WO2014042058A1 - 回路基板、その製造方法及び表示装置 - Google Patents

回路基板、その製造方法及び表示装置 Download PDF

Info

Publication number
WO2014042058A1
WO2014042058A1 PCT/JP2013/073863 JP2013073863W WO2014042058A1 WO 2014042058 A1 WO2014042058 A1 WO 2014042058A1 JP 2013073863 W JP2013073863 W JP 2013073863W WO 2014042058 A1 WO2014042058 A1 WO 2014042058A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
circuit board
oxide semiconductor
etching stopper
substrate
Prior art date
Application number
PCT/JP2013/073863
Other languages
English (en)
French (fr)
Inventor
義仁 原
幸伸 中田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/426,234 priority Critical patent/US20150214375A1/en
Publication of WO2014042058A1 publication Critical patent/WO2014042058A1/ja
Priority to US15/163,946 priority patent/US9673332B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • H01L21/441Deposition of conductive or insulating materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/465Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/469Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After-treatment of these layers
    • H01L21/4757After-treatment
    • H01L21/47573Etching the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits

Definitions

  • the present invention relates to a circuit board, a manufacturing method thereof, and a display device. More specifically, the present invention relates to a circuit board that can be suitably used for a high-definition display device and the like, a manufacturing method thereof, and a display device.
  • a circuit board has an electronic circuit as a component.
  • a circuit board including an element such as a thin film transistor (TFT) is a liquid crystal display device, an electroluminescence display device, a display device using electrophoresis, or the like. Widely used as a component of electronic devices.
  • TFT thin film transistor
  • the TFT array substrate usually has a pixel circuit including a structure in which a TFT as a switching element is provided at an intersection of an m ⁇ n matrix wiring composed of m rows of scanning lines and n columns of signal lines.
  • the drain electrode of the TFT is electrically connected to the pixel electrode.
  • peripheral circuits such as a scan driver IC (integrated circuit) and a data driver IC are electrically connected to a gate wiring and a source wiring extending from the TFT, respectively.
  • the circuit is affected by the performance of the TFT built on the TFT substrate.
  • the performance of TFTs fabricated on the TFT substrate varies depending on the material, so whether the circuit can be operated by TFTs fabricated on the circuit substrate, whether the circuit scale does not increase, and the yield does not decrease. Affects the circuits made on the TFT substrate.
  • a-Si amorphous silicon
  • a circuit board having a semiconductor element having an oxide semiconductor for example, indium gallium zinc oxide
  • an oxide semiconductor for example, indium gallium zinc oxide
  • the present inventors are considering using an etching stopper process (hereinafter also referred to as an ES process) in which an etching stopper layer is provided on at least the central portion of the oxide semiconductor.
  • the Cgd capacitor is basically formed between the gate metal through the insulating layer, the semiconductor layer, and the source metal.
  • the Cgd capacity of the liquid crystal panel using the ES process is the same as the Cgd capacity of a liquid crystal panel using a back-channel-etch method (hereinafter, such a liquid crystal panel is also referred to as a CE structure liquid crystal panel).
  • a liquid crystal panel that uses an ES process, such as a small-sized one, that suitably reduces the Cgd capacity, thereby reducing the effect of the Cgd capacity on the applied voltage and appropriately applying the set voltage. For example, it has been desired to improve the display performance of a display device including a circuit board.
  • An object of the present invention is to provide a circuit board that can be manufactured, a manufacturing method thereof, and a display device.
  • the inventors of the present invention have studied various patterns and processes that are suitable when an ES process is used from the viewpoint of reliability in an oxide semiconductor manufacturing process such as indium gallium zinc oxide, and appropriately pattern the oxide semiconductor. I focused on removing it. Then, indium gallium zinc oxide is patterned with a source metal etchant, in other words, when the source metal is patterned by wet etching, the oxide semiconductor is also wet etched and patterned, thereby suitably removing the oxide semiconductor. I found out that I can. In the circuit board obtained by such patterning, the oxide semiconductor layer is more easily etched than the etching stopper layer made of an insulating material, and therefore the portion where the oxide semiconductor layer is removed (notched portion).
  • a part of the edge of the substrate is along the edge of the opening (hole) of the etching stopper layer when the main surface of the substrate is viewed in plan, and is located closer to the etching stopper layer than the edge of the etching stopper layer I found the above features.
  • the inventors have arrived at the present invention by conceiving that the above problems can be solved brilliantly by such a circuit board manufacturing method and a circuit board obtained by the manufacturing method.
  • a circuit board in which a semiconductor element is disposed on a transparent substrate, wherein the semiconductor element includes an oxide semiconductor layer, and the circuit board includes the oxide semiconductor layer.
  • An etching stopper layer made of an insulating material arranged so as to cover at least the central portion, and a source electrode, a source wiring, and a drain electrode, at least a part of which are arranged on the etching stopper layer
  • the etching stopper layer is provided with an opening, and the circuit board has a region that does not overlap with either the etching stopper layer or the conductor layer when the main surface of the substrate is viewed in plan.
  • a part of the edge of the notch portion of the oxide semiconductor layer is a plane of the substrate main surface.
  • the other part of the edge in the notch part of the oxide semiconductor layer is along the edge of the conductor layer when the substrate main surface is viewed in plan, and the conductor layer is more than the edge of the conductor layer. Preferably it is on the side.
  • the oxide semiconductor layer is preferably composed of indium, gallium, zinc, and oxygen.
  • the conductor layer is a laminate of two or more layers including a layer including at least one selected from the group consisting of aluminum and copper, and a layer including at least one selected from the group consisting of titanium, molybdenum, and chromium. It is preferable that a layer containing at least one selected from the group consisting of titanium, molybdenum and chromium is disposed on the surface layer side.
  • the semiconductor element is preferably a thin film transistor.
  • a method of manufacturing a circuit board in which a semiconductor element is disposed on a transparent substrate comprising the step of forming an island-shaped oxide semiconductor, the island-shaped oxide semiconductor Forming an etching stopper layer made of an insulating material so as to cover at least a central portion of the semiconductor; depositing a conductor on the etching stopper layer; and patterning the conductor; A step of patterning an island-shaped oxide semiconductor to form a conductor layer including a source electrode, a source wiring, and a drain electrode from the conductor, and forming an oxide semiconductor layer having a notch A circuit board manufacturing method may also be used.
  • the step of forming the conductor layer and forming the oxide semiconductor layer is preferably performed by wet etching the conductor and the island-shaped oxide semiconductor with the same etchant.
  • the manufacturing method preferably includes a step of disposing an insulating layer after the step of forming the conductor layer and forming the oxide semiconductor layer.
  • a circuit board obtained using the above-described method for manufacturing a circuit board may be used.
  • a display device including the circuit board may be used.
  • the Cgd capacity can be reduced, the influence of the Cgd capacity on the applied voltage can be sufficiently prevented, and the reliability of the circuit board can be made sufficiently good.
  • FIG. 3 is a schematic plan view illustrating a configuration of a TFT portion of the circuit board according to Embodiment 1.
  • FIG. FIG. 2 is a schematic cross-sectional view of a substrate after forming an etching stopper layer, corresponding to a cross section taken along line AB in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of a substrate after forming an etching stopper layer, corresponding to a cross section taken along line CD in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of a substrate after forming an etching stopper layer, corresponding to a cross section taken along line EF in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of a substrate after forming a conductor layer and an oxide semiconductor layer, corresponding to a cross section taken along line AB in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of a substrate after forming a conductor layer and an oxide semiconductor layer, corresponding to a cross section taken along line CD in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of a substrate after forming a conductor layer and an oxide semiconductor layer, corresponding to a cross section taken along line EF in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of a substrate after deposition of a protective film, corresponding to a cross section taken along line AB in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of a substrate after deposition of a protective film, corresponding to a cross section taken along line CD in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of a substrate after deposition of a protective film, corresponding to a cross section taken along line EF in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view taken along the line AB of FIG.
  • FIG. 2 is a schematic cross-sectional view taken along the line CD in FIG.
  • FIG. 2 is a schematic cross-sectional view taken along line EF in FIG. 1.
  • 6 is a schematic plan view illustrating a configuration of a TFT portion of a circuit board according to Embodiment 2.
  • FIG. 6 is a schematic plan view illustrating a configuration of a TFT portion of a circuit board according to Embodiment 3.
  • FIG. 6 is a schematic plan view illustrating a configuration of a TFT portion of a circuit board according to Embodiment 4.
  • FIG. 6 is a schematic cross-sectional view showing a configuration after forming a gate corresponding to a TFT portion of a circuit board according to a modification of the first embodiment.
  • 6 is a schematic cross-sectional view illustrating a configuration after forming an oxide semiconductor layer corresponding to a TFT portion of a circuit board according to a modification of Embodiment 1.
  • FIG. 10 is a schematic cross-sectional view showing a configuration after forming an etching stopper layer corresponding to the TFT portion of the circuit board according to the modification of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view illustrating a configuration after forming a conductor layer corresponding to a TFT portion of a circuit board according to a modification of the first embodiment. 6 is a schematic cross-sectional view illustrating a configuration after forming a protective film and an organic insulating film corresponding to a TFT portion of a circuit board according to a modification of Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view illustrating a configuration after formation of a pixel electrode corresponding to a TFT portion of a circuit board according to a modification of the first embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a configuration after forming a common electrode corresponding to a TFT portion of a circuit board according to another modification of the first embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a configuration after forming a protective film corresponding to a TFT portion of a circuit board according to another modification of the first embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating a configuration after formation of a pixel electrode corresponding to a TFT portion of a circuit board according to another modification of the first embodiment.
  • 6 is a schematic plan view illustrating a configuration of a TFT portion of a circuit board of Comparative Example 1.
  • being provided on a certain member (layer) means that at least a part of the member is provided on the display element side of the member.
  • the opening of the etching stopper layer may be a through hole in the etching stopper layer, and the shape thereof is not particularly limited. Further, the periphery of the opening may be completely surrounded by the etching stopper layer or may not be completely surrounded. Further, the shape of the cutout portion of the oxide semiconductor layer is not particularly limited as long as the cutout portion of the oxide semiconductor layer is provided so as to correspond to at least part of a region not overlapping with either the etching stopper layer or the conductor layer.
  • a photosensitive resist or the like is applied to the entire substrate on which a layer or film to be formed is deposited, and the resist or the like is exposed to form a resist pattern, which is exposed from the resist pattern. It means that after removing a layer or film to be formed by etching, the resist pattern is peeled off to form a layer or film to be formed.
  • High definition refers to, for example, 300 dpi (dots per inch) or more.
  • FIG. 1 is a schematic plan view illustrating the configuration of the TFT portion of the circuit board according to the first embodiment.
  • the circuit board of Embodiment 1 is a circuit board in which a semiconductor element is disposed on a transparent substrate.
  • the semiconductor element includes an oxide semiconductor layer IG such as indium gallium zinc oxide.
  • the circuit board is provided with an etching stopper layer made of an insulating material so as to cover at least a central portion of the oxide semiconductor layer.
  • the circuit board also includes a conductor layer S composed of a source electrode, a source wiring, and a drain electrode, at least a part of which is disposed on the etching stopper layer.
  • the etching stopper layer is provided with an opening H. In FIG. 1, the portions other than the rectangular portion surrounded by the opening H are etching stopper layers.
  • the circuit board has a region that does not overlap with either the etching stopper layer or the conductor layer S when the substrate main surface is viewed in plan. At least a part of this region is the cutout portion Cut of the oxide semiconductor layer IG.
  • the circuit board is used for a display device including a light source
  • electric charges are accumulated in the oxide semiconductor due to the influence of backlight light, and display reliability is deteriorated.
  • the Cgd capacity may increase.
  • an oxide semiconductor such as indium gallium zinc oxide is vulnerable to photoreaction, and it is desirable to reduce the area as much as possible.
  • the Cgd capacity can be reduced by patterning the oxide semiconductor as in Embodiment 1 and removing part of the oxide semiconductor.
  • a part of the edge of the cutout portion Cut of the oxide semiconductor layer is along the edge of the opening H of the etching stopper layer.
  • 0.5 ⁇ m to 1.5 ⁇ m is located closer to the etching stopper layer than the edge of the etching stopper layer.
  • the portion along the edge at the opening H of the etching stopper layer is completely more than the edge of the etching stopper layer when the substrate main surface is viewed in plan view. There is no need to be on the etching stopper layer side, and it may be substantially on the etching stopper layer side than the edge of the etching stopper layer.
  • the other part of the edge of the cutout part Cut of the oxide semiconductor layer is along the edge of the conductor layer S when the substrate main surface is viewed in plan view, and the conductor For example, 0.5 ⁇ m to 1.5 ⁇ m from the edge of the layer S is on the conductor layer S side (inner side).
  • the portion along the edge of the conductor layer S is completely more conductive than the edge of the conductor layer S when the main surface of the substrate is viewed in plan. It does not need to be on the layer S side, and may be substantially on the conductor layer S side (inside) from the edge of the conductor layer S.
  • FIG. 2 is a schematic cross-sectional view of the substrate after forming the etching stopper layer, corresponding to a cross section taken along line AB in FIG.
  • FIG. 3 is a schematic cross-sectional view of the substrate after forming the etching stopper layer, corresponding to the cross-section along the line CD in FIG.
  • FIG. 4 is a schematic cross-sectional view of the substrate after forming the etching stopper layer, corresponding to a cross section taken along line EF in FIG.
  • the gate wiring G is formed on a transparent substrate such as a glass substrate.
  • the step of forming the gate wiring G can be formed, for example, by forming a wiring layer and then patterning it into a desired shape by a photolithography method. Specifically, a resist is formed by a mask process, and the wiring layer is etched to form a gate wiring. Next, the resist is removed.
  • the gate insulating film GI is, for example, a silicon nitride (SiN x ) film, a silicon oxide (SiO 2 ) film, or the like, and can be formed by a plasma enhanced chemical vapor deposition (PECVD) method or the like. .
  • PECVD plasma enhanced chemical vapor deposition
  • an island-shaped oxide semiconductor IG such as indium gallium zinc oxide is formed.
  • a material of an oxide semiconductor IG having a thickness of 10 nm to 300 nm is deposited using a sputtering method, a film is formed, and then patterned into a desired shape using a photolithography method. Can be formed.
  • an etching stopper layer ES is formed.
  • the etching stopper layer ES is formed by plasma CVD (for example, using an insulating material such as silicon (eg, silicon oxide film [SiO 2 ], silicon nitride film [SiN x ], silicon nitride oxide film [SiNO])).
  • an insulating film having a thickness of 50 nm to 300 nm by a chemical vapor deposition method or a sputtering method a resist is formed by a mask process, and the insulating film is etched to provide an etching stopper provided with an opening H. Form a layer.
  • the etching stopper layer ES is formed so as to cover at least the central portion of the island-shaped oxide semiconductor IG. Next, the resist is removed. In order to maintain the reliability of the circuit board on which the oxide semiconductor layer IG is manufactured, the etching stopper layer ES is added in this way.
  • the etching stopper layer ES includes two openings H.
  • the central portion of the oxide semiconductor layer IG is disposed between the two openings H.
  • FIG. 5 is a schematic cross-sectional view of the substrate after the formation of the conductor layer and the oxide semiconductor layer, corresponding to the cross section taken along line AB of FIG.
  • FIG. 6 is a schematic cross-sectional view of the substrate after the formation of the conductor layer and the oxide semiconductor layer, corresponding to the cross section taken along line CD in FIG.
  • FIG. 7 is a schematic cross-sectional view of the substrate after the formation of the conductor layer and the oxide semiconductor layer, corresponding to the cross section taken along the line EF of FIG.
  • a conductor is deposited on the etching stopper layer ES.
  • a resist is formed by a mask process, and etching is performed on the conductor and the island-shaped oxide semiconductor IG. That is, the conductor is patterned by wet etching or the like, and at this time, the island-shaped oxide semiconductor IG is also patterned to form the conductor layer S composed of the source electrode, the source wiring, and the drain electrode from the conductor. Then, an oxide semiconductor layer IG having a notch is formed (see, for example, FIGS. 6 and 7). In other words, the conductor is patterned to form the conductor layer S composed of the source electrode, the source wiring, and the drain electrode, and at the same time, a part of the island-shaped oxide semiconductor is removed. Next, the resist on the substrate is removed.
  • the step of forming the conductor layer and the oxide semiconductor layer is preferably performed by wet etching.
  • the etchant used for the wet etching the same etchant used for the wet etching of the source metal can be preferably used.
  • a superaqueous etching solution (Cu / Ti laminate [Cu is the upper layer, Ti is a lower layer.] Used for a source metal that is a general etching solution of Cu.), Mixed solution of phosphoric acid + nitric acid + acetic acid (source metal that is a laminate of Mo / Al / Mo, etc.)
  • a general etching solution of Al.) Etc. is preferable. Thereby, even if the source metal is a laminated body, the source metal can be etched in a lump.
  • a part of the edge in the cutout portion Cut of the oxide semiconductor layer IG follows the edge in the opening H of the etching stopper layer ES when the substrate main surface is viewed in plan. .
  • a part of the edge of the cutout portion Cut of the oxide semiconductor layer IG is more than the edge of the etching stopper layer ES when the substrate main surface is viewed in plan view. (Oxide semiconductor layer IG is recessed with respect to the etching stopper layer ES).
  • There is an opening H in the etching stopper layer ES there is no oxide semiconductor layer IG, and there is a portion with the conductor layer S.
  • the other part of the edge of the cutout part Cut of the oxide semiconductor layer IG is along the edge of the conductor layer S when the substrate main surface is viewed in plan.
  • the other part of the edge in the notch part Cut of the oxide semiconductor layer IG exists in the conductor layer S side rather than the edge of the conductor layer S (the oxide semiconductor layer IG is Recessed with respect to the conductor layer S).
  • the pattern of the oxide semiconductor layer IG is formed using the etching stopper layer ES and the source, and by removing a part of the oxide semiconductor layer IG, both Cgd reduction and circuit board reliability improvement are achieved. can do.
  • FIG. 8 is a schematic cross-sectional view of the substrate after deposition of the protective film, corresponding to a cross section taken along line AB in FIG.
  • FIG. 9 is a schematic cross-sectional view of the substrate after deposition of the protective film, corresponding to a cross section taken along line CD in FIG.
  • FIG. 10 is a schematic cross-sectional view of the substrate after deposition of the protective film, corresponding to a cross section taken along line EF in FIG.
  • a protective film PAS1 is formed.
  • the protective film PAS1 is, for example, a silicon nitride (SiN x ) film, a silicon oxide (SiO 2 ) film, or the like, and can be formed by a plasma induced chemical vapor deposition (PECVD) method or the like.
  • PECVD plasma induced chemical vapor deposition
  • FIG. 11 is a schematic cross-sectional view taken along line AB in FIG. 12 is a schematic cross-sectional view taken along the line CD in FIG.
  • FIG. 13 is a schematic sectional view taken along line EF in FIG. Yes.
  • the organic insulating film OI is, for example, an acrylic resin and can be formed by a spin coat method or the like. By forming the organic insulating film OI, it is possible to planarize the substrate as shown in FIGS.
  • the common electrode Com is formed on the entire surface of the organic insulating film OI.
  • the common electrode Com may be made of ITO (indium tin oxide), but may be made of other transparent electrodes such as IZO (indium zinc oxide) instead of ITO.
  • the protective film PAS2 is, for example, a silicon nitride (SiN x ) film or the like, similar to the protective film PAS1, and can be formed by a plasma induced chemical vapor deposition (PECVD) method or the like.
  • PECVD plasma induced chemical vapor deposition
  • the common electrode Com may be made of ITO (indium tin oxide), but may be made of other transparent electrodes such as IZO (indium zinc oxide) instead of ITO.
  • Part of the island-shaped oxide semiconductor IG in a region that does not overlap with either the etching stopper layer or the conductor layer S is removed by the above-described step of forming the conductor layer and the oxide semiconductor layer. Accordingly, Cgd between the oxide semiconductor layer IG having a notch and the conductor layer can be reduced.
  • the conductor layer S is made of source metal.
  • the source metal refers to a source wiring and a member (source electrode, drain electrode, etc.) formed by the same process as the source wiring.
  • a Cu / Ti laminated body and a Mo / Al / Mo laminated body are shown, but in addition to this, a material including an aluminum layer, an aluminum alloy layer, a copper layer, and a copper alloy layer is preferably used. Can be used.
  • the aluminum layer is a layer substantially composed of only aluminum metal.
  • elements may diffuse from other metal materials that contact the aluminum layer, interlayer insulating films, and the like, so that there may be cases where a trace amount of impurity elements are included in the aluminum unilayer.
  • the aluminum alloy layer may contain aluminum as an essential component, and may include other metal elements and non-metal elements such as silicon. Examples of the metal element added to the aluminum alloy include nickel, iron, cobalt, and the like. It is more preferable to add boron, neodymium, lanthanum, or the like as an additional element to the aluminum alloy.
  • the said copper layer is a layer comprised only with copper substantially.
  • the copper layer may contain a trace amount of an impurity element because an element may diffuse from other metal materials or interlayer insulating films that are in contact with the copper layer.
  • the copper alloy layer may contain copper as an essential component, and may further include other metal elements and nonmetal elements such as carbon and silicon. Examples of the metal element added to the copper alloy include magnesium and manganese.
  • conductor layer S As the conductor layer S, other metal elements can be used as appropriate.
  • the wiring includes a signal wiring for transmitting an electric signal, a power wiring for supplying power, a wiring for forming a circuit, a wiring for applying an electric field (for example, applying an electric field to the gate of the TFT), and the like.
  • the circuit board of the present invention when the circuit board of the present invention is applied to a liquid crystal display device, the circuit board of the present invention further includes an auxiliary capacitance wiring that forms an auxiliary capacitance used to hold a voltage applied to the liquid crystal. May be.
  • the semiconductor element is preferably a thin film transistor (TFT).
  • TFT thin film transistor
  • the source wiring is electrically connected to the pixel electrode constituting the display pixel through the source electrode and the drain electrode constituting the TFT. .
  • the transparent substrate is not particularly limited, and various substrates can be used.
  • a substrate such as a single crystal semiconductor substrate, an oxide single crystal substrate, a metal substrate, a glass substrate, a quartz substrate, or a resin substrate can be used.
  • a conductive substrate such as a single crystal semiconductor substrate or a metal substrate, it is preferable to use an insulating film or the like provided thereon.
  • the gate insulating film, etching stopper layer, protective film, organic insulating film, and the like described above may be one layer or two or more layers.
  • the pixel electrode is preferably a transparent conductive film.
  • the transparent conductive film indium tin oxide, indium zinc oxide or the like is used, and therefore, it can be suitably used for the circuit board of the present invention.
  • the circuit board according to the first embodiment is disassembled, and the shape of the liquid crystal cell is observed by microscopic observation such as an optical microscope, STEM (Scanning Transmission Electron Microscope), SEM (Scanning Electron Microscope), etc. Can be confirmed.
  • the circuit board according to the first embodiment includes the etching stopper layer as described above, the reliability of the circuit board can be sufficiently improved, and the Cgd capacity can be sufficiently reduced. Moreover, the circuit board of Embodiment 1 can be manufactured most easily.
  • the circuit board of Embodiment 1 is suitable for reducing ⁇ Vd (attraction voltage) particularly in a high-definition display device.
  • the circuit board according to the first embodiment is manufactured by bonding a substrate facing the circuit board and injecting liquid crystal, thereby manufacturing a liquid crystal display panel. Moreover, it becomes a liquid crystal display device by providing this liquid crystal display panel with a polarizing plate and other members.
  • FIG. 14 is a schematic plan view illustrating the configuration of the TFT portion of the circuit board according to the second embodiment.
  • the shape of the oxide semiconductor IG according to Embodiment 2 is different from the shape of the oxide semiconductor IG according to Embodiment 1.
  • the width W at the center is the same as the width of the gate wiring G, and the width at both ends is greater than the width W at the center. .
  • the width of both ends is smaller in the second embodiment than in the first embodiment.
  • the left end portion of the oxide semiconductor layer IG in FIG. 14 does not overlap with the conductor layer S (source wiring) extending in the vertical direction.
  • Other configurations of the second embodiment are the same as the configurations of the first embodiment described above.
  • the circuit board of the second embodiment is not as easy to manufacture as the first embodiment, but the Cgd capacity can be made smaller.
  • FIG. 15 is a schematic plan view illustrating the configuration of the TFT portion of the circuit board according to the third embodiment.
  • the opening H of the etching stopper layer according to the third embodiment is smaller in the vertical direction in FIG. 15 than the opening H of the etching stopper layer according to the first embodiment.
  • Other configurations of the third embodiment are the same as the configurations of the first embodiment described above.
  • the circuit board of the third embodiment is not as easy to manufacture as the second embodiment, the Cgd capacity can be made smaller.
  • FIG. 16 is a schematic plan view illustrating the configuration of the TFT portion of the circuit board according to the fourth embodiment.
  • the opening H of the etching stopper layer according to the fourth embodiment is smaller in the vertical direction in FIG. 15 than the opening H of the etching stopper layer according to the second embodiment.
  • Other configurations of the fourth embodiment are the same as the configurations of the second embodiment described above.
  • the circuit board of the fourth embodiment is not as easy to manufacture as the third embodiment, but the Cgd capacity can be made smaller.
  • TFT portion to which the present invention can be preferably applied will be described in detail below.
  • the configurations other than those described below are the same as those described above in the first embodiment.
  • FIG. 17 is a schematic cross-sectional view showing a configuration after forming a gate corresponding to the TFT portion of the circuit board of a modified example of the first embodiment.
  • the gate wiring G is formed on a transparent substrate such as a glass substrate.
  • the gate wiring G is preferably, for example, a Cu / Ti laminated body or a TiN / Ti / Al laminated body.
  • FIG. 18 is a schematic cross-sectional view illustrating a configuration after forming an oxide semiconductor layer corresponding to the TFT portion of the circuit board according to the modification of the first embodiment.
  • a gate insulating film GI is further formed from the substrate shown in FIG.
  • an island-shaped oxide semiconductor IG such as indium gallium zinc oxide is formed.
  • FIG. 19 is a schematic cross-sectional view illustrating a configuration after forming an etching stopper layer corresponding to the TFT portion of the circuit board according to the modification of the first embodiment.
  • An etching stopper layer ES is further formed from the substrate shown in FIG.
  • FIG. 20 is a schematic cross-sectional view illustrating a configuration after forming a conductor layer corresponding to the TFT portion of the circuit board according to the modification of the first embodiment.
  • a conductor layer S is further formed on the etching stopper layer ES from the substrate shown in FIG.
  • the conductor layer S is preferably a Cu / Ti laminate or a MoN / Al / MoN laminate, for example.
  • a chemical solution that can etch the conductor layer S and the oxide semiconductor layer IG is used as an etchant for wet etching. *
  • FIG. 21 is a schematic cross-sectional view illustrating a configuration after forming a protective film and an organic insulating film corresponding to the TFT portion of the circuit board according to the modification of the first embodiment.
  • a protective film PAS1 is further formed from the substrate shown in FIG. Next, an organic insulating film OI is formed.
  • FIG. 22 is a schematic cross-sectional view illustrating a configuration after formation of a pixel electrode corresponding to the TFT portion of the circuit board according to the modification of the first embodiment.
  • a pixel electrode Pix is further formed on the entire surface of the organic insulating film OI from the substrate shown in FIG.
  • the pixel electrode Pix may be made of ITO (indium tin oxide), but may be made of other transparent electrodes such as IZO (indium zinc oxide) instead of ITO.
  • the circuit board according to the modification of the first embodiment can be suitably used for a liquid crystal display device in a vertical alignment (VA) mode.
  • VA vertical alignment
  • Embodiment 1 Another modification of Embodiment 1 is the same as the modification of Embodiment 1 described above up to the organic insulating film formation step. The process after the organic insulating film forming process will be described below. In addition, the configurations (materials and the like) other than explicitly indicating each member are the same as those described above.
  • FIG. 23 is a schematic cross-sectional view showing a configuration after forming a common electrode corresponding to the TFT portion of the circuit board of another modification of the first embodiment.
  • An electrode material is deposited on the entire surface of the organic insulating film OI and patterned to form a common electrode Com.
  • FIG. 24 is a schematic cross-sectional view illustrating a configuration after forming a protective film corresponding to the TFT portion of the circuit board of another modification of the first embodiment.
  • a protective film PAS2 is further formed on the common electrode Com from the substrate shown in FIG.
  • FIG. 25 is a schematic cross-sectional view showing a configuration after formation of a pixel electrode corresponding to the TFT portion of the circuit board of another modification of the first embodiment.
  • An electrode material is further deposited on the entire surface of the protective film PAS2 from the substrate shown in FIG. 24, and patterning is performed to form a pixel electrode Pix.
  • the circuit board according to another modification of the first embodiment can be suitably used for a fringe field switching (FFS) mode liquid crystal display device.
  • FFS fringe field switching
  • FIG. 26 is a schematic plan view showing the configuration of the TFT portion of the circuit board of Comparative Example 1.
  • the circuit board shown in FIG. 26 has the entire opening H of the etching stopper layer ES inside the conductor layer S when the main surface of the board is viewed in plan.
  • the circuit board shown in FIG. 26 has no region that does not overlap with either the etching stopper layer ES or the conductor layer S.
  • the oxide semiconductor layer IG is not patterned. Therefore, the Cgd capacity cannot be reduced sufficiently.
  • the configuration and manufacturing process of the other circuit board of Comparative Example 1 are the same as those described in the first embodiment.
  • a three-terminal element such as a transistor is shown.
  • a two-terminal element such as a diode can be used as the semiconductor element.
  • an oxide semiconductor composed of In, Si, Zn and O an oxide semiconductor composed of In, Al, Zn and O, Sn, Si, Zn Oxide semiconductor composed of Sn, Al, Zn and O, oxide semiconductor composed of Sn, Ga, Zn and O, and composed of Ga, Si, Zn and O Oxide semiconductors composed of Ga, Al, Zn and O, oxide semiconductors composed of In, Cu, Zn and O, oxide semiconductors composed of Sn, Cu, Zn and O, An oxide semiconductor composed of Zn and O, an oxide semiconductor composed of In and O, or the like may be used.
  • the back gate type thin film transistor in which the gate wiring G, the gate insulating film GI, and the oxide semiconductor layer IG are formed in this order from the transparent substrate side, and the conductor layer S is connected to the oxide semiconductor layer IG.
  • the present invention can also be suitably applied to a top-gate thin film transistor.
  • the circuit substrate of each embodiment is suitably used as a display device such as a liquid crystal display device, an organic EL display device, and an inorganic EL display device as an active matrix substrate, but is not limited to a display device circuit substrate.
  • each embodiment can be combined with each other, and a new technical feature can be formed by combining them.
  • the configuration in which the common electrode and the pixel electrode are provided on the circuit board is shown.
  • the common electrode is not provided and only the pixel electrode is provided. Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

本発明は、Cgd容量を低減し、Cgd容量による印加電圧への影響を充分に防止するとともに、回路基板の信頼性を充分に良好なものとすることができる回路基板、その製造方法及び表示装置を提供する。本発明の回路基板は、透明基板上に半導体素子が配置された回路基板であって、上記半導体素子は、酸化物半導体層を備え、上記回路基板は、エッチングストッパ層、並びに、導電体層を備え、基板主面を平面視したときに、該エッチングストッパ層、該導電体層のいずれとも重畳しない領域があり、該領域の少なくとも一部が、酸化物半導体層の切欠き部分と重畳し、上記酸化物半導体層の切欠き部分における縁の一部は、基板主面を平面視したときに、該エッチングストッパ層の縁よりもエッチングストッパ層側にあるものである。

Description

回路基板、その製造方法及び表示装置
本発明は、回路基板、その製造方法及び表示装置に関する。より詳しくは、高精細の表示装置等に好適に用いることができる回路基板、その製造方法及び表示装置に関する。
回路基板は、電子回路を構成要素として有するものであり、例えば、薄膜トランジスタ(TFT)等の素子を含む回路基板は、液晶表示装置、エレクトロルミネセンス表示装置、及び、電気泳動を用いる表示装置等の電子装置の構成部材として広く利用されている。
以下、TFT駆動の液晶表示パネルを構成するTFTアレイ基板の回路構成を例に挙げて説明する。TFTアレイ基板は、通常、m行の走査線とn列の信号線とからなるm×nマトリクス配線の交点に、スイッチング素子であるTFTが設けられた構造を含む画素回路を有する。なお、TFTのドレイン電極は、絵素電極と電気的に接続されている。また、走査ドライバIC(integrated circuit)やデータドライバICといった周辺回路が、それぞれTFTから延びるゲート配線やソース配線と電気的に接続されている。
回路は、TFT基板上に作り込まれるTFTの性能に影響を受ける。すなわち、TFT基板上に作り込まれるTFTの性能は、その材質によって異なるので、回路基板上に作られるTFTにより回路が動作可能であるか、回路規模が大きくならないか、歩留まりが低下しないか等が、TFT基板上に作られる回路に影響する。従来の回路基板では、TFTを安価かつ容易に形成することができる点からa-Si(アモルファスシリコン)が多く採用されている。
一方で、アモルファスシリコン半導体層の代わりに、酸化物半導体層を形成する半導体装置の製造方法が開示されている(例えば、特許文献1参照。)。
国際公開第2012/046658号
a-Siに代わり、移動度が高いという利点をもつ酸化物半導体(例えば、インジウムガリウム亜鉛酸化物)をもつ半導体素子を有する回路基板及びその製造方法が検討されている。ここで、本発明者らは、信頼性の観点から酸化物半導体の少なくとも中央部上にエッチングストッパ層を設けるエッチングストッパプロセス(以下、ESプロセスとも言う。)を使用することを検討している。
ところで、小型の液晶パネルで高精細化が要求されている。液晶パネルの精細度が高く絵素電極が小さい場合、液晶パネル全体の総容量が低下する。一方で、ゲート電極-ドレイン電極間容量(Cgd容量)はほぼ一定であるため、総容量に占めるCgd容量が大きくなる。なお、Cgd容量は、基本的には絶縁層を介するゲートメタルと、半導体層及びソースメタルとの間で形成される。
ESプロセスを使用した液晶パネルのCgd容量は、バックチャネルエッチ(back-channel-etch)方式を用いた液晶パネル(以下、このような液晶パネルをCE構造の液晶パネルとも言う。)のCgd容量に比べて大きくなる傾向がある。ESプロセスを使用した液晶パネルであって、例えば小型のもの等において、Cgd容量を好適に低減し、これによりCgd容量による印加電圧への影響を低減し、設定通りの電圧を適切に印加できるものとし、例えば、回路基板を備える表示装置の表示性能を良好なものとすることが望まれるところであった。
本発明は、上記現状に鑑みてなされたものであり、Cgd容量を低減し、Cgd容量による印加電圧への影響を充分に防止するとともに、回路基板の信頼性を充分に良好なものとすることができる回路基板、その製造方法及び表示装置を提供することを目的とするものである。
本発明者らは、インジウムガリウム亜鉛酸化物等の酸化物半導体作製プロセスで信頼性の観点からESプロセスを使用した場合に好適となるパターン及びプロセスについて種々検討し、酸化物半導体を好適にパターニングして取り除くことに着目した。そして、ソースメタルのエッチャントでインジウムガリウム亜鉛酸化物をパターニングすること、言い換えれば、ソースメタルをウェットエッチングでパターニングする時に酸化物半導体もウェットエッチングしてパターニングすることにより、好適に酸化物半導体を取り除くことができることを見出した。そして、このようなパターニングにより得られた回路基板においては、酸化物半導体層が絶縁材料から構成されるエッチングストッパ層よりもエッチングされ易いことから、酸化物半導体層を取り除いた部分(切欠き部分)における縁の一部が、基板主面を平面視したときに、エッチングストッパ層の開口部(穴)における縁に沿っているとともに、該エッチングストッパ層の縁よりもエッチングストッパ層側にあるという構成上の特徴があることを見出した。このような回路基板の製造方法及び該製造方法により得られる回路基板により、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一態様によれば、透明基板上に半導体素子が配置された回路基板であって、上記半導体素子は、酸化物半導体層を備え、上記回路基板は、該酸化物半導体層の少なくとも中央部分を覆うように配置された、絶縁材料から構成されるエッチングストッパ層、並びに、上記エッチングストッパ層上にその少なくとも一部が配置された、ソース電極、ソース配線及びドレイン電極から構成される導電体層を備え、上記エッチングストッパ層は、開口部が設けられ、上記回路基板は、基板主面を平面視したときに、該エッチングストッパ層、該導電体層のいずれとも重畳しない領域があり、該領域の少なくとも一部が、酸化物半導体層の切欠き部分と重畳し、上記酸化物半導体層の切欠き部分における縁の一部は、基板主面を平面視したときに、該エッチングストッパ層の開口部における縁に沿っているとともに、該エッチングストッパ層の縁よりもエッチングストッパ層側にある回路基板であってもよい。
以下に本発明を詳述する。
上記酸化物半導体層の切欠き部分における縁のその他の部分は、基板主面を平面視したときに、前記導電体層の縁に沿っているとともに、該導電体層の縁よりも導電体層側にある
ことが好ましい。
上記酸化物半導体層は、インジウム、ガリウム、亜鉛、及び、酸素から構成されることが好ましい。
上記導電体層は、アルミニウム及び銅からなる群より選択される少なくとも1つを含む層と、チタン、モリブデン及びクロムからなる群より選択される少なくとも1つを含む層とを含む2層以上の積層体であり、該チタン、モリブデン及びクロムからなる群より選択される少なくとも1つを含む層がその表層側に配置されていることが好ましい。
上記半導体素子は、薄膜トランジスタであることが好ましい。
本発明の一態様によれば、透明基板上に半導体素子が配置された回路基板の製造方法であって、上記製造方法は、島状の酸化物半導体を形成する工程、上記島状の酸化物半導体の少なくとも中央部分を覆うように、絶縁材料から構成されるエッチングストッパ層を形成する工程、上記エッチングストッパ層上に導電体を堆積する工程、並びに、上記導電体をパターニングし、このときに該島状の酸化物半導体もパターニングして、該導電体からソース電極、ソース配線及びドレイン電極から構成される導電体層を形成し、かつ切欠き部分のある酸化物半導体層を形成する工程を含む回路基板の製造方法であってもよい。
上記導電体層を形成し、かつ前記酸化物半導体層を形成する工程は、導電体及び島状の酸化物半導体を同じエッチャントでウェットエッチングしておこなうことが好ましい。
上記製造方法は、前記導電体層を形成し、かつ前記酸化物半導体層を形成する工程の後に、絶縁層を配置する工程を含むことが好ましい。
本発明の一態様によれば、上記回路基板の製造方法を用いて得られる回路基板であってもよい。
本発明の一態様によれば、上記回路基板を備える表示装置であってもよい。
本発明の回路基板によれば、Cgd容量を低減し、Cgd容量による印加電圧への影響を充分に防止するとともに、回路基板の信頼性を充分に良好なものとすることができる。
実施形態1の回路基板のTFT部の構成を示す平面模式図である。 図1のA-B線に沿った断面に相当する、エッチングストッパ層形成後の基板の断面模式図である。 図1のC-D線に沿った断面に相当する、エッチングストッパ層形成後の基板の断面模式図である。 図1のE-F線に沿った断面に相当する、エッチングストッパ層形成後の基板の断面模式図である。 図1のA-B線に沿った断面に相当する、導電体層及び酸化物半導体層形成後の基板の断面模式図である。 図1のC-D線に沿った断面に相当する、導電体層及び酸化物半導体層形成後の基板の断面模式図である。 図1のE-F線に沿った断面に相当する、導電体層及び酸化物半導体層形成後の基板の断面模式図である。 図1のA-B線に沿った断面に相当する、保護膜堆積後の基板の断面模式図である。 図1のC-D線に沿った断面に相当する、保護膜堆積後の基板の断面模式図である。 図1のE-F線に沿った断面に相当する、保護膜堆積後の基板の断面模式図である。 図1のA-B線に沿った断面模式図である。 図1のC-D線に沿った断面模式図である。 図1のE-F線に沿った断面模式図である。 実施形態2の回路基板のTFT部の構成を示す平面模式図である。 実施形態3の回路基板のTFT部の構成を示す平面模式図である。 実施形態4の回路基板のTFT部の構成を示す平面模式図である。 実施形態1の変形例の回路基板のTFT部に相当するゲート形成後の構成を示す断面模式図である。 実施形態1の変形例の回路基板のTFT部に相当する酸化物半導体層形成後の構成を示す断面模式図である。 実施形態1の変形例の回路基板のTFT部に相当するエッチングストッパ層形成後の構成を示す断面模式図である。 実施形態1の変形例の回路基板のTFT部に相当する導電体層形成後の構成を示す断面模式図である。 実施形態1の変形例の回路基板のTFT部に相当する保護膜及び有機絶縁膜形成後の構成を示す断面模式図である。 実施形態1の変形例の回路基板のTFT部に相当する絵素電極形成後の構成を示す断面模式図である。 実施形態1のもう一つの変形例の回路基板のTFT部に相当する共通電極形成後の構成を示す断面模式図である。 実施形態1のもう一つの変形例の回路基板のTFT部に相当する保護膜形成後の構成を示す断面模式図である。 実施形態1のもう一つの変形例の回路基板のTFT部に相当する絵素電極形成後の構成を示す断面模式図である。 比較例1の回路基板のTFT部の構成を示す平面模式図である。
以下に実施例を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
本明細書中、ある部材の上(層)に設けられているとは、当該部材の表示素子側に、少なくともその一部が設けられていることを言う。エッチングストッパ層の開口部とは、エッチングストッパ層の貫通孔であればよく、その形状は特に限定されない。また、開口部の周辺がエッチングストッパ層で完全に囲まれていてもよく、完全に囲まれていなくてもよい。更に、酸化物半導体層の切欠き部分は、エッチングストッパ層、該導電体層のいずれとも重畳しない領域の少なくとも一部に対応して設けられる限り、その形状は特に限定されない。パターニングとは、例えば、形成したい層又は膜が堆積された基板全体に、感光性のレジスト等を塗布し、該レジスト等を露光することで、レジストパターンを形成し、該レジストパターンから露出する、形成したい層又は膜をエッチングにより除去した後に、該レジストパターンを剥離し、形成したい層又は膜を形成することを言う。高精細とは、例えば、300dpi(dots per inch)以上であるものを言う。
実施形態1
図1は、実施形態1の回路基板のTFT部の構成を示す平面模式図である。実施形態1の回路基板は、透明基板上に半導体素子が配置された回路基板である。半導体素子は、インジウムガリウム亜鉛酸化物等の酸化物半導体層IGを含む。回路基板は、酸化物半導体層の少なくとも中央部分を覆うように、絶縁材料から構成されるエッチングストッパ層が配置される。また、回路基板は、該エッチングストッパ層上にその少なくとも一部が配置された、ソース電極、ソース配線及びドレイン電極から構成される導電体層Sを備える。エッチングストッパ層は、開口部Hが設けられる。図1においては、開口部Hで囲まれる矩形の箇所以外は、エッチングストッパ層である。
回路基板は、基板主面を平面視したときに、エッチングストッパ層、導電体層Sのいずれとも重畳しない領域がある。この領域の少なくとも一部が、酸化物半導体層IGの切欠き部分Cutである。
例えば回路基板を、光源を備える表示装置に用いる場合は、バックライト光の影響等により、酸化物半導体に電荷が蓄積し表示の信頼性が悪くなる。また、Cgd容量が大きくなってしまう場合があった。また、インジウムガリウム亜鉛酸化物等の酸化物半導体は、光反応に弱く、できるだけ面積を縮小することが望ましい。一方、実施形態1のように酸化物半導体をパターニングし、酸化物半導体の一部を取り除くことにより、Cgd容量を削減することができる。図1では図示を省略しているが、後述する断面図から明らかであるように、酸化物半導体層の切欠き部分Cutにおける縁の一部は、該エッチングストッパ層の開口部Hにおける縁に沿っているとともに、該エッチングストッパ層の縁よりも、例えば0.5μm~1.5μmだけ、エッチングストッパ層側にある。
酸化物半導体層の切欠き部分Cutにおける縁の中で、エッチングストッパ層の開口部Hにおける縁に沿っている部分が、基板主面を平面視したときに、完全にエッチングストッパ層の縁よりもエッチングストッパ層側にある必要はなく、実質的にエッチングストッパ層の縁よりもエッチングストッパ層側にあればよい。
また図から明らかであるように、酸化物半導体層の切欠き部分Cutにおける縁のその他の部分は、基板主面を平面視したときに、導電体層Sの縁に沿っているとともに、導電体層Sの縁よりも、例えば0.5μm~1.5μmだけ、導電体層S側(内側)にある。
酸化物半導体層の切欠き部分Cutにおける縁の中で、導電体層Sの縁に沿っている部分は、基板主面を平面視したときに、完全に導電体層Sの縁よりも導電体層S側にある必要はなく、実質的に導電体層Sの縁よりも導電体層S側(内側)にあればよい。
実施形態1の回路基板の製造プロセスについて、以下に詳しく説明する。
図2は、図1のA-B線に沿った断面に相当する、エッチングストッパ層形成後の基板の断面模式図である。図3は、図1のC-D線に沿った断面に相当する、エッチングストッパ層形成後の基板の断面模式図である。図4は、図1のE-F線に沿った断面に相当する、エッチングストッパ層形成後の基板の断面模式図である。
先ず、ガラス基板等の透明基板上にゲート配線Gを形成する。ゲート配線Gを形成する工程は、例えば、配線層を形成し、その後、フォトリソグラフィー法により所望の形状にパターニングすることによって形成することができる。具体的には、マスクプロセスによりレジストを形成し、配線層に対してエッチングを行って、ゲート配線を形成する。次いで、レジストを除去する。
次いで、ゲート絶縁膜GIを形成する。ゲート絶縁膜GIは、例えば、窒化ケイ素(SiN)膜、酸化ケイ素(SiO)膜等であり、プラズマ誘起化学気相成長(PECVD:Plasma Enhanced Chemical Vapor Deposition)法等により形成することができる。
次いで、インジウムガリウム亜鉛酸化物等の、島状の酸化物半導体IGを形成する。島状の酸化物半導体は、例えば、スパッタ法を用いて膜厚10nm~300nmの酸化物半導体IGの材料を堆積させ、膜を形成した後、フォトリソグラフィー法を用いて所望の形状にパターニングすることにより、形成することができる。
次いで、エッチングストッパ層ESを形成する。エッチングストッパ層ESは、例えば、シリコンを含む絶縁材料(例えば、酸化シリコン膜〔SiO〕、窒化シリコン膜〔SiN〕、窒化酸化シリコン膜〔SiNO〕)等の絶縁材料を用いたプラズマCVD(化学気相成長)法又はスパッタ法によって膜厚50nm~300nmの絶縁膜を形成した後、マスクプロセスによりレジストを形成し、絶縁膜に対してエッチングを行って、開口部Hが設けられたエッチングストッパ層を形成する。また、エッチングストッパ層ESは、島状の酸化物半導体IGの少なくとも中央部分を覆うように形成される。次いで、レジストを除去する。酸化物半導体層IGを作製した回路基板の信頼性を保つために、このようにエッチングストッパ層ESを追加している。
エッチングストッパ層ESは、2つの開口部Hを備え、例えば、基板主面を平面視したときに、2つの開口部Hの間に酸化物半導体層IGの中心部が配置されるようにする。
図5は、図1のA-B線に沿った断面に相当する、導電体層及び酸化物半導体層形成後の基板の断面模式図である。図6は、図1のC-D線に沿った断面に相当する、導電体層及び酸化物半導体層形成後の基板の断面模式図である。図7は、図1のE-F線に沿った断面に相当する、導電体層及び酸化物半導体層形成後の基板の断面模式図である。
エッチングストッパ層ES上に導電体を堆積する。マスクプロセスによりレジストを形成し、導電体及び島状の酸化物半導体IGに対してエッチングを行う。すなわち、導電体をウェットエッチング等でパターニングし、このときに島状の酸化物半導体IGもパターニングして、該導電体からソース電極、ソース配線及びドレイン電極から構成される導電体層Sを形成し、かつ切欠き部分のある酸化物半導体層IGを形成する(例えば、図6及び図7を参照。)。言い換えれば、導電体をパターニングしてソース電極、ソース配線及びドレイン電極から構成される導電体層Sを形成するのと同時に、島状の酸化物半導体の一部を除去する。次いで、基板上のレジストを除去する。
導電体層、及び、酸化物半導体層の形成工程は、ウェットエッチングにより行うことが好ましい。ウェットエッチングによりパターニングすることで、回路基板の製造コストを削減することも可能である。ウェットエッチングに用いられるエッチャントとしては、ソースメタルのウェットエッチングに用いられるエッチャントと同様のものを好適に用いることができ、例えば、過水系エッチング液(Cu/Tiの積層体〔Cuが上層であり、Tiが下層であることを示す。〕であるソースメタルに用いられる。Cuの一般的なエッチング液。)、燐酸+硝酸+酢酸の混合溶液(Mo/Al/Moの積層体であるソースメタル等に用いられる。Alの一般的なエッチング液。)等が好適なものとして挙げられる。これにより、ソースメタルが積層体である場合であっても当該ソースメタルを一括してエッチングすることができる。
これにより、図1に示されるように、酸化物半導体層IGの切欠き部分Cutにおける縁の一部は、基板主面を平面視したときに、エッチングストッパ層ESの開口部Hにおける縁に沿う。また、図1に示されるように、酸化物半導体層IGの切欠き部分Cutにおける縁の一部は、基板主面を平面視したときに、該エッチングストッパ層ESの縁よりもエッチングストッパ層ES側にある(酸化物半導体層IGがエッチングストッパ層ESに対して引っ込んでいる。)。エッチングストッパ層ESに開口部Hがあいていて、酸化物半導体層IGがなく、導電体層Sがある部分がある。
更に、図1に示されるように、酸化物半導体層IGの切欠き部分Cutにおける縁のその他の部分は、基板主面を平面視したときに、前記導電体層Sの縁に沿っている。そして、図1に示されるように、酸化物半導体層IGの切欠き部分Cutにおける縁のその他の部分は、導電体層Sの縁よりも導電体層S側にある(酸化物半導体層IGが導電体層Sに対して引っ込んでいる。)。
酸化物半導体層IGのパターンを、エッチングストッパ層ES、及び、ソースを用いて形成し、酸化物半導体層IGの一部を除去することにより、Cgdの低減と回路基板の信頼性向上とを両立することができる。
図8は、図1のA-B線に沿った断面に相当する、保護膜堆積後の基板の断面模式図である。図9は、図1のC-D線に沿った断面に相当する、保護膜堆積後の基板の断面模式図である。図10は、図1のE-F線に沿った断面に相当する、保護膜堆積後の基板の断面模式図である。
保護膜PAS1を形成する。保護膜PAS1は、例えば、窒化ケイ素(SiN)膜、酸化ケイ素(SiO)膜等であり、プラズマ誘起化学気相成長(PECVD)法等により形成することができる。なお、図9では、酸化物半導体層IGがエッチングストッパ層ESに対して引っ込んでいる様子が示されており、図10では、酸化物半導体層IGが導電体層(ソースメタル)Sに対して引っ込んでいる様子が示されている。
図11は、図1のA-B線に沿った断面模式図である。図12は、図1のC-D線に沿った断面模式図である。図13は、図1のE-F線に沿った断面模式図である。
いる。
先ず、有機絶縁膜OIを形成する。有機絶縁膜OIは、例えば、アクリル樹脂であり、スピンコート法等により形成することができる。なお、有機絶縁膜OIを形成することにより、図11~図13にも示されるように、基板上を平坦化することができる。
次いで、有機絶縁膜OI上の全面に共通電極Comを形成する。共通電極Comは、ITO(インジウム錫酸化物)からなるものとすることができるが、ITOの代わりに、IZO(インジウム亜鉛酸化物)等のその他の透明電極からなるものとしてもよい。
次いで、共通電極Com上の全面に保護膜PAS2を形成する。保護膜PAS2は、保護膜PAS1と同様に、例えば、窒化ケイ素(SiN)膜等であり、プラズマ誘起化学気相成長(PECVD)法等により形成することができる。
次いで、保護膜PAS2上の全面に絵素電極Pixを形成する。共通電極Comは、ITO(インジウム錫酸化物)からなるものとすることができるが、ITOの代わりに、IZO(インジウム亜鉛酸化物)等のその他の透明電極からなるものとしてもよい。
上述した導電体層、及び、酸化物半導体層の形成工程により、エッチングストッパ層、導電体層Sのいずれとも重畳しない領域における島状の酸化物半導体IGの一部を除去する。これにより、切欠き部分のある酸化物半導体層IGと導電体層との間のCgdを減らすことができる。
上述した実施形態1の回路基板の製造プロセスにおいて説明した部材等について、以下に詳しく説明する。
上記導電体層Sは、ソースメタルから構成される。ソースメタルは、ソース配線、並びに、ソース配線と同一プロセスで形成された部材(ソース電極、ドレイン電極等)を指している。
上記導電体層Sとしては、Cu/Tiの積層体、Mo/Al/Moの積層体を示したが、この他、アルミニウム層、アルミニウム合金層、銅層、銅合金層を含むものを好適に用いることができる。
上記アルミニウム層は、実質的にアルミニウム金属のみで構成されている層である。アルミウニム層を含む配線の製造においては、アルミニウム層と接触する他の金属材料や層間絶縁膜等から元素が拡散することもあるため、アルミウニム層に微量の不純物元素が含まれている場合もある。また、アルミニウム合金層は、アルミニウムを必須として含み、他の金属元素や、ケイ素等の非金属元素を含んで構成されるものであってもよい。アルミニウム合金に添加される金属元素としては、例えば、例えば、ニッケル、鉄、コバルト等が挙げられる。アルミニウム合金に、更に、ボロン、ネオジウム、ランタン等を追加元素として添加したものがより好ましい。
上記銅層は、実質的に銅のみで構成されている層である。銅層は、銅層と接触する他の金属材料や層間絶縁膜等から元素が拡散することもあるため、微量の不純物元素が含まれている場合もある。上記銅合金層は、銅を必須として含み、更に他の金属元素や、炭素、ケイ素等の非金属元素を含んで構成されるものであってもよい。銅合金に添加される金属元素としては、例えば、マグネシウム、マンガン等が挙げられる。
上記導電体層Sとしては、この他の金属元素を適宜用いることができる。
上記配線は、電気信号を伝達する信号配線、電源を供給するための電源配線、回路を構成する配線、電界を印加する(例えば、TFTのゲートに電界を印加する)ための配線等である。また、本発明の回路基板を液晶表示装置に適用する場合は、本発明の回路基板は、液晶に印加した電圧を保持するために用いられる補助容量を形成する補助容量配線を更に備えるものであってもよい。
上記半導体素子は、薄膜トランジスタ(TFT:Thin Film Transister)であることが好ましい。例えば、表示装置用のアクティブマトリクス基板に、上記TFTを用いた場合、TFTを構成するソース電極、ドレイン電極を介して、ソース配線は、表示画素を構成する絵素電極と電気的に接続される。
上記透明基板は、特に限定されるものではなく、種々の基板を用いることができる。例えば、単結晶半導体基板、酸化物単結晶基板、金属基板、ガラス基板、石英基板、樹脂基板等の基板を用いることができる。例えば、単結晶半導体基板や、金属基板等の導電性基板である場合には、その上に絶縁膜等を設けることによって用いることが好ましい。
上述したゲート絶縁膜、エッチングストッパ層、保護膜、有機絶縁膜等は、1層でもよいし、2層以上でもよい。
上記絵素電極は、透明導電膜であることが好ましい。通常、透明導電膜としては、酸化インジウム錫、酸化インジウム亜鉛等が用いられるため、本発明の回路基板に好適に使用することができる。
実施形態1に係る回路基板を分解し、光学顕微鏡、STEM(Scanning Transmission Electron Microscope:走査型透過電子顕微鏡)、SEM(Scanning Electron Microscope:走査型電子顕微鏡)等の顕微鏡観察により、液晶セルの形状等を確認することができる。
実施形態1の回路基板は、上述したように、エッチングストッパ層を備えることから回路基板の信頼性を充分に良好なものとすることができ、かつCgd容量を充分に低減することができる。また、実施形態1の回路基板は、最も容易に製造することができる。実施形態1の回路基板は、特に高精細の表示装置において、ΔVd(引き込み電圧)の削減に好適である。
実施形態1の回路基板は、これに対向する基板を貼り合わせ、液晶を注入することによって液晶表示用パネルが製造される。また、この液晶表示用パネルに偏光板や、その他の部材を備えることで液晶表示装置となる。
実施形態2
図14は、実施形態2の回路基板のTFT部の構成を示す平面模式図である。
実施形態2に係る酸化物半導体IGの形状は、実施形態1に係る酸化物半導体IGの形状とは異なる。実施形態1、2に係る酸化物半導体IGは、共にその中央部の幅Wはゲート配線Gの幅と同一であり、その両端部の幅は、その中央部の幅Wよりも大きくなっている。ここで、両端部の幅は、実施形態2の方が実施形態1よりも小さい。また、実施形態2では、図14中、酸化物半導体層IGの左端の部分が、上下方向に延びる導電体層S(ソース配線)と重畳していない。その他の実施形態2の構成は、上述した実施形態1の構成と同様である。実施形態2の回路基板は、実施形態1ほど製造するのが容易ではないが、Cgd容量をより小さなものとすることができる。
実施形態3
図15は、実施形態3の回路基板のTFT部の構成を示す平面模式図である。実施形態3に係るエッチングストッパ層の開口部Hは、実施形態1に係るエッチングストッパ層の開口部Hよりも図15中上下方向に小さい。その他の実施形態3の構成は、上述した実施形態1の構成と同様である。実施形態3の回路基板は、実施形態2ほど製造するのが容易ではないが、Cgd容量をより小さなものとすることができる。
実施形態4
図16は、実施形態4の回路基板のTFT部の構成を示す平面模式図である。実施形態4に係るエッチングストッパ層の開口部Hは、実施形態2に係るエッチングストッパ層の開口部Hよりも図15中上下方向に小さい。その他の実施形態4の構成は、上述した実施形態2の構成と同様である。実施形態4の回路基板は、実施形態3ほど製造するのが容易ではないが、Cgd容量をより小さなものとすることができる。
以下に、本発明を好適に適用できるTFT部の構造について詳しく説明する。以下に明示する以外の構成は、実施形態1において上述した構成と同様である。
実施形態1の変形例
図17は、実施形態1の変形例の回路基板のTFT部に相当するゲート形成後の構成を示す断面模式図である。先ず、ガラス基板等の透明基板上にゲート配線Gを形成する。ゲート配線Gは、例えば、Cu/Tiの積層体、又は、TiN/Ti/Alの積層体であることが好ましい。
図18は、実施形態1の変形例の回路基板のTFT部に相当する酸化物半導体層形成後の構成を示す断面模式図である。図17に示した基板から、更にゲート絶縁膜GIを形成する。次いで、インジウムガリウム亜鉛酸化物等の、島状の酸化物半導体IGを形成する。
図19は、実施形態1の変形例の回路基板のTFT部に相当するエッチングストッパ層形成後の構成を示す断面模式図である。図18に示した基板から、更にエッチングストッパ層ESを形成する。
図20は、実施形態1の変形例の回路基板のTFT部に相当する導電体層形成後の構成を示す断面模式図である。図19に示した基板から、更にエッチングストッパ層ES上に導電体層Sを形成する。導電体層Sは、例えばCu/Tiの積層体、又は、MoN/Al/MoNの積層体であることが好ましい。導電体層S及び酸化物半導体層IGをエッチングできる薬液をウェットエッチングのエッチャントとして用いる。 
図21は、実施形態1の変形例の回路基板のTFT部に相当する保護膜及び有機絶縁膜形成後の構成を示す断面模式図である。図20に示した基板から、更に保護膜PAS1を形成する。次いで、有機絶縁膜OIを形成する。
図22は、実施形態1の変形例の回路基板のTFT部に相当する絵素電極形成後の構成を示す断面模式図である。図21に示した基板から、更に有機絶縁膜OI上の全面に絵素電極Pixを形成する。絵素電極Pixは、ITO(インジウム錫酸化物)からなるものとすることができるが、ITOの代わりに、IZO(インジウム亜鉛酸化物)等のその他の透明電極からなるものとしてもよい。
実施形態1の変形例の回路基板は、垂直配向(VA:Vertical Alignment)モードの液晶表示装置に好適に用いることができる。
実施形態1のもう一つの変形例
実施形態1のもう一つの変形例は、有機絶縁膜形成工程までは、上述した実施形態1の変形例と同様である。有機絶縁膜形成工程後の工程について以下に説明する。なお、各部材の明示する以外の構成(材料等)は、上述した構成と同様である。
図23は、実施形態1のもう一つの変形例の回路基板のTFT部に相当する共通電極形成後の構成を示す断面模式図である。有機絶縁膜OI上の全面に電極材料を堆積し、パターニングをおこなって共通電極Comを形成する。
図24は、実施形態1のもう一つの変形例の回路基板のTFT部に相当する保護膜形成後の構成を示す断面模式図である。図23に示した基板から、更に共通電極Com上に保護膜PAS2を形成する。
図25は、実施形態1のもう一つの変形例の回路基板のTFT部に相当する絵素電極形成後の構成を示す断面模式図である。図24に示した基板から、更に保護膜PAS2上の全面に電極材料を堆積し、パターニングをおこなって絵素電極Pixを形成する。
実施形態1のもう一つの変形例の回路基板は、縞状電界スイッチング(FFS:Fringe Field Switching)モードの液晶表示装置に好適に用いることができる。
比較例1
図26は、比較例1の回路基板のTFT部の構成を示す平面模式図である。
図26に示した回路基板は、基板主面を平面視したときに、エッチングストッパ層ESの開口部Hの全体が導電体層Sの内側にある。言い換えれば、図26に示した回路基板は、エッチングストッパ層ES、導電体層Sのいずれとも重畳しない領域がない。このため、比較例1では、導電体層Sのウェットエッチング工程において、酸化物半導体層IGがパターニングされない。したがって、Cgd容量を充分に低減することができない。なお、その他の比較例1の回路基板の構成、及び、製造プロセスは、実施形態1において上述したのと同様である。
その他の実施形態
上述した実施形態の半導体素子としては、トランジスタ等の3端子素子を示したが、半導体素子としてダイオード等の2端子素子等を用いることも可能である。
酸化物半導体層としては、インジウムガリウム亜鉛酸化物の他、In、Si、Zn及びOから構成される酸化物半導体、In、Al、Zn及びOから構成される酸化物半導体、Sn、Si、Zn及びOから構成される酸化物半導体、Sn、Al、Zn及びOから構成される酸化物半導体、Sn、Ga、Zn及びOから構成される酸化物半導体、Ga、Si、Zn及びOから構成される酸化物半導体、Ga、Al、Zn及びOから構成される酸化物半導体、In、Cu、Zn及びOから構成される酸化物半導体、Sn、Cu、Zn及びOから構成される酸化物半導体、Zn及びOから構成される酸化物半導体、In及びOから構成される酸化物半導体等を用いてもよい。
上述した実施形態では、透明基板側からゲート配線G、ゲート絶縁膜GI、酸化物半導体層IGがこの順に形成され、導電体層Sが酸化物半導体層IGと接続されたバックゲート型の薄膜トランジスタを形成したが、本発明は、トップゲート型の薄膜トランジスタにおいても好適に適用することができる。
各実施形態の回路基板は、アクティブマトリクス基板として、液晶表示装置、有機EL表示装置、無機EL表示装置等の表示装置に好適に用いられるが、表示装置用回路基板に限られるものではない。
各実施形態で記載されている技術的特徴は、お互いに組み合わせ可能であり、組み合わせることにより、新しい技術的特徴を形成することができる。例えば、実施形態1では回路基板に共通電極及び絵素電極を設ける構成を示したが、実施形態1の変形例で示したように、共通電極を設けず、絵素電極だけを設ける構成としてもよい。
Com:共通電極
Cut:酸化物半導体層の切欠き部分
ES:エッチングストッパ層
G:ゲート配線
GI:ゲート絶縁膜
H:エッチングストッパ層の開口部
IG:島状の酸化物半導体又は酸化物半導体層
OI:有機絶縁膜
L:エッチングストッパ層に設けられた2つの開口部の間の距離
PAS1、PAS2:保護膜
Pix:絵素電極
S:導電体層
W:酸化物半導体層の中央部分の幅

Claims (10)

  1. 透明基板上に半導体素子が配置された回路基板であって、
    該半導体素子は、酸化物半導体層を備え、
    該回路基板は、該酸化物半導体層の少なくとも中央部分を覆うように配置された、絶縁材料から構成されるエッチングストッパ層、並びに、
    該エッチングストッパ層上にその少なくとも一部が配置された、ソース電極、ソース配線及びドレイン電極から構成される導電体層を備え、
    該エッチングストッパ層は、開口部が設けられ、
    該回路基板は、基板主面を平面視したときに、該エッチングストッパ層、該導電体層のいずれとも重畳しない領域があり、該領域の少なくとも一部が、酸化物半導体層の切欠き部分と重畳し、
    該酸化物半導体層の切欠き部分における縁の一部は、基板主面を平面視したときに、該エッチングストッパ層の開口部における縁に沿っているとともに、該エッチングストッパ層の縁よりもエッチングストッパ層側にある
    ことを特徴とする回路基板。
  2. 前記酸化物半導体層の切欠き部分における縁のその他の部分は、基板主面を平面視したときに、前記導電体層の縁に沿っているとともに、該導電体層の縁よりも導電体層側にある
    ことを特徴とする請求項1に記載の回路基板。
  3. 前記酸化物半導体層は、インジウム、ガリウム、亜鉛、及び、酸素から構成される
    ことを特徴とする請求項1又は2に記載の回路基板。
  4. 前記導電体層は、アルミニウム及び銅からなる群より選択される少なくとも1つを含む層と、チタン、モリブデン及びクロムからなる群より選択される少なくとも1つを含む層とを含む2層以上の積層体であり、該チタン、モリブデン及びクロムからなる群より選択される少なくとも1つを含む層がその表層側に配置されている
    ことを特徴とする請求項1~3のいずれかに記載の回路基板。
  5. 前記半導体素子は、薄膜トランジスタである
    ことを特徴とする請求項1~4のいずれかに記載の回路基板。
  6. 透明基板上に半導体素子が配置された回路基板の製造方法であって、
    該製造方法は、島状の酸化物半導体を形成する工程、
    該島状の酸化物半導体の少なくとも中央部分を覆うように、絶縁材料から構成されるエッチングストッパ層を形成する工程、
    該エッチングストッパ層上に導電体を堆積する工程、並びに、
    該導電体をパターニングし、このときに該島状の酸化物半導体もパターニングして、該導電体からソース電極、ソース配線及びドレイン電極から構成される導電体層を形成し、かつ切欠き部分のある酸化物半導体層を形成する工程を含む
    ことを特徴とする回路基板の製造方法。
  7. 前記導電体層を形成し、かつ前記酸化物半導体層を形成する工程は、導電体及び島状の酸化物半導体を同じエッチャントでウェットエッチングしておこなう
    ことを特徴とする請求項6に記載の回路基板の製造方法。
  8. 前記製造方法は、前記導電体層を形成し、かつ前記酸化物半導体層を形成する工程の後に、絶縁層を配置する工程を含む
    ことを特徴とする請求項6又は7に記載の回路基板の製造方法。
  9. 請求項6~8のいずれかに記載の回路基板の製造方法を用いて得られることを特徴とする回路基板。
  10. 請求項1~5、9のいずれかに記載の回路基板を備えることを特徴とする表示装置。
PCT/JP2013/073863 2012-09-12 2013-09-05 回路基板、その製造方法及び表示装置 WO2014042058A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/426,234 US20150214375A1 (en) 2012-09-12 2013-09-05 Circuit substrate, manufacturing method thereof and display device
US15/163,946 US9673332B2 (en) 2012-09-12 2016-05-25 Circuit substrate manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-200851 2012-09-12
JP2012200851 2012-09-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/426,234 A-371-Of-International US20150214375A1 (en) 2012-09-12 2013-09-05 Circuit substrate, manufacturing method thereof and display device
US15/163,946 Division US9673332B2 (en) 2012-09-12 2016-05-25 Circuit substrate manufacturing method

Publications (1)

Publication Number Publication Date
WO2014042058A1 true WO2014042058A1 (ja) 2014-03-20

Family

ID=50278172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073863 WO2014042058A1 (ja) 2012-09-12 2013-09-05 回路基板、その製造方法及び表示装置

Country Status (2)

Country Link
US (2) US20150214375A1 (ja)
WO (1) WO2014042058A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715270B (zh) * 2013-12-31 2016-03-09 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、显示器件
CN105845694A (zh) * 2016-03-28 2016-08-10 深圳市华星光电技术有限公司 薄膜晶体管、薄膜晶体管的制备方法及液晶显示面板
CN107564966B (zh) * 2017-08-07 2020-05-05 武汉华星光电半导体显示技术有限公司 薄膜晶体管及薄膜晶体管的制造方法、液晶显示面板
JP6483308B1 (ja) * 2018-05-09 2019-03-13 住宅環境設備株式会社 表示装置
US11036129B2 (en) * 2018-07-31 2021-06-15 Taiwan Semiconductor Manufacturing Company Ltd. Photomask and method for forming the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157916A (ja) * 2005-12-02 2007-06-21 Idemitsu Kosan Co Ltd Tft基板及びtft基板の製造方法
JP2010161227A (ja) * 2009-01-08 2010-07-22 Idemitsu Kosan Co Ltd 薄膜トランジスタ及びその製造方法
WO2012046658A1 (ja) * 2010-10-07 2012-04-12 シャープ株式会社 半導体装置、表示装置、ならびに半導体装置および表示装置の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552753B2 (ja) * 2008-10-08 2014-07-16 ソニー株式会社 薄膜トランジスタおよび表示装置
US20120199891A1 (en) * 2009-10-09 2012-08-09 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
JP5404963B2 (ja) * 2011-03-01 2014-02-05 シャープ株式会社 薄膜トランジスタおよび表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157916A (ja) * 2005-12-02 2007-06-21 Idemitsu Kosan Co Ltd Tft基板及びtft基板の製造方法
JP2010161227A (ja) * 2009-01-08 2010-07-22 Idemitsu Kosan Co Ltd 薄膜トランジスタ及びその製造方法
WO2012046658A1 (ja) * 2010-10-07 2012-04-12 シャープ株式会社 半導体装置、表示装置、ならびに半導体装置および表示装置の製造方法

Also Published As

Publication number Publication date
US20150214375A1 (en) 2015-07-30
US20160268442A1 (en) 2016-09-15
US9673332B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
US9240485B2 (en) Thin film transistor and method for manufacturing the same, array substrate and display device
US20100051935A1 (en) Liquid crystal display and method of manufacturing the same
EP2804207A1 (en) Method for manufacturing tft array substrate
US8405788B2 (en) TFT-LCD array substrate and manufacturing method thereof
US9647243B2 (en) Display apparatus and method of manufacturing the same
WO2019146264A1 (ja) 表示装置及びその製造方法
EP2660861B1 (en) Thin-film transistor array substrate, manufacturing method therefor, and electronic device
TWI487120B (zh) 薄膜電晶體基板與其所組成之顯示裝置
US9673332B2 (en) Circuit substrate manufacturing method
WO2014034617A1 (ja) 回路基板及び表示装置
KR102033615B1 (ko) 유기전계발광표시장치 및 그 제조방법
US20160322387A1 (en) Display device and manufacturing method thereof
US11721704B2 (en) Active matrix substrate
US9612498B2 (en) Semiconductor device and display device
KR20040086927A (ko) 수평 전계 인가형 박막 트랜지스터 어레이 기판 및 그제조 방법
KR102001056B1 (ko) 산화물 박막트랜지스터를 포함하는 어레이 기판 및 그 제조방법
US10466558B2 (en) Display substrate and method of manufacturing the same
US10367007B2 (en) Display device and method of manufacturing the same
KR101627518B1 (ko) 횡전계 방식 액정표시장치 및 그 제조 방법
KR102461212B1 (ko) 표시 장치 및 이의 제조 방법
US20230135065A1 (en) Active matrix substrate
US9620529B2 (en) Display substrate and method of manufacturing the same
KR20140075094A (ko) 산화물 박막트랜지스터를 포함하는 어레이 기판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837329

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14426234

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP