WO2017163315A1 - ドロップレットタイミングセンサ - Google Patents
ドロップレットタイミングセンサ Download PDFInfo
- Publication number
- WO2017163315A1 WO2017163315A1 PCT/JP2016/059012 JP2016059012W WO2017163315A1 WO 2017163315 A1 WO2017163315 A1 WO 2017163315A1 JP 2016059012 W JP2016059012 W JP 2016059012W WO 2017163315 A1 WO2017163315 A1 WO 2017163315A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- droplet
- light source
- amount
- timing sensor
- Prior art date
Links
- 238000005286 illumination Methods 0.000 claims abstract description 48
- 230000008859 change Effects 0.000 claims abstract description 6
- 238000009826 distribution Methods 0.000 claims abstract description 3
- 238000005070 sampling Methods 0.000 claims description 17
- 238000012545 processing Methods 0.000 abstract description 19
- 230000001678 irradiating effect Effects 0.000 abstract description 3
- 230000003287 optical effect Effects 0.000 description 30
- 238000000605 extraction Methods 0.000 description 17
- 230000007423 decrease Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 14
- 239000013077 target material Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 230000009471 action Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000009499 grossing Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000036278 prepulse Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V8/00—Prospecting or detecting by optical means
- G01V8/10—Detecting, e.g. by using light barriers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G2/00—Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
- H05G2/001—Production of X-ray radiation generated from plasma
- H05G2/003—Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state
- H05G2/006—Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state details of the ejection system, e.g. constructional details of the nozzle
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G2/00—Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
- H05G2/001—Production of X-ray radiation generated from plasma
- H05G2/008—Production of X-ray radiation generated from plasma involving an energy-carrying beam in the process of plasma generation
Definitions
- the present disclosure relates to a droplet timing sensor that detects a droplet passage timing in an extreme ultraviolet light generation apparatus.
- the EUV light generation apparatus includes an LPP (Laser Produced Plasma) type apparatus that uses plasma generated by irradiating a target material with pulsed laser light, and a DPP (Discharge Produced Plasma) that uses plasma generated by discharge.
- LPP Laser Produced Plasma
- DPP discharge Produced Plasma
- a droplet timing sensor is intermittently supplied into a chamber of an extreme ultraviolet light generation device, and detects a timing at which a droplet that generates extreme ultraviolet light upon irradiation with laser light passes a predetermined position.
- a sensor for detecting a change in the amount of received light by receiving a light source unit that irradiates illumination light at a predetermined position with respect to a droplet supplied into the chamber and illumination light after passing through the predetermined position.
- a light receiving unit, and a light source control unit that obtains a frequency distribution for the received light amount measured a plurality of times with time and controls the output of the light source unit based on the maximum received light amount.
- a droplet timing sensor is a timing at which a droplet that is intermittently supplied into a chamber of an extreme ultraviolet light generation device and generates extreme ultraviolet light when irradiated with laser light passes through a predetermined position.
- a light source unit that irradiates illumination light at a predetermined position to a droplet supplied into the chamber, and receives illumination light after passing through the predetermined position, and detects a change in the amount of light received And only the received light amount whose difference from the target value is within a predetermined value is extracted from the received light amount measured multiple times over time, and the light source unit based on the extracted received light amount
- a light source control unit for controlling the output of the light source.
- a droplet timing sensor is intermittently supplied into a chamber of an extreme ultraviolet light generation device, and a droplet that generates extreme ultraviolet light when irradiated with laser light passes through a predetermined position.
- a sensor that detects timing, and receives a light source unit that irradiates illumination light at a predetermined position with respect to a droplet supplied into the chamber, and receives illumination light after passing through the predetermined position, and changes the amount of received light.
- the light receiving unit to be detected and the signal output from the light receiving unit with the passage of time are sampled only during a period excluding the period in which the signal is affected by the passage of the droplet to obtain the received light amount.
- a light source control unit for controlling the output of the light source unit.
- FIG. 1 is a schematic side view showing the overall configuration of a typical EUV light generation apparatus.
- FIG. 2 is a schematic diagram illustrating a droplet timing sensor as a comparative example.
- FIG. 3 is a timing chart showing output timings of various signals in the EUV light generation apparatus of FIG.
- FIG. 4 is a schematic diagram showing a light source control unit of the droplet timing sensor shown in FIG.
- FIG. 5 is a diagram for explaining the operation of the light source control unit shown in FIG.
- FIG. 6 is a schematic diagram illustrating another example of the light source control unit applied to the EUV light generation apparatus illustrated in FIG. 1.
- FIG. 1 is a schematic side view showing the overall configuration of a typical EUV light generation apparatus.
- FIG. 2 is a schematic diagram illustrating a droplet timing sensor as a comparative example.
- FIG. 3 is a timing chart showing output timings of various signals in the EUV light generation apparatus of FIG.
- FIG. 4 is a schematic diagram showing a light source control unit of the
- FIG. 7 is a diagram for explaining the operation of the light source control unit shown in FIG.
- FIG. 8 is a schematic diagram illustrating a light source control unit of the droplet timing sensor according to the first embodiment.
- FIG. 9 is a diagram for explaining the operation of the light source control unit shown in FIG.
- FIG. 10 is a schematic diagram illustrating a light source control unit of the droplet timing sensor according to the second embodiment.
- FIG. 11 is a flowchart illustrating a flow of processing performed by the droplet timing sensor according to the second embodiment.
- FIG. 12 is a schematic diagram illustrating a droplet timing sensor according to the third embodiment.
- FIG. 13 is a diagram for explaining the operation of the droplet timing sensor shown in FIG. FIG.
- FIG. 14 is a schematic diagram illustrating a light source control unit of the droplet timing sensor according to the fourth embodiment.
- FIG. 15 is a diagram for explaining the operation of the light source control unit shown in FIG.
- FIG. 16 is a schematic diagram illustrating a light source control unit of the droplet timing sensor according to the fifth embodiment.
- FIG. 17 is a diagram for explaining the operation of the light source control unit shown in FIG.
- FIG. 1 is a schematic side view showing the overall configuration of a typical extreme ultraviolet (EUV) light generation device.
- the EUV light generation apparatus shown in the figure is for supplying EUV light used as exposure light to the exposure apparatus 100. That is, the EUV light generation apparatus is configured by elements other than the exposure apparatus 100 and the exposure apparatus control unit 101 in FIG.
- the EUV light generation apparatus of this example is an apparatus that employs a laser generated plasma (LPP) system that generates EUV light by irradiating a target material with laser light to excite the target material.
- LPP laser generated plasma
- the EUV light generation apparatus includes an EUV chamber 1, an EUV light generation control unit 2, a laser device 3, a light transmission optical system (beam delivery system) 4, a droplet supply unit 5, and a droplet timing sensor (hereinafter referred to as a droplet timing sensor). 6) (referred to simply as a timing sensor).
- the EUV chamber 1 is a chamber for generating EUV light therein, and is preferably a vacuum chamber.
- the EUV chamber 1 includes a stage 10, a first plate 11, a second plate 12 held in the EUV chamber 1 via the stage 10, and a highly reflective off-axis parabolic mirror held in the second plate 12. 13, a highly reflective flat mirror 14 similarly held by the second plate 12, and a window 15 for introducing laser light.
- the first plate 11 is provided with a through hole 16 for introducing laser light.
- the high reflection off-axis paraboloid mirror 13 and the high reflection flat mirror 14 constitute a laser condensing optical system 17 for condensing a pulsed laser beam L described later.
- the EUV chamber 1 further includes an EUV light collector mirror holder 20, an EUV light collector mirror 21 held by the EUV light collector mirror holder 20, and a target receiver 22.
- the EUV light collecting mirror 21 is a mirror having, for example, a spheroidal reflecting surface, and the first focal point is located in the plasma generation region 23 and the second focal point is located in the intermediate condensing point (IF) 24.
- IF intermediate condensing point
- the laser device 3 generates pulsed laser light L for exciting the target material.
- an oscillation amplification type laser apparatus master oscillator power amplifier type laser apparatus
- a combination of a YAG (Yttrium Aluminum Garnet) laser device that generates a pre-pulse laser beam and a CO 2 laser device that generates a main pulse laser beam can be applied as the laser device 3.
- other laser devices may be used as the laser device 3.
- the pulse laser beam L output from the laser device 3 is a laser beam having a pulse width of about several ns to several tens of ns and a frequency of about 10 kHz to 100 kHz, for example.
- the light transmission optical system 4 reflects the pulse laser light L output from the laser device 3 and changes the traveling direction thereof, and the pulse laser light L reflected by the first high reflection mirror 91. And a second highly reflective mirror 92 that reflects toward the window 15.
- the droplet supply unit 5 supplies a target material such as tin (Sn) or lithium (Li) used for generating EUV light into the EUV chamber 1 as a spherical droplet DL.
- the droplet supply unit 5 includes a control unit 30, a pressure regulator 31, a tank 32 for storing a molten target material, a heater 33 for melting the target material, and a nozzle 34 for discharging the molten target material. And a piezo element 35 that vibrates the side wall of the nozzle 34.
- the droplet DL is generated intermittently and periodically and travels on the droplet trajectory Q in the EUV chamber 1.
- the timing sensor 6 includes a light source unit 42 including a light source 40 that emits illumination light F and an illumination optical system 41.
- the illumination optical system 41 condenses the illumination light F at a predetermined position P on the droplet trajectory Q. Therefore, if the droplet DL is present at the position P, the droplet DL partially blocks the illumination light F.
- the timing sensor 6 includes a light receiving unit 45 including a light receiving optical system 43 that collects the illumination light F and a light sensor 44 that detects the collected illumination light F.
- the light receiving unit 45 is disposed so as to face the light source unit 42.
- FIG. 2 shows the configurations of the light source unit 42 and the light receiving unit 45 described above in more detail.
- the illumination optical system 41 includes, for example, a condenser lens 41a.
- the illumination light F that has passed through the condenser lens 41a passes through the window 46 and is condensed at the position P.
- the light receiving optical system 43 is composed of, for example, a condenser lens 43a.
- the illumination light F diverged after being condensed at the position P passes through the window 47 and enters the optical sensor 44.
- the target material in the tank 32 is heated by the heater 33 to a predetermined temperature equal to or higher than the melting point.
- a predetermined temperature equal to or higher than the melting point.
- the controller 30 may control the operation of the heater 33 to adjust the temperature.
- the operation of the pressure regulator 31 is controlled by the control unit 30, and the pressure in the tank 32 is maintained at a pressure at which the melted target material jet is output from the nozzle 34 at a predetermined speed.
- the controller 30 applies a droplet supply signal, which is a voltage signal having a predetermined waveform, to the piezo element 35 via a piezo power supply (not shown). As a result, the piezoelectric element 35 vibrates and this vibration is applied to the nozzle 34. As described above, the jet output from the nozzle 34 is divided at a predetermined cycle by the vibration of the nozzle 34, and the droplet DL is intermittently supplied.
- a droplet supply signal which is a voltage signal having a predetermined waveform
- the illumination light F output from the light source unit 42 of the timing sensor 6 is received by the light receiving unit 45.
- the droplet DL generated and dropped as described above passes a predetermined position P in the trajectory Q
- the illumination light F is blocked by the droplet DL.
- the received light amount of the illumination light F detected by the light receiving unit 45 decreases, and the output signal output from the light receiving unit 45 decreases in signal level corresponding to the decrease in the received light amount.
- the timing at which the droplet DL has passed the predetermined position P is indicated.
- the output signal output from the light receiving unit 45 is input to the control unit 30 as the passage timing signal S1.
- the control unit 30 When detecting a decrease in the signal level of the input passage timing signal S1, the control unit 30 outputs the light emission trigger signal S2 with a predetermined time delay from the detection time point.
- FIG. 3 is a timing chart showing output timings of the output signal, threshold voltage, passage timing signal S1, and light emission trigger signal S2 of the light receiving unit 45 described above.
- the horizontal axis of the chart showing each signal indicates time, and the vertical axis indicates the signal level.
- the timing sensor 6 generates a detection pulse that becomes the passage timing signal S1 during a period in which the output signal of the light receiving unit 45 is lower than the reference value and lower than the threshold voltage. That is, the passage timing signal S1 is turned on.
- the light emission trigger signal S2 is turned on in synchronization with the passage timing signal S1.
- the light emission trigger signal S2 is input to the laser device 3.
- the laser device 3 When the light emission trigger signal S2 is input, the laser device 3 outputs the pulsed laser light L by, for example, opening an optical shutter included therein.
- the pulse laser beam L is reflected by the first high reflection mirror 91 and the second high reflection mirror 92 of the light transmission optical system 4, then passes through the window 15 and enters the EUV chamber 1.
- the pulsed laser light L is reflected by the high reflection off-axis paraboloidal mirror 13 and the high reflection flat mirror 14 of the laser condensing optical system 17 and then passes through an opening provided in the central portion of the EUV light condensing mirror 21. Then, the light travels on the optical axis of the EUV light collector mirror 21.
- the pulsed laser light L is condensed in the plasma generation region 23 by the action of the high reflection off-axis parabolic mirror 13.
- the droplet DL that has reached the plasma generation region 23 can be turned into plasma upon irradiation with the condensed pulsed laser light L. Then, EUV light is generated from this plasma.
- the droplet DL that has not been irradiated with the pulse laser beam L is received by the target receiver 22.
- the droplet DL is periodically generated, and the pulse laser beam L is output every time the droplet DL is detected by the timing sensor 6, so that the EUV light is periodically generated.
- the EUV light periodically generated in this manner is collected at the intermediate condensing point 24 and then enters the exposure apparatus 100.
- incident EUV light is used for semiconductor exposure or the like.
- the plasma generation region 23 may be moved in accordance with a command from the exposure apparatus 100.
- the time delay from when the control unit 30 detects a decrease in the signal level of the passage timing signal S1 to when the light emission trigger signal S2 is output is changed. You may let them.
- the stage 10 is operated, and the high reflection off-axis paraboloidal mirror 13 and the high reflection flat mirror 14 are passed through the second plate 12. May be moved in a plane perpendicular to the droplet trajectory Q.
- the passage timing signal S ⁇ b> 1 output from the optical sensor 44 is input to the light source controller 300.
- the light source control unit 300 constitutes a part of the timing sensor 6 shown in FIG.
- the light source control unit 300 controls the operation of the power source 49 of the light source 40 so that when the droplet DL does not exist at the position P on the droplet trajectory Q, the received light amount of the illumination light F detected by the optical sensor 44 is constant. Let it be maintained. That is, for example, when contaminants adhere to the windows 46 and 47 shown in FIG. 2, the amount of light received by the optical sensor 44 may decrease, and the passage of the droplet DL may not be detected correctly.
- the passage timing of the droplet DL is detected based on a change in the magnitude relationship between the output signal of the optical sensor 44 of the light receiving unit 45 and a certain threshold voltage.
- the threshold voltage is set to a value as close as possible to the output of the optical sensor 44 at the normal time (when no droplet is detected). Therefore, if the amount of light received by the optical sensor 44 decreases and the sensor output decreases to near the threshold voltage, it becomes difficult to accurately detect the passage timing of the droplet DL.
- the light source control unit 300 is provided separately from the control unit 30 of FIG. 1, but the control unit 30 may be configured to function as a light source control unit.
- FIG. 4 shows a specific configuration of the light source control unit 300.
- this configuration includes an amplifier 71, an A / D converter 72, an average value calculation unit 73, and an output unit 78.
- 4 is an element constituting the optical sensor 44 of FIG.
- the output signal of the light receiving element 70 is amplified by an amplifier 71.
- the amplified signal is sampled and digitized by the A / D converter 72 at a predetermined period, and the digitized light amount signal is input to the average value calculation unit 73.
- the average value calculation unit 73 calculates an average value for a predetermined number, for example, about 100, of digitized light quantity signals that are sequentially input, and outputs the average value as the amount of received light.
- the output unit 78 operates the power supply 49 of the light source 40 so as to increase the intensity of the illumination light F when the amount of received light decreases, and to decrease the intensity of the illumination light F when the amount of received light increases.
- the power supply 49 is controlled accordingly.
- FIGS. 5A, 5B and 5C show the output signals of the light receiving element 70 amplified by the amplifier 71 shown in FIG. Black dots indicate sampling points for sampling by the A / D converter 72.
- FIG. 5 the horizontal axis indicates time, and (A), (B), and (C) each show a schematic waveform of the output signal that indicates the signal level in height.
- a simplified display method is employed without showing the horizontal axis and the vertical axis for each signal. However, if the horizontal axis and the vertical axis are shown for each signal, the display is the same as FIG. This simplified display method is similarly employed in FIGS. 7, 9, 13, 15 and 17 described later.
- the droplet DL is abbreviated as “DL” (the same applies hereinafter).
- FIG. 5A shows an output signal of the light receiving element 70 when the droplet DL does not pass through the position P on the droplet trajectory Q. In this case, as shown in the figure, the output signal of the light receiving element 70 does not fluctuate, so the average value of the output signal, that is, the average value of the amount of received light can be obtained correctly.
- FIG. 5 shows an output signal of the light receiving element 70 when the droplet DL passes through the position P on the droplet trajectory Q.
- the illumination light F is blocked by the droplet DL, so that the output signal of the light receiving element 70 periodically decreases as illustrated. Therefore, the average value of the received light amount should be the same as the received light amount indicated by the highest level output signal in FIG.
- FIG. 5 shows an output signal of the light receiving element 70 when the droplet DL passes through the position P on the droplet trajectory Q and also emits EUV light.
- the illumination light F is blocked by the droplet DL, so that the output signal of the light receiving element 70 periodically decreases as illustrated.
- the EUV light may be detected by the light receiving element 70 and the output signal of the light receiving element 70 may increase.
- the frequency with which the increased output signal is sampled is the frequency with which the output signal that decreases as described above is sampled. Considerably lower than. Therefore, in this case as well, the average value of the amount of received light should eventually be the same as the amount of received light indicated by the highest level output signal in FIG.
- the passage timing of the droplet DL is usually detected by comparing the output signal of the optical sensor 44 of the light receiving unit 45 with a certain threshold voltage and changing the magnitude relationship between them.
- the intensity of the illumination light F changes accordingly. It is possible to do.
- the above magnitude relationship depends not only on the passage and non-passage of the droplet DL, but also changes depending on the intensity of the illumination light F, it is difficult to correctly detect the passage timing of the droplet DL. Become.
- the output signal of the light receiving element 70 amplified by the amplifier 71 is smoothed by the filter circuit 77 including the resistor 74 and the capacitor 75 shown in FIG.
- the waveform of the output signal of the light receiving element 70 is shown in FIG. 7A, and the waveform after the smoothing of the output signal is shown in FIG.
- the average value of the signal after smoothing differs depending on whether or not there is no passage of the droplet DL, it is possible to detect the passage timing of the droplet DL correctly as described above. It becomes difficult.
- Embodiment 1 3.1 Configuration of Embodiment 1
- the timing sensor of the present embodiment is different from the timing sensor 6 of the comparative example in that a light source control unit 301 having a configuration different from the light source control unit 300 illustrated in FIG. 4 is applied.
- FIG. 8 shows the configuration of the light source control unit 301.
- the light source control unit 301 illustrated in FIG. 8 includes a statistical processing unit 76 between the A / D converter 72 and the average value calculation unit 73 as compared with the light source control unit 300 illustrated in FIGS. 2 and 4. It is different.
- the output signal of the light receiving element 70 is amplified by the amplifier 71.
- the amplified signal is sampled and digitized by the A / D converter 72 at a predetermined period.
- the digitized light amount signal (sample data) is input to the statistical processing unit 76.
- the statistical processing unit 76 creates a histogram of the input light quantity signal, and extracts only the light quantity signal of the highest class from the histogram.
- These extracted signals with the maximum frequency are input to the average value calculation unit 73.
- the average value calculation unit 73 calculates an average value related only to these extracted signals, and outputs the average value as the amount of received light.
- the average value indicating the amount of received light is used for the light source control unit 301 to control the operation of the power supply 49 shown in FIG. 2 as in the comparative example. That is, the output unit 78 operates the power source 49 of the light source 40 so as to increase the intensity of the illumination light F when the average value decreases and to decrease the intensity of the illumination light F when the average value increases. Is controlled.
- FIG. 9A shows a schematic waveform of the amplified light amount signal, and indicates sampling points in sampling of the light amount signal by the A / D converter 72 by black dots.
- FIG. 9B shows an example of the histogram. Note that FIG. 9B shows that the digitized light amount signal (sample data) is a voltage signal.
- the sampling period is set to be shorter than the period in which the droplet DL passes through the predetermined position P shown in FIG.
- a large number of light amount signals that are not affected by disturbances such as light emission are sampled. Therefore, in the above histogram, the frequency of such a light amount signal is maximized. Therefore, if the operation of the power source 49 is controlled based on the average value of the signals extracted from the histogram as described above, the light emission amount of the light source 40 is favorably controlled to an appropriate value that is not affected by the disturbance. Will be.
- the sampling period is preferably set shorter than the period in which the droplet DL passes through the predetermined position P.
- the sampling period is preferably 1 ⁇ 2 or less, more preferably about 5 or less. Passing period 10-5 seconds of the droplet DL is 100kHz when converted into frequency. In that case, it is desirable to set the sampling frequency to 500 kHz or more.
- Embodiment 2 4.1 Configuration of Second Embodiment
- the timing sensor of the present embodiment has a configuration in which, for example, a light source control unit 302 shown in FIG. 10 is used instead of the light source control unit 301 shown in FIG.
- the light source control unit 302 is different from the light source control unit 301 of FIG. 8 in that a signal extraction unit 79 is provided instead of the statistical processing unit 76 and the average value calculation unit 73.
- FIG. 11 is a flowchart showing a flow of processing performed by the signal extraction unit 79.
- the target value M is extracted without discarding any amount of the light amount signal (indicated as “data D” in FIG. 11) sampled and digitized by the A / D converter 72 of FIG. 10 in a predetermined cycle. It is a value for determining.
- step SP3 the signal extraction unit 79 captures the light amount signal digitized by the A / D converter 72, that is, the data D.
- step SP4 the signal extraction unit 79 determines whether or not the absolute value
- the signal extraction unit 79 performs the same determination on the newly acquired data D in step SP4. If it is determined that
- > S is not satisfied, the signal extraction unit 79 stores the data D as data Dn regarding the nth sample in step SP5. This storage is performed using, for example, the internal memory of the light source control unit 302 as a storage destination. Thereafter, in step SP5, the signal extraction unit 79 increases the number of samples n by 1 so that n n + 1.
- step SP6 the signal extraction unit 79 determines whether or not the sample number n has reached a predetermined sample number upper limit.
- the signal extraction unit 79 determines whether n> 100. If n> 100 is not true, the signal extraction unit 79 repeats the processing after step SP3.
- the signal extraction unit 79 calculates an average value H of 100 data D in step SP7. In this way, in step SP7, the average value H is calculated after 100 pieces of data D are accumulated.
- step SP8 the signal extraction unit 79 outputs the average value H as the amount of received light, and replaces the target value M with H at the same time. Thereafter, the flow of processing returns to step SP2, and the processing after step SP2 is repeated.
- FIG. 12 is a schematic side view showing peripheral portions of the light source 40 and the optical sensor 44 of the timing sensor according to the present embodiment.
- the passage timing signal S1 is obtained based on the illumination light F reflected by the droplet DL. That is, the timing sensor according to the present embodiment partially reflects the illumination light F emitted from the light source 40 to travel toward the droplet DL, and partially reflects the illumination light F reflected by the droplet DL.
- a mirror 93 is included.
- the configuration of the light source control unit 301 is the same as that of the light source control unit 301 shown in FIG.
- Embodiment 3 the illumination light F reflected by the droplet DL is detected by the optical sensor 44.
- the other operations are basically the same as those in the timing sensor of the first embodiment.
- FIG. 13A shows a schematic waveform of the light amount signal amplified by the amplifier 71 (see FIG. 8) of the light source control unit 301 and the light amount by the A / D converter 72. Sampling points in signal sampling are indicated by black dots.
- FIG. 13B shows an example of a histogram created by the statistical processing unit 76 (see FIG. 8).
- the light amount signal includes disturbance due to DL reflected light, that is, illumination light F reflected by the droplet DL, and disturbance due to EUV light emission.
- the statistical processing unit 76 creates a histogram of the light quantity signal, and extracts only the light quantity signal of the highest class from the histogram. And since the average value regarding only these extracted signals is calculated by the average value calculation unit 73 and the average value is used as the amount of received light, the light emission amount of the light source 40 is good at an appropriate value not affected by the disturbance. Controlled.
- FIG. 14 shows the light source control unit 303 of the timing sensor according to the present embodiment.
- the light source control unit 303 includes an amplifier 71, an A / D converter 72, and an average value calculation unit 73 similar to those shown in FIG.
- the light source control unit 303 further receives a comparator 80 that compares the output of the amplifier 71 with a threshold voltage, a droplet detection signal output from the comparator 80 at the D terminal, and a D / D clock that is received at the clock (CLK) terminal.
- a flip-flop 81 and an AND gate 82 to which an output from the Q terminal of the D-flip-flop 81 and the A / D clock are input.
- an AND output of the signal obtained by synchronizing the droplet detection signal with the A / D clock via the D-flip flop 81 and the A / D clock is used as the A / D converter 72 A / D clock.
- An A / D start signal for starting D conversion is used.
- FIG. 15A shows a schematic waveform of the droplet passage timing signal S1 output from the light receiving element 70 and amplified by the amplifier 71
- FIG. The schematic waveform of the droplet detection signal to be output (C) in the figure shows the schematic waveform of the A / D clock
- (D) in the figure shows the schematic waveform of the output of the D-flip-flop 81
- FIG. (E) of FIG. 4 shows a schematic waveform of the A / D start signal inputted to the A / D converter 72 from the AND gate 82
- the period during which the light amount signal is reduced by the passage of the droplet DL is A / D.
- the light quantity signal is not sampled by the converter 72.
- the light amount signal that has decreased due to the passage of the droplet DL is not sampled. Therefore, also in this case, the light emission amount of the light source 40 is controlled to an appropriate value without being affected by the disturbance of the passage of the droplet DL.
- FIG. 16 shows the light source control unit 304 of the timing sensor according to the present embodiment.
- the light source control unit 304 further compares the output of the amplifier 71 with the second threshold voltage with respect to the light source control unit 303 shown in FIG.
- a D-flip-flop 86 that receives the A / D clock at the clock (CLK) terminal.
- the output of the D-flip flop 86 is input to the AND gate 82 together with the output of the D-flip flop 81 and the A / D clock.
- an AND output of the signal obtained by synchronizing the droplet detection signal with the A / D clock via the D-flip flop 81 and the A / D clock is used as the A / D converter 72 A / D clock.
- An A / D start signal for starting D conversion is used.
- FIG. 17A shows a schematic waveform of the droplet passage timing signal S1 output from the light receiving element 70 and amplified by the amplifier 71
- FIG. The schematic waveform of the droplet detection signal to be output (C) in the figure shows the schematic waveform of the A / D clock, and (D) in the figure shows the outline of the output of the D flip-flop 86 that is affected by the EUV light.
- the waveform (E) shows the schematic waveform of the output of the D-flip flop 81 affected by the droplet passage, and (F) shows the waveform A input from the AND gate 82 to the A / D converter 72.
- the schematic waveform of the / D start signal, and (G) in the figure shows the timing of the light amount signal sampling performed in the A / D converter 72.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- X-Ray Techniques (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
【課題】極端紫外光発生装置においてドロップレットの通過タイミングを、光源部からドロップレットに照射した光を受光して検出するドロップレットタイミングセンサにおいて、受光量を一定化する光源制御から、ドロップレット通過の影響を排除する。 【解決手段】ドロップレットタイミングセンサは、ドロップレットに対して、所定位置において照明光を照射する光源部と、上記所定位置を経た後の照明光を受光し、受光量の変化を検出する受光部(70)と、時間経過に伴って複数回測定された受光量について統計処理部(76)により度数分布を求め、最大頻度の受光量に基づいて光源部の出力を制御する光源制御部(301)とを含む。
Description
本開示は、極端紫外光生成装置において、ドロップレットの通過タイミングを検出するドロップレットタイミングセンサに関する。
近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、20nm以下の微細加工が要求されるようになる。このため、例えば20nm以下の微細加工の要求に応えるべく、波長13.5nmの極端紫外(EUV)光を生成する極端紫外光生成装置と縮小投影反射光学系(Reduced Projection Reflective Optics)とを組み合わせた露光装置の開発が期待されている。
EUV光生成装置としては、ターゲット物質にパルスレーザ光を照射することによって生成されるプラズマが用いられるLPP(Laser Produced Plasma)式の装置と、放電によって生成されるプラズマが用いられるDPP(Discharge Produced Plasma)式の装置と、電子加速器から出力される電子を用いた自由電子レーザ(Free Electron Laser)装置の3種類の装置が提案されている。
本開示の一態様によるドロップレットタイミングセンサは、極端紫外光生成装置のチャンバ内に断続的に供給され、レーザ光の照射を受けて極端紫外光を発生するドロップレットが所定位置を通過するタイミングを検出するセンサであって、チャンバ内に供給されたドロップレットに対して、所定位置において照明光を照射する光源部と、所定位置を経た後の照明光を受光し、受光量の変化を検出する受光部と、時間経過に伴って複数回測定された受光量について度数分布を求め、最大頻度の受光量に基づいて光源部の出力を制御する光源制御部とを含む。
本開示の別の態様によるドロップレットタイミングセンサは、極端紫外光生成装置のチャンバ内に断続的に供給され、レーザ光の照射を受けて極端紫外光を発生するドロップレットが所定位置を通過するタイミングを検出するセンサであって、チャンバ内に供給されたドロップレットに対して、所定位置において照明光を照射する光源部と、所定位置を経た後の照明光を受光し、受光量の変化を検出する受光部と、時間経過に伴って複数回測定された受光量から、目標値との差が所定値以内に収まっている受光量のみを抽出し、その抽出された受光量に基づいて光源部の出力を制御する光源制御部とを含む。
本開示のさらに別の態様によるドロップレットタイミングセンサは、極端紫外光生成装置のチャンバ内に断続的に供給され、レーザ光の照射を受けて極端紫外光を発生するドロップレットが所定位置を通過するタイミングを検出するセンサであって、チャンバ内に供給されたドロップレットに対して、所定位置において照明光を照射する光源部と、所定位置を経た後の照明光を受光し、受光量の変化を検出する受光部と、時間経過に伴って前記受光部から出力される信号を、この信号がドロップレットの通過の影響を受ける期間を除いた期間のみサンプリングして受光量を求め、その受光量に基づいて光源部の出力を制御する光源制御部とを含む。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、典型的なEUV光生成装置の全体構成を示す概略側面図である。
図2は、比較例としてのドロップレットタイミングセンサを示す概略図である。
図3は、図1のEUV光生成装置における各種信号の出力タイミングを示すタイミングチャートである。
図4は、図2に示したドロップレットタイミングセンサの光源制御部を示す概略図である。
図5は、図4に示した光源制御部の作用を説明する図である。
図6は、図1に示したEUV光生成装置に適用される光源制御部の別の例を示す概略図である。
図7は、図6に示した光源制御部の作用を説明する図である。
図8は、実施形態1に係るドロップレットタイミングセンサの光源制御部を示す概略図である。
図9は、図8に示した光源制御部の作用を説明する図である。
図10は、実施形態2に係るドロップレットタイミングセンサの光源制御部を示す概略図である。
図11は、実施形態2に係るドロップレットタイミングセンサが行う処理の流れを示すフローチャートである。
図12は、実施形態3に係るドロップレットタイミングセンサを示す概略図である。
図13は、図12に示したドロップレットタイミングセンサの作用を説明する図である。
図14は、実施形態4に係るドロップレットタイミングセンサの光源制御部を示す概略図である。
図15は、図14に示した光源制御部の作用を説明する図である。
図16は、実施形態5に係るドロップレットタイミングセンサの光源制御部を示す概略図である。
図17は、図16に示した光源制御部の作用を説明する図である。
<目次>
1.EUV光生成装置の全体説明
1.1 構成
1.2 動作
2.比較例
2.1 構成
2.2 動作
2.3 課題
3.実施形態1
3.1 実施形態1の構成
3.2 実施形態1の動作
3.3 実施形態1の作用・効果
4.実施形態2
4.1 実施形態2の構成
4.2 実施形態2の動作
4.3 実施形態2の作用・効果
5.実施形態3
5.1 実施形態3の構成
5.2 実施形態3の動作
5.3 実施形態3の作用・効果
6.実施形態4
6.1 実施形態4の構成
6.2 実施形態4の動作
6.3 実施形態4の作用・効果
7.実施形態5
7.1 実施形態5の構成
7.2 実施形態5の動作
7.3 実施形態5の作用・効果
1.EUV光生成装置の全体説明
1.1 構成
1.2 動作
2.比較例
2.1 構成
2.2 動作
2.3 課題
3.実施形態1
3.1 実施形態1の構成
3.2 実施形態1の動作
3.3 実施形態1の作用・効果
4.実施形態2
4.1 実施形態2の構成
4.2 実施形態2の動作
4.3 実施形態2の作用・効果
5.実施形態3
5.1 実施形態3の構成
5.2 実施形態3の動作
5.3 実施形態3の作用・効果
6.実施形態4
6.1 実施形態4の構成
6.2 実施形態4の動作
6.3 実施形態4の作用・効果
7.実施形態5
7.1 実施形態5の構成
7.2 実施形態5の動作
7.3 実施形態5の作用・効果
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成および動作の全てが本開示の構成および動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.EUV光生成装置の全体説明
1.1 構成
図1は、典型的な極端紫外(EUV)光生成装置の全体構成を示す概略側面図である。同図に示すEUV光生成装置は、露光装置100に露光光として利用されるEUV光を供給するためのものである。すなわち、図1中の露光装置100および露光装置制御部101以外の要素により、EUV光生成装置が構成されている。本例のEUV光生成装置は、レーザ光をターゲット物質に照射してターゲット物質を励起することによりEUV光を発生させる、レーザ生成プラズマ(LPP)方式を採用した装置である。このEUV光生成装置は、EUVチャンバ1と、EUV光生成制御部2と、レーザ装置3と、送光光学系(ビームデリバリシステム)4と、ドロップレット供給部5と、ドロップレットタイミングセンサ(以下単にタイミングセンサという)6とを含む。
1.1 構成
図1は、典型的な極端紫外(EUV)光生成装置の全体構成を示す概略側面図である。同図に示すEUV光生成装置は、露光装置100に露光光として利用されるEUV光を供給するためのものである。すなわち、図1中の露光装置100および露光装置制御部101以外の要素により、EUV光生成装置が構成されている。本例のEUV光生成装置は、レーザ光をターゲット物質に照射してターゲット物質を励起することによりEUV光を発生させる、レーザ生成プラズマ(LPP)方式を採用した装置である。このEUV光生成装置は、EUVチャンバ1と、EUV光生成制御部2と、レーザ装置3と、送光光学系(ビームデリバリシステム)4と、ドロップレット供給部5と、ドロップレットタイミングセンサ(以下単にタイミングセンサという)6とを含む。
上記EUVチャンバ1は、その内部でEUV光を生成するためのチャンバであり、好ましくは真空チャンバとされる。EUVチャンバ1は、ステージ10と、第1プレート11と、ステージ10を介してEUVチャンバ1に保持された第2プレート12と、この第2プレート12に保持された高反射軸外放物面ミラー13と、同じく第2プレート12に保持された高反射平面ミラー14と、レーザ光導入用のウインドウ15とを含む。なお、上記第1プレート11には、レーザ光導入用の貫通孔16が設けられている。上記高反射軸外放物面ミラー13および高反射平面ミラー14は、後述するパルスレーザ光Lを集光するためのレーザ集光光学系17を構成している。
EUVチャンバ1はさらに、EUV光集光ミラーホルダ20と、このEUV光集光ミラーホルダ20に保持されたEUV光集光ミラー21と、ターゲット受け22とを含む。EUV光集光ミラー21は、例えば回転楕円面形状の反射面を有するミラーであり、第1の焦点がプラズマ生成領域23に位置し、第2の焦点が中間集光点(IF)24に位置するように配置されている。
レーザ装置3は、ターゲット物質を励起するためのパルスレーザ光Lを発生させる。このレーザ装置3としては、一例として発振増幅型レーザ装置(master oscillator power amplifier type laser apparatus)が適用される。あるいは、レーザ装置3として、プリパルスレーザビームを発生させるYAG(Yttrium Aluminum Garnet)レーザ装置と、メインパルスレーザビームを発生させるCO2レーザ装置との組合せ等も適用可能である。さらに、レーザ装置3として、その他のレーザ装置が用いられてもよい。このレーザ装置3から出力されるパルスレーザ光Lは、例えばパルス幅が数ns~数十ns程度、周波数が10kHz~100kHz程度のレーザ光である。
送光光学系4は、レーザ装置3から出力されたパルスレーザ光Lを反射させてその進行方向を変える第1高反射ミラー91と、この第1高反射ミラー91で反射したパルスレーザ光Lを上記ウインドウ15に向けて反射させる第2高反射ミラー92とを含む。
ドロップレット供給部5は、EUV光を発生させるために用いられるスズ(Sn)やリチウム(Li)等のターゲット物質を、球状のドロップレットDLとしてEUVチャンバ1内に供給する。このドロップレット供給部5は、制御部30と、圧力調節器31と、溶融した状態のターゲット物質を蓄えるタンク32と、ターゲット物質を溶融させるヒータ33と、溶融状態のターゲット物質を吐出させるノズル34と、ノズル34の側壁を振動させるピエゾ素子35とを含む。上記ドロップレットDLは断続的かつ周期的に生成され、EUVチャンバ1内においてドロップレット軌道Q上を進行する。
タイミングセンサ6は、照明光Fを発する光源40と、照明光学系41とを含む光源部42を備えている。照明光学系41は、上記ドロップレット軌道Q上の所定の位置Pに照明光Fを集光する。そこで、この位置PにドロップレットDLが存在すれば、そのドロップレットDLが照明光Fを一部遮ることになる。またタイミングセンサ6は、上記照明光Fを集光する受光光学系43と、集光された照明光Fを検出する光センサ44とを含む受光部45を備えている。受光部45は、光源部42と対向する状態に配置されている。
図2は、以上述べた光源部42および受光部45の構成を、より詳しく示している。同図に示される通り、照明光学系41は例えば集光レンズ41aから構成されている。この集光レンズ41aを経た照明光Fは、ウインドウ46を透過して上記位置Pにおいて集光する。また図2に示される通り、受光光学系43は例えば集光レンズ43aから構成されている。上記位置Pにおいて集光した後に発散した照明光Fは、ウインドウ47を透過して光センサ44に入射する。
1.2 動作
上記の構成において、タンク32中のターゲット物質は、ヒータ33によって融点以上の所定温度に加熱される。例えばターゲット物質がSnである場合、Snはその融点(232℃)以上の250~290℃の温度範囲に加熱される。この加熱を行うに当たっては、制御部30によりヒータ33の動作を制御して、温度調節を行ってもよい。また、制御部30により圧力調節器31の動作が制御されて、タンク32内の圧力が、融解したターゲット物質のジェットがノズル34から所定の速度で出力する圧力に維持される。そして制御部30により、図示外のピエゾ電源を介してピエゾ素子35に、所定波形の電圧信号であるドロップレット供給信号が印加される。それによりピエゾ素子35が振動して、この振動がノズル34に加えられる。以上により、ノズル34から出力される上記ジェットがノズル34の振動によって所定周期で分断され、ドロップレットDLが断続的に供給されるようになる。
上記の構成において、タンク32中のターゲット物質は、ヒータ33によって融点以上の所定温度に加熱される。例えばターゲット物質がSnである場合、Snはその融点(232℃)以上の250~290℃の温度範囲に加熱される。この加熱を行うに当たっては、制御部30によりヒータ33の動作を制御して、温度調節を行ってもよい。また、制御部30により圧力調節器31の動作が制御されて、タンク32内の圧力が、融解したターゲット物質のジェットがノズル34から所定の速度で出力する圧力に維持される。そして制御部30により、図示外のピエゾ電源を介してピエゾ素子35に、所定波形の電圧信号であるドロップレット供給信号が印加される。それによりピエゾ素子35が振動して、この振動がノズル34に加えられる。以上により、ノズル34から出力される上記ジェットがノズル34の振動によって所定周期で分断され、ドロップレットDLが断続的に供給されるようになる。
一方、タイミングセンサ6の光源部42から出力された照明光Fは、受光部45に受光される。そして、上述のように生成されて落下するドロップレットDLが、その軌道Qにおいて所定の位置Pを通過すると、ドロップレットDLにより照明光Fが遮られる。そのとき、受光部45が検出する照明光Fの受光量が低下し、受光部45が出力する出力信号は、この受光量の低下に対応して信号レベルが低下する。信号レベルがある閾値電圧より小さくなるときが、ドロップレットDLが上記所定の位置Pを通過したタイミングを示すものとなる。受光部45が出力する出力信号は、通過タイミング信号S1として制御部30に入力される。制御部30は、入力された通過タイミング信号S1の信号レベル低下を検出すると、その検出時点から所定の時間遅延させて発光トリガ信号S2を出力する。
図3は、以上説明した受光部45の出力信号、閾値電圧、通過タイミング信号S1、および発光トリガ信号S2の出力タイミングを示すタイミングチャートである。この図3において、各信号を示すチャートの横軸は時間を、縦軸は信号レベルを示している。同図に示される通りタイミングセンサ6は、受光部45の出力信号が基準値から低下して閾値電圧より小さくなっている期間、通過タイミング信号S1となる検出パルスを生成する。つまり、通過タイミング信号S1がONになる。また、通過タイミング信号S1に同期して、発光トリガ信号S2がONになる。
この発光トリガ信号S2は、レーザ装置3に入力される。レーザ装置3は、発光トリガ信号S2が入力されると、例えば内部に有する光シャッタを開く等により、パルスレーザ光Lを出力する。このパルスレーザ光Lは、送光光学系4の第1高反射ミラー91および第2高反射ミラー92で反射した後、ウインドウ15を通過してEUVチャンバ1内に入射する。
上記パルスレーザ光Lは、レーザ集光光学系17の高反射軸外放物面ミラー13および高反射平面ミラー14で反射した後、EUV光集光ミラー21の中央部に設けられた開口を通過して、EUV光集光ミラー21の光軸上を進行する。このパルスレーザ光Lは、高反射軸外放物面ミラー13の作用により、プラズマ生成領域23において集光する。プラズマ生成領域23に到達したドロップレットDLは、この集光したパルスレーザ光Lの照射を受けてプラズマ化し得る。そして、このプラズマからEUV光が生成される。なお、パルスレーザ光Lが照射されなかったドロップレットDLは、ターゲット受け22に受けられる。
ドロップレットDLは周期的に生成され、そしてこのドロップレットDLがタイミングセンサ6において検出される毎にパルスレーザ光Lが出力されるので、EUV光は周期的に生成される。こうして周期的に生成されるEUV光は、中間集光点24に集光した後、露光装置100に入射する。露光装置100では、入射したEUV光が半導体露光等に用いられる。
なお、露光装置100からの指令によって、プラズマ生成領域23を移動させる場合がある。プラズマ生成領域23をドロップレット軌道Qと平行な方向に移動させる場合は、制御部30が通過タイミング信号S1の信号レベル低下を検出してから、発光トリガ信号S2を出力するまでの時間遅延を変更させてもよい。また、プラズマ生成領域23をドロップレット軌道Qに垂直な面内で移動させる場合は、ステージ10を作動させ、第2プレート12を介して高反射軸外放物面ミラー13および高反射平面ミラー14を、ドロップレット軌道Qに垂直な面内で移動させてもよい。
2.比較例
2.1 構成
次に図2および図4を参照して、前述したタイミングセンサ6についてさらに詳しく説明する。図2に示される通り、光センサ44が出力する通過タイミング信号S1は、光源制御部300に入力される。この光源制御部300は、図1に示すタイミングセンサ6の一部を構成する。光源制御部300は、光源40の電源49の動作を制御して、ドロップレット軌道Q上の位置PにドロップレットDLが存在しない場合、光センサ44が検出する照明光Fの受光量を一定に維持させる。つまり、例えば図2に示すウインドウ46、47に汚染物質が付着した場合等は、そのために光センサ44の受光量が減少して、ドロップレットDLの通過を正しく検出できないおそれがあるので、それを防止することが望まれる。この点について、さらに詳しく説明する。先に述べた通り、ドロップレットDLの通過タイミングは、受光部45の光センサ44の出力信号と、ある閾値電圧とを比較し、それらの大小関係の変化に基づいて検出している。ドロップレットDLの位置が照明光Fの中心から離れるにつれて光センサ44の出力信号レベルが低下する。そこで、計測可能な領域を確保するため、上記閾値電圧は通常時(ドロップレット非検出時)の光センサ44の出力にできるだけ近い値に設定される。そのため、光センサ44の受光量が減少して閾値電圧付近までセンサ出力が低下すると、ドロップレットDLの通過タイミングを正確に検出することが難しくなってしまう。なお、本例において光源制御部300は、図1の制御部30とは別に設けられているが、制御部30を光源制御部としても機能するように構成してもよい。
2.1 構成
次に図2および図4を参照して、前述したタイミングセンサ6についてさらに詳しく説明する。図2に示される通り、光センサ44が出力する通過タイミング信号S1は、光源制御部300に入力される。この光源制御部300は、図1に示すタイミングセンサ6の一部を構成する。光源制御部300は、光源40の電源49の動作を制御して、ドロップレット軌道Q上の位置PにドロップレットDLが存在しない場合、光センサ44が検出する照明光Fの受光量を一定に維持させる。つまり、例えば図2に示すウインドウ46、47に汚染物質が付着した場合等は、そのために光センサ44の受光量が減少して、ドロップレットDLの通過を正しく検出できないおそれがあるので、それを防止することが望まれる。この点について、さらに詳しく説明する。先に述べた通り、ドロップレットDLの通過タイミングは、受光部45の光センサ44の出力信号と、ある閾値電圧とを比較し、それらの大小関係の変化に基づいて検出している。ドロップレットDLの位置が照明光Fの中心から離れるにつれて光センサ44の出力信号レベルが低下する。そこで、計測可能な領域を確保するため、上記閾値電圧は通常時(ドロップレット非検出時)の光センサ44の出力にできるだけ近い値に設定される。そのため、光センサ44の受光量が減少して閾値電圧付近までセンサ出力が低下すると、ドロップレットDLの通過タイミングを正確に検出することが難しくなってしまう。なお、本例において光源制御部300は、図1の制御部30とは別に設けられているが、制御部30を光源制御部としても機能するように構成してもよい。
2.2 動作
図4は、光源制御部300の具体的な構成を示している。本例においてこの構成は、増幅器71、A/Dコンバータ72、平均値計算部73および出力部78を含んでいる。なお図4における受光素子70は、図2の光センサ44を構成する素子である。図4の構成において、受光素子70の出力信号は増幅器71により増幅される。この増幅された信号は、A/Dコンバータ72により所定周期でサンプリングされてデジタル化され、デジタル化された光量信号は平均値計算部73に入力される。平均値計算部73は、順次入力されるデジタル化された光量信号を所定数、例えば100個程度について平均値を計算し、その平均値を受光量として出力する。そして出力部78は、この受光量が低下したならば照明光Fの強度を上げるように、反対に受光量が上昇したならば照明光Fの強度を下げるように、光源40の電源49の動作を制御する信号を出力し、電源49がその通りに制御される。
図4は、光源制御部300の具体的な構成を示している。本例においてこの構成は、増幅器71、A/Dコンバータ72、平均値計算部73および出力部78を含んでいる。なお図4における受光素子70は、図2の光センサ44を構成する素子である。図4の構成において、受光素子70の出力信号は増幅器71により増幅される。この増幅された信号は、A/Dコンバータ72により所定周期でサンプリングされてデジタル化され、デジタル化された光量信号は平均値計算部73に入力される。平均値計算部73は、順次入力されるデジタル化された光量信号を所定数、例えば100個程度について平均値を計算し、その平均値を受光量として出力する。そして出力部78は、この受光量が低下したならば照明光Fの強度を上げるように、反対に受光量が上昇したならば照明光Fの強度を下げるように、光源40の電源49の動作を制御する信号を出力し、電源49がその通りに制御される。
2.3 課題
しかし、上述のように電源49の動作が制御されても、ドロップレットDLの通過を正しく検出できないことがある。以下、その点について、図5を参照して説明する。この図5の(A)、(B)および(C)に示す直線あるいは曲線は、図4の増幅器71により増幅された受光素子70の出力信号を示している。また黒丸点は、A/Dコンバータ72によるサンプリングのサンプリング点を示している。
しかし、上述のように電源49の動作が制御されても、ドロップレットDLの通過を正しく検出できないことがある。以下、その点について、図5を参照して説明する。この図5の(A)、(B)および(C)に示す直線あるいは曲線は、図4の増幅器71により増幅された受光素子70の出力信号を示している。また黒丸点は、A/Dコンバータ72によるサンプリングのサンプリング点を示している。
図5中では、横軸に時間を示し、(A)、(B)および(C)にそれぞれ、信号レベルを高さで示す出力信号の概略波形を示している。なお同図では、信号毎に横軸および縦軸を示さずに簡略化した表示方法を採用しているが、信号毎に横軸および縦軸を示すならば図3と同様となる。この簡略化した表示方法は、後述の図7、9、13、15および17でも同様に採用している。また図5においては、ドロップレットDLを「DL」と略記している(以下、同様)。図5の(A)は、ドロップレット軌道Q上の位置PをドロップレットDLが通過しない場合の、受光素子70の出力信号を示している。この場合は図示の通り、受光素子70の出力信号が変動することはないので、出力信号の平均値、つまりは受光量の平均値が正しく求められる。
図5の(B)は、ドロップレット軌道Q上の位置PをドロップレットDLが通過する場合の受光素子70の出力信号を示している。この場合は、ドロップレットDLにより照明光Fが遮られることにより、図示の通り受光素子70の出力信号が周期的に低下する。そこで、受光量の平均値は本来、同図中の最高レベルの出力信号が示す受光量と同じになるべきところ、それよりも低い値になってしまう。
図5の(C)は、ドロップレット軌道Q上の位置PをドロップレットDLが通過し、そしてEUVの発光も有る場合の受光素子70の出力信号を示している。この場合は、ドロップレットDLにより照明光Fが遮られることにより、図示の通り受光素子70の出力信号が周期的に低下する。また、EUV光が受光素子70により検出されて、受光素子70の出力信号が増大することもある。ただしEUV光の発光時間は、ドロップレットDLにより照明光Fが遮られる時間と比べて短いので、この増大した出力信号がサンプリングされる頻度は、上述のように低下する出力信号がサンプリングされる頻度よりもかなり低い。そこで結局この場合も、受光量の平均値は本来、同図中の最高レベルの出力信号が示す受光量と同じになるべきところ、それよりも低い値になってしまう。
先に述べた通り、ドロップレットDLの通過タイミングは、通常、受光部45の光センサ44の出力信号と、ある閾値電圧とを比較し、それらの大小関係の変化に基づいて検出している。しかし、照明光Fの強度を制御する基になる上記受光量の平均値が図5の(B)や(C)に示すように変動してしまうと、それに応じて照明光Fの強度が変動することも有り得る。すると上記の大小関係が、ドロップレットDLの通過、非通過に拠るだけでなく、照明光Fの強度にも応じて変化してしまうので、ドロップレットDLの通過タイミングを正しく検出することが困難になる。
なお、図6に示す抵抗74およびキャパシタ75からなるフィルタ回路77により、増幅器71によって増幅された受光素子70の出力信号を平滑化することも考えられる。この平滑化を行う場合について、受光素子70の出力信号の波形を図7の(A)に、そしてこの出力信号の平滑化後の波形を図7の(B)に示す。この場合も、平滑化後の信号の平均値は、ドロップレットDLの通過が無い場合と有る場合とで異なってしまうので、結局上記と同様に、ドロップレットDLの通過タイミングを正しく検出することが困難になる。
3.実施形態1
3.1 実施形態1の構成
次に図8および図9を参照して、実施形態1に係るタイミングセンサについて説明する。本実施形態のタイミングセンサは、比較例のタイミングセンサ6と対比すると、図4に示した光源制御部300とは異なる構成の光源制御部301が適用されている点で異なる。図8は、この光源制御部301の構成を示している。なお図8において、図2および図4に示した光源制御部300と同様の要素については同じ番号を付してあり、それらについての説明は、特に必要の無い限り省略する(以下、同様)。図8に示す光源制御部301は、図2および図4に示した光源制御部300と比べると、A/Dコンバータ72と平均値計算部73との間に統計処理部76を備えている点で異なる。
3.1 実施形態1の構成
次に図8および図9を参照して、実施形態1に係るタイミングセンサについて説明する。本実施形態のタイミングセンサは、比較例のタイミングセンサ6と対比すると、図4に示した光源制御部300とは異なる構成の光源制御部301が適用されている点で異なる。図8は、この光源制御部301の構成を示している。なお図8において、図2および図4に示した光源制御部300と同様の要素については同じ番号を付してあり、それらについての説明は、特に必要の無い限り省略する(以下、同様)。図8に示す光源制御部301は、図2および図4に示した光源制御部300と比べると、A/Dコンバータ72と平均値計算部73との間に統計処理部76を備えている点で異なる。
3.2 実施形態1の動作
図8の構成において、受光素子70の出力信号は増幅器71により増幅される。この増幅された信号は、A/Dコンバータ72により所定周期でサンプリングされてデジタル化される。このデジタル化された光量信号(サンプルデータ)は、統計処理部76に入力される。統計処理部76は入力された光量信号のヒストグラムを作成し、そのヒストグラムの中で、最も度数の高い階級の光量信号だけを抽出する。これらの抽出された最大頻度の信号は、平均値計算部73に入力される。平均値計算部73は、これらの抽出された信号のみに関する平均値を計算し、その平均値を受光量として出力する。この受光量を示す平均値は、比較例におけるのと同様に、光源制御部301が図2に示す電源49の動作を制御するために用いられる。つまり出力部78により、この平均値が低下したならば照明光Fの強度を上げるように、反対に平均値が上昇したならば照明光Fの強度を下げるように、光源40の電源49の動作が制御される。
図8の構成において、受光素子70の出力信号は増幅器71により増幅される。この増幅された信号は、A/Dコンバータ72により所定周期でサンプリングされてデジタル化される。このデジタル化された光量信号(サンプルデータ)は、統計処理部76に入力される。統計処理部76は入力された光量信号のヒストグラムを作成し、そのヒストグラムの中で、最も度数の高い階級の光量信号だけを抽出する。これらの抽出された最大頻度の信号は、平均値計算部73に入力される。平均値計算部73は、これらの抽出された信号のみに関する平均値を計算し、その平均値を受光量として出力する。この受光量を示す平均値は、比較例におけるのと同様に、光源制御部301が図2に示す電源49の動作を制御するために用いられる。つまり出力部78により、この平均値が低下したならば照明光Fの強度を上げるように、反対に平均値が上昇したならば照明光Fの強度を下げるように、光源40の電源49の動作が制御される。
3.3 実施形態1の作用・効果
図9の(A)には、上記増幅された光量信号の概略波形を示すと共に、A/Dコンバータ72による光量信号のサンプリングにおけるサンプリング点を黒丸点で示す。また図9の(B)には、上記ヒストグラムの一例を示す。なお図9の(B)は、デジタル化された光量信号(サンプルデータ)が電圧信号であることを前提として示している。
図9の(A)には、上記増幅された光量信号の概略波形を示すと共に、A/Dコンバータ72による光量信号のサンプリングにおけるサンプリング点を黒丸点で示す。また図9の(B)には、上記ヒストグラムの一例を示す。なお図9の(B)は、デジタル化された光量信号(サンプルデータ)が電圧信号であることを前提として示している。
図9の(A)から分かる通り、ドロップレットDLが図1に示す所定の位置Pを通過する周期よりも、上記サンプリングの周期を短く設定しておけば、ドロップレットDLの通過や、EUV光の発光といった外乱の影響を受けない光量信号が多数サンプリングされる。したがって上記ヒストグラムにおいては、このような光量信号の度数が最大となる。そこで、このヒストグラムから上述の通りに抽出された信号の平均値に基づいて電源49の動作が制御されれば、光源40の発光量が、上記外乱の影響を受けない適正値に良好に制御されることになる。
上記サンプリングの周期は、ドロップレットDLが所定の位置Pを通過する周期よりも短く設定しておくのが望ましい。例えば、ドロップレットDLの通過周期が10-5秒程度の場合、サンプリングの周期はその1/2以下、より好ましくは1/5以下程度とするのが望ましい。上記ドロップレットDLの通過周期10-5秒は、周波数に換算すれば100kHzである。その場合、サンプリング周波数は500kHz以上に設定することが望ましい。
4.実施形態2
4.1 実施形態2の構成
次に図10および図11を参照して、実施形態2に係るタイミングセンサについて説明する。本実施形態のタイミングセンサは、例えば図8に示した光源制御部301に代えて、図10に示す光源制御部302が用いられた構成を有する。この光源制御部302は図8の光源制御部301と対比すると、統計処理部76および平均値計算部73の代わりに信号抽出部79を備えた点で異なる。
4.1 実施形態2の構成
次に図10および図11を参照して、実施形態2に係るタイミングセンサについて説明する。本実施形態のタイミングセンサは、例えば図8に示した光源制御部301に代えて、図10に示す光源制御部302が用いられた構成を有する。この光源制御部302は図8の光源制御部301と対比すると、統計処理部76および平均値計算部73の代わりに信号抽出部79を備えた点で異なる。
4.2 実施形態2の動作
図11は、上記信号抽出部79が行う処理の流れを示すフローチャートである。以下、この図11を参照して、信号抽出部79が行う処理について説明する。信号抽出部79は、処理を開始するとまずステップSP1において、目標値Mを初期化してM=M0と設定する。この目標値Mは、図10のA/Dコンバータ72により所定周期でサンプリングされてデジタル化された光量信号(図11では「データD」と表記)が、どの程度の値なら捨てないで抽出するかを定めるための値である。
図11は、上記信号抽出部79が行う処理の流れを示すフローチャートである。以下、この図11を参照して、信号抽出部79が行う処理について説明する。信号抽出部79は、処理を開始するとまずステップSP1において、目標値Mを初期化してM=M0と設定する。この目標値Mは、図10のA/Dコンバータ72により所定周期でサンプリングされてデジタル化された光量信号(図11では「データD」と表記)が、どの程度の値なら捨てないで抽出するかを定めるための値である。
次に信号抽出部79はステップSP2において、サンプル数nをn=1と初期化する。次に信号抽出部79はステップSP3において、A/Dコンバータ72でデジタル化された光量信号、すなわち上記データDを取り込む。次に信号抽出部79はステップSP4において、データDと目標値Mとの差の絶対値|D-M|が所定の閾値Sより大であるかどうかを判定する。そして|D-M|>Sである場合、信号抽出部79は、そのデータDを捨ててステップSP3に戻り、次のデータDを新しく取り込む。
次に信号抽出部79は、この新しく取り込んだデータDについて、上記ステップSP4において同じ判定を行う。そして|D-M|>Sでないと判定された場合、信号抽出部79はステップSP5において、そのデータDをn番目のサンプルに関するデータDnとして保存する。この保存は例えば光源制御部302の内部メモリ等を保存先としてなされる。その後、信号抽出部79はステップSP5において、サンプル数nを1増やしてn=n+1とする。
次に信号抽出部79はステップSP6において、サンプル数nが所定サンプル数上限に達したかどうか判定する。以下、上記の上限K=100とする場合を述べる。このとき、信号抽出部79は、n>100であるかどうか判定する。n>100ではない場合、信号抽出部79はステップSP3以降の処理を繰り返す。n>100である場合、信号抽出部79は次にステップSP7において、100個のデータDについてそれらの平均値Hを計算する。こうしてステップSP7では、100個のデータDが蓄積されてから、平均値Hの計算がなされることになる。次に信号抽出部79はステップSP8において、平均値Hを受光量として出力し、それと共に目標値MをHに置き代える。その後処理の流れはステップSP2に戻り、このステップSP2以降の処理が繰り返される。
4.3 実施形態2の作用・効果
以上の通りにして本実施形態では、最大頻度のデータDに近いデータDだけが簡易的に抽出されて、光源40(図1参照)の発光量制御に利用され得る。本実施形態によれば、実施形態1のように統計処理を行う場合よりも速い処理が可能となる。
以上の通りにして本実施形態では、最大頻度のデータDに近いデータDだけが簡易的に抽出されて、光源40(図1参照)の発光量制御に利用され得る。本実施形態によれば、実施形態1のように統計処理を行う場合よりも速い処理が可能となる。
5.実施形態3
5.1 実施形態3の構成
次に図12および図13を参照して、実施形態3に係るタイミングセンサについて説明する。図12は本実施形態に係るタイミングセンサの光源40および光センサ44の周辺部分を示す概略側面図である。本実施形態のタイミングセンサにおいては、ドロップレットDLで反射した照明光Fに基づいて、通過タイミング信号S1が得られる。すなわち本実施形態のタイミングセンサは、光源40から発せられた照明光Fを一部反射させてドロップレットDLの方に進行させると共に、ドロップレットDLで反射した照明光Fを一部透過させる部分反射ミラー93を含む。なお光源制御部301の構成は、図8に示した光源制御部301と同じである。
5.1 実施形態3の構成
次に図12および図13を参照して、実施形態3に係るタイミングセンサについて説明する。図12は本実施形態に係るタイミングセンサの光源40および光センサ44の周辺部分を示す概略側面図である。本実施形態のタイミングセンサにおいては、ドロップレットDLで反射した照明光Fに基づいて、通過タイミング信号S1が得られる。すなわち本実施形態のタイミングセンサは、光源40から発せられた照明光Fを一部反射させてドロップレットDLの方に進行させると共に、ドロップレットDLで反射した照明光Fを一部透過させる部分反射ミラー93を含む。なお光源制御部301の構成は、図8に示した光源制御部301と同じである。
5.2 実施形態3の動作
本実施形態では、ドロップレットDLで反射した照明光Fが光センサ44によって検出される。それ以外の動作は、基本的に実施形態1のタイミングセンサにおける動作と同じである。
本実施形態では、ドロップレットDLで反射した照明光Fが光センサ44によって検出される。それ以外の動作は、基本的に実施形態1のタイミングセンサにおける動作と同じである。
5.3 実施形態3の作用・効果
図13の(A)に、光源制御部301の増幅器71(図8参照)で増幅された光量信号の概略波形を示すと共に、A/Dコンバータ72による光量信号のサンプリングにおけるサンプリング点を黒丸点で示す。また図13の(B)には、統計処理部76(図8参照)で作成されるヒストグラムの一例を示す。図13の(A)に示される通り、上記光量信号にはDL反射光つまりドロップレットDLで反射した照明光Fによる外乱と、EUV発光による外乱が生じる。しかし本実施形態でも実施形態1におけるのと同様に、統計処理部76で光量信号のヒストグラムを作成し、そのヒストグラムの中で、最も度数の高い階級の光量信号だけを抽出している。そして、これらの抽出された信号のみに関する平均値を平均値計算部73で計算し、その平均値を受光量としているので、光源40の発光量が、上記外乱の影響を受けない適正値に良好に制御される。
図13の(A)に、光源制御部301の増幅器71(図8参照)で増幅された光量信号の概略波形を示すと共に、A/Dコンバータ72による光量信号のサンプリングにおけるサンプリング点を黒丸点で示す。また図13の(B)には、統計処理部76(図8参照)で作成されるヒストグラムの一例を示す。図13の(A)に示される通り、上記光量信号にはDL反射光つまりドロップレットDLで反射した照明光Fによる外乱と、EUV発光による外乱が生じる。しかし本実施形態でも実施形態1におけるのと同様に、統計処理部76で光量信号のヒストグラムを作成し、そのヒストグラムの中で、最も度数の高い階級の光量信号だけを抽出している。そして、これらの抽出された信号のみに関する平均値を平均値計算部73で計算し、その平均値を受光量としているので、光源40の発光量が、上記外乱の影響を受けない適正値に良好に制御される。
6.実施形態4
6.1 実施形態4の構成
次に図14および図15を参照して、実施形態4に係るタイミングセンサについて説明する。図14は本実施形態に係るタイミングセンサの光源制御部303を示している。この光源制御部303は、図8に示したものと同様の増幅器71、A/Dコンバータ72および平均値計算部73を含む。光源制御部303はさらに、増幅器71の出力と閾値電圧を比較するコンパレータ80と、このコンパレータ80が出力するドロップレット検出信号をD端子に受け、A/Dクロックをクロック(CLK)端子に受けるD-フリップフロップ81と、このD-フリップフロップ81のQ端子からの出力および上記A/Dクロックが入力されるANDゲート82とを含む。以上の通り本実施形態では、ドロップレット検出信号をD-フリップフロップ81を介してA/Dクロックと同期させた信号と、A/DクロックとのAND出力を、A/Dコンバータ72のA/D変換を開始させるA/D開始信号としている。
6.1 実施形態4の構成
次に図14および図15を参照して、実施形態4に係るタイミングセンサについて説明する。図14は本実施形態に係るタイミングセンサの光源制御部303を示している。この光源制御部303は、図8に示したものと同様の増幅器71、A/Dコンバータ72および平均値計算部73を含む。光源制御部303はさらに、増幅器71の出力と閾値電圧を比較するコンパレータ80と、このコンパレータ80が出力するドロップレット検出信号をD端子に受け、A/Dクロックをクロック(CLK)端子に受けるD-フリップフロップ81と、このD-フリップフロップ81のQ端子からの出力および上記A/Dクロックが入力されるANDゲート82とを含む。以上の通り本実施形態では、ドロップレット検出信号をD-フリップフロップ81を介してA/Dクロックと同期させた信号と、A/DクロックとのAND出力を、A/Dコンバータ72のA/D変換を開始させるA/D開始信号としている。
6.2 実施形態4の動作
図15の(A)は、受光素子70から出力されて増幅器71により増幅されたドロップレット通過タイミング信号S1の概略波形を、同図の(B)はコンパレータ80が出力するドロップレット検出信号の概略波形を、同図の(C)は上記A/Dクロックの概略波形を、同図の(D)は上記D-フリップフロップ81の出力の概略波形を、同図の(E)はANDゲート82からA/Dコンバータ72に入力されるA/D開始信号の概略波形を、そして同図の(F)はA/Dコンバータ72においてなされる光量信号サンプリングのタイミングを示している。
図15の(A)は、受光素子70から出力されて増幅器71により増幅されたドロップレット通過タイミング信号S1の概略波形を、同図の(B)はコンパレータ80が出力するドロップレット検出信号の概略波形を、同図の(C)は上記A/Dクロックの概略波形を、同図の(D)は上記D-フリップフロップ81の出力の概略波形を、同図の(E)はANDゲート82からA/Dコンバータ72に入力されるA/D開始信号の概略波形を、そして同図の(F)はA/Dコンバータ72においてなされる光量信号サンプリングのタイミングを示している。
6.3 実施形態4の作用・効果
図15の(E)および(F)に示される通り、本実施形態においては、光量信号がドロップレットDLの通過によって低下している期間は、A/Dコンバータ72による光量信号のサンプリングはなされなくなる。つまり、ドロップレットDLの通過によって低下している光量信号は、サンプリングされることがない。そこでこの場合も、光源40の発光量が、ドロップレットDLの通過という外乱の影響を受けないで、適正値に制御されるようになる。
図15の(E)および(F)に示される通り、本実施形態においては、光量信号がドロップレットDLの通過によって低下している期間は、A/Dコンバータ72による光量信号のサンプリングはなされなくなる。つまり、ドロップレットDLの通過によって低下している光量信号は、サンプリングされることがない。そこでこの場合も、光源40の発光量が、ドロップレットDLの通過という外乱の影響を受けないで、適正値に制御されるようになる。
7.実施形態5
7.1 実施形態5の構成
次に図16および図17を参照して、実施形態5に係るタイミングセンサについて説明する。図16は本実施形態に係るタイミングセンサの光源制御部304を示している。この光源制御部304は、図14に示した光源制御部303に対してさらに、増幅器71の出力と第2閾値電圧とを比較するコンパレータ85と、このコンパレータ85が出力するEUV発光検出信号をD端子に受け、A/Dクロックをクロック(CLK)端子に受けるD-フリップフロップ86とが設けられた構成を有する。このD-フリップフロップ86の出力は、D-フリップフロップ81の出力およびA/Dクロックと共にANDゲート82に入力される。以上の通り本実施形態では、ドロップレット検出信号をD-フリップフロップ81を介してA/Dクロックと同期させた信号と、A/DクロックとのAND出力を、A/Dコンバータ72のA/D変換を開始させるA/D開始信号としている。
7.1 実施形態5の構成
次に図16および図17を参照して、実施形態5に係るタイミングセンサについて説明する。図16は本実施形態に係るタイミングセンサの光源制御部304を示している。この光源制御部304は、図14に示した光源制御部303に対してさらに、増幅器71の出力と第2閾値電圧とを比較するコンパレータ85と、このコンパレータ85が出力するEUV発光検出信号をD端子に受け、A/Dクロックをクロック(CLK)端子に受けるD-フリップフロップ86とが設けられた構成を有する。このD-フリップフロップ86の出力は、D-フリップフロップ81の出力およびA/Dクロックと共にANDゲート82に入力される。以上の通り本実施形態では、ドロップレット検出信号をD-フリップフロップ81を介してA/Dクロックと同期させた信号と、A/DクロックとのAND出力を、A/Dコンバータ72のA/D変換を開始させるA/D開始信号としている。
7.2 実施形態5の動作
図17の(A)は、受光素子70から出力されて増幅器71により増幅されたドロップレット通過タイミング信号S1の概略波形を、同図の(B)はコンパレータ80が出力するドロップレット検出信号の概略波形を、同図の(C)は上記A/Dクロックの概略波形を、同図の(D)はEUV光の影響を受けるD-フリップフロップ86の出力の概略波形を、同図の(E)はドロップレット通過の影響を受けるD-フリップフロップ81の出力の概略波形を、同図の(F)はANDゲート82からA/Dコンバータ72に入力されるA/D開始信号の概略波形を、そして同図の(G)はA/Dコンバータ72においてなされる光量信号サンプリングのタイミングを示している。
図17の(A)は、受光素子70から出力されて増幅器71により増幅されたドロップレット通過タイミング信号S1の概略波形を、同図の(B)はコンパレータ80が出力するドロップレット検出信号の概略波形を、同図の(C)は上記A/Dクロックの概略波形を、同図の(D)はEUV光の影響を受けるD-フリップフロップ86の出力の概略波形を、同図の(E)はドロップレット通過の影響を受けるD-フリップフロップ81の出力の概略波形を、同図の(F)はANDゲート82からA/Dコンバータ72に入力されるA/D開始信号の概略波形を、そして同図の(G)はA/Dコンバータ72においてなされる光量信号サンプリングのタイミングを示している。
7.3 実施形態5の作用・効果
図17の(F)および(G)に示される通り、本実施形態においては、光量信号がドロップレットDLの通過あるいはEUV発光のために低下している期間は、A/Dコンバータ72による光量信号のサンプリングはなされなくなる。つまり、ドロップレットDLの通過あるいはEUV発光によって低下している光量信号は、サンプリングされることがない。そこでこの場合も、光源40の発光量が、ドロップレットDLの通過やEUV発光という外乱の影響を受けないで、適正値に制御されるようになる。
図17の(F)および(G)に示される通り、本実施形態においては、光量信号がドロップレットDLの通過あるいはEUV発光のために低下している期間は、A/Dコンバータ72による光量信号のサンプリングはなされなくなる。つまり、ドロップレットDLの通過あるいはEUV発光によって低下している光量信号は、サンプリングされることがない。そこでこの場合も、光源40の発光量が、ドロップレットDLの通過やEUV発光という外乱の影響を受けないで、適正値に制御されるようになる。
なお以上の説明は、制限ではなく単なる例示を意図したものである。したがって、添付の請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
本明細書および添付の請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」または「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、および添付の請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」または「1またはそれ以上」を意味すると解釈されるべきである。
1 EUVチャンバ
2 EUV光生成制御部
3 レーザ装置
4 送光光学系
5 ドロップレット供給部
6 タイミングセンサ
10 ステージ
11 第1プレート
12 第2プレート
13 高反射軸外放物面ミラー
14 高反射平面ミラー
15、46、47 ウインドウ
16 貫通孔
17 レーザ集光光学系
20 EUV光集光ミラーホルダ
21 EUV光集光ミラー
22 ターゲット受け
23 プラズマ生成領域
24 中間集光点
30 制御部
31 圧力調節器
32 タンク
33 ヒータ
34 ノズル
35 ピエゾ素子
40 光源
41 照明光学系
41a、43a 集光レンズ
42 光源部
43 受光光学系
44 光センサ
45 受光部
49 電源
70 受光素子
71 増幅器
72 A/Dコンバータ
73 平均値計算部
74 抵抗
75 キャパシタ
76 統計処理部
77 フィルタ回路
78 出力部
79 信号抽出部
80 コンパレータ
81、86 D-フリップフロップ
82 ANDゲート
85 コンパレータ
91 第1高反射ミラー
92 第2高反射ミラー
93 部分反射ミラー
100 露光装置
101 露光装置制御部
300、301、302、303、304 光源制御部
DL ドロップレット
F 照明光
L パルスレーザ光
P ドロップレット軌道上の所定の位置
Q ドロップレット軌道
S1 通過タイミング信号
S2 発光トリガ信号
2 EUV光生成制御部
3 レーザ装置
4 送光光学系
5 ドロップレット供給部
6 タイミングセンサ
10 ステージ
11 第1プレート
12 第2プレート
13 高反射軸外放物面ミラー
14 高反射平面ミラー
15、46、47 ウインドウ
16 貫通孔
17 レーザ集光光学系
20 EUV光集光ミラーホルダ
21 EUV光集光ミラー
22 ターゲット受け
23 プラズマ生成領域
24 中間集光点
30 制御部
31 圧力調節器
32 タンク
33 ヒータ
34 ノズル
35 ピエゾ素子
40 光源
41 照明光学系
41a、43a 集光レンズ
42 光源部
43 受光光学系
44 光センサ
45 受光部
49 電源
70 受光素子
71 増幅器
72 A/Dコンバータ
73 平均値計算部
74 抵抗
75 キャパシタ
76 統計処理部
77 フィルタ回路
78 出力部
79 信号抽出部
80 コンパレータ
81、86 D-フリップフロップ
82 ANDゲート
85 コンパレータ
91 第1高反射ミラー
92 第2高反射ミラー
93 部分反射ミラー
100 露光装置
101 露光装置制御部
300、301、302、303、304 光源制御部
DL ドロップレット
F 照明光
L パルスレーザ光
P ドロップレット軌道上の所定の位置
Q ドロップレット軌道
S1 通過タイミング信号
S2 発光トリガ信号
Claims (13)
- 極端紫外光生成装置のチャンバ内に断続的に供給され、レーザ光の照射を受けて極端紫外光を発生するドロップレットが所定位置を通過するタイミングを検出するセンサであって、
前記チャンバ内に供給された前記ドロップレットに対して、前記所定位置において照明光を照射する光源部と、
前記所定位置を経た後の照明光を受光し、受光量の変化を検出する受光部と、
時間経過に伴って複数回測定された前記受光量について度数分布を求め、最大頻度の受光量に基づいて前記光源部の出力を制御する光源制御部と、
を含むドロップレットタイミングセンサ。 - 前記受光部は、前記受光量を所定のサンプリング周期で複数回測定し、
前記サンプリング周期は、前記ドロップレットが前記所定位置を通過する周期よりも短い、
請求項1記載のドロップレットタイミングセンサ。 - 前記サンプリング周期は、前記ドロップレットが前記所定位置を通過する周期の1/2以下である請求項2記載のドロップレットタイミングセンサ。
- 前記サンプリング周期は、前記ドロップレットが前記所定位置を通過する周期の1/5以下である請求項2記載のドロップレットタイミングセンサ。
- 前記サンプリングの周波数は、500kH以上である請求項2記載のドロップレットタイミングセンサ。
- 前記光源制御部は、前記最大頻度の受光量を複数求め、それら複数の受光量の平均値に基づいて前記光源部の出力を制御する請求項1記載のドロップレットタイミングセンサ。
- 極端紫外光生成装置のチャンバ内に断続的に供給され、レーザ光の照射を受けて極端紫外光を発生するドロップレットが所定位置を通過するタイミングを検出するセンサであって、
前記チャンバ内に供給された前記ドロップレットに対して、前記所定位置において照明光を照射する光源部と、
前記所定位置を経た後の照明光を受光し、受光量を示す信号を出力する受光部と、
時間経過に伴って複数回測定された前記受光量から、目標値との差が所定値以内に収まっている受光量のみを抽出し、その抽出された受光量に基づいて前記光源部の出力を制御する光源制御部と、
を含むドロップレットタイミングセンサ。 - 前記光源制御部は、前記抽出された受光量を複数求め、それら複数の受光量の平均値に基づいて前記光源部の出力を制御する請求項7記載のドロップレットタイミングセンサ。
- 前記光源制御部は、前記抽出された受光量を求めた後に前記目標値を、前記抽出された受光量の平均値に更新する請求項7記載のドロップレットタイミングセンサ。
- 極端紫外光生成装置のチャンバ内に断続的に供給され、レーザ光の照射を受けて極端紫外光を発生するドロップレットが所定位置を通過するタイミングを検出するセンサであって、
前記チャンバ内に供給された前記ドロップレットに対して、前記所定位置において照明光を照射する光源部と、
前記所定位置を経た後の照明光を受光し、受光量の変化を検出する受光部と、
時間経過に伴って前記受光部から出力される信号を、この信号が前記ドロップレットの通過の影響を受ける期間を除いた期間のみサンプリングして前記受光量を求め、その受光量に基づいて前記光源部の出力を制御する光源制御部と、
を含むドロップレットタイミングセンサ。 - 前記光源制御部は、前記光量信号が前記ドロップレットの通過の影響を受ける期間に加えてさらに、前記光量信号が前記極端紫外光の発光による影響を受ける期間も除いた期間のみサンプリングする請求項10記載のドロップレットタイミングセンサ。
- 前記受光部は、前記ドロップレットによって遮られた前記照明光を受ける位置に配されている請求項1記載のドロップレットタイミングセンサ。
- 前記受光部は、前記ドロップレットにおいて反射した前記照明光を受ける位置に配されている請求項1記載のドロップレットタイミングセンサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018506659A JP6637158B2 (ja) | 2016-03-22 | 2016-03-22 | ドロップレットタイミングセンサ |
PCT/JP2016/059012 WO2017163315A1 (ja) | 2016-03-22 | 2016-03-22 | ドロップレットタイミングセンサ |
US16/058,000 US10866338B2 (en) | 2016-03-22 | 2018-08-08 | Droplet timing sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/059012 WO2017163315A1 (ja) | 2016-03-22 | 2016-03-22 | ドロップレットタイミングセンサ |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/058,000 Continuation US10866338B2 (en) | 2016-03-22 | 2018-08-08 | Droplet timing sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017163315A1 true WO2017163315A1 (ja) | 2017-09-28 |
Family
ID=59900091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/059012 WO2017163315A1 (ja) | 2016-03-22 | 2016-03-22 | ドロップレットタイミングセンサ |
Country Status (3)
Country | Link |
---|---|
US (1) | US10866338B2 (ja) |
JP (1) | JP6637158B2 (ja) |
WO (1) | WO2017163315A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018203370A1 (ja) * | 2017-05-01 | 2020-03-12 | ギガフォトン株式会社 | ターゲット供給装置、極端紫外光生成装置、及びターゲット供給方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6637158B2 (ja) * | 2016-03-22 | 2020-01-29 | ギガフォトン株式会社 | ドロップレットタイミングセンサ |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013094611A (ja) * | 2011-11-07 | 2013-05-20 | Seiko Epson Corp | 液滴検出装置 |
WO2014042003A1 (ja) * | 2012-09-11 | 2014-03-20 | ギガフォトン株式会社 | 極端紫外光生成方法及び極端紫外光生成装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7217941B2 (en) * | 2003-04-08 | 2007-05-15 | Cymer, Inc. | Systems and methods for deflecting plasma-generated ions to prevent the ions from reaching an internal component of an EUV light source |
JP4574211B2 (ja) * | 2004-04-19 | 2010-11-04 | キヤノン株式会社 | 光源装置、当該光源装置を有する露光装置 |
JP4730898B2 (ja) | 2005-11-16 | 2011-07-20 | 株式会社キーエンス | 光電センサ |
US8158960B2 (en) * | 2007-07-13 | 2012-04-17 | Cymer, Inc. | Laser produced plasma EUV light source |
JP5675127B2 (ja) * | 2009-02-27 | 2015-02-25 | ギガフォトン株式会社 | レーザ装置および極端紫外光源装置 |
JP2013065804A (ja) * | 2010-12-20 | 2013-04-11 | Gigaphoton Inc | レーザ装置およびそれを備える極端紫外光生成システム |
JP6077822B2 (ja) * | 2012-02-10 | 2017-02-08 | ギガフォトン株式会社 | ターゲット供給装置、および、ターゲット供給方法 |
JP6134313B2 (ja) * | 2012-04-27 | 2017-05-24 | ギガフォトン株式会社 | レーザシステム及び極端紫外光生成システム |
JP6513025B2 (ja) * | 2013-09-17 | 2019-05-15 | ギガフォトン株式会社 | 極端紫外光生成装置 |
WO2016013102A1 (ja) * | 2014-07-25 | 2016-01-28 | ギガフォトン株式会社 | 極端紫外光生成装置 |
JP6637158B2 (ja) * | 2016-03-22 | 2020-01-29 | ギガフォトン株式会社 | ドロップレットタイミングセンサ |
WO2018029863A1 (ja) * | 2016-08-12 | 2018-02-15 | ギガフォトン株式会社 | ドロップレット検出器及び極端紫外光生成装置 |
WO2018163380A1 (ja) * | 2017-03-09 | 2018-09-13 | ギガフォトン株式会社 | ドロップレット吐出装置及び計算方法 |
-
2016
- 2016-03-22 JP JP2018506659A patent/JP6637158B2/ja active Active
- 2016-03-22 WO PCT/JP2016/059012 patent/WO2017163315A1/ja active Application Filing
-
2018
- 2018-08-08 US US16/058,000 patent/US10866338B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013094611A (ja) * | 2011-11-07 | 2013-05-20 | Seiko Epson Corp | 液滴検出装置 |
WO2014042003A1 (ja) * | 2012-09-11 | 2014-03-20 | ギガフォトン株式会社 | 極端紫外光生成方法及び極端紫外光生成装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018203370A1 (ja) * | 2017-05-01 | 2020-03-12 | ギガフォトン株式会社 | ターゲット供給装置、極端紫外光生成装置、及びターゲット供給方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017163315A1 (ja) | 2019-01-31 |
US20180348397A1 (en) | 2018-12-06 |
US10866338B2 (en) | 2020-12-15 |
JP6637158B2 (ja) | 2020-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9119278B2 (en) | System, method and apparatus for aligning and synchronizing target material for optimum extreme ultraviolet light output | |
JP6195474B2 (ja) | 極端紫外光生成装置及び極端紫外光生成システムにおけるレーザシステムの制御方法 | |
JP5952274B2 (ja) | 光源焦点のアラインメント | |
US9241395B2 (en) | System and method for controlling droplet timing in an LPP EUV light source | |
JP4623009B2 (ja) | 露光装置および露光方法 | |
WO2017130443A1 (ja) | ターゲット供給装置及び極端紫外光生成装置 | |
US20130134326A1 (en) | Extreme ultraviolet light generation apparatus, target collection device, and target collection method | |
US8809823B1 (en) | System and method for controlling droplet timing and steering in an LPP EUV light source | |
JP6383736B2 (ja) | 極端紫外光生成装置 | |
US9271381B2 (en) | Methods and apparatus for laser produced plasma EUV light source | |
CN108348763B (zh) | 用于在lpp euv光源中控制源激光器激发的系统和方法 | |
JP2013251100A (ja) | 極紫外光生成装置及び極紫外光生成方法 | |
US10667376B2 (en) | Target supply device, extreme ultraviolet light generation device, and target supply method | |
WO2017163315A1 (ja) | ドロップレットタイミングセンサ | |
CN110837209A (zh) | 产生极紫外光辐射的装置 | |
US11333981B2 (en) | Target image capturing device and extreme ultraviolet light generation apparatus | |
JP6866471B2 (ja) | Euv光生成装置 | |
WO2016013102A1 (ja) | 極端紫外光生成装置 | |
JPWO2018087895A1 (ja) | レーザ装置および極端紫外光生成装置 | |
US10342109B2 (en) | Apparatus and method for generating extreme ultraviolet radiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018506659 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16895351 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16895351 Country of ref document: EP Kind code of ref document: A1 |