WO2014042224A1 - 電力供給システム、充電制御方法および充電制御プログラム - Google Patents

電力供給システム、充電制御方法および充電制御プログラム Download PDF

Info

Publication number
WO2014042224A1
WO2014042224A1 PCT/JP2013/074741 JP2013074741W WO2014042224A1 WO 2014042224 A1 WO2014042224 A1 WO 2014042224A1 JP 2013074741 W JP2013074741 W JP 2013074741W WO 2014042224 A1 WO2014042224 A1 WO 2014042224A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
power
cooling device
temperature
generator
Prior art date
Application number
PCT/JP2013/074741
Other languages
English (en)
French (fr)
Inventor
洋二郎 野村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014535596A priority Critical patent/JPWO2014042224A1/ja
Priority to PCT/JP2013/074741 priority patent/WO2014042224A1/ja
Publication of WO2014042224A1 publication Critical patent/WO2014042224A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply system, a charge control method, and a charge control program, and in particular, a power supply system, a charge control method, and a charge capable of efficiently charging a storage battery in a configuration including the storage battery and a generator. It relates to the control program.
  • lithium ion batteries have been widely used as storage batteries. In order to use lithium ion batteries with good performance, it is preferable to keep the environmental temperature during use within a predetermined range.
  • a generator such as a diesel engine
  • the control is performed such that its output value fluctuates frequently, the efficiency of the generator decreases, and the energy consumption of the entire system increases. There is a point.
  • an object of the present invention is to provide a power supply system, a charge control method, and a charge control program that can efficiently charge a storage battery in a configuration including a storage battery and a generator.
  • a power supply system is as follows: 1. A storage battery device having a storage battery; A temperature sensor for detecting the temperature of the storage battery; A cooling device for cooling the storage battery; A generator capable of supplying charging power to the storage battery, supplying power to the cooling device, and supplying power to the outside; A power supply system comprising a control device, The power supply system, wherein the control device is configured to control distribution of electric power from the generator based on a detection result of the temperature sensor.
  • Detecting the temperature of the storage battery may be one that detects the ambient temperature of the storage battery, or may be one that detects the temperature of the storage battery itself.
  • controlling the distribution of electric power from the generator based on the detection result of the temperature sensor as a basic form, the temperature sensor is connected directly or indirectly to the control device, and the temperature is connected to the control device. An electrical signal from the sensor may be transmitted. Alternatively, another intermediate device exists, and the detection result of the temperature sensor may be sent to the control device via the intermediate device. “Controlling the distribution of power from the generator” may mean that the control device sends a predetermined control signal for controlling the distribution of power to the outside.
  • the present invention it is possible to provide a power supply system, a charge control method, and a charge control program that can efficiently charge a storage battery in a configuration including a storage battery and a generator.
  • FIG. 1 It is a block diagram which shows the structure of the electric power supply system of one form of this invention. It is a figure which shows an example of operation
  • the power supply system 1 is for supplying power to a load 3 at the time of a power failure or the like, and includes a storage battery device 10, a generator 20, a cooling device 30, and at least those devices. And a control unit 15 for controlling the operations of 10, 20, and 30.
  • the operation of the power supply system 1 is not particularly limited, for example, immediately after power failure power generation, power is supplied from the storage battery device 10 to the outside so as not to cause an instantaneous interruption, and the generator 20 is activated during that time. After that, the electric power from the generator 20 may be supplied to the outside.
  • the storage battery device 10 includes a storage battery unit 11 having a secondary battery (hereinafter also simply referred to as a storage battery) and a charger / discharger 13 including a control circuit and the like. Although it does not limit as a secondary battery, a lead acid battery, a nickel hydride battery, a lithium ion battery etc. can be utilized.
  • the battery capacity and voltage value of the storage battery unit 11 as a whole are not limited to specific ranges, and may be appropriately set according to the scale of the power supply system 1 and the size of the load 3.
  • the quantity of each of the storage battery device 10, the generator 20, the cooling device 30, and the control unit 15 is not limited at all, and one or two or more of them are one or two. Note that more than one configuration is possible.
  • the storage battery unit 11 has a battery management unit (BMU) (not shown) as an example, and this battery management unit has a function of measuring and estimating the current voltage value of the storage battery unit 11 and the remaining battery capacity. You may have.
  • BMU battery management unit
  • the charger / discharger 13 performs a predetermined operation based on a control command from the control unit 15. For example, it has a function of charging the storage battery unit 11 with a predetermined amount of power or supplying the power of the battery unit 11 to a load.
  • the generator 20 is a diesel engine as an example, and one using a fuel such as light oil or one using a fuel such as natural gas, propane gas, or hydrogen gas may be used.
  • the electric power generated by the generator 20 is used for various purposes; for example, (i) charging of a storage battery, (ii) supplying power to the cooling device 30, and (iii) supplying power to the load 3.
  • the generator 20 may be a generator other than a diesel engine (for example, a gas turbine).
  • the cooling device 30 may be any device as long as it has a function of cooling the storage battery device 10 (particularly a storage battery).
  • an air conditioner that is provided in a storage chamber (not shown) in which the storage battery device 10 is disposed and cools the chamber may be used.
  • the air cooling fan which cools a storage battery, the device which cools a storage battery by water cooling, etc. may be sufficient.
  • a combination of the above may be used.
  • a temperature sensor 25 for detecting the temperature of the storage battery is disposed in the vicinity of the storage battery.
  • the temperature sensor 25 may be either a contact type or a non-contact type, and the method of the sensor is not particularly limited.
  • the number of temperature sensors 25 may be one or plural.
  • the temperature sensor 25 and the control unit 15 are connected to each other, and the control unit 15 performs predetermined control (details will be described later) based on the detection result of the temperature sensor 25.
  • the power supply system 1 includes a switch 27 that switches connection of a power supply source. Connected to the switch 27 are a power line A1 from the commercial power supply 5, a power line A2 from the generator 20, and a power line A3 for supplying power to the load 3 and the like.
  • a rectifier 28 is disposed on the power line A3, and the rectifier 28 converts AC power into DC power.
  • the AC power from the generator 20 can be supplied to the cooling device 30 via the power line A2, the switch 27, and the power lines A3 and A4. Such power supply is performed when the commercial power supply 5 is stopped.
  • DC power charging power
  • each of the power lines A2 to A5 may be provided with a detector that detects the current value of each line, and the control unit 15 performs predetermined control based on information on these current values. It can be carried out.
  • the control unit 15 may be provided as a computer that operates according to a predetermined program, for example.
  • the control unit 15 has a function of receiving an electrical signal from an external sensor or the like, performing a predetermined calculation process, and giving a predetermined control command (control signal) to a control target.
  • this computer has a monitor, a speaker, etc., and it is also possible to display a predetermined information about power on the monitor or to give a predetermined announcement to the user via the speaker. Good.
  • this computer is not shown in detail, for example, it has a part or all of a communication unit, a display unit, an input unit, a processing unit, a storage unit, etc., and each unit is connected so that data can be transmitted and received via a bus. It may be what was done.
  • the communication unit is a part that performs external communication or the like via a network, and is realized by, for example, a network interface or the like.
  • the display unit is a part that displays various data according to an instruction from the processing unit, and is realized by, for example, a liquid crystal display.
  • the input unit is a part where the user inputs various data, and is realized by, for example, a keyboard or a mouse.
  • the processing unit (processor unit) performs data transfer between the units via a predetermined memory and performs various controls.
  • the storage unit stores data from the processing unit and reads the stored data, and is realized by, for example, an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
  • FIG. 2 is a diagram showing an example of the operation of the power supply system 1 of the present embodiment, and the upper graph shows the timing at which the power from the generator is used for the charging of the storage battery and the operation of the cooling device.
  • the lower graph shows the change in the ambient temperature of the storage battery.
  • FIG. 3 is a flowchart showing a series of operations of the system of FIG.
  • the generator 20 starts generating power as shown in the flowchart of FIG. S1).
  • the start of power generation may be performed automatically by the system or manually by an operator.
  • step S2 the voltage of the storage battery is detected, and the control unit 15 determines whether or not the voltage is a CV voltage. If it is determined that the voltage is a CV voltage, the process proceeds to step S10, and if not being cooled, cooling is started (step S10), and the storage battery is charged with CV (constant voltage) (step S11). This charging is performed in the range of (generator generated power-load power-cooling device power) and continues until the battery is fully charged.
  • step S2 If it is determined in step S2 that the storage battery is not a CV voltage, the process then proceeds to step S3, and the control unit 15 determines that the ambient temperature of the storage battery is equal to or higher than the “cooling start temperature” based on the detection result of the temperature sensor 25. It is determined whether or not.
  • the “cooling start temperature” is a temperature that triggers the start of the operation of the cooling device 30, and is indicated as “first reference value” in the lower graph of FIG. Examples of this temperature include 40 ° C. ⁇ 5 ° C., 40 ° C. ⁇ 3 ° C., or 40 ° C. ⁇ 1 ° C.
  • the ambient temperature of the storage battery can be maintained at about 40 ° C. or less, and as a result, it is efficient without degrading the performance of the storage battery. Can be used.
  • Step S3 when it is determined that the ambient temperature is equal to or higher than the cooling start temperature, the control unit 15 starts the cooling by starting the cooling device 30 (Step S4). Moreover, electric power is supplied also to a storage battery, and charge is started (step S5). That is, in this state, the power from the generator 20 is used for (i) charging the storage battery, (ii) supplying power to the cooling device 30, and (iii) supplying power to the load 3.
  • This state corresponds to the position “a” and the position “b” in the lower graph of FIG. That is, during the period from the position a to the position b, in addition to supplying power to the load 3, charging and cooling of the storage battery are performed simultaneously.
  • step S3 If it is determined in step S3 that the ambient temperature is not equal to or higher than the “cooling start temperature” while the cooling is continued, the process proceeds to step S6.
  • step S6 the ambient temperature is “cooling end temperature” (in the lower graph of FIG. 2). It is determined whether or not it is lower than “second reference value”).
  • the “second reference value” include a range of 23 ° C. to 32 ° C., preferably 25 ° C. to 30 ° C.
  • step S8 the storage battery is continuously charged with (generator power-load power) (step S8).
  • the power from the generator 20 is used for (i) charging the storage battery and (iii) supplying power to the load 3, and the cooling is stopped as shown in the upper graph of FIG. Therefore, the amount of current supplied to the storage battery is increased.
  • the output of the generator 20 remains constant.
  • step S6 If it is determined in step S6 that the ambient temperature is not lower than the “cooling end temperature” (“second reference value” in the lower graph of FIG. 2), the storage battery is not cooled to the predetermined temperature. If the cooling device 30 is operating, the cooling is continued and the charging is continued (step S9).
  • step S6 when it is determined in step S6 that the ambient temperature is not lower than the “cooling end temperature” (“second reference value” in the lower graph of FIG. 2) while the cooling device 30 is not operating. Is also assumed (this corresponds between “c” and “a” in the upper graph of FIG. 2). In this case, since it is not necessary to cool the storage battery, the cooling device 30 is not operated, and the power from the generator 20 is used only for supplying the load 3 and charging the storage battery. The output of the generator 20 remains constant.
  • Charging of the storage battery as described above is performed until it is determined in step S2 that the voltage of the storage battery has reached the CV voltage, and after reaching the CV voltage, CV (constant voltage) charging is performed.
  • control unit 15 is configured to automatically control the distribution of power from the generator 20 based on the detection result of the temperature sensor 25, so the ambient temperature of the storage battery It is possible to perform suitable power supply while considering the above.
  • this invention is not limited to said content of an indication, A various change is possible.
  • the operation mode is switched while keeping the output of the generator 20 constant.
  • the output of the generator does not need to be strictly constant, and may be substantially constant.
  • Good substantially constant as used herein includes both constant and substantially constant. This is because even if there is some variation, if it is substantially constant, more efficient power generation can be performed as compared with control in which the output of the generator is changed according to ON / OFF of the cooling device.
  • the present specification also discloses the following inventions: 2. While the control device keeps the generator output almost constant, (A) determining whether the temperature of the storage battery is equal to or higher than a first reference value; (B-1) If the value is equal to or greater than the first reference value, a mode for supplying charging power to the storage battery, supplying power to the cooling device, and supplying power to the outside is implemented. (B-2) When the cooling device is stopped and the temperature of the storage battery is lower than the first reference value, the cooling device is not operated and the charging power is supplied to the storage battery and the electric power is supplied to the outside. A power supply system that implements a supply mode.
  • a charge control method in a power supply system including a generator, a cooling device, and a storage battery, (A) detecting the temperature of the storage battery; (B) controlling the distribution of power from the generator based on the detected temperature of the storage battery; Including a charge control method.
  • a charge control program in a power supply system including a generator, a cooling device, and a storage battery, On the computer, (A) detecting the temperature of the storage battery; (B) controlling the distribution of power from the generator based on the detected temperature of the storage battery; The charge control program for executing.
  • the program may be, for example, stored in advance in a storage unit of a computer, supplied via a network such as the Internet, or Alternatively, the program may be stored and supplied in a predetermined storage medium.
  • the power supply system of the present invention can be widely used, for example, as a backup power source for mobile phone base stations or as an uninterruptible power supply.

Abstract

 蓄電池ユニット(11)を有する蓄電池装置(10)と、蓄電池ユニット(11)の温度を検出する温度センサ(25)と、蓄電池ユニット(11)を冷却する冷却装置(30)と、蓄電池ユニット11への充電電力の供給、冷却装置(30)への電力供給および負荷(3)への電力供給が可能な発電機(20)と、制御装置(15)とを備え、制御装置(15)は、温度センサ(25)の検出結果に基いて発電機(20)からの電力の分配を制御するように構成されている電力供給システム(1)。

Description

電力供給システム、充電制御方法および充電制御プログラム
 本発明は、電力供給システム、充電制御方法および充電制御プログラムに関し、特には、蓄電池および発電機を備えた構成において効率的に蓄電池の充電を行うことが可能な電力供給システム、充電制御方法および充電制御プログラムに関する。
 従来、停電や電力障害の際に蓄電池から外部に電力供給を行う非常用電源装置が種々提案されている。こうした非常用電源装置の中には、ディーゼルエンジン等の発電機と蓄電池とを備えたものもある(例えば特許文献1)。
特開2006-509459号公報
 ところで、最近では蓄電池としてリチウムイオン電池が広く利用されるようになってきているところ、リチウムイオン電池を性能良く使用するためには、使用時の環境温度を所定の範囲内に保つことが好ましい。他方で、ディーゼルエンジンのような発電機を動作させる際、その出力値が頻繁に変動するような制御を行うと、発電機の効率が低下し、システム全体としてのエネルギー消費量が増大するという問題点がある。
 そこで本発明は、蓄電池および発電機を備えた構成において効率的に蓄電池の充電を行うことが可能な電力供給システム、充電制御方法および充電制御プログラムを提供することを目的とする。
 上記目的を達成するための本発明の一形態の電力供給システムは下記の通りである:
1.蓄電池を有する蓄電池装置と、
 前記蓄電池の温度を検出する温度センサと、
 前記蓄電池を冷却する冷却装置と、
 前記蓄電池への充電電力の供給、前記冷却装置への電力供給、および外部への電力供給が可能な発電機と、
 制御装置と、を備える電力供給システムであって、
 前記制御装置が、前記温度センサの検出結果に基いて前記発電機からの電力の分配を制御するように構成されている、電力供給システム。
(用語)
「蓄電池の温度を検出する」とは、蓄電池の周囲温度を検出するものであってもよいし、蓄電池自体の温度を検出するものであってもよい。
「前記温度センサの検出結果に基いて前記発電機からの電力の分配を制御する」に関し、基本的な形態としては、温度センサが制御装置に直接にまたは間接的に接続され、制御装置に温度センサからの電気的信号が伝達されるようなものであってもよい。あるいは、他の中間デバイス存在しており、それを介して温度センサの検出結果が制御装置に送られる構成としてもよい。「発電機からの電力の分配を制御する」とは、例えば、制御装置が、電力の分配を制御するための所定の制御信号を外部に送るものであってもよい。
 本発明によれば、蓄電池および発電機を備えた構成において効率的に蓄電池の充電を行うことが可能な電力供給システム、充電制御方法および充電制御プログラムを提供することができる。
本発明の一形態の電力供給システムの構成を示すブロック図である。 電力供給システムの動作の一例を示す図であり、上のグラフは、発電機からの電力を蓄電池の充電および冷却装置の動作に利用するタイミングを示し、下のグラフは、蓄電池の周囲温度の変化を示している。 図1のシステムの一連の動作を示すフローチャートである。
 本発明の実施の形態について図面を参照しながら説明する。なお、以下に説明する構成、機能、動作等は本発明の一形態に係るものであって、本発明を何ら限定するものではない。
 図1に示すように、この電力供給システム1は、停電時などに負荷3に電力を供給するためのものであり、蓄電池装置10と、発電機20と、冷却装置30と、少なくともそれらの装置10、20、30の動作を制御する制御部15とを備えている。電力供給システム1の動作は特に限定されるものではないが、例えば、停電発電の直後には瞬断を生じさせないように蓄電池装置10から外部へ電力を供給しつつ、その間に発電機20を起動させて以降は発電機20からの電力を外部に供給するものであってもよい。
 蓄電池装置10は、二次電池を有する蓄電池ユニット11(以下、単に蓄電池ともいう)と、制御回路等からなる充放電器13とを有している。二次電池としては、限定されるものではないが、鉛蓄電池、ニッケル水素電池、リチウムイオン電池等を利用することができる。蓄電池ユニット11全体としての電池容量および電圧値は特定の範囲に限定されるものではなく、電力供給システム1の規模や負荷3の大きさに応じて適宜設定すればよい。
 本発明の一形態において、蓄電池装置10、発電機20、冷却装置30、および制御部15のそれぞれの数量については何ら限定されるものではなく、それらのうちの一部または複数を1つまたは2つ以上の構成としてもよいことに留意されたい。
 蓄電池ユニット11は、一例として、不図示のバッテリマネジメントユニット(BMU)を有しており、このバッテリマネジメントユニットは、蓄電池ユニット11の現在の電圧値や電池容量の残量を計測・推定する機能を有していてもよい。
 充放電器13は、制御部15からの制御コマンドに基づき、所定の動作を行う。例えば、所定の電力量で蓄電池ユニット11の充電を行ったり、電池ユニット11の電力を負荷に供給したりする機能を有している。
 発電機20は、一例としてディーゼルエンジンであり、軽油等の燃料を用いるものや、天然ガス、プロパンガス、水素ガスといった燃料を用いるもの等が挙げられる。発電機20によって発電された電力は、種々の用途;例えば(i)蓄電池の充電、(ii)冷却装置30への電力供給、および(iii)負荷3への電力供給に利用される。なお、発電機20としては、ディーゼルエンジン以外の発電機(例えばガスタービン等)であってもよい。
 冷却装置30は、蓄電池装置10(特には蓄電池)を冷却する機能を有するものであればどのようなものであってもよい。例えば、蓄電池装置10が配置されている収容室(不図示)に設けられ、同室内を冷却するエアーコンディショナであってもよい。または、蓄電池を冷却する空冷ファンや、水冷により蓄電池を冷却するデバイス等であってもよい。あるいは、上記の組合せであってもよい。
 蓄電池付近には蓄電池の温度を検出する温度センサ25が配置されている。図1では、一例として、温度センサ25によって蓄電池の周囲温度を計測する構成が示されている。温度センサ25としては、接触式または非接触式のいずれであってもよく、また、センサの方式も特に限定されるものではない。温度センサ25の個数は、1つでもよいし複数でもよい。温度センサ25と制御部15とは相互に接続され、制御部15は温度センサ25の検出結果に基いて所定の制御(詳細後述)を行う。
 なお、蓄電池の「周囲温度」ではなく、蓄電池自体の温度を計測するようにしてもよい。
 図1に示すように、電力供給システム1は、電力の供給源を接続を切り替えるスイッチ27を有している。スイッチ27には、商用電源5からの電力ラインA1と、発電機20から電力ラインA2と、電力を負荷3等に供給するための電力ラインA3とが接続されている。電力ラインA3上には、整流器28が配置されており、この整流器28によって交流電力を直流電力に変換する。
 冷却装置30に対しては、電力ラインA2、スイッチ27、電力ラインA3、A4経由で、発電機20からの交流電力を供給できるようになっている。こうした電力供給は、商用電源5の停止時に行われる。蓄電池装置10に対しては、電力ラインA2、スイッチ27、整流器28、電力ラインA3、A5経由で、直流電力(充電電力)を供給できるようになっている。
 図示は省略するが、各電力ラインA2~A5にはそれぞれのラインの電流値を検出する検出器が設けられていてもよく、制御部15は、それら電流値に関する情報に基づいて所定の制御を行うことができる。
 制御部15は、例えば、所定のプログラムによって動作するコンピュータとして設けられたものであってもよい。制御部15は、外部のセンサ等からの電気信号を受け取ったり、所定の演算処理をしたり、制御対象に対して所定の制御コマンド(制御信号)を与える機能等を有している。
 限定されるものではないが、このコンピュータは、モニター、スピーカー等を有し、そのモニターに電力に関する所定の情報が表示されたり、スピーカーを介してユーザーに対する所定のアナウンスが発せられたりする構成としてもよい。このコンピュータは、詳細な図示は省略するが、例えば、通信部、表示部、入力部、処理部、記憶部等の一部または全部を有し、各部がバスを介してデータを送受信可能に接続されたものであってもよい。通信部は、ネットワークを介して外部通信等を行う部分であり、例えば、ネットワークインターフェース等によって実現される。表示部は、処理部からの指示により様々なデータを表示する部分であり、例えば、液晶ディスプレイ等によって実現される。入力部は、ユーザーが各種データを入力する部分であり、例えば、キーボードやマウス等によって実現される。処理部(プロセッサ部)は、所定のメモリを介して各部間のデータの受け渡しを行うととともに、各種の制御を行うものである。記憶部は、処理部からデータを記憶したり、記憶したデータを読み出したりするものであり、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)等によって実現される。
 次に、図2および図3を参照して、本実施形態の電力供給システムの動作について説明する。図2は、本実施形態の電力供給システム1の動作の一例を示す図であり、上のグラフは、発電機からの電力を蓄電池の充電および冷却装置の動作に利用するタイミングを示すものであり、下のグラフは、蓄電池の周囲温度の変化を示すものである。図3は、図1のシステムの一連の動作を示すフローチャートである。
 停電が発生した当初は、蓄電池から負荷への電力供給が行われるが、電池残量が無くなった後(一例)は、図3のフローチャートに示すように、発電機20の発電を開始する(ステップS1)。発電の開始は、システムによって自動的に実行されてもよいしまたはオペレータによって手動で実行されてもよい。
 次いで、ステップS2において、蓄電池の電圧を検出し、制御部15はその電圧がCV電圧か否かの判定を行う。CV電圧と判定した場合、ステップS10に進み冷却中でなければ冷却を開始し(ステップS10)、蓄電池に対してはCV(定電圧)充電を行う(ステップS11)。この充電は、(発電機発電電力-負荷電力-冷却装置電力)の範囲で行われ、満充電となるまで継続する。
 ステップS2で蓄電池がCV電圧ではないと判定した場合には、次いでステップS3に進み、制御部15は、温度センサ25の検出結果に基いて、蓄電池の周囲温度が「冷却開始温度」以上であるか否かを判定する。「冷却開始温度」は、冷却装置30の動作開始のトリガとなる温度であって、図2の下のグラフでは「第1の基準値」として示されている。この温度としては、一例として40℃±5℃、40℃±3℃、または40℃±1℃などが挙げられる。第1の基準値(冷却開始温度)をこのような温度範囲に設定することで、蓄電池の周囲温度をおよそ40℃以下に保つことができ、その結果、蓄電池の性能の低下させることなく効率的に使用することが可能となる。
 ステップS3において、周囲温度が冷却開始温度以上であると判定した場合、制御部15は、冷却装置30を起動して冷却を開始する(ステップS4)。また、蓄電池に対しても電力を供給して充電を開始する(ステップS5)。すなわち、この状態では、発電機20からの電力が、(i)蓄電池の充電、(ii)冷却装置30への電力供給、および(iii)負荷3への電力供給に用いられている。
 この状態は、図2の下のグラフの位置“a”と位置“b”との間に対応している。すなわち、位置aから位置bにまでの間は、負荷3への電力供給に加え、蓄電池の充電と冷却とが同時に行われている。
 冷却の継続中、ステップS3において周囲温度が「冷却開始温度」以上ではないと判定されると、ステップS6に進み、このステップS6で周囲温度が「冷却終了温度」(図2の下のグラフの「第2の基準値」)より低いか否かの判定を行う。
 ここで、周囲温度が「冷却終了温度」よりも低いと判定された場合、蓄電池が所定温度まで冷却されたものと推定して、冷却を停止する(ステップS7)。なお「第2の基準値」としては、例えば23℃~32℃、好ましくは25℃~30℃の範囲内などが挙げられる。
 冷却の停止後は、(発電機電力-負荷電力)で蓄電池の充電を継続する(ステップS8)。つまり、この状態では、発電機20からの電力が、(i)蓄電池の充電と(iii)負荷3への電力供給に用いられており、図2の上のグラフに示すように、冷却を停止した分だけ蓄電池に供給される電流量が増加している。発電機20の出力は一定のままである。
 ステップS6において、周囲温度が「冷却終了温度」(図2の下のグラフの「第2の基準値」)より低くはないと判定された場合には、蓄電池が所定温度まで冷却されていないので、冷却装置30が動作しているのであれば冷却を継続するとともに、充電も継続する(ステップS9)。
 他方、冷却装置30が動作していない状態で、ステップS6において、周囲温度が「冷却終了温度」(図2の下のグラフの「第2の基準値」)より低くはないと判定された場合も想定される(これは、図2の上のグラフの“c”と“a”の間に対応している)。この場合、蓄電池を冷却する必要はないので、冷却装置30は動作させず、発電機20からの電力を負荷3への供給と蓄電池の充電のみに利用する。発電機20の出力は一定のままである。
 上述したような蓄電池の充電は、ステップS2において蓄電池の電圧がCV電圧に達したと判定されるまで行われ、CV電圧に達した後はCV(定電圧)充電が行われる。
 以上説明したような動作によれば、制御部15が、温度センサ25の検出結果に基いて自動的に発電機20からの電力の分配を制御するように構成されているので、蓄電池の周囲温度を考慮しつつ好適な電力供給を行うことができる。
 具体的には、本実施形態では、発電機20の出力を一定としたまま、(i)蓄電池への充電電力の供給、冷却装置への電力供給、および外部への電力供給を行うモードと、(ii)蓄電池への充電電力の供給および外部への電力供給を行うモードとを切り替えることができる。したがって、例えば冷却装置のON/OFFに応じて発電機20の出力を変動させる場合と比較して、効率的な発電を行うことが可能となる。
 以上、本発明の一形態について説明したが、本発明は上記の開示内容に限定されるものではなく、種々変更可能である。例えば、上記実施形態では発電機20の出力を一定に保ちつつ、運転モードを切り替えることを説明したが、この発電機の出力は厳密に一定である必要はなく、実質的に一定であってもよい(本明細書において「略一定」とは一定および実質的に一定の両方を含む)。多少の変動があったとしても実質的に一定であれば、冷却装置のON/OFFに応じて発電機の出力を変動させるような制御に比べて効率的な発電が実施できるためである。
 なお本明細書は下記の発明も開示する:
2.制御装置が、発電機の出力を略一定に保ちながら、
(a)蓄電池の温度が第1の基準値以上であるか否かを判定し、
(b-1)第1の基準値以上である場合には、蓄電池への充電電力の供給、冷却装置への電力供給、および外部への電力供給を行うモードを実施し、
(b-2)冷却装置が停止しており、かつ、蓄電池の温度が第1の基準値未満の場合には、冷却装置は動作させることなく、蓄電池への充電電力の供給および外部への電力供給を行うモードを実施する、電力供給システム。
7.発電機、冷却装置、および蓄電池を備えた電力供給システムにおける充電制御方法であって、
(a)蓄電池の温度を検出するステップと、
(b)検出した当該蓄電池の温度に基いて発電機からの電力の分配を制御するステップと、
 を含む、充電制御方法。
9.発電機、冷却装置、および蓄電池を備えた電力供給システムにおける充電制御プログラムであって、
 コンピュータに、
(a)蓄電池の温度を検出させるステップと、
(b)検出した当該蓄電池の温度に基いて、発電機からの電力の分配を制御するステップと、
 を実行させるための、充電制御プログラム。
 なお、本発明の一形態において、プログラムは、一例で、予めコンピュータの記憶部内に格納されたものであってもよいし、インターネット等のネットワーク経由で供給されるものであってもよいし、または、所定の記憶媒体に格納されて供給されるものであってもよい。
 また、図1に例示した構成から1つまたは複数の構成要素を除いた電力供給システムを構成することも可能である。
 本発明の電力供給システムは、例えば、携帯電話の基地局のバックアップ用電源として、または無停電電源装置として広く利用可能である。
1 電力供給システム
3 負荷
5 商用電源
10 蓄電池装置
11 蓄電池ユニット
13 充放電器
15 制御部
20 発電機
25 温度センサ
27 スイッチ
28 整流器
30 冷却装置
A1~A5 電力ライン

Claims (10)

  1.  蓄電池を有する蓄電池装置と、
     前記蓄電池の温度を検出する温度センサと、
     前記蓄電池を冷却する冷却装置と、
     前記蓄電池への充電電力の供給、前記冷却装置への電力供給、および外部への電力供給が可能な発電機と、
     制御装置と、を備える電力供給システムであって、
     前記制御装置が、前記温度センサの検出結果に基いて前記発電機からの電力の分配を制御するように構成されている、電力供給システム。
  2.  前記制御装置は、前記発電機の出力を略一定に保ちながら、
    (a)蓄電池の温度が第1の基準値以上であるか否かを判定し、
    (b-1)第1の基準値以上である場合には、前記蓄電池への充電電力の供給、前記冷却装置への電力供給、および外部への電力供給を行うモードを実施し、
    (b-2)前記冷却装置が停止しており、かつ、前記蓄電池の温度が第1の基準値未満の場合には、前記冷却装置は動作させることなく、前記蓄電池への充電電力の供給および外部への電力供給を行うモードを実施する、
     請求項1に記載の電力供給システム。
  3.  前記制御装置は、さらに、
    (c)前記冷却装置の動作中、蓄電池の温度が前記第1の基準値よりも低い第2の基準値を下回ったか否かを判定し、
    (d)当該第2の基準値を下回った場合に、前記冷却装置の動作を停止させる、
     請求項2に記載の電力供給システム。
  4.  前記第1の基準値が35℃~45℃の範囲内である、請求項2または3に記載の電力供給システム。
  5.  前記冷却装置は、エアーコンディショナ、空冷ファン、水冷デバイスまたはそれらの組合せである、請求項1~4のいずれか一項に記載の電力供給システム。
  6.  前記蓄電池は、リチウムイオン電池である、請求項1~5のいずれか一項に記載の電力供給システム。
  7.  発電機、冷却装置、および蓄電池を備えた電力供給システムにおける充電制御方法であって、
    (a)前記蓄電池の温度を検出するステップと、
    (b)検出した当該蓄電池の温度に基いて前記発電機からの電力の分配を制御するステップと、
     を含む、充電制御方法。
  8.  前記(b)のステップでは、前記発電機の出力を略一定に保ちながら、
     蓄電池の温度が第1の基準値以上であるか否かを判定し、
     第1の基準値以上の場合には、前記発電機からの電力を用いて、前記蓄電池への充電電力の供給、前記冷却装置への電力供給、および外部への電力供給を行うモードを実施し、
     前記冷却装置が停止しており、かつ、前記蓄電池の温度が第1の基準値未満の場合には、前記冷却装置は動作させることなく、前記蓄電池への充電電力の供給および外部への電力供給を行うモードを実施する、
     請求項7に記載の充電制御方法。
  9.  発電機、冷却装置、および蓄電池を備えた電力供給システムにおける充電制御プログラムであって、
     コンピュータに、
    (a)前記蓄電池の温度を検出させるステップと、
    (b)検出した当該蓄電池の温度に基いて、前記発電機からの電力の分配を制御するステップと、
     を実行させるための、充電制御プログラム。
  10.  前記(b)のステップでは、前記発電機の出力を略一定に保ちながら、
     コンピュータが、
     蓄電池の温度が第1の基準値以上であるか否かを判定し、
     第1の基準値以上の場合には、前記発電機からの電力を用いて、前記蓄電池への充電電力の供給、前記冷却装置への電力供給、および外部への電力供給を行うモードを実施し、
     前記冷却装置が停止しており、かつ、前記蓄電池の温度が第1の基準値未満の場合には、前記冷却装置は動作させることなく、前記蓄電池への充電電力の供給および外部への電力供給を行うモードを実施する、
     請求項9に記載の充電制御プログラム。
     
PCT/JP2013/074741 2012-09-13 2013-09-12 電力供給システム、充電制御方法および充電制御プログラム WO2014042224A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014535596A JPWO2014042224A1 (ja) 2012-09-13 2013-09-12 電力供給システム、充電制御方法および充電制御プログラム
PCT/JP2013/074741 WO2014042224A1 (ja) 2012-09-13 2013-09-12 電力供給システム、充電制御方法および充電制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-201269 2012-09-13
PCT/JP2013/074741 WO2014042224A1 (ja) 2012-09-13 2013-09-12 電力供給システム、充電制御方法および充電制御プログラム

Publications (1)

Publication Number Publication Date
WO2014042224A1 true WO2014042224A1 (ja) 2014-03-20

Family

ID=50279537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074741 WO2014042224A1 (ja) 2012-09-13 2013-09-12 電力供給システム、充電制御方法および充電制御プログラム

Country Status (1)

Country Link
WO (1) WO2014042224A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010813A (ja) * 2015-06-23 2017-01-12 三菱電機株式会社 電力供給システム
WO2019073508A1 (ja) * 2017-10-10 2019-04-18 Tdk株式会社 直流給電システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285178A (ja) * 1998-03-27 1999-10-15 Osaka Gas Co Ltd 蓄電池の充電装置および充電/放電装置ならびに自己完結型熱電併給装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285178A (ja) * 1998-03-27 1999-10-15 Osaka Gas Co Ltd 蓄電池の充電装置および充電/放電装置ならびに自己完結型熱電併給装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010813A (ja) * 2015-06-23 2017-01-12 三菱電機株式会社 電力供給システム
WO2019073508A1 (ja) * 2017-10-10 2019-04-18 Tdk株式会社 直流給電システム

Similar Documents

Publication Publication Date Title
US9124100B2 (en) Power supply system, control device of power supply system, operation method of power supply system, and control method of power supply system
US8305044B2 (en) Battery pack, information processing apparatus, charge control system, charge control method by battery pack, and charge control method by charge control system
US10553911B2 (en) Battery pack and battery driving apparatus
US20140232194A1 (en) Power supply system and method of controlling the same
JPWO2015008757A1 (ja) 蓄電池の急速充電方法、急速充電システムおよびプログラム
JP2010259293A (ja) 電源装置および二次電池の充電制御方法
US11527784B2 (en) Device and method for preventing over-discharge of energy storage device and re-operating same
WO2014042224A1 (ja) 電力供給システム、充電制御方法および充電制御プログラム
US9348397B2 (en) Method of power management, portable system and portable power bank
JP5995804B2 (ja) 蓄電システムの管理装置及び制御目標値決定方法
JP2023009142A (ja) 携帯端末
CN201726198U (zh) Dlp投影仪断电保护装置
JP2016140206A (ja) 電力供給機器、電力供給システム、および電力供給方法
JPWO2014042224A1 (ja) 電力供給システム、充電制御方法および充電制御プログラム
WO2012049973A1 (ja) 電力管理システム
KR101342529B1 (ko) 전력 저장 장치의 제어기, 제어 방법 및 컴퓨터로 판독가능한 기록 매체
JP2011045220A (ja) 端末装置及び供給電流制御方法
JP2006166534A (ja) 電源装置
JP2018143033A (ja) 電力供給システム、制御装置、制御方法及びプログラム
JP7226730B2 (ja) 電力地産地消システム
JP2005110443A (ja) 携帯情報端末
JP2006106887A5 (ja)
JP6314603B2 (ja) 電動車両の充電装置及び方法
JP5987711B2 (ja) 二次電池システムおよび画像形成装置
JP2015035382A (ja) 二次電池制御装置、二次電池システム、二次電池制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535596

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837674

Country of ref document: EP

Kind code of ref document: A1