WO2014042003A1 - 極端紫外光生成方法及び極端紫外光生成装置 - Google Patents

極端紫外光生成方法及び極端紫外光生成装置 Download PDF

Info

Publication number
WO2014042003A1
WO2014042003A1 PCT/JP2013/072872 JP2013072872W WO2014042003A1 WO 2014042003 A1 WO2014042003 A1 WO 2014042003A1 JP 2013072872 W JP2013072872 W JP 2013072872W WO 2014042003 A1 WO2014042003 A1 WO 2014042003A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
light
predetermined region
extreme ultraviolet
optical system
Prior art date
Application number
PCT/JP2013/072872
Other languages
English (en)
French (fr)
Inventor
正人 守屋
英行 林
若林 理
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to JP2014535478A priority Critical patent/JP6152109B2/ja
Publication of WO2014042003A1 publication Critical patent/WO2014042003A1/ja
Priority to US14/643,782 priority patent/US9277635B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/226Optical arrangements for illuminating the object; optical arrangements for collecting light from the object
    • H01J37/228Optical arrangements for illuminating the object; optical arrangements for collecting light from the object whereby illumination and light collection take place in the same area of the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/006X-ray radiation generated from plasma being produced from a liquid or gas details of the ejection system, e.g. constructional details of the nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20292Means for position and/or orientation registration

Definitions

  • the present disclosure relates to an extreme ultraviolet light generation method and an extreme ultraviolet light generation apparatus.
  • an LPP Laser Produced Plasma
  • DPP laser-excited plasma
  • SR Synchrotron Radiation
  • An extreme ultraviolet light generation method outputs a target from a target supply unit toward a first predetermined region in a chamber provided with a through hole, and the target supply unit, the first predetermined region, By irradiating the second predetermined region including a part of the trajectory of the target between the light and detecting the light incident on the optical sensor from the second predetermined region, the length along the moving direction of the target is more than A target that passes through a second predetermined region, which is a region perpendicular to the moving direction of the target and perpendicular to the optical path of the light applied to the second predetermined region, is detected. Based on the timing at which the target passing through the predetermined region is detected, the target laser beam is irradiated to the target by introducing the pulse laser beam into the first predetermined region through the through hole.
  • the door into plasma may generate extreme ultraviolet light.
  • An extreme ultraviolet light generation apparatus configured to generate extreme ultraviolet light by irradiating a target with pulsed laser light to convert the target into plasma.
  • a chamber provided with a through-hole, an introduction optical system configured to introduce pulsed laser light into a first predetermined region in the chamber through the through-hole, and a target output toward the first predetermined region
  • the target supply unit configured to irradiate light to the second predetermined region including a part of the target trajectory between the target supply unit and the first predetermined region, and detect light incident from the second predetermined region Accordingly, the length in the direction perpendicular to the moving direction of the target and perpendicular to the optical path of the light irradiated to the second predetermined region is longer than the length along the moving direction of the target.
  • Write a target sensor configured to detect a target which passes through a second predetermined region which is a long region may be provided.
  • An extreme ultraviolet light generation device configured to generate extreme ultraviolet light by irradiating a target with pulsed laser light to convert the target into plasma.
  • a chamber provided with a through-hole, an introduction optical system configured to introduce pulsed laser light into the first predetermined region in the chamber through the through-hole, and a target output toward the first predetermined region
  • the cross section of the optical path in the second predetermined region is the moving direction of the target in the target supply unit configured as described above and the second predetermined region including a part of the target trajectory between the target supply unit and the first predetermined region.
  • a light source configured to irradiate light longer in a direction perpendicular to the moving direction of the target than in a direction along the direction, and light incident from the second predetermined region .
  • An optical sensor configured to detect a target which passes through a second predetermined area may be provided.
  • An extreme ultraviolet light generation device configured to generate extreme ultraviolet light by irradiating a target with pulsed laser light to convert the target into plasma.
  • a chamber provided with a through-hole, an introduction optical system configured to introduce pulsed laser light into the first predetermined region in the chamber through the through-hole, and a target output toward the first predetermined region
  • a target supply unit configured as described above, a light source configured to irradiate light to a second predetermined region including a part of the trajectory of the target between the target supply unit and the first predetermined region, and a second predetermined
  • a transfer optical system configured to form an image of the target passing through the area, and a position where the image of the target is formed by the transfer optical system is arranged along the moving direction of the target.
  • Light configured to detect a target passing through the second predetermined region by detecting light incident on the third predetermined region that is longer in the direction perpendicular to the direction of movement of the target than in the direction from the transfer optical system And a sensor.
  • FIG. 1 schematically shows the configuration of an exemplary LPP type EUV light generation system.
  • FIG. 2 is a partial cross-sectional view showing the configuration of the EUV light generation apparatus according to the first embodiment.
  • FIG. 3A is a partial cross-sectional view showing the target sensor and the light emitting unit shown in FIG. 2 in an enlarged manner.
  • 3B is a partial cross-sectional view of the target sensor and the light emitting unit shown in FIG. 3A as viewed from the upstream side in the moving direction of the target.
  • FIG. 3C shows a cross section taken along line IIIC-IIIC perpendicular to the traveling direction of the light generated by the light emitting unit shown in FIG.
  • FIG. 3D is a circuit diagram of the photosensor shown in FIG. 3A.
  • FIG. 3E is a waveform diagram of signals in various parts of the circuit shown in FIG. 3D.
  • FIG. 4 is a flowchart showing the operation of the EUV controller in the first embodiment.
  • FIG. 5A is a partial cross-sectional view showing, in an enlarged manner, a target sensor and a light emitting unit in a first modification of the first embodiment.
  • FIG. 5B is a partial cross-sectional view of the target sensor and the light emitting unit shown in FIG. 5A as viewed from the upstream side in the moving direction of the target.
  • FIG. 5A is a partial cross-sectional view showing, in an enlarged manner, a target sensor and a light emitting unit in a first modification of the first embodiment.
  • FIG. 5B is a partial cross-sectional view of the target sensor and the light emitting unit shown in FIG. 5A as viewed from the upstream side in the moving direction of the target.
  • FIG. 5C shows a section taken along the line VC-VC perpendicular to the traveling direction of light passing through the slit plate shown in FIG. 5A together with the slit plate.
  • FIG. 5D is a waveform diagram of signals in various parts of the circuit of the photosensor shown in FIG. 5A.
  • FIG. 6A is a partial cross-sectional view showing, in an enlarged manner, a target sensor and a light emitting unit in a second modification of the first embodiment.
  • FIG. 6B shows a cross section along the VIB-VIB line perpendicular to the traveling direction of the light passing through the slit plate shown in FIG. 6A together with the slit plate.
  • FIG. 6C is a circuit diagram of the photosensor shown in FIG. 6A.
  • FIG. 6D is a waveform diagram of signals in each part of the circuit shown in FIG. 6C.
  • FIG. 7A is a partial cross-sectional view showing, in an enlarged manner, a light emitting unit according to a third modification of the first embodiment.
  • 7B is a partial cross-sectional view of the light emitting unit shown in FIG. 7A as viewed from the upstream side in the target moving direction.
  • FIG. 8A is a partial cross-sectional view showing, in an enlarged manner, a light emitting unit according to a fourth modification of the first embodiment.
  • FIG. 8B is a partial cross-sectional view of the light emitting unit shown in FIG. 8A as viewed from the upstream side in the target moving direction.
  • FIG. 8A is a partial cross-sectional view showing, in an enlarged manner, a light emitting unit according to a fourth modification of the first embodiment.
  • FIG. 8B is a partial cross-sectional view of the light emitting unit shown in FIG. 8A as
  • FIG. 9A is an enlarged partial cross-sectional view of a target sensor according to a fifth modification of the first embodiment.
  • FIG. 9B is a partial cross-sectional view of the target sensor shown in FIG. 9A as viewed from the upstream side in the direction of movement of the target.
  • FIG. 9C is a circuit diagram of the photosensor shown in FIG. 9A.
  • FIG. 10A is a circuit diagram of an optical sensor according to a sixth modification of the first embodiment.
  • FIG. 10B is a waveform diagram of signals in various parts of the circuit shown in FIG. 10A.
  • FIG. 11A is a circuit diagram of an optical sensor according to a seventh modification example of the first embodiment.
  • FIG. 11B is a waveform diagram of signals in each part of the circuit shown in FIG. 11A.
  • FIG. 12A is a circuit diagram of an optical sensor according to an eighth modification of the first embodiment.
  • FIG. 12B is a waveform diagram of signals in each part of the circuit shown in FIG. 12A.
  • FIG. 13A is a circuit diagram of an optical sensor according to a ninth modification example of the first embodiment.
  • FIG. 13B is a waveform diagram of signals in each part of the circuit shown in FIG. 13A.
  • FIG. 14 is a partial cross-sectional view illustrating a configuration of an EUV light generation apparatus according to a tenth modification of the first embodiment.
  • FIG. 15 is a partial cross-sectional view illustrating a configuration of an EUV light generation apparatus according to the second embodiment.
  • FIG. 16 is a partial cross-sectional view illustrating a configuration of an EUV light generation apparatus according to the third embodiment.
  • FIG. 17 is a partial cross-sectional view illustrating a configuration of an EUV light generation apparatus according to the fourth embodiment.
  • a target supply apparatus may output a target to reach a plasma generation region.
  • the laser device irradiates the target with pulsed laser light, whereby the target is turned into plasma, and EUV light can be emitted from the plasma.
  • the target sensor including the light receiving element may detect the timing at which the target reaches a predetermined area before the plasma generation area.
  • the light source may irradiate the target with light so that the target sensor can detect the target.
  • the timing at which the target is irradiated with light when the target locus deviates in the direction perpendicular to the traveling direction of the light May shift. If the timing at which the target is irradiated with light is shifted, the timing at which the target sensor detects the target is shifted, and the timing at which the laser device irradiates the target with pulsed laser light may be shifted.
  • light having a long cross section of an optical path in a direction perpendicular to the moving direction of the target may be irradiated to the target by the light source. According to this, even if the trajectory of the target is shifted in a direction perpendicular to the traveling direction of the light irradiated to the target by the light source, the timing shift of the light irradiated to the target can be suppressed. Therefore, a shift in timing at which the target sensor detects the target can be suppressed.
  • an image of a target irradiated with light from a light source may be formed by a transfer optical system.
  • a slit plate having a long slit in a direction perpendicular to the moving direction of the target may be arranged at a position where the target image is formed.
  • the “trajectory” of the target may be an ideal path of the target output from the target supply apparatus, or a target path according to the design of the target supply apparatus.
  • the “trajectory” of the target may be an actual path of the target output from the target supply device.
  • the “cross section of the optical path” may be a cross-sectional profile of a light beam in a region where light exists, and may be a shape of a region where the light intensity is 1 / e 2 or more, for example.
  • the “first predetermined region” may mean the plasma generation region 25 (FIG. 1).
  • the “second predetermined area” may mean an area where the target is to be located in order for the target to be detected by the optical sensor.
  • the second predetermined region may mean a region 35 (FIGS. 3A and 3B) where light output from the light source is collected by the condensing optical system.
  • the second predetermined region may mean a region 35a (FIGS. 5A and 5B) where the target is to be positioned in order for the target image to be formed at a position in the slit.
  • the “third predetermined region” may mean a region where an image of the target is to be formed in order for the target to be detected by the optical sensor.
  • the third predetermined region may mean a region in the slit 45a (FIG. 5C) of the slit plate disposed between the transfer optical system and the optical sensor.
  • the third predetermined region may mean a region received by the light receiving unit 47a (FIGS. 9A and 9B) of a one-dimensional optical position detector (PSD).
  • FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation system.
  • the EUV light generation apparatus 1 may be used together with at least one laser apparatus 3.
  • a system including the EUV light generation apparatus 1 and the laser apparatus 3 is referred to as an EUV light generation system 11.
  • the EUV light generation apparatus 1 may include a chamber 2 and a target supply apparatus 26.
  • the chamber 2 may be sealable.
  • the target supply device 26 may be attached, for example, so as to penetrate the wall of the chamber 2.
  • the material of the target substance supplied from the target supply device 26 may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or a combination of any two or more thereof.
  • the wall of the chamber 2 may be provided with at least one through hole.
  • a window 21 may be provided in the through hole, and the pulse laser beam 32 output from the laser device 3 may pass through the window 21.
  • an EUV collector mirror 23 having a spheroidal reflecting surface may be disposed.
  • the EUV collector mirror 23 may have first and second focal points.
  • On the surface of the EUV collector mirror 23, for example, a multilayer reflective film in which molybdenum and silicon are alternately laminated may be formed.
  • the EUV collector mirror 23 is disposed, for example, such that its first focal point is located at or near the plasma generation region 25 and its second focal point is located at the intermediate focal point (IF) 292. preferable.
  • a through hole 24 may be provided at the center of the EUV collector mirror 23, and the pulse laser beam 33 may pass through the through hole 24.
  • the EUV light generation apparatus 1 may include an EUV light generation control unit 5, a target sensor 4, and the like.
  • the target sensor 4 may have an imaging function and may be configured to detect at least one of the presence, locus, position, and speed of the target 27.
  • the EUV light generation apparatus 1 may include a connection unit 29 that allows the inside of the chamber 2 and the inside of the exposure apparatus 6 to communicate with each other.
  • a wall 291 in which an aperture is formed may be provided inside the connection portion 29.
  • the wall 291 may be arranged such that its aperture is located at the second focal position of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 may include a laser beam traveling direction control unit 34, a laser beam focusing mirror 22, a target recovery unit 28 for recovering the target 27, and the like.
  • the laser beam traveling direction control unit 34 may include an optical element for defining the traveling direction of the laser beam and an actuator for adjusting the position, posture, and the like of the optical element.
  • the pulsed laser beam 31 output from the laser device 3 passes through the window 21 as the pulsed laser beam 32 through the laser beam traveling direction control unit 34 and enters the chamber 2. May be.
  • the pulse laser beam 32 may travel through the chamber 2 along at least one laser beam path, be reflected by the laser beam collector mirror 22, and be irradiated to the at least one target 27 as the pulse laser beam 33.
  • the target supply device 26 may be configured to output the target 27 toward the plasma generation region 25 inside the chamber 2.
  • the target 27 may be irradiated with at least one pulse included in the pulse laser beam 33.
  • the target 27 irradiated with the pulse laser beam is turned into plasma, and EUV light 251 can be emitted from the plasma.
  • the EUV light 251 may be reflected and collected by the EUV collector mirror 23.
  • the EUV light 252 reflected by the EUV collector mirror 23 may be condensed at the intermediate condensing point 292 and output to the exposure apparatus 6.
  • a single target 27 may be irradiated with a plurality of pulses included in the pulse laser beam 33.
  • the EUV light generation controller 5 may be configured to control the entire EUV light generation system 11.
  • the EUV light generation controller 5 may be configured to process image data of the target 27 imaged by the target sensor 4.
  • the EUV light generation control unit 5 may be configured to control at least one of, for example, control of the timing at which the target 27 is output and control of the output direction of the target 27.
  • the EUV light generation control unit 5 controls at least one of, for example, control of the oscillation timing of the laser device 3, control of the traveling direction of the pulse laser light 32, and control of the focusing position of the pulse laser light 33. It may be configured.
  • the various controls described above are merely examples, and other controls may be added as necessary.
  • FIG. 2 is a partial cross-sectional view showing the configuration of the EUV light generation apparatus according to the first embodiment.
  • the chamber 2 includes a laser beam focusing optical system 22 a, an EUV focusing mirror 23, a target recovery unit 28, an EUV focusing mirror holder 81, a plate 82 and a plate 83. And may be provided.
  • the chamber 2 may include a member (conductive member) made of a conductive material (for example, a metal material).
  • the chamber 2 may include a conductive member and a member having electrical insulation.
  • a plate 82 may be fixed to the chamber 2.
  • a plate 83 may be fixed to the plate 82 via a triaxial stage 84.
  • the EUV collector mirror 23 may be fixed to the plate 82 via the EUV collector mirror holder 81.
  • the laser beam condensing optical system 22a may include an off-axis paraboloid mirror 221 and a plane mirror 222, and holders 223 and 224.
  • the off-axis parabolic mirror 221 and the flat mirror 222 may be held by a holder 223 and a holder 224, respectively.
  • the holder 223 and the holder 224 may be fixed to the plate 83.
  • the triaxial stage 84 may be capable of changing the position and posture of the plate 83. By changing the position and posture of the plate 83, the positions and postures of the off-axis paraboloid mirror 221 and the plane mirror 222 can be adjusted.
  • the positions and postures of these mirrors may be adjusted so that the pulsed laser light reflected by the off-axis paraboloid mirror 221 and the plane mirror 222 is condensed in the plasma generation region (first predetermined region) 25.
  • the target collection unit 28 may be disposed on an extension line of the trajectory of the target 27.
  • the target supply device 26 may be attached to the chamber 2.
  • the target supply device 26 may have a reservoir 61.
  • the reservoir 61 may store the target material in a melted state.
  • An opening 62 that communicates with the inside of the reservoir 61 may be formed in the target supply device 26.
  • a part of the reservoir 61 may penetrate the through hole 2 a formed in the wall surface of the chamber 2, and the position of the opening 62 formed in the target supply device 26 may be located inside the chamber 2.
  • the target supply device 26 may supply the melted target material into the chamber 2 as a droplet-shaped target 27 through the opening 62.
  • the target supply device 26 may further include a biaxial stage 63.
  • the biaxial stage 63 may be capable of moving the positions of the reservoir 61 and the opening 62 with respect to the chamber 2 in the left-right direction and the depth direction in FIG.
  • Sealing means (not shown) may be disposed between the periphery of the through hole 2 a and the reservoir 61. The periphery of the through hole 2a and the reservoir 61 may be sealed by the sealing means.
  • the target sensor 40 and the light emitting unit 70 may be attached to the chamber 2.
  • the target sensor 40 may include an optical sensor 41, a condensing optical system 42, and a plate 43.
  • the plate 43 may be fixed to the outside of the chamber 2, and the optical sensor 41 and the condensing optical system 42 may be fixed to the plate 43.
  • the light emitting unit 70 may include a light source 71, a condensing optical system 72, and a plate 73.
  • the plate 73 may be fixed outside the chamber 2, and the light source 71 and the condensing optical system 72 may be fixed to the plate 73.
  • the target sensor 40 and the light emitting unit 70 may be disposed on opposite sides of the trajectory of the target 27.
  • Windows 21 a and 21 b may be attached to the chamber 2.
  • the window 21 a may be located between the light emitting unit 70 and the trajectory of the target 27.
  • the light emitting unit 70 may condense light at a predetermined position in the trajectory of the target 27 via the window 21a.
  • the window 21b may be located between the trajectory of the target 27 and the target sensor 40.
  • the window 21a When the light emitting unit 70 is located inside the chamber 2, the window 21a may not be provided. When the target sensor 40 is located inside the chamber 2, the window 21b may not be provided. Further, instead of the window 21a and the condensing optical system 72, a window (not shown) having the shape of the condensing element is installed, and the window having the shape of the condensing element is the window 21a and the condensing optical system. 72 functions may also be used. Instead of the window 21b and the condensing optical system 42, a window (not shown) having the shape of the condensing element is installed, and the window having the shape of the condensing element is the window 21b and the condensing optical system 42. It may also serve as a function.
  • the laser beam traveling direction control unit 34a and the EUV light generation control unit 5 may be provided outside the chamber 2.
  • the laser beam traveling direction control unit 34a may include high reflection mirrors 341 and 342 and holders 343 and 344. High reflection mirrors 341 and 342 may be held by holders 343 and 344, respectively.
  • the EUV light generation control unit 5 may include an EUV controller 51 and a delay circuit 53.
  • the EUV controller 51 may output a control signal to the delay circuit 53 and the laser device 3.
  • the EUV controller 51 may output a target supply start signal to the target supply device 26 so that the target supply device 26 starts supplying the target 27 into the chamber 2.
  • the EUV controller 51 may output the target detection signal output from the target sensor 40 to the delay circuit 53.
  • the EUV controller 51 may receive information on the target position when information on the target position where EUV light is generated is output from the exposure apparatus 6 (FIG. 1).
  • the target position and the surrounding area may be a plasma generation area (first predetermined area) 25.
  • the EUV controller 51 may control the triaxial stage 84 and the biaxial stage 63 based on the target position information.
  • the delay circuit 53 may output a timing signal to the laser device 3 so that the target 27 is irradiated with pulsed laser light at the timing when the target 27 reaches the vicinity of the plasma generation region 25.
  • This timing signal may be a signal obtained by giving a predetermined delay time to the target detection signal.
  • FIG. 3A is a partial cross-sectional view showing the target sensor and the light emitting unit shown in FIG. 2 in an enlarged manner.
  • 3B is a partial cross-sectional view of the target sensor and the light emitting unit shown in FIG. 3A as viewed from the upstream side in the moving direction of the target.
  • FIG. 3C shows a cross section taken along line IIIC-IIIC perpendicular to the traveling direction of the light generated by the light emitting unit shown in FIG. 3A.
  • FIG. 3D is a circuit diagram of the photosensor shown in FIG. 3A.
  • FIG. 3E is a waveform diagram of signals in various parts of the circuit shown in FIG. 3D.
  • the traveling direction of light from the light source 71 may be the X direction.
  • the condensing optical system 72 may be a lens having different surface curvatures in the Z direction and the Y direction.
  • the condensing optical system 72 may be, for example, a planoconvex cylindrical lens having a flat surface and a convex surface.
  • the plano-convex cylindrical lens may be arranged such that the curvature of the convex surface in the Z direction is greater than 0 and the curvature of the convex surface in the Y direction is substantially zero.
  • the condensing optical system 72 may condense the light from the light source 71 at a predetermined position in the trajectory of the target 27.
  • the region 35 where the light from the light source 71 is collected by the condensing optical system 72 is defined as a second predetermined region here.
  • the region 35 may have a shape in which the length along the Y direction is longer than the length along the Z direction. 3A and 3B, the range of the region 35 is shown larger than the actual range for easy viewing, but may be smaller than the illustrated range.
  • the cross section of the optical path in the region 35 is an ellipse whose major axis direction substantially coincides with the Y direction as shown in FIG. 3C. It may be shaped.
  • the optical sensor 41 may include a light receiving element 41a, an amplifier 41b, and a comparator 41c.
  • the light receiving element 41a (for example, a photodiode) may be capable of outputting a voltage signal in accordance with the amount of incident light from the outside.
  • the light receiving element 41a may be connected to the input terminal of the amplifier 41b.
  • the amplifier 41b may amplify the voltage signal output from the light receiving element 41a and output the output signal Vp.
  • the output terminal of the amplifier 41b may be connected to the negative input terminal of the comparator 41c.
  • a constant reference potential Vs may be applied to the positive input terminal of the comparator 41c.
  • the horizontal axis indicates time T
  • the vertical axis of the upper waveform diagram indicates the output signal Vp of the amplifier 41b
  • the vertical axis of the lower waveform diagram indicates the detection signal Vc output from the comparator 41c.
  • the output signal Vp of the amplifier 41b can be at a lower potential when the target 27 reaches the region 35 than when the target 27 does not reach the region 35. This may be because when the target 27 reaches the region 35, the amount of light received by the light receiving element 41a decreases. When the target 27 passes through the region 35, the output signal Vp of the amplifier 41b can return to the original potential.
  • the reference potential Vs may be set between the potential of the output signal Vp when the target 27 does not reach the region 35 and the potential of the output signal Vp when the target 27 reaches the region 35.
  • the detection signal Vc output from the comparator 41c can be the first potential VL when the output signal Vp is higher than the reference potential Vs.
  • the detection signal Vc can be a second potential V H.
  • the detection signal Vc can return to the first potential VL .
  • the detection signal Vc may be input to the delay circuit 53 via the EUV controller 51 (FIG. 2) or a buffer circuit (not shown) as the above-described target detection signal.
  • Delay circuit 53 from the detection signal Vc is, for example, the first potential V L according to the timing at which the second electric potential V H, may output a timing signal to the laser device 3. Alternatively, the delay circuit 53 may output a timing signal to the laser device 3 in accordance with the timing at which the detection signal Vc changes from the second potential VH to the first potential VL .
  • the trajectory of the target 27 may be shifted in the Y direction with respect to the trajectory of the target 27. This can be attributed to a change in the state (such as wettability) around the opening 62 of the target supply device 26. Further, it may be caused by moving the target supply device 26 by the biaxial stage 63. As shown in FIG. 3C, the trajectory of the target 27 may pass through almost the center of the region 35 (trajectory A) or may pass through a position slightly shifted in the Y direction from the center of the region 35 ( Locus B, locus C). Further, the trajectory of the target 27 may pass near the end of the region 35 (trajectory D).
  • the output signal of the amplifier 41b when the trajectory of the target 27 passes almost the center of the region 35 (trajectory A) is indicated by Vpa.
  • the length along the Y direction is longer than the length along the Z direction of the region 35. According to this, even if the trajectory of the target 27 deviates in the Y direction with respect to the trajectory of the target 27, the deviation of the timing at which the target 27 reaches the region 35 is in the length along the Z direction of the region 35 in the Y direction. It can be suppressed compared to the case where the lengths along the line are equal. Therefore, even if the locus of the target 27 is shifted in the Y direction, a shift in timing at which the detection signal Vc changes from the first potential V L to the second potential V H can be suppressed.
  • the light source 71 may be a semiconductor laser.
  • the light generated by the light source 71 may be infrared light, but more preferably visible light.
  • the depth of focus can be increased by reducing the wavelength of light. In that case, even when the trajectory of the target 27 deviates in the light traveling direction (X direction) with respect to the trajectory of the target 27, the deviation in timing of the detection signal can be suppressed.
  • FIG. 4 is a flowchart showing the operation of the EUV controller 51 in the first embodiment.
  • the EUV controller 51 may set the delay time by the following process in order to irradiate the target with pulsed laser light at an optimal timing.
  • the EUV controller 51 illustrates a target speed v, a detected Z-direction detection position Zs of the target, a Z-direction reference position Z0 as a reference for setting a delay time, and a reference delay time td0 with respect to the Z-direction reference position Z0.
  • the target speed v may be a value actually measured using a measurement device (not shown) provided in the EUV light generation apparatus.
  • the Z direction detection position Zs may be a value determined by the attachment position of the target sensor 40 and the light emitting unit 70.
  • the reference delay time td0 is a delay time of the timing signal with respect to the target detection signal, and may be a delay time set when EUV light is to be generated at the Z-direction reference position Z0.
  • the EUV controller 51 may receive a target position (Xt, Yt, Zt) where EUV light is generated from the exposure apparatus 6 (step S2).
  • the EUV controller 51 may move the position of the condensing point by the laser light condensing optical system 22a to the target position (Xt, Yt, Zt) where the EUV light is generated (step S3).
  • the position of the condensing point by the laser light condensing optical system 22 a may be moved by controlling the three-axis stage 84.
  • the trajectory of the target may be adjusted so as to pass through target positions (Xt, Yt, Zt) where EUV light is generated.
  • the EUV controller 51 moves the target supply device 26 to change the X and Y coordinates of the position of the opening 62 into the X and Y coordinates of the target position (Xt, Yt, Zt) where EUV light is generated. (Step S4).
  • the EUV controller 51 may move the target supply device 26 by controlling the biaxial stage 63.
  • the EUV controller 51 may calculate a time tz from when the target is detected until the target reaches the target Z-direction target position Zt where EUV light is generated (step S5).
  • Z-direction detection position Zs can be the Z-direction position of the target at a timing of the detection signal Vc described above becomes the second potential V H from the first potential V L.
  • the EUV controller 51 may calculate a difference ⁇ t between the above-described time tz and the time from when the target is detected until the target reaches the Z-direction reference position Z0 (step S6).
  • the difference ⁇ t may be calculated by the following equation using the time tz, the Z direction detection position Zs, the Z direction reference position Z0, and the target speed v.
  • ⁇ t tz ⁇ (Z0 ⁇ Zs) / v
  • the EUV controller 51 may set a delay time td and transmit the delay time td to the delay circuit 53 (step S7).
  • the EUV controller 51 may control the target supply device 26 so that the target is output into the chamber 2 (step S8).
  • the EUV controller 51 may output a target supply start signal for instructing the start of target supply to the target supply device 26.
  • the EUV controller 51 may output a trigger signal for outputting each target 27 to the target supply device 26.
  • the EUV controller 51 may output the target detection signal output from the target sensor 40 to the delay circuit 53 (step S9).
  • the delay circuit 53 can output to the laser device 3 a timing signal obtained by giving the delay time td to the target detection signal.
  • the laser device 3 generates pulse laser light according to the timing signal, and the target can be irradiated with the pulse laser light.
  • the EUV controller 51 may determine whether or not to change the target position (Xt, Yt, Zt) where the EUV light is generated (step S10).
  • the EUV controller 51 may determine to change the target position where EUV light is generated (step S10: YES).
  • the process may be returned to step S2.
  • the EUV controller 51 determines that the target position where the EUV light is generated is not changed (step S10: NO)
  • the process may be advanced to step S11.
  • step S11 the EUV controller 51 may determine whether or not to stop the generation of EUV light.
  • the EUV controller 51 may determine to stop the generation of EUV light (step S11: YES).
  • the processing of this flowchart may be terminated.
  • the EUV controller 51 determines not to stop the generation of EUV light (step S11: NO)
  • the process may be returned to step S8 described above.
  • FIG. 5A is a partial cross-sectional view showing, in an enlarged manner, a target sensor and a light emitting unit in a first modification of the first embodiment.
  • FIG. 5B is a partial cross-sectional view of the target sensor and the light emitting unit shown in FIG. 5A as viewed from the upstream side in the moving direction of the target.
  • FIG. 5C shows a section taken along the line VC-VC perpendicular to the traveling direction of light passing through the slit plate shown in FIG. 5A together with the slit plate.
  • FIG. 5D is a waveform diagram of signals in various parts of the circuit of the photosensor shown in FIG. 5A.
  • the circuit configuration of the optical sensor 41 may be the same as that shown in FIG. 3D.
  • the light emitting unit 70 a may include a light source 71, a collimator 74, and a plate 73.
  • the collimator 74 may guide the light output from the light source 71 to a predetermined position of the trajectory of the target 27 and its periphery through the window 21a.
  • the target sensor 40 a may include an optical sensor 41, a transfer optical system 44, a slit plate 45, and a plate 43.
  • the slit plate 45 may be arranged perpendicular to the traveling direction (X direction) of light from the predetermined position.
  • the slit plate 45 may be formed with a slit 45 a having a longer length along the Y direction than a length along the Z direction.
  • the slit plate 45 allows light incident on the slit 45a to pass therethrough and restricts passage of light incident on the periphery of the slit 45a.
  • the light that has passed through the slit 45 a can be detected by the optical sensor 41.
  • the transfer optical system 44 may be configured to form an image of the shadow of the target 27 passing through the predetermined position of the trajectory of the target 27 or the periphery thereof at the slit 45a or a peripheral position thereof.
  • the image formed by the transfer optical system 44 at the slit 45 a or its peripheral position may be an inverted image of the target 27. Therefore, when the target 27 moves downward (Z direction) in FIG. 5A, the image of the target 27 can move upward ( ⁇ Z direction) in FIG. 5C. That is, the image of the target 27 can move from the lower position in FIG. 5C to the upper position in FIG. 5C through the position of the slit 45a. As shown in FIG.
  • the image of the target 27 reaches the position of the slit 45a, the amount of light that is blocked by the target 27 and passes through the slit 45a can be reduced. At this time, the amount of light received by the light receiving element of the optical sensor 41 can be reduced.
  • region in the slit 45a is made into the 3rd predetermined area
  • the horizontal axis indicates time T
  • the vertical axis of the upper waveform diagram indicates the output signal Vp of the amplifier 41b
  • the vertical axis of the lower waveform diagram indicates the detection signal Vc output from the comparator 41c.
  • the output of the light receiving element of the optical sensor 41 is amplified when the image of the target 27 reaches the position of the slit 45a compared to when the image of the target 27 does not reach the position of the slit 45a.
  • the output signal Vp which is the generated signal, can be at a low potential.
  • the output signal Vp can return to the original potential.
  • the reference potential Vs is between the potential of the output signal Vp when the image of the target 27 has not reached the position of the slit 45a and the potential of the output signal Vp when the image of the target 27 has reached the position of the slit 45a. May be set.
  • the detection signal Vc output from the comparator 41c can be the first potential VL when the output signal Vp is higher than the reference potential Vs.
  • the detection signal Vc can be a second potential V H.
  • the detection signal Vc can return to the first potential VL .
  • the position of the object and the position of the image with respect to the position of the transfer optical system 44 can have a one-to-one correspondence.
  • the target 27 may need to be positioned in the predetermined area 35a.
  • the area 35a where the target 27 should be located is defined as a second predetermined area in the first modification. Since the slit 45a has a rectangular shape whose length along the Y direction is longer than the length along the Z direction, the region 35a also has a shape whose length along the Y direction is longer than the length along the Z direction. Can have.
  • the slit 45a may have a rectangular shape whose long side direction substantially coincides with the Y direction. According to this, when the image of the target 27 passes through substantially the center of the slit 45a (track A) and when it passes through a position shifted in the Y direction (track B, track C, track D), the detection signal described above. timing deviation Vc is the second potential V H from the first potential V L is obtained is slight.
  • the output signal of the amplifier 41b when the image of the target 27 passes almost the center of the slit 45a (trajectory A) is indicated by Vpa
  • the target 27 passes the position shifted in the Y direction (trajectory B
  • the output signal of the trajectory C and the trajectory D) is indicated by Vpb.
  • Other points may be the same as those described with reference to FIGS.
  • FIG. 6A is a partial cross-sectional view showing, in an enlarged manner, a target sensor and a light emitting unit in a second modification of the first embodiment.
  • FIG. 6B shows a cross section along the VIB-VIB line perpendicular to the traveling direction of the light passing through the slit plate shown in FIG. 6A together with the slit plate.
  • FIG. 6C is a circuit diagram of the photosensor shown in FIG. 6A.
  • FIG. 6D is a waveform diagram of signals in each part of the circuit shown in FIG. 6C.
  • the target sensor 40b and the light emitting unit 70b may be arranged on one side (X direction side) when viewed from the trajectory of the target 27 in the XZ plane.
  • the light emitting unit 70b may be disposed on the XZ plane and at a position having a predetermined angle with respect to the X direction when viewed from a predetermined position of the trajectory of the target 27.
  • the light emitting unit 70b may include a light source 71 and a collimator 74.
  • the collimator 74 may guide the light output from the light source 71 to the predetermined position on the trajectory of the target 27 and its periphery.
  • the target sensor 40 b may be disposed at a position in the X direction when viewed from the predetermined position on the trajectory of the target 27.
  • the target sensor 40 b may include a transfer optical system 44 and a slit plate 45.
  • the transfer optical system 44 may form an image of the target 27 passing through the predetermined position or the periphery thereof at the slit 45a of the slit plate 45 or a position around the slit 45a.
  • the target sensor 40a detects light that has passed around the target 27, whereas in the second modified example, the target sensor 40b reflects light reflected by the target 27. May be detected.
  • the target sensor 40b may further include an optical sensor 41 and a band pass filter 46.
  • the optical sensor 41 can detect the light transmitted through the bandpass filter 46 to distinguish the light from the light emitting unit 70b from the light from other light sources.
  • the circuit configuration of the optical sensor 41 may be substantially the same as that shown in FIG. 3D.
  • the two input terminals of the comparator 41c may have a connection relationship opposite to that shown in FIG. 3D. That is, the output terminal of the amplifier 41b may be connected to the positive input terminal of the comparator 41c.
  • the reference potential Vs may be applied to the negative input terminal of the comparator 41c.
  • the target 27 may need to be positioned in the predetermined region 35b.
  • the region 35b where the target 27 is to be positioned in order for the image of the target 27 to be formed in the slit 45a is defined as a second predetermined region in the second modification.
  • the region 35b may have a shape in which the length along the Y direction is longer than the length along the Z direction.
  • an image of the irradiation surface of the target 27 irradiated with light from the light emitting unit 70b can be formed at the position of the slit 45a by the transfer optical system 44.
  • part of the reflected light from the target 27 can reach the light receiving element via the slit 45a.
  • the horizontal axis represents time T
  • the vertical axis of one waveform diagram represents the output signal Vp of the amplifier 41b
  • the vertical axis of the other waveform diagram represents the detection signal Vc output from the comparator 41c.
  • an output signal Vp that is an amplified signal of the output from the light receiving element of the optical sensor 41. Can be at a high potential.
  • the output signal Vp can return to the original potential.
  • the reference potential Vs may be set between the potential of the output signal Vp when the target 27 does not reach the region 35b and the potential of the output signal Vp when the target 27 reaches the region 35b.
  • the output signal of the amplifier 41b when the image of the target 27 passes almost the center of the slit 45a (trajectory A) is indicated by Vpa
  • the output signal of the trajectory C and the trajectory D) is indicated by Vpb.
  • the detection signal Vc output from the comparator 41c can be the first potential VL when the output signal Vp is lower than the reference potential Vs.
  • the detection signal Vc can be a second potential V H.
  • the detection signal Vc can return to the first potential VL .
  • Other points may be the same as in the first modification described with reference to FIGS. 5A to 5D.
  • FIG. 7A is a partial cross-sectional view showing, in an enlarged manner, a light emitting unit according to a third modification of the first embodiment.
  • 7B is a partial cross-sectional view of the light emitting unit shown in FIG. 7A as viewed from the upstream side in the target moving direction. 7A and 7B, the target sensor is not shown.
  • the target sensor may be disposed on the opposite side of the light emitting unit 70 c across the trajectory of the target 27 and may receive light that has passed around the target 27.
  • the target sensor may be disposed on the same side as the light emitting unit 70 c when viewed from the trajectory of the target 27 and receive the light reflected by the target 27.
  • the light emitting unit 70c may include a first unit having a light source 71 and a condensing optical system 72a.
  • the light emitting unit 70c may include a second unit having a collimator 74, a one-way beam expander 75, and a condensing optical system 72b.
  • the first unit and the second unit may be connected by an optical fiber 76.
  • the light source 71 may be a semiconductor laser.
  • the condensing optical system 72 a may condense the light generated by the light source 71 on the input port at one end of the optical fiber 76.
  • the optical fiber 76 may emit the light collected at the input port of the optical fiber 76 from the output port at the other end of the optical fiber 76.
  • the collimator 74 may convert the light emitted from the output port of the optical fiber 76 into parallel light whose optical path has a substantially circular cross section.
  • the one-way beam expander 75 may include a cylindrical concave lens 75a and a cylindrical convex lens 75b.
  • the cylindrical concave lens 75a may be arranged such that the curvature of the concave surface in the Z direction is larger than 0 and the curvature of the concave surface in the Y direction is substantially zero.
  • the cylindrical convex lens 75b may be arranged so that the curvature of the convex surface in the Z direction is a predetermined value larger than 0, and the curvature of the convex surface in the Y direction is substantially zero.
  • the one-way beam expander 75 can convert the light from the collimator 74 into light having an elliptical shape in which the cross section of the optical path is longer in the Z direction than in the Y direction.
  • the one-way beam expander 75 is not limited to using a cylindrical lens, but may be a prism.
  • the condensing optical system 72 b may condense the light output from the unidirectional beam expander 75 at a predetermined position in the trajectory of the target 27.
  • the minimum spot diameter when the laser beam is condensed by the condensing optical system can be inversely proportional to the diameter of the incident beam to the condensing optical system.
  • the cross section of the optical path in the region 35c where light is collected by the condensing optical system 72b may be an ellipse whose length along the Y direction is longer than the length along the Z direction.
  • the region 35c where light is collected by the condensing optical system 72b is defined as a second predetermined region in the third modification. Other points may be the same as those described with reference to FIGS.
  • FIG. 8A is a partial cross-sectional view showing, in an enlarged manner, a light emitting unit according to a fourth modification of the first embodiment.
  • FIG. 8B is a partial cross-sectional view of the light emitting unit shown in FIG. 8A as viewed from the upstream side in the target moving direction. 8A and 8B, the target sensor is not shown.
  • the target sensor may be disposed on the opposite side of the light emitting unit 70d across the trajectory of the target 27, and may receive light that has passed around the target 27. Alternatively, the target sensor may be disposed on the same side as the light emitting unit 70 d when viewed from the trajectory of the target 27 and receive light reflected by the target 27.
  • the light emitting unit 70d may include a light source 71, a slit plate 77, and a transfer optical system 78.
  • the slit plate 77 may be formed with a slit 77a that is longer in the Y direction than in the Z direction.
  • the slit 77a may have a rectangular shape whose long side direction substantially coincides with the Y direction.
  • the transfer optical system 78 may form an image of the slit 77 a in the region 35 d including a part of the trajectory of the target 27.
  • the region 35d where the image of the slit 77a is formed by the transfer optical system 78 can be a region having a longer length along the Y direction than the length along the Z direction.
  • the area 35d where the image of the slit 77a is formed can be a rectangular area when viewed in the X direction (not shown). Therefore, even if the trajectory of the target 27 is shifted in the Y direction with respect to the trajectory of the target 27, the shift of the timing at which the target 27 is irradiated with light is the length along the Z direction of the region 35d and the length along the Y direction. Can be suppressed as compared with the case where they are equal. Thereby, the shift
  • the region 35d where the image of the slit 77a is formed is a second predetermined region in the fourth modification. Other points may be the same as those described with reference to FIGS.
  • FIG. 9A is an enlarged partial cross-sectional view of a target sensor according to a fifth modification of the first embodiment.
  • FIG. 9B is a partial cross-sectional view of the target sensor shown in FIG. 9A as viewed from the upstream side in the direction of movement of the target.
  • FIG. 9C is a circuit diagram of the photosensor shown in FIG. 9A. 9A and 9B, the light emitting unit is not shown.
  • the target sensor 40e in the fifth modification may be disposed on the same side as the light emitting unit as viewed from the trajectory of the target 27 and may receive the light reflected by the target 27.
  • the target sensor 40e may include a transfer optical system 44, a bandpass filter 46, and an optical sensor 47.
  • the transfer optical system 44 may form an image of the reflection surface of the target 27 irradiated with light from the light emitting unit at the optical sensor 47 or a position around it.
  • the optical sensor 47 may include a light receiving unit 47a, first and second amplifiers 47b and 47c, an adding circuit 47d, a comparator 47e, and a dividing circuit 47f.
  • the light receiving unit 47a may be a one-dimensional optical position detector (PSD). As shown in FIGS. 9A and 9B, the light receiving portion 47a may have a shape that is longer in the Y direction than in the Z direction.
  • the region where the light receiving unit 47a receives light may be a region where the length along the Y direction is longer than the length along the Z direction.
  • region which the light-receiving part 47a receives light is set as the 3rd predetermined area in the 5th modification.
  • the target 27 may need to be positioned within the predetermined region 35e.
  • the region 35e where the target 27 is to be located so that the image of the target 27 is formed at the position of the light receiving portion 47a is defined as a second predetermined region in the fifth modification.
  • the region 35e may have a shape in which the length along the Y direction is longer than the length along the Z direction.
  • the light receiving unit 47a may output a different voltage signal according to the received position (Y direction position) when receiving light in a part of the light receiving unit 47a. For example, when the light receiving unit 47a receives light at the center position of the light receiving unit 47a, the light receiving unit 47a may output substantially equal voltage signals from the first terminal and the second terminal located at both ends of the light receiving unit 47a. Good. In addition, when the light receiving unit 47a receives light at a position on the first terminal side of the light receiving unit 47a, the light receiving unit 47a may output a voltage signal larger than the voltage signal output from the second terminal from the first terminal. Good. Conversely, when the light receiving unit 47a receives light at a position on the second terminal side of the light receiving unit 47a, the light receiving unit 47a outputs a voltage signal larger than the voltage signal output from the first terminal from the second terminal. Also good.
  • the first terminal of the light receiving unit 47a may be connected to the first amplifier 47b, and the second terminal of the light receiving unit 47a may be connected to the second amplifier 47c.
  • the output terminals of the first and second amplifiers 47b and 47c may be connected to the adder circuit 47d.
  • the adder circuit 47d may add the output Vp1 of the first amplifier 47b and the output Vp2 of the second amplifier 47c. Thereby, the adding circuit 47d outputs the output signal Vp corresponding to the intensity of the received light regardless of whether the light receiving unit 47a receives the light on the first terminal side or the second terminal side. Can be output.
  • the output terminal of the adder circuit 47d may be connected to the comparator 47e.
  • the comparator 47e can output the detection signal Vc by comparing the output signal Vp with the reference potential Vs.
  • the output terminal of the second amplifier 47c and the output terminal of the addition circuit 47d may be connected to the division circuit 47f.
  • the division circuit 47f can calculate the Y-direction position where the light receiving unit 47a receives light by dividing the output Vp2 of the second amplifier 47c by the output Vp of the addition circuit 47d.
  • the calculated Y direction position is transmitted to the EUV controller 51 as data indicating the deviation of the locus of the target 27 in the Y direction, and can be used for the EUV controller 51 to control the biaxial stage 63.
  • the transfer optical system 44 included in the target sensor 40e may be an optical system in which the track side of the target 27 is telecentric. When the trajectory side of the target 27 is telecentric, the target sensor 40e can accurately detect the Y direction position of the trajectory of the target 27 even if the trajectory of the target 27 is shifted in the X direction with respect to the trajectory of the target 27. .
  • the transfer optical system 44 may be an optical system in which both sides (the trajectory side and the image side of the target 27) are telecentric. Other points may be the same as those of the second modification described with reference to FIGS. 6A to 6D.
  • the target sensor 40e is disposed on the same side as the light emitting unit as seen from the trajectory of the target 27 and receives light reflected by the target 27.
  • the present disclosure is not limited to this. Similar to the first modified example described with reference to FIGS. 5A to 5D, the target sensor 40e is disposed on the opposite side of the light emitting unit across the trajectory of the target 27, and passes through the periphery of the target 27. May be received.
  • FIG. 10A is a circuit diagram of an optical sensor according to a sixth modification of the first embodiment.
  • FIG. 10B is a waveform diagram of signals in various parts of the circuit shown in FIG. 10A.
  • the optical sensor 41 may include a reference power supply 41d and a voltage divider 41e in addition to the light receiving element 41a, the amplifier 41b, and the comparator 41c.
  • the reference power supply 41d may be a voltage source whose output voltage is a constant value.
  • the voltage divider 41e may include an electric resistor 41f connected between the reference power supply 41d and the ground potential, and a moving electrode 41g movable along the electric resistor 41f.
  • the moving electrode 41g may be connected to the input terminal of the comparator 41c.
  • the reference potential Vs input to the input terminal of the comparator 41c may be changeable according to the position of the moving electrode 41g that moves along the electric resistor 41f.
  • the voltage divider 41e may be configured by a volume.
  • the horizontal axis indicates time T
  • the vertical axis of the upper waveform diagram indicates the output signal Vp of the amplifier 41b
  • the vertical axis of the lower waveform diagram indicates the detection signal Vc output from the comparator 41c.
  • the plus side input terminal and the minus side input terminal of the comparator 41c to which the output signal Vp and the reference potential Vs are input are opposite to those in FIG. 3D.
  • the magnitude relation of the potential in the detection signal Vc is opposite to that in FIG. 3E.
  • the output signal Vp of the amplifier 41b depends on the amount of light incident on the light receiving element 41a. If the windows 21a and 21b become dirty due to debris of the target material, the amount of light incident on the light receiving element 41a may decrease, and the output signal Vp may decrease. That is, at one time, as shown on the left side of FIG. 10B, even if the output signal Vp has an overall high value, at another time, as shown on the right side of FIG. The overall value may be low. Then, even if Vs1 can be used as the value of the reference potential Vs on the left side of FIG. 10B, the passage of the target 27 cannot be detected when Vs1 is used as the value of the reference potential Vs on the right side of FIG. 10B. It can happen.
  • the user can adjust the voltage divider 41e to change the reference potential Vs and set it to Vs2. Thereby, even when the windows 21a and 21b are dirty and the output signal Vp decreases, the passage of the target 27 can be detected.
  • FIG. 11A is a circuit diagram of an optical sensor according to a seventh modification example of the first embodiment.
  • FIG. 11B is a waveform diagram of signals in each part of the circuit shown in FIG. 11A.
  • the optical sensor 41 may include a sample hold circuit 41h in addition to the light receiving element 41a, the amplifier 41b, and the comparator 41c.
  • the sample and hold circuit 41h may include a first voltage follower circuit 41i including a first operational amplifier, an analog switch 41j, a hold capacitor 41k, and a second voltage follower circuit 41m including a second operational amplifier.
  • the output of the amplifier 41b may be connected not only to the plus-side input terminal of the comparator 41c but also to the input terminal of the first voltage follower circuit 41i.
  • the output terminal of the first voltage follower circuit 41i may be connected to the first terminal of the analog switch 41j.
  • the second terminal of the analog switch 41j may be connected to the first terminal of the hold capacitor 41k and the input terminal of the second voltage follower circuit 41m.
  • the second terminal of the hold capacitor 41k may be grounded.
  • the output terminal of the second voltage follower circuit 41m may be connected to the negative input terminal of the comparator 41c via a voltage dividing circuit.
  • the horizontal axis indicates time T
  • the vertical axis of the first-stage waveform diagram indicates the output signal Vp of the amplifier 41b
  • the vertical axis of the second-stage waveform diagram indicates ON / OFF of the analog switch 41j.
  • the vertical axis of the third stage waveform diagram indicates the charging voltage Vh of the hold capacitor 41k
  • the vertical axis of the fourth stage waveform diagram indicates the detection signal Vc output from the comparator 41c.
  • Other points are the same as those in FIGS. 10A and 10B.
  • a charge corresponding to the output signal Vp of the amplifier 41b may be accumulated in the hold capacitor 41k, and the value of the reference potential Vs corresponding to this charge may be set automatically. Specifically, first, the analog switch may be turned on for a certain time at a timing when the target 27 is not detected, and then returned to the off state. Thereby, the electric charge according to the value of the output signal Vp may be accumulated in the hold capacitor 41k via the first voltage follower circuit 41i.
  • the charging voltage Vh of the hold capacitor 41k is high, and as shown on the right side of FIG. 11B, when the potential of the output signal Vp is low, the hold capacitor 41k.
  • the charging voltage Vh may be low.
  • a potential corresponding to the charging voltage Vh of the hold capacitor 41k may be output via the second voltage follower circuit 41m and the voltage dividing circuit, and may be input to the input terminal of the comparator 41c as the reference potential Vs.
  • the reference potential may be Vs1 when the potential of the output signal Vp is high, and may be Vs2 when the potential of the output signal Vp is low.
  • FIG. 12A is a circuit diagram of an optical sensor according to an eighth modification of the first embodiment.
  • FIG. 12B is a waveform diagram of signals in each part of the circuit shown in FIG. 12A.
  • the optical sensor 41 includes a first voltage follower circuit 41i including a first operational amplifier, an RC circuit 41n, And a second voltage follower circuit 41m including two operational amplifiers.
  • the output of the amplifier 41b may be connected not only to the plus-side input terminal of the comparator 41c but also to the input terminal of the first voltage follower circuit 41i.
  • the output terminal of the first voltage follower circuit 41i may be connected to the first terminal of the RC circuit 41n.
  • the second terminal of the RC circuit 41n may be connected to the input terminal of the second voltage follower circuit 41m.
  • the output terminal of the second voltage follower circuit 41m may be connected to the negative input terminal of the comparator 41c via a voltage dividing circuit.
  • the horizontal axis indicates time T
  • the vertical axis of the upper waveform diagram indicates the output signal Vp of the amplifier 41b
  • the vertical axis of the middle waveform diagram indicates the output signal Vr from the second terminal of the RC circuit 41n.
  • the vertical axis of the lower waveform diagram indicates the detection signal Vc output from the comparator 41c.
  • Other points are the same as those in FIGS. 10A and 10B.
  • the RC circuit 41n can output an output signal Vr having a falling edge and a rising edge delayed with respect to the falling edge and the rising edge of the output signal Vp of the amplifier 41b according to the time constant.
  • the height of the potential of the output signal Vr from the RC circuit 41n may depend on the height of the potential of the output signal Vp from the amplifier 41b.
  • the potential of the output signal Vp when the potential of the output signal Vp is high, the potential of the output signal Vr by the RC circuit 41n is high, and when the potential of the output signal Vp is low, as shown on the right side of FIG.
  • the potential of the output signal Vr from the circuit 41n may be low.
  • a potential corresponding to the potential of the output signal Vr from the RC circuit 41n may be output via the second voltage follower circuit 41m and the voltage dividing circuit, and may be input to the input terminal of the comparator 41c as the reference potential Vs.
  • FIG. 13A is a circuit diagram of an optical sensor according to a ninth modification example of the first embodiment.
  • FIG. 13B is a waveform diagram of signals in each part of the circuit shown in FIG. 13A.
  • the optical sensor 41 may include a reference potential controller 41o in addition to the light receiving element 41a, the amplifier 41b, and the comparator 41c.
  • the reference potential controller 41o may include an A / D converter 41p, an arithmetic unit 41q, and a D / A converter 41r.
  • the output of the amplifier 41b may be input not only to the positive input terminal of the comparator 41c but also to the A / D converter 41p.
  • the output of the A / D converter 41p may be input to the calculator 41q.
  • the output of the computing unit 41q may be input to the D / A converter 41r.
  • the output of the D / A converter 41r may be connected to the negative input terminal of the comparator 41c via a voltage dividing circuit.
  • the horizontal axis indicates time T
  • the vertical axis of the upper waveform diagram indicates the output signal Vp of the amplifier 41b
  • the vertical axis of the lower waveform diagram indicates the detection signal Vc output from the comparator 41c.
  • Other points are the same as those in FIGS. 10A and 10B.
  • the A / D converter 41p may convert the output signal Vp of the amplifier 41b into a digital signal.
  • the computing unit 41q may calculate a reference potential Vs depending on the output signal Vp from the A / D converted output signal Vp.
  • the D / A converter 41r may convert the reference potential Vs into an analog signal. Thereby, even when the windows 21a and 21b are dirty and the output signal Vp decreases, the passage of the target 27 can be detected.
  • the method by which the computing unit 41q calculates the reference potential Vs is not particularly limited.
  • the arithmetic unit 41q may extract the voltage V1 of the base portion of the output signal Vp of the amplifier 41b and the voltage V2 of the peak portion of the output signal Vp.
  • the computing unit 41q may use a voltage between the voltage V1 and the voltage V2, for example, an intermediate value thereof as the reference potential Vs.
  • the computing unit 41q may set a value obtained by subtracting a constant positive value from the voltage V1 as the reference potential Vs, or may set a value obtained by adding a constant positive value to the voltage V2 as the reference potential Vs.
  • FIG. 14 is a partial cross-sectional view illustrating a configuration of an EUV light generation apparatus according to a tenth modification of the first embodiment.
  • the output of the light source 71 can be controlled by the EUV controller 51.
  • Other points are the same as those of the first embodiment described with reference to FIG.
  • the optical sensor 41 may output the output signal Vp of the amplifier 41b described above to the EUV controller 51.
  • the EUV controller 51 may monitor the potential of the output signal Vp and control the output of the light source 71 so that the output signal Vp becomes a potential within a predetermined range.
  • the output of the light source 71 may be controlled, for example, by controlling the output voltage of a power source (not shown) that supplies power to the light source 71. Thereby, even when the windows 21a and 21b are dirty, the passage of the target 27 can be detected.
  • FIG. 15 is a partial cross-sectional view illustrating a configuration of an EUV light generation apparatus according to the second embodiment.
  • the light emitting unit 70f may be attached to the chamber 2 and the target sensor 40f may be disposed in the vicinity of the optical path of the pulse laser beam.
  • the light emitting unit 70 f may include a light source 71 and a collimator 74.
  • the collimator 74 may guide the light output from the light source 71 to a predetermined position in the trajectory of the target 27 and its periphery.
  • the predetermined position may be a position slightly away from the plasma generation region 25 to the upstream side of the trajectory of the target 27.
  • the predetermined position may be a position 500 ⁇ m to 1000 ⁇ m away from the plasma generation region 25 upstream of the trajectory of the target 27.
  • the optical path of light reflected by the target 27 and incident on the laser beam condensing optical system 22a can be equivalent to the optical path of light from the point light source when one point light source is placed at the predetermined position. Therefore, a part of the light reflected by the target 27 can be made almost parallel light by the laser light condensing optical system 22 a and transmitted through the window 21.
  • a beam splitter 345 may be disposed in the optical path of the pulse laser beam between the laser beam traveling direction control unit 34a and the laser beam focusing optical system 22a.
  • the beam splitter 345 may transmit the pulse laser beam (for example, infrared light) output from the laser device 3 from the right side to the left side in the drawing with high transmittance. Further, the beam splitter 345 may reflect a part of light (for example, visible light) output from the light emitting unit 70f and reflected by the target 27 to the lower side in the figure with high reflectivity.
  • the target sensor 40f may be disposed in the optical path of the light reflected downward in the figure by the beam splitter 345.
  • the target sensor 40f may include an optical sensor 41, a slit plate 45, a band pass filter 46, and an imaging optical system 48.
  • a transfer optical system may be configured by the above-described laser beam condensing optical system 22a and the imaging optical system 48 included in the target sensor 40f. By this transfer optical system, an image of the irradiation surface of the target 27 irradiated with light from the light emitting unit 70f may be formed at the slit of the slit plate 45 or a position around it. The light that has passed through the slit of the slit plate 45 may enter the optical sensor 41.
  • the position of the target 27 (the predetermined position) detected by the target sensor 40f can be closer to the plasma generation region 25 than in the first embodiment. Therefore, even when the speed v of the target 27 varies to some extent, the timing at which the target 27 reaches the plasma generation region 25 can be calculated with high accuracy.
  • the position of the condensing point of the laser light condensing optical system 22a is moved in accordance with the change of the target position (Xt, Yt, Zt) where EUV light is generated.
  • the detected position of the target 27 (the predetermined position on the trajectory of the target 27) can also be moved together. Accordingly, in this case, the process of resetting the delay time (the processes of steps S5 to S7 in FIG. 4) can be omitted.
  • Other points may be the same as in the second modification of the first embodiment described with reference to FIGS. 6A to 6D.
  • FIG. 16 is a partial cross-sectional view illustrating a configuration of an EUV light generation apparatus according to the third embodiment.
  • the target sensor 40g not only the target sensor 40g but also the light emitting unit 70g can be arranged in the vicinity of the optical path of the pulse laser beam.
  • the EUV light output side end of the chamber 2 is not shown, but it may be the same as that shown in FIG.
  • the illustration of the optical path of the pulsed laser light after passing through the beam splitter 345 is omitted, it may be the same as that shown in FIG.
  • a polarizing beam splitter 91 may be disposed between the beam splitter 345 and the target sensor 40g.
  • a ⁇ / 4 plate 92 may be disposed between the beam splitter 345 and the polarization beam splitter 91.
  • the light emitting unit 70g may be arranged so that the light generated by the light emitting unit 70g is reflected toward the ⁇ / 4 plate 92 by the polarization beam splitter 91.
  • the light emitting unit 70g may irradiate the polarization beam splitter 91 with linearly polarized light whose polarization direction is perpendicular to the paper surface.
  • the light emitted from the light emitting unit 70g to the polarization beam splitter 91 may have a predetermined divergence angle (that is, may have a convex wavefront).
  • the polarization beam splitter 91 may reflect linearly polarized light whose polarization direction is perpendicular to the paper surface with high reflectance.
  • the light reflected by the polarization beam splitter 91 may be converted into circularly polarized light by passing through the ⁇ / 4 plate 92.
  • the light converted into circularly polarized light may be reflected by the beam splitter 345 and guided to the periphery of the trajectory of the plasma generation region 25 and the target 27 in the vicinity thereof by the laser light focusing optical system 22a.
  • the diameter of the cross section of this optical path may be, for example, 2 mm to 3 mm in the vicinity of the plasma generation region 25.
  • a part of the light irradiated to the target 27 by the light emitting unit 70g and reflected by the target 27 may be incident on the ⁇ / 4 plate 92 through the laser beam condensing optical system 22a and the beam splitter 345.
  • the circularly polarized light that has entered the ⁇ / 4 plate 92 may be converted into linearly polarized light whose polarization direction is parallel to the paper surface, and may be incident on the polarization beam splitter 91.
  • the polarization beam splitter 91 may transmit linearly polarized light whose polarization direction is parallel to the paper surface with a high transmittance and enter the target sensor 40g.
  • the transfer optical system may be configured by the laser beam condensing optical system 22a and the imaging optical system 48 included in the target sensor 40g.
  • an image of the irradiation surface of the target 27 irradiated with light from the light emitting unit 70g may be formed at the slit of the slit plate 45 or at a position around it.
  • the image of the target 27 may be formed at the slit position of the slit plate 45 when the target 27 exists at a position about 1 mm away from the plasma generation region 25 on the upstream side of the trajectory of the target 27. .
  • the light that has passed through the slit of the slit plate 45 may enter the optical sensor 41.
  • the laser beam condensing optical system 22a is used both in the optical path from the light emitting unit 70g to the position of the target 27 and in the optical path from the position of the target 27 to the target sensor 40g. Accordingly, the traveling direction of the light emitted from the light emitting unit 70g to the target 27 and the traveling direction of the light reflected from the target 27 and directed to the target sensor 40g can be almost opposite in the vicinity of the target 27. Thereby, the image of the target 27 detected by the target sensor 40g can be clear. Other points may be the same as those of the second embodiment described with reference to FIG.
  • FIG. 17 is a partial cross-sectional view illustrating a configuration of an EUV light generation apparatus according to a fourth embodiment.
  • the optical path from the light emitting unit 70h to the target sensor 40h may be substantially the same as that of the third embodiment described with reference to FIG.
  • the light emitting unit 70 h may include a slit plate 77 and a collimator 79.
  • the target sensor 40h may not include a slit plate.
  • the transfer optical system may be configured by the laser beam condensing optical system 22a and the collimator 79 included in the light emitting unit 70h.
  • an image of the slit 77a (FIGS. 8A and 8B) of the slit plate 77 may be formed in a region including a part of the trajectory of the target 27.
  • the region where the image is formed (second predetermined region) can be a rectangular region having a longer length along the Y direction than a length along the Z direction.
  • the target 27 can be detected by detecting the light reflected by the target 27 with the target sensor 40h.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)

Abstract

この極端紫外光生成装置は、貫通孔が設けられたチャンバと、貫通孔を通してチャンバ内の第1所定領域にパルスレーザ光を導入するように構成された導入光学系と、第1所定領域に向けてターゲットを出力するように構成されたターゲット供給部と、ターゲット供給部と第1所定領域との間のターゲットの軌道の一部を含む第2所定領域に、第2所定領域における光路の横断面がターゲットの移動方向よりもターゲットの移動方向に対して垂直な方向に長い光を照射するように構成された光源と、第2所定領域から入射する光を検出することにより、第2所定領域を通過するターゲットを検出するように構成された光センサと、を備えてもよい。

Description

極端紫外光生成方法及び極端紫外光生成装置
 本開示は、極端紫外光生成方法及び極端紫外光生成装置に関する。
 近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、70nm~45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。このため、例えば32nm以下の微細加工の要求に応えるべく、波長13nm程度の極端紫外(EUV)光を生成する極端紫外光生成装置と縮小投影反射光学系(Reduced Projection Reflective Optics)とを組み合わせた露光装置の開発が期待されている。
 EUV光生成装置としては、ターゲット物質にレーザ光を照射することによって生成されるプラズマを用いたLPP(Laser Produced Plasma:レーザ励起プラズマ)方式の装置と、放電によって生成されるプラズマを用いたDPP(Discharge Produced Plasma)方式の装置と、軌道放射光が用いられるSR(Synchrotron Radiation)方式の装置との3種類の装置が提案されている。
概要
 本開示の1つの観点に係る極端紫外光生成方法は、貫通孔が設けられたチャンバ内の第1所定領域に向けて、ターゲット供給部からターゲットを出力し、ターゲット供給部と第1所定領域との間のターゲットの軌道の一部を含む第2所定領域に光を照射するとともに、第2所定領域から光センサに入射する光を検出することにより、ターゲットの移動方向に沿った長さよりも、ターゲットの移動方向に対して垂直且つ第2所定領域に照射される光の光路に対して垂直な方向の長さの方が長い領域である第2所定領域を通過するターゲットを検出し、第2所定領域を通過するターゲットを検出したタイミングに基づいて、第1所定領域に、貫通孔を通してパルスレーザ光を導入することにより、ターゲットにパルスレーザ光を照射してターゲットをプラズマ化し、極端紫外光を生成してもよい。
 本開示の1つの観点に係る極端紫外光生成装置は、ターゲットにパルスレーザ光を照射してターゲットをプラズマ化することにより極端紫外光を生成するように構成された極端紫外光生成装置であって、貫通孔が設けられたチャンバと、貫通孔を通してチャンバ内の第1所定領域にパルスレーザ光を導入するように構成された導入光学系と、第1所定領域に向けてターゲットを出力するように構成されたターゲット供給部と、ターゲット供給部と第1所定領域との間のターゲットの軌道の一部を含む第2所定領域に光を照射するとともに、第2所定領域から入射する光を検出することにより、ターゲットの移動方向に沿った長さよりも、ターゲットの移動方向に対して垂直且つ第2所定領域に照射される光の光路に対して垂直な方向の長さの方が長い領域である第2所定領域を通過するターゲットを検出するように構成されたターゲットセンサと、を備えてもよい。
 本開示の他の1つの観点に係る極端紫外光生成装置は、ターゲットにパルスレーザ光を照射してターゲットをプラズマ化することにより極端紫外光を生成するように構成された極端紫外光生成装置であって、貫通孔が設けられたチャンバと、貫通孔を通してチャンバ内の第1所定領域にパルスレーザ光を導入するように構成された導入光学系と、第1所定領域に向けてターゲットを出力するように構成されたターゲット供給部と、ターゲット供給部と第1所定領域との間のターゲットの軌道の一部を含む第2所定領域に、第2所定領域における光路の横断面がターゲットの移動方向に沿った方向よりもターゲットの移動方向に対して垂直な方向に長い光を照射するように構成された光源と、第2所定領域から入射する光を検出することにより、第2所定領域を通過するターゲットを検出するように構成された光センサと、を備えてもよい。
 本開示の他の1つの観点に係る極端紫外光生成装置は、ターゲットにパルスレーザ光を照射してターゲットをプラズマ化することにより極端紫外光を生成するように構成された極端紫外光生成装置であって、貫通孔が設けられたチャンバと、貫通孔を通してチャンバ内の第1所定領域にパルスレーザ光を導入するように構成された導入光学系と、第1所定領域に向けてターゲットを出力するように構成されたターゲット供給部と、ターゲット供給部と第1所定領域との間のターゲットの軌道の一部を含む第2所定領域に光を照射するように構成された光源と、第2所定領域を通過するターゲットの像を形成するように構成された転写光学系と、転写光学系によってターゲットの像が形成される位置に配置され、ターゲットの移動方向に沿った方向よりもターゲットの移動方向に対して垂直な方向に長い第3所定領域に転写光学系から入射する光を検出することにより、第2所定領域を通過するターゲットを検出するように構成された光センサと、を備えてもよい。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLPP式のEUV光生成システムの構成を概略的に示す。 図2は、第1の実施形態に係るEUV光生成装置の構成を示す一部断面図である。 図3Aは、図2に示されたターゲットセンサ及び発光部を拡大して示す一部断面図である。 図3Bは、図3Aに示されたターゲットセンサ及び発光部を、ターゲットの移動方向の上流側から見た一部断面図である。 図3Cは、図3Aに示された発光部によって生成された光の進行方向に垂直なIIIC-IIIC線における断面を示す。 図3Dは、図3Aに示された光センサの回路図である。 図3Eは、図3Dに示された回路の各部における信号の波形図である。 図4は、第1の実施形態におけるEUVコントローラの動作を示すフローチャートである。 図5Aは、第1の実施形態の第1の変形例におけるターゲットセンサ及び発光部を拡大して示す一部断面図である。 図5Bは、図5Aに示されたターゲットセンサ及び発光部を、ターゲットの移動方向の上流側から見た一部断面図である。 図5Cは、図5Aに示されたスリット板を通過する光の進行方向に垂直なVC-VC線における断面を当該スリット板とともに示す。 図5Dは、図5Aに示された光センサの回路の各部における信号の波形図である。 図6Aは、第1の実施形態の第2の変形例におけるターゲットセンサ及び発光部を拡大して示す一部断面図である。 図6Bは、図6Aに示されたスリット板を通過する光の進行方向に垂直なVIB-VIB線における断面を当該スリット板とともに示す。 図6Cは、図6Aに示された光センサの回路図である。 図6Dは、図6Cに示された回路の各部における信号の波形図である。 図7Aは、第1の実施形態の第3の変形例における発光部を拡大して示す一部断面図である。 図7Bは、図7Aに示された発光部を、ターゲットの移動方向の上流側から見た一部断面図である。 図8Aは、第1の実施形態の第4の変形例における発光部を拡大して示す一部断面図である。 図8Bは、図8Aに示された発光部を、ターゲットの移動方向の上流側から見た一部断面図である。 図9Aは、第1の実施形態の第5の変形例におけるターゲットセンサを拡大して示す一部断面図である。 図9Bは、図9Aに示されたターゲットセンサを、ターゲットの移動方向の上流側から見た一部断面図である。 図9Cは、図9Aに示された光センサの回路図である。 図10Aは、第1の実施形態の第6の変形例における光センサの回路図である。 図10Bは、図10Aに示された回路の各部における信号の波形図である。 図11Aは、第1の実施形態の第7の変形例における光センサの回路図である。 図11Bは、図11Aに示された回路の各部における信号の波形図である。 図12Aは、第1の実施形態の第8の変形例における光センサの回路図である。 図12Bは、図12Aに示された回路の各部における信号の波形図である。 図13Aは、第1の実施形態の第9の変形例における光センサの回路図である。 図13Bは、図13Aに示された回路の各部における信号の波形図である。 図14は、第1の実施形態の第10の変形例に係るEUV光生成装置の構成を示す一部断面図である。 図15は、第2の実施形態におけるEUV光生成装置の構成を示す一部断面図である。 図16は、第3の実施形態におけるEUV光生成装置の構成を示す一部断面図である。 図17は、第4の実施形態におけるEUV光生成装置の構成を示す一部断面図である。
実施形態
<内容>
1.概要
2.用語の説明
3.EUV光生成システムの全体説明
 3.1 構成
 3.2 動作
4.第1の実施形態(ターゲットセンサを含むEUV光生成装置)
 4.1 概略構成
 4.2 ターゲットセンサ及び発光部の詳細
 4.3 遅延時間の設定動作
 4.4 第1の変形例(スリットへの転写)
 4.5 第2の変形例(反射光の検出)
 4.6 第3の変形例(ビームエキスパンダを用いた発光部)
 4.7 第4の変形例(スリットを用いた発光部)
 4.8 第5の変形例(光位置検出器を用いたターゲットセンサ)
 4.9 第6の変形例(基準電位の調整)
 4.10 第7の変形例(基準電位の自動調整)
 4.11 第8の変形例(基準電位の自動調整)
 4.12 第9の変形例(基準電位の自動調整)
 4.13 第10の変形例(発光部の調整)
5.第2の実施形態(レーザ光集光光学系を用いたターゲットセンサ)
6.第3の実施形態(レーザ光集光光学系を用いた発光部)
7.第4の実施形態
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.概要
 LPP式のEUV光生成装置においては、ターゲット供給装置がターゲットを出力し、プラズマ生成領域に到達させてもよい。ターゲットがプラズマ生成領域に到達した時点で、レーザ装置がターゲットにパルスレーザ光を照射することで、ターゲットがプラズマ化し、このプラズマからEUV光が放射され得る。
 レーザ装置がターゲットにパルスレーザ光を照射できるようにするために、ターゲットがプラズマ生成領域より手前の所定領域に達したタイミングを、受光素子を含むターゲットセンサが検出してもよい。ターゲットセンサがターゲットを検出できるように、光源がターゲットに光を照射してもよい。
 光源がターゲットに照射する光の進行方向に垂直な光路断面(横断面)が円形である場合に、ターゲットの軌跡が光の進行方向に垂直な方向にずれると、光がターゲットに照射されるタイミングがずれてしまう可能性がある。光がターゲットに照射されるタイミングがずれると、ターゲットセンサがターゲットを検出するタイミングがずれ、レーザ装置がターゲットにパルスレーザ光を照射するタイミングがずれる可能性がある。
 本開示の1つの観点によれば、ターゲットの移動方向に対して垂直な方向に長い光路の横断面を有する光が、光源によってターゲットに照射されてもよい。これによれば、ターゲットの軌跡が光源によってターゲットに照射される光の進行方向に対して垂直な方向にずれても、光がターゲットに照射されるタイミングのずれは抑制され得る。従って、ターゲットセンサがターゲットを検出するタイミングのずれが抑制され得る。
 本開示のもう1つの観点によれば、光源によって光を照射されたターゲットの像が転写光学系によって形成されてもよい。そして、ターゲットの像が形成される位置に、ターゲットの移動方向に対して垂直な方向に長いスリットを有するスリット板が配置されてもよい。これによれば、ターゲットの軌跡が光源によってターゲットに照射される光の進行方向に対して垂直な方向にずれても、ターゲットの像がスリットの位置に転写されるタイミングのずれは抑制され得る。従って、スリットを通過した光をターゲットセンサが検出する場合に、検出のタイミングのずれが抑制され得る。
2.用語の説明
 本願において使用される幾つかの用語を以下に説明する。
 ターゲットの「軌道」は、ターゲット供給装置から出力されるターゲットの理想的な経路、あるいは、ターゲット供給装置の設計に従ったターゲットの経路であってもよい。
 ターゲットの「軌跡」は、ターゲット供給装置から出力されたターゲットの実際の経路であってもよい。
 「光路の横断面」は、光が存在する領域における光束の断面プロファイルであってよく、例えば光強度が1/e以上の領域の形状であってよい。
 「第1所定領域」は、プラズマ生成領域25(図1)を意味し得る。
 「第2所定領域」は、ターゲットが光センサによって検出されるために、ターゲットが位置すべき領域を意味し得る。1つの例として、第2所定領域は、光源から出力された光が集光光学系によって集光する領域35(図3A、図3B)を意味し得る。他の1つの例として、第2所定領域は、ターゲットの像がスリット内の位置に形成されるためにターゲットが位置すべき領域35a(図5A、図5B)を意味し得る。
 「第3所定領域」は、ターゲットが光センサによって検出されるために、ターゲットの像が形成されるべき領域を意味し得る。1つの例として、第3所定領域は、転写光学系と光センサとの間に配置されたスリット板のスリット45a(図5C)内の領域を意味し得る。他の1つの例として、第3所定領域は、1次元の光位置検出器(PSD)の受光部47a(図9A、図9B)が受光する領域を意味し得る。
3.EUV光生成システムの全体説明
 3.1 構成
 図1に、例示的なLPP式のEUV光生成システムの構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられてもよい。本願においては、EUV光生成装置1及びレーザ装置3を含むシステムを、EUV光生成システム11と称する。図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ2、ターゲット供給装置26を含んでもよい。チャンバ2は、密閉可能であってもよい。ターゲット供給装置26は、例えば、チャンバ2の壁を貫通するように取り付けられてもよい。ターゲット供給装置26から供給されるターゲット物質の材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又は、それらの内のいずれか2つ以上の組合せを含んでもよいが、これらに限定されない。
 チャンバ2の壁には、少なくとも1つの貫通孔が設けられていてもよい。その貫通孔には、ウインドウ21が設けられてもよく、ウインドウ21をレーザ装置3から出力されるパルスレーザ光32が透過してもよい。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置されてもよい。EUV集光ミラー23は、第1及び第2の焦点を有し得る。EUV集光ミラー23の表面には、例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成されていてもよい。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ生成領域25又はその近傍に位置し、その第2の焦点が中間集光点(IF)292に位置するように配置されるのが好ましい。EUV集光ミラー23の中央部には貫通孔24が設けられていてもよく、貫通孔24をパルスレーザ光33が通過してもよい。
 EUV光生成装置1は、EUV光生成制御部5、ターゲットセンサ4等を含んでもよい。ターゲットセンサ4は、撮像機能を有してもよく、ターゲット27の存在、軌跡、位置、速度の少なくとも一つを検出するよう構成されてもよい。
 また、EUV光生成装置1は、チャンバ2の内部と露光装置6の内部とを連通させる接続部29を含んでもよい。接続部29内部には、アパーチャが形成された壁291が設けられてもよい。壁291は、そのアパーチャがEUV集光ミラー23の第2の焦点位置に位置するように配置されてもよい。
 さらに、EUV光生成装置1は、レーザ光進行方向制御部34、レーザ光集光ミラー22、ターゲット27を回収するためのターゲット回収部28等を含んでもよい。レーザ光進行方向制御部34は、レーザ光の進行方向を規定するための光学素子と、この光学素子の位置、姿勢等を調整するためのアクチュエータとを備えてもよい。
 3.2 動作
 図1を参照に、レーザ装置3から出力されたパルスレーザ光31は、レーザ光進行方向制御部34を経て、パルスレーザ光32としてウインドウ21を透過してチャンバ2内に入射してもよい。パルスレーザ光32は、少なくとも1つのレーザ光経路に沿ってチャンバ2内を進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射されてもよい。
 ターゲット供給装置26は、ターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力するよう構成されてもよい。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射されてもよい。パルスレーザ光が照射されたターゲット27はプラズマ化し、そのプラズマからEUV光251が放射され得る。EUV光251は、EUV集光ミラー23によって反射されるとともに集光されてもよい。EUV集光ミラー23によって反射されたEUV光252は、中間集光点292で集光され、露光装置6に出力されてもよい。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。
 EUV光生成制御部5は、EUV光生成システム11全体の制御を統括するよう構成されてもよい。EUV光生成制御部5は、ターゲットセンサ4によって撮像されたターゲット27のイメージデータ等を処理するよう構成されてもよい。また、EUV光生成制御部5は、例えば、ターゲット27が出力されるタイミングの制御およびターゲット27の出力方向の制御の内少なくとも一つを制御するよう構成されてもよい。さらに、EUV光生成制御部5は、例えば、レーザ装置3の発振タイミングの制御、パルスレーザ光32の進行方向の制御、パルスレーザ光33の集光位置の制御の内少なくとも一つを制御するよう構成されてもよい。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加されてもよい。
4.第1の実施形態(ターゲットセンサを含むEUV光生成装置)
 4.1 概略構成
 図2は、第1の実施形態に係るEUV光生成装置の構成を示す一部断面図である。図2に示されるように、チャンバ2の内部には、レーザ光集光光学系22aと、EUV集光ミラー23と、ターゲット回収部28と、EUV集光ミラーホルダ81と、プレート82及びプレート83とが設けられてもよい。
 チャンバ2は、導電性を有する材料(例えば、金属材料)からなる部材(導電性部材)を含んでもよい。また、チャンバ2は、導電性部材と、電気絶縁性を有する部材とを含んでもよい。チャンバ2には、プレート82が固定されてもよい。プレート82には、3軸ステージ84を介してプレート83が固定されてもよい。EUV集光ミラー23は、EUV集光ミラーホルダ81を介してプレート82に固定されてもよい。
 レーザ光集光光学系22aは、軸外放物面ミラー221及び平面ミラー222と、ホルダ223及び224とを含んでもよい。軸外放物面ミラー221及び平面ミラー222は、それぞれ、ホルダ223及びホルダ224によって保持されてもよい。ホルダ223及びホルダ224は、プレート83に固定されてもよい。3軸ステージ84は、プレート83の位置及び姿勢を変更可能であってもよい。プレート83の位置及び姿勢が変更されることにより、軸外放物面ミラー221及び平面ミラー222の位置及び姿勢が調整され得る。軸外放物面ミラー221及び平面ミラー222によって反射されたパルスレーザ光がプラズマ生成領域(第1所定領域)25で集光するように、これらのミラーの位置及び姿勢が調整されてもよい。ターゲット回収部28は、ターゲット27の軌道の延長線上に配置されてもよい。
 チャンバ2には、ターゲット供給装置26が取り付けられてもよい。ターゲット供給装置26は、リザーバ61を有していてもよい。リザーバ61は、ターゲットの材料を溶融した状態で内部に貯蔵してもよい。ターゲット供給装置26には、リザーバ61の内部と連通する開口62が形成されていてもよい。リザーバ61の一部が、チャンバ2の壁面に形成された貫通孔2aを貫通しており、ターゲット供給装置26に形成された開口62の位置がチャンバ2の内部に位置していてもよい。ターゲット供給装置26は、開口62を介して、溶融したターゲットの材料をドロップレット状のターゲット27としてチャンバ2内に供給してもよい。
 ターゲット供給装置26は、2軸ステージ63をさらに有していてもよい。2軸ステージ63は、チャンバ2に対するリザーバ61及び開口62の位置を図2の左右方向及び奥行方向に移動させることが可能であってもよい。貫通孔2aの周囲と、リザーバ61との間には、図示しないシール手段が配置されてもよい。そのシール手段により、貫通孔2aの周囲とリザーバ61との間が密閉されていてもよい。
 チャンバ2には、ターゲットセンサ40と発光部70とが取り付けられてもよい。ターゲットセンサ40は、光センサ41と、集光光学系42と、プレート43とを含んでもよい。プレート43はチャンバ2の外部に固定され、このプレート43に、光センサ41及び集光光学系42が固定されてもよい。発光部70は、光源71と、集光光学系72と、プレート73とを含んでもよい。プレート73はチャンバ2の外部に固定され、このプレート73に、光源71及び集光光学系72が固定されてもよい。
 ターゲットセンサ40と発光部70とは、ターゲット27の軌道を挟んで互いに反対側に配置されていてもよい。チャンバ2にはウインドウ21a及び21bが取り付けられていてもよい。ウインドウ21aは、発光部70とターゲット27の軌道との間に位置していてもよい。発光部70は、ウインドウ21aを介してターゲット27の軌道の所定位置に光を集光してもよい。ウインドウ21bは、ターゲット27の軌道とターゲットセンサ40との間に位置していてもよい。ターゲット27が発光部70による光の集光位置を通過するときに、ターゲットセンサ40は、ターゲット27の軌道及びその周囲を通る光の変化を検出し、ターゲット検出信号を出力してもよい。
 発光部70がチャンバ2の内部に位置する場合には、ウインドウ21aが設けられなくてもよい。ターゲットセンサ40がチャンバ2の内部に位置する場合には、ウインドウ21bが設けられなくてもよい。また、ウインドウ21a及び集光光学系72の代わりに、集光素子の形状を有するウインドウ(図示せず)が設置されて、この集光素子の形状を有するウインドウが、ウインドウ21a及び集光光学系72の機能を兼ねていてもよい。ウインドウ21b及び集光光学系42の代わりに、集光素子の形状を有するウインドウ(図示せず)が設置されて、この集光素子の形状を有するウインドウが、ウインドウ21b及び集光光学系42の機能を兼ねていてもよい。
 チャンバ2の外部には、レーザ光進行方向制御部34aと、EUV光生成制御部5とが設けられてもよい。レーザ光進行方向制御部34aは、高反射ミラー341及び342と、ホルダ343及び344とを含んでもよい。高反射ミラー341及び342は、それぞれ、ホルダ343及び344によって保持されてもよい。
 EUV光生成制御部5は、EUVコントローラ51と、遅延回路53とを含んでいても良い。EUVコントローラ51は、遅延回路53及びレーザ装置3に制御信号を出力してもよい。EUVコントローラ51は、ターゲット供給装置26がターゲット27をチャンバ2内に供給開始するように、ターゲット供給装置26にターゲット供給開始信号を出力してもよい。EUVコントローラ51は、ターゲットセンサ40から出力されたターゲット検出信号を、遅延回路53に出力してもよい。EUVコントローラ51は、EUV光が生成される目標位置の情報が露光装置6(図1)から出力された場合に、当該目標位置の情報を受信してもよい。当該目標位置及びその周辺の領域が、プラズマ生成領域(第1所定領域)25とされてもよい。EUVコントローラ51は、当該目標位置の情報に基づいて、3軸ステージ84及び2軸ステージ63を制御してもよい。
 遅延回路53は、ターゲット27がプラズマ生成領域25近傍に到達するタイミングでパルスレーザ光がターゲット27に照射されるように、レーザ装置3にタイミング信号を出力してもよい。このタイミング信号は、ターゲット検出信号に所定の遅延時間を与えた信号であってもよい。
 4.2 ターゲットセンサ及び発光部の詳細
 図3Aは、図2に示されたターゲットセンサ及び発光部を拡大して示す一部断面図である。図3Bは、図3Aに示されたターゲットセンサ及び発光部を、ターゲットの移動方向の上流側から見た一部断面図である。図3Cは、図3Aに示された発光部によって生成された光の進行方向に垂直なIIIC-IIIC線における断面を示す。図3Dは、図3Aに示された光センサの回路図である。図3Eは、図3Dに示された回路の各部における信号の波形図である。
 図3A及び図3Bに示されるように、光源71からの光の進行方向はX方向でもよい。集光光学系72は、Z方向とY方向とで表面の曲率が異なるレンズでもよい。集光光学系72は、例えば、平面と凸面とを有する平凸シリンドリカルレンズでもよい。この平凸シリンドリカルレンズは、上記凸面のZ方向の曲率が0より大きい所定値となり、上記凸面のY方向の曲率がほぼ0となるように配置されてもよい。集光光学系72は、光源71からの光を、ターゲット27の軌道の所定位置に集光してもよい。集光光学系72によって光源71からの光が集光する領域35を、ここでは第2所定領域とする。領域35は、Z方向に沿った長さよりもY方向に沿った長さが長い形状を有していてもよい。なお、図3A及び図3Bにおいて、領域35の範囲は、見やすいように実際より大きく示されているが、図示された範囲より小さくてもよい。光路の横断面が円形である光が光源71から集光光学系72に入射すると、領域35における光路の横断面は、図3Cに示されるように、長軸方向がY方向と略一致する楕円形となってもよい。
 図3Cに示されるように、ターゲット27がZ方向に移動し、ターゲット27が領域35に到達したときに、発光部70からターゲットセンサ40に向けて出力された光の一部がターゲット27によって遮られてもよい。これにより、ターゲットセンサ40への入射光量が低下し得る。
 図3Dに示されるように、光センサ41は、受光素子41aと、増幅器41bと、コンパレータ41cとを含んでもよい。受光素子41a(例えば、フォトダイオード)は、外部からの光の入射光量に応じて電圧信号を出力可能であってもよい。受光素子41aは、増幅器41bの入力端子に接続されてもよい。増幅器41bは、受光素子41aが出力した電圧信号を増幅して、出力信号Vpを出力してもよい。増幅器41bの出力端子は、コンパレータ41cのマイナス側の入力端子に接続されてもよい。コンパレータ41cのプラス側の入力端子には、一定の基準電位Vsが印加されていてもよい。
 図3Eにおいて、横軸は時間Tを示し、上段の波形図の縦軸は増幅器41bの出力信号Vpを示し、下段の波形図の縦軸はコンパレータ41cから出力される検出信号Vcを示す。図3Eに示されるように、ターゲット27が領域35に到達していない時に比べて、ターゲット27が領域35に到達した時には、増幅器41bの出力信号Vpが低い電位になり得る。これは、ターゲット27が領域35に到達すると、受光素子41aが受光する光量が減少するためであり得る。ターゲット27が領域35を通り過ぎると、増幅器41bの出力信号Vpは元の電位に戻り得る。ターゲット27が領域35に到達していない時における出力信号Vpの電位と、ターゲット27が領域35に到達した時における出力信号Vpの電位との間に、基準電位Vsが設定されていてもよい。
 コンパレータ41cから出力される検出信号Vcは、出力信号Vpが基準電位Vsより高い電位である状態においては第1の電位Vであり得る。出力信号Vpが基準電位Vsより低い電位になると、検出信号Vcは第2の電位Vとなり得る。出力信号Vpが元の高い電位に戻ると、検出信号Vcは第1の電位Vに戻り得る。検出信号Vcは、上述のターゲット検出信号として、EUVコントローラ51(図2)あるいは図示しないバッファ回路を介して遅延回路53に入力されてもよい。遅延回路53は、検出信号Vcが例えば第1の電位Vから第2の電位Vとなるタイミングに応じて、レーザ装置3にタイミング信号を出力してもよい。あるいは、遅延回路53は、検出信号Vcが第2の電位Vから第1の電位Vとなるタイミングに応じて、レーザ装置3にタイミング信号を出力してもよい。
 ターゲット27の軌跡は、ターゲット27の軌道に対してY方向にずれる場合があり得る。これは、ターゲット供給装置26の開口62の周囲の状態(濡れ性など)が変化することに起因し得る。また、ターゲット供給装置26を2軸ステージ63によって移動させることに起因し得る。図3Cに示されるように、ターゲット27の軌跡は、領域35のほぼ中央を通る場合もあり得るし(軌跡A)、領域35の中央からY方向に少しずれた位置を通る場合もあり得る(軌跡B、軌跡C)。また、ターゲット27の軌跡は、領域35の端部付近を通る場合もあり得る(軌跡D)。
 ターゲット27の軌跡が領域35のほぼ中央を通る場合(軌跡A)に比べて、Y方向に少しずれた位置を通る場合には(軌跡B、軌跡C)、ターゲット27が発光部70からの光の一部を遮る時間が僅かに短くなり得る。ターゲット27の軌跡が領域35の端部付近を通る場合には(軌跡D)、ターゲット27が発光部70からの光の一部を遮る時間が僅かではあるがさらに短くなり得る。図3Eにおいては、ターゲット27の軌跡が領域35のほぼ中央を通る場合(軌跡A)の増幅器41bの出力信号がVpaで示されている。また、ターゲット27がY方向に少しずれた位置を通る場合(軌跡B、軌跡C)の出力信号がVpbで示され、ターゲット27ターゲット27の軌跡が領域35の端部付近を通る場合(軌跡D)の出力信号がVpdで示されている。
 第1の実施形態においては、領域35のZ方向に沿った長さよりもY方向に沿った長さが長い。これによれば、ターゲット27の軌道に対してターゲット27の軌跡がY方向にずれても、ターゲット27が領域35に到達するタイミングのずれは、領域35のZ方向に沿った長さとY方向に沿った長さとが等しい場合と比べて抑制され得る。従って、ターゲット27の軌跡がY方向にずれても、検出信号Vcが第1の電位Vから第2の電位Vとなるタイミングのずれが抑制され得る。また、検出信号Vcが第2の電位Vから第1の電位Vとなるタイミングのずれが抑制され得る。これにより、レーザ装置3がパルスレーザ光を出力するタイミングのずれが抑制され、適切なタイミングでターゲット27にパルスレーザ光が照射され得る。
 光源71は、半導体レーザであってもよい。光源71によって生成される光は、赤外光でもよいが可視光であることがより望ましい。光の波長が短くなることにより、焦点深度が深くなり得る。その場合には、ターゲット27の軌道に対してターゲット27の軌跡が光の進行方向(X方向)にずれた場合にも、検出信号のタイミングのずれが抑制され得る。
 4.3 遅延時間の設定動作
 図4は、第1の実施形態におけるEUVコントローラ51の動作を示すフローチャートである。EUVコントローラ51は、ターゲットに最適のタイミングでパルスレーザ光が照射されるようにするために、以下の処理によって遅延時間を設定してもよい。
 EUVコントローラ51は、ターゲット速度vと、検出されるターゲットのZ方向検出位置Zsと、遅延時間設定の基準となるZ方向基準位置Z0と、Z方向基準位置Z0に対する基準遅延時間td0とを、図示しないメモリから読み込んでもよい(ステップS1)。ターゲット速度vは、当該EUV光生成装置に備えられた図示しない計測装置を用いて実際に計測された値でもよい。Z方向検出位置Zsは、ターゲットセンサ40及び発光部70の取り付け位置によって定まる値であってもよい。基準遅延時間td0は、ターゲット検出信号に対するタイミング信号の遅延時間であって、Z方向基準位置Z0においてEUV光を生成しようとする場合に設定される遅延時間であってもよい。
 次に、EUVコントローラ51は、EUV光が生成される目標位置(Xt,Yt,Zt)を露光装置6から受信してもよい(ステップS2)。
 次に、EUVコントローラ51は、EUV光が生成される目標位置(Xt,Yt,Zt)に、レーザ光集光光学系22aによる集光点の位置を移動させてもよい(ステップS3)。レーザ光集光光学系22aによる集光点の位置は、3軸ステージ84を制御することによって移動させられてもよい。
 次に、ターゲットの軌道が、EUV光が生成される目標位置(Xt,Yt,Zt)を通るように調整されてもよい。例えば、EUVコントローラ51は、ターゲット供給装置26を移動させることにより、開口62の位置のX座標及びY座標を、EUV光が生成される目標位置(Xt,Yt,Zt)のX座標及びY座標に一致させてもよい(ステップS4)。EUVコントローラ51は、2軸ステージ63を制御することによってターゲット供給装置26を移動させてもよい。
 次に、EUVコントローラ51は、ターゲットが検出されてから、EUV光が生成される目標のZ方向目標位置Ztにターゲットが到達するまでの時間tzを算出してもよい(ステップS5)。時間tzは、Z方向検出位置Zsと、Z方向目標位置Ztと、ターゲット速度vとを用いて、以下の式により算出されてもよい。
   tz=(Zt-Zs)/v
なお、Z方向検出位置Zsは、上述の検出信号Vcが第1の電位Vから第2の電位VとなるタイミングにおけるターゲットのZ方向位置であってもよい。
 次に、EUVコントローラ51は、上述の時間tzとターゲットが検出されてからZ方向基準位置Z0にターゲットが到達するまでの時間との差Δtを算出してもよい(ステップS6)。差Δtは、上述の時間tzと、Z方向検出位置Zsと、Z方向基準位置Z0と、ターゲット速度vとを用いて、以下の式により算出されてもよい。
   Δt=tz-(Z0-Zs)/v
 次に、EUVコントローラ51は、遅延時間tdを設定し、この遅延時間tdを遅延回路53に送信してもよい(ステップS7)。遅延時間tdは、以下のように、基準遅延時間td0に、上述の差Δtを加えた値に設定されてもよい。
   td=td0+Δt
 次に、EUVコントローラ51は、ターゲットがチャンバ2内に出力されるように、ターゲット供給装置26を制御してもよい(ステップS8)。例えば、EUVコントローラ51は、ターゲットの供給開始を指示するためのターゲット供給開始信号をターゲット供給装置26に出力してもよい。あるいは、EUVコントローラ51は、個々のターゲット27を出力するためのトリガ信号をターゲット供給装置26に出力してもよい。
 次に、EUVコントローラ51は、ターゲットセンサ40から出力されたターゲット検出信号を遅延回路53に出力してもよい(ステップS9)。これにより、遅延回路53は、ターゲット検出信号に遅延時間tdを与えたタイミング信号を、レーザ装置3に出力し得る。レーザ装置3は、このタイミング信号に応じてパルスレーザ光を生成し、このパルスレーザ光が、ターゲットに照射され得る。
 次に、EUVコントローラ51は、EUV光が生成される目標位置(Xt,Yt,Zt)を変更するか否かを判定してもよい(ステップS10)。EUV光が生成される目標位置を新たに露光装置6が出力した場合には、EUVコントローラ51は、EUV光が生成される目標位置を変更すると判定してもよい(ステップS10:YES)。EUV光が生成される目標位置を変更するとEUVコントローラ51が判定した場合には、処理を上述のステップS2に戻してもよい。EUV光が生成される目標位置を変更しないとEUVコントローラ51が判定した場合には(ステップS10:NO)、処理をステップS11に進めてもよい。
 ステップS11において、EUVコントローラ51は、EUV光の生成を中止するか否かを判定してもよい。EUVコントローラ51は、EUV光の生成を中止するための制御信号を露光装置6から受信した場合には、EUV光の生成を中止すると判定してもよい(ステップS11:YES)。EUV光の生成を中止するとEUVコントローラ51が判定した場合には、本フローチャートの処理を終了してもよい。EUV光の生成を中止しないとEUVコントローラ51が判定した場合には(ステップS11:NO)、処理を上述のステップS8に戻してもよい。
 4.4 第1の変形例(スリットへの転写)
 図5Aは、第1の実施形態の第1の変形例におけるターゲットセンサ及び発光部を拡大して示す一部断面図である。図5Bは、図5Aに示されたターゲットセンサ及び発光部を、ターゲットの移動方向の上流側から見た一部断面図である。図5Cは、図5Aに示されたスリット板を通過する光の進行方向に垂直なVC-VC線における断面を当該スリット板とともに示す。図5Dは、図5Aに示された光センサの回路の各部における信号の波形図である。光センサ41の回路構成は、図3Dに示されたものと同様でよい。
 発光部70aは、光源71と、コリメータ74と、プレート73とを含んでもよい。光源71が出力した光を、コリメータ74は、ウインドウ21aを介してターゲット27の軌道の所定位置及びその周辺に導いてもよい。
 ターゲットセンサ40aは、光センサ41と、転写光学系44と、スリット板45と、プレート43とを含んでもよい。スリット板45は、上記所定位置からの光の進行方向(X方向)に対して垂直に配置されていてもよい。スリット板45には、Z方向に沿った長さよりもY方向に沿った長さが長いスリット45aが形成されていてもよい。
 スリット板45は、スリット45aに入射する光を通過させ、スリット45aの周囲に入射する光の通過を制限し得る。スリット45aを通過した光は、光センサ41によって検出され得る。
 転写光学系44は、ターゲット27の軌道の上記所定位置又はその周辺を通過するターゲット27の影の像をスリット45a又はその周辺の位置に形成するように構成されてもよい。転写光学系44によってスリット45a又はその周辺の位置に形成される像はターゲット27の倒立像であってもよい。従って、ターゲット27が図5Aの下方向(Z方向)に移動する場合には、ターゲット27の像は図5Cの上方向(-Z方向)に移動し得る。すなわち、ターゲット27の像は、図5Cにおける下方の位置から、スリット45aの位置を通って、図5Cにおける上方の位置に移動し得る。図5Cに示されるように、ターゲット27の像がスリット45aの位置に到達したときには、ターゲット27により遮光されてスリット45aを通過する光の光量が低下し得る。このとき、光センサ41の受光素子が受光する光量が減少し得る。なお、スリット45a内の領域を、第1の変形例においては第3所定領域とする。
 図5Dにおいて、横軸は時間Tを示し、上段の波形図の縦軸は増幅器41bの出力信号Vpを示し、下段の波形図の縦軸はコンパレータ41cから出力される検出信号Vcを示す。図5Dに示されるように、ターゲット27の像がスリット45aの位置に到達していない時に比べて、ターゲット27の像がスリット45aの位置に到達した時には、光センサ41の受光素子による出力が増幅された信号である出力信号Vpが低い電位になり得る。ターゲット27の像がスリット45aの位置を通り過ぎると、出力信号Vpは元の電位に戻り得る。ターゲット27の像がスリット45aの位置に到達していない時における出力信号Vpの電位と、ターゲット27の像がスリット45aの位置に到達した時における出力信号Vpの電位との間に、基準電位Vsが設定されていてもよい。
 コンパレータ41c(図3D)から出力される検出信号Vcは、出力信号Vpが基準電位Vsより高い電位である状態においては第1の電位Vであり得る。出力信号Vpが基準電位Vsより低い電位になると、検出信号Vcは第2の電位Vとなり得る。出力信号Vpが元の高い電位に戻ると、検出信号Vcは第1の電位Vに戻り得る。
 転写光学系44によって物体の像が形成される場合に、転写光学系44の位置に対する物体の位置と像の位置とは1対1に対応し得る。転写光学系44によってターゲット27の像がスリット45a内の位置に形成されるためには、ターゲット27が所定の領域35a内に位置する必要があり得る。ターゲット27の像がスリット45a内の位置に形成されるためにターゲット27が位置すべき領域35aを、第1の変形例においては第2所定領域とする。スリット45aは、Z方向に沿った長さよりもY方向に沿った長さが長い矩形状であるので、領域35aも、Z方向に沿った長さよりもY方向に沿った長さが長い形状を有し得る。
 スリット45aは、長辺方向がY方向と略一致する矩形状であってもよい。これによれば、ターゲット27の像がスリット45aのほぼ中央を通る場合(軌跡A)と、Y方向にずれた位置を通る場合(軌跡B、軌跡C、軌跡D)とで、上述の検出信号Vcが第1の電位Vから第2の電位Vとなるタイミングのずれは僅かであり得る。図5Dにおいては、ターゲット27の像がスリット45aのほぼ中央を通る場合(軌跡A)の増幅器41bの出力信号がVpaで示され、ターゲット27がY方向にずれた位置を通る場合(軌跡B、軌跡C、軌跡D)の出力信号がVpbで示されている。
 他の点については、図2~図4を参照しながら説明されたものと同様でよい。
 4.5 第2の変形例(反射光の検出)
 図6Aは、第1の実施形態の第2の変形例におけるターゲットセンサ及び発光部を拡大して示す一部断面図である。図6Bは、図6Aに示されたスリット板を通過する光の進行方向に垂直なVIB-VIB線における断面を当該スリット板とともに示す。図6Cは、図6Aに示された光センサの回路図である。図6Dは、図6Cに示された回路の各部における信号の波形図である。
 ターゲットセンサ40bと発光部70bとは、XZ平面においてターゲット27の軌道からみて一方側(X方向側)に配置されてもよい。詳しくは、発光部70bは、XZ平面において、且つ、ターゲット27の軌道の所定位置からみてX方向に対して所定の角度を有する位置に配置されてもよい。発光部70bは、光源71と、コリメータ74とを含んでもよい。光源71が出力した光を、コリメータ74は、ターゲット27の軌道の上記所定位置及びその周辺に導いてもよい。ターゲットセンサ40bは、ターゲット27の軌道の上記所定位置からみてX方向の位置に配置されてもよい。ターゲットセンサ40bは、転写光学系44と、スリット板45とを含んでもよい。転写光学系44は、上記所定位置又はその周辺を通過するターゲット27の像をスリット板45のスリット45a又はその周辺の位置に形成してもよい。
 すなわち、上述の第1の変形例においては、ターゲットセンサ40aはターゲット27の周囲を通過した光を検出したのに対し、第2の変形例においては、ターゲットセンサ40bはターゲット27によって反射された光を検出してもよい。ターゲットセンサ40bは、光センサ41とバンドパスフィルタ46とをさらに含んでもよい。光センサ41は、バンドパスフィルタ46を透過した光を検出することにより、発光部70bからの光を他の光源からの光と区別して検出し得る。
 図6Cに示されるように、光センサ41の回路構成は、図3Dに示されたものとほぼ同様でよい。但し、コンパレータ41cの2つの入力端子は、図3Dに示されたものと逆の接続関係となっていてもよい。すなわち、コンパレータ41cのプラス側の入力端子に、増幅器41bの出力端子が接続されてもよい。コンパレータ41cのマイナス側の入力端子に、基準電位Vsが印加されてもよい。
 転写光学系44によってターゲット27の像がスリット45a(第3所定領域)内に形成されるためには、ターゲット27が所定の領域35b内に位置する必要があり得る。ターゲット27の像がスリット45a内に形成されるためにターゲット27が位置すべき領域35bを、第2の変形例においては第2所定領域とする。領域35bは、Z方向に沿った長さよりもY方向に沿った長さが長い形状を有し得る。ターゲット27が領域35bに到達していないとき、発光部70bからの光が光センサ41の受光素子に入射することは抑制され得る。ターゲット27が領域35bに到達すると、発光部70bからの光が照射されたターゲット27の照射面の像が、転写光学系44により、スリット45aの位置に形成され得る。こうして、ターゲット27による反射光の一部がスリット45aを介して受光素子に到達し得る。
 図6Dにおいて、横軸は時間Tを示し、1つの波形図の縦軸は増幅器41bの出力信号Vpを示し、もう1つの波形図の縦軸はコンパレータ41cから出力される検出信号Vcを示す。図6Dに示されるように、ターゲット27が領域35bに到達していない時に比べて、ターゲット27が領域35bに到達した時には、光センサ41の受光素子による出力が増幅された信号である出力信号Vpが高い電位になり得る。ターゲット27が領域35bを通り過ぎると、出力信号Vpは元の電位に戻り得る。ターゲット27が領域35bに到達していない時における出力信号Vpの電位と、ターゲット27が領域35bに到達した時における出力信号Vpの電位との間に、基準電位Vsが設定されていてもよい。図6Dにおいては、ターゲット27の像がスリット45aのほぼ中央を通る場合(軌跡A)の増幅器41bの出力信号がVpaで示され、ターゲット27がY方向にずれた位置を通る場合(軌跡B、軌跡C、軌跡D)の出力信号がVpbで示されている。
 コンパレータ41cから出力される検出信号Vcは、出力信号Vpが基準電位Vsより低い電位である状態においては第1の電位Vであり得る。出力信号Vpが基準電位Vsより高い電位になると、検出信号Vcは第2の電位Vとなり得る。出力信号Vpが元の低い電位に戻ると、検出信号Vcは第1の電位Vに戻り得る。
 他の点については、図5A~図5Dを参照しながら説明された第1の変形例と同様でよい。
 4.6 第3の変形例(ビームエキスパンダを用いた発光部)
 図7Aは、第1の実施形態の第3の変形例における発光部を拡大して示す一部断面図である。図7Bは、図7Aに示された発光部を、ターゲットの移動方向の上流側から見た一部断面図である。図7A及び図7Bにおいて、ターゲットセンサの図示は省略されている。ターゲットセンサは、ターゲット27の軌道を挟んで発光部70cと反対側に配置され、ターゲット27の周囲を通過した光を受光してもよい。あるいは、ターゲットセンサは、ターゲット27の軌道からみて発光部70cと同じ側に配置され、ターゲット27によって反射された光を受光してもよい。
 発光部70cは、光源71と、集光光学系72aとを有する第1のユニットを含んでもよい。発光部70cは、コリメータ74と、一方向ビームエキスパンダ75と、集光光学系72bとを有する第2のユニットを含んでもよい。第1のユニットと第2のユニットとは、光ファイバ76で接続されていてもよい。
 光源71は、半導体レーザであってもよい。集光光学系72aは、光源71によって生成された光を、光ファイバ76の一端の入力ポートに集光してもよい。光ファイバ76は、光ファイバ76の入力ポートに集光された光を光ファイバ76の他端の出力ポートから出射してもよい。コリメータ74は、光ファイバ76の出力ポートから出射した光を、光路の横断面が略円形である平行光に変換してもよい。
 一方向ビームエキスパンダ75は、シリンドリカル凹レンズ75aと、シリンドリカル凸レンズ75bとを有していてもよい。シリンドリカル凹レンズ75aは、その凹面のZ方向の曲率が0より大きい所定値となり、当該凹面のY方向の曲率がほぼ0となるように配置されてもよい。シリンドリカル凸レンズ75bは、その凸面のZ方向の曲率が0より大きい所定値となり、当該凸面のY方向の曲率がほぼ0となるように配置されてもよい。これにより、一方向ビームエキスパンダ75は、コリメータ74からの光を、光路の横断面がY方向に沿った長さよりもZ方向に沿った長さが長い楕円形である光に変換し得る。なお、一方向ビームエキスパンダ75は、シリンドリカルレンズを用いたものに限らず、プリズムを用いたものでもよい。
 集光光学系72bは、一方向ビームエキスパンダ75から出力された光を、ターゲット27の軌道の所定位置に集光してもよい。レーザビームを集光光学系によって集光したときの最小スポット径は、集光光学系への入射ビーム径に反比例し得る。これにより、集光光学系72bによって光が集光する領域35cにおける光路の横断面は、Z方向に沿った長さよりもY方向に沿った長さが長い楕円形となり得る。従って、ターゲット27の軌道に対してターゲット27の軌跡がY方向にずれても、ターゲット27に光が照射されるタイミングのずれが、光路の横断面のZ方向に沿った長さとY方向に沿った長さとが等しい場合と比べて抑制され得る。これにより、ターゲットセンサによる検出タイミングのずれが抑制され得る。なお、集光光学系72bによって光が集光する領域35cを、第3の変形例においては第2所定領域とする。
 他の点については、図2~図4を参照しながら説明されたものと同様でよい。
 4.7 第4の変形例(スリットを用いた発光部)
 図8Aは、第1の実施形態の第4の変形例における発光部を拡大して示す一部断面図である。図8Bは、図8Aに示された発光部を、ターゲットの移動方向の上流側から見た一部断面図である。図8A及び図8Bにおいて、ターゲットセンサの図示は省略されている。ターゲットセンサは、ターゲット27の軌道を挟んで発光部70dと反対側に配置され、ターゲット27の周囲を通過した光を受光してもよい。あるいは、ターゲットセンサは、ターゲット27の軌道からみて発光部70dと同じ側に配置され、ターゲット27によって反射された光を受光してもよい。
 第4の変形例において、発光部70dは、光源71と、スリット板77と、転写光学系78とを含んでもよい。スリット板77には、Z方向に沿った長さよりもY方向に沿った長さが長いスリット77aが形成されていてもよい。スリット77aは、長辺方向がY方向と略一致する矩形状であってもよい。転写光学系78は、スリット77aの像を、ターゲット27の軌道の一部を含む領域35dに形成してもよい。転写光学系78によってスリット77aの像が形成される領域35dは、Z方向に沿った長さよりもY方向に沿った長さが長い領域となり得る。スリット77aが矩形状であるので、スリット77aの像が形成される領域35dは、X方向に見たときには、矩形状の領域であり得る(図示せず)。従って、ターゲット27の軌道に対してターゲット27の軌跡がY方向にずれても、ターゲット27に光が照射されるタイミングのずれが、領域35dのZ方向に沿った長さとY方向に沿った長さとが等しい場合と比べて抑制され得る。これにより、ターゲットセンサによる検出タイミングのずれが抑制され得る。なお、スリット77aの像が形成される領域35dを、第4の変形例においては第2所定領域とする。
 他の点については、図2~図4を参照しながら説明されたものと同様でよい。
 4.8 第5の変形例(光位置検出器を用いたターゲットセンサ)
 図9Aは、第1の実施形態の第5の変形例におけるターゲットセンサを拡大して示す一部断面図である。図9Bは、図9Aに示されたターゲットセンサを、ターゲットの移動方向の上流側から見た一部断面図である。図9Cは、図9Aに示された光センサの回路図である。図9A及び図9Bにおいて、発光部の図示は省略されている。第5の変形例におけるターゲットセンサ40eは、ターゲット27の軌道からみて発光部と同じ側に配置され、ターゲット27によって反射された光を受光してもよい。
 第5の変形例において、ターゲットセンサ40eは、転写光学系44と、バンドパスフィルタ46と、光センサ47とを含んでもよい。転写光学系44は、発光部によって光を照射されたターゲット27の反射面の像を光センサ47又はその周辺の位置に形成してもよい。
 光センサ47は、受光部47aと、第1及び第2の増幅器47b及び47cと、加算回路47dと、コンパレータ47eと、除算回路47fとを含んでもよい。受光部47aは、1次元の光位置検出器(PSD)であってもよい。図9A及び図9Bに示されるように、受光部47aは、Z方向よりもY方向に長い形状を有してもよい。受光部47aが受光する領域は、Z方向に沿った長さよりもY方向に沿った長さの方が長い領域であってもよい。なお、受光部47aが受光する領域を、第5の変形例においては第3所定領域とする。
 転写光学系44によってターゲット27の像が受光部47aの位置に形成されるためには、ターゲット27が所定の領域35e内に位置する必要があり得る。ターゲット27の像が受光部47aの位置に形成されるためにターゲット27が位置すべき領域35eを、第5の変形例においては第2所定領域とする。領域35eは、Z方向に沿った長さよりもY方向に沿った長さが長い形状を有し得る。領域35eにターゲット27が位置するときに、転写光学系44により、ターゲット27の像が受光部47aの位置に形成され得る。これにより、受光部47aは、ターゲット27が領域35eに到達したことを検出し得る。
 受光部47aは、受光部47aの一部において光を受光したときに、受光した位置(Y方向位置)に応じて異なる電圧信号を出力してもよい。例えば、受光部47aは、受光部47aの中央の位置で光を受光したときに、受光部47aの両端に位置する第1の端子及び第2の端子から互いに略等しい電圧信号を出力してもよい。また、受光部47aは、受光部47aの第1の端子側の位置で光を受光したときに、第2の端子から出力する電圧信号よりも大きい電圧信号を第1の端子から出力してもよい。逆に、受光部47aは、受光部47aの第2の端子側の位置で光を受光したときに、第1の端子から出力する電圧信号よりも大きい電圧信号を第2の端子から出力してもよい。
 受光部47aの第1の端子は第1の増幅器47bに接続され、受光部47aの第2の端子は第2の増幅器47cに接続されてもよい。第1及び第2の増幅器47b及び47cのそれぞれの出力端子は、加算回路47dに接続されてもよい。加算回路47dは、第1の増幅器47bの出力Vp1と第2の増幅器47cの出力Vp2とを加算してもよい。これにより、加算回路47dは、受光部47aが光を受光した位置が第1の端子側であるか第2の端子側であるかにかかわらず、受光した光の強度に応じた出力信号Vpを出力し得る。加算回路47dの出力端子は、コンパレータ47eに接続されてもよい。コンパレータ47eは、出力信号Vpと基準電位Vsとを比較することにより、検出信号Vcを出力し得る。
 また、第2の増幅器47cの出力端子と、加算回路47dの出力端子とが、除算回路47fに接続されてもよい。除算回路47fは、第2の増幅器47cの出力Vp2を加算回路47dの出力Vpで除算することにより、受光部47aが光を受光したY方向位置を算出し得る。算出されたY方向位置は、ターゲット27の軌跡のY方向のずれを示すデータとして、EUVコントローラ51に送信され、EUVコントローラ51が2軸ステージ63を制御するために利用され得る。
 ターゲットセンサ40eに含まれる転写光学系44は、ターゲット27の軌道側がテレセントリックな光学系とされてもよい。ターゲット27の軌道側がテレセントリックである場合には、ターゲットセンサ40eは、ターゲット27の軌道に対してターゲット27の軌跡がX方向にずれても、ターゲット27の軌跡のY方向位置を正確に検出し得る。あるいは、転写光学系44は、両側(ターゲット27の軌道側及び像側)がテレセントリックな光学系とされてもよい。
 他の点については、図6A~図6Dを参照しながら説明された第2の変形例と同様でよい。
 なお、第5の変形例においては、例として、ターゲットセンサ40eがターゲット27の軌道からみて発光部と同じ側に配置され、ターゲット27によって反射された光を受光する場合について説明した。但し、本開示はこれに限られるものではない。図5A~図5Dを参照しながら説明された第1の変形例と同様に、ターゲットセンサ40eは、ターゲット27の軌道を挟んで発光部と反対側に配置され、ターゲット27の周囲を通過した光を受光してもよい。
 4.9 第6の変形例(基準電位の調整)
 図10Aは、第1の実施形態の第6の変形例における光センサの回路図である。図10Bは、図10Aに示された回路の各部における信号の波形図である。
 図10Aに示されるように、光センサ41は、受光素子41aと、増幅器41bと、コンパレータ41cとの他に、基準電源41dと、分圧器41eとを含んでもよい。基準電源41dは、出力電圧が一定値である電圧源でよい。分圧器41eは、基準電源41dと接地電位との間に接続された電気抵抗器41fと、電気抵抗器41fに沿って移動可能な移動電極41gとを含んでもよい。移動電極41gは、コンパレータ41cの入力端子に接続されてもよい。電気抵抗器41fに沿って移動する移動電極41gの位置に応じて、コンパレータ41cの入力端子に入力される基準電位Vsが変更可能であってもよい。分圧器41eは、ボリュームによって構成されてもよい。
 図10Bにおいて、横軸は時間Tを示し、上段の波形図の縦軸は増幅器41bの出力信号Vpを示し、下段の波形図の縦軸はコンパレータ41cから出力される検出信号Vcを示す。なお、図10Aにおいて、出力信号Vpと基準電位Vsとが入力されるコンパレータ41cのプラス側の入力端子とマイナス側の入力端子とが、図3Dと逆になっている。このため、図10Bにおいて、検出信号Vcにおける電位の大小関係が、図3Eと逆になっている。
 増幅器41bの出力信号Vpは、受光素子41aへの光の入射光量に依存する。ターゲット物質のデブリなどによりウインドウ21a及び21bが汚れると、受光素子41aへの光の入射光量が減少し、出力信号Vpが低下してしまうことがある。すなわち、ある時には、図10Bの左側に示されるように、出力信号Vpが全体的に高い値を有していたとしても、別の時には、図10Bの右側に示されるように、出力信号Vpが全体的に低い値となってしまうことがあり得る。そうすると、図10Bの左側においては、基準電位Vsの値としてVs1を用いることができたとしても、図10Bの右側においては、基準電位Vsの値としてVs1を用いると、ターゲット27の通過を検出できないことがあり得る。
 そこで、第6の変形例においては、ユーザが分圧器41eを調整することにより、基準電位Vsを変更し、Vs2に設定できるようにしている。これにより、ウインドウ21a及び21bが汚れて出力信号Vpが低下した場合でも、ターゲット27の通過を検出することができる。
 4.10 第7の変形例(基準電位の自動調整)
 図11Aは、第1の実施形態の第7の変形例における光センサの回路図である。図11Bは、図11Aに示された回路の各部における信号の波形図である。
 図11Aに示されるように、光センサ41は、受光素子41aと、増幅器41bと、コンパレータ41cとの他に、サンプルホールド回路41hを含んでもよい。サンプルホールド回路41hは、第1のオペアンプを含む第1のボルテージフォロア回路41iと、アナログスイッチ41jと、ホールドコンデンサ41kと、第2のオペアンプを含む第2のボルテージフォロア回路41mとを含んでもよい。
 増幅器41bの出力が、コンパレータ41cのプラス側の入力端子だけでなく、第1のボルテージフォロア回路41iの入力端子にも接続されてよい。第1のボルテージフォロア回路41iの出力端子が、アナログスイッチ41jの第1の端子に接続されてもよい。アナログスイッチ41jの第2の端子が、ホールドコンデンサ41kの第1の端子と、第2のボルテージフォロア回路41mの入力端子に接続されてもよい。ホールドコンデンサ41kの第2の端子は、接地されてもよい。第2のボルテージフォロア回路41mの出力端子は、分圧回路を介して、コンパレータ41cのマイナス側の入力端子に接続されてもよい。
 図11Bにおいて、横軸は時間Tを示し、1段目の波形図の縦軸は増幅器41bの出力信号Vpを示し、2段目の波形図の縦軸はアナログスイッチ41jのON/OFFを示す。3段目の波形図の縦軸はホールドコンデンサ41kの充電電圧Vhを示し、4段目の波形図の縦軸はコンパレータ41cから出力される検出信号Vcを示す。
 他の点は、図10A及び図10Bと同様である。
 第7の変形例においては、増幅器41bの出力信号Vpに応じた電荷をホールドコンデンサ41kに蓄積させ、この電荷に応じた基準電位Vsの値を自動的に設定してもよい。具体的には、まず、ターゲット27が検出されていないタイミングで、アナログスイッチを一定時間ON状態とし、その後、OFF状態に戻してもよい。これにより、出力信号Vpの値に応じた電荷が、第1のボルテージフォロア回路41iを介してホールドコンデンサ41kに蓄積されてもよい。
 図11Bの左側に示されるように、出力信号Vpの電位が高い時にはホールドコンデンサ41kの充電電圧Vhが高くなり、図11Bの右側に示されるように、出力信号Vpの電位が低い時にはホールドコンデンサ41kの充電電圧Vhが低くなってもよい。ホールドコンデンサ41kの充電電圧Vhに応じた電位が、第2のボルテージフォロア回路41m及び分圧回路を介して出力され、基準電位Vsとして、コンパレータ41cの入力端子に入力されてもよい。出力信号Vpの電位が高い時には基準電位はVs1となり、出力信号Vpの電位が低い時には基準電位はVs2となってもよい。これにより、ウインドウ21a及び21bが汚れて出力信号Vpが低下した場合でも、ターゲット27の通過を検出することができる。
 4.11 第8の変形例(基準電位の自動調整)
 図12Aは、第1の実施形態の第8の変形例における光センサの回路図である。図12Bは、図12Aに示された回路の各部における信号の波形図である。
 図12Aに示されるように、光センサ41は、受光素子41aと、増幅器41bと、コンパレータ41cとの他に、第1のオペアンプを含む第1のボルテージフォロア回路41iと、RC回路41nと、第2のオペアンプを含む第2のボルテージフォロア回路41mとを含んでもよい。
 増幅器41bの出力が、コンパレータ41cのプラス側の入力端子だけでなく、第1のボルテージフォロア回路41iの入力端子にも接続されてよい。第1のボルテージフォロア回路41iの出力端子が、RC回路41nの第1の端子に接続されてもよい。RC回路41nの第2の端子が、第2のボルテージフォロア回路41mの入力端子に接続されてもよい。第2のボルテージフォロア回路41mの出力端子は、分圧回路を介して、コンパレータ41cのマイナス側の入力端子に接続されてもよい。
 図12Bにおいて、横軸は時間Tを示し、上段の波形図の縦軸は増幅器41bの出力信号Vpを示し、中段の波形図の縦軸はRC回路41nの第2の端子からの出力信号Vrを示し、下段の波形図の縦軸はコンパレータ41cから出力される検出信号Vcを示す。
 他の点は、図10A及び図10Bと同様である。
 図12Bに示されるように、RC回路41nは、その時定数に応じて、増幅器41bの出力信号Vpの立ち下がり及び立ち上がりに対して遅れた立ち下がり及び立ち上がりを有する出力信号Vrを出力し得る。RC回路41nによる出力信号Vrの電位の高さは、増幅器41bによる出力信号Vpの電位の高さに依存し得る。
 図12Bの左側に示されるように、出力信号Vpの電位が高い時にはRC回路41nによる出力信号Vrの電位が高くなり、図12Bの右側に示されるように、出力信号Vpの電位が低い時にはRC回路41nによる出力信号Vrの電位が低くなってもよい。RC回路41nによる出力信号Vrの電位に応じた電位が、第2のボルテージフォロア回路41m及び分圧回路を介して出力され、基準電位Vsとして、コンパレータ41cの入力端子に入力されてもよい。これにより、ウインドウ21a及び21bが汚れて出力信号Vpが低下した場合でも、ターゲット27の通過を検出することができる。
 4.12 第9の変形例(基準電位の自動調整)
 図13Aは、第1の実施形態の第9の変形例における光センサの回路図である。図13Bは、図13Aに示された回路の各部における信号の波形図である。
 図13Aに示されるように、光センサ41は、受光素子41aと、増幅器41bと、コンパレータ41cとの他に、基準電位コントローラ41oを含んでもよい。基準電位コントローラ41oは、A/D変換器41pと、演算器41qと、D/A変換器41rとを含んでもよい。
 増幅器41bの出力が、コンパレータ41cのプラス側の入力端子だけでなく、A/D変換器41pにも入力されてよい。A/D変換器41pの出力が、演算器41qに入力されてもよい。演算器41qの出力が、D/A変換器41rに入力されてもよい。D/A変換器41rの出力は、分圧回路を介して、コンパレータ41cのマイナス側の入力端子に接続されてもよい。
 図13Bにおいて、横軸は時間Tを示し、上段の波形図の縦軸は増幅器41bの出力信号Vpを示し、下段の波形図の縦軸はコンパレータ41cから出力される検出信号Vcを示す。
 他の点は、図10A及び図10Bと同様である。
 A/D変換器41pは、増幅器41bの出力信号Vpをデジタル信号に変換してもよい。演算器41qは、A/D変換された出力信号Vpから、出力信号Vpに依存した基準電位Vsを算出してもよい。D/A変換器41rは、基準電位Vsをアナログ信号に変換してもよい。これにより、ウインドウ21a及び21bが汚れて出力信号Vpが低下した場合でも、ターゲット27の通過を検出することができる。
 演算器41qが基準電位Vsを算出する方法は、特に限定されない。例えば、演算器41qは、増幅器41bの出力信号Vpのベース部分の電圧V1と、出力信号Vpのピーク部分の電圧V2とを抽出してもよい。演算器41qは、電圧V1と電圧V2との間の電圧、例えばそれらの中間値を、基準電位Vsとしてもよい。あるいは、演算器41qは、電圧V1から一定の正数値を減算した値を、基準電位Vsとしてもよいし、電圧V2に一定の正数値を加算した値を、基準電位Vsとしてもよい。
 4.13 第10の変形例(発光部の調整)
 図14は、第1の実施形態の第10の変形例に係るEUV光生成装置の構成を示す一部断面図である。第10の変形例においては、光源71の出力がEUVコントローラ51によって制御可能に構成されている。その他の点は図2を参照しながら説明した第1の実施形態と同様である。
 第10の変形例において、光センサ41は、上述した増幅器41bの出力信号VpをEUVコントローラ51に出力してもよい。EUVコントローラ51は、出力信号Vpの電位をモニタリングして、出力信号Vpが所定範囲内の電位となるように、光源71の出力を制御してもよい。光源71の出力は、例えば、光源71に電力を供給する図示しない電源の出力電圧を制御するによって、制御されてもよい。これにより、ウインドウ21a及び21bが汚れた場合でも、ターゲット27の通過を検出することができる。
5.第2の実施形態(レーザ光集光光学系を用いたターゲットセンサ)
 図15は、第2の実施形態におけるEUV光生成装置の構成を示す一部断面図である。第2の実施形態においては、発光部70fがチャンバ2に取り付けられ、ターゲットセンサ40fがパルスレーザ光の光路付近に配置されていてもよい。
 発光部70fは、光源71と、コリメータ74とを含んでもよい。光源71が出力した光を、コリメータ74は、ターゲット27の軌道の所定位置及びその周辺に導いてもよい。上記所定位置は、プラズマ生成領域25からターゲット27の軌道の上流側に僅かに離れた位置であってもよい。例えば、上記所定位置は、プラズマ生成領域25からターゲット27の軌道の上流側に500μm~1000μm離れた位置でもよい。
 発光部70fによってターゲット27に照射され、ターゲット27によって反射された光の一部は、レーザ装置3からのパルスレーザ光の進行方向と逆向きに、レーザ光集光光学系22aに入射してもよい。ターゲット27によって反射されてレーザ光集光光学系22aに入射する光の光路は、上記所定位置に1つの点光源を置いた場合の、その点光源からの光の光路と同等であり得る。従って、ターゲット27によって反射された光の一部は、レーザ光集光光学系22aによってほぼ平行光とされて、ウインドウ21を透過し得る。
 レーザ光進行方向制御部34aとレーザ光集光光学系22aとの間のパルスレーザ光の光路に、ビームスプリッタ345が配置されてもよい。ビームスプリッタ345は、レーザ装置3から出力されたパルスレーザ光(例えば赤外光)を、高い透過率で図中右側から左側に透過させてもよい。また、ビームスプリッタ345は、発光部70fから出力されてターゲット27によって反射された光の一部(例えば可視光)を、高い反射率で図中下側に反射してもよい。
 ビームスプリッタ345によって図中下側に反射された光の光路に、ターゲットセンサ40fが配置されていてもよい。ターゲットセンサ40fは、光センサ41と、スリット板45と、バンドパスフィルタ46と、結像光学系48とを含んでもよい。上述のレーザ光集光光学系22aと、ターゲットセンサ40fに含まれる結像光学系48とによって、転写光学系が構成されてもよい。この転写光学系によって、発光部70fからの光が照射されたターゲット27の照射面の像が、スリット板45のスリット又はその周辺の位置に形成されてもよい。スリット板45のスリットを通過した光が、光センサ41に入射してもよい。
 第2の実施形態によれば、第1の実施形態に比べて、ターゲットセンサ40fによって検出されるターゲット27の位置(上記所定位置)が、プラズマ生成領域25に近い位置となり得る。従って、ターゲット27の速度vにある程度のばらつきがあったとしても、ターゲット27がプラズマ生成領域25に到達するタイミングが、高精度に算出され得る。
 また、第2の実施形態によれば、EUV光が生成される目標位置(Xt,Yt,Zt)の変更に応じて、レーザ光集光光学系22aの集光点の位置を移動させれば、検出されるターゲット27の位置(ターゲット27の軌道の上記所定位置)も一緒に移動し得る。従って、この場合には遅延時間を設定し直す処理(図4のステップS5~S7の処理)が省略され得る。
 他の点については、図6A~図6Dを参照しながら説明された第1の実施形態の第2の変形例と同様でよい。
6.第3の実施形態(レーザ光集光光学系を用いた発光部)
 図16は、第3の実施形態におけるEUV光生成装置の構成を示す一部断面図である。第3の実施形態においては、ターゲットセンサ40gだけでなく、発光部70gも、パルスレーザ光の光路付近に配置され得る。図16において、チャンバ2のEUV光出力側端部の図示が省略されているが、図15に示されたものと同様でよい。また、ビームスプリッタ345を透過した後のパルスレーザ光の光路の図示が省略されているが、図15に示されたものと同様でよい。
 ビームスプリッタ345とターゲットセンサ40gとの間には、偏光ビームスプリッタ91が配置されてもよい。ビームスプリッタ345と偏光ビームスプリッタ91との間には、λ/4板92が配置されてもよい。発光部70gは、発光部70gによって生成された光が偏光ビームスプリッタ91によってλ/4板92の方へ反射されるように配置されてもよい。
 発光部70gは、偏光方向が紙面に対して垂直な方向である直線偏光を偏光ビームスプリッタ91に向けて照射してもよい。発光部70gが偏光ビームスプリッタ91に照射する光は、所定の広がり角を有してもよい(すなわち、凸面状の波面を有してもよい)。偏光ビームスプリッタ91は、偏光方向が紙面に対して垂直な方向である直線偏光を高い反射率で反射してもよい。偏光ビームスプリッタ91によって反射された光は、λ/4板92を透過することにより、円偏光に変換されてもよい。円偏光に変換された光は、ビームスプリッタ345によって反射され、レーザ光集光光学系22aによってプラズマ生成領域25及びその付近のターゲット27の軌道の周辺に導かれてもよい。この光路の横断面の直径は、プラズマ生成領域25の付近において例えば2mm~3mmでもよい。
 発光部70gによってターゲット27に照射され、ターゲット27によって反射された光の一部は、レーザ光集光光学系22a及びビームスプリッタ345を介してλ/4板92に入射してもよい。λ/4板92に入射した円偏光は、偏光方向が紙面に対して平行な方向である直線偏光に変換され、偏光ビームスプリッタ91に入射してもよい。偏光ビームスプリッタ91は、偏光方向が紙面に対して平行な方向である直線偏光を高い透過率で透過させ、ターゲットセンサ40gに入射させてもよい。
 レーザ光集光光学系22aと、ターゲットセンサ40gに含まれる結像光学系48とによって、転写光学系が構成されてもよい。この転写光学系によって、発光部70gからの光が照射されたターゲット27の照射面の像がスリット板45のスリット又はその周辺の位置に形成されてもよい。例えば、プラズマ生成領域25からターゲット27の軌道の上流側に約1mm離れた位置にターゲット27が存在するときに、ターゲット27の像がスリット板45のスリットの位置に形成されるようにしてもよい。スリット板45のスリットを通過した光が、光センサ41に入射してもよい。
 第3の実施形態によれば、発光部70gからターゲット27の位置までの光路にも、ターゲット27の位置からターゲットセンサ40gまでの光路にも、レーザ光集光光学系22aが用いられている。従って、発光部70gからターゲット27に照射される光の進行方向と、ターゲット27から反射してターゲットセンサ40gに向かう光の進行方向とが、ターゲット27の付近においてほぼ反対方向となり得る。これにより、ターゲットセンサ40gによって検出されるターゲット27の像が鮮明になり得る。
 他の点については、図15を参照しながら説明された第2の実施形態と同様でよい。
7.第4の実施形態
 図17は、第4の実施形態におけるEUV光生成装置の構成を示す一部断面図である。第4の実施形態においては、発光部70hからターゲットセンサ40hまでの光路は図16を参照しながら説明された第3の実施形態とほぼ同様でよい。第4の実施形態においては、発光部70hが、スリット板77と、コリメータ79とを含んでもよい。ターゲットセンサ40hは、スリット板を含まなくてもよい。
 レーザ光集光光学系22aと、発光部70hに含まれるコリメータ79とによって、転写光学系が構成されてもよい。この転写光学系によって、ターゲット27の軌道の一部を含む領域にスリット板77のスリット77a(図8A、図8B)の像が形成されてもよい。この像が形成される領域(第2所定領域)は、Z方向に沿った長さよりもY方向に沿った長さが長い矩形状の領域となり得る。ターゲット27によって反射された光をターゲットセンサ40hによって検出することにより、ターゲット27を検出し得る。
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。

Claims (10)

  1.  貫通孔が設けられたチャンバ内の第1所定領域に向けて、ターゲット供給部からターゲットを出力し、
     前記ターゲット供給部と前記第1所定領域との間のターゲットの軌道の一部を含む第2所定領域に光を照射するとともに、前記第2所定領域から光センサに入射する光を検出することにより、ターゲットの移動方向に沿った長さよりも、ターゲットの移動方向に対して垂直且つ前記第2所定領域に照射される光の光路に対して垂直な方向の長さの方が長い領域である前記第2所定領域を通過するターゲットを検出し、
     前記第2所定領域を通過するターゲットを検出したタイミングに基づいて、前記第1所定領域に、前記貫通孔を通してパルスレーザ光を導入することにより、ターゲットに前記パルスレーザ光を照射してターゲットをプラズマ化し、極端紫外光を生成する、極端紫外光生成方法。
  2.  ターゲットにパルスレーザ光を照射してターゲットをプラズマ化することにより極端紫外光を生成するように構成された極端紫外光生成装置であって、
     貫通孔が設けられたチャンバと、
     前記貫通孔を通して前記チャンバ内の第1所定領域に前記パルスレーザ光を導入するように構成された導入光学系と、
     前記第1所定領域に向けてターゲットを出力するように構成されたターゲット供給部と、
     前記ターゲット供給部と前記第1所定領域との間のターゲットの軌道の一部を含む第2所定領域に光を照射するとともに、前記第2所定領域から入射する光を検出することにより、ターゲットの移動方向に沿った長さよりも、ターゲットの移動方向に対して垂直且つ前記第2所定領域に照射される光の光路に対して垂直な方向の長さの方が長い領域である前記第2所定領域を通過するターゲットを検出するように構成されたターゲットセンサと、
    を備える極端紫外光生成装置。
  3.  ターゲットにパルスレーザ光を照射してターゲットをプラズマ化することにより極端紫外光を生成するように構成された極端紫外光生成装置であって、
     貫通孔が設けられたチャンバと、
     前記貫通孔を通して前記チャンバ内の第1所定領域に前記パルスレーザ光を導入するように構成された導入光学系と、
     前記第1所定領域に向けてターゲットを出力するように構成されたターゲット供給部と、
     前記ターゲット供給部と前記第1所定領域との間のターゲットの軌道の一部を含む第2所定領域に、前記第2所定領域における光路の横断面がターゲットの移動方向に沿った方向よりもターゲットの移動方向に対して垂直な方向に長い光を照射するように構成された光源と、
     前記第2所定領域から入射する光を検出することにより、前記第2所定領域を通過するターゲットを検出するように構成された光センサと、
    を備える極端紫外光生成装置。
  4.  前記光センサは、前記第2所定領域を通過するターゲットの周囲を通過した光を検出するように構成された、請求項3記載の極端紫外光生成装置。
  5.  前記光センサは、前記第2所定領域を通過するターゲットによって反射された光を検出するように構成された、請求項3記載の極端紫外光生成装置。
  6.  ターゲットにパルスレーザ光を照射してターゲットをプラズマ化することにより極端紫外光を生成するように構成された極端紫外光生成装置であって、
     貫通孔が設けられたチャンバと、
     前記貫通孔を通して前記チャンバ内の第1所定領域に前記パルスレーザ光を導入するように構成された導入光学系と、
     前記第1所定領域に向けてターゲットを出力するように構成されたターゲット供給部と、
     前記ターゲット供給部と前記第1所定領域との間のターゲットの軌道の一部を含む第2所定領域に光を照射するように構成された光源と、
     前記第2所定領域を通過するターゲットの像を形成するように構成された転写光学系と、
     前記転写光学系によってターゲットの像が形成される位置に配置され、ターゲットの移動方向に沿った方向よりもターゲットの移動方向に対して垂直な方向に長い第3所定領域に前記転写光学系から入射する光を検出することにより、前記第2所定領域を通過するターゲットを検出するように構成された光センサと、
    を備える極端紫外光生成装置。
  7.  前記光センサは、
     前記転写光学系によってターゲットの像が形成される位置に配置され、前記第3所定領域に入射する光を通過させるスリットが形成され前記第3所定領域の周囲に入射する光の通過を制限するスリット板と、
     前記スリットを通過した光を検出する受光素子と、
    を含む、請求項6記載の極端紫外光生成装置。
  8.  前記光センサは、
     前記転写光学系によってターゲットの像が形成される位置に配置された受光素子であって、前記第3所定領域に受光部を有し、前記第3所定領域に入射する光を検出する前記受光素子を含む、請求項6記載の極端紫外光生成装置。
  9.  前記転写光学系は、前記光源と前記転写光学系との間に位置するターゲットの像を形成するように構成された、請求項7記載の極端紫外光生成装置。
  10.  前記転写光学系は、前記光源によって光を照射されたターゲットの照射面の像を形成するように構成された、請求項7記載の極端紫外光生成装置。
PCT/JP2013/072872 2012-09-11 2013-08-27 極端紫外光生成方法及び極端紫外光生成装置 WO2014042003A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014535478A JP6152109B2 (ja) 2012-09-11 2013-08-27 極端紫外光生成方法及び極端紫外光生成装置
US14/643,782 US9277635B2 (en) 2012-09-11 2015-03-10 Method for generating extreme ultraviolet light and device for generating extreme ultraviolet light

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-199360 2012-09-11
JP2012199360 2012-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/643,782 Continuation US9277635B2 (en) 2012-09-11 2015-03-10 Method for generating extreme ultraviolet light and device for generating extreme ultraviolet light

Publications (1)

Publication Number Publication Date
WO2014042003A1 true WO2014042003A1 (ja) 2014-03-20

Family

ID=50278124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072872 WO2014042003A1 (ja) 2012-09-11 2013-08-27 極端紫外光生成方法及び極端紫外光生成装置

Country Status (3)

Country Link
US (1) US9277635B2 (ja)
JP (1) JP6152109B2 (ja)
WO (1) WO2014042003A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013102A1 (ja) * 2014-07-25 2016-01-28 ギガフォトン株式会社 極端紫外光生成装置
WO2016079810A1 (ja) * 2014-11-18 2016-05-26 ギガフォトン株式会社 極端紫外光生成装置及び極端紫外光の生成方法
WO2017103980A1 (ja) * 2015-12-14 2017-06-22 ギガフォトン株式会社 極端紫外光生成装置
WO2017163315A1 (ja) * 2016-03-22 2017-09-28 ギガフォトン株式会社 ドロップレットタイミングセンサ
JPWO2016170972A1 (ja) * 2015-04-23 2018-02-15 ギガフォトン株式会社 ドロップレット検出器及び極端紫外光生成装置
KR20190128212A (ko) * 2017-03-20 2019-11-15 에이에스엠엘 네델란즈 비.브이. 극자외 광원에 대한 계측 시스템
US10481422B2 (en) 2016-11-18 2019-11-19 Gigaphoton Inc. Laser device and extreme ultraviolet light generation device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9426872B1 (en) * 2015-08-12 2016-08-23 Asml Netherlands B.V. System and method for controlling source laser firing in an LPP EUV light source
JP2023135426A (ja) 2022-03-15 2023-09-28 ギガフォトン株式会社 極端紫外光生成装置及び電子デバイスの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532228A (ja) * 2005-02-25 2008-08-14 サイマー インコーポレイテッド Euv光源ターゲット材料を処理する方法及び装置
JP2011003887A (ja) * 2009-05-21 2011-01-06 Gigaphoton Inc チャンバ装置におけるターゲット軌道を計測及び制御する装置及び方法
JP2011014913A (ja) * 2010-07-16 2011-01-20 Komatsu Ltd 極端紫外光源装置用ドライバレーザシステム
JP2012175006A (ja) * 2011-02-23 2012-09-10 Komatsu Ltd 光学装置、レーザ装置および極端紫外光生成装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378673B2 (en) 2005-02-25 2008-05-27 Cymer, Inc. Source material dispenser for EUV light source
US7372056B2 (en) 2005-06-29 2008-05-13 Cymer, Inc. LPP EUV plasma source material target delivery system
US8653437B2 (en) 2010-10-04 2014-02-18 Cymer, Llc EUV light source with subsystem(s) for maintaining LPP drive laser output during EUV non-output periods
DE10339495B4 (de) 2002-10-08 2007-10-04 Xtreme Technologies Gmbh Anordnung zur optischen Detektion eines bewegten Targetstromes für eine gepulste energiestrahlgepumpte Strahlungserzeugung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532228A (ja) * 2005-02-25 2008-08-14 サイマー インコーポレイテッド Euv光源ターゲット材料を処理する方法及び装置
JP2011003887A (ja) * 2009-05-21 2011-01-06 Gigaphoton Inc チャンバ装置におけるターゲット軌道を計測及び制御する装置及び方法
JP2011014913A (ja) * 2010-07-16 2011-01-20 Komatsu Ltd 極端紫外光源装置用ドライバレーザシステム
JP2012175006A (ja) * 2011-02-23 2012-09-10 Komatsu Ltd 光学装置、レーザ装置および極端紫外光生成装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013102A1 (ja) * 2014-07-25 2016-01-28 ギガフォトン株式会社 極端紫外光生成装置
WO2016013515A1 (ja) * 2014-07-25 2016-01-28 ギガフォトン株式会社 極端紫外光生成装置
JPWO2016013515A1 (ja) * 2014-07-25 2017-04-27 ギガフォトン株式会社 極端紫外光生成装置
US9686845B2 (en) 2014-07-25 2017-06-20 Gigaphoton Inc. Extreme ultraviolet light generation apparatus
WO2016079810A1 (ja) * 2014-11-18 2016-05-26 ギガフォトン株式会社 極端紫外光生成装置及び極端紫外光の生成方法
US10054861B2 (en) 2014-11-18 2018-08-21 Gigaphoton Inc. Extreme ultraviolet light generating apparatus and method for generating extreme ultraviolet light
JPWO2016079810A1 (ja) * 2014-11-18 2017-09-07 ギガフォトン株式会社 極端紫外光生成装置及び極端紫外光の生成方法
JPWO2016170972A1 (ja) * 2015-04-23 2018-02-15 ギガフォトン株式会社 ドロップレット検出器及び極端紫外光生成装置
US10271414B2 (en) 2015-04-23 2019-04-23 Gigaphoton Inc. Droplet detector and extreme ultraviolet light generating apparatus
WO2017103980A1 (ja) * 2015-12-14 2017-06-22 ギガフォトン株式会社 極端紫外光生成装置
US10126657B2 (en) 2015-12-14 2018-11-13 Gigaphoton Inc. Extreme ultraviolet light generating apparatus
WO2017163315A1 (ja) * 2016-03-22 2017-09-28 ギガフォトン株式会社 ドロップレットタイミングセンサ
US10866338B2 (en) 2016-03-22 2020-12-15 Gigaphoton Inc. Droplet timing sensor
US10481422B2 (en) 2016-11-18 2019-11-19 Gigaphoton Inc. Laser device and extreme ultraviolet light generation device
KR20190128212A (ko) * 2017-03-20 2019-11-15 에이에스엠엘 네델란즈 비.브이. 극자외 광원에 대한 계측 시스템
JP2020512577A (ja) * 2017-03-20 2020-04-23 エーエスエムエル ネザーランズ ビー.ブイ. 極端紫外線光源のためのメトロロジシステム
KR102482288B1 (ko) 2017-03-20 2022-12-27 에이에스엠엘 네델란즈 비.브이. 극자외 광원에 대한 계측 시스템
JP7240322B2 (ja) 2017-03-20 2023-03-15 エーエスエムエル ネザーランズ ビー.ブイ. 極端紫外線光源のためのメトロロジシステム

Also Published As

Publication number Publication date
US9277635B2 (en) 2016-03-01
JPWO2014042003A1 (ja) 2016-08-18
US20150189730A1 (en) 2015-07-02
JP6152109B2 (ja) 2017-06-21

Similar Documents

Publication Publication Date Title
JP6152109B2 (ja) 極端紫外光生成方法及び極端紫外光生成装置
US9468082B2 (en) Extreme ultraviolet light generation apparatus and control method for laser apparatus in extreme ultraviolet light generation system
JP5881345B2 (ja) 極端紫外光生成装置
JP6168797B2 (ja) 極端紫外光生成装置
US9622332B2 (en) Extreme ultraviolet light generation apparatus
WO2018131123A1 (ja) 極端紫外光生成システム
US10271414B2 (en) Droplet detector and extreme ultraviolet light generating apparatus
CN113966061A (zh) 极紫外光源中的目标扩展速率控制
US10712666B2 (en) Extreme ultraviolet light generation device
US10420198B2 (en) Extreme ultraviolet light generating apparatus
JP6557661B2 (ja) 極端紫外光生成装置
US10531550B2 (en) Extreme ultraviolet light generation device
US9578730B2 (en) Extreme ultraviolet light generation apparatus and extreme ultraviolet light generation system
WO2017126301A1 (ja) 極端紫外光生成装置
WO2015166524A1 (ja) 極端紫外光生成装置
JP6676066B2 (ja) 極端紫外光生成装置
JPH03206608A (ja) ビーム露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535478

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836960

Country of ref document: EP

Kind code of ref document: A1