eisenbahnsystems
CN113093053B (zh) * 2021-04-02 2022-05-17 广州市扬新技术研究有限责任公司 一种轨电位及杂散电流实时监测系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437156A (en) * 2006-04-10 2007-10-17 Schwihag Ag Inspection and/or monitoring of points in a points installation
EP1900597A1 (de) * 2006-09-18 2008-03-19 Bombardier Transportation GmbH Diagnosesystem und Verfahren zum Überwachen eines Eisenbahnsystems

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445347A (en) * 1993-05-13 1995-08-29 Hughes Aircraft Company Automated wireless preventive maintenance monitoring system for magnetic levitation (MAGLEV) trains and other vehicles
WO1998011356A1 (en) 1996-09-13 1998-03-19 The Timken Company Bearing with sensor module
US6125311A (en) 1997-12-31 2000-09-26 Maryland Technology Corporation Railway operation monitoring and diagnosing systems
DE19836081A1 (de) 1998-07-30 2000-02-17 Siemens Ag Verfahren zur Früherkennung von Schäden an Schienenfahrzeugen
US7783507B2 (en) * 1999-08-23 2010-08-24 General Electric Company System and method for managing a fleet of remote assets
US20110208567A9 (en) 1999-08-23 2011-08-25 Roddy Nicholas E System and method for managing a fleet of remote assets
US7219067B1 (en) 1999-09-10 2007-05-15 Ge Harris Railway Electronics Llc Total transportation management system
GB2378248A (en) 2001-05-09 2003-02-05 Worcester Entpr Ltd A fault prediction system for vehicles
US6813581B1 (en) 2003-03-26 2004-11-02 Union Pacific Railroad Company Statistical and trend analysis of railroad bearing temperatures
AU2006330903B2 (en) 2005-12-23 2012-07-12 Asf-Keystone, Inc Railroad train monitoring system
GB2450698A (en) 2007-07-03 2009-01-07 Mps Electronics Ltd Networked monitoring apparatus locatable on a vehicle
CN101397021A (zh) 2007-09-28 2009-04-01 北京佳讯飞鸿电气股份有限公司 基于光纤光栅的车辆运行监测系统
US9365223B2 (en) * 2010-08-23 2016-06-14 Amsted Rail Company, Inc. System and method for monitoring railcar performance
RU2444449C1 (ru) * 2010-09-07 2012-03-10 Общество с ограниченной ответственностью "Мостовое бюро" Способ и система диагностики и удаленного мониторинга контактной сети железной дороги
RU104907U1 (ru) * 2010-09-15 2011-05-27 Общество С Ограниченной Ответственностью "Авп Технология" Система диагностирования и восстановления работоспособности локомотива
DE102011002772A1 (de) 2011-01-17 2012-07-19 Siemens Aktiengesellschaft Verfahren zum Betreiben eines spurgebundenen Fahrzeugs
CN102320316B (zh) * 2011-05-16 2013-10-09 铁道部运输局 Ctcs-3级列控中心系统
RU116114U1 (ru) * 2011-11-07 2012-05-20 Общество с ограниченной ответственностью "Центр инновационного развития СТМ" (ООО "Центр инновационного развития СТМ") Микропроцессорная система управления и диагностики локомотива
DE102013201494A1 (de) 2012-09-18 2014-03-20 Siemens Aktiengesellschaft Diagnoseverfahren für Schienenfahrzeuge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437156A (en) * 2006-04-10 2007-10-17 Schwihag Ag Inspection and/or monitoring of points in a points installation
EP1900597A1 (de) * 2006-09-18 2008-03-19 Bombardier Transportation GmbH Diagnosesystem und Verfahren zum Überwachen eines Eisenbahnsystems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2877384B1 (de) 2012-09-18 2018-07-18 Siemens Aktiengesellschaft Verfahren zur diagnose von streckenkomponenten eines streckennetzes des schienenverkehrs
CN105083323A (zh) * 2014-05-22 2015-11-25 通用电气公司 用于处理故障的系统及方法
EP3594084A1 (de) 2018-07-13 2020-01-15 Schweizerische Bundesbahnen SBB Verfahren und vorrichtung zur überwachung eines eisenbahnnetzes und eisenbahnnetz

Also Published As

Publication number Publication date
BR112015005836B1 (pt) 2021-11-23
EP2877384B1 (de) 2018-07-18
PT2877383T (pt) 2018-10-15
BR112015005836A2 (pt) 2017-07-04
DK2877384T3 (en) 2018-10-08
CN104661891A (zh) 2015-05-27
CA2885110C (en) 2020-07-21
BR112015005803A2 (pt) 2017-07-04
MX2015003452A (es) 2015-06-22
CA2885110A1 (en) 2014-03-27
CN104718121A (zh) 2015-06-17
SA515360150B1 (ar) 2017-05-23
CN104661891B (zh) 2016-11-23
AU2013320505A1 (en) 2015-03-26
CA2885110E (en) 2014-03-27
MA37919A1 (fr) 2016-05-31
MX346448B (es) 2017-03-21
EP2877383A2 (de) 2015-06-03
SA515360148B1 (ar) 2016-04-21
ES2691976T3 (es) 2018-11-29
TN2015000080A1 (en) 2016-06-29
AU2013320504A1 (en) 2015-03-26
ZA201501702B (en) 2016-01-27
US20150247781A1 (en) 2015-09-03
ZA201501704B (en) 2016-01-27
US9630636B2 (en) 2017-04-25
US20150251677A1 (en) 2015-09-10
DK2877383T3 (en) 2018-11-05
EP2877384A2 (de) 2015-06-03
DE102013201488A1 (de) 2014-04-10
RU2015114325A (ru) 2016-11-10
IN2015DN01708A (de) 2015-05-22
RU2608992C2 (ru) 2017-01-30
WO2014044485A3 (de) 2014-09-18
WO2014044484A3 (de) 2014-09-12
WO2014044484A2 (de) 2014-03-27
PL2877383T3 (pl) 2018-12-31
US10131369B2 (en) 2018-11-20
RU2015114550A (ru) 2016-11-10
PT2877384T (pt) 2018-10-16
RU2644055C2 (ru) 2018-02-07
CA2885121A1 (en) 2014-03-27
PL2877384T3 (pl) 2019-01-31
CA2885121C (en) 2022-12-13
IN2015DN01757A (de) 2015-05-29
MX346449B (es) 2017-03-21
ES2694763T3 (es) 2018-12-27
AU2013320505B2 (en) 2018-03-08
AU2013320504B2 (en) 2018-03-08
DE102013201494A1 (de) 2014-03-20
MX2015003451A (es) 2015-06-22
TN2015000081A1 (en) 2016-06-29
CN104718121B (zh) 2017-10-13
EP2877383B1 (de) 2018-08-08
MA20150426A1 (fr) 2015-11-30

Similar Documents

Publication Publication Date Title
EP2877384B1 (de) Verfahren zur diagnose von streckenkomponenten eines streckennetzes des schienenverkehrs
EP3194229B1 (de) Verfahren zur überwachung und diagnose von komponenten eines schienenfahrzeugs, mit erweiterbarer auswertungssoftware
EP2631878A1 (de) Diagnoseverfahren und Diagnosevorrichtung für eine Fahrzeugkomponente eines Fahrzeugs
DE102012202540A1 (de) Diagnoseverfahren und Diagnosevorrichtung für eine Fahrzeugkomponente eines Fahrzeugs
DE102009009449A1 (de) Radsensor, Eisenbahnanlage mit zumindest einem Radsensor sowie Verfahren zum Betreiben einer Eisenbahnanlage
EP3199399A1 (de) Verfahren und vorrichtung zur überwachung einer entlang einer fahrstrecke verlaufenden fahrleitung
EP2464556B1 (de) Verfahren und elektronische einrichtung zur zustandsüberwachung von bauteilen bei schienenfahrzeugen
DE102017103020A1 (de) Gebäudetürsystem für zumindest einen elektromotorisch angetriebenen Türflügel einer Tür und Verfahren zum Erzeugen von Wartungsinformationen für ein Gebäudetürsystem
CN105572492A (zh) 一种城轨列车辅助逆变器故障诊断装置
EP3052359A1 (de) Verfahren und vorrichtung zur funktionsüberwachung eines fahrerassistenzsystems
EP3703993A1 (de) Datenfusionskonzept
EP3564091A1 (de) Verfahren und anordnung zur fehlerdetektion in einem weichensystem
EP3546314A1 (de) Verfahren und vorrichtung zur fehleridentifizierung für ein technisches system
EP1049050A2 (de) Mikrosystem zur lokalen Zustandsüberwachung und Zustandsdiagnose von Maschinen, Anlagen und/oder Baugruppen, insbesondere von Antriebssystemen
DE102008012097A1 (de) Überwachungseinrichtung für den Betrieb von Schaltschrankgeräten
CN105572493A (zh) 一种车载-地面辅助逆变器远程故障诊断系统
DE102021110536A1 (de) Verfahren zur Überwachung einer Förderanlage mit Förderelementen, Computerprogramm sowie elektronisch lesbarer Datenträger
EP3594084A1 (de) Verfahren und vorrichtung zur überwachung eines eisenbahnnetzes und eisenbahnnetz
WO2018041568A1 (de) Verfahren und vorrichtung zum überwachen von fahrzeugzuständen in schienenfahrzeugen
DE102014222637A1 (de) Verfahren und Vorrichtung zur Überwachung einer rotierenden Maschine
WO2019029969A1 (de) Sensoriell gesteuertes anpassen von odometrischen messparametern an wetterbedingungen
EP3466792A1 (de) Verfahren und system zum akustischen analysieren eines stellwerkraums
EP3963291B1 (de) Sensoranordnung zum überwachen eines technischen systems und verfahren zum betreiben einer sensoranordnung
DE102017130375A1 (de) Verfahren und Vorrichtung eines Kurzschluss- und Blitzanzeigers
WO2024056636A1 (de) Stromabnehmer mit sensoreinrichtung und verfahren zum betrieb

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013758769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 37918

Country of ref document: MA

ENP Entry into the national phase

Ref document number: 2885121

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14429213

Country of ref document: US

Ref document number: P348/2015

Country of ref document: AE

Ref document number: MX/A/2015/003452

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013320505

Country of ref document: AU

Date of ref document: 20130823

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758769

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015005836

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015114325

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015005836

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150317