WO2014042369A1 - 공냉식 연소로 설비 - Google Patents

공냉식 연소로 설비 Download PDF

Info

Publication number
WO2014042369A1
WO2014042369A1 PCT/KR2013/007737 KR2013007737W WO2014042369A1 WO 2014042369 A1 WO2014042369 A1 WO 2014042369A1 KR 2013007737 W KR2013007737 W KR 2013007737W WO 2014042369 A1 WO2014042369 A1 WO 2014042369A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
air
combustion body
cooling
solid fuel
Prior art date
Application number
PCT/KR2013/007737
Other languages
English (en)
French (fr)
Inventor
박준현
이재정
김민철
성동제
Original Assignee
(주)유성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)유성 filed Critical (주)유성
Priority to US14/428,216 priority Critical patent/US9951957B2/en
Priority to CN201380047553.6A priority patent/CN104981660B/zh
Publication of WO2014042369A1 publication Critical patent/WO2014042369A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/02Closed stoves
    • F24B1/024Closed stoves for pulverulent fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B40/00Combustion apparatus with driven means for feeding fuel into the combustion chamber
    • F23B40/04Combustion apparatus with driven means for feeding fuel into the combustion chamber the fuel being fed from below through an opening in the fuel-supporting surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B60/00Combustion apparatus in which the fuel burns essentially without moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H15/00Cleaning arrangements for grates; Moving fuel along grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B13/00Details solely applicable to stoves or ranges burning solid fuels 
    • F24B13/006Arrangements for cleaning, e.g. soot removal; Ash removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B13/00Details solely applicable to stoves or ranges burning solid fuels 
    • F24B13/02Arrangement or mountings of fire-grate assemblies; Arrangement or mountings of linings for fire-boxes, e.g. fire-backs 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B13/00Details solely applicable to stoves or ranges burning solid fuels 
    • F24B13/04Arrangements for feeding solid fuel, e.g. hoppers 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B5/00Combustion-air or flue-gas circulation in or around stoves or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B7/00Stoves, ranges or flue-gas ducts, with additional provisions for convection heating 
    • F24B7/04Stoves, ranges or flue-gas ducts, with additional provisions for convection heating  with internal air ducts

Definitions

  • the present invention relates to an air-cooled furnace facility that effectively operates the furnace to optimize thermal efficiency.
  • Incinerators are generally combusted while generating flames from the fuel in the combustion chamber.
  • the combustion chamber flame burns or pyrolyzes (carbonizes) the input waste or fuel and reburns the unburned gaseous material, depending on the situation.
  • Incinerators use solid fuel compressed into pellets as well as sawdust or wood shavings, which are generated at the workplace or at home, and devices for burning heat for boilers and cogeneration are being developed.
  • Boilers using solid fuel as fuel are widely used because they have low fuel costs and are environmentally friendly because they do not use diesel fuel, bunker-C oil, etc., which are greenhouse gas emission sources. It is also spreading to local power generation facilities and cogeneration as well as energy-consuming boilers.
  • slag and clinker are generated as the foreign materials, such as glass powder or soil, contained in many ashes and solid fuel melt at the high temperature of the combustion furnace. If the ash generated in this way is not quickly discharged to the outside and is deposited on each component of the combustion device, the combustion efficiency is lowered and causes a failure of the combustion device. Failure to remove ash, slag, or the like may cause the combustion device to malfunction and lead to an explosion as well as to stop the operation of the equipment, which may cause workers to injure or cause serious accidents such as fire.
  • the combustion chamber may be partially cooled, but other parts are hardly cooled, which is fatal for continuous operation of the equipment. In addition to bringing the problem of shortening the life of the facility.
  • the present invention provides an air-cooled combustion furnace facility that smoothly cools the furnace by distributing air for cooling the furnace evenly over the entire surface of the furnace.
  • the present invention provides an air-cooled combustion furnace facility that turns the preheated air at high speed while cooling the outer wall of the combustion furnace and injects it into the combustion furnace to raise the combustion atmosphere in the combustion furnace and increase combustion efficiency through proper mixing of fuel and air. do.
  • the present invention provides an air-cooled combustion furnace facility that prevents safety accidents such as fire and explosion due to fuel oversupply, by quantitatively controlling the amount of solid fuel supplied into the combustion furnace at a predetermined time.
  • the present invention provides an air-cooled furnace facility in which part of a combustion furnace inner wall can be easily replaced in case of damage to the furnace inner wall.
  • the present invention provides an air-cooled combustion furnace installation in which only the deformable portion can be easily replaced during thermal deformation of a grate supporting solid fuel combusted in a combustion furnace.
  • the hopper 150 for entering the solid fuel 10 is provided, the solid fuel 10 entered into the interior through the hopper 150 is burned Combustion body portion 100 to form a combustion space to produce heat energy while being;
  • Cooling unit 200 is formed integrally on the outer surface of the combustion body portion 100, partitioned in the vertical direction to form a plurality of layers while dispensing and injecting air separately in each layer to cool the combustion body portion 100;
  • Negative pressure induction unit 300 is connected to the upper portion of the combustion body portion 100 to suck the air entered into the combustion body portion 100 by the cooling unit 200 to form a negative pressure inside the combustion body portion 100 ;
  • a fuel supply unit 400 connected to the inside of the combustion body 100 to supply the solid fuel 10 to the combustion body 100;
  • the grate is formed inside the combustion body part 100, and a plurality of grate pieces 512 are coupled to each other to form the bottom surface of the combustion body part 100 while supporting the solid fuel 10 when the solid fuel 10 is burned. 510 is provided, the
  • the assembly unit 110 is a plurality of assembled together to form the inner wall of the combustion body part 100, and the assembly unit 110 includes a connection unit 120 to be coupled to or separated from each other. can do.
  • the fuel supply unit 400 includes a conveyor 410 for allowing the solid fuel 10 to be transferred, a cylinder 420 having a tubular shape into which the solid fuel 10 transferred from the conveyor 410 flows, and a cylinder 420. It may include a cylinder rod 430 to push the solid fuel 10 introduced into the cylinder 420 while reciprocating while entering from the outside to the inside.
  • the grate part 500 is connected to the lower part of the grate 510 formed to surround the outer surface of the hopper 150 to support the turntable 520 and the lower part of the turntable 520 to allow the grate 510 to rotate.
  • the rotation of the turntable 520 may include a support body 530 having a roller 551 to assist the rotation thereof and having a lower surface supported on the ground.
  • the support body 530 is fixed while wrapping the outer surface of the hopper 150, and the auxiliary body having a multi-stage step 532 on the outer surface to support the inner edge portion of the turntable 520 and the grate 510, respectively ( 534, a cylindrical elevating pipe 536 connected to the lower portion of the hopper 150, and the height adjuster 540 is fixed to the outer periphery of the elevating pipe 536 so that the elevating pipe 536 is raised or lowered. It may include.
  • the height adjuster 540 includes a lifting plate 542 connected to the lifting pipe 536 in a horizontal direction, and an inclination plate 544 disposed at a lower portion of the lifting plate 542, and having a side cross section having an inclination angle in a downward direction of the outside. And, disposed on the lower portion of the inclined plate 544, the side cross-section has an inclined angle in the upper direction of the outside and the inside of the inclined plate 544 while moving the inclined plate 544 to move up or down, and
  • the screw bolt 548 rotates inside the moving piece 546 and moves the position of the moving piece 546, and protrudes from the outer surface of the screw bolt 548 to form the moving piece 546 on the screw bolt 548. It may include a stopper 549 to control the flow.
  • the cooling unit 200 is supplied to the cooling unit 200 according to the flow rate sensor 203 for measuring the pressure of the air supplied into the cooling unit 200 and the air pressure measured by the flow rate sensor 203. It includes an air conditioning device 205 for adjusting the amount of air, the negative pressure induction unit 300, the pressure sensor 209 and the temperature inside the combustion body portion 100 to measure the pressure inside the combustion body portion 100 It includes a temperature sensor 201 for measuring, the combustion body portion 100, receives the flow rate value and pressure value measured by the flow rate sensor 203 and the pressure sensor 209, according to the flow rate value and pressure value It may include a controller 102 for controlling the air conditioner 205 and the negative pressure induction unit 300.
  • Combustion body part 100 the starter burner 104 to provide a flame in the combustion body part 100 so that the solid fuel 10 can be ignited
  • the combustion body part 100 is the combustion body part 100
  • Including the energy exchange unit 106 for converting the heat energy generated in the steam or electricity, the negative pressure induction unit 300, the communication 310 is connected to the upper portion of the combustion body 100, and is connected to the communication 310
  • the negative pressure generator 320 and the communication 310 and the negative pressure generator 320 may include a noxious gas processing unit 330 for removing or decomposing combustion gases having gaseous harmful substances and particulate hazardous substances.
  • the cooling unit 200 may include: a first cooler 210 supplying air to the combustion body part 100 to cool the lower part of the combustion body part 100; A second cooler 220 which cools the lower outer surface of the combustion body part 100 by supplying air while being assembled and assembled on the first cooler 210; A third cooler 230 configured to be assembled on the second cooler 220 and formed with a partition wall 202 in a vertical direction so as to overlap each other, and allow air injected from the outside to enter the lower portion of the combustion body part 100; The fourth cooler 240 is assembled to the upper portion of the third cooler 230, the partition wall 202 is formed in a vertical direction so that the overlap is disposed and the air injected from the outside enters between the lower part and the upper part of the combustion body part 100.
  • the fourth cooler 240 is assembled to the upper part and the partition wall 202 is formed in the vertical direction so that the overlap is disposed and the air injected from the outside rotates along the inside and the outside of the partition wall 202 to open the outer surface of the combustion body part 100.
  • the first, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 provide an air injection unit 204 that receives air from the outside and provides the combustion body unit 100 with air. Each can be provided.
  • the air flows diagonally so that air introduced from the outside may flow in the third cooler 230 and the fourth cooler 240 to form a vortex. It may further comprise a vortex piece 208 to guide the flow.
  • the clinker removal part 600 is formed to enter the combustion body part 100 and removes the clinker 30 generated in the grate 510 and the lower part of the combustion body part 100.
  • Clinker cooler for cooling the clinker remover 610 through the circulation of water or air is formed by extending in the outward direction of the combustion body portion 100 in the interior of the clinker remover 610 through the entrance portion 160 formed in the ( 620 and a power transmission unit 630 connected to the clinker cooler 620 outside the combustion body 100 to transfer power to rotate the clinker cooler 620.
  • Cooling housing 621 consisting of a rod-shaped external cooling tube 624 disposed on the outside of the portion 100, and extends outward from the external cooling tube 624, the cooling water 50 entered from the outside and
  • the cooling compartment 625 which partitions the cooling water 50 which is circulated in the cooling housing 621 and discharged to the outside, and the cooling housing 621 and the cooling compartment tank 625 are interconnected to each other and are connected to each other.
  • the entrance pipe 626 connected to the outer surface of the cooling compartment 625 and the cooling water 50 enters and A supply drain pipe 629 including an exhaust pipe 628 through which the coolant 50 circulated in the cooling housing 621 is discharged, and an entry pipe; 626 is connected to the interior of the cooling compartment tank 625 and the cooling housing 621 is arranged so that the cooling water 50 injected through the entry pipe 626 is supplied to the interior of the cooling housing 621. It may include a cooling supply pipe 631.
  • the access mounting portion 160 is provided with a first sealing bearing 161 surrounding the outer surface of the portion where the internal cooling tube 622 and the external cooling tube 624 are connected, and the inside and outside of the combustion body part 100.
  • the first sealing door 162 to isolate and the second sealing bearing 168 surrounding the outer surface of the internal cooling pipe 622 entered into the first sealing door 162 is provided, the first sealing door 162 In addition, it may include a second sealing door (166) to dually isolate the inside and the outside of the combustion body (100).
  • the clinker remover 610 is integrally formed to protrude to the outer surface of the clinker cooler 620, a part of which is entered into the combustion body part 100, and a plurality of them are formed side by side and interlocked according to the rotation of the clinker cooler 620. It may include a removal blade for removing the clinker 30 generated in the grate 510.
  • the air-cooled furnace apparatus by smoothly supplying the air to cool the furnace on the wall surface of the furnace to efficiently cool the furnace and inject the preheated air to the combustion atmosphere in the furnace Can be formed.
  • efficient cooling of the furnace can extend the life of components inside and outside the furnace, reducing production and operating costs.
  • the internal wall of the combustion furnace when the internal wall of the combustion furnace is damaged, the internal wall of the combustion furnace can be easily replaced, thereby improving work efficiency and reducing the replacement cost.
  • FIG. 1 is a view showing the air-cooled combustion furnace equipment according to the present invention.
  • Figure 2 is a view showing a cross section of the air-cooled combustion plant according to the present invention.
  • FIG 3 is a view showing a cooling unit of the air-cooled combustion furnace installation according to the present invention.
  • FIG. 4 is an exploded cross-sectional view of FIG. 3.
  • FIG. 5 is a view showing the flow of air in the cooling furnace combustion of the air-cooled combustion furnace installation according to the present invention.
  • Figure 6 is a view showing the main parts of the air-cooled combustion furnace installation according to the present invention.
  • FIG. 7 is a view showing a fuel supply unit of an air-cooled combustion furnace installation according to the present invention.
  • FIG. 8 is a cross-sectional view of FIG. 7.
  • FIG 9 is an enlarged view of a fuel supply unit of an air-cooled combustion furnace installation according to the present invention.
  • FIG. 10 is a view showing the grate portion of the air-cooled combustion plant according to the present invention.
  • FIG. 11 is a perspective view of the grate section of the air-cooled combustion furnace according to the present invention separated.
  • FIG. 12 is a cross-sectional view of the grate portion of FIG. 11.
  • FIG. 13 is a view showing the main parts of the air-cooled combustion furnace installation according to the present invention.
  • FIG. 14 is a view showing another main part of the combustion-fabricated grate provided with a turntable according to the present invention.
  • 15 is a view showing the assembly unit of the air-cooled combustion furnace equipment according to the present invention.
  • 16A is a diagram illustrating an embodiment according to FIG. 15.
  • 16B is a diagram illustrating an embodiment according to FIG. 16A.
  • FIG. 17A is a view showing another embodiment according to FIGS. 16A and 16B.
  • FIG. 17B is a view showing an embodiment according to FIG. 17A.
  • FIG. 18 is a view showing a clinker removal unit of the air-cooled combustion plant according to the present invention.
  • FIG. 19 is a view showing a cross section of the clinker removal unit in an air-cooled combustion furnace installation according to the present invention.
  • FIG. 20 is a cross-sectional view showing a state of use of the clinker removal unit according to the present invention.
  • 21 is a view showing a state of use of the combustion clinker removal unit in accordance with the present invention.
  • Figure 22 is a view showing the main portion of the clinker removal unit according to the present invention.
  • FIG. 23 is a view showing an embodiment of an air-cooled combustion furnace installation according to the present invention.
  • FIG. 1 is a view showing the air-cooled combustion furnace equipment according to the present invention
  • Figure 2 is a view showing a cross section of the air-cooled combustion furnace equipment according to the present invention.
  • a solid fuel 10 that can be used as fuel by compressing the waste plastics generated from each household and workplace waste into a solid is used.
  • the solid fuel 10 enters into the combustion body part 100 and then burns to generate heat energy and converts it into energy.
  • the cooling unit 200 is provided to cool the outer surface and the inside of the combustion body part 100.
  • combustion body portion 100 and the cooling unit 200 may be a steel or various metals having a high heat resistance. Particularly, heat-resistant metal is manufactured and used in casting form to minimize deformation by heat.
  • combustion body part 100 is provided with a space in which the solid fuel 10 is introduced into and combusted.
  • a hopper 150 for allowing the solid fuel 10 to enter the inside of the combustion body part 100 is provided, and the solid fuel 10 entered into the interior through the hopper 150 is burned to produce thermal energy. Combustion space is formed.
  • Cooling unit 200 is integrally formed on the outer surface of the combustion body portion 100, partitioned in the vertical direction to form a plurality of layers while separately dispensing and injecting air in each layer to cool the combustion body portion 100.
  • the cooling unit 200 performs a function of cooling the outer surface and the inner surface of the combustion body portion 100.
  • the cooling unit 200 is a function to prevent the heat transmitted to the outside and the inside of the combustion body portion 100 is discharged to the outside and injects air into the combustion body portion 100 from the outside, the preheated air By inputting it performs a function to increase the combustion atmosphere in the combustion body portion 100.
  • the negative pressure induction part 300 is used to prevent the occurrence of thermal shock by controlling them.
  • the negative pressure induction part 300 is used to maintain the air pressure of the combustion body part 100 lower than the external air pressure.
  • the negative pressure induction unit 300 is connected to the upper portion of the combustion body portion 100 to suck air entered into the combustion body portion 100 by the cooling unit 200 to form a negative pressure inside the combustion body portion 100. Perform the function that makes it possible. Since the air inside the combustion body part 100 smoothly flows through the negative pressure induction part 300 to the outside, the inside of the combustion body part 100 can maintain the negative pressure, so that the inner and outer cylinders of the combustion furnace due to the positive pressure operation The parts can prevent damage.
  • the solid fuel 10 is supplied into the combustion body part 100 to be burned in the combustion body part 100 to generate heat and steam.
  • a fuel supply unit 400 for transporting the solid fuel 10 is used.
  • the fuel supply unit 400 includes a conveyor 410 to allow the solid fuel 10 to be transferred, and a cylinder 420 having a tube shape into which the solid fuel 10 transferred from the conveyor 410 is introduced.
  • the fuel supply unit 400 further includes a cylinder rod 430 configured to push and transport the solid fuel 10 introduced into the cylinder 420 while reciprocating while being entered from the outside of the cylinder 420.
  • the solid fuel 10 is transferred through the fuel supply unit 400 to enter the combustion body 100 through the hopper 150 and is burned in the combustion body 100.
  • the solid fuel 10 When the solid fuel 10 enters the combustion body part 100 through the hopper 150, the solid fuel 10 is formed on the upper surface of the grate part 500 that forms the bottom surface of the combustion body part 100. Is burned while being supported.
  • the grate portion 500 is a grate forming a bottom surface of the combustion body portion 100 while supporting the solid fuel 10 when the plurality of arc-shaped grate pieces 512 are coupled to each other when the solid fuel 10 burns. 510.
  • the grate part 500 has a turntable 520 connected to the lower part of the grate 510 formed while surrounding the outer surface of the hopper 150 to allow the grate 510 to rotate.
  • the grate part 500 supports the lower part of the turntable 520, and has a roller 551 on the upper part to assist the rotation of the turntable 520 when the turntable 520 rotates, and supports the support body 530 whose lower surface is supported on the ground. It includes more.
  • the clinker 30 is formed to enter the inside from the outside of the combustion body portion 100 It is removed by the clinker removal unit 600.
  • Figure 3 is a view showing a cooling unit of the air-cooled combustion plant according to the present invention
  • Figure 4 is a separate cross-sectional view separated from FIG.
  • the combustion body portion 100 is a grate forming a bottom surface of the combustion body portion 100 while supporting the solid fuel 10 when a plurality of pieces are coupled to each other when the solid fuel 10 is burned.
  • the combustion body part 100 is connected to the lower part of the grate 510 so that the grate 510 is rotated and the grate 510 from the lower part of the turntable 520 so that the solid fuel 10 is supplied to the grate 510.
  • a ash chamber 105 in which ash of the solid fuel 10 burned by the grate 510 is transferred and stored is formed.
  • the chamber 105 is provided with a discharge plate 107 for discharging the ash of the solid fuel 10 introduced into the chamber 105 to the outside of the chamber 105.
  • the discharge chamber 109 is formed in the chamber 105 to form a passage through which the ash is discharged, and the ash of the chamber 105 is discharged through the discharge hole 109 in the lower portion of the discharge hole 109.
  • a re-cylinder 103 is arranged for later storage.
  • the discharge plate 107 is connected to the lower part of the turntable 520 and is disposed in the chamber 105 at the same time as the turntable 520 is rotated to guide the ash inside the chamber 105 to the discharge hole 109 so that the ash is closed. It is discharged to the outside of the combustion body 100 to be stored in the re-cylinder (103).
  • the grate 510 supports the solid fuel 10 so that it can be smoothly burned, and the hopper so that the burned solid fuel 10 can be changed to ash and moved to the ash chamber 105 formed at the lower portion of the combustion body 100. It is arrange
  • the grate 510 is formed by a plurality of grate pieces 512 formed in a plurality of arcs firmly coupled to each other.
  • the grate 510 may be arranged in the horizontal direction forming the bottom surface of the combustion body 100, and can be operated by varying the inclination angle of the fuel by adjusting the input amount of the solid fuel according to the user's needs.
  • the grate 510 forms one grate 510 in the form of a donut by assembling a plurality of pieces to each other.
  • the cost of the consumable parts may be reduced by separately replacing only the damaged grate piece 512.
  • the turntable 520 is formed to rotate the hopper 150 vertically entered into the combustion body part 100 while supporting the grate 510 under the grate 510.
  • the hopper 150 is formed while vertically penetrating the lower center of the combustion body portion 100 from the outside of the combustion body portion 100.
  • the hopper 150 serves to supply the solid fuel 10 to the combustion body 100 from the outside of the combustion body 100.
  • the grate 510 and the turntable 520 may be made of various materials such as steel or metal having high heat resistance.
  • the cooling unit 200 is provided while wrapping the outer wall of the combustion body portion 100, is disposed to be connected to be stacked from the bottom of the combustion body portion 100 to the upper side along the outer surface of the combustion body portion (100).
  • the cooling unit 200 is assembled to the first cooler 210 and the first cooler 210 to cool the lower part of the combustion body part 100 by supplying air to the combustion body part 100.
  • the second cooler 220 is coupled to supply air while cooling the lower outer surface of the combustion body 100.
  • the third cooler 230 is assembled to the second cooler 220 and the partition wall 202 is formed in the vertical direction so as to overlap each other, and the air injected from the outside enters the lower portion of the combustion body part 100.
  • a fourth cooler that is assembled to the upper part of the third cooler 230 and has a partition wall 202 formed in a vertical direction so as to overlap each other, and that air injected from the outside enters between the lower part and the upper part of the combustion body part 100.
  • the fourth cooler 240 is assembled to the upper portion and the partition wall 202 is formed in the vertical direction to form a stack, and the air injected from the outside rotates along the inside and outside the partition wall 202 of the combustion body portion 100
  • the fifth cooler 250 and the fifth cooler 250 for cooling the outer surface is assembled and the partition wall 202 is formed in the oblique direction in the inner oblique direction is formed overlapping, the opening groove 262 is formed on the upper and the inner diameter toward the top
  • the injected air includes a sixth cooler 260 that cools the outer surface of the combustion body part 100 while rotating along the inside and the outside of the partition wall 202.
  • the first, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 are formed in a tubular shape having a flat cross section so as to surround the outer wall of the combustion body part 100. It is formed to flow air inside.
  • the third, fourth, fifth, and sixth coolers 230, 240, 250, and 260 have partitions 202 partitioning the interior in a vertical direction, and air is introduced from the outside based on the partitions 202 so that the partitions ( 202 is formed to allow air to flow.
  • first, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 are mutually coupled to each other in a stacked structure from the bottom of the outer surface of the combustion body part 100 to the top, respectively
  • the pair of body parts 100 are disposed to correspond to each other.
  • first, second, third, fourth, fifth, sixth coolers 210, 220, 230, 240, 250, 260 can effectively cool the combustion body 100, their positions and numbers may be variously manufactured. Of course it can.
  • first, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 are supplied with air from the outside to be provided to the combustion body part 100. Each of them is provided.
  • the number of coolers 210, 220, 230, 240, 250, and 260 may be reduced or increased depending on the capacity of the furnace or the object to be treated.
  • the cooling unit 200 sequentially stacks the first, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 from the lower portion of the outer wall of the combustion body part 100. It is arranged in a structure that becomes.
  • first, second, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 sequentially stacked may be provided with the air injected through the air injection unit 204. By adjusting the amount and intensity separately, it can be carried out cooling by the part of the combustion body portion (100).
  • the first, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 are each formed by combining a plurality of plate pieces.
  • first, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 are partially damaged during use, a plurality of pieces of the plate are formed to be bonded to each other. By simply replacing it, the service life of the first, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 may be maximized.
  • cross sections of the first, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 smoothly cool the combustion body part 100 while air flows into the inside. If you can, it is natural to have a variety of shapes, such as round oval rectangle.
  • the first, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 receive air from the outside through the air injection units 204 provided in the combustion body parts. Perform a function of cooling (100).
  • the exhaust gas formed in the combustion body portion 100 according to the combustion of the solid fuel 10 including the air introduced through the cooling unit 200 in the upper portion of the combustion body portion 100 to the outside in the combustion furnace to the outside Negative pressure induction unit 300 to perform the function to make is connected.
  • the negative pressure induction part 300 sucks the air entered into the combustion body part 100 by the cooling part 200 and the high pressure air in accordance with the combustion of the solid fuel 10, and the negative pressure inside the combustion body part 100. To be formed.
  • the negative pressure induction part 300 has a communication 310 connected to the upper portion of the combustion body 100 and a sound pressure generator 320 connected to the communication 310.
  • the communication 310 performs a function of a passage through which the air inside the combustion body part 100 flows. As the air of high heat flows, steel, metal or refractory material having a high heat resistance is used. Can be done.
  • the negative pressure generator 320 is formed to be connected to the communication 310 to perform the function of sucking the combustion gas inside the combustion body portion 100.
  • the negative pressure induction part 300 may minimize the damage to the parts by the pressure in the combustion body part 100 by adjusting the pressure in the combustion body part 100 according to the user's needs.
  • FIG. 5 is a view showing the flow of air in the cooling furnace combustion of the air-cooled combustion furnace installation according to the present invention.
  • the combustion air entering the first, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 through each air injection unit 204 may be a combustion body part. Cooling the combustion body portion 100 while rotating strongly on the outer wall of the (100).
  • the air entered into the first, second, fifth and sixth coolers 210, 220, 250 and 260 is burned while continuously rotating in the first, second, fifth and sixth coolers 210, 220, 250 and 260. Cool the body 100.
  • the air entering the third and fourth coolers 230 and 240 rotates in the third and fourth coolers 230 and 240 and enters the combustion body part 100 to cool the inner surface of the combustion body part 100.
  • the first cooler 210 rotates the upper chamber 105 and the turntable 520 along the inside of the first cooler 210 while the air enters the turntable 520. Cool the surroundings, including.
  • the second cooler 220 rotates the air along the inside of the second cooler 220 outside the position where the top of the turntable 520 and the grate 510 are disposed on a horizontal plane, and thus the top of the turntable 520 and the grate ( 510) cool the surroundings.
  • the third cooler 230 has a partition 202 formed in a vertical direction.
  • the partition wall 202 provided in the third cooler 230 partitions the third cooler 230, but the upper part of the partition wall 202 is opened, the air entering the air injection unit 204 is formed around the partition wall 202. At the same time as the outside of the three cooler 230 flows into and flows into the inside.
  • the third cooler 230 has a dual structure, air entering the air injection unit 204 flows along the outer wall of the combustion body part 100 from the outside of the third cooler 230 with respect to the partition 202. It enters into the third cooler 230 through the opened portion of the partition wall 202 and flows quickly along the outer wall of the combustion body part 100.
  • the air flowing in the third cooler 230 enters the combustion body part 100 through the guide path 206, which is a gap formed in the lower portion of the third cooler 230.
  • the air entered into the combustion body part 100 through the guide path 206 supplies oxygen to the solid fuel 10 entered through the hopper 150 so that the solid fuel 10 can be smoothly burned. Cool the inside of the combustion body (100).
  • the third cooler 230 simultaneously cools the inner and outer portions of the periphery of the portion where the grate 510 is formed, which is the lower part of the combustion body 100, and supplies oxygen to the solid fuel 10. .
  • the fourth cooler 240 has a partition 202 formed in a vertical direction like the third cooler 230 is formed.
  • the partition wall 202 provided in the fourth cooler 240 partitions the fourth cooler 240 but the lower part is arranged to be opened, the air entering the air injection unit 204 is formed around the partition wall 202. At the same time as flowing from the outside of the four cooler 230 enters and flows inside.
  • the air entering the air injection unit 204 flows along the outer wall of the combustion body part 100 from the outside of the fourth cooler 240 around the partition 202. It enters into the fourth cooler 240 through the open portion of the partition 202 and flows quickly along the outer wall of the combustion body part 100.
  • the air flowing in the fourth cooler 240 enters the combustion body part 100 through the guide path 206 which is a gap formed in the upper portion of the fourth cooler 240.
  • the air entered into the combustion body part 100 through the guide path 206 cools the inside of the combustion body part 100 while supplying air to the upper portion of the hopper 150.
  • the third and fourth coolers 230 and 240 allow the air entered through the air injection unit 204 to rotate inside the third and fourth coolers 230 and 240 and to enter the combustion body part 100. Is formed.
  • the third cooler 230 simultaneously cools the surroundings of the grate 510 and the hopper 150 and the inside and the outside of the combustion body 100, which are lower parts of the combustion body 100
  • the fourth cooler ( 240 simultaneously cools the inside and outside of the combustion body portion 100, which is an interruption of the combustion body portion 100.
  • the air is oblique so that air introduced from the outside may flow in the third cooler 230 and the fourth cooler 240 to form a vortex.
  • a vortex piece 208 is formed which guides the flow into the air.
  • the vortex piece 208 is described as being provided in the third and fourth coolers 230 and 240, the vortex piece 208 is formed in the first, second, fifth and sixth coolers 210, 220, according to the user's needs. It is preferable to arrange the inside of the 250 and 260 to cool the combustion body 100 while the air flows quickly and smoothly.
  • the fifth cooler 250 has a partition 202 formed in a vertical direction like the fourth cooler 240 is formed.
  • the partition wall 202 provided in the fifth cooler 250 partitions the fifth cooler 250, but the lower or upper portion of the partition wall 202 is opened so that the air entering the air injection unit 204 is centered on the partition wall 202. As it flows from the outside of the fifth cooler 250 and enters into the inside and flows.
  • the air entering the air injection unit 204 flows along the outer wall of the combustion body part 100 from the outside of the fifth cooler 250 with respect to the partition 202. It enters into the fifth cooler 250 through the open portion of the partition 202 and flows quickly along the outer wall of the combustion body part 100.
  • the fifth cooler 250 cools the upper outer portion of the combustion body part 100 by allowing air to flow outside the outer wall of the upper portion of the combustion body part 100.
  • the sixth cooler 260 has a partition 202 formed in a vertical direction.
  • the partition wall 202 provided in the sixth cooler 260 partitions the sixth cooler 260, but the lower or upper portion of the partition wall 202 is opened so that the air entering the air injection unit 204 is centered on the partition wall 202. At the same time as flowing from the outside of the sixth cooler 260 and enters into the inside and flows.
  • the partition wall 202 provided in the sixth cooler 260 is formed in a shape corresponding to the sixth cooler 260, and has an inclination angle in an upward direction inside the combustion body 100 and is disposed diagonally.
  • an opening groove 262 is formed in an upper portion of the sixth cooler 260, and an inner diameter thereof gradually decreases toward the upper portion of the sixth cooler 260, and the injected air rotates along the inside and the outside of the partition wall 202. Cool the outer surface.
  • the sixth cooler 260 has a dual structure, air entering the air injection unit 204 flows along the outer wall of the combustion body part 100 outside the sixth cooler 260 around the partition 202. While entering the sixth cooler 260 through the open portion of the partition 202 flows quickly along the outer wall of the combustion body portion 100.
  • the sixth cooler 260 cools the uppermost outer portion of the combustion body part 100 by allowing air to flow outside the outer wall of the uppermost part of the combustion body part 100.
  • the air supplied to the first, second, fifth, and sixth coolers 210, 220, 250, and 260 continuously circulates along the outer wall of the combustion body part 100, and external and peripheral parts of the combustion body part 100. Cool them.
  • the air supplied to the third and fourth coolers 230 and 240 flows along the outer wall of the combustion body part 100 and enters the combustion body part 100 to allow the outside and the peripheral parts of the combustion body part 100 to flow. And simultaneously cool the inside of the combustion body 100.
  • the combustion body part 100 when the air supplied to the third and fourth coolers 230 and 240 flows into the combustion body part 100, after cooling the inside of the combustion body part 100, the combustion body is controlled by the negative pressure induction part 300. The part 100 is discharged to the outside.
  • the negative pressure induction unit 300 has a communication 310 connected to the upper portion of the combustion body 100, and a negative pressure generator 320 connected to the communication 310.
  • the negative pressure generator 320 is inside the combustion body part 100.
  • the air is sucked into the combustion body portion 100 to be discharged to the outside through the communication (310).
  • Figure 6 is a view showing the main parts of the air-cooled combustion furnace installation according to the present invention.
  • the inner diameters of the first and second coolers 210 and 220 are larger than the inner diameters of the third and fourth coolers 230 and 240, and the inner diameters of the third and fourth coolers 230 and 240.
  • the inner diameter is larger than the inner diameters of the fifth and sixth coolers 250 and 260.
  • the first, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 are merely exemplary, and a design change is made according to an operating condition or state, and the first according to a determined design value
  • the inner diameters of the 2, 3, 4, 5, and 6 coolers 210, 220, 230, 240, 250, and 260 may be variously changed.
  • the combustion body portion 100 has a shape that decreases in width toward the top.
  • Air flowing along the outer surface of the partition wall 202 and the combustion body part 100 of each of the third and fourth coolers 230 and 240 is disposed in the lower part of the third cooler 230 and the upper part of the fourth cooler 240.
  • a plurality of guide paths 206 for guiding the inside of the part 100 to enter are included.
  • the guide path 206 is preferably disposed long along the flow direction of the air entering the cooling unit 200 through the air injection unit 204.
  • the guide path 260 performs a function to allow the air to smoothly enter the combustion body portion 100.
  • the inside of the third cooler 230 and the fourth cooler 240 is a slanted air so that the air introduced from the outside flows in the third cooler 230 and the fourth cooler 240 to form a vortex A vortex piece 208 is formed which guides the flow into the air.
  • the vortex piece 208 guides the air in the third and fourth coolers 230 and 240 to form a vortex and flows rapidly, and the combustion body part 100 in the third and the fourth coolers 230 and 240.
  • the vortex piece 208 guides the air in the third and fourth coolers 230 and 240 to form a vortex and flows rapidly, and the combustion body part 100 in the third and the fourth coolers 230 and 240.
  • FIG. 7 is a view showing a fuel supply unit of the air-cooled combustion furnace installation according to the present invention
  • Figure 8 is a view showing a cross section of FIG.
  • the solid fuel 10 is supplied into the combustion body 100 to be burned in the combustion body 100 to generate heat and steam.
  • a fuel supply unit 400 for transporting the solid fuel 10 is used.
  • the fuel supply unit 400 includes a conveyor 410 for allowing the solid fuel 10 to be transferred, and a cylinder 420 having a tube shape into which the solid fuel 10 transferred from the conveyor 410 is introduced.
  • the fuel supply unit 400 further includes a cylinder rod 430 configured to push and transport the solid fuel 10 introduced into the cylinder 420 while reciprocating while being entered from the outside of the cylinder 420.
  • the solid fuel 10 is transferred through the fuel supply unit 400 to enter the combustion body 100 through the hopper 150 and is burned in the combustion body 100.
  • the solid fuel 10 transferred from the conveyor 410 is transferred through the cylinder 420 in the form of a tube.
  • the cylinder rod 430 for pushing and transporting the solid fuel 10 introduced into the cylinder 420 while reciprocating while entering the inside from the outside of the cylinder 420. ) Is used.
  • the solid fuel 10 transferred in the cylinder 420 through the cylinder rod 430 is transferred to the hopper 150 extending upward in the cylinder 420.
  • the upper portion of the hopper 150 is placed in the combustion body portion 100 in which the solid fuel 10 is burned to perform the function of allowing the solid fuel 10 to be supplied into the combustion body portion 100.
  • the conveyor 410 is a belt 412 to be transported while the solid fuel 10 is disposed on the upper surface, a pulley 414 connected to the belt 412 to rotate the belt 412, pulley ( It has a motor 416 that transmits power to 414.
  • the motor 416 connected to the pulley 414 performs a function of operating the pulley 414 to rotate the pulley 414.
  • the belt 412 is linked to the pulley 414 to perform the function of transporting the solid fuel 10 while being rotated and transported along the rotational direction of the pulley 414.
  • the conveyor 410 has a frame 411 disposed around the side of the belt 412 while standing on the ground spaced apart from the belt 412.
  • the conveyor 410 is disposed in an upward direction at the edge of the frame 411 along the longitudinal direction of the belt 412, the departure prevention plate 413 to block the solid fuel 10 is separated from the belt 412. It includes.
  • the release preventing plate 413 serves to prevent the solid fuel 10 mounted on the belt 412 from being separated to the side of the belt 412.
  • the frame 411 and the separation prevention plate 413 is disposed so as to be spaced apart from the belt 412 so as not to interfere with the movement of the belt 412, the solid fuel 10 is transported while being mounted on the belt 412 belt Preferably, it is disposed as close to the belt 412 as possible to prevent the departure from 412.
  • the frame 411 supports the release preventing plate 413, and the motor 416 may be mounted according to a user's needs.
  • the frame 411 does not interfere with the operation of the belt 412 while passing through the release preventing plate 413, and the solid fuel 10 is not separated from the belt 412 due to the separation distance from the belt 412. It can be formed in various forms.
  • the solid fuel 10 supplied from the conveyor 410 is transferred through the cylinder 420 of the tubular shape.
  • the cylinder 420 is composed of a straight tube 422 formed in a straight line and a curved tube 426 formed in a curve.
  • the straight pipe 422 includes a dust collecting chamber 424 which is a space in which the solid fuel 10 supplied from the conveyor 410 is collected, and guides the solid fuel 10 to be transported while rotating on the inner surface of the curved tube 426.
  • Rotation guide piece 428 is included.
  • the position of the belt 412 of the conveyor 410 is located above the dust collecting chamber 424 to drop the solid fuel 10 from the upper part of the dust collecting chamber 424 and supply it to the dust collecting chamber 424.
  • the top of 424 is open and formed.
  • the solid fuel 10 transferred from the upper surface of the belt 412 is supplied to the dust collecting chamber 424 away from the belt 412.
  • the cylinder 420 is a straight tube 422 in the form of a tube extending in a straight line in the dust collecting chamber 424 and formed in the lengthwise direction, and extending in the straight tube 422 and the inside It consists of a curved tube 426 in the form of a penetrating, curved tube.
  • the cylinder rod 430 pushes and transports the solid fuel 10 introduced into the cylinder 420 while reciprocating while being entered from the outside of the cylinder 420.
  • the cylinder rod 430 pressurizes the solid fuel 10 while entering the inside from the outside of the side of the cylinder 420 so that the solid fuel 10 supplied from the conveyor 410 is placed closely in the cylinder 420. It has a pressurizing rod 440.
  • the pressure rod 440 includes a pressure plate 442 pressurized while being in close contact with the solid fuel 10, and the transfer rod 450 is transported so that the solid fuel 10 is in close contact with the solid fuel 10. It includes a transfer bundle (452).
  • the pressure rod 440 and the transfer rod 450 are reciprocated horizontally so as to have a cross angle of 90 ° to each other in the dust collecting chamber 424 which is the interior of the cylinder 420.
  • the dust collecting chamber 424 has a portion into which the pressure rod 440 and the transfer rod 450 enter so that the pressure rod 440 and the transfer rod 450 can be smoothly moved from the outside of the dust chamber 424 to the inside. Is open.
  • the open portion of the dust collecting chamber 424 into which the pressure rod 440 and the transfer rod 450 enter the pressurizing rod 440 and the transfer rod so that the solid fuel 10 inside the dust collecting chamber 424 does not leak to the outside It is desirable to have a shape corresponding to the outer diameter of 450.
  • a rubber packing (not shown) or silicon packing (not shown) may be provided at an open portion of the dust collecting chamber 424 to which the pressure rod 440 and the transfer rod 450 enter, as necessary, to prevent external leakage of the solid fuel 10. Not shown) may be provided.
  • the solid fuel 10 transferred along the straight pipe 422 and the curved pipe 426 of the cylinder 420 through the pressure of the pressure rod 440 and the transfer rod 450 is an upper portion of the curved pipe 426. Entered into the hopper 150 is connected to.
  • the lower portion of the hopper 150 is connected to the upper portion of the curved tube 426 outside the combustion body portion 100, the upper portion of the hopper 150 is disposed while entering the interior of the combustion body portion 100. .
  • the hopper 150 has a wide top and narrow bottom in the form of a light beam narrow, and is formed to have an open top.
  • On the inner surface of the hopper 150 is a spiral shape so that the solid fuel 10 located on the inner wall of the hopper 150 can be smoothly transferred to the upper portion of the hopper 150 among the solid fuel 10 supplied from the curved tube 426.
  • Rotation guide pieces 155 protruded to form a.
  • the curved tube 426 leading from the cylinder 420 to the hopper 150 is the upper portion of the curved tube 426 than the inner diameter of the connection portion of the curved tube 426 connected to the straight tube 422 like the hopper 150.
  • the inner diameter of is formed wide.
  • the curved tube 426 has a form of a normal light narrowing diameter whose inner diameter gradually increases from the lower portion of the vertically erected portion to the upper portion thereof.
  • the solid fuel 10 is guided by the rotation induction piece 155 to smoothly be transferred to the upper portion of the hopper 150.
  • the solid fuel 10 discharged to the open upper portion of the hopper 150 enters into the combustion body part 100.
  • FIG 9 is an enlarged view of a fuel supply unit of an air-cooled combustion furnace installation according to the present invention.
  • the solid fuel 10 supplied from the belt 412 of the conveyor 410 to the dust collecting chamber 424 is pressurized by the pressure rod 440 and the transfer rod 450.
  • the straight pipe 422 and the curved pipe 426 of 420 is transferred to the hopper 150.
  • the outer surface of the belt 412 to prevent contamination of the outer surface of the belt 412 by the solid fuel 10 the anti-fouling film 418 of rubber or silicon material detachably coupled to the upper surface of the belt 412 This can be overwritten.
  • the anti-fouling film 418 provided in the belt 412 is formed in the spaced space between the frame 411 and the belt 412 to prevent the solid fuel 10 from leaking into the spaced space.
  • the solid fuel 10 supplied to the dust collecting chamber 424 is pressed by the pressing plate 442 of the pressure rod 440 is placed in close contact with the wall surface of the dust collecting chamber 424.
  • the inner surface of the curved tube 426 is formed with a rotating guide piece 428 is formed with a spiral inwardly so that the solid fuel 10 in close contact with the curved tube 426 wall surface can be smoothly transferred in the upward direction. do.
  • the solid fuel 10 located at the inner wall portion of the curved tube 426 is raised while being rotated on the inner wall of the curved tube 426 along the rotation guide piece 428 to be connected to the upper portion of the curved tube 426. Is transferred to).
  • the solid fuel 10 is supplied into the combustion body portion 100 through the upper portion of the open hopper 150.
  • the solid fuel 10 supplied from the conveyor 410 is collected in the dust collecting chamber 424.
  • the solid fuel 10 is closely arranged with each other by the pressure plate 442 connected to the pressure rod 440 entering from the side of the dust collecting chamber 424.
  • the solid fuel 10 in which the transfer bundle 452 connected to the transfer rod 450 entering the agglomeration chamber 212 in the longitudinal direction of the straight pipe 422 is densely arranged is placed. It is pressurized and transferred into the straight pipe 422.
  • the inner surface of the pressing plate 442 and the inner surface of the dust collecting chamber 424 facing the inner surface of the pressing plate 442 form an ellipse while facing each other.
  • the pressing plate 442 presses the solid fuel 10, the dust collecting chamber 424 and the pressing plate. Along the inner surface of 442 may reciprocate therebetween.
  • the outer shape of the conveyance bundle 452 is formed so that the inner surface of the pressing plate 442 and the inner surface of the dust collecting chamber 424 facing the inner surface of the pressing plate 442 correspond to the completed form.
  • the inner surface of the pressure plate 442 and the inner surface of the dust collecting chamber 424 may form a variety of forms, and accordingly the outer shape of the transfer bundle 452 may also be correspondingly modified.
  • the conveying bundle 452 is the wall surface of the pressure plate 442 and the dust collecting chamber 424 in a state in which the pressure plate 442 pressurizes the solid fuel 10 to be densely arranged on the opposite wall surface of the dust collecting chamber 424.
  • the solid fuel 10, which is densely arranged while passing therebetween, is transferred to the straight pipe 422.
  • the solid fuel 10 When the solid fuel 10 accumulates in the straight tube 422, the solid fuel 10 is transferred to the curved tube 426 connected to the straight tube 422.
  • the solid fuel 10 located on the inner wall surface of the hopper 150 rises on the inner wall of the hopper 150 so that the rotating guide piece is formed in a spiral shape so as to be transported ( 155 is formed.
  • the solid fuel 10 entered into the hopper 150 is supplied to the combustion body 100 through the upper portion of the open hopper 150.
  • FIG. 10 is a view showing a grate portion of the air-cooled combustion plant according to the present invention
  • Figure 11 is a perspective view of the grate section of the air-cooled combustion plant installation according to the present invention
  • Figure 12 is a cross-sectional view of the grate portion of FIG. Drawing.
  • the grate portion 500 is a grate forming a bottom surface of the combustion body portion 100 while supporting the solid fuel 10 when the plurality of arc-shaped grate pieces 512 are coupled to each other when the solid fuel 10 burns. 510.
  • the grate part 500 has a turntable 520 connected to the lower part of the grate 510 formed while surrounding the outer surface of the hopper 150 to allow the grate 510 to rotate.
  • the grate part 500 supports the lower part of the turntable 520, and has a roller 551 on the upper part to assist the rotation of the turntable 520 when the turntable 520 rotates, and supports the support body 530 whose lower surface is supported on the ground. It includes more.
  • the roller 551 is formed on the upper portion of the support body 530, is in close contact with the lower portion of the turntable 520 to support the turntable 520 while the rotation is smoothly made when the turntable 520 rotates.
  • the load of the turntable 520 is distributed.
  • roller 551 Details of the roller 551 will be described in detail below.
  • the grate piece 512 includes a guide protrusion 514 formed in a spiral form so that the solid fuel 10 is combusted to be moved from the inner side to the outer side of the grate 510.
  • the solid fuel 10 mounted on the upper portion of the grate piece 512 is inside the grate 510 along the guide protrusion 514 by the rotation of the grate 510 linked through the rotation of the turntable 520. Slowly moving from the outside to complete combustion is possible.
  • the grate pieces 512 are formed to overlap with each other, even if the grate pieces 512 are partially damaged by the high heat during the combustion of the solid fuel 10, only the damaged parts are replaced separately so that the cost of the consumable parts is reduced. Can reduce the cost.
  • the grate 510 may adjust the time that the solid fuel 10 moves along the grate piece 512 by giving an inclination angle to the grate 510 to control the combustion time of the solid fuel 10.
  • the solid fuel 10 burned on the upper surface of the grate 510 may maintain various combustion times according to the needs of the user, thereby optimizing the combustion efficiency of the solid fuel 10.
  • the turntable 520 has an upper turntable 522 disposed in close contact with the bottom of the grate 510 and a lower turntable 524 supported under the upper turntable 522.
  • the turntable 520 includes a rake gear 521 supported at a lower portion of the lower turntable 524 and a motor 525 having a pinion gear 523 connected to the rake gear 521 to transmit rotational power. .
  • the motor 525 causes the pinion gear 523 to be rotated so that the leg gear 521 is operated, and the lower turn table 524 is rotated while the leg gear 521 is operated.
  • the upper turn table 522 is rotated while being interlocked, and the grate 510 supported on the upper turn table 522 is also rotated.
  • the upper turn table 522 is provided with a refractory layer 526 to block the heat of the grate 510 is conducted to the lower portion of the upper turn table 522.
  • the refractory layer 526 serves to prevent the components configured under the upper turntable 522 from being damaged by the heat of the solid fuel 10 burned on the upper portion of the grate 510.
  • the refractory layer 526 is a material that withstands high temperatures, does not soften at high temperatures of at least 1000 ° C. or more, and maintains its strength and can withstand chemical effects.
  • the motor 525 has a rod-shaped rotation shaft 527 which is coupled to the pinion gear 523 and rotated.
  • a coupling gear 528 for rotating the rotation shaft 527 and a motor 529 for transmitting the power to the coupling gear 528 to rotate the coupling gear 528 are provided.
  • the motor 525 performs a function of rotating the turntable 520.
  • the power generator 525 has the above-described configuration in one embodiment, but various components may be used if the turntable 520 can be smoothly rotated to rotate the grate 510.
  • the upper portion of the support body 530 is provided with a hopper 150 which is disposed through the grate 510 in the upward direction from the bottom of the turntable 520.
  • the hopper 150 serves as a passage through which the solid fuel 10 is moved.
  • the support body 530 is fixed to wrap around the outer surface of the hopper 150, the secondary stepped 532 is provided on the outer surface to support the inner edge portion of the turntable 520 and grate 510, respectively Body 534 is provided.
  • the step 532 provided on the upper and lower portions of the outer surface of the auxiliary body 534 is supported to be mounted on the step 532 partially while the upper turn table 522 and the lower turn table 524 are stacked up and down.
  • the auxiliary body 534 is formed integrally with the hopper 150 on the outer surface of the hopper 150, the grate 510 and the turntable 520 is closely connected to the auxiliary body 534.
  • the support body 530 is fixed to the outer circumferential edge of the elevating pipe 536 and the elevating pipe 536 is connected to the lower portion of the hopper 150, the elevating pipe 536 is to raise or lower
  • the regulator 540 is provided.
  • a bearing 538 is formed between the elevating pipe 536 and the hopper 150, and when the turntable 520 is rotated, the hopper 150 and the turntable 520 are rotated by the bearing 538. It is possible.
  • the elevating pipe 536 connected to the lower portion of the hopper 150 is not involved in the rotation of the hopper 150 by the bearing 538.
  • the elevating pipe 536 performs a function of allowing the elevating or descending.
  • This height adjuster 540 The content of this height adjuster 540 will be described in more detail below.
  • FIG. 13 is a view showing the main parts of the air-cooled combustion furnace installation according to the present invention.
  • the height adjuster 540 is a lifting plate 542 and horizontally connected to the lifting pipe 536, the lifting plate 542 is disposed below, side cross-section It has the inclination plate 544 which has a downward inclination angle to this outside.
  • the height adjuster 540 is disposed below the inclined plate 544, the side cross section has an upward inclination angle to the outside and flows inside the inclined plate 544 so that the inclined plate 544 is raised or lowered ( 546).
  • the height adjuster 540 is rotated inside the moving piece 546 and the screw bolt 548 for moving the position of the moving piece 546, and protruding to the outer surface of the screw bolt 548 screw bolt 548 And a stopper 549 to control the flow of the moving piece 546 on the bed.
  • the height adjuster 540 raises or lowers the elevating plate 542 while the moving piece 546 reciprocates in the inward and outward direction of the inclined plate 544 by the screw bolt 548 in the inclined plate 544. .
  • the lower surface of the inclined plate 544 is disposed in contact with the upper surface of the moving piece 546.
  • the inclined plate 544 and the moving piece 546 have mutually opposite inclination angles, when the moving piece 546 moves inward of the inclined plate 544, the lifting plate 542 is lifted by the mutual inclined angle.
  • the lifting plate 542 is lowered by the mutual inclination angle.
  • the limit point of the moving piece 546 in the outward direction of the inclined plate 544 is up to the stopper 549 protruding to the outer surface of the screw bolt 548.
  • the elevating pipe 536 connected to the elevating plate 542 is also raised or lowered.
  • the elevating pipe 536 when the elevating pipe 536 is raised or lowered, the hopper 150 supported on the elevating pipe 536 is also lifted or lowered.
  • auxiliary body 534 fixed to the outer surface of the hopper 150, the turntable 520 and the grate 510 connected to the outer surface of the auxiliary body 534 is also accompanied or raised together.
  • the turntable 520 has an upper turntable 522 disposed in close contact with the bottom of the grate 510, and a lower turntable 524 supported under the upper turntable 522.
  • the turntable 520 includes a rake gear 521 supported at a lower portion of the lower turntable 524 and a motor 525 having a pinion gear 523 connected to the rake gear 521 to transmit rotational power. .
  • the motor 525 has a rod-shaped rotation shaft 527 which is axially coupled to the pinion gear 523 and rotated.
  • the motor 525 includes a connecting gear 528 for rotating the rotation shaft 527, and a motor 529 for transmitting the power to the connecting gear 528 to rotate the connecting gear 528.
  • the position and shape of the connecting gear 528, the rotating shaft 527 and the pinion gear 523 can be variously modified according to the position of the motor 529, the number of the connecting gear 528 is also a number of chains Can be connected via.
  • connecting gear 528 may be replaced by a pulley, and thus the pulley may be connected to and interlocked with the belt to enable the rotation shaft 527 to rotate.
  • the lower gear table 524 is supported by the lower gear 521, and a sealing piece 533 is provided on the upper outer side of the lower turn table 524.
  • the sealing piece 533 is formed to be in close contact with the sealing plate 535 formed while surrounding the lower part of the lower turn table 524 and the lex gear 521 from the outside.
  • a sealing groove 537 in close contact with the sealing piece 533 is provided inside the sealing plate 535, and the sealing groove 537 is provided with a packing 539 having high heat resistance and an elastic material.
  • the sealing piece 533 is disposed in close contact with the packing 539 while being accommodated in the sealing groove 537.
  • the heat formed in the space between the lower portion of the grate 510 and the lower turntable 524 may be prevented from conducting to the outside formed with the sealing plate 535.
  • the sealing plate 535 is formed to be in contact with the lower turn table 524, and serves to block the heat of the grate 510 and the lower turn table 524 to be exposed to the outside.
  • FIG. 14 is a view showing another main part of the combustion-fabricated grate provided with a turntable according to the present invention.
  • a support body 530 supporting the lower turntable 524 is disposed below the lower turntable 524 that forms the lower part of the turntable 520.
  • the lower surface of the support body 530 is supported on the ground.
  • the upper portion of the support body 530 supports a lower portion of the turntable 520, and a roller 551 is provided to assist the rotation of the turntable 520.
  • the roller 551 is disposed in close contact with the bottom of the lower turn table 524, so that when the lower turn table 524 rotates, the roller 551 supports the lower turn table 524 to distribute the load while smoothly rotating the lower turn table 524. .
  • a plurality of rollers 551 are disposed outside the lower turntable 524 to assist the rotation of the lower turntable 524, and a plurality of rollers 551 are disposed inside the lower turntable 524 to lower the lower turntable 524.
  • the main roller 554 assists the rotation of the turntable 524.
  • the support body 530 is an auxiliary support piece 556 for holding the auxiliary roller 552 fixed to the lower portion of the auxiliary roller 552, and the main roller 554 fixed to support the lower portion of the main roller 554
  • the main support piece 558 is included.
  • auxiliary roller 552 supported on the upper side of the auxiliary support piece 556 is disposed on the outside of the lower turn table 524 in all directions to support the outer edge portion of the lower turn table 524, and It rotates with rotation.
  • the main roller 554 supported on the upper part of the main support piece 558 is disposed on the inside of the lower turn table 524 in all directions to support the inner edge portion of the lower turn table 524, and according to the rotation of the lower turn table 524. Is rotated.
  • a plurality of rollers 551 are arranged in contact with the lower turntable 524 to perform a function to distribute the load of the grate 510 and the turntable 520.
  • 15 is a view showing an assembly unit of an air-cooled combustion plant according to the present invention.
  • the solid fuel 10 has an assembly unit 110, which is assembled with each other to form the inner wall of the combustion furnace to form a combustion furnace that is a combustion space that can enter into the combustion to produce heat energy.
  • connection unit 120 to enable mutual coupling or separation.
  • the grate 510 for supporting the solid fuel 10, and disposed below the grate 510 has an annular shape, including a turntable 520 to rotate the grate 510, the assembly unit 110 ) And a combustion body portion 100 forming an outer wall of the combustion furnace while surrounding the connection unit 120.
  • the assembly unit 110 includes an assembly plate 112 in the form of a plate is a plurality of mutually assembled.
  • connection unit 120 is a coupling protrusion 122 formed on the top of the assembly plate 112 so that the assembly plate 112 can be mutually coupled or separated, and formed on the lower portion of the other assembly plate 112 'coupling protrusion. It includes a coupling groove 124 is fitted (122).
  • the assembling plate 112 includes a bonding monolayer 114 having a single layer formed on each of the left and right sides of the assembling plates 112 and 112 'so that different assembling plates 112 and 112' overlap each other in a horizontal direction.
  • a coupling flange 116 protruding from the upper and lower portions of the assembling plates 112 and 112 'in a horizontal direction so that different assembling plates 112 and 112' can be stacked in the vertical direction.
  • the coupling flange 116 may be omitted depending on the position of the assembly plate (112).
  • connection unit 120 has a plurality of nut grooves formed at positions corresponding to the edges of the respective assembly plates 112 and 112 'so as to assist the different assembly plates 112 and 112' from being detached from each other. 126 and a fastening bolt 128 coupled to or separated from the nut groove 126.
  • the assembly unit 110 forms an inner wall of the combustion furnace while the plurality of assembly plates 112 and 112 'are connected in the horizontal and vertical directions through the connection unit 120.
  • the shape of the assembly plates 112 and 112 ' is basically formed in the form of a plate having a curved shape, and may have a slightly different shape partially by forming other components.
  • connection unit 120 may also be formed in various forms as long as the assembly plates 112 and 112 'may be firmly connected to each other, and the coupling grooves may be formed according to the shape of the coupling protrusions 122.
  • 124 has a corresponding shape to be coupled to the engaging projection 122.
  • the assembly unit 110 and the connection unit 120 may be made of various materials such as iron or metal having high heat resistance.
  • FIG. 16A is a diagram illustrating an embodiment according to FIG. 15, and FIG. 16B is a diagram illustrating an embodiment according to FIG. 16A.
  • the assembly unit 110 includes an assembly plate 112 having a plate shape in which a plurality of units are assembled to each other.
  • connection unit 120 is a coupling protrusion 122 formed on the top of the assembly plate 112 so that the assembly plate 112 can be mutually coupled or separated, and formed on the lower portion of the other assembly plate 112 'coupling protrusion. It includes a coupling groove 124 is fitted (122).
  • the assembling plate 112 includes a bonding monolayer 114 having a single layer formed on each of the left and right sides of the assembling plates 112 and 112 'so that different assembling plates 112 and 112' overlap each other in a horizontal direction.
  • 16A and 16B show that different assembling plates 112 and 112 'are assembled in the horizontal direction.
  • coupling single layers 114 are formed on both sides of the assembly plate 112 so that other assembly plates 112 'may overlap.
  • the coupling single layer 114 is preferably formed such that the thickness of the building plate 112 and the other building plate 112 'overlapping each other is not greater than the thickness of the building plates 112 and 112'.
  • the coupling single layer 114 formed on both sides of the assembly plate 112 is formed on one side is intaglio on the inner surface and the other is formed on the outer surface and staggered with each other.
  • the nut grooves 126 and 126 ' are formed in the coupling monolayers 114 and 114', respectively.
  • the nut grooves 126 and 126 'formed in the coupling monolayers 114 and 114' are formed at mutually corresponding positions, the nut grooves 126 and 126 'are coupled when the coupling monolayers 114 and 114' overlap. It is formed to penetrate through the single layer (114, 114 ').
  • the coupling monolayers 114 and 114 ' may be firmly coupled to each other by fastening bolts 128 that are coupled to or separated from the nut grooves 126 and 126'.
  • the plurality of building plates 112, 112 ' are assembled together in a horizontal direction so that the flat cross section has a circular or polygonal shape.
  • FIG. 17A is a view showing another embodiment according to FIGS. 16A and 16B
  • FIG. 17B is a view showing an embodiment according to FIG. 17A.
  • 17A and 17B show that different assembling plates 112 and 112 'are assembled in the vertical direction.
  • connection unit 120 includes a coupling protrusion 122 formed on an upper portion of the assembly plate 112 such that the assembly plates 112 may be mutually coupled or separated.
  • connection unit 120 is formed in the lower portion of the other assembly plate 112 'includes a coupling groove 124 to which the coupling protrusion 122 is fitted.
  • the assembling plate 112 includes a bonding monolayer 114 having a single layer formed on each of the left and right sides of the assembling plates 112 and 112 'so that different assembling plates 112 and 112' overlap each other in a horizontal direction.
  • the coupling protrusion 122 formed in the assembly plate 112 and the coupling groove 124 formed of the other assembly plate 112 ' are assembled with the assembly plate 112 and the other assembly plate 112' in the vertical direction. It does what it can.
  • the bonding monolayer 114 performs a function that different assembly plates 112 and 112 'may be assembled in a horizontal direction.
  • the coupling protrusion 122 is connected to the coupling head 123 and the coupling head 123 and the assembly plate 112 to enter the coupling groove 124, but has a smaller perimeter than the circumference of the coupling head 123 It is composed of a mounting pin 121.
  • the coupling groove 124 is the head groove 125 into which the coupling head 123 enters, and the coupling protrusion 122 flows in the horizontal direction after entering the coupling groove 124, and thus the periphery of the mounting pin 121.
  • a pin groove 127 having a groove of a corresponding shape.
  • the coupling groove 124 is formed so that the size of the groove is changed toward the horizontal direction.
  • the coupling head 123 formed on the upper portion of the assembly plate 112 passes through the head groove 125 of the other assembly plate 112 '.
  • the mounting pin 121 of the assembly plate 112 is placed in the pin groove 127 of the other assembly plate 112 'while flowing in the horizontal direction.
  • the assembly plate 112 and the other assembly plate 112 ' may be laminated in the vertical direction.
  • the coupling flange 116 formed at the bottom of the assembly plate 112 is mounted on the top of the other assembly plate 112 'vertically coupled to the bottom of the assembly plate 112, two assembly plates 112 and 112'. This can be fixedly fixed to each other.
  • a plurality of different building plates 112 and 112 ' may be coupled to the top or bottom of the building plates 112 and 112' in the vertical direction.
  • the mounting plate 121 mounted on the pin groove 127 is moved by moving the assembly plate 112' coupled to the lower portion of the assembly plate 112 in the horizontal direction.
  • the head groove 125 is moved to the formed position.
  • the two vertical coupling plates 112, 112 'mutual vertical coupling method is only one embodiment, if the coupling unit 120 can be firmly coupled to each other may be formed in various forms.
  • the assembly plates 112 and 112 ' may be coupled to or separated from each other in the horizontal direction, and the assembly plate 112 may be used.
  • the assembly plates 112 and 112' may be coupled to or separated from each other in the vertical direction.
  • connection unit 120 has a plurality of nut grooves formed at positions corresponding to the edges of the respective assembling plates 112 and 112 'so as to assist the disassembly of the different assembling plates 112 and 112' from each other.
  • 126 and a fastening bolt 128 coupled to or separated from the nut groove 126 may be further included.
  • FIG. 18 is a view showing a clinker removal unit of the air-cooled furnace equipment according to the present invention
  • Figure 19 is a view showing a cross-section of the clinker removal unit in the air-cooled furnace equipment according to the present invention
  • Figure 20 is a clinker agent It is a figure which shows the use state cross section of rejection
  • FIG. 21 is a figure which shows the use state plane of the combustion clinker removal part which concerns on this invention.
  • the lower portion of the combustion body part 100 having a space where the solid fuel 10 is burned is provided with a grate 510 for burning the solid fuel 10.
  • the foreign matter in the solid fuel 10 is ignited, the clinker 30 is fused on the grate 510 is generated.
  • the clinker removal unit 600 is used.
  • the clinker remover 600 has a plurality of clinker removers 610 that remove the clinker 30 while directly rubbing against the clinker 30 generated on the grate 510.
  • a blade made of steel to cut the clinker 30 or to separate it from the grate 510 may be used.
  • the clinker remover 610 can smoothly remove the clinker 30 from the grate 510, various materials may be used.
  • the clinker remover 610 has a triangular side surface.
  • the shape of the clinker remover 610 is only one embodiment, and it is natural that various sizes and shapes are used according to a user's needs.
  • the clinker removal part 600 including the clinker remover 610 is Heat resistant metals are used.
  • the plurality of clinker removers 610 may be quickly rubbed against the clinker 30 to remove the clinker 30.
  • the clinker cooler 620 is used to rotate the clinker remover 610 while being lifted to remove the clinker 30 on the grate 510 while the clinker remover 610 rotates apart from the grate 510. .
  • the clinker cooler 620 serves to cool the clinker remover 600 while allowing the clinker remover 600 to rotate at the same time.
  • the clinker cooler 620 extends from the internal cooling tube 622 and rod-shaped internal cooling tube 622 to be placed inside the combustion body portion 100, the outside of the combustion body portion 100 It has a cooling housing 621 consisting of a rod-shaped external cooling tube 624 disposed in the.
  • the clinker cooler 620 is disposed while being connected to the inside from the outside of the combustion body portion 100, a plurality can be arranged according to the needs of the user.
  • a pair of clinker coolers 620 may be provided facing each other while being connected from the outside of the combustion body part 100 to the inside.
  • the lower portion of the combustion body portion 100 is formed with an entry mounting portion 160 through which the internal cooling tube 622 may enter the combustion body portion 100.
  • the clinker cooler 620 is placed into the inside of the combustion body portion 100 through the entry position 160 and the end is disposed outside the combustion body portion 100 to the inside of the combustion body portion 100.
  • the entered site is cooled by circulation of water or air.
  • the clinker removal unit 600 protrudes and is formed on the outer surface of the clinker cooler 620 that enters the combustion body 100 so that the clinker removal unit 600 is linked to the rotation of the clinker cooler 620.
  • the clinker 30 generated in the grate 510 is removed.
  • a power transmission unit 630 for transmitting power to rotate the clinker cooler 620 is formed in the external cooling pipe 624 of the clinker cooler 620 disposed outside the combustion body part 100.
  • the power transmission unit 630 is connected to the external cooling tube 624 while being provided outside the combustion body unit 100 so that the external cooling tube 624 is rotated, and a plurality of clinker removers connected to the internal cooling tube 622. 610 to rotate in conjunction.
  • the power transmission unit 630 is connected to the clinker chain 634 and the clinker chain 634 connected to the clinker protrusion gear 632, the clinker protrusion gear 632 formed on the outer surface of the external cooling pipe 624.
  • the clinker connecting gear 636 is formed to face the clinker protrusion gear 632, and the clinker motor 638 is connected to the clinker connecting gear 636 to rotate the clinker connecting gear 636.
  • the configuration of the power transmission unit 630 is only one embodiment, if the clinker cooler 620 can be smoothly rotated, it can be replaced with various components, such as pulleys and belts according to the needs of the user.
  • the clinker cooler 620 further includes the following components to rotate while cooling the internal cooling tube 622 and the clinker removal unit 600 entered into the combustion body portion 100.
  • the clinker cooler 620 may use water and air as a cooling catalyst to cool the internal cooling tube 622 and the clinker removal unit 600.
  • the clinker cooler 620 When water is used as the cooling catalyst, the clinker cooler 620 extends outwardly from the external cooling tube 624, and is circulated inside the cooling water 50 and the cooling housing 621 to be discharged from the outside, and then discharged to the outside. It has a cooling compartment tank 625 which partitions the cooling water 50 to become.
  • the clinker cooler 620 interconnects the cooling housing 621 and the cooling compartment tank 625, while allowing the cooling compartment 625 to maintain a fixed state when the cooling housing 621 rotates. 627).
  • the clinker cooler 620 is connected to the outer surface of the cooling compartment tank 625 and the inlet pipe 626 through which the coolant 50 enters, and the discharge pipe 628 through which the coolant 50 circulated in the cooling housing 621 is discharged. It has a supply drain pipe 629 consisting of).
  • the clinker cooler 620 is connected to the entry pipe 626 and is connected to the inside of the cooling compartment 625 and the inside of the cooling housing 621, and the cooling water 50 injected through the entry pipe 626 is cooled in the cooling housing.
  • 621 includes a cooling supply pipe 631 to be supplied to the inside.
  • the cooling housing 621 allows the clinker removal unit 600 to rotate and simultaneously cools the clinker removal unit 600 and the internal cooling tube 622.
  • the joint 627 is formed between the cooling compartment tank 625 and the external cooling tube 624 of the cooling housing 621 so that the cooling compartment tank 625 can be stopped when the cooling housing 621 is rotated. Do this.
  • the inside of the joint 627 is connected to the entry pipe 626 is provided with a cooling supply pipe 631 is formed from the inside of the external cooling pipe 624 to the interior of the internal cooling pipe 622.
  • the inside of the joint 627 performs a function of allowing the cooling water 50 circulated through the cooling housing 621 to flow through the inside of the joint 627 along the outer diameter of the cooling supply pipe 631.
  • the cooling supply pipe 631 supplies the cooling water 50 to the internal cooling pipe 622 while maintaining the fixed state, and the cooling housing 621 does not interfere with the cooling supply pipe 631, and the power transmission unit 630. Is rotated by
  • At the lower portion of the external cooling tube 624 at least one bearing support tube 615 to be rotatable while the cooling housing 621 is supported, and the bearing support tube 615 at the lower portion of the bearing support tube 615 A supporting table 617 is disposed.
  • the bearing support tube 615 supports the cooling housing 621 while performing a function of minimizing the frictional force with the cooling housing 621 when the cooling housing 621 rotates.
  • the diameter of the clinker cooler 620 is formed larger than the diameter of the outer cooling tube 622.
  • the reason why the diameter of the internal cooling tube 622 is larger than that of the external cooling tube 624 is that the cooling water 50 entering the internal cooling tube 622 causes bottlenecks when flowing to the external cooling tube 624. This is for slowing the discharge rate of the cooling water 50.
  • FIG. 22 is a view showing the main portion of the clinker removal unit according to the present invention.
  • the access mounting unit 160 is provided with a first sealing bearing 161 surrounding an outer surface at which the internal cooling tube 622 and the external cooling tube 624 are connected to each other. It has a first sealed door 162 to isolate the inside and the outside of the body portion 100.
  • the entry mounting unit 160 is provided with a second sealing bearing 165 surrounding the outer surface of the internal cooling pipe 622 entered into the first sealing door 162, together with the first sealing door 162. It includes a second sealing door 166 isolating the inside and the outside of the combustion body 100 in a double.
  • the first sealing door 162 further includes a cooling inlet 164 for injecting air into the space between the first sealing door 162 and the second sealing door 166 to cool the space therebetween.
  • the first hermetic door 162 and the first hermetic bearing 161 isolate the inside and the outside of the combustion body part 100 while covering the outer diameter of the outer cooling tube 624, It performs the function of not interfering with the external cooling pipe 624 during rotation.
  • the second hermetic door 166 and the second hermetic bearing 165 isolate the inside and the outside of the combustion body part 100 while covering the outer diameter of the outer cooling tube 624, and It performs the function of not interfering with the external cooling pipe 624 during rotation.
  • the second sealing door 166 is formed inside the lower part of the combustion body part 100 to block the heat inside the combustion body part 100 from being exposed to the outside of the second sealing door 166.
  • the second hermetic bearing 165 pressurizes the outer circumference of the external cooling tube 624 while minimizing frictional resistance when the external cooling tube 624 rotates.
  • first sealing door 162 is formed on the lower outer side of the combustion body part 100 to firmly heat the heat exposed to the outside of the second sealing door 166 among the heat inside the combustion body part 100. It performs the function of blocking.
  • the first hermetic bearing 161 also minimizes frictional resistance with the external cooling tube 624 while pressing the outer circumference of the external cooling tube 624.
  • first sealing door 162 may be injected into the space between the first sealing door 162 and the second sealing door 166 from the outside of the first sealing door 162 to cool the space therebetween. Cooling inlet 164 is formed.
  • the cooling air injected into the cooling inlet 164 directly cools the space between the first sealing door 162 and the second sealing door 166 to protect the surrounding components of the combustion body part 100.
  • the entry portion 160 forms a double structure of the first hermetic door 162 and the second hermetic door 166, the clinker cooler 620 smoothly from the outside of the combustion body portion 100 to the inside. Allows operation with entry and connection.
  • FIG. 23 is a view showing an embodiment of an air-cooled combustion furnace installation according to the present invention.
  • the cooling unit 200 includes a flow sensor 203 for measuring the amount of air supplied into the cooling unit 200 and a cooling unit 200 according to the amount of air measured by the flow sensor 203. It includes an air conditioner 205 for adjusting the amount of air supplied to.
  • a damper or mass flow meter may be used as the air conditioner 205.
  • the flow sensor 203 can measure the pressure of the air supplied into the cooling unit 200 may be formed so as to be connected to the inside from the outside of the combustion body portion 100 according to the user's convenience, 2,3,4,5,6 coolers 210, 220, 230, 240, 250, 260 may be formed in each.
  • the flow rate sensor 203 can measure the pressure of the air supplied into the cooling unit 200 may be variously arranged at a location desired by the user.
  • the negative pressure induction part 300 includes a pressure sensor 209 for measuring the pressure inside the combustion body 100 and a temperature sensor 201 for measuring the temperature inside the combustion body 100.
  • the temperature sensor 210 may be provided in each of the first, second, third, fourth, fifth, and sixth coolers 210, 220, 230, 240, 250, and 260 to measure temperature information for each part.
  • combustion body part 100 receives numerical information measured by the flow rate sensor 203, the pressure sensor 209, and the temperature sensor 201, and according to the numerical information, the air conditioner 205 and the negative pressure induction part 300. Controller 102 that controls
  • the position and number of the flow sensor 203, the pressure sensor 209 and the temperature sensor 201 can be variously modified according to the needs of the user.
  • the pressure sensor 209 is the first, second, third, fourth, fifth, sixth coolers 210, 220, 230, 240, 250, in order to firmly measure the differential pressure inside and outside the combustion body 100 260 may be formed at each position and may also be formed in the negative pressure generator 320.
  • the combustion body part 100 receives the pressure value measured by the flow rate sensor 203 and the pressure sensor 209 and controls the air conditioner 205 and the negative pressure induction part 300 according to the pressure value 102. It includes.
  • the flow sensor 203 and the pressure sensor 209 is provided with a transmitter (not shown) for checking the air pressure information of the combustion body 100 inside and outside and transmits the information to the controller 102.
  • Combustion body portion 100 includes a starter burner 104 to provide a flame inside the combustion body portion 100 so that the solid fuel 10 can be ignited.
  • the starter burner 104 may be arranged in various positions and forms according to the needs of the user at the time of manufacture.
  • the combustion body part 100 includes an energy exchange part 106 for converting thermal energy generated by the combustion body part 100 into steam or electricity.
  • the energy exchange unit 106 can be used directly in the state converted to steam using the heat generated in the combustion body portion 100, or performs a function that can be used to exchange the electricity using the steam do.
  • the energy exchange unit 106 may be used such as a boiler to convert the energy through a generator.
  • the negative pressure induction part 300 includes a communication 310 connected to the upper portion of the combustion body 100 and a sound pressure generator 320 connected to the communication 310.
  • the negative pressure induction unit 300 includes a harmful gas processing unit 330 for sucking and removing or decomposing combustion gas having gaseous harmful substances and particulate hazardous substances.
  • the harmful gas processing unit 330 is connected to the communication 310 but is formed between the energy exchange unit 106 and the negative pressure generator 320 to perform the function of decomposing or removing the harmful gas.
  • SNCR SNCR
  • SCR SCR
  • SDR DR
  • bag filter bag filter
  • the energy exchange unit 106 is operated by using the heat energy generated through the solid fuel 10 processing the waste fuel, thereby reducing the cost of using energy.
  • the lower portion of the combustion body portion 100 has a plurality of wheels 101 for the smooth movement of the combustion body portion 100.
  • the wheel 101 is firmly fixed through the fixture 108 provided at a position adjacent to the wheel 101 during the operation of the combustion body part 100.
  • the combustion furnace by smoothly supplying air capable of cooling the combustion furnace to the entire wall surface of the combustion furnace, the combustion furnace can be efficiently cooled, and the combustion atmosphere in the combustion furnace is preheated and injected. Advantages can be obtained.
  • Efficient cooling in the furnace also extends the life of components inside and outside the furnace, reducing production and operating costs.
  • the internal wall of the combustion furnace when the internal wall of the combustion furnace is damaged, the internal wall of the combustion furnace can be partially replaced, thereby improving the efficiency of the work and reducing the replacement cost.
  • the air-cooled furnace apparatus by smoothly supplying the air to cool the furnace on the wall surface of the furnace to efficiently cool the furnace and inject the preheated air to the combustion atmosphere in the furnace As it can be formed, it is industrially available.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Fuel Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

본 발명은 고형연료를 연소시켜 보일러를 가동할 수 있는 열에너지를 발생하는 연소로를 효과적으로 가동시켜 열효율을 최적화시키도록 하는 공냉식 연소로 설비에 관한 것이다. 본 발명에 따른 공냉식 연소로 설비는, 고형연료(10)가 내부로 진입되도록 하는 호퍼(150)가 구비되고, 호퍼(150)를 통해 내부로 진입된 고형연료(10)가 연소 되면서 열에너지를 생산할 수 있도록 연소공간을 형성하는 연소몸체부(100); 연소몸체부(100)의 외면에 일체로 형성되되, 수직 방향으로 구획되어 다수 개의 층을 이루면서 각 층에서 별도로 공기를 분배주입하여 연소몸체부(100)를 냉각시키는 냉각부(200); 연소몸체부(100)의 상부에 연결되어 냉각부(200)에 의해 연소몸체부(100) 내부로 진입된 공기를 흡입하여 연소몸체부(100) 내부에 음압이 형성되도록 하는 음압유도부(300); 연소몸체부(100)의 외부에서 내부로 연결형성되어 고형연료(10)를 연소몸체부(100) 내부로 공급하는 연료공급부(400); 연소몸체부(100)의 내부에 형성되되 다수 개의 화격자편(512)이 상호 결합되어 고형연료(10)의 연소시 고형연료(10)를 지지하면서 연소몸체부(100)의 바닥면을 이루는 화격자(510)가 구비되고, 상면에 고형연료(10)가 거치된 채로 연소될 수 있도록 하는 화격자부(500); 및 화격자부(500)의 고형연료(10)가 연소되는 과정에서 발생되는 클링커(30)를 제거하는 클링커제거부(600);를 포함한다.

Description

공냉식 연소로 설비
본 발명은 연소로를 효과적으로 가동시켜 열효율을 최적화하는 공냉식 연소로 설비에 관한 것이다.
일반적으로 소각로는 연소실에서 연료를 통해 화염을 발생하면서 연소를 시행한다. 연소실은 투입된 폐기물 또는 연료를 화염 연소시키거나 열분해(탄화)시키고, 상황에 따라 불연소된 가스상 물질을 다시 재연소시킨다.
소각로는 톱밥이나 목재 부스러기뿐만 아니라 사업장이나 가정에서 발생하는 폐플라스틱을 펠릿 형태로 압축한 고형연료가 사용되며, 보일러나 열병합발전 등에 사용하기 위해 고형연료를 연소시켜 열을 얻는 장치가 개발되고 있다.
고형연료를 연료로 사용하는 보일러는, 온실가스 배출원인 경유, 벙커-C유 등을 사용하지 않기 때문에 연료비가 적게 들고 친환경적인 설비라는 장점이 있어 널리 사용되고 있다. 그리고 에너지 다소비 업체의 자체이용 전용 보일러뿐만 아니라 지자체의 발전설비나 열병합발전과 같은 곳으로 확산되고 있다.
하지만 고형연료를 연소시킬 때 외부로부터 공기를 공급하여 고형연료를 태우는데 그치고 있어 연소효율을 높이는데 한계가 있다. 따라서 단순히 공기를 공급하는 것에 그칠 것이 아니라 공기를 공급하는 방식을 개선하여 보다 효율적으로 연소가 일어나도록 할 필요가 있다.
또한, 고형연료 연소시에는 많은 재와 고형연료 속에 포함된 유리가루나 흙과 같은 이물질이 연소로의 고열에 용융되면서 서로 뭉쳐 슬래그 및 클링커가 발생된다. 이렇게 발생된 재가 신속히 외부로 배출되지 못하고 연소장치의 각 구성물에 침착되면 연소효율이 저하되고 연소장치의 고장을 유발하는 원인이 된다. 이처럼 재나 슬래그 등의 침착을 제거하지 못하면 연소장치가 오작동을 일으킬 수 있고, 설비의 가동중지 뿐만 아니라 폭발로도 이어질 수 있어 작업자가 다치거나 화재 등의 큰 사고로 번지는 경우가 발생될 수 있다.
또한, 연소실을 포함하는 소각로를 견고하게 만들었다 하더라도 연소실 내부는 1,000℃ 이상의 고열이 발생되기 때문에 열에 의해 연소실 내·외부의 기기부품들이 훼손될 수 있는 문제점이 있었다.
또한, 공기를 통해 연소실 벽면을 냉각시키는 과정에서 공기가 연소실의 벽면 일부에 편중되는 경우 연소실이 부분적으로는 냉각될 수 있지만 그 이외의 다른 부분은 거의 냉각이 이루어지지 않아 설비의 연속운전에 치명적인 문제를 가져올 뿐만 아니라 설비의 수명이 짧아지는 문제점이 있었다.
또한, 연소실에 고형연료를 공급할 때 일정한 양을 일정한 시간에 투입하지 않으면 고형연료의 과다공급으로 인해 고열이 과다하게 발생될 수 있고, 이는 화재로 이어질 수 있는 문제점이 있었다.
또한, 고형연료의 연소에 따른 고열로 인해 연소로의 내벽이나 주변 기물들이 파손될 경우, 연소로의 내벽 또는 연소로 자체를 교체해야 하는 문제점이 있었다. 특히, 화격자가 부분적으로 훼손될 경우, 화격자 전체 또는 화격자의 회전을 위한 턴테이블까지 모두 교체해야 하는 경제적 손실이 발생하는 문제점이 있었다.
본 발명은, 연소로를 냉각하기 위한 공기를 연소로 벽면 전면에 골고루 분포하여 연소로를 원활하게 냉각시키는 공냉식 연소로 설비를 제공한다.
본 발명은, 연소로 외벽을 냉각시키면서 예열된 공기를 고속으로 선회시켜 연소로에 주입하여 연소로내 연소분위기를 상승시키고, 연료와 공기의 적절한 혼합을 통해 연소효율을 높이는 공냉식 연소로 설비를 제공한다.
본 발명은, 연소로 내부에 공급되는 고형연료가 정해진 시간에 정해진 양이 투입되도록 정량제어함으로써, 연료 과다 공급으로 인한 화재, 폭발 등의 안전사고를 사전에 방지하는 공냉식 연소로 설비를 제공한다.
본 발명은, 연소로 내벽 훼손시 연소로 내벽을 부분적으로 간편하게 교체가능한 공냉식 연소로 설비를 제공한다.
본 발명은, 연소로 내에서 연소되는 고형연료를 지지하는 화격자의 열 변형시 변형부분만 간편하게 교체가능한 공냉식 연소로 설비를 제공한다.
본 발명의 일 실시예에 따른 공냉식 연소로 설비는, 고형연료(10)가 내부로 진입되도록 하는 호퍼(150)가 구비되고, 호퍼(150)를 통해 내부로 진입된 고형연료(10)가 연소되면서 열에너지를 생산할 수 있도록 연소공간을 형성하는 연소몸체부(100); 연소몸체부(100)의 외면에 일체로 형성되되, 수직 방향으로 구획되어 다수 개의 층을 이루면서 각 층에서 별도로 공기를 분배주입하여 연소몸체부(100)를 냉각시키는 냉각부(200); 연소몸체부(100)의 상부에 연결되어 냉각부(200)에 의해 연소몸체부(100) 내부로 진입된 공기를 흡입하여 연소몸체부(100) 내부에 음압이 형성되도록 하는 음압유도부(300); 연소몸체부(100)의 외부에서 내부로 연결형성되어 고형연료(10)를 연소몸체부(100) 내부로 공급하는 연료공급부(400); 연소몸체부(100)의 내부에 형성되되 다수 개의 화격자편(512)이 상호 결합 되어 고형연료(10)의 연소시 고형연료(10)를 지지하면서 연소몸체부(100)의 바닥면을 이루는 화격자(510)가 구비되고, 상면에 고형연료(10)가 거치된 채로 연소될 수 있도록 하는 화격자부(500); 및 화격자부(500)의 고형연료(10)가 연소되는 과정에서 발생되는 클링커(30)를 제거하는 클링커제거부(600);를 포함할 수 있다.
연소몸체부(100)는, 다수 개가 상호 조립되어 연소몸체부(100)의 내벽을 이루는 조립유닛(110)과, 조립유닛(110) 들이 상호 결합 또는 분리가능하도록 하는 연결유닛(120)을 포함할 수 있다.
연료공급부(400)는, 고형연료(10)가 이송되도록 하는 컨베이어(410)와, 컨베이어(410)로부터 이송된 고형연료(10)가 유입되는 관 형태의 실린더(420)와, 실린더(420)의 외부에서 내부로 진입된 채로 왕복 운동하면서 실린더(420)에 유입된 고형연료(10)를 밀어 이송되도록 하는 실린더로드(430)를 포함할 수 있다.
화격자부(500)는, 호퍼(150)의 외면을 감싸면서 형성되는 화격자(510)의 하부에 연결되어 화격자(510)가 회전되도록 하는 턴테이블(520)과, 턴테이블(520)의 하부를 지지하며, 턴테이블(520)의 회전시 그 회전을 보조하는 롤러(551)가 상부에 구비되고, 하면이 지면에 지지되는 지지몸체(530)를 포함할 수 있다.
지지몸체(530)는, 호퍼(150)의 외면을 감싸면서 고정되고, 턴테이블(520)과 화격자(510)의 내측 테두리 부위를 각각 지지하도록 외면에 다단의 단턱(532)이 구비되는 보조몸체(534)와, 호퍼(150)의 하부에 연결되는 원통 형상의 승하강관(536)과, 승하강관(536)의 외주연에 고정되어 승하강관(536)이 승강 또는 하강되도록 하는 높이조절기(540)를 포함할 수 있다.
높이조절기(540)는, 승하강관(536)에 수평방향으로 연결되는 승강판(542)과, 승강판(542) 하부에 배치되되, 측 단면이 외측의 하 방향으로 경사각을 갖는 경사판(544)과, 경사판(544)의 하부에 배치되되, 측 단면이 외측의 상 방향으로 경사각을 갖으며 경사판(544)의 내부에서 유동되면서 경사판(544)이 승강 또는 하강되도록 하는 이동편(546)과, 이동편(546)의 내부에서 회전되면서 이동편(546)의 위치를 이동시키는 스크류볼트(548)와, 스크류볼트(548)의 외면에 돌출형성되어 스크류볼트(548) 상에서 이동편(546)의 유동을 제어하는 스토퍼(549)를 포함할 수 있다.
냉각부(200)는, 냉각부(200) 내부로 공급되는 공기의 압력을 측정하는 유량센서(203)와, 유량센서(203)에서 측정된 공기의 압력에 따라 냉각부(200)에 공급되는 공기의 양을 조절하는 공기조절장치(205)를 포함하고, 음압유도부(300)는, 연소몸체부(100) 내부의 압력을 측정하는 압력센서(209)와 연소몸체부(100) 내부의 온도를 측정하는 온도센서(201)를 포함하며, 연소몸체부(100)는, 유량센서(203)와 압력센서(209)에서 측정된 유량 수치와 압력 수치를 수신하고, 유량 수치와 압력 수치에 따라 공기조절장치(205)와 음압유도부(300)를 제어하는 제어기(102)를 포함할 수 있다.
연소몸체부(100)는, 고형연료(10)가 발화될 수 있도록 연소몸체부(100) 내부에 불꽃을 제공하는 기동버너(104)와, 연소몸체부(100)는 연소몸체부(100)에서 발생한 열에너지를 스팀이나 전기로 전환시키는 에너지교환부(106)를 포함하고, 음압유도부(300)는, 연소몸체부(100) 상부에 연결되는 연통(310)과, 연통(310)에 연결되는 음압발생기(320)와, 연통(310)과 음압발생기(320) 사이에 형성되어 가스상 유해물질과 입자상 유해물질을 갖는 연소가스를 제거 또는 분해하는 유해가스처리부(330)를 포함할 수 있다.
냉각부(200)는, 연소몸체부(100) 하부에 공기를 공급하여 연소몸체부(100)의 하부를 냉각하는 제1냉각기(210); 제1냉각기(210) 상부에 조립결합되면서 공기를 공급하여 연소몸체부(100)의 하부 외면을 냉각하는 제2냉각기(220); 제2냉각기(220) 상부에 조립결합되고 수직방향으로 격벽(202)이 형성되어 겹겹이 배치되며 외부에서 주입되는 공기가 연소몸체부(100) 내부의 하부로 진입되도록 하는 제3냉각기(230); 제3냉각기(230) 상부에 조립결합되고 수직방향으로 격벽(202)이 형성되어 겹겹이 배치되며 외부에서 주입되는 공기가 연소몸체부(100) 내부의 하부와 상부 사이로 진입되도록 하는 제4냉각기(240); 제4냉각기(240) 상부에 조립결합되고 수직방향으로 격벽(202)이 형성되어 겹겹이 배치되며 외부에서 주입되는 공기가 격벽(202) 내부와 외부를 따라 회전하면서 연소몸체부(100)의 외면을 냉각하는 제5냉각기(250); 및 제5냉각기(250) 상부에 조립결합되고 내측 사선방향으로 격벽(202)이 형성되어 겹겹이 배치되되 상부에 개구홈(262)이 형성되며 상부로 갈수록 내경이 점차 작아지면서 주입되는 공기가 격벽(202) 내부와 외부를 따라 회전하면서 연소몸체부(100)의 외면을 냉각하는 제6냉각기(260);를 포함할 수 있다.
제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)는, 외부에서 공기를 공급받아 연소몸체부(100)로 제공하는 공기주입부(204)를 각각 구비할 수 있다.
제3냉각기(230)와 제4냉각기(240)의 내부에는, 외부에서 유입된 공기가 제3냉각기(230)와 제4냉각기(240) 내에서 유동되면서 와류를 형성할 수 있도록 공기가 사선으로 유동되도록 안내하는 와류편(208)을 더 포함할 수 있다.
클링커제거부(600)는, 연소몸체부(100)의 내부에 진입되게 형성되어 화격자(510)에 발생되는 클링커(30)를 제거하는 클링커제거기(610)와, 연소몸체부(100)의 하부에 형성되는 진입거치부(160)를 통해 클링커제거기(610)의 내부에서 연소몸체부(100)의 외부 방향으로 연장형성되어 클링커제거기(610)를 물 또는 공기의 순환을 통해 냉각시키는 클링커냉각기(620)와, 연소몸체부(100) 외부의 클링커냉각기(620)에 연결되어 클링커냉각기(620)가 회전되도록 동력을 전달하는 동력전달부(630)를 포함할 수 있다.
클링커냉각기(620)는, 진입거치부(160)를 통해 연소몸체부(100)의 내부에 진입배치되는 봉 형태의 내부냉각관(622)과, 내부냉각관(622)에서 연장형성되면서 연소몸체부(100)의 외부에 배치되는 봉 형태의 외부냉각관(624)으로 구성되는 냉각하우징(621)과, 외부냉각관(624)에서 외측으로 연장형성되되, 외부에서 진입되는 냉각수(50)와, 냉각하우징(621) 내부에서 순환된 후 외부로 배출되는 냉각수(50)를 구획하는 냉각구획조(625)와, 냉각하우징(621)과 냉각구획조(625)를 상호 연결하면서, 냉각하우징(621)이 회전시 냉각구획조(625)는 고정된 상태를 유지할 수 있도록 하는 조인트(627)와, 냉각구획조(625)의 외면에 연결되어 냉각수(50)가 진입되는 진입관(626)과, 냉각하우징(621)의 내부에서 순환되는 냉각수(50)가 배출되는 배출관(628)으로 구성되는 공급배수관(629)과, 진입관(626)에 연결되면서 냉각구획조(625)의 내부와 냉각하우징(621)의 내부에 연결배치되어 진입관(626)을 통해 주입되는 냉각수(50)가 냉각하우징(621)의 내부에 공급되도록 하는 냉각공급관(631)을 포함할 수 있다.
진입거치부(160)는, 내부냉각관(622)과 외부냉각관(624)이 연결되는 부위 외면을 감싸는 제1밀폐베어링(161)이 구비되고, 연소몸체부(100)의 내부와 외부를 격리하는 제1밀폐문(162)과, 제1밀폐문(162)의 내부로 진입된 내부냉각관(622)의 외면을 감싸는 제2밀폐베어링(168)이 구비되고, 제1밀폐문(162)과 더불어 연소몸체부(100)의 내부와 외부를 이중으로 격리하는 제2밀폐문(166)을 포함할 수 있다.
클링커제거기(610)는, 일부가 연소몸체부(100) 내부에 진입된 클링커냉각기(620)의 외면에 일체로 돌출 형성되되, 다수 개가 나란하게 형성되어 클링커냉각기(620)의 회전에 따라 연동되면서 화격자(510)에 발생된 클링커(30)를 제거하는 제거칼날을 포함할 수 있다.
본 발명에 따른 공냉식 연소로 설비는, 연소로의 벽면 전면에 연소로를 냉각시킬 수 있는 공기를 원활하게 공급하여 연소로를 효율적으로 냉각시킬 수 있고 예열된 공기를 주입하여 연소로 내의 연소분위기를 형성할 수 있다.
또한, 연소로의 효율적인 냉각을 통해 연소로 내부와 외부의 부품 기기들의 수명이 연장되어 생산 및 운영 비용을 절감할 수 있다.
또한, 고형연료의 연소로 정량투입을 제어함으로 인해 연료 과다 공급으로 인한 화재, 폭발 등의 안전사고를 사전에 방지할 수 있다.
또한, 열 변환 에너지 생산의 지속율과 생산율이 향상되어 신뢰성과 생산성을 최적화할 수 있다.
또한, 연소장치의 가동중에 클링커를 원활하게 제거함으로써, 연소장치의 고장을 방지할 수 있다.
또한, 연소로 내벽의 훼손시 연소로 내벽을 부분적으로 간편하게 교체가능하기 때문에 작업의 능률을 향상시키고 교체비용을 절감할 수 있다.
또한, 연소로 내에서 화격자의 열 변형시 변형부분만 간편하게 교체가능함으로 인해 부품교체 비용을 절감할 수 있다.
도 1은 본 발명에 따른 공냉식 연소로 설비를 나타낸 도면이다.
도 2는 본 발명에 따른 공냉식 연소로 설비의 단면을 나타낸 도면이다.
도 3은 본 발명에 따른 공냉식 연소로 설비의 냉각부를 나타낸 도면이다.
도 4는 도 3을 분리한 분리단면도이다.
도 5는 본 발명에 따른 공냉식 연소로 설비의 연소로 냉각에서 공기의 흐름을 나타낸 도면이다.
도 6은 본 발명에 따른 공냉식 연소로 설비의 요부를 나타낸 도면이다.
도 7은 본 발명에 따른 공냉식 연소로 설비의 연료공급부를 나타낸 도면이다.
도 8은 도 7의 단면을 나타낸 도면이다.
도 9는 본 발명에 따른 공냉식 연소로 설비의 연료공급부를 확대하여 나타낸 도면이다.
도 10은 본 발명에 따른 공냉식 연소로 설비의 화격자부를 나타낸 도면이다.
도 11은 본 발명에 따른 공냉식 연소로 설비의 화격자부를 분리한 사시도이다.
도 12는 도 11의 화격자부에 대한 단면을 나타낸 도면이다.
도 13은 본 발명에 따른 공냉식 연소로 설비의 요부를 나타낸 도면이다.
도 14는 본 발명에 따른 턴테이블이 구비된 연소로 조립식 화격자의 다른 요부를 나타낸 도면이다.
도 15는 본 발명에 따른 공냉식 연소로 설비의 조립유닛을 나타낸 도면이다.
도 16a는 도 15에 따른 실시 예를 나타낸 도면이다.
도 16b는 도 16a에 따른 실시 예를 나타낸 도면이다.
도 17a는 도 16a 및 16b에 따른 다른 실시 예를 나타낸 도면이다.
도 17b는 도 17a에 따른 실시 예를 나타낸 도면이다.
도 18은 본 발명에 따른 공냉식 연소로 설비의 클링커제거부를 나타낸 도면이다.
도 19는 본 발명에 따른 공냉식 연소로 설비에서 클링커제거부의 단면을 나타낸 도면이다.
도 20은 본 발명에 따른 클링커제거부의 사용상태 단면을 나타낸 도면이다.
도 21은 본 발명에 따른 연소로 클링커제거부의 사용상태 평면을 나타낸 도면이다.
도 22는 본 발명에 따른 클링커제거부의 요부를 나타낸 도면이다.
도 23은 본 발명에 따른 공냉식 연소로 설비의 실시 예를 나타낸 도면이다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시 예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
이하의 상세한 설명에서는, 일 예로 고형연료를 연소시켜 보일러를 가동할 수 있는 열에너지를 발생하는 연소로에 연소공기 공급시, 공기가 정량으로 분배되어 연소로가 효율적으로 냉각될 수 있고 예열된 연소공기를 안정적으로 공급할 수 있는 공냉식 연소로 설비[특히, 연소몸체부]의 기술적 구성을 동일하게 적용할 수 있음은 물론이라 할 것이다.
도 1은 본 발명에 따른 공냉식 연소로 설비를 나타낸 도면이고, 도 2는 본 발명에 따른 공냉식 연소로 설비의 단면을 나타낸 도면이다.
도 1 및 도 2를 살펴보면, 각 가정 및 사업장 폐기물에서 발생되는 폐플라스틱류를 고형으로 압축시켜 연료로 활용가능한 고형연료(10)가 사용된다.
고형연료(10)는 연소몸체부(100) 내부로 진입된 후 연소되면서 열에너지를 발생시키며 이를 전환하여 에너지로 사용한다.
이때, 고형연료(10)가 연소되면 연소몸체부(100)에는 1,000℃ 이상의 고열이 발생하게 되는데, 이러한 고열은 연소몸체부(100) 주변의 부품들을 훼손시킬 수 있다.
그렇기 때문에 연소몸체부(100)의 외면과 내부를 냉각시키기 위해서 냉각부(200)를 갖는다.
여기서, 연소몸체부(100)와 냉각부(200)는 내열성이 강한 강철 또는 다양한 금속이 사용될 수 있다. 특히 내열성이 강한 금속을 주물형태로 제작사용하여 열의 의한 변형을 최소화시킨다.
그리고 연소몸체부(100)는 고형연료(10)가 내부로 유입되어 연소될 수 있는 공간이 마련된다.
즉 연소몸체부(100)의 내부에는 고형연료(10)가 내부로 진입되도록 하는 호퍼(150)가 구비되고, 호퍼(150)를 통해 내부로 진입된 고형연료(10)가 연소되면서 열에너지를 생산할 수 있도록 연소공간이 형성된다.
냉각부(200)는 연소몸체부(100)의 외면에 일체로 형성되되, 수직 방향으로 구획되어 다수 개의 층을 이루면서 각 층에서 별도로 공기를 분배주입하여 연소몸체부(100)를 냉각시킨다.
그리고 연소몸체부(100) 내부에서 고형연료(10)가 연소되면 연소몸체부(100) 내부는 양압이 형성되는데, 연소몸체부(100)가 양압이 되면 연소몸체부(100)를 감싸는 부품들에 열이 쉽게 전달될 수 있다.
여기서, 냉각부(200)는 연소몸체부(100)의 외면 및 내면을 냉각하는 기능을 수행한다.
또한, 냉각부(200)는 연소몸체부(100)의 외부와 내부에 전달되는 열이 외부로 배출되지 않도록 하는 기능과 외부에서 연소몸체부(100) 내부로 공기를 투입하되, 예열된 공기가 투입되도록 하여 연소몸체부(100) 내의 연소분위기가 상승되도록 하는 기능을 수행한다.
연소몸체부(100) 내의 연소분위기가 상승되면, 연소효율이 높아지기 때문에 에너지전환 효율을 상승시킬 수 있다.
연소몸체부(100)를 감싸는 부품들에 고압에 의한 열이 전달되면 그 부품들이 단시간에 훼손되는데, 이를 조절하여 열충격이 발생하는 것을 미연에 방지하기 위해 음압유도부(300)가 사용된다.
즉 연소몸체부(100)의 기압이 외부의 기압보다 낮게 유지되도록 하기 위하여 음압유도부(300)가 사용된다.
이러한 음압유도부(300)는 연소몸체부(100)의 상부에 연결되어 냉각부(200)에 의해 연소몸체부(100) 내부로 진입된 공기를 흡입하여 연소몸체부(100) 내부에 음압이 형성되도록 하는 기능을 수행한다. 이렇게 음압유도부(300)를 통해 연소몸체부(100) 내부의 공기가 외부로 원활하게 유동되기 때문에 연소몸체부(100)의 내부가 음압을 유지할 수 있도록 하여 양압 운전으로 인한 연소로 내 외통 및 주변 부품들이 훼손을 차단할 수 있는 것이다.
그리고 고형연료(10)는 연소몸체부(100) 내부에 공급되어 연소몸체부(100) 내에서 연소되면서 열과 스팀이 발생된다.
연소몸체부(100)에 고형연료(10)를 공급하기 위해서는 고형연료(10)가 이송되도록 하는 연료공급부(400)가 사용된다.
이때, 연료공급부(400)는 고형연료(10)가 이송되도록 하는 컨베이어(410)와, 컨베이어(410)로부터 이송된 고형연료(10)가 유입되는 관 형태의 실린더(420)를 포함한다.
그리고 연료공급부(400)는 실린더(420)의 외부에서 내부로 진입된 채로 왕복 운동하면서 실린더(420)에 유입된 고형연료(10)를 밀어 이송되도록 하는 실린더로드(430)를 더 포함한다.
결과적으로, 연료공급부(400)를 통해 고형연료(10)가 이송되어 호퍼(150)를 통해 연소몸체부(100) 내부로 진입되어 연소몸체부(100) 내에서 연소된다.
고형연료(10)가 호퍼(150)를 통해 연소몸체부(100)의 내부로 진입되면, 연소몸체부(100)의 내부에서 바닥면을 이루는 화격자부(500)의 상면에 고형연료(10)가 지지된 채로 연소된다.
여기서, 화격자부(500)는 다수 개의 호 형태의 화격자편(512)이 상호 결합 되어 고형연료(10)의 연소시 고형연료(10)를 지지하면서 연소몸체부(100)의 바닥면을 이루는 화격자(510)를 포함한다.
화격자부(500)는 호퍼(150)의 외면을 감싸면서 형성되는 화격자(510)의 하부에 연결되어 화격자(510)가 회전되도록 하는 턴테이블(520)을 갖는다.
화격자부(500)는 턴테이블(520)의 하부를 지지하며, 턴테이블(520)의 회전시 그 회전을 보조하는 롤러(551)가 상부에 구비되고, 하면이 지면에 지지되는 지지몸체(530)를 더 포함한다.
한편, 화격자부(500)에서 고형연료(10)가 연소되는 과정에서 이물질인 클링커(30)가 발생되는데, 클링커(30)는, 연소몸체부(100)의 외부에서 내부에 진입된 채로 형성되는 클링커제거부(600)에 의해 제거된다.
상술한 구성요소들은 하기에서 더욱 상세하게 설명하기로 한다.
도 3은 본 발명에 따른 공냉식 연소로 설비의 냉각부를 나타낸 도면이며, 도 4는 도 3을 분리한 분리단면도이다.
도 3 및 도 4를 살펴보면, 연소몸체부(100)는 다수 개의 조각이 상호 결합되어 고형연료(10)의 연소시 고형연료(10)를 지지하면서 연소몸체부(100)의 바닥면을 이루는 화격자(510)를 갖는다.
연소몸체부(100)는 화격자(510) 하부에 연결되어 화격자(510)가 회전되도록 하는 턴테이블(520)과 화격자(510)에 고형연료(10)가 공급되도록 턴테이블(520) 하부로부터 화격자(510)를 상 방향으로 관통하면서 배치되는 호퍼(150)를 갖는다.
그리고 화격자(510)와 턴테이블(520)의 테두리 부위 하부 공간에는 화격자(510)에서 연소된 고형연료(10)의 재가 이송되어 저장되는 재실(105)이 형성된다.
또한, 재실(105)에는 재실(105)로 유입된 고형연료(10)의 재를 재실(105) 외부로 배출시킬 수 있는 배출판(107)이 구비된다.
그리고 재실(105)에는 바닥면에 관통형성되어 재가 배출되는 통로를 이루는 배출공(109)이 형성되고, 배출공(109)의 하부에는 재실(105)의 재가 배출공(109)을 통해 배출된 후 저장될 수 있도록 하는 재통(103)이 배치된다.
배출판(107)은 턴테이블(520) 하부에 연결됨과 동시에 재실(105)에 배치되어 턴테이블(520)이 회전됨에 따라 연동되면서 재실(105) 내부의 재를 배출공(109)으로 유도하여 그 재가 연소몸체부(100) 외부로 토출되어 재통(103)에 저장되도록 한다.
여기서 화격자(510)는 고형연료(10)가 원활하게 연소될 수 있도록 지지하면서도 연소된 고형연료(10)가 재로 변하여 연소몸체부(100)의 하부에 형성된 재실(105)로 이동될 수 있도록 호퍼(150)의 중심에서 재실(105)의 배치된 방향으로 갈수록 하 방향 경사를 갖도록 배치된다.
또한, 화격자(510)는 다수 개의 호 형태로 형성된 화격자편(512)이 상호 견고하게 결합, 형성된다.
이때, 화격자(510)는 연소몸체부(100) 바닥면을 이루면서 수평방향으로 배치될 수 있고, 사용자의 필요에 따라 고형연료의 투입량을 조절하여 연료의 경사각을 다양하게 변형하여 운전할 수 있다.
특히, 화격자(510)는 다수 개의 조각이 상호 결합되어 조립됨으로써 도너츠 형태로 된 하나의 화격자(510)를 이룬다.
그렇기 때문에 고형연료(10)가 연소되는 과정에서 고열에 의해 화격자(510)가 부분적으로 훼손되더라도 그 훼손된 화격자편(512) 부위만 별도로 교체함으로써 소모부품의 비용을 절감할 수 있다.
턴테이블(520)은 화격자(510) 하부에서 화격자(510)를 지지한 채로 연소몸체부(100) 내부에 수직방향으로 진입된 호퍼(150)를 축으로 회전할 수 있도록 형성된다.
그리고 호퍼(150)는 연소몸체부(100)의 외부로부터 연소몸체부(100)의 하부중심을 수직으로 관통하면서 형성된다.
호퍼(150)는 연소몸체부(100) 외부에서 고형연료(10)를 연소몸체부(100) 내부로 공급하는 기능을 수행한다.
여기서 화격자(510)와 턴테이블(520)은 내열성이 강한 철재 또는 금속 등 다양한 재질로 이루어질 수 있다.
한편, 냉각부(200)는 연소몸체부(100)의 외벽을 감싸면서 구비되되, 연소몸체부(100)의 외면을 따라 연소몸체부(100)의 하부로부터 상부로 적층되게 연결배치된다.
상세하게는, 냉각부(200)는 연소몸체부(100) 하부에 공기를 공급하여 연소몸체부(100)의 하부를 냉각하는 제1냉각기(210)와, 제1냉각기(210) 상부에 조립결합되면서 공기를 공급하여 연소몸체부(100)의 하부 외면을 냉각하는 제2냉각기(220)를 갖는다.
그리고 제2냉각기(220) 상부에 조립결합되고 수직방향으로 격벽(202)이 형성되어 겹겹이 배치되며 외부에서 주입되는 공기가 연소몸체부(100) 내부의 하부로 진입되도록 하는 제3냉각기(230)와, 제3냉각기(230) 상부에 조립결합되고 수직방향으로 격벽(202)이 형성되어 겹겹이 배치되며 외부에서 주입되는 공기가 연소몸체부(100) 내부의 하부와 상부 사이로 진입되도록 하는 제4냉각기(240)를 갖는다.
또한, 제4냉각기(240) 상부에 조립결합되고 수직방향으로 격벽(202)이 형성되어 겹겹이 배치되며 외부에서 주입되는 공기가 격벽(202) 내부와 외부를 따라 회전하면서 연소몸체부(100)의 외면을 냉각하는 제5냉각기(250) 및 제5냉각기(250) 상부에 조립결합되고 내측 사선방향으로 격벽(202)이 형성되어 겹겹이 배치되되 상부에 개구홈(262)이 형성되며 상부로 갈수록 내경이 점차 작아지면서 주입되는 공기가 격벽(202) 내부와 외부를 따라 회전하면서 연소몸체부(100)의 외면을 냉각하는 제6냉각기(260)를 포함한다.
제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)는 연소몸체부(100)의 외벽을 감싸도록 평단면이 링 형상을 갖는 관 형태로 형성되어 내부에서 공기가 유동되도록 형성된다.
특히, 제3,4,5,6냉각기(230, 240, 250, 260)는 내부를 수직방향으로 구획하는 격벽(202)을 갖되, 격벽(202)을 기준으로 외측으로부터 공기가 유입되어 격벽(202)의 내측으로 공기가 유동 되도록 형성된다.
여기서 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)는 연소몸체부(100) 외면의 하부에서 상부로 적층되는 구조로 상호 결합되고, 각각 연소몸체부(100) 외면에서 대응되도록 한 쌍씩 배치된다.
이때, 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)는 연소몸체부(100)를 효과적으로 냉각시킬 수 있다면 그 위치와 개수는 다양하게 제작될 수 있는 것이 당연하다.
또한, 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)는 외부에서 공기를 공급받아 연소몸체부(100)로 제공하는 공기주입부(204)를 각각 구비한다.
냉각기(210, 220, 230, 240, 250, 260)들의 개수는 연소로의 용량이나 처리대상물에 따라 개수를 줄이거나 늘일 수 있다.
결과적으로, 냉각부(200)는 연소몸체부(100)의 외벽의 하부에서부터 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)가 순차적으로 적층되는 구조로 배치된다.
또한, 순차적으로 적층 배치된 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)는 각각에 구비된 공기주입부(204)를 통해 주입되는 공기의 양과 세기를 별도로 조절하여 연소몸체부(100)의 부위별 냉각을 시행할 수 있다.
제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)는 각각 다수 개의 판 조각이 상호 결합되어 이루어진다.
다수 개의 판 조각이 상호결합되어 이루어지기 때문에 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)가 사용 중에 부분적으로 훼손될 경우, 그 훼손된 부위를 간편하게 교체하는 것으로 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)의 사용수명을 최대화할 수 있다.
또한, 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)의 단면은 공기가 내부로 진입되어 유동되면서 연소몸체부(100)를 원활하게 냉각시킬 수 있다면 원형 타원형 사각형 등 다양한 형태를 갖는 것은 당연하다.
결과적으로 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)는 각각에 구비된 공기주입부(204)를 통해 외부에서 공기를 공급받아 연소몸체부(100)를 냉각시키는 기능을 수행한다.
여기서 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)의 공기 흐름에 의한 연소몸체부(100)의 냉각에 대한 내용은 하기에서 더욱 상세하게 설명하기로 한다.
한편, 연소몸체부(100)의 상부에는 냉각부(200)를 통해 유입된 공기를 포함하여 고형연료(10)의 연소에 따른 연소몸체부(100) 내에 형성된 배가스를 연소로 내에서 외부로 배출시키는 기능을 수행하는 음압유도부(300)가 연결 형성된다.
음압유도부(300)는 냉각부(200)에 의해 연소몸체부(100) 내부로 진입된 공기와, 고형연료(10)의 연소에 따른 고압의 공기를 흡입하여 연소몸체부(100) 내부에 음압이 형성되도록 한다.
이를 위하여 음압유도부(300)는 연소몸체부(100) 상부에 연결되는 연통(310)과, 연통(310)에 연결되는 음압발생기(320)를 갖는다.
연통(310)은 연소몸체부(100) 내부의 공기가 유동되는 통로의 기능을 수행하고, 고열의 공기가 유동되는 만큼 내열성이 강한 철재, 금속 또는 내화물질이 사용되며 원통형 사각 관형 등 다양한 형태로 이루어질 수 있다.
그리고 음압발생기(320)는 연통(310)에 연결되도록 형성되어 연소몸체부(100) 내부의 연소가스를 빨아들이는 기능을 수행한다.
여기서 음압유도부(300)는 사용자의 필요에 따라 연소몸체부(100) 내부의 압력을 조절하여 연소몸체부(100) 내부의 압력에 의해 부품들이 훼손되는 것을 최소화할 수 있다.
도 5는 본 발명에 따른 공냉식 연소로 설비의 연소로 냉각에서 공기의 흐름을 나타낸 도면이다.
도 5를 살펴보면, 각각의 공기주입부(204)를 통해 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)로 진입된 연소공기는 연소몸체부(100)의 외벽을 타고 강하게 회전하면서 연소몸체부(100)를 냉각시킨다.
이때, 제1,2,5,6냉각기(210, 220, 250, 260)에 진입된 공기는 제1,2,5,6냉각기(210, 220, 250, 260) 내부에서 계속해서 회전하면서 연소몸체부(100)를 냉각시킨다.
그리고 제3,4냉각기(230, 240)에 진입된 공기는 제3,4냉각기(230, 240)에서 회전하다가 연소몸체부(100) 내부로 진입되어 연소몸체부(100) 내면도 냉각시킨다.
상세하게는, 제1냉각기(210)는 재실(105)의 상부와 턴테이블(520)에 공기가 진입된 채로 제1냉각기(210) 내부를 따라 회전하도록 하여 재실(105)과 턴테이블(520)을 포함한 그 주변을 냉각시킨다.
제2냉각기(220)는 수평면상 턴테이블(520)의 상부와 화격자(510)가 배치된 위치의 외부에서 공기가 제2냉각기(220) 내부를 따라 회전되도록 하여 턴테이블(520)의 상부와 화격자(510) 주변을 냉각시킨다.
제3냉각기(230)는 수직방향으로 구획되며 형성되는 격벽(202)을 갖는다.
이러한 제3냉각기(230)에 구비된 격벽(202)은 제3냉각기(230)를 구획하되 상부가 개구되게 배치되기 때문에 공기주입부(204)로 진입된 공기는 격벽(202)을 중심으로 제3냉각기(230)의 외측에서 유동됨과 동시에 내측으로 진입되어 유동된다.
즉 제3냉각기(230)는 이중구조로 되어 있어 공기주입부(204)로 진입된 공기는 격벽(202)을 중심으로 제3냉각기(230) 외측에서 연소몸체부(100) 외벽을 따라 유동되면서 격벽(202)의 개구된 부위를 통해 제3냉각기(230) 내측으로 진입되어 연소몸체부(100) 외벽을 따라 빠르게 유동된다.
또한, 제3냉각기(230) 내측에서 유동되던 공기는 제3냉각기(230)의 하부에 형성된 틈인 안내로(206)를 통해 연소몸체부(100) 내부로 진입된다.
안내로(206)를 통해 연소몸체부(100) 내부로 진입된 공기는 호퍼(150)를 통해 진입된 고형연료(10)에 산소를 공급하여 고형연료(10)가 원활하게 연소될 수 있도록 하면서 연소몸체부(100) 내부를 냉각시킨다.
결과적으로, 제3냉각기(230)는 연소몸체부(100)의 하부인 화격자(510)가 형성된 부위의 주변 내부와 외부를 동시에 냉각시키고, 고형연료(10)에 산소를 공급하는 기능을 수행한다.
한편, 제4냉각기(240)는 제3냉각기(230)와 마찬가지로 수직방향으로 구획되며 형성되는 격벽(202)을 갖는다.
이러한 제4냉각기(240)에 구비된 격벽(202)은 제4냉각기(240)를 구획하되 하부가 개구되게 배치되기 때문에 공기주입부(204)로 진입된 공기는 격벽(202)을 중심으로 제4냉각기(230)의 외측에서 유동됨과 동시에 내측으로 진입되어 유동된다.
즉 제4냉각기(240)는 이중구조로 되어 있어 공기주입부(204)로 진입된 공기는 격벽(202)을 중심으로 제4냉각기(240) 외측에서 연소몸체부(100) 외벽을 따라 유동되면서 격벽(202)의 개구된 부위를 통해 제4냉각기(240) 내측으로 진입되어 연소몸체부(100) 외벽을 따라 빠르게 유동된다.
또한, 제4냉각기(240) 내측에서 유동되던 공기는 제4냉각기(240)의 상부에 형성된 틈인 안내로(206)를 통해 연소몸체부(100) 내부로 진입된다.
안내로(206)를 통해 연소몸체부(100) 내부로 진입된 공기는 호퍼(150)의 상부에 공기를 공급하면서 연소몸체부(100) 내부를 냉각시킨다.
특히, 제3,4냉각기(230, 240)는 공기주입부(204)를 통해 진입된 공기가 제3,4냉각기(230, 240) 내부를 회전하다가 연소몸체부(100) 내부로 진입가능하도록 형성된다.
결과적으로, 제3냉각기(230)는 연소몸체부(100)의 하부인 화격자(510)와 호퍼(150)의 주변과 연소몸체부(100)의 내부와 외부를 동시에 냉각시키고, 제4냉각기(240)는 연소몸체부(100)의 중단인 연소몸체부(100)의 내부와 외부를 동시에 냉각시킨다.
특히, 제3냉각기(230)와 제4냉각기(240)의 내부에는 외부에서 유입된 공기가 제3냉각기(230)와 제4냉각기(240) 내에서 유동되면서 와류를 형성할 수 있도록 공기가 사선으로 유동되도록 안내하는 와류편(208)이 형성된다.
여기서, 와류편(208)은 제3,4냉각기(230, 240)에 구비되는 것으로 서술되지만, 와류편(208)은 사용자의 필요에 따라 제1,2,5,6냉각기(210, 220, 250, 260) 내부에 배치되어 공기가 빠르고 원활하게 유동되면서 연소몸체부(100)를 냉각시킬 수 있도록 하는 것이 바람직하다.
한편, 제5냉각기(250)는 제4냉각기(240)와 마찬가지로 수직방향으로 구획되며 형성되는 격벽(202)을 갖는다.
이러한 제5냉각기(250)에 구비된 격벽(202)은 제5냉각기(250)를 구획하되 하부 또는 상부가 개구되게 배치되기 때문에 공기주입부(204)로 진입된 공기는 격벽(202)을 중심으로 제5냉각기(250)의 외측에서 유동됨과 동시에 내측으로 진입되어 유동된다.
즉 제5냉각기(250)는 이중구조로 되어 있어 공기주입부(204)로 진입된 공기는 격벽(202)을 중심으로 제5냉각기(250) 외측에서 연소몸체부(100) 외벽을 따라 유동되면서 격벽(202)의 개구된 부위를 통해 제5냉각기(250) 내측으로 진입되어 연소몸체부(100) 외벽을 따라 빠르게 유동된다.
이렇게 제5냉각기(250)는 연소몸체부(100)의 상부의 외벽 외부에서 공기가 유동되도록 함으로써 연소몸체부(100)의 상부 외측 부위를 냉각시킨다.
또한, 제6냉각기(260)는 제5냉각기(250)와 마찬가지로 수직방향으로 구획되며 형성되는 격벽(202)을 갖는다.
이러한 제6냉각기(260)에 구비된 격벽(202)은 제6냉각기(260)를 구획하되 하부 또는 상부가 개구되게 배치되기 때문에 공기주입부(204)로 진입된 공기는 격벽(202)을 중심으로 제6냉각기(260)의 외측에서 유동됨과 동시에 내측으로 진입되어 유동된다.
특히, 제6냉각기(260)에 구비된 격벽(202)은 제6냉각기(260)와 대응된 형태로 형성되고, 연소몸체부(100) 내측 상 방향으로 경사각을 갖으며 사선으로 배치된다.
그리고, 제6냉각기(260)의 상부에는 개구홈(262)이 형성되고 상부로 갈수록 내경이 점차 작아지며, 주입되는 공기가 격벽(202) 내부와 외부를 따라 회전하면서 연소몸체부(100)의 외면을 냉각시킨다.
또한, 제6냉각기(260)는 이중구조로 되어 있어 공기주입부(204)로 진입된 공기는 격벽(202)을 중심으로 제6냉각기(260) 외측에서 연소몸체부(100) 외벽을 따라 유동되면서 격벽(202)의 개구된 부위를 통해 제6냉각기(260) 내측으로 진입되어 연소몸체부(100) 외벽을 따라 빠르게 유동된다.
이렇게 제6냉각기(260)는 연소몸체부(100)의 최상부의 외벽 외부에서 공기가 유동되도록 함으로써 연소몸체부(100)의 최상부 외측 부위를 냉각시킨다.
결과적으로, 제1,2,5,6냉각기(210, 220, 250, 260)에 공급되는 공기는 연소몸체부(100) 외벽을 따라 지속적으로 순환되면서 연소몸체부(100)의 외부와 주변 부품들을 냉각시킨다.
그리고 제3,4냉각기(230, 240)에 공급되는 공기는 연소몸체부(100) 외벽을 따라 유동됨과 동시에 연소몸체부(100) 내부로 진입되어 연소몸체부(100)의 외부와 주변 부품들 및 연소몸체부(100) 내부를 동시에 냉각시킨다.
특히, 제3,4냉각기(230, 240)에 공급되는 공기가 연소몸체부(100) 내부로 유입되면, 연소몸체부(100)의 내부를 냉각시킨 후, 음압유도부(300)에 의해 연소몸체부(100) 외부로 배출된다.
앞서 언급된 바와 같이, 음압유도부(300)는 연소몸체부(100) 상부에 연결되는 연통(310)과, 연통(310)에 연결되는 음압발생기(320)를 갖는다.
여기서, 제3,4냉각기(230, 240)로부터 공급되는 공기가 연소몸체부(100) 내부로 유입되어 연소몸체부(100)를 냉각시키면, 음압발생기(320)는 연소몸체부(100) 내부의 공기를 빨아들여 연통(310)을 통해 연소몸체부(100) 외부로 배출되도록 한다.
도 6은 본 발명에 따른 공냉식 연소로 설비의 요부를 나타낸 도면이다.
도 5를 병행 참조하여 도 6을 살펴보면, 제1,2냉각기(210, 220)의 내경은 제3,4냉각기(230, 240)의 내경보다 크고, 제3,4냉각기(230, 240)의 내경은 제5,6냉각기(250, 260)의 내경보다 크게 형성한다.
이러한 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)는 실시 예일 뿐, 운전조건이나 상태에 따라 설계 변경이 이루어지고 결정된 설계값에 따라 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)의 내경은 다양하게 변경될 수 있다.
이렇게 연소몸체부(100)는 상부로 갈수록 넓이가 작아지는 형상을 갖는다.
이는 다수 개의 판이 상호 조립되어 완성되는 냉각부(200)와 연소몸체부(100)에서 각각 상부에 연결되는 판이 하부에 연결되는 판을 감싼 형태로 결합되어 연소몸체부(100) 내부와 외부를 긴밀하게 밀폐하기 위함이다.
제3냉각기(230)의 하부와 제4냉각기(240)의 상부에는 제3,4냉각기(230, 240) 각각의 격벽(202)과 연소몸체부(100) 외면을 따라 유동되는 공기가 연소몸체부(100) 내부로 진입되도록 안내하는 다수 개의 안내로(206)가 포함된다.
여기서 안내로(206)는 공기주입부(204)를 통해 냉각부(200)에 진입되는 공기의 유동 방향을 따라 길게 배치되는 것이 바람직하다.
이러한 안내로(260)는 공기가 연소몸체부(100) 내부로 원활하게 진입될 수 있도록 하는 기능을 수행한다.
또한, 제3냉각기(230)와 제4냉각기(240)의 내부에는 외부에서 유입된 공기가 제3냉각기(230)와 제4냉각기(240) 내에서 유동되면서 와류를 형성할 수 있도록 공기가 사선으로 유동되도록 안내하는 와류편(208)이 형성된다.
이러한 와류편(208)은 제3,4냉각기(230, 240) 내에서 공기가 와류를 형성하며 빠르게 유동하도록 유도하고, 공기가 제3,4냉각기(230, 240)에서 연소몸체부(100) 내부로 진입시 강한 회오리를 형성하면서 연소몸체부(100) 내부와 외부를 효과적으로 냉각시키는 기능을 수행한다.
도 7은 본 발명에 따른 공냉식 연소로 설비의 연료공급부를 나타낸 도면이며, 도 8은 도 7의 단면을 나타낸 도면이다.
도 7 및 도 8을 살펴보면, 고형연료(10)는 연소몸체부(100) 내부에 공급되어 연소몸체부(100) 내에서 연소되면서 열과 스팀을 발생한다.
연소몸체부(100)에 고형연료(10)를 공급하기 위해서는 고형연료(10)가 이송되도록 하는 연료공급부(400)가 사용된다.
연료공급부(400)는 고형연료(10)가 이송되도록 하는 컨베이어(410)와, 컨베이어(410)로부터 이송된 고형연료(10)가 유입되는 관 형태의 실린더(420)를 포함한다.
그리고 연료공급부(400)는 실린더(420)의 외부에서 내부로 진입된 채로 왕복 운동하면서 실린더(420)에 유입된 고형연료(10)를 밀어 이송되도록 하는 실린더로드(430)를 더 포함한다.
결과적으로, 연료공급부(400)를 통해 고형연료(10)가 이송되어 호퍼(150)를 통해 연소몸체부(100) 내부로 진입되어 연소몸체부(100) 내에서 연소된다.
그리고 컨베이어(410)로부터 이송된 고형연료(10)는 관 형태의 실린더(420)를 통해 이송된다.
고형연료(10)가 실린더(420)로 이송되면, 실린더(420)의 외부에서 내부로 진입된 채로 왕복 운동하면서 실린더(420)에 유입된 고형연료(10)를 밀어 이송되도록 하는 실린더로드(430)가 사용된다.
이렇게 실린더로드(430)를 통해 실린더(420) 내에서 이송된 고형연료(10)는 실린더(420)에 상 방향으로 연장형성된 호퍼(150)로 이송된다.
호퍼(150)의 상부는 고형연료(10)가 연소되는 연소몸체부(100)에 진입배치되어 고형연료(10)가 연소몸체부(100) 내부에 공급될 수 있도록 하는 기능을 수행한다.
한편, 컨베이어(410)는 고형연료(10)가 상면에 배치된 채로 이송되도록 하는 벨트(412)와, 벨트(412)와 연결되어 벨트(412)가 회전되도록 하는 풀리(414)와, 풀리(414)에 동력을 전달하는 모터(416)를 갖는다.
풀리(414)와 연결된 모터(416)는 전원을 인가받아 동작하면서 풀리(414)가 회전하도록 하는 기능을 수행한다.
여기서, 벨트(412)는 풀리(414)에 연동되어 풀리(414)의 회전방향을 따라 회전 및 이송되면서 고형연료(10)를 이송하는 기능을 수행한다.
그리고 컨베이어(410)는 벨트(412)와 이격되게 지면에 세워진 채로 벨트(412)의 측면 둘레에 배치되는 프레임(411)을 갖는다.
또한, 컨베이어(410)는 벨트(412)의 길이방향을 따라 프레임(411)의 테두리에 상 방향으로 배치되어 고형연료(10)가 벨트(412)에서 이탈되는 것을 차단하는 이탈방지판(413)을 포함한다.
이러한 이탈방지판(413)은 벨트(412)에 거치되는 고형연료(10)가 벨트(412)의 측면으로 이탈되는 것을 방지하는 기능을 수행한다.
이때, 프레임(411)과 이탈방지판(413)은 벨트(412)의 이동에 간섭되지 않도록 벨트(412)와 이격 배치되면서도, 벨트(412)에 거치된 채로 이송되는 고형연료(10)가 벨트(412)에서 이탈되는 것을 차단하기 위해 최대한 벨트(412)와 인접하게 배치되는 것이 바람직하다.
프레임(411)은 이탈방지판(413)을 지지하면서, 사용자의 필요에 따라 모터(416)가 거치될 수 있다.
또한, 프레임(411)은 이탈방지판(413)을 거치하면서 벨트(412)의 작동에 간섭되지 않고, 벨트(412)와 이격 거리로 인해 고형연료(10)가 벨트(412)에서 이탈되지 않는다면 다양한 형태로 형성될 수 있다.
한편, 컨베이어(410)로부터 공급된 고형연료(10)는 관 형태의 실린더(420)를 통해 이송된다.
이러한 실린더(420)는 직선으로 형성된 직선관(422)과 곡선으로 형성된 곡선관(426)으로 이루어진다.
직선관(422)은 컨베이어(410)로부터 공급된 고형연료(10)가 모여지는 공간인 집진실(424)을 포함하며, 곡선관(426) 내면에는 고형연료(10)가 회전되면서 이송되도록 안내하는 회전안내편(428)이 포함된다.
여기서 컨베이어(410)의 벨트(412)의 위치는 집진실(424)의 상부에서 고형연료(10)를 떨어뜨려 집진실(424)에 공급하기 위해 집진실(424) 상부에 위치되고, 집진실(424)의 상부는 개방, 형성된다.
그렇기 때문에, 벨트(412)의 상면에서 이송되는 고형연료(10)는 벨트(412)에서 떨어져서 집진실(424) 내부로 공급된다.
이렇게 고형연료(10)가 실린더(420)로 이송되면, 실린더로드(430)에 의해 고형연료(10)가 실린더(420)의 내부에서 다시 이송된다.
상술한 바와 같이, 실린더(420)는 집진실(424)에서 직선으로 연장형성되고 내부가 길이방향으로 관통형성되는 관 형태의 직선관(422)과, 직선관(422)에서 연장형성되고 내부가 관통형성되며 곡선을 갖는 관 형태의 곡선관(426)으로 이루어진다.
그리고 실린더로드(430)는 실린더(420)의 외부에서 내부로 진입된 채로 왕복 운동하면서 실린더(420)에 유입된 고형연료(10)를 밀어 이송되도록 한다.
이를 위해, 실린더로드(430)는 컨베이어(410)로부터 공급된 고형연료(10)가 실린더(420) 내부에서 밀착배치 되도록 실린더(420)의 측면 외부에서 내부로 진입되면서 고형연료(10)를 가압하는 가압로드(440)를 갖는다.
그리고 가압로드(440)가 고형연료(10)를 가압한 상태에서 고형연료(10)가 실린더(420)의 길이방향으로 이송되도록 실린더(420)의 길이방향으로 왕복 운동하는 이송로드(450)를 갖는다.
또한, 가압로드(440)는 고형연료(10)에 밀착된 채로 가압하는 가압판(442)을 포함하고, 이송로드(450)는 고형연료(10)에 밀착한 채로 고형연료(10)가 이송되도록 하는 이송뭉치(452)를 포함한다.
즉 가압로드(440)와 이송로드(450)는 실린더(420)의 내부인 집진실(424)에서 상호 90˚의 교차각을 갖도록 각각 수평 왕복운동한다.
그리고 집진실(424)은 가압로드(440)와 이송로드(450)가 집진실(424)의 외부에서 내부로 원활하게 이동가능하도록 가압로드(440)와 이송로드(450)가 진입되는 부위가 개방형성된다.
그리고 가압로드(440)와 이송로드(450)가 진입되는 집진실(424)의 개방부위는 집진실(424) 내부의 고형연료(10)가 외부로 누출되지 않도록 가압로드(440)와 이송로드(450)의 외경과 대응된 형태를 갖는 것이 바람직하다.
또한, 필요에 따라 가압로드(440)와 이송로드(450)가 진입되는 집진실(424)의 개방 부위에는 고형연료(10)의 외부누출을 방지하기 위한 고무패킹(미도시)이나 실리콘패킹(미도시)이 구비될 수 있다.
여기서 가압로드(440)와 이송로드(450)에 대한 내용은 하기에서 더욱 상세하게 설명하기로 한다.
한편, 가압로드(440)와 이송로드(450)의 가압을 통해 실린더(420)의 직선관(422)과 곡선관(426)을 따라 이송된 고형연료(10)는 곡선관(426)의 상부에 연결형성된 호퍼(150)로 진입된다.
이때, 호퍼(150)의 하부는 연소몸체부(100)의 외부에서 곡선관(426)의 상부와 연결되고, 호퍼(150)의 상부는 연소몸체부(100)의 내부에 진입된 채로 배치된다.
이어서, 호퍼(150)는 상광하협의 형태인 상부가 넓고 하부가 좁은 형태를 갖으며, 상부가 개방되게 형성된다.
호퍼(150)의 내면에는 곡선관(426)에서 공급되는 고형연료(10) 중에 호퍼(150)의 내벽에 위치한 고형연료(10)가 원활하게 호퍼(150)의 상부로 이송될 수 있도록 나선 형태로 돌출형성된 회전유도편(155)이 형성된다.
특히, 실린더(420)에서 호퍼(150)로 이어지는 곡선관(426)은 호퍼(150)와 마찬가지로 직선관(422)에 연결되는 곡선관(426)의 연결부위 내경보다 곡선관(426)의 상부의 내경이 넓게 형성된다.
즉 곡선관(426)은 수직으로 세워진 부위의 하부에서 상부로 갈수록 내경이 점점 넓어지는 상광하협의 형태를 갖는 것이 바람직하다.
회전유도편(155)은 나선형태로 돌출되기 때문에 고형연료(10)가 회전유도편(155)에 의해 안내되어 원활하게 호퍼(150)의 상부로 이송될 수 있도록 유도하는 기능을 수행한다.
이렇게 호퍼(150)의 개방된 상부로 배출되는 고형연료(10)는 연소몸체부(100) 내부로 진입된다.
도 9는 본 발명에 따른 공냉식 연소로 설비의 연료공급부를 확대하여 나타낸 도면이다.
도 7을 참조하여 도 9를 살펴보면, 컨베이어(410)의 벨트(412)에서 집진실(424)로 공급된 고형연료(10)는 가압로드(440)와 이송로드(450)에 의해 가압되면서 실린더(420)의 직선관(422)과 곡선관(426)을 통해 호퍼(150)로 이송된다.
이때, 벨트(412)의 외면에는 고형연료(10)에 의해 벨트(412)의 외면이 오염되지 않도록 하기 위해 벨트(412)의 상면에 탈착 가능하게 결합되는 고무 또는 실리콘 재질의 오염방지막(418)이 덧씌워질 수 있다.
그리고 프레임(411)과 벨트(412)의 이격된 공간에는 벨트(412)에 구비된 오염방지막(418)이 연장형성되어 그 이격된 공간으로 고형연료(10)가 누출되는 것을 방지할 수 있다.
이러한 이송과정을 살펴보면, 집진실(424)에 공급된 고형연료(10)는 가압로드(440)의 가압판(442)에 의해 가압되어 집진실(424)의 벽면에 밀착배치된다.
이렇게 고형연료(10)가 집진실(424) 내에서 밀착배치되면 이송로드(450)의 이송뭉치(452)에 의해 고형연료(10)가 다시 가압되면서 직선관(422)으로 이송된다.
이렇게 직선관(422)으로 이송된 고형연료(10)가 누적된 상태에서 계속해서 고형연료(10)가 직선관(422) 내부로 유입되면, 직선관(422) 내부의 고형연료(10)는 다른 고형연료(10)에 의해서 밀리면서 곡선관(426)으로 이송된다.
이때, 곡선관(426)의 내면에는 곡선관(426) 벽면에 밀착된 고형연료(10)가 원활하게 상 방향으로 이송될 수 있도록 내측으로 나선형을 갖고 돌출형성되는 회전안내편(428)이 형성된다.
곡선관(426)의 내벽 부위에 위치된 고형연료(10)는 회전안내편(428)을 따라 곡선관(426)의 내벽에서 회전되면서 상승하여 곡선관(426)의 상부에 연결 형성된 호퍼(150)로 이송된다.
그리고 호퍼(150)의 상부는 연소몸체부(100) 내부에 배치되기 때문에 고형연료(10)가 개방형성된 호퍼(150)의 상부를 통해 연소몸체부(100) 내부로 공급된다.
상세하게는, 컨베이어(410)로부터 공급된 고형연료(10)는 집진실(424)에 모여진다.
이때, 집진실(424)의 측면에서 진입되는 가압로드(440)에 연결된 가압판(442)에 의해 고형연료(10)가 상호 밀집배치된다.
이렇게, 고형연료(10)가 밀집배치되면 직선관(422)의 길이방향으로 진집실(212)에 진입되는 이송로드(450)에 연결된 이송뭉치(452)가 밀집배치된 고형연료(10)를 가압하여 직선관(422) 내부로 이송시킨다.
그리고 가압판(442)의 내면과, 가압판(442)의 내면과 마주보는 집진실(424)의 내면은 상호 마주보면서 타원 형태를 이룬다.
이송뭉치(452)의 외면은 집진실(424)의 내면과 가압판(442)의 내면에 대응된 형태로 형성되기 때문에 가압판(442)이 고형연료(10)를 가압시 집진실(424)과 가압판(442)의 내면을 따라 그 사이에서 왕복운동 할 수 있다.
즉 이송뭉치(452)의 외형은 가압판(442)의 내면과, 가압판(442)의 내면과 마주보는 집진실(424)의 내면이 합쳐져 완성된 형태에 대응되도록 형성하는 것이다.
또한, 가압판(442)의 내면과 집진실(424)의 내면 형태는 다양한 형태를 형성할 수 있고, 이에 따라 이송뭉치(452)의 외형 또한 대응되게 변형될 수 있다.
결과적으로, 가압판(442)이 고형연료(10)를 가압하여 집진실(424)의 마주보는 벽면에 밀집배치되도록 한 상태에서 이송뭉치(452)가 가압판(442)과 집진실(424)의 벽면 사이를 관통하면서 밀집배치된 고형연료(10)를 직선관(422)으로 이송시키는 것이다.
또한, 이 상태에서 지속적으로 집진실(424) 내부로 유입되는 고형연료(10)는 또 다시 가압판(442)에 의해 가압되어 밀집배치된 후, 이송뭉치(452)의 가압에 의해 직선관(422)으로 누적이송된다.
이렇게 직선관(422) 내부에 고형연료(10)가 누적되면, 고형연료(10)는 직선관(422)과 연결된 곡선관(426)으로 이송된다.
마찬가지로, 곡선관(426)에 고형연료(10)가 누적되면, 집진실(424)로부터 밀려오는 다른 고형연료(10)에 의해 곡선관(426) 내부의 고형연료(10)가 호퍼(150)로 이송된다.
상술한 바와 같이 호퍼(150)의 내벽면에는 호퍼(150)의 내벽면에 위치한 고형연료(10)가 호퍼(150)의 내벽을 타고 상승하며 이송될 수 있도록 나선형으로 돌출형성되는 회전유도편(155)이 형성된다.
이렇게 호퍼(150)에 진입된 고형연료(10)는 개방형성된 호퍼(150)의 상부를 통해 연소몸체부(100)에 공급된다.
도 10은 본 발명에 따른 공냉식 연소로 설비의 화격자부를 나타낸 도면이고, 도 11은 본 발명에 따른 공냉식 연소로 설비의 화격자부를 분리한 사시도이며, 도 12는 도 11의 화격자부에 대한 단면을 나타낸 도면이다.
도 10 내지 도 12를 살펴보면, 고형연료(10)가 호퍼(150)를 통해 연소몸체부(100)의 내부로 진입되면, 연소몸체부(100)의 내부에서 바닥면을 이루는 화격자부(500)의 상면에 고형연료(10)가 지지된 채로 연소된다.
여기서, 화격자부(500)는 다수 개의 호 형태의 화격자편(512)이 상호 결합 되어 고형연료(10)의 연소시 고형연료(10)를 지지하면서 연소몸체부(100)의 바닥면을 이루는 화격자(510)를 포함한다.
화격자부(500)는 호퍼(150)의 외면을 감싸면서 형성되는 화격자(510)의 하부에 연결되어 화격자(510)가 회전되도록 하는 턴테이블(520)을 갖는다.
화격자부(500)는 턴테이블(520)의 하부를 지지하며, 턴테이블(520)의 회전시 그 회전을 보조하는 롤러(551)가 상부에 구비되고, 하면이 지면에 지지되는 지지몸체(530)를 더 포함한다.
여기서, 롤러(551)는 지지몸체(530)의 상부에 형성되되, 턴테이블(520)의 하부에 밀착 배치되어 턴테이블(520)의 회전시 그 회전이 원활하게 이루어질 수 있도록 하면서도 턴테이블(520)를 지지하여 턴테이블(520)의 하중이 분산되도록 한다.
이러한 롤러(551)의 구체적인 내용은 하기에서 상세하게 설명하기로 한다.
한편, 화격자편(512)은 고형연료(10)가 연소되면서 화격자(510)의 내측에서부터 외측 방향으로 이동될 수 있도록 나선형태로 돌출형성되는 안내돌기(514)를 포함한다.
그렇기 때문에, 화격자편(512)의 상부에 거치된 고형연료(10)는 턴테이블(520)의 회전을 통해 연동되는 화격자(510)의 회전에 의해 안내돌기(514)를 따라 화격자(510)의 내측에서부터 외측방향으로 천천히 이동되면서 완전연소가 가능하다.
특히, 화격자편(512)은 다수 개가 상호 겹쳐지게 형성되기 때문에 고형연료(10)가 연소되는 과정에서 고열에 의해 화격자편(512)이 부분적으로 훼손되더라도 그 훼손된 부위만 별도로 교체함으로써 소모부품의 비용을 절감할 수 있다.
더불어, 화격자(510)는 고형연료(10)의 연소시간 제어를 위해 화격자(510)에 경사각을 주어 고형연료(10)가 화격자편(512)을 따라 이동하는 시간을 조절할 수 있다.
이를 통해, 화격자(510)의 상면에서 연소되는 고형연료(10)가 사용자의 필요에 따라 다양한 연소시간을 유지할 수 있도록 하여 고형연료(10)의 연소효율을 최적화할 수 있다.
한편, 턴테이블(520)은 화격자(510)의 하부에 밀착 배치되는 상부턴테이블(522)과, 상부턴테이블(522)의 하부에 지지되는 하부턴테이블(524)을 갖는다.
그리고 턴테이블(520)은 하부턴테이블(524)의 하부에 지지되는 렉기어(521) 및 렉기어(521)에 연결되어 회전동력을 전달하는 피니언기어(523)를 구비하는 동력기(525)를 포함한다.
결과적으로, 동력기(525)는 피니언기어(523)가 회전되도록 하여 렉기어(521)가 동작되도록 하고, 렉기어(521)가 동작되면서 하부턴테이블(524)이 회전되도록 한다.
이어서, 하부턴테이블(524)의 회전에 따라 상부턴테이블(522)이 연동되면서 회전되어, 상부턴테이블(522) 상부에 지지된 화격자(510)도 같이 회전된다.
특히, 상부턴테이블(522)는 화격자(510)의 열기가 상부턴테이블(522)의 하부로 전도되는 것을 차단하는 내화물층(526)이 구비된다.
이러한 내화물층(526)은 화격자(510)의 상부에서 연소되는 고형연료(10)의 열에 의해 상부턴테이블(522) 하부에 구성된 구성요소들이 훼손되는 것을 방지하는 기능을 수행한다.
여기서, 내화물층(526)은 고온에 견디는 물질로 적어도 1000℃ 이상 고온에서 연화되지 않고, 그 강도를 유지하며 화학적 작용에도 견딜 수 있다.
그리고 하부턴테이블(524)을 회전시키기 위한 동력기(525)의 구성을 살펴보면, 동력기(525)는 피니언기어(523)에 축 결합되어 회전되는 봉 형태의 회전축(527)을 갖는다.
이어서, 회전축(527)이 회전되도록 하는 연결기어(528)와, 연결기어(528)에 동력을 전달하여 연결기어(528)가 회전되도록 하는 모터(529)를 구비한다.
결과적으로, 동력기(525)는 턴테이블(520)를 회전시키기는 기능을 수행한다.
이러한 동력기(525)는 일 실시예로 상술한 구성을 갖지만, 턴테이블(520)이 원활하게 회전되어 화격자(510)를 회전시킬 수 있다면 다양한 구성요소가 사용될 수 있다.
그리고 지지몸체(530) 상부에는 턴테이블(520)의 하부에서 화격자(510)를 상 방향으로 관통배치되는 호퍼(150)가 구비된다.
이러한 호퍼(150)는 고형연료(10)가 이동되는 통로의 기능을 수행한다.
또한, 지지몸체(530) 상부에는 호퍼(150)의 외면을 감싸면서 고정되고, 턴테이블(520)과 화격자(510)의 내측 테두리 부위를 각각 지지하도록 외면에 다단의 단턱(532)이 구비되는 보조몸체(534)가 구비된다.
이러한 보조몸체(534) 외면의 상부와 하부에 구비된 단턱(532)은 상부턴테이블(522)과 하부턴테이블(524)이 상하로 적층배치되면서 부분적으로 단턱(532)에 거치되도록 지지된다.
특히, 호퍼(150)의 외면에는 보조몸체(534)가 호퍼(150)와 일체로 형성되고, 보조몸체(534)에는 화격자(510)와 턴테이블(520)이 상호 밀접하게 연결된다.
그렇기 때문에 화격자(510) 및 턴테이블(520)과 호퍼(150) 및 보조몸체(534) 사이에는 공간이 형성되지 않아 화격자(510)의 상부에 열기가 화격자(510)와 보조몸체(534) 사이로 누출되는 것을 방지할 수 있다.
그리고 지지몸체(530) 상부에는 호퍼(150)의 하부에 연결되는 원통 형상의 승하강관(536)과, 승하강관(536)의 외주연에 고정되어 승하강관(536)이 승강 또는 하강되도록 하는 높이조절기(540)가 구비된다.
이때, 승하강관(536)과 호퍼(150)의 사이에는 베어링(538)이 형성되고, 턴테이블(520)이 회전되면, 베어링(538)에 의해 호퍼(150)와 턴테이블(520)은 연동되어 회동 가능하다.
또한, 호퍼(150)의 하부에 연결된 승하강관(536)은 베어링(538)에 의해 호퍼(150)의 회전에 관여하지 않는다.
여기서, 높이조절기(540)는 승하강관(536)을 부양하면서 배치되기 때문에 승하강관(536)이 승강 또는 하강할 수 있도록 하는 기능을 수행한다.
이러한 높이조절기(540)의 내용은 하기에서 더욱 상세하게 설명하기로 한다.
도 13은 본 발명에 따른 공냉식 연소로 설비의 요부를 나타낸 도면이다.
도 10 내지 도 12를 참조하여, 도 13을 살펴보면, 높이조절기(540)는 승하강관(536)에 수평방향으로 연결되는 승강판(542)과, 승강판(542) 하부에 배치되되, 측단면이 외측으로 하 방향 경사각을 갖는 경사판(544)을 갖는다.
이어서, 높이조절기(540)는 경사판(544) 하부에 배치되되, 측단면이 외측으로 상방향 경사각을 갖으며 경사판(544)의 내부에서 유동되면서 경사판(544)이 승강 또는 하강되도록 하는 이동편(546)을 갖는다.
또한, 높이조절기(540)는 이동편(546) 내부에서 회전되면서 이동편(546)의 위치를 이동시키는 스크류볼트(548)와, 스크류볼트(548)의 외면에 돌출형성되어 스크류볼트(548) 상에서 이동편(546)의 유동을 제어하는 스토퍼(549)를 포함한다.
이러한 높이조절기(540)는 경사판(544) 내부에서 이동편(546)이 스크류볼트(548)에 의해 경사판(544)의 내측 방향과 외측 방향으로 왕복운동되면서 승강판(542)을 승강 또는 하강시킨다.
이때, 경사판(544)의 하면은 이동편(546)의 상면에 맞닿은 상태로 배치된다.
즉 스크류볼트(548)가 일 방향으로 회전하면 이동편(546)은 경사판(544) 내측 방향으로 이동되고, 스크류볼트(548)가 다른 방향으로 회전하면 이동편(546)은 경사판(544)의 외측 방향으로 이동된다.
상세하게는, 경사판(544)과 이동편(546)은 상호 상반된 경사각을 갖기 때문에 이동편(546)이 경사판(544)의 내측 방향으로 이동되면 상호 경사각에 의해 승강판(542)은 승강된다.
그리고 이동편(546)이 경사판(544)의 외측 방향으로 이동되면 상호 경사각에 의해 승강판(542)은 하강된다.
여기서, 이동편(546)이 경사판(544)의 외측 방향으로 나오는 한계점은 스크류볼트(548)의 외면에 돌출형성되는 스토퍼(549) 까지다.
이렇게 이동편(546)과 경사판(544) 및 스크류볼트(548)의 동작을 통해 승강판(542)이 승강 또는 하강되면, 승강판(542)에 연결된 승하강관(536) 또한 승강 또는 하강된다.
특히, 승하강관(536)이 승강 또는 하강되면, 승하강관(536) 상부에 지지된 호퍼(150) 역시 승강 또는 하강된다.
이에 따라 호퍼(150) 외면에 고정구비되는 보조몸체(534)와, 보조몸체(534)의 외면에 연결되는 턴테이블(520) 및 화격자(510) 또한 동반상승 또는 동반하강된다.
한편, 상술한 바와 같이, 턴테이블(520)은 화격자(510)의 하부에 밀착 배치되는 상부턴테이블(522)과, 상부턴테이블(522)의 하부에 지지되는 하부턴테이블(524)을 갖는다.
그리고 턴테이블(520)은 하부턴테이블(524)의 하부에 지지되는 렉기어(521) 및 렉기어(521)에 연결되어 회전동력을 전달하는 피니언기어(523)를 구비하는 동력기(525)를 포함한다.
동력기(525)는 피니언기어(523)에 축결합되어 회전되는 봉 형태의 회전축(527)을 갖는다.
이어서, 동력기(525)는 회전축(527)이 회전되도록 하는 연결기어(528)와, 연결기어(528)에 동력을 전달하여 연결기어(528)가 회전되도록 하는 모터(529)를 구비한다.
이때, 모터(529)의 위치에 따라 연결기어(528)와 회전축(527) 및 피니언기어(523)의 위치와 형태는 다양하게 변형될 수 있고, 연결기어(528)의 개수도 다수 개가 체인을 통해 연결될 수 있다.
또한, 연결기어(528)는 풀리로 대체될 수 있고, 이에 따라 풀리에는 벨트가 연결되어 연동되면서 회전축(527)을 회전가능하게 할 수 있다.
한편, 하부턴테이블(524)의 하부에는 렉기어(521)가 지지되는데, 하부턴테이블(524)의 상부 외측에는 밀폐편(533)이 구비된다.
그리고 밀폐편(533)은 하부턴테이블(524)의 하부와 렉기어(521)를 외부에서 감싸면서 형성되는 밀폐판(535)과 상호 밀착되게 형성된다.
상세하게는, 밀폐판(535)의 내측에는 밀폐편(533)과 밀착되는 밀폐홈(537)이 구비되고, 밀폐홈(537)에는 내열성이 높고 탄성 재질을 갖는 패킹(539)이 구비된다.
그렇기 때문에, 밀폐편(533)은 밀폐홈(537)의 내부에 수용되면서 패킹(539)에 밀착된 채로 배치된다.
이로 인해 화격자(510)의 하부와 하부턴테이블(524) 사이의 공간에 형성된 열기가 밀폐판(535)이 형성된 외측으로 전도되는 것을 차단할 수 있다.
결과적으로, 밀폐판(535)은 하부턴테이블(524)과 맞닿도록 형성되면서, 화격자(510)와 하부턴테이블(524) 부위의 열기가 외부로 노출되는 것을 차단하는 기능을 수행한다.
도 14는 본 발명에 따른 턴테이블이 구비된 연소로 조립식 화격자의 다른 요부를 나타낸 도면이다.
도 10 내지 도 12를 참조하여 도 14를 살펴보면, 턴테이블(520)의 하부를 이루는 하부턴테이블(524)의 하부에는 하부턴테이블(524)를 지지하는 지지몸체(530)가 배치된다.
이러한 지지몸체(530)의 하면은 지면에 지지된다.
그리고 지지몸체(530)의 상부에는 턴테이블(520)의 하부를 지지하며, 턴테이블(520)의 회전시 그 회전을 보조하는 롤러(551)가 배치된다.
여기서, 롤러(551)는 하부턴테이블(524)의 하부에 밀착 배치되어, 하부턴테이블(524)의 회전시, 그 회전이 원활하게 이루어질 수 있도록 하면서 하부턴테이블(524)을 지지하여 하중이 분산되도록 한다.
이를 위해, 롤러(551)는 하부턴테이블(524) 하부 외측에 다수 개가 배치되어 하부턴테이블(524)의 회전을 보조하는 보조롤러(552)와, 하부턴테이블(524) 하부 내측에 다수 개가 배치되어 하부턴테이블(524)의 회전을 보조하는 메인롤러(554)를 구비한다.
또한, 지지몸체(530)는 보조롤러(552)의 하부에서 보조롤러(552)를 고정지지하는 보조지지편(556)과, 메인롤러(554)의 하부에서 메인롤러(554)를 고정지지하는 메인지지편(558)을 포함한다.
상세하게는, 보조지지편(556) 상부에 지지되는 보조롤러(552)는 하부턴테이블(524) 하부 외측에 사방으로 배치되어 하부턴테이블(524)의 외측 테두리 부위를 지지하며 하부턴테이블(524)의 회전에 따라 회동된다.
메인지지편(558) 상부에 지지되는 메인롤러(554)는 하부턴테이블(524) 하부 내측에 사방으로 배치되어 하부턴테이블(524)의 내측 테두리부위를 지지하며, 하부턴테이블(524)의 회전에 따라 회동된다.
결과적으로, 롤러(551)는 다수 개가 하부턴테이블(524)와 맞닿게 배치되어 화격자(510) 및 턴테이블(520)의 하중이 분산되도록 하는 기능을 수행한다.
도 15는 본 발명에 따른 공냉식 연소로 설비의 조립유닛을 나타내는 도면이다.
도 15를 살펴보면, 고형연료(10)가 내부로 진입되어 연소되면서 열에너지를 생산할 수 있는 연소공간인 연소로를 형성하도록 다수 개가 상호 조립되어 연소로의 내벽을 이루는 조립유닛(110)을 갖는다.
그리고 조립유닛(110)들이 상호결합 또는 분리가능하도록 하는 연결유닛(120)을 갖는다.
또한, 고형연료(10)를 지지하는 화격자(510)와, 화격자(510)의 하부에 배치되면서 환형 형태를 갖되, 화격자(510)가 회전되도록 하는 턴테이블(520)을 포함하고, 조립유닛(110)과 연결유닛(120)을 감싸면서 연소로의 외벽을 이루는 연소몸체부(100)를 갖는다.
여기서, 조립유닛(110)은 다수 개가 상호 조립되는 판 형태의 조립판(112)을 포함한다.
그리고 연결유닛(120)은 조립판(112)들이 상호결합 또는 분리가능하도록 조립판(112)의 상부에 형성되는 결합돌기(122)와, 다른 조립판(112')의 하부에 형성되어 결합돌기(122)가 끼움 결합되는 결합홈(124)을 포함한다.
조립판(112)은 서로 다른 조립판(112, 112')이 상호 수평방향으로 겹쳐지면서 조립가능하도록 조립판(112, 112')의 좌측과 우측에 각각 단층이 형성되는 결합단층(114)을 갖는다.
그리고 서로 다른 조립판(112, 112')이 상호 수직방향으로 적층결합 가능하도록 조립판(112, 112')의 상부와 하부에 각각 수평방향으로 돌출형성되는 결합플랜지(116)를 더 포함한다.
이러한 결합플랜지(116)는 조립판(112)의 위치에 따라 생략될 수 있다.
더불어, 연결유닛(120)은 서로 다른 조립판(112, 112')이 상호 탈착되는 것을 보조하도록 각각의 조립판(112, 112') 테두리 부위에 상호 대응되는 위치에 형성되는 다수 개의 너트홈(126)과, 너트홈(126)에 결합 또는 분리되는 체결볼트(128)를 더 포함한다.
결과적으로, 조립유닛(110)은 다수 개의 조립판(112, 112')이 연결유닛(120)을 통해 수평방향 및 수직방향으로 연결되면서 연소로의 내벽을 형성한다.
이러한 조립판(112, 112')의 형상은 기본적으로 완곡한 곡선형태를 갖는 판 형태로 형성되고, 다른 구성요소들의 형성에 의해 부분적으로 조금씩 다른 형태를 갖을 수 있다.
마찬가지로, 연결유닛(120)의 결합돌기(122) 또한 조립판(112, 112')이 상호 견고하게 연결될 수 있다면 다양한 형태로 형성될 수 있고, 이러한 결합돌기(122)의 형태에 따라 결합홈(124)은 결합돌기(122)와 결합될 수 있도록 대응된 형태를 갖는다.
조립유닛(110)과 연결유닛(120)은 내열성이 강한 철재 또는 금속 등 다양한 재질로 이루어질 수 있다.
도 16a는 도 15에 따른 실시 예를 나타내는 도면이고, 도 16b는 도 16a에 따른 실시 예를 나타내는 도면이다.
도 16을 살펴보면, 조립유닛(110)은 다수 개가 상호 조립되는 판 형태의 조립판(112)을 포함한다.
그리고 연결유닛(120)은 조립판(112)들이 상호결합 또는 분리가능하도록 조립판(112)의 상부에 형성되는 결합돌기(122)와, 다른 조립판(112')의 하부에 형성되어 결합돌기(122)가 끼움 결합되는 결합홈(124)을 포함한다.
조립판(112)은 서로 다른 조립판(112, 112')이 상호 수평방향으로 겹쳐지면서 조립 가능하도록 조립판(112, 112')의 좌측과 우측에 각각 단층이 형성되는 결합단층(114)을 갖는다.
도 16a 및 16b에서는 서로 다른 조립판(112, 112')이 수평방향으로 조립되는 것을 나타낸다.
이를 위해 조립판(112)의 양측에는 다른 조립판(112')이 겹쳐질 수 있도록 하는 결합단층(114)이 형성된다.
이러한 결합단층(114)은 조립판(112)과 다른 조립판(112')이 상호 겹쳐진 두께가 조립판(112, 112')의 두께보다 크지 않게 형성되는 것이 바람직하다.
이때 조립판(112)의 양측에 형성되는 결합단층(114)은 한쪽은 내면에 음각형성되고 다른 한쪽은 외면에 음각형성되면서 상호 엇갈리게 형성된다.
이는 조립판(112)의 내면에 음각형성된 결합단층(114)이 다른 조립판(112)의 외면에 음각형성된 결합단층(120')과 상호 밀착결합되되, 그 결합된 두께가 조립판(112, 112')의 두께보다 두껍지 않도록 형성하기 위함이다.
여기서 결합단층(114, 114')에는 각각 너트홈(126, 126')이 형성된다.
결합단층(114, 114')에 형성되는 너트홈(126, 126')은 상호 대응된 위치에 형성되기 때문에 결합단층(114, 114')이 겹쳐질 경우 너트홈(126, 126')은 결합단층(114, 114')을 관통하는 형태로 형성된다.
결합단층(114, 114')은 너트홈(126, 126')에 결합 또는 분리되는 체결볼트(128)에 의해 상호 견고하게 결합고정될 수 있다.
마찬가지로, 두 개의 조립판(112, 112')을 분리할 경우 너트홈(126, 126')에서 체결볼트(128)를 분리하는 것으로 간편하게 분리할 수 있다.
이러한 방식으로, 다수 개의 조립판(112, 112')은 수평방향으로 상호 조립되어 평단면이 원형 또는 다각형 형태를 갖는다.
특히, 다수 개의 조립판(112, 112')이 상호 조립되어 평단면이 원형 또는 다각형의 형태를 갖으면서 하나의 층을 형성한 후에는, 그 위 또는 아래로 다른 조립판(112, 112')이 상하 방향으로 조립될 수 있다.
이러한 다수 개의 조립판(112, 112')의 상하 방향 조립은 도 17a 및 17b에서 상세하게 설명하기로 한다.
도 17a는 도 16a 및 16b에 따른 다른 실시 예를 나타내는 도면이고, 도 17b는 도 17a에 따른 실시 예를 나타내는 도면이다.
도 17a 및 도 17b에서는 서로 다른 조립판(112, 112')이 상하방향으로 조립되는 것을 나타낸다.
도 16a 및 도 16b를 참조하여 도 17a 및 도 17b를 살펴보면, 연결유닛(120)은 조립판(112)들이 상호 결합 또는 분리가능하도록 조립판(112)의 상부에 형성되는 결합돌기(122)를 갖는다.
그리고 연결유닛(120)은 다른 조립판(112')의 하부에 형성되어 결합돌기(122)가 끼움 결합 되는 결합홈(124)을 포함한다.
조립판(112)은 서로 다른 조립판(112, 112')이 상호 수평방향으로 겹쳐지면서 조립 가능하도록 조립판(112, 112')의 좌측과 우측에 각각 단층이 형성되는 결합단층(114)을 갖는다.
이러한 조립판(112)에 형성되는 결합돌기(122)와 다른 조립판(112')의 형성되는 결합홈(124)은 조립판(112)과 다른 조립판(112')이 상호 수직방향으로 결합될 수 있는 기능을 수행한다.
그리고 결합단층(114)은 서로 다른 조립판(112, 112')이 수평방향으로 조립될 수 있는 기능을 수행한다.
여기서, 결합돌기(122)는 결합홈(124)에 진입되는 결합머리(123)와 결합머리(123)와 조립판(112)을 상호 연결하되, 결합머리(123)의 둘레보다 작은 둘레를 갖는 거치핀(121)으로 구성된다.
또한, 결합홈(124)은 결합머리(123)가 진입되는 머리홈(125)과, 결합돌기(122)가 결합홈(124)에 진입한 후 수평방향으로 유동되면서 거치핀(121)의 둘레와 대응되는 형태의 홈을 갖는 핀홈(127)으로 구성된다.
즉 결합홈(124)은 수평방향으로 갈수록 홈의 크기가 달라지도록 형성되는 것이다.
결합돌기(122)가 결합홈(124)에 연결되는 과정을 살펴보면, 조립판(112)의 상부에 형성된 결합머리(123)가 다른 조립판(112')의 머리홈(125)에 진입 통과한 후, 수평방향으로 유동되면서 조립판(112)의 거치핀(121)이 다른 조립판(112')의 핀홈(127)에 진입된 채로 거치된다.
이로써 조립판(112)과 다른 조립판(112')은 상호 수직 방향으로 적층 결합이 가능하다.
이때 조립판(112)의 하부에 형성되는 결합플랜지(116)는 조립판(112)의 하부에 수직결합되는 다른 조립판(112')의 상부에 거치되면서 두 개의 조립판(112, 112')이 상호 안정적으로 결합고정될 수 있다.
이러한 방식으로, 조립판(112, 112')의 상부 또는 하부에는 다수 개의 다른 조립판(112, 112')들이 수직방향으로 결합될 수 있다.
마찬가지로, 조립판(112, 112')을 상호 분리시에는 조립판(112)의 하부에 결합된 조립판(112')을 수평방향으로 이동시켜 핀홈(127)에 거치된 거치핀(121)이 머리홈(125)이 형성된 위치로 이동되도록 한다.
그리고 머리홈(125)을 통해 결합머리(123)가 머리홈(125)에서 이탈됨으로써 조립판(112, 112')은 상호 분리된다.
이때, 두 개의 조립판(112, 112')의 상호 수직 결합 방식은 일 실시예 일뿐, 상호 견고하게 결합될 수 있다면 연결유닛(120)은 다양한 형태로 형성될 수 있다.
이렇게, 조립판(112, 112')의 결합단층(114, 114')에 의해 상호 밀착결합됨으로써, 조립판(112, 112')이 상호 수평방향으로 결합 또는 분리될 수 있고, 조립판(112, 112')에 형성되는 연결유닛(120)의 결합돌기(122)와 결합홈(124)을 통해 조립판(112, 112')은 상호 수직방향으로 결합 또는 분리될 수 있다.
여기에서도, 연결유닛(120)은 서로 다른 조립판(112, 112')이 상호 탈착되는 것을 보조하도록 각각의 조립판(112, 112') 테두리 부위에 상호 대응되는 위치에 형성되는 다수 개의 너트홈(126)과, 너트홈(126)에 결합 또는 분리되는 체결볼트(128)를 더 포함할 수 있다.
이러한 조립판(112, 112')의 각각에 형성되는 너트홈(126)이 상호 동일한 수평선상에 배치된 후 체결볼트(128)가 각각의 너트홈(126)을 동시에 관통하면서 결합되므로써, 조립판(112, 112')은 상호 더욱 견고하게 결합될 수 있다.
도 18은 본 발명에 따른 공냉식 연소로 설비의 클링커제거부를 나타낸 도면이고, 도 19는 본 발명에 따른 공냉식 연소로 설비에서 클링커제거부의 단면을 나타낸 도면이고, 도 20은 본 발명에 따른 클링커제거부의 사용상태 단면을 나타내는 도면이며, 도 21은 본 발명에 따른 연소로 클링커제거부의 사용상태 평면을 나타내는 도면이다.
도 18 내지 도 21을 살펴보면, 고형연료(10)가 연소되는 공간을 갖는 연소몸체부(100)의 하부에는 고형연료(10)가 연소되는 화격자(510)가 구비된다.
화격자(510)에서 고형연료(10)가 연소되는 과정에서, 고형연료(10) 내의 이물질이 발화되면서 화격자(510) 상에 융착되는 클링커(30)가 발생된다.
이때, 클링커(30)를 제거하지 않을 경우 고형연료(10)의 연소효율이 저하되고, 화격자(510)를 포함한 다른 구조물이 훼손된다.
그렇기 때문에 클링커(30)를 반복적으로 제거해야하는데 이를 위해 클링커제거부(600)가 사용된다.
이러한 클링커제거부(600)는 화격자(510)에 발생된 클링커(30)에 직접 마찰 되면서 클링커(30)를 제거하는 다수 개의 클링커제거기(610)를 갖는다.
이때, 클링커제거기(610)로는 클링커(30)를 잘라내거나 화격자(510)로부터 분리할 수 있도록 철재로 제작된 칼날이 사용될 수 있다.
또한, 클링커제거기(610)는 화격자(510)로부터 클링커(30)를 원활하게 제거할 수 있다면 다양한 재질이 사용될 수 있는 것이 당연하다.
여기서, 클링커제거기(610)는 측단면이 삼각형태를 갖는다.
이러한 클링커제거기(610)의 형태는 일 실시예 일뿐 사용자의 필요에 따라 다양한 크기와 형태가 사용되는 것은 당연하다.
이때, 연소몸체부(100)의 내부는 고형연료(10)의 연소에 의해 900 내지 1500 ℃ 정도의 고열이 발생된 상태가 유지되기 때문에 클링커제거기(610)를 포함하는 클링커제거부(600)는 내열성 금속이 사용된다.
그리고 다수 개의 클링커제거기(610)는 빠르게 회전하면서 클링커(30)에 마찰되어 클링커(30)를 제거한다.
클링커제거기(610)가 화격자(510)와 이격된 상태에서 회전하면서 화격자(510) 상의 클링커(30)를 제거하기 위해 클링커제거기(610)이 부양된 채로 회전되도록 하는 클링커냉각기(620)가 사용된다.
이때, 클링커냉각기(620)는 클링커제거부(600)를 부양함과 동시에 회전되도록 하면서 클링커제거부(600)를 냉각시키는 기능을 수행한다.
이를 위해, 클링커냉각기(620)는 연소몸체부(100)의 내부에 진입배치되는 봉 형태의 내부냉각관(622)과, 내부냉각관(622)에서 연장형성되면서 연소몸체부(100)의 외부에 배치되는 봉 형태의 외부냉각관(624)으로 구성되는 냉각하우징(621)을 갖는다.
특히, 클링커냉각기(620)는 연소몸체부(100)의 외부에서 내부로 연결된 채로 배치되되, 사용자의 필요에 따라 다수 개가 배치될 수 있다.
본 발명에서는, 클링커냉각기(620)가 연소몸체부(100)의 외부에서 내부로 연결된 채로 상호 마주보며 한 쌍이 구비될 수 있다.
또한, 연소몸체부(100)의 하부에는 내부냉각관(622)이 연소몸체부(100)의 내부로 진입될 수 있는 진입거치부(160)가 형성된다.
즉 클링커냉각기(620)는 진입거치부(160)를 통해 선단이 연소몸체부(100)의 내부에 진입배치되고 말단이 연소몸체부(100)의 외부에 배치되어 연소몸체부(100) 내부에 진입된 부위를 물 또는 공기의 순환을 통해 냉각시킨다.
이렇게, 연소몸체부(100)의 내부에 진입된 클링커냉각기(620)의 외면에는 클링커제거부(600)가 돌출, 형성되어, 클링커제거부(600)가 클링커냉각기(620)의 회전에 연동되면서 화격자(510)에 발생되는 클링커(30)를 제거하는 것이다.
그리고 연소몸체부(100)의 외부에 배치된 클링커냉각기(620)의 외부냉각관(624)에는 클링커냉각기(620)가 회전되도록 동력을 전달하는 동력전달부(630)가 형성된다.
동력전달부(630)는 연소몸체부(100) 외부에 구비된 채로 외부냉각관(624)과 연결되어 외부냉각관(624)이 회전되도록 하여, 내부냉각관(622)에 연결된 다수 개의 클링커제거기(610)가 연동되어 회전되도록 한다.
이를 위해, 동력전달부(630)는 외부냉각관(624) 외면에 돌출 형성된 클링커돌출기어(632)와, 클링커돌출기어(632)에 연결된 클링커체인(634)과, 클링커체인(634)에 연결되되 클링커돌출기어(632)와 마주보며 형성되는 클링커연결기어(636)와, 클링커연결기어(636)에 연결되어 클링커연결기어(636)를 회전하는 클링커모터(638)로 구성된다.
여기서, 동력전달부(630)의 구성은 일 실시예 일뿐, 클링커냉각기(620)를 원활하게 회전시킬 수 있다면, 풀리와 벨트 등 사용자의 필요에 따라 다양한 구성요소로 대체 가능하다.
한편, 클링커냉각기(620)는 연소몸체부(100)의 내부에 진입된 내부냉각관(622)과 클링커제거부(600)를 냉각시키면서 회전하기 위하여 하기의 구성요소를 더 포함한다.
그리고 클링커냉각기(620)는 내부냉각관(622)과 클링커제거부(600)를 냉각시키기 위해 냉각 촉매제로 물과 공기를 사용할 수 있다.
냉각 촉매제로 물을 사용할 경우, 클링커냉각기(620)는 외부냉각관(624)에서 외측으로 연장형성되되, 외부에서 진입되는 냉각수(50)와, 냉각하우징(621) 내부에서 순환된 후 외부로 배출되는 냉각수(50)를 구획하는 냉각구획조(625)를 갖는다.
이어서, 클링커냉각기(620)는 냉각하우징(621)과 냉각구획조(625)를 상호 연결하면서, 냉각하우징(621)이 회전시 냉각구획조(625)는 고정된 상태를 유지할 수 있도록 하는 조인트(627)를 갖는다.
클링커냉각기(620)는 냉각구획조(625)의 외면에 연결되어 냉각수(50)가 진입되는 진입관(626)과, 냉각하우징(621) 내부에서 순환된 냉각수(50)가 배출되는 배출관(628)으로 구성되는 공급배수관(629)을 갖는다.
클링커냉각기(620)는 진입관(626)에 연결되면서 냉각구획조(625)의 내부와 냉각하우징(621)의 내부에 연결배치되어 진입관(626)을 통해 주입되는 냉각수(50)가 냉각하우징(621) 내부에 공급되도록 하는 냉각공급관(631)을 포함한다.
이러한 냉각구획조(625)는 진입관(626)을 통해 주입되는 냉각수(50)가 냉각공급관(631)으로 진입된 후, 내부냉각관(622)과 외부냉각관(624)을 순환한 후 배출관(628)으로 배출되는 냉각수(50)와 상호 격리되도록 하는 기능을 수행한다.
냉각하우징(621)은 클링커제거부(600)가 회전되도록 함과 동시에 클링커제거부(600) 및 내부냉각관(622)을 냉각시키는 기능을 수행한다.
조인트(627)는 냉각구획조(625)와 냉각하우징(621)의 외부냉각관(624) 사이에 형성되어 냉각하우징(621) 회전시 냉각구획조(625)가 정지된 상태를 유지할 수 있는 기능을 수행한다.
또한, 조인트(627)의 내부로는 진입관(626)에 연결되어 외부냉각관(624) 내부에서 내부냉각관(622)의 내부까지 배치형성되는 냉각공급관(631)이 배치된다.
그리고 조인트(627)의 내부로는 냉각하우징(621)을 순환한 냉각수(50)가 냉각공급관(631)의 외경을 따라 조인트(627)의 내부를 관통하여 유동될 수 있는 기능을 수행한다.
즉 냉각공급관(631)은 고정된 상태를 유지하면서 냉각수(50)를 내부냉각관(622)에 공급하고, 냉각하우징(621)은 냉각공급관(631)에 간섭되지 않은 채로 동력전달부(630)에 의해 회전된다.
그리고 외부냉각관(624)의 하부에는 냉각하우징(621)이 지지된 채로 회전가능하도록 하는 하나 이상의 베어링지지관(615)과, 베어링지지관(615)의 하부에서 베어링지지관(615)을 지지하는 지지테이블(617)이 배치된다.
베어링지지관(615)은 냉각하우징(621)을 지지하면서도 냉각하우징(621)의 회전시 냉각하우징(621)과의 마찰력을 최소화할 수 있는 기능을 수행한다.
이때, 클링커냉각기(620)은 내부냉각관(622)의 직경이 외부냉각관(624)의 직경 보다 크게 형성된다.
이렇게 내부냉각관(622)의 직경이 외부냉각관(624)의 직경 보다 크게 형성된 이유는, 내부냉각관(622)에 진입된 냉각수(50)가 외부냉각관(624)으로 유동시에 병목현상을 주어 냉각수(50)의 배출 속도를 늦추도록 하기 위해서이다.
도 22는 본 발명에 따른 클링커제거부의 요부를 나타내는 도면이다.
도 20을 참조하여 도 22를 설명하면, 진입거치부(160)는 내부냉각관(622)과 외부냉각관(624)이 연결되는 부위 외면을 감싸는 제1밀폐베어링(161)이 구비되고, 연소몸체부(100)의 내부와 외부를 격리하는 제1밀폐문(162)을 갖는다.
그리고 진입거치부(160)는 제1밀폐문(162)의 내부로 진입된 내부냉각관(622)의 외면을 감싸는 제2밀폐베어링(165)이 구비되고, 제1밀폐문(162)과 더불어 연소몸체부(100)의 내부와 외부를 이중으로 격리하는 제2밀폐문(166)을 포함한다.
제1밀폐문(162)에는 제1밀폐문(162)과 제2밀폐문(166)의 사이 공간에 공기를 주입하여 그 사이 공간을 냉각시킬 수 있는 냉각주입구(164)가 더 포함된다.
이때, 제1밀폐문(162)과 제1밀폐베어링(161)은 외부냉각관(624)의 외경을 감싼 채로 연소몸체부(100)의 내부와 외부를 격리하면서, 외부냉각관(624)의 회전시 그 외부냉각관(624)에 간섭되지 않도록 하는 기능을 수행한다.
또한, 제2밀폐문(166)과 제2밀폐베어링(165)은 외부냉각관(624)의 외경을 감싼 채로 연소몸체부(100)의 내부와 외부를 격리하면서, 외부냉각관(624)의 회전시 그 외부냉각관(624)에 간섭되지 않도록 하는 기능을 수행한다.
즉 제2밀폐문(166)은 연소몸체부(100)의 하부 내측에 형성되어, 연소몸체부(100) 내부의 열기가 제2밀폐문(166) 외부로 노출되는 것을 차단하는 것이다.
제2밀폐베어링(165)은 외부냉각관(624)의 외주연을 가압하면서도 외부냉각관(624) 회전시 마찰저항을 최소화하도록 한다.
그리고 제1밀폐문(162)은 연소몸체부(100)의 하부 외측에 형성되어, 연소몸체부(100) 내부의 열기 중에서 제2밀폐문(166)의 외부로 노출된 열기를 한번 더 견고하게 차단하는 기능을 수행한다.
제1밀폐베어링(161) 또한, 외부냉각관(624)의 외주연을 가압하면서도 외부냉각관(624)과의 마찰저항을 최소화하도록 한다.
또한, 제1밀폐문(162)에는 제1밀폐문(162)의 외부에서 제1밀폐문(162)과 제2밀폐문(166)의 사이 공간으로 공기를 주입하여 그 사이 공간을 냉각시킬 수 있도록 하는 냉각주입구(164)가 형성된다.
이러한 냉각주입구(164)에 주입된 냉각공기는 제1밀폐문(162)과 제2밀폐문(166)의 사이 공간을 직접적으로 냉각시켜, 연소몸체부(100)의 주변 구성물을 보호한다.
결과적으로, 진입거치부(160)는 제1밀폐문(162)과 제2밀폐문(166)의 이중 구조를 이루며, 연소몸체부(100)의 외부에서 내부로 클링커냉각기(620)가 원활하게 진입 및 연결된 채로 작동될 수 있도록 한다.
도 23은 본 발명에 따른 공냉식 연소로 설비의 실시 예를 나타낸 도면이다.
도 23을 살펴보면, 냉각부(200)는 냉각부(200) 내부로 공급되는 공기의 량을 측정하는 유량센서(203)와, 유량센서(203)에서 측정된 공기의 량에 따라 냉각부(200)에 공급되는 공기의 양을 조절하는 공기조절장치(205)를 포함한다.
이러한 공기조절장치(205)로는 댐퍼(damper) 또는 질량유량계(MFC)가 사용될 수 있다.
여기서, 유량센서(203)는 냉각부(200) 내부로 공급되는 공기의 압력을 측정할 수 있다면 사용자의 편의에 따라 연소몸체부(100) 외부에서 내부로 연결되도록 형성될 수 있고, 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260) 각각에 형성될 수 있다.
마찬가지로, 유량센서(203)는 냉각부(200) 내부로 공급되는 공기의 압력을 측정할 수 있다면 사용자가 원하는 위치에 다양하게 배치될 수 있다.
그리고 연소몸체부(100) 상부에 연결되는 연통(310)과, 연통(310)에 연결되는 음압발생기(320)를 갖는다.
또한, 음압유도부(300)는 연소몸체부(100) 내부의 압력을 측정하는 압력센서(209)와 연소몸체부(100) 내부의 온도를 측정하는 온도센서(201)를 포함한다.
여기서, 온도센서(210)는 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260) 각각에 구비되어 부위별 온도 정보를 측정할 수 있다.
더불어, 연소몸체부(100)는 유량센서(203)와 압력센서(209) 및 온도센서(201)에서 측정된 수치정보를 수신하고, 수치정보에 따라 공기조절장치(205)와 음압유도부(300)를 제어하는 제어기(102)를 포함한다.
여기서, 유량센서(203)와 압력센서(209) 및 온도센서(201)의 위치와 개수는 사용자의 필요에 따라 다양하게 변형 가능한 것이 당연하다.
이러한 압력센서(209)는 연소몸체부(100)의 내부와 외부의 차압을 견고하게 측장하기 위하여, 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260) 각각의 위치마다 형성될 수 있고, 음압발생기(320)에도 형성될 수 있다.
연소몸체부(100)는 유량센서(203)와 압력센서(209)에서 측정된 압력 수치를 수신하고, 압력 수치에 따라 공기조절장치(205)와 음압유도부(300)를 제어하는 제어기(102)를 포함한다.
이때, 유량센서(203)와 압력센서(209)는 연소몸체부(100) 내부와 외부의 공기 압력 정보를 확인하여 그 정보를 제어기(102)에 전송하는 송신기(미도시)를 구비한다.
연소몸체부(100)는 고형연료(10)가 발화될 수 있도록 연소몸체부(100) 내부에 불꽃을 제공하는 기동버너(104)를 포함한다.
여기서 기동버너(104)는 제작시 사용자의 필요에 따라 다양한 위치와 형태를 가지고 배치될 수 있다.
연소몸체부(100)는 연소몸체부(100)에서 발생한 열에너지를 스팀이나 전기로 전환시키는 에너지교환부(106)를 포함한다.
이때, 에너지교환부(106)는 연소몸체부(100) 내에서 발생된 열을 이용하여 스팀으로 전환된 상태로 직접 사용할 수 있도록 하거나, 그 스팀을 이용해서 전기로 교환하여 사용할 수 있는 기능을 수행한다.
이러한 에너지교환부(106)는 발전기를 통해 에너지를 변환시켜 사용하는 보일러 등이 사용될 수 있다.
음압유도부(300)는 연소몸체부(100) 상부에 연결되는 연통(310)과, 연통(310)에 연결되는 음압발생기(320)를 포함한다.
음압유도부(300)는 가스상 유해물질과 입자상 유해물질을 갖는 연소가스를 흡입하여 제거 또는 분해하는 유해가스처리부(330)를 포함한다.
이러한 유해가스처리부(330)는 연통(310)에 연결되되 에너지교환부(106)와 음압발생기(320) 사이에 형성되어 유해한 가스를 분해 또는 제거하는 기능을 수행한다.
유해가스처리부(330)로는, SNCR, SCR, SDR, DR, 백필터 등이 사용될 수 있다.
에너지교환부(106)는 폐 연료를 가공한 고형연료(10)를 통해 발생된 열에너지를 활용하여 작동되고, 이로 인해 에너지 사용에 따른 비용을 절감할 수 있다.
그리고 연소몸체부(100)의 하부에는 연소몸체부(100)의 원활한 이동을 위하여 다수 개의 바퀴(101)를 갖는다.
바퀴(101)는 연소몸체부(100)의 작동 중에는 바퀴(101)에 인접한 위치에 구비된 고정구(108)를 통해 견고하게 고정가능하다.
상술한 구성을 통하여 본 발명에서는, 연소로의 벽면 전면에 연소로를 냉각시킬 수 있는 공기를 원활하게 공급하여 연소로를 효율적으로 냉각시킬 수 있고 연소공기를 예열하여 주입하여 연소로 내의 연소분위기를 형성할 수 있는 장점을 얻을 수 있다.
그리고 연소로의 효율적인 냉각을 통해 연소로 내부와 외부의 부품 기기들의 수명이 연장되어 생산 및 운영 비용을 절감할 수 있는 장점을 얻을 수 있다.
또한, 고형연료의 연소로 정량투입을 제어함으로 인해 연료 과다 공급으로 인한 화재 및 폭발 등의 안전사고를 사전에 방지할 수 있는 안전상의 장점이 있다.
더불어, 열 변환 에너지 생산의 지속율과 생산율이 향상되어 신뢰성과 생산성을 최적화할 수 있는 장점이 있다.
특히, 연소장치의 가동중에 클링커를 원활하게 제거함으로써, 연소장치의 고장을 방지할 수 있는 장점이 있다.
그리고, 연소로 내벽의 훼손시, 연소로 내벽을 부분적으로 간편하게 교체가능하기 때문에 작업의 능률을 향상시키고 교체비용을 절감할 수 있는 장점이 있다.
더불어, 연소로 내에서 화격자의 열 변형시 변형부분만 간편하게 교체가능함으로 인해 부품교체 비용을 절감할 수 있는 장점을 얻을 수 있다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시 예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상술한 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상술한 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가 적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.
본 발명에 따른 공냉식 연소로 설비는, 연소로의 벽면 전면에 연소로를 냉각시킬 수 있는 공기를 원활하게 공급하여 연소로를 효율적으로 냉각시킬 수 있고 예열된 공기를 주입하여 연소로 내의 연소분위기를 형성할 수 있으므로 산업상 이용가능하다.

Claims (14)

  1. 고형연료(10)가 내부로 진입되도록 하는 호퍼(150)가 구비되고, 상기 호퍼(150)를 통해 내부로 진입된 상기 고형연료(10)가 연소 되면서 열에너지를 생산할 수 있도록 연소공간을 형성하는 연소몸체부(100),
    상기 연소몸체부(100)의 외면에 일체로 형성되되, 수직 방향으로 구획되어 다수 개의 층을 이루면서 각 층에서 별도로 공기를 분배주입하여 상기 연소몸체부(100)를 냉각시키는 냉각부(200),
    상기 연소몸체부(100)의 상부에 연결되어 상기 냉각부(200)에 의해 상기 연소몸체부(100) 내부로 진입된 공기를 흡입하여 상기 연소몸체부(100) 내부에 음압이 형성되도록 하는 음압유도부(300),
    상기 연소몸체부(100)의 외부에서 내부로 연결형성되어 상기 고형연료(10)를 상기 연소몸체부(100) 내부로 공급하는 연료공급부(400),
    상기 연소몸체부(100)의 내부에 형성되되 다수 개의 화격자편(512)이 상호 결합되어 상기 고형연료(10)의 연소시 상기 고형연료(10)를 지지하면서 상기 연소몸체부(100)의 바닥면을 이루는 화격자(510)가 구비되고, 상면에 상기 고형연료(10)가 거치된 채로 연소될 수 있도록 하는 화격자부(500), 그리고
    상기 화격자부(500)의 상기 고형연료(10)가 연소되는 과정에서 발생되는 클링커(30)를 제거하는 클링커제거부(600)를 포함하고,
    상기 냉각부(200)는,
    상기 냉각부(200) 내부로 공급되는 공기의 압력을 측정하는 유량센서(203), 그리고
    상기 유량센서(203)에서 측정된 공기의 압력에 따라 상기 냉각부(200)에 공급되는 공기의 양을 조절하는 공기조절장치(205)를 포함하고,
    상기 음압유도부(300)는,
    상기 연소몸체부(100) 내부의 압력을 측정하는 압력센서(209)와 상기 연소몸체부(100) 내부의 온도를 측정하는 온도센서(201)를 포함하며,
    상기 연소몸체부(100)는,
    상기 유량센서(203)와 상기 압력센서(209)에서 측정된 유량 수치와 압력 수치를 수신하고, 유량 수치와 압력 수치에 따라 상기 공기조절장치(205)와 상기 음압유도부(300)를 제어하는 제어기(102)를 포함하는 공냉식 연소로 설비.
  2. 제 1 항에 있어서,
    상기 연소몸체부(100)는,
    다수 개가 상호 조립되어 상기 연소몸체부(100)의 내벽을 이루는 조립유닛(110), 그리고
    상기 조립유닛(110)들이 상호 결합 또는 분리가능하도록 하는 연결유닛(120)을 포함하는 공냉식 연소로 설비.
  3. 제 1 항에 있어서,
    상기 연료공급부(400)는,
    상기 고형연료(10)가 이송되도록 하는 컨베이어(410),
    상기 컨베이어(410)로부터 이송된 상기 고형연료(10)가 유입되는 관 형태의 실린더(420), 그리고
    상기 실린더(420)의 외부에서 내부로 진입된 채로 왕복 운동하면서 상기 실린더(420)에 유입된 상기 고형연료(10)를 밀어 이송되도록 하는 실린더로드(430)를 포함하는 공냉식 연소로 설비.
  4. 제 1 항에 있어서,
    상기 화격자부(500)는,
    상기 호퍼(150)의 외면을 감싸면서 형성되는 상기 화격자(510)의 하부에 연결되어 상기 화격자(510)가 회전되도록 하는 턴테이블(520), 그리고
    상기 턴테이블(520)의 하부를 지지하며, 상기 턴테이블(520)의 회전시 그 회전을 보조하는 롤러(551)가 상부에 구비되고, 하면이 지면에 지지 되는 지지몸체(530)를 포함하는 공냉식 연소로 설비.
  5. 제 4 항에 있어서,
    상기 지지몸체(530)는,
    상기 호퍼(150)의 외면을 감싸면서 고정되고, 상기 턴테이블(520)과 상기 화격자(510)의 내측 테두리 부위를 각각 지지하도록 외면에 다단의 단턱(532)이 구비되는 보조몸체(534),
    상기 호퍼(150)의 하부에 연결되는 원통 형상의 승하강관(536), 그리고
    상기 승하강관(536)의 외주연에 고정되어 상기 승하강관(536)이 승강 또는 하강되도록 하는 높이조절기(540)를 포함하는 공냉식 연소로 설비.
  6. 제 5 항에 있어서,
    상기 높이조절기(540)는,
    상기 승하강관(536)에 수평방향으로 연결되는 승강판(542),
    상기 승강판(542) 하부에 배치되되, 측 단면이 외측의 하 방향으로 경사각을 갖는 경사판(544),
    상기 경사판(544)의 하부에 배치되되, 측 단면이 외측의 상 방향으로 경사각을 갖으며 상기 경사판(544)의 내부에서 유동되면서 상기 경사판(544)이 승강 또는 하강되도록 하는 이동편(546),
    상기 이동편(546)의 내부에서 회전되면서 상기 이동편(546)의 위치를 이동시키는 스크류볼트(548), 그리고
    상기 스크류볼트(548)의 외면에 돌출형성되어 상기 스크류볼트(548) 상에서 상기 이동편(546)의 유동을 제어하는 스토퍼(549)를 포함하는 공냉식 연소로 설비.
  7. 제 1 항에 있어서,
    상기 연소몸체부(100)는,
    상기 고형연료(10)가 발화될 수 있도록 상기 연소몸체부(100) 내부에 불꽃을 제공하는 기동버너(104), 그리고
    상기 연소몸체부(100)는 상기 연소몸체부(100)에서 발생한 열에너지를 스팀이나 전기로 전환시키는 에너지교환부(106)를 포함하고,
    상기 음압유도부(300)는,
    상기 연소몸체부(100) 상부에 연결되는 연통(310),
    상기 연통(310)에 연결되는 음압발생기(320), 그리고
    상기 연통(310)과 상기 음압발생기(320) 사이에 형성되어 가스상 유해물질과 입자상 유해물질을 갖는 연소가스를 제거 또는 분해하는 유해가스처리부(330)를 포함하는 공냉식 연소로 설비.
  8. 제 1 항에 있어서,
    상기 냉각부(200)는,
    상기 연소몸체부(100) 하부에 공기를 공급하여 상기 연소몸체부(100)의 하부를 냉각하는 제1냉각기(210),
    상기 제1냉각기(210) 상부에 조립결합되면서 공기를 공급하여 상기 연소몸체부(100)의 하부 외면을 냉각하는 제2냉각기(220),
    상기 제2냉각기(220) 상부에 조립결합되고 수직방향으로 격벽(202)이 형성되어 겹겹이 배치되며 외부에서 주입되는 공기가 상기 연소몸체부(100) 내부의 하부로 진입되도록 하는 제3냉각기(230),
    상기 제3냉각기(230) 상부에 조립결합되고 수직방향으로 격벽(202)이 형성되어 겹겹이 배치되며 외부에서 주입되는 공기가 상기 연소몸체부(100) 내부의 하부와 상부 사이로 진입되도록 하는 제4냉각기(240),
    상기 제4냉각기(240) 상부에 조립결합되고 수직방향으로 격벽(202)이 형성되어 겹겹이 배치되며 외부에서 주입되는 공기가 상기 격벽(202) 내부와 외부를 따라 회전하면서 상기 연소몸체부(100)의 외면을 냉각하는 제5냉각기(250), 그리고
    상기 제5냉각기(250) 상부에 조립결합되고 내측 사선방향으로 격벽(202)이 형성되어 겹겹이 배치되되 상부에 개구홈(262)이 형성되며 상부로 갈수록 내경이 점차 작아지면서 주입되는 공기가 상기 격벽(202) 내부와 외부를 따라 회전하면서 상기 연소몸체부(100)의 외면을 냉각하는 제6냉각기(260)를 포함하는 공냉식 연소로 설비.
  9. 제 8 항에 있어서,
    상기 제1,2,3,4,5,6냉각기(210, 220, 230, 240, 250, 260)는,
    외부에서 공기를 공급받아 상기 연소몸체부(100)로 제공하는 공기주입부(204)를 각각 구비하는 공냉식 연소로 설비.
  10. 제 8 항에 있어서,
    상기 제3냉각기(230)와 상기 제4냉각기(240)의 내부에는,
    외부에서 유입된 공기가 상기 제3냉각기(230)와 상기 제4냉각기(240) 내에서 유동되면서 와류를 형성할 수 있도록 공기가 사선으로 유동 되도록 안내하는 와류편(208)이 더 포함되는 공냉식 연소로 설비.
  11. 제 1 항에 있어서,
    상기 클링커제거부(600)는,
    상기 연소몸체부(100)의 내부에 진입되게 형성되어 상기 화격자(510)에 발생 되는 클링커(30)를 제거하는 클링커제거기(610),
    상기 연소몸체부(100)의 하부에 형성되는 진입거치부(160)를 통해 상기 클링커제거기(610)의 내부에서 상기 연소몸체부(100)의 외부 방향으로 연장형성되어 상기 클링커제거기(610)를 물 또는 공기의 순환을 통해 냉각시키는 클링커냉각기(620), 그리고
    상기 연소몸체부(100) 외부의 상기 클링커냉각기(620)에 연결되어 상기 클링커냉각기(620)가 회전되도록 동력을 전달하는 동력전달부(630)를 포함하는 공냉식 연소로 설비.
  12. 제 11 항에 있어서,
    상기 클링커냉각기(620)는,
    상기 진입거치부(160)를 통해 상기 연소몸체부(100)의 내부에 진입배치되는 봉 형태의 내부냉각관(622)과, 상기 내부냉각관(622)에서 연장형성되면서 상기 연소몸체부(100)의 외부에 배치되는 봉 형태의 외부냉각관(624)으로 구성되는 냉각하우징(621),
    상기 외부냉각관(624)에서 외측으로 연장형성되되, 외부에서 진입되는 냉각수(50)와, 상기 냉각하우징(621) 내부에서 순환된 후 외부로 배출되는 냉각수(50)를 구획하는 냉각구획조(625),
    상기 냉각하우징(621)과 상기 냉각구획조(625)를 상호 연결하면서, 상기 냉각하우징(621)이 회전시 상기 냉각구획조(625)는 고정된 상태를 유지할 수 있도록 하는 조인트(627),
    상기 냉각구획조(625)의 외면에 연결되어 상기 냉각수(50)가 진입되는 진입관(626)과, 상기 냉각하우징(621)의 내부에서 순환되는 상기 냉각수(50)가 배출되는 배출관(628)으로 구성되는 공급배수관(629), 그리고
    상기 진입관(626)에 연결되면서 상기 냉각구획조(625)의 내부와 상기 냉각하우징(621)의 내부에 연결배치되어 상기 진입관(626)을 통해 주입되는 상기 냉각수(50)가 상기 냉각하우징(621)의 내부에 공급되도록 하는 냉각공급관(631)을 포함하는 공냉식 연소로 설비.
  13. 제 12 항에 있어서,
    상기 진입거치부(160)는,
    상기 내부냉각관(622)과 상기 외부냉각관(624)이 연결되는 부위 외면을 감싸는 제1밀폐베어링(161)이 구비되고, 상기 연소몸체부(100)의 내부와 외부를 격리하는 제1밀폐문(162), 그리고
    상기 제1밀폐문(162)의 내부로 진입된 상기 내부냉각관(622)의 외면을 감싸는 제2밀폐베어링(168)이 구비되고, 상기 제1밀폐문(162)과 더불어 상기 연소몸체부(100)의 내부와 외부를 이중으로 격리하는 제2밀폐문(166)을 포함하는 공냉식 연소로 설비.
  14. 제 11 항에 있어서,
    상기 클링커제거기(610)는,
    일부가 상기 연소몸체부(100) 내부에 진입된 상기 클링커냉각기(620)의 외면에 일체로 돌출 형성되되, 다수 개가 나란하게 형성되어 상기 클링커냉각기(620)의 회전에 따라 연동되면서 화격자(510)에 발생된 클링커(30)를 제거하는 제거칼날을 포함하는 공냉식 연소로 설비.
PCT/KR2013/007737 2012-09-13 2013-08-28 공냉식 연소로 설비 WO2014042369A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/428,216 US9951957B2 (en) 2012-09-13 2013-08-28 Air-cooled combustion furnace system
CN201380047553.6A CN104981660B (zh) 2012-09-13 2013-08-28 空冷式燃烧炉设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0101658 2012-09-13
KR1020120101658A KR101228423B1 (ko) 2012-09-13 2012-09-13 공냉식 연소로 설비

Publications (1)

Publication Number Publication Date
WO2014042369A1 true WO2014042369A1 (ko) 2014-03-20

Family

ID=47842903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007737 WO2014042369A1 (ko) 2012-09-13 2013-08-28 공냉식 연소로 설비

Country Status (4)

Country Link
US (1) US9951957B2 (ko)
KR (1) KR101228423B1 (ko)
CN (1) CN104981660B (ko)
WO (1) WO2014042369A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503298B1 (ko) * 2013-08-27 2015-03-18 김상권 연소장치
KR101422461B1 (ko) 2014-05-29 2014-07-28 석상득 목재 펠릿 버너용 내통
KR101627991B1 (ko) * 2016-01-04 2016-06-07 박현조 도자기 가마용 목재 펠릿 버너
DE102016202703A1 (de) * 2016-02-22 2017-08-24 Sirona Dental Systems Gmbh Ofen für Dentalbauteile und wärmefeste Unterlage
CN106524216B (zh) * 2016-11-29 2019-03-08 佛山市顺智环保科技有限公司 一种具有自冷却功能的节能环保型锅炉
KR101915640B1 (ko) * 2017-03-16 2018-11-06 (주)유성 수냉 내화벽과 수냉걸이를 구비한 연소로
CN111974337A (zh) * 2020-07-29 2020-11-24 福州市宏业化工有限公司 一种具有冷却功能的酚醛树脂制备用反应装置
JP7355311B1 (ja) 2021-12-14 2023-10-03 株式会社湘南貿易 固形燃料の燃焼装置
KR102531200B1 (ko) * 2022-11-14 2023-05-10 (주)유성 바이오매스 공냉식 선회류 연소장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658527A (ja) * 1992-06-24 1994-03-01 Niigata Eng Co Ltd 燃焼器の冷却構造
KR200385865Y1 (ko) * 2005-03-02 2005-06-03 유병숙 고체연료를 사용하는 대형 온수보일러
KR20110041170A (ko) * 2009-10-15 2011-04-21 김미순 바이오매스 발전 장치
KR20110137915A (ko) * 2010-06-18 2011-12-26 김지원 비산재 분리 기능을 갖는 원심형 연속 연소장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605370A (en) * 1970-03-23 1971-09-20 Combustion Eng Preassembled insulating panels for high temperature furnaces
DE2432487A1 (de) * 1973-08-24 1975-03-06 Walter Rueegsegger Foerderanlage mit foerderschnecke
JPH03197339A (ja) * 1989-12-27 1991-08-28 Onoda Cement Co Ltd クリンカ冷却方法およびクリンカ冷却装置
JPH0858527A (ja) 1994-08-24 1996-03-05 Hino Motors Ltd 車両のシートベルト用バックルの収納ケース
US6875409B1 (en) * 1999-01-04 2005-04-05 Hydrocarbon Technologies, Inc. Catalyst and process for oxidation and removal of nitrogen oxides (NOx) from combustion gases
US6550253B2 (en) * 2001-09-12 2003-04-22 General Electric Company Apparatus and methods for controlling flow in turbomachinery
US6485296B1 (en) * 2001-10-03 2002-11-26 Robert J. Bender Variable moisture biomass gasification heating system and method
KR100614918B1 (ko) 2005-02-25 2006-08-25 이점수 고체연료를 사용하는 대형 온수보일러
CN201043745Y (zh) * 2007-05-24 2008-04-02 巩义市正大机械厂 立式风冷低尘液排渣煤粉燃烧装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658527A (ja) * 1992-06-24 1994-03-01 Niigata Eng Co Ltd 燃焼器の冷却構造
KR200385865Y1 (ko) * 2005-03-02 2005-06-03 유병숙 고체연료를 사용하는 대형 온수보일러
KR20110041170A (ko) * 2009-10-15 2011-04-21 김미순 바이오매스 발전 장치
KR20110137915A (ko) * 2010-06-18 2011-12-26 김지원 비산재 분리 기능을 갖는 원심형 연속 연소장치

Also Published As

Publication number Publication date
US20150247642A1 (en) 2015-09-03
CN104981660A (zh) 2015-10-14
US9951957B2 (en) 2018-04-24
CN104981660B (zh) 2017-03-08
KR101228423B1 (ko) 2013-01-31

Similar Documents

Publication Publication Date Title
WO2014042369A1 (ko) 공냉식 연소로 설비
WO2019212188A1 (ko) 청소기의 노즐
WO2019203391A1 (ko) 전극 보일러 시스템
WO2009116770A2 (en) Continuously variable transmission
WO2019212187A1 (ko) 청소기의 노즐
WO2013025019A2 (ko) 중앙식 연속 아스콘 생산장치 및 그 방법
WO2019212189A1 (ko) 청소기의 노즐
WO2020045930A1 (ko) 연료전지 파워팩
WO2019117630A1 (ko) 가스 히트펌프 시스템
WO2020153560A1 (ko) 인버터 장치 및 이를 포함하는 인버터 패널
WO2012091437A2 (ko) 일관제철시스템 및 일관제철방법
WO2021157873A1 (ko) 냉각 플레이트 및 이의 제조 방법
WO2019212195A1 (ko) 청소기의 노즐
WO2021215721A1 (ko) 공기 정화 장치
WO2024034878A1 (ko) 볼 밸브 및 이를 포함하는 차량용 열관리 장치
WO2020045994A1 (ko) 연료전지 파워팩의 가스 공급 구조
WO2022030767A1 (ko) 공기정화기 및 그의 운전 제어방법
WO2018105815A1 (ko) 가스 센서
WO2020153559A1 (ko) 인버터 장치 및 이를 포함하는 전력변환장치
WO2019045299A1 (ko) 동력 전달 장치
WO2019221491A1 (ko) 유동 발생장치
WO2023128151A1 (ko) 유체 정화 장치 및 이를 포함하는 전력 기기
WO2023075477A1 (ko) 조리기기
WO2023075478A1 (ko) 조리기기
WO2018186593A1 (ko) 물과 기름을 연료로 사용하는 융합 연소 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14428216

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13837948

Country of ref document: EP

Kind code of ref document: A1