WO2014042140A1 - 電子色票装置 - Google Patents

電子色票装置 Download PDF

Info

Publication number
WO2014042140A1
WO2014042140A1 PCT/JP2013/074341 JP2013074341W WO2014042140A1 WO 2014042140 A1 WO2014042140 A1 WO 2014042140A1 JP 2013074341 W JP2013074341 W JP 2013074341W WO 2014042140 A1 WO2014042140 A1 WO 2014042140A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
leds
color chart
spectrum
wavelength
Prior art date
Application number
PCT/JP2013/074341
Other languages
English (en)
French (fr)
Inventor
冨沢 一成
美文 下平
Original Assignee
シャープ株式会社
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 国立大学法人静岡大学 filed Critical シャープ株式会社
Priority to US14/428,133 priority Critical patent/US9368692B2/en
Publication of WO2014042140A1 publication Critical patent/WO2014042140A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0251Colorimeters making use of an integrating sphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J2003/102Plural sources
    • G01J2003/104Monochromatic plural sources

Definitions

  • the present invention relates to an electronic color chart device that uses a plurality of LEDs (Light Emitting Diodes) to display a color chart that serves as a reference (color sample) for a plurality of colors.
  • LEDs Light Emitting Diodes
  • the color chart is used as a reference when evaluating shooting characteristics of a camera or adjusting (correcting) shooting characteristics.
  • Various colors are used for color charts, as typified by Macbeth charts. For example, when the color chart “white” is shot with a camera, the color of the image obtained by shooting is “ The closer it is to “white”, the better the shooting characteristics.
  • Such color charts are usually printed on paper, but with the rapid development of digital technology in recent years, it has become necessary to manage and display color charts electronically.
  • Patent Document 1 Conventionally, as an electronic color chart device for electronically displaying a color chart, there is one disclosed in Patent Document 1, for example.
  • This electronic color chart device displays a color chart serving as a color reference using a plurality of LEDs having spectral characteristics as shown in FIG. More specifically, a total of 30 LEDs that emit blue, blue-green, green, yellow-green, yellow, and red light are used, and the current value or duty ratio that flows through each LED (the current does not flow with the current flow time). By controlling each of the LEDs to emit light, the color gamut sufficient to express the color of the reflecting object existing in the natural world is obtained.
  • LED with a peak wavelength of around 420 nm in order to realize a high-saturation blue-violet color, there is a light emission characteristic that has a filter that cuts the high wavelength side of the light emission wavelength and a broad light emission characteristic that does not have such a filter. Two types are used.
  • FIG. 29 shows the spectral characteristics (indicated by the thin solid line) of each LED used in Patent Document 1 and the Macbeth chart No. under the D65 light source.
  • 19 shows the target spectrum of “White” (shown by a thick solid line) and a display spectrum (thick broken line) obtained when the color chart corresponding to the “White” is displayed using each LED. It is a thing.
  • the electronic color chart device of Patent Document 1 has a large error between the target “White” spectrum and the “White” spectrum actually displayed as the color chart.
  • the correlation coefficient indicating the similarity between the two spectra at this time was a low value of 0.60. The details of the correlation coefficient will be described in an embodiment described later.
  • the reason for the error between the two spectra is that the interval between the peak wavelength of the LED emitting green light and the peak wavelength of the LED emitting yellow-green light is too wide, and the intermediate wavelength (for example, 555 nm). It is conceivable that the luminance in the vicinity) is greatly reduced.
  • LEDs having a peak wavelength near 555 nm and a narrow full width at half maximum of 40 nm or less are practically low in luminous efficiency. For this reason, even if the LED is used, it is impossible to avoid a decrease in intensity around 555 nm and to reduce the error between the spectrum of “White” displayed as a color chart and the target spectrum.
  • the present invention has been made in order to solve the above-described problems.
  • the purpose of the present invention is to compensate for an intensity that tends to decrease near a wavelength of 555 nm even when “White” is displayed as a color chart.
  • Another object of the present invention is to provide an electronic color chart device that can reduce an error between a display spectrum and a target spectrum.
  • An electronic color chart device is an electronic color chart device that includes a plurality of LEDs having different peak wavelengths, emits the plurality of LEDs, and displays an image serving as a color reference as a color chart.
  • the plurality of LEDs include a LED whose full width at half maximum wavelength is 40 nm or less and whose peak interval is 50 nm or less.
  • a second LED having a light emission intensity at a wavelength of 555 nm of 0.4 or more and a full width at half maximum wavelength of greater than 40 nm.
  • the second LED when a plurality of LEDs are caused to emit light and “White” as a color chart is displayed, the second LED can compensate for the intensity that tends to decrease in the vicinity of a wavelength of 555 nm. And an ideal target spectrum as a color chart can be reduced.
  • FIG. 10 is a graph showing spectral characteristics, target spectra, and display spectra of a plurality of LEDs in Example 3. It is a graph which shows the spectral characteristics, target spectrum, and display spectrum of several LED in Example 4.
  • FIG. 10 is a graph which shows the spectral characteristics, target spectrum, and display spectrum of several LED in Example 5.
  • FIG. It is a graph which shows the spectral characteristic, target spectrum, and display spectrum of several LED in Example 6.
  • FIG. 6 is a graph showing spectral characteristics, target spectra, and display spectra of a plurality of LEDs in Comparative Example 1. It is a graph which shows the spectral characteristic, target spectrum, and display spectrum of several LED in the comparative example 2.
  • 10 is a graph showing spectral characteristics, target spectra, and display spectra of a plurality of LEDs in Comparative Example 3. It is a graph which shows the spectral characteristic, the target spectrum, and the display spectrum of several LED in the comparative example 4. It is a graph which shows the spectral characteristic, target spectrum, and display spectrum of several LED in Example 7.
  • FIG. 6 is a graph showing spectral characteristics, target spectra, and display spectra of a plurality of LEDs in Comparative Example 1. It is a graph which shows the spectral characteristic, target spectrum, and display spectrum of several LED in the comparative example 2.
  • 10 is
  • FIG. 10 is a graph showing spectral characteristics, target spectra, and display spectra of a plurality of LEDs in Comparative Example 5. It is a graph which shows the spectral characteristic of several LED, the display spectrum when displaying blue as a color chart, and the target spectrum as a blue color chart. It is a graph which shows the spectral characteristic of several LED, the display spectrum when displaying green as a color chart, and the target spectrum as a green color chart.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the electronic color chart device of the present embodiment.
  • the electronic color chart device 1 of the present embodiment displays a color reference image as a color chart by causing a plurality of LEDs to emit light, and includes a light source unit 2 having the plurality of LEDs, an integrating sphere 3, And a display unit 4.
  • the integrating sphere 3 is formed in a spherical shape with a hollow inside.
  • the light emitted from each LED of the light source unit 2 is diffused by reflection on the inner surface, uniformed, and mixed (mixed) and guided to the display unit 4. .
  • light from the light source unit 2 may be guided to the display unit 4 using a cylindrical light guide member whose inside is covered with a reflecting surface.
  • the display unit 4 is composed of a diffusion plate that diffuses light emitted from a plurality of LEDs and incident through the integrating sphere 3, and displays a color chart serving as a color reference by diffusing the light with the diffusion plate. It functions as a screen.
  • the light source unit 2 and the display unit 4 are respectively provided in an opening part where a part of the integrating sphere 3 is opened.
  • the light source unit 2 includes a plurality of first LEDs 2a and a second LED 2b on the substrate 11 as a plurality of LEDs having different peak wavelengths.
  • the light emission of each LED is controlled by a light emission control unit (not shown), and the current value or the duty ratio that flows through each LED is controlled according to the color chart to be displayed.
  • FIG. 2 shows the light emission intensity distribution (light emission characteristics, spectral characteristics) of the plurality of LEDs of the light source unit 2.
  • the emission intensity distribution of each of the plurality of LEDs is normalized with the maximum intensity being 1.
  • the intensity refers to the intensity in the normalized emission intensity distribution
  • the half width refers to the full width at half maximum wavelength of the maximum intensity.
  • each of the plurality of first LEDs 2a are indicated by thin solid lines
  • the spectral characteristics of the second LED 2b are indicated by thin broken lines (black dots are plotted).
  • the peak wavelengths of each of the plurality of first LEDs 2a are 435 nm, 448 nm, 465 nm, 493 nm, 524 nm, 567 nm, 596 nm, 613 nm, 632 nm, 653 nm, and 673 nm (11 in total), and the peak intervals are all 50 nm or less. It has become.
  • the half widths of the plurality of first LEDs 2a are 61 nm, 20.5 nm, 26.2 nm, 33.3 nm, 35.5 nm, 29.5 nm, 18 nm, 14 nm, 17 nm, 19 nm, and 21.5 nm, respectively. Except for the first LED 2a having a peak wavelength of 435 nm, the full width at half maximum is 40 nm or less.
  • the peak wavelength of the second LED 2b is 574 nm, which is located on the longer wavelength side than 555 nm.
  • the half width of the second LED 2b is 134 nm, and the emission intensity at a wavelength of 555 nm is 0.96.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the second LED 2b.
  • the second LED 2 b includes a light emitting unit 12 and a reflector 13 on the substrate 11.
  • the reflector 13 reflects the light emitted from the light emitting unit 12 in a desired direction.
  • the light emitting unit 12 includes an LED chip 21 that emits light, a phosphor 22 that receives light emitted from the LED chip 21 and emits fluorescence, and a sealing resin 23 for sealing them. It is configured.
  • the LED chip 21 is made of, for example, InGaN (indium gallium nitride) and emits blue light.
  • the phosphor 22 is made of, for example, a YAG phosphor (Yttrium Aluminum Garnet, Y 3 Al 5 O 12 : Ce), which is excited by blue light emitted from the LED chip 21 and yellow. Emits light.
  • the reflected light of the light R2 and the third light R3 emitted from the reflector 3 are combined and emitted from the second LED 2b as the combined light R4.
  • the phosphor 22 is thickly covered on the LED chip 21 to suppress the light emitted directly from the LED chip 21 to the outside.
  • the light emitting unit 12 is limited to such a configuration. Do not mean. Note that the light emitted directly from the LED chip 21 to the outside is suppressed easily from the fact that the emission characteristics of the second LED 2b in FIG. 2 have a slight emission spectrum near the wavelength of 460 nm. .
  • the second LED 2b is configured to include the phosphor 22, the phosphor 22 emits light having a wide wavelength width, so that the half width is larger than 40 nm as shown in FIG.
  • the second LED 2b having broad light emission characteristics can be reliably realized.
  • the first LED 2a does not have a phosphor, and therefore the half width of the first LED 2a is narrower than that of the second LED 2b.
  • the structure of the first LED 2a substantially corresponds to the structure in which the LED chip 21 is replaced with an LED chip that emits light of a predetermined wavelength except for the phosphor 22 in FIG.
  • the correlation coefficient is a scale indicating the strength (degree of similarity) of the linear relationship between x and y, where two variables are x and y.
  • the result of examining two variables x and y for a sample of size n is (x 1 , y 1 ), (x 2 , y 2 ),... (X n , y n ), and the correlation coefficient
  • r is r
  • r is represented by the following mathematical formula.
  • a symbol with a bar at the top of x indicates an arithmetic mean of x 1 , x 2 ,... X n
  • a symbol with a bar at the top of y is y 1 , y 2, shows the arithmetic mean of ⁇ y n.
  • the correlation coefficient r takes actual values from ⁇ 1 to 1, and the closer to 1, the more positive the two variables x and y are, and the closer to ⁇ 1, the two variables x and y have the positive correlation. Says that there is a negative correlation. A positive correlation means that when one value increases, the other value also increases, and a negative correlation means that when one value increases, the other value decreases.
  • the correlation coefficient r 0.85 is considered as a minimum required value, and 0.95 or more is considered as an ideal value.
  • Example Hereinafter, specific examples of spectra obtained by the electronic color chart device 1 of the present embodiment will be described as examples. Moreover, a comparative example is also demonstrated for the comparison with an Example.
  • a plurality of LEDs are caused to emit light, and as a color chart, a Macbeth chart No. under a D65 light source is used.
  • a spectrum obtained when 19 “White” (hereinafter also referred to as “White” as a color chart) is displayed will be described.
  • the ideal spectrum of “White” as a color chart is referred to as a target spectrum
  • the spectrum of the “White” color chart actually displayed on the display unit 4 is referred to as a display spectrum.
  • Example 1 when displaying “White” as a color chart, the second LED 2 b was caused to emit light in addition to the eleven first LEDs 2 a described above. As a result, as shown in FIG. 2, a display spectrum close to the target spectrum was obtained, and the correlation coefficient was as high as 0.90.
  • FIG. 4 shows the spectral characteristics, target spectrum (thick solid line), and display spectrum (thick broken line) of the plurality of LEDs in Example 2.
  • the plurality of first LEDs 2a were configured by adding two more LEDs to the 11 LEDs of Example 1.
  • the peak wavelengths of the added LEDs were 408 nm and 693 nm, respectively, and the half widths were 16 nm and 20.5 nm, respectively.
  • a total of 13 first LEDs 2 a and second LEDs 2 b were caused to emit light.
  • the two LEDs added as the first LED 2a may have peak wavelengths of 680 nm to 720 nm and 380 nm to 420 nm, respectively.
  • Example 2 since the two LEDs added as the first LED 2a can supplement the intensity around the wavelength of 400 nm and the wavelength of around 700 nm, the display spectrum is closer to the target spectrum, and the correlation coefficient is 0.97. Values were obtained.
  • FIG. 5 shows the spectral characteristics, target spectrum (thick solid line), and display spectrum (thick broken line) of the plurality of LEDs in Example 3.
  • Example 3 when displaying “White” as a color chart, among the plurality of first LEDs 2a of Example 2, the same 11 LEDs as Example 1 and an LED having a peak wavelength of 693 nm are emitted. And the second LED 2b was caused to emit light. That is, an LED having a peak wavelength of 408 nm was not emitted from the plurality of first LEDs 2a.
  • Example 3 since an LED having a peak wavelength of 408 nm is not caused to emit light, only the intensity around the wavelength of 700 nm can be compensated for the spectrum of Example 1, but the correlation coefficient is still 0.93, which is a high value. As a result, better results than those of Example 1 were obtained.
  • FIG. 6 shows the spectral characteristics, target spectrum (thick solid line), and display spectrum (thick broken line) of the plurality of LEDs in Example 4.
  • Example 4 when displaying “White” as a color chart, among the plurality of first LEDs 2a of Example 2, the same 11 LEDs as in Example 1 and LEDs having a peak wavelength of 408 nm are emitted. And the second LED 2b was caused to emit light. That is, the LED having the peak wavelength of 693 nm among the plurality of first LEDs 2a was not caused to emit light.
  • Example 4 since an LED having a peak wavelength of 693 nm is not made to emit light, only the intensity in the vicinity of the wavelength of 400 nm can be compensated for the spectrum of Example 1, but the correlation coefficient is still as high as 0.89. As a result, a result close to that of Example 1 was obtained.
  • the slope of the display spectrum near the wavelength of 700 nm is gentler than the slope near the wavelength of 400 nm, so the degree of influence of the additional LED on the display spectrum is around the wavelength of 400 nm.
  • the wavelength near 700 nm is higher than that.
  • the correlation coefficient is caused by emitting the LED having the peak wavelength of 693 nm as compared with the case of emitting the LED having the peak wavelength of 408 nm. The effect of increasing is increased.
  • FIG. 7 shows the spectral characteristics, target spectrum (thick solid line), and display spectrum (thick broken line) of the plurality of LEDs in Example 5.
  • Example 5 in the plurality of first LEDs 2a of Example 1, an LED having a peak wavelength of 435 nm and a half-value width of 61 nm was replaced with an LED having a peak wavelength of 435 nm and a half-value width of 21 nm.
  • a total of 11 LEDs were caused to emit light as the plurality of first LEDs 2 a, and the second LED 2 b was caused to emit light.
  • Example 5 the full width at half maximum of the plurality of first LEDs 2a is 40 nm or less, but the correlation coefficient is 0.90, which is the same as in Example 1, and the full width at half maximum of the LED having a peak wavelength of 435 nm is It seems that the correlation coefficient is not significantly affected.
  • FIG. 8 shows the spectral characteristics, target spectrum (thick solid line), and display spectrum (thick broken line) of the plurality of LEDs in Example 6.
  • Example 6 in the plurality of first LEDs 2a of Example 2, an LED having a peak wavelength of 435 nm and a half-value width of 61 nm was replaced with an LED having a peak wavelength of 435 nm and a half-value width of 21 nm.
  • a total of 13 LEDs were caused to emit light as the plurality of first LEDs 2 a, and the second LED 2 b was caused to emit light.
  • Example 6 the correlation coefficient is 0.95, which is slightly lower than 0.97 in Example 2, but the ideal correlation coefficient is still obtained.
  • FIG. 9 shows together the spectral characteristics, target spectrum (thick solid line) and display spectrum (thick broken line) of the plurality of LEDs in Comparative Example 1.
  • the second LED 2b when displaying “White” as the color chart, the second LED 2b was not caused to emit light, and as a plurality of first LEDs 2a, 11 LEDs were caused to emit light as in Example 1.
  • FIG. 10 shows together the spectral characteristics, target spectrum (thick solid line) and display spectrum (thick broken line) of the plurality of LEDs in Comparative Example 2.
  • 13 LEDs similar to Example 2 were used as the plurality of first LEDs 2a.
  • the second LED 2 b was not caused to emit light, and a plurality of first LEDs 2 a (a total of 13 LEDs) were caused to emit light.
  • Comparative Example 2 the correlation coefficient was as low as 0.796, which was almost the same result as Comparative Example 1.
  • FIG. 11 shows together the spectral characteristics, target spectrum (thick solid line) and display spectrum (thick broken line) of the plurality of LEDs in Comparative Example 3.
  • Comparative Example 3 in the plurality of first LEDs 2a of Comparative Example 2, an LED having a peak wavelength of 435 nm and a half-value width of 61 nm was replaced with an LED having a peak wavelength of 435 nm and a half-value width of 21 nm. Then, when displaying “White” as a color chart, the second LED 2 b was not caused to emit light, and a total of 13 LEDs were caused to emit light as the plurality of first LEDs 2 a.
  • Comparative Example 3 the correlation coefficient was as low as 0.78, which was almost the same as Comparative Examples 1 and 2.
  • FIG. 12 shows together the spectral characteristics, target spectrum (thick solid line) and display spectrum (thick broken line) of the plurality of LEDs in Comparative Example 4.
  • a plurality of first LEDs 2a an LED having a peak wavelength of 555 nm and a half-value width of 30 nm was added in addition to 11 LEDs similar to those in Example 1.
  • the spectral characteristic of the LED to be added is indicated by a thin solid line with a black dot on the plot point. Then, when displaying “White” as a color chart, the second LED 2b was not caused to emit light, and a total of 12 LEDs were caused to emit light as the plurality of first LEDs 2a.
  • the LED having a peak wavelength near 555 nm actually has only a low luminous efficiency. For this reason, as in Comparative Example 4, even if the LED is used to supplement the intensity near the wavelength of 555 nm, the correlation coefficient can be increased only to 0.82. That is, according to Comparative Example 4, although there is a slight effect of increasing the correlation coefficient as compared with Comparative Example 1, an effect that can realize a correlation coefficient of 0.85 or more cannot be obtained.
  • FIG. 13 shows together the spectral characteristics, target spectrum (thick solid line), and display spectrum (thick broken line) of the plurality of LEDs in Example 7.
  • Example 7 as the second LED 2b of Example 1, an LED having an emission intensity at a wavelength of 555 nm of 0.7 or more and less than 0.9 was used. At this time, the peak wavelength of the second LED 2b was 590 nm, and the half width was 125 nm. Then, when displaying “White” as a color chart, the plurality of first LEDs 2 a and the second LEDs 2 b were caused to emit light.
  • Example 7 the correlation coefficient was 0.90, and the same result as in Example 1 was obtained.
  • FIG. 14 shows the spectral characteristics, target spectrum (thick solid line), and display spectrum (thick broken line) of the plurality of LEDs in Example 8.
  • the second LED 2b of Example 1 an LED having an emission intensity at a wavelength of 555 nm of 0.5 or more and less than 0.7 was used.
  • the peak wavelength of the second LED 2b was 595 nm, and the half width was 105 nm.
  • the plurality of first LEDs 2 a and the second LEDs 2 b were caused to emit light.
  • Example 8 the correlation coefficient was 0.88, which was slightly lower than that in Example 1, but a high value of 0.85 or more is still obtained.
  • FIG. 15 shows together the spectral characteristics, target spectrum (thick solid line) and display spectrum (thick broken line) of the plurality of LEDs in Example 9.
  • Example 9 as the second LED 2b of Example 1, an LED having an emission intensity at a wavelength of 555 nm of 0.4 or more and less than 0.6 was used. At this time, the peak wavelength of the second LED 2b was 595 nm, and the full width at half maximum was 100 nm. Then, when displaying “White” as a color chart, the plurality of first LEDs 2 a and the second LEDs 2 b were caused to emit light.
  • Example 9 the correlation coefficient was 0.86, which was slightly lower than in Example 8. However, the target value of 0.85 or more is still obtained.
  • FIG. 16 shows together the spectral characteristics, target spectrum (thick solid line) and display spectrum (thick broken line) of the plurality of LEDs in Comparative Example 5.
  • an LED having a light emission intensity at a wavelength of 555 nm of 0.3 or more and less than 0.4 was used as the second LED 2b of Example 1.
  • the peak wavelength of the second LED 2b was 610 nm, and the full width at half maximum was 95 nm.
  • the plurality of first LEDs 2 a and the second LEDs 2 b were caused to emit light.
  • the intensity is likely to decrease between adjacent peak wavelengths. Such a decrease in strength is particularly likely to occur near a wavelength of 555 nm.
  • LEDs having a peak wavelength near 555 nm and having a half-value width of 40 nm or less actually have only low emission efficiency, and even if the LED is used, the intensity near 555 nm is greatly increased. Because you can't. As a result, when “White” is displayed as the color chart, the intensity of the spectrum near the wavelength of 555 nm decreases, and the correlation coefficient cannot be increased to 0.85 or more (see Comparative Example 4). ). In addition, when the said LED with low luminous efficiency is not included, since the intensity
  • the light source unit 2 includes, in addition to the plurality of first LEDs 2a, a second LED 2b having a light emission intensity at a wavelength of 555 nm of 0.4 or more and a half width greater than 40 nm.
  • a second LED 2b having a light emission intensity at a wavelength of 555 nm of 0.4 or more and a half width greater than 40 nm.
  • the emission intensity at a wavelength of 555 nm is 0.4 or more when “White” is displayed as a color chart. It can be said that it is necessary to realize a correlation coefficient of display spectrum of 0.85 or more.
  • the peak wavelength of the second LED 2b is 574 nm, which is larger than 555 nm. Since the second LED 2b has a broad emission characteristic with a wide half-value width, even if the peak wavelength does not coincide with 555 nm, the emission intensity at a wavelength of 555 nm can be 0.4 or more. Further, the second LED 2b having a peak wavelength larger than 555 nm and a half width larger than 40 nm is configured using the LED chip 21 that emits blue light and the phosphor 22 that emits yellow fluorescence, as described above. Such an LED can be used to reliably supplement the intensity near the wavelength of 555 nm.
  • the first LED 2a includes an LED having a peak wavelength of 680 nm or more and 720 nm or less
  • the light emission of the LED can supplement the intensity near the wavelength of 700 nm, Thereby, a higher correlation coefficient than that of the first embodiment can be realized (see the third embodiment).
  • the first LED 2a further includes an LED having a peak wavelength of 380 nm or more and 420 nm or less
  • the LED when the white color is displayed as the color chart, the LED further emits light to supplement the intensity around the wavelength of 400 nm. be able to.
  • the display spectrum can be brought close to the target spectrum in a wide range of wavelengths from 400 nm to 700 nm, and a higher correlation coefficient can be realized than in the first and third embodiments (see the second embodiment).
  • the light source part 2 of this embodiment is a structure which supplements the intensity
  • the plurality of first LEDs 2a may or may not include LEDs with a narrow half-value width (LEDs with low luminous efficiency) whose peak wavelength is in the vicinity of 555 nm, as in each of the embodiments described above. Also good. Even if the plurality of first LEDs 2a include the LED having low light emission efficiency, since the influence on the correlation coefficient of the LED is small, the phase of the display spectrum is displayed when “White” is displayed as a color chart. The number of relationships never falls below 0.85.
  • 17 to 22 show the spectral characteristics of each LED (first LED 2a, second LED 2b) of the light source section 2 and control each LED to show B (blue), G (green), and R (red).
  • Y yellow
  • M magenta
  • C cyan
  • the correlation coefficients of the display spectrum with respect to the target spectrum are 0.99, 0.97, 0.99, 0.99, 0.98, and 1.00, respectively. there were.
  • the target spectrum of “White” as a color chart is shown by a comparatively gentle curve as shown in the drawings of the above-described embodiments.
  • the target spectra of other colors there are wavelength regions in which the intensity is almost zero, as shown in FIGS. For this reason, when displaying a color chart using a plurality of LEDs having different peak wavelengths, the target spectrum is displayed when “White” is displayed as the color chart, compared to when other colors are displayed as the color chart. It is difficult to reproduce a display spectrum close to.
  • the correlation coefficient of the display spectrum can be increased for “White”, which is the most difficult to increase the correlation coefficient, among the color charts.
  • FIG. 23 shows the color of each color chart shown in the Macbeth chart and the data of SOCS (Standard Object Color Color Spectra database) in an xy chromaticity diagram in the XYZ color system.
  • SOCS Standard Object Color Color Spectra database
  • FIG. 24 shows the color of each color chart shown in the Macbeth chart and a part of the SOCS data in the coordinate system of the Lab color system.
  • Each color of BGRYMC displayed as a color chart in FIGS. 17 to 22 is a color of a point located in the outermost shell on the same hue angle as each color of BGRYMC of the Macbeth chart in the SOCS data (No. 13 to 18). 6), and the saturation is higher than the color chart of the Macbeth chart.
  • such high-saturation six-point SOCS data can be displayed as a color chart.
  • the displayed color chart is photographed by a camera and its calibration (photographing characteristics) is performed.
  • Adjustment can be performed with a high color gamut and high saturation, and an electronic color chart device corresponding to a device with a high color gamut can be realized.
  • the electronic color chart device of the present embodiment described above is an electronic color chart device that includes a plurality of LEDs having different peak wavelengths and emits the plurality of LEDs to display an image serving as a color reference as a color chart. Then, when the emission intensity distribution of each of the plurality of LEDs is normalized with the maximum intensity being 1, the plurality of LEDs includes a full width at half maximum wavelength of 40 nm or less, and the peak interval is A configuration including a plurality of first LEDs having a wavelength of 50 nm or less and a second LED having a light emission intensity at a wavelength of 555 nm of 0.4 or more and a full width at half maximum wavelength of greater than 40 nm. is there.
  • a plurality of first LEDs are caused to emit light, and, as a color chart, for example, a Macbeth chart No. under a D65 light source. 19, when “White” (hereinafter also referred to as “White” as a color chart) is displayed, the intensity easily decreases near the wavelength of 555 nm, the emission intensity at the wavelength of 555 nm is 0.4 or more, and The second LED having a full width at half maximum greater than 40 nm can be supplemented. Thereby, even when “White” as a color chart is displayed, an error between an obtained spectrum and an ideal spectrum as a color chart can be reduced, and a spectrum close to a target spectrum can be obtained.
  • a color chart for example, a Macbeth chart No. under a D65 light source. 19
  • “White” hereinafter also referred to as “White” as a color chart
  • the peak wavelength of the second LED may be larger than 555 nm. Since the second LED has a broad emission characteristic with a full width at half maximum wavelength, even if the peak wavelength does not coincide with 555 nm, the emission intensity at wavelength 555 nm is 0.4 or more, and the wavelength 555 nm. The strength that tends to decrease in the vicinity can be compensated.
  • the second LED may include an LED chip that emits light and a phosphor that emits fluorescence by receiving light emitted from the LED chip.
  • the second LED is configured to include the phosphor, the second LED having a broad emission characteristic in which the full width at half maximum wavelength is larger than 40 nm can be reliably realized.
  • the first LED includes an LED having a peak wavelength of 680 nm or more and 720 nm or less.
  • the obtained spectrum can be made closer to the target spectrum by compensating for the intensity near the wavelength of 700 nm.
  • the first LED further includes an LED having a peak wavelength in a range from 380 nm to 420 nm.
  • the obtained spectrum can be made closer to the target spectrum by compensating for the intensity near the wavelength of 400 nm.
  • FIG. 25 and FIG. 26 respectively show an example of a display spectrum (thick broken line) when a plurality of LEDs emit light and display “White” as a color chart, and another example. This corresponds to the case where the light emission intensity of each LED is set by the method (2).
  • the correlation coefficient of the display spectrum is 0.90 and the chromaticity difference ⁇ E 76 is 0.73.
  • the correlation coefficient of the display spectrum is 0.73 and the chromaticity difference ⁇ E 76 is 0.002. It has become.
  • the chromaticity difference ⁇ E 76 indicates the difference between the chromaticity of the target color chart and the chromaticity of the color chart that is actually displayed, and L * indicating the lightness in the Lab color system. And the values of a * and b * which are chromaticness indices indicating hue and saturation.
  • the correlation coefficient can be increased, but it cannot be said that the chromaticity difference ⁇ E 76 can be reduced.
  • the correlation coefficient cannot be increased even though the chromaticity difference ⁇ E 76 can be reduced.
  • the correlation coefficient is increased, the chromaticity difference is reduced, and the color displayed as the color chart is set as the target color chart. To make sure it is close to the color. More specific description will be given below.
  • the square of the difference between the emission intensity of each LED and the target intensity for realizing the target color chart is obtained at a predetermined wavelength interval from a wavelength of 400 nm to 700 nm, and the average is used as an objective function.
  • an optimum solution of the emission intensities A 1 , A 2 , A 3 ,... A 61 that minimizes the value of the objective function F1 is obtained for each wavelength (61).
  • a solver method for example, as a method for obtaining an optimal solution within an appropriate constraint when an amount to be obtained is given by a relation of a large number of variables.
  • the solver method is a method for obtaining an optimum variable value in order to obtain a target value in a mathematical expression including a plurality of variables. According to the solver method, it is possible to determine the interrelation between variables while changing the values of multiple variables and calculate the optimal value. By using this solver method, the optimal emission intensity can be determined for each wavelength. Can be requested.
  • the solver method is a kind of linear programming.
  • the correlation coefficient of the display spectrum can be increased.
  • the obtained chromaticity difference ⁇ E 76 is set as an objective function F2, and each emission intensity as an initial value is finely adjusted so that the value of the objective function F2 (chromaticity difference ⁇ E 76 ) is minimized.
  • the optimal solution for each wavelength of emission intensity can be obtained by using the above-described linear programming method or solver method.
  • Each emission intensity for each wavelength obtained in this way is set as the final emission intensity.
  • FIG. 27 shows a display spectrum when “White” as a color chart is displayed by adjusting the emission intensity in two steps as described above.
  • the light emission intensity is first calculated so that the square error from the target intensity is small, and then the obtained light emission intensity is finely adjusted so that the chromaticity difference is small, so that the correlation coefficient with the target is obtained.
  • a color chart that is as high as 0.90 and the chromaticity difference ⁇ E 76 is almost zero can be displayed, and the color displayed as the color chart can be reliably brought close to the target color chart color.
  • the method for setting the light emission intensity of the LED in this embodiment can be expressed as follows.
  • An average of the square error between the emission intensity at each of a plurality of wavelengths selected from a predetermined wavelength range (for example, a wavelength of 400 nm to 700 nm) and the target intensity for realizing the target color chart is minimized.
  • a first step for determining the emission intensity at each wavelength Using the emission intensity at each wavelength as an initial value, the chromaticity difference between the chromaticity of the color chart displayed at the emission intensity and the chromaticity of the target color chart is obtained, and the chromaticity difference is minimized.
  • the present invention is applicable to an electronic color chart device that displays a color chart using a plurality of LEDs.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

 電子色票装置は、ピーク波長の異なる複数のLEDを備え、複数のLEDを発光させて、色基準となる画像を色票として表示する。複数のLEDのそれぞれの発光強度分布を、最大強度を1として正規化したときに、複数のLEDは、最大強度の半値波長全幅が40nm以下のものを含み、かつ、ピーク間隔が50nm以下の複数の第1のLEDと、波長555nmでの発光強度が0.4以上であり、かつ、最大強度の半値波長全幅が40nmよりも大きい第2のLEDとを含んでいる。

Description

電子色票装置
 本発明は、複数のLED(Light Emitting Diode;発光ダイオード)を用い、複数の色の基準(色見本)となる色票を表示する電子色票装置に関するものである。
 色票は、カメラなどの撮影特性を評価したり、撮影特性を調整(補正)する際の基準として用いられる。色票には主にマクベスチャートに代表されるようにいろいろな色が用いられるが、例えば、カメラで色票の「白」を撮影したとき、撮影して得られる画像の色が色票の「白」に近いほど、撮影特性が優れていると言える。このような色票は、通常、紙に印刷されているが、近年のデジタル技術の急速な進展により、色票を電子的に管理し、表示することが必要となってきている。
 従来、色票を電子的に表示する電子色票装置として、例えば特許文献1に開示されたものがある。この電子色票装置は、図28に示すような分光特性を持つ複数のLEDを用いて、色基準となる色票を表示するようにしている。より具体的には、青、青緑、緑、黄緑、黄、赤の各色を発光する複数のLEDを合計30個用い、各LEDに流す電流値またはデューティー比(電流を流す時間と流さない時間との比)を制御して各LEDを発光させることで、自然界に存在する反射物体の色を表現するのに十分な色域を得るようにしている。なお、ピーク波長が420nm付近のLEDについては、高彩度の青紫色を実現すべく、発光波長の高波長側をカットするフィルタを有するものと、そのようなフィルタを有さないブロードな発光特性を有するものとの2種類を用いている。
特許第3790693号公報(請求項1、段落〔0019〕~〔0032〕、図8等参照)
 ところで、電子色票装置においては、色票として表示した色のスペクトルが、目標となる色票のスペクトルに近いことが、電子色票装置本来の機能を発揮する上で重要となる。しかし、特許文献1の電子色票装置では、色票として表示した色のスペクトルと目標スペクトルとの誤差が大きいことが、以下のシミュレーションからわかった。
 図29は、特許文献1で用いた各LEDの分光特性(細い実線で示す)に、D65光源下でのマクベスチャートのNo.19の「White」の目標のスペクトル(太い実線で示す)と、上記各LEDを用いて上記「White」に相当する色票を表示したときに得られる表示スペクトル(太い破線)とを併せて示したものである。このように、特許文献1の電子色票装置では、目標となる「White」のスペクトルと、実際に色票として表示した「White」のスペクトルとの誤差が大きいことがわかる。ちなみに、このときの両スペクトルの類似性を示す相関係数は0.60と低い値であった。なお、相関係数の詳細については、後述の実施の形態で説明する。
 このように両スペクトルの誤差が生じた理由は、図29において、緑色を発光するLEDのピーク波長と黄緑色を発光するLEDのピーク波長との間隔が広がりすぎて、それらの中間波長(例えば555nm付近)における輝度が大幅に低下していることが考えられる。
 したがって、複数のLEDを用いた電子色票装置において、色票として表示した「White」のスペクトルと目標スペクトルとの誤差を小さくするためには、波長555nm付近で低下しやすい強度を補うことができるように、複数のLEDを、半値波長全幅の狭いものおよび広いものも含めて適切に選択して用いることが必要となる。
 なお、ピーク波長が555nm付近にある、半値波長全幅が40nm以下と狭いLEDは、発光効率の低いものしか現実的には存在しない。このため、上記LEDを用いても、555nm付近における強度低下を回避して、色票として表示した「White」のスペクトルと目標スペクトルとの誤差を小さくすることはできない。
 本発明は、上記の問題点を解決するためになされたもので、その目的は、色票として「White」を表示する場合でも、波長555nm付近で低下しやすい強度を補うことができ、これによって、表示スペクトルと目標スペクトルとの誤差を小さくすることができる電子色票装置を提供することにある。
 本発明の電子色票装置は、ピーク波長の異なる複数のLEDを備え、前記複数のLEDを発光させて、色基準となる画像を色票として表示する電子色票装置であって、前記複数のLEDのそれぞれの発光強度分布を、最大強度を1として正規化したときに、前記複数のLEDは、最大強度の半値波長全幅が40nm以下のものを含み、かつ、ピーク間隔が50nm以下となる複数の第1のLEDと、波長555nmでの発光強度が0.4以上であり、かつ、最大強度の半値波長全幅が40nmよりも大きい第2のLEDとを含んでいる構成である。
 本発明によれば、複数のLEDを発光させて色票としての「White」を表示させたときに、波長555nm付近で低下しやすい強度を第2のLEDで補うことができ、得られる表示スペクトルと、色票としての理想的な目標スペクトルとの誤差を小さくすることができる。
本発明の実施の一形態の電子色票装置の概略の構成を示す断面図である。 上記電子色票装置が有する複数のLEDの分光特性を示すとともに、実施例1における目標スペクトルおよび表示スペクトルを示すグラフである。 上記複数のLEDに含まれる第2のLEDの概略の構成を示す断面図である。 実施例2における複数のLEDの分光特性、目標スペクトルおよび表示スペクトルを示すグラフである。 実施例3における複数のLEDの分光特性、目標スペクトルおよび表示スペクトルを示すグラフである。 実施例4における複数のLEDの分光特性、目標スペクトルおよび表示スペクトルを示すグラフである。 実施例5における複数のLEDの分光特性、目標スペクトルおよび表示スペクトルを示すグラフである。 実施例6における複数のLEDの分光特性、目標スペクトルおよび表示スペクトルを示すグラフである。 比較例1における複数のLEDの分光特性、目標スペクトルおよび表示スペクトルを示すグラフである。 比較例2における複数のLEDの分光特性、目標スペクトルおよび表示スペクトルを示すグラフである。 比較例3における複数のLEDの分光特性、目標スペクトルおよび表示スペクトルを示すグラフである。 比較例4における複数のLEDの分光特性、目標スペクトルおよび表示スペクトルを示すグラフである。 実施例7における複数のLEDの分光特性、目標スペクトルおよび表示スペクトルを示すグラフである。 実施例8における複数のLEDの分光特性、目標スペクトルおよび表示スペクトルを示すグラフである。 実施例9における複数のLEDの分光特性、目標スペクトルおよび表示スペクトルを示すグラフである。 比較例5における複数のLEDの分光特性、目標スペクトルおよび表示スペクトルを示すグラフである。 複数のLEDの分光特性と、青色を色票として表示させたときの表示スペクトルと、青色の色票としての目標スペクトルとを示すグラフである。 複数のLEDの分光特性と、緑色を色票として表示させたときの表示スペクトルと、緑色の色票としての目標スペクトルとを示すグラフである。 複数のLEDの分光特性と、赤色を色票として表示させたときの表示スペクトルと、赤色の色票としての目標スペクトルとを示すグラフである。 複数のLEDの分光特性と、黄色を色票として表示させたときの表示スペクトルと、黄色の色票としての目標スペクトルとを示すグラフである。 複数のLEDの分光特性と、マゼンタ色を色票として表示させたときの表示スペクトルと、マゼンタ色の色票としての目標スペクトルとを示すグラフである。 複数のLEDの分光特性と、シアン色を色票として表示させたときの表示スペクトルと、シアン色の色票としての目標スペクトルとを示すグラフである。 XYZ表色系におけるxy色度図上で、マクベスチャートで示される各色票の色とSOCSデータとを示した説明図である。 マクベスチャートで示される各色票の色と、SOCSデータの一部とを、Lab表色系の座標で示した説明図である。 複数のLEDを発光させて色票としての「White」を表示したときの表示スペクトルの一例を示すグラフである。 複数のLEDを発光させて色票としての「White」を表示したときの表示スペクトルの他の例を示すグラフである。 発光強度を2段階で調整して、色票としての「White」を表示したときの表示スペクトルを示すグラフである。 従来の電子色票装置が有する複数のLEDの分光特性を示すグラフである。 上記分光特性を有する複数のLEDで、色票としての「White」を表示したときの表示スペクトルと、目標となる「White」のスペクトルとを示すグラフである。
 本発明の実施の一形態について図面に基づいて説明すれば以下の通りである。
 (電子色票装置の構成)
 図1は、本実施形態の電子色票装置の概略の構成を示す断面図である。本実施形態の電子色票装置1は、複数のLEDを発光させて、色基準となる画像を色票として表示するものであり、上記複数のLEDを有する光源部2と、積分球3と、表示部4とを備えている。
 積分球3は、内部が空洞の球形状に形成されており、光源部2の各LEDが発光した光を内面での反射によって拡散させ、均一化し、混色(ミキシング)して表示部4に導く。なお、積分球3の代わりに、内部が反射面で覆われた筒状の導光部材を用いて光源部2からの光を表示部4に導くようにしてもよい。
 表示部4は、複数のLEDで発光されて積分球3を介して入射する光を拡散させる拡散板で構成されており、上記光を拡散板で拡散させることによって色基準となる色票を表示するスクリーンとして機能する。光源部2および表示部4は、積分球3の一部を開口した開口部にそれぞれ設けられている。
 光源部2は、基板11上に、ピーク波長の異なる複数のLEDとして、複数の第1のLED2aと、第2のLED2bとを備えている。各LEDの発光は、図示しない発光制御部によって制御され、表示する色票に応じて、各LEDに流す電流値またはデューティー比が制御される。
 (光源部の詳細)
 図2は、光源部2の複数のLEDの発光強度分布(発光特性、分光特性)を示している。なお、同図では、複数のLEDのそれぞれの発光強度分布を、最大強度を1として正規化して示している。以下、強度については、正規化した発光強度分布における強度を指すものとし、半値幅とは、最大強度の半値波長全幅を指すものとする。
 図2において、複数の第1のLED2aの各々の分光特性を細い実線で示し、第2のLED2bの分光特性を細い破線(プロット点は黒丸)で示す。複数の第1のLED2aの各々のピーク波長は、それぞれ、435nm、448nm、465nm、493nm、524nm、567nm、596nm、613nm、632nm、653nm、673nm(計11個)であり、ピーク間隔は全て50nm以下となっている。また、複数の第1のLED2aの各々の半値幅は、それぞれ、61nm、20.5nm、26.2nm、33.3nm、35.5nm、29.5nm、18nm、14nm、17nm、19nm、21.5nmであり、ピーク波長435nmの第1のLED2aを除いて、半値幅は全て40nm以下となっている。
 一方、第2のLED2bのピーク波長は574nmであり、555nmよりも長波長側に位置している。また、第2のLED2bの半値幅は134nmであり、波長555nmでの発光強度は0.96となっている。
 図3は、第2のLED2bの概略の構成を示す断面図である。第2のLED2bは、基板11上に、発光部12と、リフレクタ13とを有して構成されている。リフレクタ13は、発光部12にて発光された光を所望の方向に反射させるものである。
 発光部12は、光を発光するLEDチップ21と、LEDチップ21で発光された光を受光して蛍光を発する蛍光体22と、これらを封止するための封止樹脂23とを有して構成されている。LEDチップ21は、例えばInGaN(インジューム・ガリウム・ナイトライド)で構成されており、青色光を出射する。蛍光体22は、例えばYAG蛍光体(イットリウム・アルミニウム・ガーネット(Yttrium Aluminum Garnet)、YAl12:Ce)で構成されており、LEDチップ21から出射される青色光で励起されて黄色光を発する。
 このような第2のLED2bの構成では、LEDチップ21が発する第1の光R1と、この光R1により励起されて蛍光体22が発する第2の光R2と、第1の光R1または第2の光R2の反射光であってリフレクタ3が発する第3の光R3とが合成されて、合成光R4として第2のLED2bから射出される。
 本実施形態では、LEDチップ21上に蛍光体22を厚くかぶせることにより、LEDチップ21から直接外部に出射される光を抑えるようにしているが、発光部12はこのような構成に限定されるわけではない。なお、LEDチップ21から直接外部に出射される光が抑えられている点は、図2の第2のLED2bの発光特性において、波長460nm付近に僅かに発光スペクトルがあることからも容易に推測できる。
 このように第2のLED2bが、蛍光体22を含んで構成されていることにより、蛍光体22は波長幅の広い光を発するため、図2で示したように、半値幅が40nmよりも大きいブロードな発光特性を有する第2のLED2bを確実に実現することができる。
 なお、第1のLED2aは蛍光体を有しておらず、それゆえ、第1のLED2aの半値幅は、第2のLED2bよりも狭くなっている。第1のLED2aの構造は、図3において蛍光体22を除き、LEDチップ21を所定の波長の光を発光するLEDチップに置き換えた構造にほぼ対応している。
 (相関係数について)
 次に、本実施形態において、スペクトルの類似性を判断する際に用いる相関係数について、先に説明しておく。相関係数とは、2つの変量をx、yとしたときに、xとyとの直線的な関連の強さ(類似性の度合い)を示す尺度である。大きさnの標本について、2つの変量xとyとを調べた結果を(x,y)、(x,y)、・・・(x,y)とし、相関係数をrとすると、rは以下の数式で表される。なお、以下の数式中、xの上部にバーを付した記号は、x、x、・・・xの相加平均を示し、yの上部にバーを付した記号は、y、y、・・・yの相加平均を示す。
Figure JPOXMLDOC01-appb-M000001
 相関係数rは、-1から1までの実測値をとり、1に近いほど、2つの変量x、yには正の相関があり、-1に近いほど、2つの変量x、yには負の相関があると言う。正の相関とは、一方の値が増すとき、他方の値も増す関係にあることを言い、負の相関とは、一方の値が増すとき、他方の値が減る関係にあることを言う。本実施形態では、この相関係数rが1に近いほど、表示された色のスペクトルが、色票としての目標の(理想的な)スペクトルに近いことを示す。本実施形態では、相関係数r=0.85を最低限必要な値と考え、0.95以上を理想的な値と考える。
 (実施例)
 以下、本実施形態の電子色票装置1にて得られるスペクトルの具体例について、実施例として説明する。また、実施例との比較のため、比較例についても併せて説明する。なお、以下では、複数のLEDを発光させて、色票として、D65光源下でのマクベスチャートのNo.19の「White」(以下、色票としての「White」とも記載する)を表示させたときに得られるスペクトルについて説明する。なお、説明の便宜上、色票としての「White」の理想的なスペクトルを目標スペクトルと称し、実際に表示部4に表示された「White」の色票のスペクトルを表示スペクトルと称する。
 <実施例1>
 実施例1では、色票としての「White」を表示させる際に、上記した11個の第1のLED2aに加えて、第2のLED2bを発光させた。この結果、図2に示したように、表示スペクトルとしては、目標スペクトルに近いものが得られており、相関係数は0.90と高い値であった。
 <実施例2>
 図4は、実施例2における複数のLEDの分光特性、目標スペクトル(太い実線)および表示スペクトル(太い破線)を併せて示したものである。実施例2では、複数の第1のLED2aを、実施例1の11個のLEDにさらに2つのLEDを加えて構成した。加えたLEDのピーク波長は、それぞれ、408nm、693nmであり、半値幅は、それぞれ、16nm、20.5nmであった。そして、色票としての「White」を表示させる際に、計13個の第1のLED2aと、第2のLED2bとを発光させた。なお、第1のLED2aとして加える2つのLEDは、ピーク波長がそれぞれ680nm以上720nm以下、380nm以上420nm以下のものであればよい。
 実施例2では、第1のLED2aとして追加した2つのLEDにより、波長400nm付近および波長700nm付近の強度を補うことができるので、表示スペクトルは目標スペクトルさらに近づき、相関係数は0.97と理想的な値が得られた。
 <実施例3>
 図5は、実施例3における複数のLEDの分光特性、目標スペクトル(太い実線)および表示スペクトル(太い破線)を併せて示したものである。実施例3では、色票としての「White」を表示させる際に、実施例2の複数の第1のLED2aのうち、実施例1と同じ11個のLEDと、ピーク波長693nmのLEDとを発光させるとともに、第2のLED2bを発光させた。つまり、複数の第1のLED2aのうち、ピーク波長408nmのLEDを発光させなかった。
 実施例3では、ピーク波長408nmのLEDを発光させていないため、実施例1のスペクトルに対して波長700nm付近の強度しか補うことができないが、それでも相関係数は0.93と高い値が得られ、実施例1よりも良好な結果が得られた。
 <実施例4>
 図6は、実施例4における複数のLEDの分光特性、目標スペクトル(太い実線)および表示スペクトル(太い破線)を併せて示したものである。実施例4では、色票としての「White」を表示させる際に、実施例2の複数の第1のLED2aのうち、実施例1と同じ11個のLEDと、ピーク波長408nmのLEDとを発光させるとともに、第2のLED2bを発光させた。つまり、複数の第1のLED2aのうち、ピーク波長693nmのLEDを発光させなかった。
 実施例4では、ピーク波長693nmのLEDを発光させていないため、実施例1のスペクトルに対して波長400nm付近の強度しか補うことができないが、それでも相関係数は0.89と高い値が得られ、実施例1に近い結果が得られた。
 なお、2つの追加LEDを発光させない場合、表示スペクトルの波長700nm付近での勾配は、波長400nm付近での勾配に比べてなだらかであるため、表示スペクトルに対する追加LEDの影響の度合いが、波長400nm付近よりも波長700nm付近のほうが高い。このため、ピーク波長408nmのLEDおよびピーク波長693nmのLEDのどちらか一方を発光させる場合は、ピーク波長693nmのLEDを発光させるほうが、ピーク波長408nmのLEDを発光させる場合に比べて、相関係数を高める効果が高くなる。
 <実施例5>
 図7は、実施例5における複数のLEDの分光特性、目標スペクトル(太い実線)および表示スペクトル(太い破線)を併せて示したものである。実施例5では、実施例1の複数の第1のLED2aにおいて、ピーク波長435nm、半値幅61nmのLEDを、ピーク波長435nm、半値幅21nmのLEDに置き換えた。そして、色票としての「White」を表示させる際に、複数の第1のLED2aとして、計11個のLEDを発光させるとともに、第2のLED2bを発光させた。
 実施例5では、複数の第1のLED2aの半値幅が全て40nm以下となっているが、相関係数は実施例1と同等の0.90であり、ピーク波長435nmのLEDの半値幅は、相関係数にあまり影響しないものと思われる。
 <実施例6>
 図8は、実施例6における複数のLEDの分光特性、目標スペクトル(太い実線)および表示スペクトル(太い破線)を併せて示したものである。実施例6では、実施例2の複数の第1のLED2aにおいて、ピーク波長435nm、半値幅61nmのLEDを、ピーク波長435nm、半値幅21nmのLEDに置き換えた。そして、色票としての「White」を表示させる際に、複数の第1のLED2aとして、計13個のLEDを発光させるとともに、第2のLED2bを発光させた。
 実施例6では、相関係数は0.95であり、実施例2の0.97よりも若干低いが、依然として理想的な相関係数が得られていることに変わりはない。
 <比較例1>
 図9は、比較例1における複数のLEDの分光特性、目標スペクトル(太い実線)および表示スペクトル(太い破線)を併せて示したものである。比較例1では、色票としての「White」を表示させる際に、第2のLED2bを発光させず、複数の第1のLED2aとして、実施例1と同様に11個のLEDを発光させた。
 比較例1では、波長555nm付近の強度が低下しているため、表示スペクトルはガタガタになり、目標スペクトルとの誤差が大きく、相関係数は0.798と低い値であった。
 <比較例2>
 図10は、比較例2における複数のLEDの分光特性、目標スペクトル(太い実線)および表示スペクトル(太い破線)を併せて示したものである。比較例2では、複数の第1のLED2aとして、実施例2と同様の13個のLEDを用いた。そして、色票としての「White」を表示させる際に、第2のLED2bを発光させず、複数の第1のLED2a(計13個のLED)を発光させた。
 比較例2においても、相関係数は0.796と低く、比較例1とほぼ同様の結果であった。
 <比較例3>
 図11は、比較例3における複数のLEDの分光特性、目標スペクトル(太い実線)および表示スペクトル(太い破線)を併せて示したものである。比較例3では、比較例2の複数の第1のLED2aにおいて、ピーク波長435nm、半値幅61nmのLEDを、ピーク波長435nm、半値幅21nmのLEDに置き換えた。そして、色票としての「White」を表示させる際に、第2のLED2bを発光させず、複数の第1のLED2aとして、計13個のLEDを発光させた。
 比較例3においても、相関係数は0.78と低く、比較例1および2とほぼ同様の結果であった。
 <比較例4>
 図12は、比較例4における複数のLEDの分光特性、目標スペクトル(太い実線)および表示スペクトル(太い破線)を併せて示したものである。比較例4では、複数の第1のLED2aとして、実施例1と同様の11個のLEDに加えて、ピーク波長555nm、半値幅30nmのLEDを追加した。なお、追加する上記LEDの分光特性を、プロット点が黒丸の細い実線で示す。そして、色票としての「White」を表示させる際に、第2のLED2bを発光させず、複数の第1のLED2aとして、計12個のLEDを発光させた。
 前述したように、ピーク波長が555nm付近にあるLEDは、発光効率の低いものしか現実的には存在していない。このため、比較例4のように、波長555nm付近の強度を補うべく上記LEDを用いても、相関係数を0.82までしか増加させることができない。つまり、比較例4によれば、比較例1に比べて相関係数を上げる若干の効果はあるが、相関係数0.85以上を実現できるほどの効果は得られない。
 <実施例7>
 図13は、実施例7における複数のLEDの分光特性、目標スペクトル(太い実線)および表示スペクトル(太い破線)を併せて示したものである。実施例7では、実施例1の第2のLED2bとして、波長555nmでの発光強度が0.7以上0.9未満となるLEDを用いた。このときの第2のLED2bのピーク波長は590nmであり、半値幅は125nmであった。そして、色票としての「White」を表示させる際に、複数の第1のLED2aと、第2のLED2bとを発光させた。
 実施例7では、相関係数が0.90であり、実施例1と同等の結果が得られた。
 <実施例8>
 図14は、実施例8における複数のLEDの分光特性、目標スペクトル(太い実線)および表示スペクトル(太い破線)を併せて示したものである。実施例8では、実施例1の第2のLED2bとして、波長555nmでの発光強度が0.5以上0.7未満となるLEDを用いた。このときの第2のLED2bのピーク波長は595nmであり、半値幅は105nmであった。そして、色票としての「White」を表示させる際に、複数の第1のLED2aと、第2のLED2bとを発光させた。
 実施例8では、相関係数が0.88であり、実施例1よりも若干低い値であったが、0.85以上の高い値が得られることに変わりはない。
 <実施例9>
 図15は、実施例9における複数のLEDの分光特性、目標スペクトル(太い実線)および表示スペクトル(太い破線)を併せて示したものである。実施例9では、実施例1の第2のLED2bとして、波長555nmでの発光強度が0.4以上0.6未満となるLEDを用いた。このときの第2のLED2bのピーク波長は595nmであり、半値幅は100nmであった。そして、色票としての「White」を表示させる際に、複数の第1のLED2aと、第2のLED2bとを発光させた。
 実施例9では、相関係数が0.86であり、実施例8よりも若干低い値であったが、0.85以上の目標とする値が得られることに変わりはない。
 <比較例5>
 図16は、比較例5における複数のLEDの分光特性、目標スペクトル(太い実線)および表示スペクトル(太い破線)を併せて示したものである。比較例5では、実施例1の第2のLED2bとして、波長555nmでの発光強度が0.3以上0.4未満となるLEDを用いた。このときの第2のLED2bのピーク波長は610nmであり、半値幅は95nmであった。そして、色票としての「White」を表示させる際に、複数の第1のLED2aと、第2のLED2bとを発光させた。
 比較例5では、相関係数が0.847であり、目標とする最低限必要な0.85を若干下回った。
 (スペクトルについての考察)
 以上の実施例および比較例の結果についてまとめると、以下のようになる。
 ピーク間隔が50nm以下の複数の第1のLED2aが、半値幅40nm以下のLEDを含むと、隣り合うピーク波長とピーク波長との間で強度が低下しやすくなる。このような強度低下は、特に、波長555nm付近で起きやすくなる。その理由は、ピーク波長が555nm付近にある、半値幅40nm以下のLEDは、発光効率の低いものしか現実的には存在せず、上記LEDを用いたとしても、555nm付近における強度を大きく増大させることができないからである。その結果、色票としての「White」を表示したときに、波長555nm付近でのスペクトルの強度が低下し、相関係数を目標とする0.85以上に高めることができなくなる(比較例4参照)。なお、発光効率の低い上記LEDが含まれていない場合は、波長555nm付近でのスペクトルの強度がさらに低下するため、表示スペクトルの相関係数は0.8付近まで低下する(比較例1参照)。
 しかし、光源部2が、複数の第1のLED2aに加えて、波長555nmでの発光強度が0.4以上で、かつ、半値幅が40nmよりも大きい第2のLED2bを含んでいることにより、これらを発光させて色票としての「White」を表示させたときに、波長555nm付近で低下しやすいスペクトルの強度を、第2のLED2bで補うことができる。これにより、表示スペクトルと目標スペクトルとの誤差を小さくして、表示スペクトルの相関係数を0.85以上に増大させることができる(実施例1~9参照)。
 特に、実施例1、7~9および比較例5の結果より、第2のLED2bにおいては、波長555nmでの発光強度が0.4以上であることが、色票としての「White」表示時における表示スペクトルの相関係数0.85以上を実現する上では必要であると言える。
 また、いずれの実施例においても、第2のLED2bのピーク波長は、574nmであり、555nmよりも大きい。第2のLED2bは半値幅の広いブロードな発光特性を有しているため、ピーク波長が555nmと一致していなくても、波長555nmでの発光強度0.4以上を実現することができる。また、ピーク波長が555nmよりも大きく、半値幅が40nmよりも大きい第2のLED2bは、上述したように、青色を発光するLEDチップ21と、黄色の蛍光を発する蛍光体22とを用いて構成することが可能であり、そのようなLEDを用いて、波長555nm付近の強度を確実に補うことができる。
 また、第1のLED2aが、680nm以上720nm以下にピーク波長を持つLEDを含んでいる場合、色票としての「White」表示時に、上記LEDの発光によって波長700nm付近の強度を補うことができ、これによって、実施例1よりも高い相関係数を実現することができる(実施例3参照)。
 また、第1のLED2aが、380nm以上420nm以下にピーク波長を持つLEDをさらに含んでいる場合は、色票としての「White」表示時に、上記LEDをさらに発光させて波長400nm付近の強度を補うことができる。これにより、波長400nmから700nmの広い範囲で、表示スペクトルを目標スペクトルに近づけることができ、実施例1および実施例3よりもさらに高い相関係数を実現することができる(実施例2参照)。
 なお、本実施形態の光源部2は、波長555nm付近の強度を第2のLED2bで補う構成であることから、この光源部2が第2のLED2bを有しているのであれば、光源部2の複数の第1のLED2aは、上述した各実施例のように、ピーク波長が555nm付近にある半値幅の狭いLED(発光効率の低いLED)を含んでいなくてもよいし、含んでいてもよい。仮に、複数の第1のLED2aが発光効率の低い上記LEDを含んでいたとしても、上記LEDの相関係数に与える影響は小さいため、色票としての「White」表示時において、表示スペクトルの相関係数が0.85を下回ることはない。
 (他の色のスペクトルについて)
 以上では、色票として「White」を表示させたときを例として説明したが、本実施形態の光源部2の構成によれば、「White」以外の色を色票として表示させる場合でも、目標スペクトルに近い表示スペクトルを得ることができる。
 図17~図22は、光源部2の各LED(第1のLED2a、第2のLED2b)の分光特性と、各LEDを制御して、B(青)、G(緑)、R(赤)、Y(黄)、M(マゼンタ)、C(シアン)の各色を色票として表示させたときの表示スペクトル(太い破線)と、各色の色票としての目標スペクトル(太い実線)とを併せて示したものである。BGRYMCの各色を色票として表示させたときの、表示スペクトルの目標スペクトルに対する相関係数は、それぞれ、0.99、0.97、0.99、0.99、0.98、1.00であった。
 色票としての「White」の目標スペクトルは、上記した各実施例の図面で示したように比較的なだらかな曲線で示される。これに対して、他の色の目標スペクトルにおいては、図17~図22のように、強度がほとんどゼロとなる波長領域が存在する。このため、ピーク波長の異なる複数のLEDを用いて色票を表示する際に、色票として「White」を表示する場合のほうが、色票として他の色を表示する場合に比べて、目標スペクトルに近い表示スペクトルを再現することが難しい。
 しかし、本実施形態では、上述したように、色票のうちで、相関係数を上げることが最も困難な「White」について、表示スペクトルの相関係数を上げることができるので、他の色についても、さらにそれ以上の相関係数を実現することが可能となる。
 また、図23は、マクベスチャートで示される各色票の色と、SOCS(Standard Object Color Spectra database)のデータとを、XYZ表色系におけるxy色度図で示したものである。なお、SOCSとは、物体色の分布を示すものであって、物体色の分光反射率を体系的に収集、整理して発行されたデータベースを指す。また、図24は、マクベスチャートで示される各色票の色と、SOCSデータの一部とを、Lab表色系の座標系で示したものである。
 図17~図22において色票として表示されるBGRYMCの各色は、SOCSデータのうちで、マクベスチャートのBGRYMCの各色と同じ色相角上で最外殻に位置する点の色(No.13~18で示す6点)に相当し、マクベスチャートの色票よりも彩度が高い。本実施形態の構成によれば、そのような彩度の高い6点のSOCSデータを色票として表示することができるので、例えば、表示した色票をカメラで撮影してそのキャリブレーション(撮影特性の調整)を行うときに、高色域、高彩度で行うことができ、高色域のデバイスに対応した電子色票装置を実現することができる。
 以上で説明した本実施形態の電子色票装置は、ピーク波長の異なる複数のLEDを備え、前記複数のLEDを発光させて、色基準となる画像を色票として表示する電子色票装置であって、前記複数のLEDのそれぞれの発光強度分布を、最大強度を1として正規化したときに、前記複数のLEDは、最大強度の半値波長全幅が40nm以下のものを含み、かつ、ピーク間隔が50nm以下となる複数の第1のLEDと、波長555nmでの発光強度が0.4以上であり、かつ、最大強度の半値波長全幅が40nmよりも大きい第2のLEDとを含んでいる構成である。
 上記の構成によれば、複数の第1のLEDを発光させて、色票として例えばD65光源下でのマクベスチャートのNo.19の「White」(以下、色票としての「White」とも記載する)を表示させたときに、波長555nm付近で低下しやすい強度を、波長555nmでの発光強度が0.4以上で、かつ、半値波長全幅が40nmよりも大きい第2のLEDで補うことができる。これにより、色票としての「White」を表示させた場合でも、得られるスペクトルと、色票としての理想的なスペクトルとの誤差を小さくして、目標のスペクトルに近いスペクトルを得ることができる。
 このとき、前記第2のLEDのピーク波長は、555nmよりも大きくてもよい。第2のLEDは半値波長全幅の広いブロードな発光特性を有しているため、ピーク波長が555nmと一致していなくても、波長555nmでの発光強度0.4以上を実現して、波長555nm付近で低下しやすい強度を補うことができる。
 また、前記第2のLEDは、光を発光するLEDチップと、前記LEDチップで発光された光を受光して蛍光を発する蛍光体とを備えて構成されていてもよい。第2のLEDが蛍光体を含んで構成されることにより、半値波長全幅が40nmよりも大きいブロードな発光特性を有する第2のLEDを確実に実現することができる。
 前記第1のLEDは、680nm以上720nm以下にピーク波長を持つLEDを含んでいることが望ましい。この場合、複数のLEDを発光させて色票としての「White」を表示させたときに、波長700nm付近の強度を補って、得られるスペクトルを目標のスペクトルにさらに近づけることができる。
 また、前記第1のLEDは、380nm以上420nm以下にピーク波長を持つLEDをさらに含んでいることが望ましい。この場合、複数のLEDを発光させて色票としての「White」を表示させたときに、波長400nm付近の強度を補って、得られるスペクトルを目標のスペクトルにより一層近づけることができる。
 (各LEDの発光強度の設定方法について)
 電子色票装置において、目標となる色票の色と同等の色票を表示するようにするためには、相関係数を高くすること以外にも、表示する色票の色度と、目標とする色票の色度との差(色度差;詳細は後述する)を小さくすることが必要である。しかし、前述の特許文献1では、そのような色度差までを考慮して色票を表示する(各LEDの発光強度を設定する)ようにはしていない。
 以下では、相関係数が高く、かつ、色度差が小さくなるような、各LEDの発光強度の設定方法について説明する。
 所望の色の色票が表示されるように各LEDの発光強度を設定する方法としては、(1)所定の波長ごとに目標強度(目標スペクトルが得られるような発光強度)との差が小さくなるように各LEDの発光強度を設定する(分光特性の追い込み)、(2)目標とする色票の色度と、実際の各LEDの発光によって表示される色票の色度との差(色度差)が小さくなるように、各LEDの発光強度を設定する(色度の追い込み)、という2つの方法が考えられる。
 図25および図26は、複数のLEDを発光させて色票としての「White」を表示したときの表示スペクトル(太い破線)の一例および他の例をそれぞれ示しており、それぞれ上記(1)および(2)の方法で各LEDの発光強度を設定した場合に対応している。図25では、表示スペクトルの相関係数が0.90、色度差ΔE76が0.73となり、図26では、表示スペクトルの相関係数が0.73、色度差ΔE76が0.002となっている。
 ここで、色度差ΔE76とは、目標とする色票の色度と、実際に表示される色票の色度との差を指すものであり、Lab表色系で明度を示すL*の値と、色相および彩度を示すクロマティクネス指数であるa*およびb*の値とを用いて表されるものである。具体的には、目標とする色票に対応するL*、a*、b*の各値を、L1*、a1*、b1*とし、表示される色票に対応するL*、a*、b*の各値を、L2*、a2*、b2*とすると、
   ΔE76={(ΔL)+(Δa)+(Δb)}1/2
  ただし、
    ΔL=L1*-L2*
    Δa=a1*-a2*
    Δb=b1*-b2*
である。
 図25および図26の結果より、上記(1)の方法によれば、相関係数を高めることができるが、色度差ΔE76までを小さくできるとは必ずしも言えない。また、上記(2)の方法によれば、色度差ΔE76を小さくすることはできても、相関係数を高めることはできない。
 そこで、本実施形態では、上記(1)(2)の方法を両方採用することにより、相関係数を高めるとともに、色度差を小さくし、色票として表示する色を、目標とする色票の色に確実に近づけるようにしている。以下、より具体的に説明する。
 <分光特性の追い込み>
 まず、波長400nmから700nmまで、所定の波長間隔で、各LEDの発光強度と、目標とする色票を実現するための目標強度との差の二乗を求め、その平均を目的関数とする。
 例えば、波長400nmから700nmまでを5nmごとに区切った場合、400nm、405nm、410nm、・・・700nmの各波長において、発光強度A、A、A、・・・A61と、目標強度B、B、B、・・・B61との差をそれぞれ求める。そして、(A-B、(A-B、(A-B、・・・(A61-B61の和を全体数61で割って平均をとり、その平均を目的関数F1とする。
 次に、目的関数F1の値が最小となるような発光強度A、A、A、・・・A61の最適解を、それぞれの波長(61個)ごとに求める。一般に、求めたい量が多数の変数の関係によって与えられるとき、適当な制約条件の中で最適解を求める方法として、例えばソルバー法がある。ソルバー法とは、複数の変数を含む数式において、目標とする値を得るために、最適な変数の値を求める方法を言う。ソルバー法によれば、複数の変数の値を変化させながら変数の相互関係を判断し、最適な値を算出することができるので、このソルバー法を用いることで、最適な発光強度を各波長ごとに求めることができる。ちなみに、求めたい量が、多数の一次関数の組み合わせである場合、指定した制約条件の中で最適解求める方法として線形計画法があるが、その最適解を求めるときにもソルバー法を用いることができる。すなわち、ソルバー法は、線形計画法の一種である。
 このようにして各波長ごとに発光強度を求めることにより、各波長ごとに目標強度に近い発光強度が得られるため、表示スペクトルの相関係数を上げることができる。
 <色度の追い込み>
 上記のように各波長ごとの発光強度を求めると、次に、求めた各発光強度を初期値とし、上記各発光強度で表示される色票の色度と目標とする色票の色度との色度差を求める。つまり、目標とする色票に対応するL*、a*、b*の各値を、L1*、a1*、b1*とし、上記各発光強度で表示される色票に対応するL*、a*、b*の各値を、L2*、a2*、b2*として、上述した式により、色度差ΔE76を求める。
 次に、求めた上記色度差ΔE76を目的関数F2とし、目的関数F2の値(色度差ΔE76)が最小となるように、初期値としての各発光強度を微調整して、各発光強度の波長ごとの最適解を求める。このときも、上述した線形計画法またはソルバー法を用いることにより、上記最適解を求めることができる。このようにして求めた波長ごとの各発光強度を、最終的な発光強度として設定する。
 図27は、上記のように2段階で発光強度を調整して、色票としての「White」を表示したときの表示スペクトルを示している。このように、まず目標強度との二乗誤差が小さくなるように発光強度を求め、その後、色度差が小さくなるように、求めた発光強度を微調整することにより、目標との相関係数が0.90と高く、色度差ΔE76がほとんどゼロとなるような色票を表示させることができ、色票として表示する色を、目標とする色票の色に確実に近づけることができる。
 以上のことから、本実施形態におけるLEDの発光強度の設定方法は、以下のように表現することができる。
 1.所定の波長域(例えば波長400nm以上700nm以下)から選択される複数の波長の各々における発光強度と、目標とする色票を実現するための目標強度との二乗誤差の平均が最小となるように、各波長における発光強度を求める第1の工程と、
 前記各波長における発光強度を初期値として、前記発光強度で表示される色票の色度と目標とする色票の色度との色度差を求め、この色度差が最小となるように、各波長における発光強度を求めて、前記初期値として設定した発光強度を微調整する第2の工程とを有していることを特徴とするLEDの発光強度の設定方法。
 2.前記第1の工程では、前記各波長における発光強度を線形計画法によって求めることを特徴とする前記1に記載のLEDの発光強度の設定方法。
 3.前記第2の工程では、前記各波長における発光強度を線形計画法によって求めることを特徴とする前記1または2に記載のLEDの発光強度の設定方法。
 4.前記線形計画法は、ソルバー法であることを特徴とする前記2または3に記載のLEDの発光強度の設定方法。
 本発明は、複数のLEDを用いて色票を表示する電子色票装置に利用可能である。
   1   電子色票装置
   2a  第1のLED
   2b  第2のLED
  21   LEDチップ
  22   蛍光体

Claims (5)

  1.  ピーク波長の異なる複数のLEDを備え、前記複数のLEDを発光させて、色基準となる画像を色票として表示する電子色票装置であって、
     前記複数のLEDのそれぞれの発光強度分布を、最大強度を1として正規化したときに、
     前記複数のLEDは、
     最大強度の半値波長全幅が40nm以下のものを含み、かつ、ピーク間隔が50nm以下となる複数の第1のLEDと、
     波長555nmでの発光強度が0.4以上であり、かつ、最大強度の半値波長全幅が40nmよりも大きい第2のLEDとを含んでいることを特徴とする電子色票装置。
  2.  前記第2のLEDのピーク波長は、555nmよりも大きいことを特徴とする請求項1に記載の電子色票装置。
  3.  前記第2のLEDは、光を発光するLEDチップと、前記LEDチップで発光された光を受光して蛍光を発する蛍光体とを備えていることを特徴とする請求項1に記載の電子色票装置。
  4.  前記第1のLEDは、680nm以上720nm以下にピーク波長を持つLEDを含んでいることを特徴とする請求項1に記載の電子色票装置。
  5.  前記第1のLEDは、380nm以上420nm以下にピーク波長を持つLEDを含んでいることを特徴とする請求項4に記載の電子色票装置。
PCT/JP2013/074341 2012-09-14 2013-09-10 電子色票装置 WO2014042140A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/428,133 US9368692B2 (en) 2012-09-14 2013-09-10 Electronic color-chart device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-202912 2012-09-14
JP2012202912 2012-09-14

Publications (1)

Publication Number Publication Date
WO2014042140A1 true WO2014042140A1 (ja) 2014-03-20

Family

ID=50278251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074341 WO2014042140A1 (ja) 2012-09-14 2013-09-10 電子色票装置

Country Status (2)

Country Link
US (1) US9368692B2 (ja)
WO (1) WO2014042140A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019078288A1 (ja) * 2017-10-19 2020-11-05 大日本印刷株式会社 色較正用ビュアー、およびそれを用いた色較正セット
JP2022033743A (ja) * 2016-03-31 2022-03-02 大日本印刷株式会社 透過型色較正用チャート
US11635329B2 (en) 2016-03-31 2023-04-25 Dai Nippon Printing Co., Ltd. Transmission type color calibration chart and calibration slide glass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6617532B2 (ja) * 2015-11-24 2019-12-11 大日本印刷株式会社 判別用具及び判別方法
US10746376B2 (en) 2017-07-25 2020-08-18 Axalta Coating Systems Ip Co., Llc System for matching coarseness appearance of coatings
EP3892068A1 (en) * 2018-12-04 2021-10-13 Signify Holding B.V. Crisp white tuning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199231A (ja) * 2000-10-05 2002-07-12 Kurabo Ind Ltd 電子色票装置
WO2006119750A2 (de) * 2005-05-11 2006-11-16 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Scheinwerfer für film- und videoaufnahmen
JP2009088374A (ja) * 2007-10-02 2009-04-23 Toyoda Gosei Co Ltd 発光装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520571B (zh) * 2011-11-04 2014-08-06 深圳市光峰光电技术有限公司 发光装置及投影系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199231A (ja) * 2000-10-05 2002-07-12 Kurabo Ind Ltd 電子色票装置
WO2006119750A2 (de) * 2005-05-11 2006-11-16 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Scheinwerfer für film- und videoaufnahmen
JP2009088374A (ja) * 2007-10-02 2009-04-23 Toyoda Gosei Co Ltd 発光装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022033743A (ja) * 2016-03-31 2022-03-02 大日本印刷株式会社 透過型色較正用チャート
US11635329B2 (en) 2016-03-31 2023-04-25 Dai Nippon Printing Co., Ltd. Transmission type color calibration chart and calibration slide glass
JP7276405B2 (ja) 2016-03-31 2023-05-18 大日本印刷株式会社 透過型色較正用チャート
JPWO2019078288A1 (ja) * 2017-10-19 2020-11-05 大日本印刷株式会社 色較正用ビュアー、およびそれを用いた色較正セット
US11397110B2 (en) 2017-10-19 2022-07-26 Dai Nippon Printing Co., Ltd. Color calibration viewer, and color calibration set in which same is used
JP7310607B2 (ja) 2017-10-19 2023-07-19 大日本印刷株式会社 色較正用ビュアー、およびそれを用いた色較正セット

Also Published As

Publication number Publication date
US20150263240A1 (en) 2015-09-17
US9368692B2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
WO2014042140A1 (ja) 電子色票装置
JP6201665B2 (ja) 画像表示装置の製造方法並びに発光装置及びカラーフィルターの選択方法
US8182115B2 (en) Light source device
JP6155993B2 (ja) カラーフィルター及び発光装置の組合せの選択方法並びに画像表示装置の製造方法
EP1909134B1 (en) A display
US7250715B2 (en) Wavelength converted semiconductor light emitting devices
JP5799212B2 (ja) 発光モジュール、バックライト装置および表示装置
US9115852B2 (en) Method for producing a plurality of LED illumination devices and a plurality of LED chipsets for illumination devices, and LED illumination device
EP2081077B1 (en) Display device
TWI512341B (zh) 顯示裝置
US20160116121A1 (en) Led backlight light source
CN105202483A (zh) 背光模组及显示设备
US8436526B2 (en) Multiwavelength solid-state lamps with an enhanced number of rendered colors
US11588077B2 (en) Display with quantum dot or quantum platelet converter
WO2016084532A1 (ja) インク画像物生成方法
JP2009036964A (ja) 液晶表示装置
JP2007304391A (ja) カラーフィルタ及び液晶表示装置
JP2007180377A (ja) 発光装置
TWI397192B (zh) 白色發光二極體
JP2009036989A (ja) 面発光表示装置
GB2531202A (en) Screening method suitable for fluorescent-powder optical film of backlight module and backlight module
TW201723539A (zh) 背光模組
TWI803526B (zh) 色彩校正用觀察器、及使用其之色彩校正組
US20100165629A1 (en) Color-rendering index device
EP2650918A1 (en) Light emitting module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14428133

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP