WO2014041889A1 - X線ct装置およびx線ct画像の処理方法 - Google Patents

X線ct装置およびx線ct画像の処理方法 Download PDF

Info

Publication number
WO2014041889A1
WO2014041889A1 PCT/JP2013/069206 JP2013069206W WO2014041889A1 WO 2014041889 A1 WO2014041889 A1 WO 2014041889A1 JP 2013069206 W JP2013069206 W JP 2013069206W WO 2014041889 A1 WO2014041889 A1 WO 2014041889A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ray
projection data
unit
weight
Prior art date
Application number
PCT/JP2013/069206
Other languages
English (en)
French (fr)
Inventor
恵介 山川
小嶋 進一
Original Assignee
株式会社日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立メディコ filed Critical 株式会社日立メディコ
Priority to US14/408,576 priority Critical patent/US9420986B2/en
Priority to JP2014535413A priority patent/JP5918374B2/ja
Publication of WO2014041889A1 publication Critical patent/WO2014041889A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/465Displaying means of special interest adapted to display user selection data, e.g. graphical user interface, icons or menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20182Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/424Iterative

Definitions

  • the present invention relates to an X-ray CT apparatus, and relates to an image generation technique for sequentially correcting CT images so that calculated projection data obtained by forward projection processing of CT images is equal to measured projection data.
  • An X-ray CT (Computed Tomography) apparatus calculates an X-ray absorption coefficient at each point from measurement projection data obtained by photographing a subject from multiple directions, and forms an X-ray absorption coefficient composed of a plurality of pixels as a tomographic image of the subject.
  • An apparatus for obtaining a distribution image hereinafter referred to as a CT image).
  • CT images acquired from this apparatus can diagnose a patient's medical condition accurately and immediately in a medical field, and are clinically useful. However, in order to obtain a high-quality image necessary for a doctor's diagnosis, a certain amount of exposure is involved.
  • Patent Document 1 a successive approximation reconstruction method is used in which CT images are sequentially corrected so that the calculated projection data satisfies the same condition as the measurement projection data, and noise is reduced.
  • the successive approximation reconstruction method first, reconstruction processing (hereinafter referred to as FOV) including a subject is performed to obtain an image (FOV image).
  • FOV image reconstruction processing
  • projection data is calculated from the reconstructed image (FOV image) (hereinafter referred to as forward projection calculation), and the operation of correcting the CT image is repeated in comparison with the previous measurement projection data. This improves the accuracy of the CT image in the FOV. Since the successive approximation reconstruction method requires a condition for including the subject in the FOV, correction of the subject unrelated to the diagnosis causes an increase in the amount of calculation.
  • Non-Patent Document 1 discloses a technique for applying an expansion reconstruction technique to a successive approximation reconstruction technique.
  • a CT image hereinafter referred to as a large FOV image
  • an image of a background area other than the local area is extracted from the large FOV image, and the extracted background area image is subjected to forward projection calculation to obtain background projection data.
  • the local measurement projection data is extracted by subtracting the obtained background projection data from the measurement projection data, and a CT image of the local region (hereinafter referred to as a small FOV image) is calculated.
  • Patent Document 2 reports that the accuracy of CT values (X-ray absorption values) in an FOV image is improved by estimating a subject in an area where data is not measured in the periphery of the FOV.
  • the CT value accuracy of the small FOV image depends on the accuracy of the local measurement projection data. Therefore, in order to increase the CT value accuracy of the small FOV image, the local measurement is performed. It is necessary to improve the accuracy of projection data. As a factor for reducing the accuracy of the local measurement projection data, there is mainly a decrease in the CT value accuracy in a large FOV image. For example, quantum noise included in large FOV images, circuit noise, streak artifacts, beam hardening effect, incomplete reconstruction due to missing projection angle data necessary for reconstruction, and reference correction error, etc. It is.
  • An object of the present invention is to improve the accuracy of a CT image (small FOV image) of a local region obtained when an enlargement reconstruction technique is applied to a successive approximation reconstruction method.
  • the first CT image in the first reconstruction range (FOV) is reconstructed from the projection data of the subject detected by the X-ray detection unit of the X-ray CT apparatus, Using the first CT image, local measurement projection data corresponding to the second reconstruction range (FOV) within the first reconstruction range (FOV) is extracted from the measurement projection data.
  • the first CT image is sequentially corrected so that the first calculated projection data obtained by the projection calculation from the first CT image is equal to the projection data of the subject.
  • data corresponding to the second reconstruction range (FOV) with high accuracy can be obtained as the local measurement projection data. Therefore, by correcting the second CT image sequentially so that the second CT image for the second reconstruction range (FOV) becomes equal from the local measurement projection data, the CT image of the local region with high accuracy can be obtained. Is obtained.
  • highly accurate local measurement projection data can be obtained by sequentially correcting the first CT image in order to obtain local measurement projection data.
  • the second CT image of the local region can be generated with high accuracy from the local measurement projection data.
  • FIG. 2 is a block diagram illustrating a hardware configuration of each part of the X-ray CT apparatus in Embodiment 1.
  • FIG. 1 is a functional block diagram of an X-ray CT apparatus in Embodiment 1.
  • FIG. 6 is an explanatory diagram for explaining an input screen of a photographing condition input unit in Embodiment 1.
  • FIG. (A) It is a functional block diagram explaining the function of the reconstruction process part 136 in Embodiment 1,
  • (b) It is explanatory drawing which shows large FOV and small FOV.
  • 3 is a functional block diagram illustrating functions of a reconstruction processing unit 136 according to Embodiment 1.
  • FIG. 6 is a flowchart for explaining a calculation procedure of a successive approximation reconstruction method in the first embodiment.
  • FIG. 10 is a functional block diagram illustrating functions of a reconstruction processing unit 136 according to the second embodiment.
  • 10 is a functional block diagram illustrating functions of a reconstruction processing unit 136 according to Embodiment 2.
  • (A)-(h) is a figure for demonstrating the calculation result of a reconstruction image in Embodiment 2
  • (i) And (j) is a figure for demonstrating the result of having evaluated the region of interest. is there.
  • FIG. 10 is a functional block diagram illustrating functions of a reconstruction processing unit 136 according to the second embodiment.
  • 10 is a functional block diagram illustrating functions of a reconstruction processing unit 136 according to Embodiment 2.
  • FIG. 10 is an explanatory diagram for explaining an input screen of an imaging condition input unit in the third embodiment.
  • (A)-(d) is a figure explaining the calculation result of a reconstruction image in Embodiment 3.
  • FIG. 10 is an explanatory diagram for explaining an input screen of an imaging condition input unit in the fourth embodiment.
  • FIG. 10 is a functional block diagram illustrating functions of a first approximate reconstruction unit 152 in Embodiment 4.
  • FIG. 10 is an explanatory diagram for explaining a complete collection area or a non-complete collection area of a large FOV image in Embodiment 4. It is explanatory drawing which shows the edge part area
  • FIG. 20 is a functional block diagram illustrating functions of a reconstruction processing unit 136 according to a sixth embodiment.
  • (A)-(d) is a figure explaining the calculation result of a reconstructed image in Embodiment 6.
  • An X-ray CT apparatus includes an X-ray generator that generates X-rays, an X-ray detector that detects X-rays that have passed through a subject and obtains measurement projection data, an X-ray generator, and an X-ray detector And a rotation plate that rotates around the subject, a local measurement projection data extraction unit, and a second successive approximation reconstruction unit.
  • the local measurement projection data extraction unit reconstructs a first CT image for the first reconstruction range of the subject from the measurement projection data obtained by the X-ray detection unit, and uses the first CT image to Local measurement projection data corresponding to a second reconstruction range within one reconstruction range is extracted from the measurement projection data.
  • the second successive approximation reconstruction unit reconstructs the second CT image for the second reconstruction range from the local measurement projection data, and locally calculated projection data obtained by forward projection of the second CT image by calculation. And the second CT image are sequentially corrected so that the local measurement projection data extracted by the local measurement projection data extraction unit is equal.
  • the local measurement projection data extraction unit extracts the first CT image so that the calculated projection data obtained by forward projection of the first CT image by calculation is equal to the measurement projection data detected by the X-ray detection unit.
  • a first successive approximation reconstruction unit that sequentially corrects the local measurement projection data corresponding to the second reconstruction range using the sequentially corrected first CT image. As a result, highly accurate local measurement projection data can be obtained, so that the accuracy of the second CT image can be improved.
  • the local measurement projection data extraction unit includes a background image generation unit that generates a background image obtained by removing pixels in the second reconstruction range from the first CT image sequentially corrected by the first successive approximation reconstruction unit, and a background image
  • a background image forward projection unit that obtains background projection data by forward projection by calculation
  • a difference unit that obtains local measurement projection data by subtracting the background projection data from the measurement projection data detected by the X-ray detection unit.
  • the local measurement projection data extraction unit includes a first weight selection unit that selects weights used for sequential correction of the first CT image, and the second successive approximation reconstruction unit includes the second CT image of the second CT image. It is good also as a structure which has a 2nd weight selection part which selects the weight used for sequential correction.
  • the first and second weight selection units select and set one of the statistical value weight and the constant value weight.
  • the statistical value weight is used to vary the weight given to the output data of the plurality of detection elements according to the output magnitude of the plurality of detection elements constituting the X-ray detection unit.
  • the constant value weight gives the same weight to the output data of a plurality of detection elements.
  • the X-ray CT apparatus may further include an input unit that receives designation of weights from the operator.
  • the first and second weight selection units can be configured to select one of the statistical value weight and the constant value weight according to the designation received by the input unit.
  • the first and second weight selection units select the statistical value weights and give an instruction to prioritize CT value accuracy.
  • a constant value weight can be selected.
  • One of the first and second weight selection units can select a statistical value weight and the other can select a constant value weight.
  • At least one of the first and second successive approximation reconstructing units can be configured to change the type of weight and perform two sequential corrections.
  • the first sequential correction uses statistical weights
  • the second sequential correction uses constant value weights
  • the number of updates of the first sequential correction is larger than the number of updates of the second sequential correction. It is desirable to set as follows. Thereby, both the streak artifact and the beam hardening effect can be reduced.
  • the input unit may be configured to be able to accept designation for performing sequential correction by changing the type of weight from the operator.
  • the first and second successive approximation reconstructing units can perform the two sequential corrections when the input unit receives a designation for performing the sequential correction by changing the type of weight.
  • the local measurement projection data extraction unit may further include a correction necessity determination unit that sequentially determines whether correction is necessary from the first CT image reconstructed from the measurement projection data obtained by the X-ray detection unit.
  • a correction necessity determination unit determines that the sequential correction is necessary
  • the first successive approximation reconstruction unit can perform the sequential correction of the first CT image, thereby reducing the amount of calculation.
  • the correction necessity determination unit searches whether there is a structure in the incomplete acquisition region outside the complete acquisition region of the first CT image reconstructed from the measurement projection data obtained by the X-ray detection unit, It can be configured that the presence or absence of correction is determined based on the search result.
  • correction necessity determination unit may be configured to determine whether or not correction is performed based on the output value of the detection element at the end of the X-ray detection unit.
  • a third successive approximation reconstruction unit may be further arranged.
  • the third successive approximation reconstruction unit reconstructs the first CT image for the first reconstruction range of the subject from the measurement projection data obtained by the X-ray detection unit, and sequentially calculates the first CT image by calculation.
  • the first CT image is sequentially corrected so that the calculated projection data obtained by projection is equal to the measured projection data detected by the X-ray detector.
  • the third successive approximation reconstruction unit is configured to perform two sequential corrections by changing the type of weight. The first sequential correction is performed by outputting the outputs of a plurality of detection elements constituting the X-ray detection unit.
  • a statistical value weight that varies the weight given to the output data of the plurality of detection elements according to the size is used, and for the second sequential correction, a constant value that gives the same weight to the output data of the plurality of detection elements It is desirable to use a weight and set the update number of the first sequential correction to be larger than the update number of the second sequential correction.
  • An X-ray CT apparatus includes an X-ray generation unit that generates X-rays, an X-ray detection unit that detects X-rays that have passed through a subject, and obtains measurement projection data; A rotating plate that rotates around the subject by mounting a line generation unit and an X-ray detection unit, and a successive approximation reconstruction unit.
  • the successive approximation reconstruction unit reconstructs a CT image for a predetermined reconstruction range (FOV) of the subject from the measured projection data obtained by the X-ray detection unit, and calculates the projection obtained by forward projection of the CT image by calculation.
  • the CT image is sequentially corrected so that the data is equal to the measurement projection data detected by the X-ray detector.
  • the successive approximation reconfiguring unit is configured to change the type of weight and perform two sequential corrections.
  • the successive approximation reconstruction unit applies the output data of the plurality of detection elements to the first sequential correction out of the two sequential corrections according to the output magnitudes of the plurality of detection elements constituting the X-ray detection unit. It is preferable to use a statistic weight that varies the weight to be used.
  • the second sequential correction uses constant value weights that give the same weight to the output data of a plurality of detection elements, and the update number of the first sequential correction is greater than the update number of the second sequential correction. It is desirable to set so as to be larger.
  • the first CT image in the first reconstruction range is reconstructed from the projection data of the subject detected by the X-ray detection unit of the X-ray CT apparatus, and the first CT image is obtained.
  • Is used to extract local measurement projection data corresponding to a second reconstruction range within the first reconstruction range from the measurement projection data, and to obtain a second CT image for the second reconstruction range from the local measurement projection data A method for processing an X-ray CT image to be generated is provided.
  • the first CT image is sequentially corrected so that the first calculated projection data obtained from the first CT image by the projection calculation and the projection data of the subject are equal, and the first corrected
  • the local measurement projection data corresponding to the second reconstruction range is extracted using the CT image.
  • the second CT image is sequentially corrected so that the extracted local measurement projection data and the second CT image are equal.
  • Embodiment 1 The X-ray CT apparatus of Embodiment 1 will be specifically described with reference to the drawings.
  • FIG. 1 is a diagram illustrating a hardware configuration of an X-ray CT apparatus equipped with the successive approximation reconstruction software according to the first embodiment.
  • the apparatus shown in FIG. 1 includes an input unit 101 for inputting imaging conditions such as X-ray irradiation conditions and image reconstruction conditions, an imaging unit 102 for controlling imaging and irradiating and detecting X-rays, and for detected signals. And an image generating unit 103 that performs correction and image reconstruction and outputs an image.
  • the input unit 101 and the image generation unit 103 do not need to be configured integrally with the main body device including the imaging unit 102, and may be arranged at a location away from the imaging unit 102 and connected via a network. Further, the input unit 101 and the image generation unit 103 may share hardware such as an input / output unit, a processing unit, and a storage unit that realize these configurations.
  • the input unit 101 includes a keyboard 111 and a mouse 112 for inputting shooting conditions and the like. Although not shown, other input means such as a pen tablet or a touch panel may be provided. Furthermore, the input unit 101 includes a central processing unit (CPU; Central Processing Unit) 114, a storage unit such as a memory 113 and an HDD (Hard Disk Drive) device 115, and a monitor (not shown). Each component is connected by a data bus 101a. Data input from the keyboard 111 or the like is transferred to the central processing unit 114 which is a processing unit. The central processing unit 114 controls the photographing by sending a control signal to the photographing unit 102 by developing and starting a predetermined program stored in advance in the memory 113, the HDD device 115, and the like.
  • CPU Central Processing Unit
  • HDD Hard Disk Drive
  • the gantry 1 includes a gantry 3, a bed 5 that supports a subject 6, an X-ray controller 117, a gantry controller 116, and a bed controller 118.
  • the gantry 3 includes an X-ray tube 1, an X-ray detector 2, and a rotating plate 4 on which these are mounted.
  • a circular opening 7 is provided at the center of the gantry 3 and the rotating plate 4, and the bed 5 is inserted into the opening 7.
  • X-ray irradiation and detection are realized by the X-ray tube 1 and the X-ray detector 2.
  • a typical example of the distance between the X-ray generation point of the X-ray tube 1 and the X-ray input surface of the X-ray detector 2 is 1000 [mm].
  • a typical example of the diameter of the opening 7 is 700 [mm].
  • a typical example of the time required for one rotation of the rotating plate 4 is 1.0 [s].
  • the X-ray detector 2 a known X-ray detection unit including a scintillator and a photodiode is used.
  • the X-ray detector 2 has a large number of detection elements (not shown) arranged along an arc (channel direction) equidistant from the X-ray tube 1, and the number of elements (hereinafter referred to as the number of channels) There are 950 representative examples. A typical example of the size of each detection element in the channel direction is 1 [mm]. In addition, X-ray detection elements are arranged in a plurality of rows in the slice direction (the body axis direction of the subject 6). The number of times of photographing of the photographing unit 102 in one rotation of the rotating plate 4 is 900, and one photographing is performed every time the rotating plate 4 rotates 0.4 degrees. The specifications are not limited to these values, and can be variously changed according to the configuration of the X-ray CT apparatus.
  • the gantry controller 116 controls the rotation operation of the rotating plate 4.
  • the X-ray controller 117 controls the operation of the X-ray tube 1.
  • the bed controller 118 controls the position of the bed 5.
  • the image generation unit 103 includes a data collection system (DAS; Data Acquisition System) 119, a central processing unit (CPU) 121, a storage unit such as the memory 120 and the HDD device 122, and a monitor 123. These are connected by a data bus 103a.
  • DAS Data Acquisition System
  • CPU central processing unit
  • storage unit such as the memory 120 and the HDD device 122
  • monitor 123 These are connected by a data bus 103a.
  • the signal detected by the X-ray detector 2 of the imaging unit 102 is converted into a digital signal by the DAS 119 and delivered to the CPU 121.
  • the CPU 121 performs correction and image reconstruction by developing and starting a predetermined program stored in advance in the memory 120 and the HDD device 122. Further, data is stored in the HDD device 122 or the like, and data is input / output to / from the outside as necessary.
  • the reconstructed CT image is displayed on a monitor 123 such as a liquid crystal display or a CRT as a display unit.
  • the CPU 121, the memory 120, the monitor 123, and the like can be shared with the input unit 101.
  • FIG. 2 is a functional block diagram of the X-ray CT apparatus of the first embodiment.
  • the input unit 101 in FIG. 2 functions as a shooting condition input unit 131 that inputs shooting conditions.
  • the imaging unit 102 functions as an imaging control unit 132 that controls imaging based on the imaging conditions input by the imaging condition input unit 131 and an imaging unit 133 that performs X-ray irradiation and detection.
  • the image generation unit 103 includes a signal collection unit 134 that converts a detected signal into a digital signal, a correction processing unit 135 that corrects the digital signal, a reconstruction processing unit 136 that reconstructs an image of the corrected projection data, And it functions as an image display unit 137 that outputs a reconstructed CT image.
  • FIG. 3 is a diagram illustrating an example of the shooting condition reception screen 141 displayed on the monitor 123 of the shooting condition input unit 131.
  • the imaging condition input unit 131 in FIG. 2 displays the imaging condition reception screen 141 in FIG. 3 on the monitor 123 and receives an operator input.
  • the imaging condition reception screen 141 in FIG. 3 sets an X-ray condition setting area 142 for setting a tube voltage and a tube current time product corresponding to the energy and output amount of X-rays to be irradiated, and a range of a reconstructed image.
  • the operator sets the X-ray condition, the reconstruction range, the reconstruction condition, the imaging region, and the like by operating the mouse 112, the keyboard 111, and the like while viewing the imaging condition reception screen 141. This will be described in more detail below.
  • a tube voltage value 120 [kV] and a tube current time product 200 [mAs] are set.
  • X-rays having one type of energy spectrum are assumed.
  • the items of tube voltage and tube current time product can be added in the same manner. it can.
  • the operator sets two reconstruction ranges (FOV).
  • the first reconstruction range (FOV) is an area (hereinafter referred to as a large FOV) 200 in which image reconstruction is performed (see FIG. 11A).
  • the second reconstruction range (FOV) is a local region (referred to as a small FOV) 212 in which an enlarged reconstruction is performed inside the large FOV.
  • the sizes and center positions of the large FOV 200 and the small FOV 212 are set.
  • the FOV in this embodiment is defined as a square. In the example of FIG.
  • the large FOV has a side of 600 [mm]
  • the small FOV has a side of 300 [mm]
  • the center position of the large FOV 200 is set equal to the rotation center
  • the large FOV 200 and the small FOV 212 are not limited to a square, and can be set to an arbitrary shape such as a circle, a rectangle, a cube, a rectangular parallelepiped, and a sphere. In this case as well, the present invention can be applied.
  • the reconstruction condition setting area 144 is a setting area for selecting a weight used for the successive approximation reconstruction described later, and will not be described because it is not used in the first embodiment. This will be described in the second embodiment. In the first embodiment, a predetermined weight is used and no weight is selected.
  • an X-ray irradiation target or a reconstruction target is selected.
  • the present invention is not limited to the abdomen selected in the present embodiment, but a region such as the head, chest, lung field, or tissue may be selected, or the operator may directly specify the range.
  • the shooting condition reception screen 141 is not limited to the screen configuration shown in FIG.
  • the X-ray condition, the reconstruction range, the reconstruction condition, and the imaging region setting for accepting settings on the imaging condition reception screen 141 can be stored in the HDD device 115 in advance. In that case, it is not necessary for the operator to input each time, and the imaging condition input unit 131 may read the setting conditions from the HDD device 115.
  • the imaging unit 102 in FIG. 2 performs X-ray imaging according to the imaging conditions received by the imaging condition input unit 131.
  • the shooting control unit 132 in the shooting unit 102 instructs the bed controller 118 to start shooting in response to this shooting start instruction.
  • the bed controller 118 controls the bed 5 to move in the direction of the rotation axis of the rotating plate 4. Then, when the position of the subject 6 coincides with the designated shooting position, the movement of the bed 5 is stopped. This completes the placement of the subject 6.
  • the imaging control unit 132 instructs the gantry controller 116 to start imaging.
  • the gantry controller 116 starts the rotation of the rotating plate 4 via the drive motor at the same time when the start of imaging is instructed.
  • the imaging control unit 132 sends an X-ray of the X-ray tube 1 of the imaging unit 102 to the X-ray controller 117.
  • the irradiation timing and the imaging timing of the X-ray detector 2 are instructed.
  • the X-ray controller 117 emits X-rays from the X-ray tube 1 in accordance with this instruction, and the X-ray detector 2 detects X-rays and starts imaging. Further, the X-ray controller 117 determines the energy spectrum and output amount of the X-ray to be irradiated, for example, based on the tube voltage and tube current time product of the X-ray tube 1 set by the operator.
  • X-rays having one type of energy spectrum are used.
  • X-rays having two or more types of energy spectra are irradiated by switching the tube voltage at high speed every rotation or during one rotation. It can also be applied to multi-energy CT that acquires imaging data.
  • the signal collecting unit 134 in FIG. 2 converts the output signal of the X-ray detector 2 into a digital signal by the DAS 119 and stores it in the memory 120.
  • the correction processing unit 135 performs offset correction for calibrating the zero value of the X-ray detection signal, reference correction for correcting variation of the signal component detected for each projection angle, and correction of sensitivity between detection elements.
  • the measurement projection data of the subject 6 is acquired by performing correction such as a known air calibration process.
  • the measurement projection data acquired by the signal collecting unit 134 and the correction processing unit 135 is sent to the reconstruction processing unit 136.
  • FIG. 4 shows a more detailed functional configuration of the reconfiguration processing unit 136.
  • the reconstruction processing unit 136 includes a local measurement projection data extraction unit 153 and a second successive approximation reconstruction unit 155 that sequentially reconstructs a small FOV image.
  • the local measurement projection data extraction unit 153 reconstructs the first CT image (large FOV image) of the large FOV 210 of the subject 6 from the measurement projection data acquired by the signal collection unit 134 and the correction processing unit 135, and Local measurement projection data corresponding to the small FOV 212 is extracted from the measurement projection data from one CT image. Details of the extraction method will be described later.
  • the local measurement projection data extraction unit 153 includes a first successive approximation reconstruction unit 152 that performs successive approximation reconstruction when the first CT image for the large FOV is reconstructed. Specifically, the first successive approximation reconstruction unit 152 converts the first CT image so that the calculated projection data obtained by forward projection of the first CT image by calculation is equal to the measured projection data. Correct sequentially. The local measurement projection data extraction unit 153 extracts local measurement projection data corresponding to the small FOV 212 from the sequentially corrected first CT image.
  • the second successive approximation reconstruction unit 155 reconstructs the second CT image (small FOV image) for the small FOV from the local measurement projection data extracted by the local measurement projection data extraction unit 153, and converts the second CT image into the second CT image.
  • the second CT image is sequentially corrected so that the locally calculated projection data obtained by forward projection by calculation is equal to the locally measured projection data.
  • the local measurement projection data extraction unit 153 can generate the first CT image for the large FOV with high accuracy by successive approximation reconstruction in order to extract the local measurement projection data.
  • the local measurement projection data corresponding to the small FOV can be extracted with high accuracy from the first CT image with high accuracy. Therefore, a highly accurate second CT image can be generated by sequential reconstruction from highly accurate local measurement projection data.
  • the first successive approximation reconstruction unit 152 includes a large FOV analytical reconstruction unit 161, a large FOV forward projection unit 162, a difference unit (data comparison unit) 163, a large FOV backprojection processing unit 164, and The large FOV image update unit 165 is included.
  • the local measurement projection data extraction unit 153 includes a background image creation unit 167, a background image forward projection unit 168, and a difference unit (data comparison unit) 169.
  • the second successive approximation reconstruction unit 155 includes a small FOV analytical reconstruction unit 170, a small FOV forward projection unit 171, a difference unit (data comparison unit) 172, a small FOV backprojection processing unit 173, and a small FOV image update unit. 174.
  • i and j indicate the number of the detection element of the X-ray detector 2 and the pixel number of the image, respectively, and k indicates the number of updates of the successive approximation reconstruction.
  • SPS Separable-Paraboloid-Surrogate which is one of successive approximation reconstruction methods.
  • This SPS is represented by Formula (1).
  • ⁇ k (j) represents the pixel value of the pixel j of the large FOV image at the number of updates k being calculated, and is assumed to be composed of J pixels.
  • W (i) is a weight representing a rate of correcting the image, and is a predetermined value.
  • a large FOV image is not only a general two-dimensional (x, y direction) tomographic image, but also one-dimensional data (x direction) and three-dimensional data (x, y, z) obtained by superimposing the images in the body axis direction z. Direction), or four-dimensional data (x, y, z, t) considering the time direction t in three dimensions. This will be specifically described below.
  • the large FOV forward projection unit 162 performs forward projection processing on the pixels of the large FOV image ( ⁇ k (j)) by calculating Expression (2), and obtains calculated projection data.
  • l represents the number of those pixels.
  • C (i, l) represents the rate at which the pixel l contributes to the X-ray detector i, and differs depending on the position of the X-ray detector, the forward projection calculation, or the back projection calculation method.
  • step 184 the difference unit 163 subtracts the calculated projection data of equation (2) from the measured projection data R (i) as in equation (3) to obtain updated projection data ⁇ R k (i).
  • step 185 the large FOV backprojection processing unit 164 performs backprojection processing on the updated projection data shown in Expression (4) to obtain an updated image ⁇ k (j).
  • W (i) is a weight representing a rate of correcting the image, and is a predetermined value.
  • step 186 the large FOV image update unit 165 obtains a large FOV image ( ⁇ k + 1 (j)) corrected using the updated image by calculating Expression (5).
  • the update count k is incremented to k + 1 in step 187, and loop processing is performed by returning to step 182. At this time, if the updated number of updates k is equal to the preset number of updates K, the update is completed and a large FOV image is output.
  • the calculated projection data obtained by projecting the large FOV image is created so as to coincide well with the measured projection data.
  • step 188 the background image creation unit 167 sets the pixel value of the small FOV set by the operator in the reconstruction range setting area 143 of FIG. 3 among the pixels of the large FOV image as the CT value of air—1000 [HU]. Replace. Thereby, a background image only outside the small FOV is created.
  • step 189 the background image forward projection unit 168 performs forward projection processing on the background image ( ⁇ k (j)) by calculating Expression (2) to obtain background projection data.
  • the difference unit 169 calculates the expression 6 to subtract the background projection data from the measurement projection data R (i) to obtain local measurement projection data R r (i).
  • the calculated projection data agrees well with the measured projection data.
  • the local measurement projection data R r (i) corresponding to the small FOV is accurately extracted from the measurement projection data by creating a background image from the large FOV image and subtracting the calculated projection data from the measurement projection data.
  • the second successive approximation reconstruction unit 155 can create a small FOV image with high accuracy by performing successive approximation reconstruction using the local measurement projection data R r (i).
  • the small FOV analytical reconstruction unit 170 of the second successive approximation reconstruction unit 155 performs a known Feldkamp method or the like on the local measurement projection data R r (i) in step 191 of FIG.
  • the calculated small FOV image is used as an initial image of the successive approximation reconstruction method, and the image is sequentially corrected.
  • step 192 if the update count k being calculated is smaller than the preset update count K, the image is corrected using the local measurement projection data R r (i) of steps 193 to 196.
  • the image is corrected by calculating Expression (7).
  • ⁇ r k (j) represents the pixel value of the pixel j of the small FOV image at the number of updates k being calculated, and is assumed to be composed of J pixels.
  • W r (i) is a weight representing a ratio for correcting the image, and is a predetermined value.
  • the small FOV image is not only a general two-dimensional (x, y direction) tomographic image but also one-dimensional data (x direction) and three-dimensional data (x, y, z) obtained by superimposing the images in the body axis direction z. Direction), or four-dimensional data (x, y, z, t) considering the time direction t in three dimensions. This will be specifically described below.
  • Small FOV forward projection unit 170 in step 193, using Equation substituted notation the above equation large FOV images in (2) ( ⁇ k (j )) to the small FOV image ( ⁇ r k (j)) Then, calculation projection data (local calculation projection data) of the local region is obtained.
  • the difference unit 172 calculates a local update by calculating a mathematical expression in which the large FOV image ( ⁇ k (j)) is replaced with the small FOV image ( ⁇ r k (j)) in Equation (3). Projection data ⁇ R r k (i) is obtained.
  • step 195 the small FOV backprojection processing unit 173 calculates a mathematical expression in which the large FOV image ( ⁇ k (j)) shown in Expression (4) is replaced with the small FOV image ( ⁇ r k (j)).
  • the local update projection data ⁇ R r k (i) is back-projected to obtain an updated image ⁇ r k (j).
  • a predetermined value is used as the weight W r (i).
  • step 196 the small FOV image update unit 174 calculates a mathematical formula in which the large FOV image ( ⁇ k (j)) is replaced with the small FOV image ( ⁇ r k (j)) in equation (5). Then, a small FOV image ⁇ r k + 1 (j) corrected using the updated image is obtained .
  • step 197 the number of updates k is incremented to k + 1, and loop processing is performed by returning to step 192. At this time, if the updated number of updates k is equal to the preset number of updates K, the update ends, and in step 198, the image display unit 137 outputs a small FOV image (second CT image).
  • steps 181 to 198 the calculation procedure of the expansion reconstruction technique in the successive approximation reconstruction method is shown.
  • the CT value accuracy of the small FOV image depends on the accuracy of the local measurement projection data, but in this embodiment, successive approximation reconstruction of the large FOV image is performed in order to extract the local measurement projection data. Therefore, it is possible to obtain the calculated projection data of the background image that matches the measured projection data with high accuracy for the region of the background image. Therefore, highly accurate local measurement projection data can be extracted by subtracting the calculated projection data of the background image from the measurement projection data.
  • the successive approximation reconstruction method represented by the formula (1) or the formula (7) in the first embodiment is an example, and known OS-SPS, PWLS, OS-PWLS, ASIRT, MSIRT, GRADDY, CONGR, ART, SART , ML-EM, OS-EM, FIRA, RAMLA, DRAMA, and other methods may be applied.
  • the image display unit 137 displays the calculated CT image on the monitor 123 to provide information to the operator.
  • the subject described in the present embodiment means a subject to be photographed, and includes the subject 6 and the bed 5 that supports the subject 6.
  • the subject 6 is not limited to a human body, and may be an object to be inspected such as a phantom or a machine.
  • the local measurement projection data is reconstructed.
  • the present invention is not limited to this embodiment, and the small FOV image is reconstructed with the background image fixed at the pixel size of the large FOV image.
  • a method of sequentially correcting an image and a background image simultaneously can also be used. In this case, the number of updates used for the correction of the background image and the number of updates used for the correction of the small FOV image do not necessarily have to coincide with each other, and even when one correction is completed, the other correction may be continued. .
  • the CT image is reconstructed using the measurement projection data acquired from the rotation for one round, but the present invention is not limited to one round and can be applied to a known half reconstruction.
  • the complete measurement region is a region where the rotation angle satisfying the complete collection condition in the half reconstruction is acquired.
  • the normal scan method is assumed.
  • the step and shoot method in which normal scanning is performed repeatedly in the order of the operation and stop of the table 5 and the normal scan is performed, and the spiral scan method in which imaging is performed while moving the table Needless to say, the present invention may be applied.
  • a biological X-ray CT apparatus is shown as an example, but it goes without saying that the present invention may be applied to an X-ray CT apparatus for non-destructive inspection such as explosives inspection and product inspection. Yes.
  • this embodiment shows a known third-generation multi-slice X-ray CT apparatus as an example, but it can also be applied to known first-, second-, and fourth-generation X-ray CT apparatuses. It can also be applied to a line CT apparatus and an electron beam CT.
  • the first successive approximation reconstruction unit 152 that performs successive approximation reconstruction of a large FOV uses a predetermined value as the weight W (i) for successive approximation reconstruction using Equation (1). It was.
  • the second successive approximation reconstruction unit 155 that performs successive approximation reconstruction of the small FOV has a configuration that uses a predetermined value as the weight W r (i) when performing successive approximation reconstruction using Equation (7). .
  • the weight W (i) of the successive approximation reconstruction of the large FOV image or the weight W r (i) used for the successive approximation reconstruction of the small FOV image is set to the large FOV image or the small FOV image.
  • a reduction in CT value accuracy in a small FOV image is suppressed by setting an appropriate type of weight according to the type of error.
  • Types of weights that can be used for the weight W (i) for successive approximation reconstruction of a large FOV image and the weight W r (i) used for successive approximation reconstruction of a small FOV image include constant value weights (constants) and statistics. There are two types of value weights.
  • W (i) or W r (i) When a constant value weight is used as the weight W (i) or W r (i), W (i) or W r (i) is constant regardless of the detection element number (pixel number) i of the X-ray detector 2. Set the value weight (constant). Here, the same effect can be obtained regardless of the value of the constant value weight (constant). The reason is that W (i) or W r (i) is contained in the denominator numerator, as is clear from the above formulas (1) and (7).
  • the magnitude of the weight determined based on the value of the output signal of the detection element of the number i of the X-ray detector 2 (for example, proportional) Is set as W (i) or W r (i). That is, if the output signal of the mth detection element is large, the weight W (m) is set large, and if the output signal of the nth detection element is small, the weight W (n) is set small.
  • 10A it can be seen that when a constant value weight is used, the pixel value changes continuously without depending on the projection angle.
  • FIG. 10B it is understood that the pixel value depending on the projection angle changes discretely when the statistical value weight is used.
  • 10 (a) and 10 (b) show images that are back-projected only with respect to the weights of the center detection elements, but the types of weights are also associated with the weights of the detection elements installed in the channel direction or slice direction. Needless to say, the action of restoring the image can be obtained in the same manner.
  • the constant value weight is used, so that the image is not dependent on the projection angle from the updated projection data of all the detection elements. Can be corrected.
  • the CT image has little variation between pixels due to correction, and a uniform image quality improvement effect can be obtained.
  • a beam hardening effect is generated in which the value of measurement projection data differs depending on the condition of the subject through which X-rays pass, by using a constant value weight, projection data of some projection angles Therefore, it is possible to obtain a uniform image quality improvement effect.
  • the image is corrected at an equal rate from the updated projection data for each projection angle. There is no emphasis, and a decrease in the accuracy of the CT value can be suppressed.
  • the disadvantage of using constant value weights is that the measured measurement projection data noise is assumed to be the same for all X-ray detectors, so that the noise reduction effect cannot be sufficiently obtained as in the case of using statistical value weights. There is a case.
  • the statistic weight according to the magnitude of the output signal of the detection element with the detection element number i the ratio of correcting the image according to the noise of the projection data measured by the detection element Can be changed.
  • an image is corrected centering on projection data with low noise, and quantum noise, circuit noise, and streak artifacts can be effectively reduced.
  • the statistic weight there is a case where correction is emphasized according to the weight for projection data having a projection angle with a large beam hardening effect, and a uniform image quality improvement effect cannot be expected. Thereby, CT value accuracy may be reduced.
  • Embodiment 2 makes use of the above-described features of constant value weights and statistical value weights, and suppresses a decrease in CT value accuracy in a small FOV image by setting an appropriate type of weight depending on the image.
  • a large FOV weight selection unit 151 that selects a weight W (i) for successive approximate reconstruction of a large FOV image is arranged in the local measurement projection data extraction unit 153.
  • a small FOV weight selection unit 154 that selects a weight W r (i) for successive approximation reconstruction of a small FOV image is arranged.
  • the large FOV weight selection unit 151 is configured before the analytical reconstruction unit 152, but is not limited to this embodiment, and may be configured after the analytical reconstruction unit 152. Good.
  • the imaging condition reception screen 141 of FIG. 3 is provided with a reconstruction condition setting area 144, and the operator uses the weights W (i) and W r (i) used for the successive approximation reconstruction of the large FOV image and the small FOV image.
  • a mode 124 for automatically determining and a mode 125 for manually selecting a weight are displayed, and the operator can select either one.
  • the mode 146 is a mode in which processing is performed to reduce both streak artifacts in both the background image obtained by removing the small FOV image from the large FOV image and the small FOV image (local region).
  • the mode 147 is a mode for performing processing for reducing the streak artifact of the background image when the streak artifact is large only in the large FOV background image.
  • two types of modes 148 and 149 for reducing beam hardening while maintaining the accuracy of the CT value are also displayed.
  • Mode 148 is a mode in which both the background image and the small FOV image (local region) are reduced when the beam hardening effect is large.
  • the mode 149 is a mode for reducing the beam hardening effect only when the background image is large.
  • the manual weight determination mode 125 as the weight W (i) used for the successive approximation reconstruction of the large FOV image, the statistical value weight, the constant value weight, or the region 126 to be manually selected is selected.
  • W r (i) used for the successive approximation reconstruction of the small FOV image a region 127 for manually selecting one of statistical value weight, constant value weight, or no correction is provided.
  • the unit 154 selects the statistical value weights as the weights W (i) and W r (i), and sets them in the first and second successive approximation reconstructing units 152 and 155, respectively.
  • the large FOV weight selection unit 151 in FIG. 8 selects the statistical value weight as the weight W (i).
  • the small FOV weight selection unit 154 selects a constant value weight as the weight W r (i).
  • the large FOV weight selection unit 151 and the small FOV weight selection unit 154 have the weight W (i ) And W r (i) both select constant value weights. Thereby, the beam hardening effect of large FOV image and small FOV image, the error of incomplete reconstruction, and the error of reference correction can be reduced.
  • the large FOV weight selection unit 151 selects a constant value weight as the weight W (i)
  • the small FOV weight selection unit 154 selects a statistical value weight as the weight W r (i).
  • the large FOV weight selection unit 151 selects the weight type manually selected in the area 126 in FIG. 3 as the weight W (i).
  • the small FOV weight selection unit 154 selects the weight type manually selected in the area 127 of FIG. 3 as the weight W r (i).
  • the CT value accuracy of the small FOV image depends on the accuracy of the local measurement projection data.
  • accuracy As a factor for reducing the accuracy, there is mainly a decrease in CT value accuracy in a large FOV image.
  • incomplete reconstruction in the analytical reconstruction method, an error increases when data of some projection angles is not measured around the FOV.
  • the error generated in the image of the background area reduces the accuracy of the local measurement projection data through the background projection data calculated by forward projection. Thereby, since a small FOV image is corrected using low-precision local measurement projection data, the CT value accuracy decreases.
  • the weights W (i) and W r (i) used for correcting the large FOV image or the small FOV image are changed according to the error type of the large FOV image or the small FOV image. By doing so, it is possible to suppress a decrease in CT value accuracy in the small FOV image.
  • the phantom to be photographed was set assuming an elliptical human abdomen.
  • the phantom of the human abdomen has a structure having a CT value of water close to that of living tissue.
  • FIG. A circle 211 in FIG. 11A indicates the boundary between the complete collection region 241 inside the circle and the non-complete collection region 244 outside the circle.
  • the complete collection area 241 is an area in which projection data is collected at a projection angle for one rotation
  • the non-complete collection area 244 has projection data at some projection angles with respect to the complete collection area 241. It is an area that is not collected.
  • FIG. 11B is an image obtained by the FBP method, which is a conventional analytical reconstruction method, for the small FOV 212.
  • FIG. 11C shows a case where the large FOV image is not corrected (the image is not corrected), and the statistical value weight is used as the correction weight W r (i) of the small FOV image.
  • FIG. 11D shows a case where statistical weights are used for the weights W (i) and W r (i) for correcting the large FOV image and the small FOV image.
  • FIG. 11E shows a case where a constant value weight is used as the correction weight W (i) for the large FOV image and a statistical value weight is used as the correction weight W r (i) for the small FOV image.
  • OS-SPS using a known subset method is used for the successive approximation reconstruction, the number of updates of the large FOV image is set to 50, and the number of updates of the small FOV image is performed.
  • the number of subsets 24.
  • FIGS. 11 (f) to 11 (h) show the results of the successive approximation reconstruction method shown in FIGS. 11 (c) to 11 (e), and the FBP method, which is the conventional analytical reconstruction method shown in FIG. 11 (b). It is the image which took the difference with a result.
  • the large FOV image is not corrected (the image is not corrected), and the small FOV image correction weight W r (i) is a statistical value weight (FIG. 11).
  • the image c a decrease in the CT value accuracy is observed at the position of the arrow.
  • FIG. 11G obtained by taking the difference from the above, a slight decrease in the CT value accuracy is seen at the position of the arrow.
  • the image of FIG. 11G obtained by taking the difference from the above, a slight decrease in the CT value accuracy is seen at the position of the arrow.
  • FIG. 11 (i) is an explanatory diagram showing the position of a circular region of interest (hereinafter referred to as ROI) for evaluating the images of FIGS. 11 (f) to 11 (h).
  • ROI a circular region of interest
  • FIG. 11I an ROI 213 is set in the upper stage of the image, an ROI 214 is set in the middle stage, and an ROI 215 is set in the lower stage.
  • the graph of FIG. 11 (j) is a result of quantitatively measuring CT values in the ROIs 213 to 215 shown in FIG. 11 (i).
  • the difference CT value on the vertical axis represents the CT value after the difference from the FBP method in FIG. 11B, and indicates that the closer to 0, the lower the CT value accuracy due to the enlargement reconstruction technique can be suppressed.
  • the image of FIG. 11 (h) has the smallest differential CT value.
  • Embodiment 3 an X-ray CT apparatus equipped with successive approximation reconstruction software in which a part of Embodiments 1 and 2 is changed will be described.
  • the X-ray CT apparatus of the third embodiment is different from the first or second embodiment in that the type of weight used for the large FOV image or the small FOV image is changed during the successive approximation reconstruction.
  • the principal part of the X-ray CT apparatus of Embodiment 3 is demonstrated.
  • Other configurations are the same as the configurations and operations of the X-ray CT apparatus described in the first embodiment or the second embodiment, and thus the description thereof is omitted here.
  • FIG. 12 shows an imaging condition reception screen 141 displayed on the monitor 123 in the third embodiment.
  • the high accuracy / short time mode 216 for selecting either the high accuracy mode or the short time mode is displayed. Is provided.
  • Other configurations are the same as those in FIG.
  • the large FOV is selected according to the operator's selection in the automatic weight determination mode 124 and the manual weight selection mode 125 as in the second embodiment.
  • the weight selection unit 151 and the small FOV weight selection unit 154 select the type of weight.
  • the large FOV weight selection unit 151 When the operator selects the high accuracy mode out of the high accuracy / short time mode 216, the large FOV weight selection unit 151 first selects a statistical value weight as the weight W (i) used for correcting the large FOV image. , After repeating the successive approximation reconstruction k 1 times (step 182 in FIG. 6) which is a predetermined sufficient number of updates, the weight W (i) used for correction is changed to a constant value weight, and from k 1 times The successive approximation reconstruction is repeatedly executed k 2 times which is the smallest number of updates.
  • This can reduce the quantum noise, circuit noise, and streak artifacts in the background image of a large FOV image, and can also reduce the beam hardening effect, incomplete reconstruction error, and reference correction error in the background image. Thereby, both of the different kinds of errors occurring in the large FOV image can be reduced by using the advantages of the statistical value weight and the constant value weight.
  • the statistical value weight is used as the weight first, then the constant value weight is used, and the update counts k 1 and k 2 are set as k 1 > k 2 as follows.
  • the low-frequency component of the CT image is mainly corrected at the first half time when the number of updates is small, regardless of whether the type of weight is statistical weight or constant value weight.
  • the low frequency component has a feature that the CT value of the image changes gradually, and the average value of the CT value in the ROI varies greatly.
  • Typical examples of low frequency components include beam hardening effects, incomplete reconstruction errors, and reference correction errors.
  • high-frequency components are mainly corrected at the second half of the correction with a large number of updates.
  • a typical example of the high frequency component is an error having a feature that the CT value changes sharply, such as correction of an edge portion of a structure, enhancement of quantum noise, streak artifact, and the like.
  • changes in low-frequency components and high-frequency components work in a direction to reduce low-frequency components and high-frequency component noise and errors if they are included in the image. If it is not included in the image, it acts in a direction that causes noise and errors of low frequency components and high frequency components.
  • the beam hardening effect that is a low-frequency component can be reduced, but a sufficiently large number of updates is set using a constant value weight.
  • a small number of updates is set using statistical weights after correction using constant value weights in this way, the low frequency components once reduced will be changed in reverse, and the beam hardening effect will be reversed. It works in the direction that emphasizes and increases. For this reason, when updating is performed up to a sufficiently large number of updates with statistical weights, the increased low-frequency beam hardening effect cannot be reduced even if streak artifacts of high-frequency components can be reduced.
  • the successive approximation reconstruction is first performed with the large number of update times k 1 using the statistical value weight, and then the successive approximation reconstruction is performed with the constant value weight and the smaller number of update times k 2 .
  • small FOV weight selection section 154 first performs the iterative reconstruction with a large number of updates k 3 in statistics weight, with subsequent constant value weight, small number of updates k In step 4 , successive approximation reconstruction is performed. Thereby, streak artifacts and beam hardening effects can be further reduced.
  • the type of weight is changed during the successive approximation reconstruction for both the large FOV image and the small FOV image.
  • either the large FOV image or the small FOV image is used. It is also possible to change the type of weight for only one of them in the course of successive approximation reconstruction and to use one of the statistical weight or the constant value weight for the other.
  • the change in the weights of the large FOV image and the small FOV image has been individually described.
  • the correction of the large FOV image has an effect of suppressing the accuracy reduction of the local measurement projection data, and the small FOV image. This correction is effective for suppressing a decrease in accuracy of the CT value.
  • the action and effect of changing the weight differs between the large FOV image and the small FOV image.
  • the phantom to be photographed was a human phantom simulating the pelvis.
  • the used human phantom has a structure having a CT value close to that of a living tissue.
  • FIGS. 13 (a) and 13 (b) The reconstructed results are shown in FIGS. 13 (a) and 13 (b).
  • the image shown in FIG. 13A uses constant value weights for correction of a large FOV image, is subjected to successive approximation reconstruction with 10 updates, and is successively approximated with statistical weights for correction of small FOV images with 20 updates. It is a reconfiguration.
  • the image in FIG. 13B uses a constant value weight for correction of the large FOV image, performs successive approximate reconstruction at the update count of 10 times, and uses the statistical value weight for correction of the small FOV image. This is a result of performing the successive approximation reconstruction with one update after changing the weight to a constant value weight after performing the successive approximation reconstruction with 20 times.
  • Large FOV 550 [mm]
  • small FOV 250 [mm]
  • the reconstruction center of the small FOV image is set at a position of 80 [mm] in the X direction and 130 [mm] in the Y direction from the rotation center. .
  • FIGS. 13 (c) and 13 (d) are images obtained by taking the difference from the results of the FBP method, which is a conventional analytical reconstruction method, from the images of FIGS. 13 (a) and 13 (b).
  • Dotted lines 221 shown in FIGS. 13A and 13C are boundaries between the complete collection area and the incomplete collection area 222.
  • the description of the complete collection area and the incomplete collection area 222 is as described in the second embodiment.
  • the CT value accuracy of the non-complete collection region 222 is not evaluated, but only the CT value accuracy of the complete collection region is evaluated.
  • the description is based on the size of the update count, but it goes without saying that a smaller update count is sufficient when the correction speed for each update count is fast.
  • Embodiment 4 an X-ray CT apparatus equipped with successive approximation reconstruction software, in which a part of Embodiment 1 is changed, will be described.
  • the X-ray CT apparatus of the fourth embodiment is different from the first to third embodiments in that it includes a correction necessity determination unit 231 that determines whether or not a large FOV image needs to be corrected by successive approximation reconstruction. . Accordingly, when there is no need to correct the large FOV image, it is possible to suppress the decrease in the CT value accuracy of the small FOV image without performing the successive approximation reconstruction to increase the calculation amount.
  • a correction necessity determination unit 231 determines whether or not a large FOV image needs to be corrected by successive approximation reconstruction.
  • FIG. 14 shows an imaging condition reception screen 141 displayed on the monitor 123 in the fourth embodiment.
  • the operator when the operator selects the automatic weight determination mode 124, the operator can select the large FOV update automatic determination mode 217 in addition to the automatic determination mode 124. .
  • the operation when the operator selects OFF of the automatic determination mode 217 for large FOV update is as shown in the first to third embodiments.
  • the case where the operator selects ON in the large FOV update automatic determination mode 217 will be described in detail.
  • FIG. 15 shows the configuration of the first successive approximation reconstruction unit 152 of the fourth embodiment.
  • the first successive approximation reconstruction unit 152 includes a correction necessity determination unit 231.
  • Other functional blocks are the same as those in FIG.
  • the correction necessity determination unit 231 searches the incomplete collection region 244 in FIG. 16 for the large FOV image reconstructed by the large FOV analytical reconstruction unit 161, and in the incomplete collection region 244, structures other than air and streaks are searched. Determine if there is an artifact.
  • a complete collection area 241 is an area within a circle 211 where projection data is collected at a projection angle for one rotation
  • a non-complete collection area 244 is an area outside the complete collection area 241. This is an area where projection data is not collected at the projection angle of the part.
  • the calculated projection data of the large FOV image agrees well with the measured projection data without performing successive approximation reconstruction. If there is a structure or streak artifact in the incomplete collection region 244, the first successive approximation reconstruction unit 152 performs successive approximation reconstruction, and the degree of coincidence between the measured projection data and the calculated projection data of the large FOV image It is desirable to increase.
  • the correction necessity determination unit 231 determines that correction is not necessary when there is no structure or streak artifact in the incomplete collection region 244, and the large FOV analytical reconstruction unit 161 generates without performing successive approximation reconstruction.
  • the large FOV image is transferred to the background image creation unit 167 as it is. Thereby, the amount of calculation used for the successive approximation reconstruction can be reduced.
  • the correction necessity determination unit 231 passes the large FOV image to the large FOV forward projection unit 162, and executes successive approximation reconstruction.
  • the correction necessity determination unit 231 needs to determine a target such as a structure or a streak artifact from the large FOV image. For example, it is a method of determining the air and the area other than air assuming that the incomplete collection area 244 of the large FOV image is filled with air.
  • a known image processing technique such as threshold determination or region expansion method is used.
  • the unit 231 determines that correction of the large FOV image is necessary.
  • the bed 243 is a processing target as an example, but the present invention is not limited to this embodiment, and a streak artifact, a subject, or the like may be determined as a processing target.
  • the correction necessity determination unit 231 searches the measurement projection data of the detection element at the end of the X-ray detector 2 in the channel direction, and thereby the structure in the incomplete collection region 244.
  • the point which determines the presence or absence of an object differs from Embodiment 4.
  • the principal part of the X-ray CT apparatus of Embodiment 5 is demonstrated.
  • Other configurations are the same as the configurations of the X-ray CT apparatus described in the first to fourth embodiments, and thus description thereof is omitted here.
  • the correction necessity determination unit 231 searches the measurement projection data 251 output from the correction processing unit 135, and outputs the output value (CT value data) of the end region 252 of the X-ray detector 2 in the channel direction. Is equal to or greater than the threshold value, it is determined that a structure or streak artifact exists in the incomplete collection region 244. When the output value of the end region 252 of the X-ray detector 2 of the measurement projection data 251 is equal to or less than the threshold value, it is determined that there is no structure or streak artifact in the incomplete collection region 244.
  • the horizontal axis is the projection data in the channel direction, and the vertical axis is the projection angle.
  • the projection angle is in the range of 0 to 360 degrees.
  • the measurement projection data 251 shown in FIG. 17 is displayed in white as the measurement projection data value (output value of the X-ray detector 2) is large due to a structure or the like, and is expressed in gray as the measurement projection data value is small. .
  • the end region 252 of the X-ray detector 2 is, for example, five detection elements on each side. It is also possible to determine whether or not the output value of the end region 252 is greater than or equal to the threshold value using data obtained by averaging the output values of the five detection elements on each side. Thereby, the influence of noise which is a random component can be reduced, and erroneous determination can be prevented.
  • the correction necessity determination unit 231 delivers the large FOV image to the background image generation unit 167 without performing the successive approximation reconstruction process. As described above, the correction of the large FOV image can be omitted, and the decrease in the CT value accuracy of the small FOV image can be suppressed without increasing the amount of calculation.
  • the correction necessity determination unit 231 is configured after the large FOV analytical reconstruction unit 161, but may be arranged before the large FOV analytical reconstruction unit 161.
  • the X-ray CT apparatus has the same configuration as that in FIGS. 1 and 2 of the first embodiment, but the reconstruction processing unit 136 in FIG. 2 has the configuration in FIG. 18 for normal successive approximation reconstruction. is there. That is, the reconstruction processing unit 136 includes an FOV weight selection unit 285 that selects a weight W (i) for successive approximation reconstruction of an FOV image, an FOV analytical reconstruction unit 280, an FOV forward projection unit 281 and a difference unit. (Data comparison unit) 282, FOV backprojection processing unit 283, and FOV image update unit 284 are included.
  • the update unit 165 corresponds to each of the update units 165, and the successive approximation reconstruction is performed on the FOV image.
  • the FOV weight selection unit 285 in FIG. 18 first calculates the statistical weight as the weight W (i) used for correcting the FOV image (large FOV image). After selecting and repeating the successive approximation reconstruction at k 1 times, which is a sufficient number of predetermined updates, the weight W (i) used for correction is changed to a constant value weight, and the update is less than k 1 times The successive approximation reconstruction is repeatedly executed at k 2 times.
  • This can reduce quantum noise, circuit noise, and streak artifacts in the FOV image, and can also reduce the beam hardening effect, incomplete reconstruction error, and reference correction error in the FOV image. Thereby, it is possible to reduce both kinds of errors generated in the FOV image by using the advantages of the statistical value weight and the constant value weight.
  • the details are as described in the third embodiment.
  • the X-ray CT apparatus may be further provided with the functional block that performs the successive approximation reconstruction of the present embodiment as a third successive approximation reconstruction unit.
  • the first and second successive approximation reconstruction units 152 and 155 of the first to fifth embodiments and the third successive approximation reconstruction unit of the sixth embodiment can be selectively used according to an operator's instruction. become.
  • FIGS. 19 (a) and 19 (b) Reconstructed results are shown in FIGS. 19 (a) and 19 (b).
  • FIG. 19A shows the FOV image reconstructed by successive approximation using statistical weights for correction and setting the number of updates to 100.
  • FIG. 19B after performing successive approximation reconstruction at the update count of 100 times using the statistical weight, the weight is changed to a constant value weight, and the successive approximation reconstruction is performed at the update count of 3 times. Is.
  • OS-SPS using a known subset method was used, and the number of subsets was set to 24.
  • FIGS. 19C and 19D are images obtained by taking the difference between the result of the successive approximation reconstruction method shown in FIGS. 19A and 19B and the result of the FBP method, which is a conventional analytical reconstruction method. It is.
  • Dotted lines 261 shown in FIGS. 19A and 19C are boundaries between the complete collection area and the incomplete collection area.
  • the complete collection area and the non-complete collection area are the same as those in the second and fourth embodiments.
  • the CT value accuracy of the non-complete collection region is not mentioned, and only the CT value accuracy of the complete collection region is evaluated.
  • the description is based on the size of the update count, but it goes without saying that if the correction speed for each update count is fast, a small update count is sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 拡大再構成技術を逐次近似再構成手法に適用した場合に得られる局所領域のCT画像(小FOV像)精度を高める。 X線CT装置のX線検出部が検出した被写体の投影データから第1の再構成範囲の第1のCT画像を再構成し、第1のCT画像から投影計算により求めた第1の計算投影データと、前記被写体の投影データとが等しくなるように逐次的に第1のCT画像を修正する。逐次修正された第1のCT画像を用いて、第2の再構成範囲に対応する局所測定投影データを抽出する。抽出した局所測定投影データと、前記第2の再構成範囲で再構成した第2のCT画像から投影計算により求めた第2の計算投影データが等しくなるように逐次的に前記第2のCT画像を修正する。

Description

X線CT装置およびX線CT画像の処理方法
 本発明はX線CT装置に関し、CT画像を順投影処理した計算投影データが測定した測定投影データと等しくなるように、CT画像を逐次的に修正する画像生成技術に係る。
 X線CT(Computed Tomography)装置は、被写体を多方向から撮影して得た測定投影データから各点のX線吸収係数を算出し、被写体の断層像として、複数の画素からなるX線吸収係数分布画像(以下、CT画像と称する)を得る装置である。本装置より取得したCT画像は、医療現場において、正確かつ即時に患者の病状を診断でき、臨床上有用である。しかし、医師の診断に必要な高い画質の画像を取得するためには、一定量の被曝を伴う。一方、低被曝化を実現するために照射する線量を低くすると、検出した信号に対するノイズの比率が増加し、誤診断の原因になるライン状のストリークアーチファクトや粒状性のノイズが多く発生する。そのため、低線量撮影時にストリークアーチファクトやノイズを低減し、良質な診断と低被曝化を両立させることが望まれている。
 そこで特許文献1において、計算投影データが測定投影データと等しい条件を満たすようにCT画像を逐次的に修正し、ノイズを低減する逐次近似再構成手法が用いられている。逐次近似再構成手法では、始めに被写体を包含する再構成領域(以下、FOVとする)について再構成処理を行い、画像(FOV像)を得る。次に、再構成画像(FOV像)から投影データを計算(以下、順投影計算とする)し、先の測定投影データと比較してCT画像を修正する動作を繰り返す。これにより、FOV内におけるCT画像の精度を向上させる。逐次近似再構成手法は、FOV内に被写体を包含する条件を必要とするため、診断と無関係な被写体の修正は、計算量増加の原因となる。
 公知の解析的再構成手法では、計算量を低下させる為、局所領域を再構成演算する拡大再構成手法が提案されている。そこで、拡大再構成技術を逐次近似再構成手法に適用して計算量を低下させることが考えられる。しかし、逐次近似再構成手法では、測定投影データから局所領域だけを再構成演算することは困難であるため、測定投影データから局所領域に含まれる投影データ(以下、局所測定投影データとする)を抽出する必要がある。
 非特許文献1には、拡大再構成技術を逐次近似再構成手法に適用する技術が開示されている。この技術では、始めに寝台や固定具等を含む被写体を包含するFOVについてCT画像(以下、大FOV像とする)を再構成する。次に、大FOV像のうち局所領域以外の背景領域の画像を抽出し、抽出した背景領域画像を順投影計算し、背景投影データを求める。求めた背景投影データを測定投影データから減算することにより、上記局所測定投影データを抽出し、局所領域のCT画像(以下、小FOV像とする)を計算する。これにより、局所測定投影データに逐次近似再構成手法を適用できるため、小FOV像の精度を向上できる。
 一方、解析的再構成手法においてFOVの周辺部で一部の投影角度のデータが計測されない場合、FOVについてのCT画像の精度が顕著に低下することが知られている(不完全再構成)。そこで特許文献2では、FOV周辺部において、データが計測されない領域の被写体を推定することで、FOV像におけるCT値(X線吸収値)の精度を向上させることが報告されている。
特開2006-25868号公報 特開2004-65706号公報
Andy Ziegler、et al.,"Iterative reconstruction of a region of interest for transmission tomography",Med.phys.35(4)、p1317-1327,2008
 拡大再構成技術を逐次近似再構成手法に適用する場合、小FOV像のCT値精度は、局所測定投影データの精度に依存するため、小FOV像のCT値精度を高めるためには、局所測定投影データの精度を高める必要がある。局所測定投影データの精度を低下させる要因として、主に大FOV像におけるCT値精度の低下が挙げられる。例えば、大FOV像に含まれる量子ノイズ、回路ノイズ、ストリークアーチファクト、ビームハードニング効果、再構成に必要な投影角度のデータが欠損していることによる不完全再構成、ならびに、リファレンス補正の誤差等である。
 大FOV像のCT値精度を向上させるために、上述の特許文献2の技術を適用し、大FOV周辺部のデータが計測されない領域の被写体を推定することが考えられるが、データが計測されない領域の被写体面積、または体積が増加した場合には、CT値の推定精度は低下する。
 本発明の目的は、拡大再構成技術を逐次近似再構成手法に適用した場合に得られる局所領域のCT画像(小FOV像)精度を高めることにある。
 上記の目的を達成するため、本発明においては、X線CT装置のX線検出部が検出した被写体の投影データから第1の再構成範囲(FOV)の第1のCT画像を再構成し、第1のCT画像を用いて第1の再構成範囲(FOV)内の第2の再構成範囲(FOV)に対応する局所測定投影データを測定投影データから抽出する。その際、第1のCT画像から投影計算により求めた第1の計算投影データと、被写体の投影データとが等しくなるように逐次的に第1のCT画像を修正する。これにより、局所測定投影データとして、第2の再構成範囲(FOV)に高精度に対応したデータを得ることができる。よって、局所測定投影データから第2の再構成範囲(FOV)についての第2のCT画像が等しくなるように逐次的に第2のCT画像を修正することにより、精度の高い局所領域のCT画像が得られる。
 本発明は、局所測定投影データを得るために、第1のCT画像を逐次的に修正することにより、精度の高い局所測定投影データが得られる。これにより、局所測定投影データから局所領域の第2のCT画像を高精度に生成できる。
実施形態1における、X線CT装置各部のハードウェアの構成を説明するブロック図である。 実施形態1における、X線CT装置の機能ブロック図である。 実施形態1における、撮影条件入力部の入力画面を説明するための説明図である。 (a) 実施形態1における、再構成処理部136の機能を説明する機能ブロック図である、(b)大FOVと小FOVを示す説明図である。 実施形態1における、再構成処理部136の機能を説明する機能ブロック図である。 実施形態1における、逐次近似再構成手法の計算手順を説明するためのフローチャートである。 実施形態1における、逐次近似再構成手法の計算手順を説明するためのフローチャートである。 実施形態2の再構成処理部136の機能を説明する機能ブロック図である。 実施形態2における、再構成処理部136の機能を説明する機能ブロック図である。 実施形態2における、修正に用いる重みの種類を説明するための説明図であって、(a)は一定値重み、(b)は統計値重みである。 (a)~(h)は、実施形態2における、再構成画像の計算結果を説明するための図であり、(i)および(j)は関心領域を評価した結果を説明するための図である。 実施形態3における、撮影条件入力部の入力画面を説明するための説明図である。 (a)~(d)は、実施形態3における、再構成画像の計算結果を説明する図である。 実施形態4における、撮影条件入力部の入力画面を説明するための説明図である。 実施形態4における、第1近似再構成部152の機能を説明する機能ブロック図である。 実施形態4における、大FOV像の完全収集領域、または非完全収集領域を説明するための説明図である。 実施形態5における、X線検出器の端部領域と測定投影データとを示す説明図である。 実施形態6における、再構成処理部136の機能を説明する機能ブロック図である。 (a)~(d)は、実施形態6における、再構成画像の計算結果を説明する図である。
 本発明のX線CT装置は、X線を発生するX線発生部と、被写体を透過後のX線を検出し、測定投影データを得るX線検出部と、X線発生部とX線検出部とを搭載して被写体の周囲を回転する回転板と、局所測定投影データ抽出部と、第2逐次近似再構成部とを有する。局所測定投影データ抽出部は、X線検出部が得た測定投影データから、被写体の第1の再構成範囲についての第1のCT画像を再構成し、第1のCT画像を用いて、第1の再構成範囲内の第2の再構成範囲に対応する局所測定投影データを前記測定投影データから抽出する。第2逐次近似再構成部は、局所測定投影データから第2の再構成範囲についての第2のCT画像を再構成し、第2のCT画像を計算により順投影して求めた局所計算投影データと、局所測定投影データ抽出部が抽出した局所測定投影データとが等しくなるように第2のCT画像を逐次修正する。局所測定投影データ抽出部は、第1のCT画像を計算により順投影して求めた計算投影データと、X線検出部が検出した測定投影データとが等しくなるように、第1のCT画像を逐次修正する第1逐次近似再構成部を備え、逐次修正された第1のCT画像を用いて、第2の再構成範囲に対応する局所測定投影データを抽出する。これにより、精度の高い局所測定投影データが得られるため、第2のCT画像の精度を向上させることができる。
 局所測定投影データ抽出部は、第1逐次近似再構成部が逐次修正した第1のCT画像から第2の再構成範囲の画素を除いた背景画像を生成する背景画像作成部と、背景画像を計算により順投影して背景投影データを求める背景画像順投影部と、X線検出部が検出した測定投影データから前記背景投影データを差し引いて局所測定投影データを求める差分部とを有する構成にすることができる。
 例えば、局所測定投影データ抽出部は、第1のCT画像の逐次修正に用いる重みを選択する第1の重み選択部を有し、第2の逐次近似再構成部は、第2のCT画像の逐次修正に用いる重みを選択する第2の重み選択部を有する構成としてもよい。この場合、第1および第2の重み選択部は、統計値重み、一定値重みの一方を選択して設定するようにする。統計値重みは、X線検出部を構成する複数の検出素子の出力の大きさに応じて複数の検出素子の出力データに付与する重みを異ならせるものである。一定値重みは、複数の検出素子の出力データに同じ重みを付与するものである。
 また、X線CT装置は、操作者から重みの指定を受け付ける入力部をさらに有していてもよい。この場合、第1および第2の重み選択部は、入力部が受け付けた指定に応じて、統計値重みおよび一定値重みのうちの一方を選択する構成にすることができる。
 また、ストリークアーチファクトを優先的に低減する指示を操作者から入力部が受け付けた場合には、第1および第2の重み選択部が、統計値重みを選択し、CT値精度を優先する指示を操作者から前記入力部が受け付けた場合には、一定値重みを選択するように構成することができる。
 第1および第2の重み選択部は、一方が統計値重みを、他方が一定値重みを選択することが可能である。
 第1および第2逐次近似再構成部のうち少なくとも一方は、重みの種類を変更して2回の逐次修正を行う構成にすることができる。1回目の逐次修正は、統計値重みを用い、2回目の逐次修正には一定値重みを用い、かつ、1回目の逐次修正の更新回数は、2回目の逐次修正の更新回数よりも大きくなるように設定することが望ましい。これにより、ストリークアーチファクトとビームハードニング効果を両方低減することができる。
 また、入力部は、操作者から重みの種類を変更して逐次修正を行う指定を受け付け可能な構成にしてもよい。これにより、第1および第2逐次近似再構成部は、重みの種類を変更して逐次修正を行う指定を入力部が受け付けた場合に、2回の逐次修正を行うようにすることができる。
 局所測定投影データ抽出部は、X線検出部が得た測定投影データから再構成した第1のCT画像から逐次修正の要否を判定する修正要否判定部をさらに有する構成としてもよい。修正要否判定部が逐次修正が必要と判定した場合に、第1逐次近似再構成部が第1のCT画像の逐次修正を行うことができるため、計算量を低減できる。
 上記修正要否判定部は、X線検出部が得た測定投影データから再構成した第1のCT画像の完全収集領域の外の非完全収集領域に構造物があるかどうかを探索し、その探索結果によって修正有無を判定する構成にすることができる。
 また、修正要否判定部は、X線検出部の端部の検出素子の出力値によって、修正有無を判定する構成にしてもよい。
 また、第3の逐次近似再構成部をさらに配置してもよい。第3の逐次近似再構成部は、X線検出部が得た測定投影データから被写体の第1の再構成範囲についての第1のCT画像を再構成し、第1のCT画像を計算により順投影して求めた計算投影データと、X線検出部が検出した測定投影データとが等しくなるように、第1のCT画像を逐次修正するものである。この第3逐次近似再構成部は、重みの種類を変更して2回の逐次修正を行う構成であり、1回目の逐次修正は、前記X線検出部を構成する複数の検出素子の出力の大きさに応じて前記複数の検出素子の出力データに付与する重みを異ならせる統計値重みを用い、2回目の逐次修正には、前記複数の検出素子の出力データに同じ重みを付与する一定値重みを用い、かつ、1回目の逐次修正の更新回数は、2回目の逐次修正の更新回数よりも大きくなるように設定することが望ましい。
 また、本発明の第2の態様のX線CT装置は、X線を発生するX線発生部と、被写体を透過後のX線を検出し、測定投影データを得るX線検出部と、X線発生部とX線検出部とを搭載して被写体の周囲を回転する回転板と、逐次近似再構成部とを有する。逐次近似再構成部は、X線検出部が得た測定投影データから被写体の所定の再構成範囲(FOV)についてのCT画像を再構成し、CT画像を計算により順投影して求めた計算投影データと、X線検出部が検出した測定投影データとが等しくなるように、CT画像を逐次修正する。このとき、逐次近似再構成部は、重みの種類を変更して2回の逐次修正を行うように構成する。
 上記逐次近似再構成部は、2回の逐次修正のうち1回目の逐次修正に、X線検出部を構成する複数の検出素子の出力の大きさに応じて複数の検出素子の出力データに付与する重みを異ならせる統計値重みを用いることが好ましい。また、2回目の逐次修正には、複数の検出素子の出力データに同じ重みを付与する一定値重みを用い、かつ、1回目の逐次修正の更新回数は、2回目の逐次修正の更新回数よりも大きくなるように設定することが望ましい。
 本発明の第3の態様によれば、X線CT装置のX線検出部が検出した被写体の投影データから第1の再構成範囲の第1のCT画像を再構成し、第1のCT画像を用いて第1の再構成範囲内の第2の再構成範囲に対応する局所測定投影データを測定投影データから抽出し、局所測定投影データから第2の再構成範囲について第2のCT画像を生成するX線CT画像の処理方法が提供される。このとき、第1のCT画像から投影計算により求めた第1の計算投影データと、被写体の投影データとが等しくなるように逐次的に第1のCT画像を修正し、逐次修正された第1のCT画像を用いて、第2の再構成範囲に対応する前記局所測定投影データを抽出する。抽出した局所測定投影データと第2のCT画像が等しくなるように逐次的に第2のCT画像を修正する。
 <実施形態1>
 図面を参照して、実施形態1のX線CT装置について具体的に説明する。
 図1は、実施形態1の逐次近似再構成ソフトウェアを搭載したX線CT装置のハードウェア構成を示す図である。図1の装置は、X線照射条件等の撮影条件や画像再構成の条件を入力する入力部101と、撮影の制御やX線の照射および検出を行う撮影部102と、検出した信号に対して補正や画像再構成を行い、画像を出力する画像生成部103とを備えて構成される。なお、入力部101および画像生成部103は、撮影部102を備える本体装置と一体に構成する必要はなく、撮影部102とは離れた場所に配置し、ネットワークを介して接続してもよい。また、入力部101と画像生成部103は、これらの構成を実現する入出力部や処理部や記憶部などのハードウェアを共用しても良い。
 入力部101は、撮影条件の入力等を行うために、キーボード111およびマウス112を備える。また、図示していないが、ペンタブレットやタッチパネル等の他の入力手段を備えていてもよい。さらに、入力部101は、中央処理装置(CPU;Central Processing Unit)114と、メモリ113やHDD(Hard Disk Drive)装置115等の記憶部と、図示を省略したモニタとを備えている。各構成要素はデータバス101aによって接続されている。キーボード111等により入力されたデータは、処理部である中央処理装置114に受け渡される。中央処理装置114は、メモリ113、HDD装置115等に予め格納されている所定のプログラムを展開・起動することで撮影部102に制御信号を送り、撮影を制御する。
 図1の撮影部102は、ガントリー3と、被写体6を支える寝台5と、X線制御器117と、ガントリー制御器116と、寝台制御器118とを備えて構成される。ガントリー3は、X線管1とX線検出器2と、これらを搭載する回転板4とを含む。ガントリー3および回転板4の中央には、円形の開口部7が設けられ、寝台5は開口部7内に挿入される。
 X線の照射および検出は、X線管1とX線検出器2により実現される。X線管1のX線発生点とX線検出器2のX線入力面との距離の代表例は1000[mm]である。開口部7の直径の代表例は700[mm]である。回転板4の1回転の所要時間の代表例は1.0[s]である。X線検出器2にはシンチレータ及びフォトダイオード等から構成される公知のX線検出部が使用される。X線検出器2は、X線管1から等距離の円弧(チャネル方向)に沿って配置された図示しない多数の検出素子を有しており、その素子数(以下、チャネル数とする)の代表例は950個である。各検出素子のチャネル方向のサイズの代表例は1[mm]である。また、スライス方向(被写体6の体軸方向)にも複数列にX線検出素子が配置されている。回転板4の1回転における撮影部102の撮影回数は900回であり、回転板4が0.4度回転する毎に1回の撮影が行われる。なお前記各仕様はこれらの値に限定されるものはなく、X線CT装置の構成に応じて種々変更可能である。
 ガントリー制御器116は、回転板4の回転動作を制御する。X線制御器117は、X線管1の動作を制御する。寝台制御器118は、寝台5の位置を制御する。
 画像生成部103は、データ収集システム(DAS;Data Acquisition System)119、中央処理装置(CPU)121、メモリ120やHDD装置122等の記憶部、モニタ123を備えて構成される。これらはデータバス103aによって接続される。
 撮影部102のX線検出器2で検出された信号は、DAS119によってディジタル信号に変換され、CPU121に受け渡される。CPU121は、メモリ120やHDD装置122に予め格納された所定のプログラムを展開・起動することにより補正や画像再構成を行う。また、HDD装置122等にデータは保存され、必要に応じて、データは外部へ入出力される。画像再構成したCT画像は、表示部である液晶ディスプレイやCRT等のモニタ123により表示される。上述のようにCPU121やメモリ120やモニタ123等は入力部101と共用できる。
 図2は、実施形態1のX線CT装置の機能ブロック図である。図2の入力部101は、撮影条件を入力する撮影条件入力部131として機能する。撮影部102は、撮影条件入力部131で入力された撮影条件に基づき撮影を制御する撮影制御部132と、X線の照射および検出を行う撮影部133として機能する。画像生成部103は、検出した信号をディジタル信号に変換する信号収集部134、前記ディジタル信号に対して補正する補正処理部135、補正した投影データに対して画像再構成する再構成処理部136、および、再構成したCT画像を出力する画像表示部137として機能する。
 次に、実施形態1のX線CT装置の撮影動作の流れを図1~図3を用いて説明する。図3は、撮影条件入力部131のモニタ123に表示される撮影条件受付画面141の一例を示す図である。
 図2の撮影条件入力部131は、図3の撮影条件受付画面141をモニタ123に表示し、操作者の入力を受け付ける。図3の撮影条件受付画面141は、照射するX線のエネルギー及び出力量に対応する管電圧、及び管電流時間積を設定するためのX線条件設定領域142と、再構成画像の範囲を設定する再構成範囲設定領域143と、逐次近似再構成に用いる重みを選択する再構成条件設定領域144と、撮影部位を設定する撮影部位設定領域145から構成される。操作者は、撮影条件受付画面141を見ながら、マウス112やキーボード111等を操作して、X線条件、再構成範囲、再構成条件、撮影部位等を設定する。以下、さらに詳しく説明する。
 図3ではX線条件設定領域142の一例として、管電圧値120[kV]、管電流時間積200[mAs]が設定されている。本実施形態では、1種類のエネルギースペクトルを有するX線を想定したが、2種類以上のX線を用いるマルチエネルギーCTでは、管電圧及び管電流時間積の項目を追加して同様に行うことができる。
 図3の再構成範囲設定領域143において、操作者は二つの再構成範囲(FOV)を設定する。第1の再構成範囲(FOV)は、画像再構成を行う領域(以下、大FOVと呼ぶ)200である(図11(a)参照)。第2の再構成範囲(FOV)は、大FOVの内側で、拡大再構成を行う局所領域(小FOVと呼ぶ)212である。大FOV200および小FOV212の大きさと中心位置がそれぞれ設定される。本実施形態におけるFOVは、正方形で定義される。図3の例では、大FOVは一辺600[mm]、小FOVは一辺300[mm]であり、大FOV200の中心位置は、回転中心と等しい、X=Y=Z=0[mm]に設定され、小FOVの中心位置は、X=50[mm]、Y=50[mm]、Z=0[mm]であり、回転中心から離れた位置に設定されている。ただし、大FOV200および小FOV212は、正方形に限ることはなく、円形、長方形、立方体、直方体、球等の任意の形状に設定することも可能である。この場合も本発明を適用できる。
 再構成条件設定領域144は、後述する逐次近似再構成に用いる重みを選択するための設定領域であり、実施形態1では用いないため説明しない。実施形態2において説明する。本実施形態1では、予め定めた重みを用い、重みの選択は行わない。
 図3の撮影部位設定領域145は、X線照射対象、または再構成対象を選択する。本実施形態で選択した腹部に限ることはなく、頭部、胸部、肺野等の部位、組織を選択、または操作者が直接範囲を指定してもよい。
 なお、撮影条件受付画面141は、図3の画面構成に限定されるものではない。また、撮影条件受付画面141で設定を受け付けるX線条件、再構成範囲、再構成条件および撮影部位の設定を予めHDD装置115に保存しておくことも可能である。その場合、毎回操作者が入力する必要はなく、撮影条件入力部131がHDD装置115から設定条件を読み出せばよい。
 次に、図2の撮影部102は、撮影条件入力部131が受け付けた撮影条件に応じて、X線撮影を行う。操作者がマウス112やキーボード111等を用いて撮影開始を指示すると、この撮影開始の指示を受けて、撮影部102内の撮影制御部132は、寝台制御器118に撮影開始を指示する。寝台制御器118は、寝台5を回転板4の回転軸方向に移動させるよう制御する。そして被写体6の位置が指定された撮影位置と一致した時点で、寝台5の移動を停止させる。これにより被写体6の配置を終了する。
 一方、撮影制御部132は、ガントリー制御器116に撮影開始を指示する。ガントリー制御器116は、撮影開始が指示されると同時に駆動モーターを介して回転板4の回転を開始させる。回転板4の回転が定速状態に入り、かつ、被写体6の撮影位置への配置が終了した時点で、撮影制御部132は、X線制御器117に撮影部102のX線管1のX線照射タイミング、及び、X線検出器2の撮影タイミングを指示する。X線制御器117は、この指示に従ってX線管1からX線を照射させ、X線検出器2は、X線を検出して撮影を開始する。また、X線制御器117は、例えば操作者が設定したX線管1の管電圧および管電流時間積により、照射するX線のエネルギースペクトルと出力量を決定する。
 なお、本実施形態では、1種類のエネルギースペクトルを有するX線を使用したが、1回転毎または1回転中に管電圧を高速に切り替えて2種類以上のエネルギースペクトルを有するX線を照射し、撮影データを取得するマルチエネルギーCTにも適用できる。
 図2の信号収集部134は、X線検出器2の出力信号を、DAS119によってディジタル信号に変換し、メモリ120に保存する。このデータに対し、補正処理部135では、X線の検出信号のゼロ値を較正するオフセット補正や、投影角度毎に検出した信号成分のばらつきを補正するリファレンス補正や、検出素子間の感度を補正する公知のエアキャリブレーション処理等の補正を行い、被写体6の測定投影データを取得する。この信号収集部134と補正処理部135によって取得された測定投影データは、再構成処理部136に送られる。
 図4に、再構成処理部136のさらに詳しい機能構成を示す。再構成処理部136は、局所測定投影データ抽出部153と、小FOV像を逐次再構成する第2逐次近似再構成部155とを備えている。局所測定投影データ抽出部153は、信号収集部134と補正処理部135によって取得された測定投影データから、被写体6の大FOV210についての第1のCT画像(大FOV像)を再構成し、第1のCT画像から小FOV212に対応する局所測定投影データを測定投影データから抽出する。抽出方法の詳細は後述する。このとき、局所測定投影データ抽出部153は、大FOVについての第1のCT画像を再構成する際に、逐次近似再構成を行う第1逐次近似再構成部152を備えている。具体的には、第1逐次近似再構成部152は、第1のCT画像を計算により順投影して求めた計算投影データと、測定投影データとが等しくなるように、第1のCT画像を逐次修正する。局所測定投影データ抽出部153は、逐次修正された第1のCT画像から小FOV212に対応する局所測定投影データを抽出する。
 第2逐次近似再構成部155は、局所測定投影データ抽出部153が抽出した局所測定投影データから小FOVについての第2のCT画像(小FOV像)を再構成し、第2のCT画像を計算により順投影して求めた局所計算投影データと、局所測定投影データとが等しくなるように逐次的に第2のCT画像を修正する。
 このように、局所測定投影データ抽出部153では、局所測定投影データを抽出するために、大FOVについての第1のCT画像を逐次近似再構成により高精度に生成することができるため、この高精度の第1のCT画像から精度よく小FOVに対応する局所測定投影データを抽出できる。よって、精度の高い局所測定投影データから、逐次再構成により高精度の第2のCT画像を生成することができる。
 次に、図5の機能ブロック図を用いて、第1逐次近似再構成部152を含めた局所測定投影データ抽出部153、および、第2逐次近似再構成部155の詳しい機能構成について説明する。第1逐次近似再構成部152は、図5のように、大FOV解析的再構成部161、大FOV順投影部162、差分部(データ比較部)163、大FOV逆投影処理部164、および、大FOV画像更新部165を含む。局所測定投影データ抽出部153は、上記第1逐次近似再構成部152の他に、背景画像作成部167、背景画像順投影部168および差分部(データ比較部)169を備えている。第2逐次近似再構成部155は、小FOV解析的再構成部170、小FOV順投影部171、差分部(データ比較部)172、小FOV逆投影処理部173、および、小FOV画像更新部174を含む。
 これらの各機能ブロックは、図6、図7のように動作して、精度の高い局所測定投影データを抽出し、小FOV像を精度よく再構成する。
 図5に示す大FOV解析的再構成部161は、図6のステップ181において、公知であるFeldkamp法等の解析的再構成手法を用いて、補正処理部135で補正した測定投影データR(i)から被写体のCT値を表す大FOV像(λk=0(j))を計算する。ここでi、jはそれぞれX線検出器2の検出素子の番号と、画像の画素番号を示し、kは逐次近似再構成の更新回数を示す。
 計算した大FOV像を初期画像とし、逐次的に修正する。すなわち、ステップ182において、計算中の更新回数kが予め設定された更新回数Kより小さいならば、ステップ183~186により、大FOV像を修正する。
 画像を修正するアルゴリズムとして、例えば逐次近似再構成手法の一つであるSPS(Separable-Paraboloidal-Surrogate)を用いる。このSPSは、式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、λ(j)は、計算中の更新回数kにおける大FOV像の画素jの画素値を表し、J個の画素で構成されているものとする。W(i)は、画像を修正する割合を表す重みであり、予め定めた値である。大FOV像は、一般的な2次元(x、y方向)の断層像だけでなく、1次元データ(x方向)、体軸方向zに像を重ね合わせた3次元データ(x、y、z方向)、または3次元に時間方向tを考慮した4次元データ(x、y、z、t)にも適用可能である。以下、具体的に説明する。
 大FOV順投影部162は、ステップ183において、式(2)を計算することにより、大FOV像(λ(j))の画素を順投影処理し、計算投影データを取得する。lは、更新対象の画素jとX線検出器iを結ぶライン上にL個の画素がある場合、それらの画素の番号を表す。C(i、l)は、画素lがX線検出器iに寄与する割合を表し、X線検出器の位置や順投影計算、または逆投影計算の手法によって異なる。
Figure JPOXMLDOC01-appb-M000002
 次に差分部163は、ステップ184において、式(3)のように測定投影データR(i)から式(2)の計算投影データを減算し、更新投影データΔR(i)を求める。
Figure JPOXMLDOC01-appb-M000003
 次に大FOV逆投影処理部164は、ステップ185において、式(4)に示す更新投影データを逆投影処理し、更新画像Δλ(j)を取得する。W(i)は、画像を修正する割合を表す重みであり、予め定めた値である。
Figure JPOXMLDOC01-appb-M000004
 次に大FOV画像更新部165は、ステップ186において、式(5)を計算することにより、更新画像を用いて修正した大FOV像(λk+1(j))を求める。
Figure JPOXMLDOC01-appb-M000005
 以上のように、ステップ183~186を終了後、ステップ187において、更新回数kはk+1にインクリメントされ、ステップ182に戻ることによりループ処理が行われる。このとき、インクリメント後の更新回数kが予め設定された更新回数Kと等しければ更新終了となり、大FOV像が出力される。
 このように大FOV像は、逐次近似再構成により生成されているため、これを投影した計算投影データが、測定投影データとよく一致するように作成されている。
 背景画像作成部167は、ステップ188において、大FOV像の画素のうち、図3の再構成範囲設定領域143において操作者が設定した小FOVの画素値を空気のCT値-1000[HU]で置換する。これにより、小FOV外のみの背景画像が作成される。
 次に背景画像順投影部168は、ステップ189において、式(2)を計算することにより、背景画像(λ(j))を順投影処理し、背景投影データを求める。
 次に差分部169は、ステップ190において、式6を計算することにより、測定投影データR(i)から背景投影データを減算し、局所測定投影データR(i)を求める。
Figure JPOXMLDOC01-appb-M000006
 上述のように、大FOV像は、逐次近似再構成処理により再構成されているため、その計算投影データは測定投影データとよく一致する。このため、大FOV像から背景画像を作成し、その計算投影データを測定投影データから差し引くことにより、測定投影データから小FOVに対応する局所測定投影データR(i)を精度よく抽出することができる。よって、以下のように、第2逐次近似再構成部155が局所測定投影データR(i)を用いて逐次近似再構成を行うことにより、精度の高い小FOV像を作成することができる。
 具体的には、第2逐次近似再構成部155の小FOV解析的再構成部170は、局所測定投影データR(i)に対して、図7のステップ191において、公知であるFeldkamp法等の解析的再構成手法を用いて小FOV像(λ k=0(j))を計算する。
 次に、計算した小FOV像を逐次近似再構成手法の初期画像とし、逐次的に画像を修正する。ステップ192において、計算中の更新回数kが予め設定された更新回数Kより小さいならば、ステップ193~196の局所測定投影データR(i)を用いて画像を修正する。画像を修正するアルゴリズムとして、例えば逐次近似再構成手法の一つであるSPSを用いる場合、式(7)を計算することにより画像を修正する。
Figure JPOXMLDOC01-appb-M000007
 式(7)において、λr (j)は、計算中の更新回数kにおける小FOV像の画素jの画素値を表し、J個の画素で構成されているものとする。Wr(i)は、画像を修正する割合を表す重みであり、予め定めた値である。小FOV像は、一般的な2次元(x、y方向)の断層像だけでなく、1次元データ(x方向)、体軸方向zに像を重ね合わせた3次元データ(x、y、z方向)、または3次元に時間方向tを考慮した4次元データ(x、y、z、t)にも適用可能である。以下、具体的に説明する。
 小FOV順投影部170は、ステップ193において、上述の式(2)において大FOV像(λ(j))の表記を小FOV像(λ (j))に置換した数式を用いて、局所領域の計算投影データ(局所計算投影データ)を求める。次に差分部172は、ステップ194において、式(3)において大FOV像(λ(j))を小FOV像(λ (j))に置換した数式を計算することにより、局所更新投影データΔR (i)を求める。次に小FOV逆投影処理部173は、ステップ195において、式(4)に示す大FOV像(λ(j))を小FOV像(λ (j))に置換した数式を計算することにより、局所更新投影データ△R (i)を逆投影処理し、更新画像Δλ (j)を取得する。重みW(i)は、予め定めた値が用いられる。
 次に小FOV画像更新部174は、ステップ196において、式(5)において大FOV像(λ(j))を小FOV像(λ (j))に置換した数式を計算することにより、更新画像を用いて修正した小FOV像λ k+1(j)を求める。
 以上のようにステップ193~196を終了後、ステップ197において、更新回数kはk+1にインクリメントされ、ステップ192に戻ることによりループ処理が行われる。このとき、インクリメント後の更新回数kが予め設定した更新回数Kと等しければ更新終了となり、ステップ198において、画像表示部137は小FOV像(第2のCT画像)を出力する。
 以上、ステップ181~198では、逐次近似再構成手法における拡大再構成技術の計算手順を示した。拡大再構成技術において、小FOV像のCT値精度は、局所測定投影データの精度に依存するが、本実施形態では、局所測定投影データを抽出するために大FOV像の逐次近似再構成を行うため、背景画像の領域について測定投影データと精度よく一致した背景画像の計算投影データを得ることができる。よって、測定投影データから背景画像の計算投影データを差し引くことにより精度の高い局所測定投影データを抽出できる。
 実施形態1の式(1)または式(7)で示した逐次近似再構成手法は一例であり、公知であるOS-SPS、PWLS、OS-PWLS、ASIRT、MSIRT、GRADY、CONGR、ART、SART、ML-EM、OS-EM、FIRA、RAMLA、DRAMA等、他の手法に適用しても構わない。
 最後に、画像表示部137では、計算したCT画像をモニタ123に表示し、操作者に情報を提供する。なおネットワークアダプタを用いて、ローカルエリアネットワーク、電話回線、インターネット等のネットワークを介して外部の端末と接続し、前記端末との間でCT画像を送受信することも可能である。
 本実施形態で説明した被写体とは撮影対象を意味し、被写体6と、被写体6を支える寝台5とを包含する。なお、被写体6は、人体に限らず、ファントムや機械等の検査対象の物体であってもよい。
 なお、本実施形態では、局所測定投影データを再構成したが、本実施形態に限ることなく、背景画像を大FOV像の画素サイズで固定した状態で、小FOV像を再構成し、小FOV像、および背景画像を同時に逐次修正する方法を用いることもできる。その場合、背景画像の修正に用いる更新回数と、小FOV像の修正に用いる更新回数を必ずしも一致させる必要はなく、一方の修正を終了した場合でも、もう一方の修正を続行させても構わない。
 本実施形態では、一周分の回転から取得した測定投影データを用いて、CT画像を再構成したが、一周に限定することはなく、公知であるハーフ再構成にも適用可能である。このとき完全な計測領域は、ハーフ再構成において完全収集条件を満たす回転角度を取得した領域とする。
 本実施形態ではノーマルスキャン方式を想定したが、テーブル5の動作、停止の順番に一定間隔で繰り返し、ノーマルスキャンを行うステップアンドシュート方式や、テーブルを動かしながら撮影する螺旋スキャン方式に対しても、本発明を適用しても良いことは言うまでも無い。
 本実施形態では、一例として生体用のX線CT装置を示したが、爆発物検査や製品検査等の非破壊検査を目的としたX線CT装置に本発明を適用しても良いことは言うまでもない。また本実施形態は一例として公知の第3世代のマルチスライスX線CT装置を示したが、公知の第1、第2、第4世代のX線CT装置にも適用でき、公知のシングルスライスX線CT装置やエレクトロンビームCTにも適用できる。
 <実施形態2>
 つぎに、実施形態2のX線CT装置について説明する。実施形態1では、大FOVを逐次近似再構成する第1逐次近似再構成部152は、式(1)により逐次近似再構成する際の重みW(i)として予め定めた値を用いる構成であった。同様に、小FOVを逐次近似再構成する第2逐次近似再構成部155は、式(7)により逐次近似再構成する際の重みW(i)として予め定めた値を用いる構成であった。これに対し、実施形態2では、大FOV像の逐次近似再構成の重みW(i)または小FOV像の逐次近似再構成に用いる重みW(i)を、大FOV像または小FOV像の誤差の種類に応じて、適切な種類の重みに設定することで小FOV像におけるCT値精度の低下を抑制する。
 大FOV像の逐次近似再構成の重みW(i)および小FOV像の逐次近似再構成に用いる重みW(i)に用いることができる重みの種類には、一定値重み(定数)と統計値重みの2種類がある。
 重みW(i)またはW(i)として一定値重みを用いる場合、X線検出器2の検出素子の番号(画素番号)iに関わらず、W(i)またはW(i)に一定値重み(定数)を設定する。ここで、一定値重み(定数)の値の大きさは、どのような値であっても同様の効果が得られる。その理由は、上述の式(1)および式(7)から明らかなように、分母分子にW(i)またはW(i)が含まれるためである。
 重みW(i)またはW(i)に統計値重みを用いる場合、X線検出器2の番号iの検出素子の出力信号の値に基づいて定めた(例えば、比例した)重みの大きさをW(i)またはW(i)として設定する。すなわち、m番目の検出素子の出力信号が大きければ重みW(m)を大きく、n番目の検出素子の出力信号が小さければ重みW(n)は小さく設定される。
 重みW(i)またはW(i)に一定値重みまたは統計値重みを設定した場合の、効果を図10(a)、(b)を用いて説明する。図10(a)は、各投影角度におけるX線検出器2の中心に位置する中心検出素子i=1、i=2・・・、i=Iの重みW(i)として、一定の重みを付与し、逆投影計算した画像を示す。図10(b)は、中心検出素子i=1、i=2・・・、i=Iの重みW(i)として、統計値重みを付与し、逆投影計算した画像を示す。図10(a),(b)において、グレーの濃さがそれぞれの画素の値(CT値)を示している。図10(a)のように、一定値重みを用いた場合、投影角度に依存せず、画素の値が連続的に変化することが分かる。一方、図10(b)のように、統計値重みを用いた場合、投影角度に依存した画素値が離散的に変化することがわかる。なお、図10(a)、(b)では、中心検出素子の重みについてのみ逆投影した画像を示しているが、チャネル方向、またはスライス方向に設置される検出素子の重みに関しても、重みの種類によって同様に画像が修復される作用が得られることはいうまでもない。
 図10(a)のように、逐次近似再構成の際に、検出素子番号iに関わらず、一定値重みを用いることにより、全ての検出素子の更新投影データから投影角度に依存せず、画像を修正することができる。これにより、CT画像は、修正による画素間のばらつきが小さく、一様な画質改善の効果が得られる。例えば、X線が透過する被写体の条件に応じて測定投影データの値が異なるビームハードニング効果が生じている場合であっても、一定値重みを用いることにより、一部の投影角度の投影データの修正が強調されることがなく、一様な画質改善の効果を得ることができる。また、不完全再構成の誤差、リファレンス補正の誤差についても、一定値重みを用いることにより、各投影角度の更新投影データから等しい割合で画像が修正されるため、一部の投影角度による修正が強調されることがなく、CT値の精度の低下を抑制できる。一定値重みを用いる短所としては、計測した測定投影データのノイズは、全てのX線検出器で等しいと仮定するため、統計値重みを用いた場合のようにノイズ低減効果を十分に得られない場合がある、という点である。
 一方、逐次近似再構成において、検出素子番号iの検出素子の出力信号の大きさに応じた統計値重みを用いることにより、検出素子で計測した投影データのノイズに応じて、画像を修正する割合を変化させることができる。これにより、ノイズの低い投影データを中心に画像が修正され、量子ノイズ、回路ノイズ、ストリークアーチファクトを効果的に低減できる。統計値重みを用いる短所として、ビームハードニング効果の大きい投影角度の投影データに対して、重みに応じて修正が強調されることがあり、一様な画質改善の効果を見込めない。これにより、CT値精度を低下させることがある。
 実施形態2は、一定値重みと統計値重みの上記特徴を生かして、画像によって適切な種類の重みに設定することで小FOV像におけるCT値精度の低下を抑制する。
 以下、実施形態2のX線CT装置のうち実施形態1のX線CT装置と同様の構成については説明を省略し、相違する構成について説明する。
 図8および図9に示すように、局所測定投影データ抽出部153内には、大FOV像の逐次近似再構成する際の重みW(i)を選択する大FOV重み選択部151が配置され、第2逐次近似再構成部155内には、小FOV像の逐次近似再構成する際の重みW(i)を選択する小FOV重み選択部154が配置されている。
 なお、実施形態2において、大FOV重み選択部151は、解析的再構成部152の前に構成されているが、本実施形態に限ることなく、解析的再構成部152の後に構成してもよい。
 図3の撮影条件受付画面141には、再構成条件設定領域144が設けられ、操作者は大FOV像および小FOV像の逐次近似再構成に用いる重みW(i)、W(i)を自動的に決定するモード124、および、重みを手動で選択するモード125が表示され、操作者がどちらかを選択できるように構成されている。
 重み自動決定モード124内には、アーチファクトのうち、ストリークアーチファクトを優先的に低減する2種類のモード146,147が選択可能に表示されている。このうち、モード146は、大FOV像から小FOV像を除いた背景画像と、小FOV像(局所領域)の両方にストリークアーチファクトが大きい場合に両方を低減する処理を行うモードである。モード147は、大FOV背景画像のみにストリークアーチファクトが大きい場合に、背景画像のストリークアーチファクトを低減する処理を行うモードである。また、重み自動決定モード124内には、CT値の精度を維持しながらビームハードニングを低減する2種類のモード148,149も表示されている。モード148は、背景画像と、小FOV像(局所領域)の両方にビームハードニング効果が大きい場合に両方を低減するモードである。モード149は、背景画像のみにビームハードニング効果が大きい場合にこれを低減するモードである。
 また、重み手動決定モード125内には、大FOV像の逐次近似再構成に用いる重みW(i)として、統計値重み、一定値重み、または、修正無しのいずれか手動で選択する領域126と、小FOV像の逐次近似再構成に用いるW(i)として、統計値重み、一定値重み、または、修正無しのいずれかを手動で選択する領域127が備えられている。
 重み自動決定モード124において、低ストリークアーチファクト優先(背景および局所領域内のストリークアーチファクトが大きい場合)モード146が操作者により選択されている場合、図8の大FOV重み選択部151および小FOV重み選択部154は、重みW(i)およびW(i)としていずれも統計値重みを選択し、それぞれ第1および第2逐次近似再構成部152、155に設定する。これにより、大FOV像および小FOV像のストリークアーチファクト、量子ノイズおよび回路ノイズを効果的に低減させることができる。
 次に、低ストリークアーチファクト優先(背景のみストリークアーチファクトが大きい場合)モード147が操作者により選択されている場合、図8の大FOV重み選択部151は、重みW(i)として統計値重みを選択し、小FOV重み選択部154は、重みW(i)として一定値重みを選択する。これにより、背景画像(大FOV像)のストリークアーチファクト、量子ノイズおよび回路ノイズを効果的に低減させることができるとともに、小FOV像では、ビームハードニング効果、不完全再構成の誤差、リファレンス補正の誤差を低減できる。よって、特に大FOV像の背景画像に大きなストリークアーチファクトが発生する場合など、大FOV像と小FOV像に生じる異なる種類の誤差を低減でき、CT値精度の低下を抑制できる。
 CT値精度優先(背景および局所領域内のビームハードニング効果が大きい場合)モード148が操作者に選択されている場合、大FOV重み選択部151および小FOV重み選択部154は、重みW(i)およびW(i)としていずれも一定値重みを選択する。これにより、大FOV像および小FOV像のビームハードニング効果、不完全再構成の誤差、リファレンス補正の誤差を低減できる。
 次に、CT値精度優先(背景のみビームハードニングが大きい場合)モード149が操作者に選択されている場合、大FOV重み選択部151は、重みW(i)として一定値重みを選択し、小FOV重み選択部154は、重みW(i)として統計値重みを選択する。これにより、背景画像(大FOV像)のビームハードニング効果、不完全再構成の誤差、リファレンス補正の誤差を低減させることができるとともに、小FOV像では、ストリークアーチファクト、量子ノイズおよび回路ノイズを効果的に低減できる。よって、特に大FOV像の背景画像にビームハードニング効果が発生する場合など、大FOV像と小FOV像に生じる異なる種類の誤差を低減でき、CT値精度の低下を抑制できる。
 また重み手動選択モード125では、大FOV重み選択部151は、図3の領域126で手動で選択された重みの種類を重みW(i)として選択する。小FOV重み選択部154は、図3の領域127で手動で選択された重みの種類を重みW(i)として選択する。これにより、それぞれの組み合わせにより、上述のモード146~149の場合と同様の効果が得られる。また、いずれの場合も、修正無しが選択された場合には画像を修正しない。
 拡大再構成技術において、小FOV像のCT値精度は、局所測定投影データの精度に依存する。この精度を低下させる要因として、主に大FOV像におけるCT値精度の低下が挙げられる。例えば、量子ノイズ、回路ノイズ、ストリークアーチファクト、ビームハードニング効果、不完全再構成による誤差、リファレンス補正の誤差等が挙げられる。不完全再構成の一例として、解析的再構成手法では、FOVの周辺部で一部の投影角度のデータが計測されない場合、誤差が増加する。背景領域の画像に生じた誤差は、順投影計算した背景投影データを通じて、局所測定投影データの精度を低下させる。これにより、小FOV像は低精度の局所測定投影データを用いて修正されるため、CT値精度が低下する。これに対し、実施形態2では、大FOV像、または小FOV像の修正に用いる重みW(i)、W(i)を大FOV像、または小FOV像の誤差の種類に応じて、変化させることで小FOV像におけるCT値精度の低下を抑制できる。
 実施形態2の有効性を検証するため、量子ノイズを考慮した条件でシミュレーション実験を行った。撮影するファントムは楕円形状の人体腹部を想定して設定した。人体腹部のファントムは、生体組織に近い水のCT値を有する構造を成している。
 大FOV200の原画像を図11(a)に示す。図11(a)の円211は、円形内の完全収集領域241と、円形外の非完全収集領域244の境界を示す。この場合、完全収集領域241は、一回転分の投影角度で投影データが収集される領域であり、非完全収集領域244は、完全収集領域241に対して、一部の投影角度の投影データが収集されない領域である。
 図11(b)は、小FOV212について、従来の解析的再構成法であるFBP法で得た画像である。
 図11の(c)~(e)は、図11(a)の大FOV(=550[mm])200について再構成した大FOV像に拡大再構成技術を適用し、小FOV(=250[mm])212の小FOV像を逐次近似再構成のシミュレーションにより得た結果である。図11(c)~(e)の逐次近似再構成の初期画像λ k=0(j)は、図11(b)に示した画像である。図11(c)は、大FOV像の修正無(画像を修正しない)、小FOV像の修正の重みW(i)として統計値重みを用いた場合である。図11(d)は、大FOV像および小FOV像の修正の重みW(i)およびW(i)にいずれも統計値重みを用いた場合である。図11(e)は、大FOV像の修正の重みW(i)に一定値重みを用い、小FOV像の修正の重みW(i)に統計値重みを用いた場合である。図11(b)~(e)は、ウィンドウレベル(以下、WL)=-15[HU]、ウィンドウ幅(以下、WWとする)=200[HU]である。なお、図11(c)~(e)の逐次近似再構成には、公知であるサブセット法を用いたOS-SPSを用い、大FOV像の更新回数を50回とし、小FOV像の更新回数を20回、サブセット数=24としてシミュレーションした。
 図11(f)~(h)は、図11(c)~(e)に示す逐次近似再構成手法の結果から、図11(b)に示す従来の解析的再構成法であるFBP法の結果との差分をとった画像である。図11(f)~(h)は、WL=0[HU]、WW=100[HU]である。
 図11(c)~(h)の画像を評価すると、大FOV像の修正無(画像を修正しない)、小FOV像の修正の重みW(i)として統計値重みを用いた図11(c)の画像は、矢印の箇所でCT値精度の低下が見られる。また、大FOV像および小FOV像の修正の重みW(i)およびW(i)にいずれも統計値重みを用いた図11(d)の画像と図11(b)のFBP法の画像との差分をとった図11(g)の画像は、矢印の箇所でわずかなCT値精度の低下が見られる。これらに対して、大FOV像の修正の重みW(i)に一定値重みを用い、小FOV像の修正の重みW(i)に統計値重みを用いた図11(e)の画像では、CT値の精度低下は見られない。この図11(e)の画像と図11(b)の画像との差分をとった図11(h)の画像でも、CT値精度の低下は見られない。
 一方、図11(i)は、図11(f)~(h)の画像を評価するための円形の関心領域(以下、ROIとする)の位置を示す説明図である。図11(i)のように画像の上段にROI213、中段にROI214、下段にROI215をそれぞれ設定される。
 図11(j)のグラフは、図11(i)に示すROI213~215内のCT値を定量的に計測した結果である。縦軸の差分CT値は、図11(b)のFBP法との差分後のCT値を表しており、0に近づくほど拡大再構成技術によるCT値精度の低下を抑制できたことを示す。図11(j)より、図11(h)の画像が、最も差分CT値が小さいことがわかる。これにより、原図に不完全再構成による誤差がある場合、大FOV像の修正に一定値重みを用い、小FOV像の修正に統計値重みを用いる方法が有効であることが示された。
 <実施形態3>
 次に実施形態3として、実施形態1、2の一部を変更した、逐次近似再構成ソフトウェアを搭載するX線CT装置について説明する。
 実施形態3のX線CT装置では、大FOV像、または小FOV像に対して用いる重みの種類を逐次近似再構成の途中で変化させる点が実施形態1または2と異なる。以下、実施形態3のX線CT装置の要部について説明する。その他の構成は実施形態1、または実施形態2で説明したX線CT装置の構成および動作と同様であるので、ここでは説明を省略する。
 図12に、実施形態3においてモニタ123に表示される撮影条件受付画面141を示す。図12のように、再構成条件設定領域144において、操作者が重み自動決定モード124を選択する場合、高精度モードと短時間モードのうちのいずれかを選択する高精度/短時間モード216が設けられている。他の構成は、図3と同様である。
 高精度/短時間モード216のうち短時間モードを操作者が選択した場合には、実施形態2と同様に重み自動決定モード124および重み手動選択モード125における操作者の選択に応じて、大FOV重み選択部151および小FOV重み選択部154が重みの種類を選択する。
 高精度/短時間モード216のうち高精度モードを操作者が選択した場合、大FOV重み選択部151は、大FOV像の修正に用いる重みW(i)として、まず統計値重みを選択して、予め定めた十分な更新回数であるk回(図6のステップ182)逐次近似再構成を繰り返した後、修正に用いる重みW(i)を一定値重みに変更して、k回よりも少ない更新回数であるk回逐次近似再構成を繰り返し実行させる。
 これにより、大FOV像の背景画像の量子ノイズ、回路ノイズ、ストリークアーチファクトを低減できるとともに、背景画像のビームハードニング効果、不完全再構成の誤差、リファレンス補正の誤差も低減できる。これにより、大FOV像に生じる異なる種類の誤差に対して、統計値重みと一定値重みの長所を利用することでいずれも低減できる。
 このとき、重みとして、最初に統計値重みを、その後一定値重みを用い、かつ、更新回数k、kは、k>kと設定する理由は、以下の通りである。
 逐次近似再構成手法においては、重みの種類が統計値重みか一定値重みかに関わらず、更新回数の小さい前半時点では、CT画像の低周波成分が主に修正される。低周波成分は、画像のCT値が緩やかに変化する特徴を持ち、ROI内におけるCT値の平均値が大きく変動する。低周波成分の代表例として、ビームハードニング効果、不完全再構成の誤差、リファレンス補正の誤差が挙げられる。一方、更新回数の大きい修正の後半時点では、高周波成分が主に修正される。高周波成分の代表例としては、構造物のエッジ部分の修正や、量子ノイズ、ストリークアーチファクトの強調等のCT値が急峻に変化する特徴を持つ誤差があげられる。
 画像の修正において、低周波成分および高周波成分の変化は、低周波成分や高周波成分のノイズや誤差が画像に含まれている場合には、それを低減する方向に作用するが、ノイズや誤差が画像に含まれていない場合には、逆に低周波成分や高周波成分のノイズや誤差を生じさせてしまう方向に作用する。
 このため、まず統計値重みを用いて、小さい更新回数を設定した場合、高周波成分の量子ノイズ、ストリークアーチファクトは低下しないが、統計値重みを用いて、十分大きい更新回数を設定した場合、高周波成分である量子ノイズ、ストリークアーチファクトを低下させることができる。このように統計値重みを用いた修正の後に、一定値重みを用いて小さい更新回数を設定した場合、低周波成分であるビームハードニング効果、不完全再構成の誤差、リファレンス補正の誤差によるCT値精度の低下を抑制できる。しかし、一定値重みを用いて、十分大きい更新回数まで更新を継続した場合、統計値重みによる修正で一旦低減されていた高周波成分に変化を生じさせてしまい、高周波成分である量子ノイズ、回路ノイズ、ストリークアーチファクトを増加させることがある。
 また、最初に一定値重みを用いて、小さい更新回数を設定した場合、低周波成分であるビームハードニング効果を低減させることができるが、一定値重みを用いて、十分大きい更新回数を設定しても、ストリークアーチファクトを十分低下させることは難しい。このように一定値重みを用いた修正の後に、統計値重みを用いて小さい更新回数を設定した場合、一旦低減されていた低周波成分に逆に変化を生じさせ、ビームハードニング効果を逆に強調して増加させてしまう方向に働く。このため、統計値重みで十分大きい更新回数まで更新した場合、高周波成分のストリークアーチファクトを低減できても、増加した低周波のビームハードニング効果は低減できない。
 このため、実施形態3では、最初に統計値重みを用いて大きな更新回数kで逐次近似再構成を行い、その後一定値重みを用い、小さい更新回数kで逐次近似再構成を行う。これにより、大FOV像に生じる異なる種類の誤差に対して、統計値重みと一定値重みの長所を利用することができ、ストリークアーチファクトとビームハードニング効果を低減することができる。
 また、小FOVについても、同様に最初に、小FOV重み選択部154が、まず、統計値重みで大きな更新回数kで逐次近似再構成を行い、その後一定値重みを用い、小さい更新回数kで逐次近似再構成を行う。これにより、ストリークアーチファクトとビームハードニング効果をさらに低減することができる。
 本実施形態3では、大FOV像、および小FOV像のどちらに対しても、逐次近似再構成の途中で重みの種類を変更することについて説明したが、大FOV像、または小FOV像のどちらか一方のみについて、逐次近似再構成の途中で重みの種類を変更し、他方は、統計値重みまたは一定値重みの一方の重みを用いる構成にすることも可能である。
 なお、本実施形態3では、大FOV像と小FOV像の重みの変更について個別に説明したが、大FOV像の修正は、局所測定投影データの精度低下を抑制する作用があり、小FOV像の修正は、CT値の精度低下を抑制する効果が得られる。このように、大FOV像と小FOV像によって重みの変更の作用・効果が異なる。
 実施形態3の有効性を検証するため実験を行った。撮影するファントムは、骨盤を模擬した人体ファントムを用いた。使用した人体ファントムは、生体組織に近いCT値を有する構造を成している。
 再構成した結果を図13(a)、(b)に示す。図13(a)の画像は、大FOV像の修正に一定値重みを用い、更新回数10回で逐次近似再構成を行い、小FOV像の修正に統計値重みを更新回数20回で逐次近似再構成を行ったものである。一方、図13(b)の画像は、大FOV像の修正に一定値重みを用い、更新回数10回で逐次近似再構成を行い、小FOV像の修正に統計値重みを用いて、更新回数20回で逐次近似再構成を行った後、重みを一定値重みに変更して、更新回数1回で逐次近似再構成を行った結果である。逐次近似再構成は、公知であるサブセット法を用いたOS-SPSによって行い、サブセット数=24である。図13(a)、(b)は、WL=0[HU]、WW=400[HU]である。大FOV=550[mm]、小FOV=250[mm]、小FOV像の再構成中心は、回転中心からX方向に80[mm]、Y方向に130[mm]の位置に設定している。
 図13(c)、(d)の画像は、図13(a)、(b)の画像から、従来の解析的再構成法であるFBP法の結果との差分をとった画像である。図13(c)、(d)は、WL=0[HU]、WW=100[HU]である。
 図13(a)、(c)に示す点線221は、完全収集領域と非完全収集領域222の境界である。完全収集領域と非完全収集領域222の説明は、実施形態2で説明した通りである。
 本実施形態では、非完全収集領域222のCT値精度については評価せず、完全収集領域のCT値精度のみ評価する。
 評価の結果、図13(a)(b)の違いは明らかではないが、図13(c)に示す画像では、矢印の箇所で低周波成分を主とするCT値精度の低下が見られる。これに対し、図13(d)に示す画像では、低周波成分を主とするCT値精度の低下を抑制できており、ビームハードニング効果、不完全再構成による誤差、リファレンス補正の誤差を低減できたことがわかる。これにより、小FOV像の修正に用いる重みを統計値重み、一定値重みで変更する本実施形態3の方法が有効であることが示された。
 本実施形態では、更新回数の大小による説明を行ったが、更新回数毎の修正速度が早い場合、より小さい更新回数で済むことは言うまでもない。
 <実施形態4>
 次に実施形態4として、実施形態1の一部を変更した、逐次近似再構成ソフトウェアを搭載するX線CT装置について説明する。
 実施形態4のX線CT装置では、大FOV像を逐次近似再構成によって修正する必要が有るか無いかを判定する修正要否判定部231を備える点が実施形態1~3とは異なっている。これにより、大FOV像に修正の必要が無い場合、逐次近似再構成を行って計算量を増加させることがなく、かつ、小FOV像のCT値精度の低下を抑制できる。以下、実施形態4のX線CT装置の要部について説明する。その他の構成は、実施形態1~3で説明したX線CT装置の構成と同様であるので、ここでは説明を省略する。
 図14に、実施形態4においてモニタ123に表示される撮影条件受付画面141を示す。図14のように、再構成条件設定領域144において、操作者は重み自動決定モード124を選択する場合、大FOV更新の自動決定モード217を自動決定モード124に加えて選択することが可能である。このとき、大FOV更新の自動決定モード217のOFFを操作者が選択した場合の動作は、実施形態1~3に示す通りである。以下、大FOV更新の自動決定モード217で操作者がONを選択した場合について、詳細を説明する。
 図15に、実施形態4の第1逐次近似再構成部152の構成を示す。第1逐次近似再構成部152は、修正要否判定部231を備えている。他の機能ブロックは、図5と同様である。修正要否判定部231は、大FOV解析的再構成部161が再構成した大FOV像について、図16の非完全収集領域244を探索し、非完全収集領域244に空気以外の構造物やストリークアーチファクトがあるかどうかを判定する。図16において、完全収集領域241は、一回転分の投影角度で投影データが収集される円211内の領域であり、非完全収集領域244は、完全収集領域241の外側の領域であり、一部の投影角度では投影データが収集されない領域である。
 非完全収集領域244に構造物やストリークアーチファクトが存在しない場合には、逐次近似再構成を行わなくても、大FOV像の計算投影データは測定投影データとよく一致する。非完全収集領域244に構造物やストリークアーチファクトが存在する場合には、第1逐次近似再構成部152が逐次近似再構成を行って、測定投影データと大FOV像の計算投影データとの一致度を高めることが望ましい。
 よって、修正要否判定部231は、非完全収集領域244に構造物やストリークアーチファクトが無い場合、修正不要と判定し、逐次近似再構成を行わず、大FOV解析的再構成部161が生成した大FOV像をそのまま背景画像作成部167に受け渡す。これにより、逐次近似再構成に用いる計算量を低減できる。一方、非完全収集領域244に構造物やストリークアーチファクトがある場合、修正要否判定部231は、大FOV順投影部162に大FOV像を受け渡し、逐次近似再構成を実行させる。
 このため、修正要否判定部231は、大FOV像から構造物やストリークアーチファクト等の対象を判定する必要がある。例えば、大FOV像の非完全収集領域244は空気で満たされると仮定し、空気と空気以外の領域を判定する方法である。判定にあたり、公知である閾値判定や領域拡張法等の画像処理技術を利用する。例えば、手動または自動でCT値データの閾値TH=-950[HU]を設定し、CT値データがTH未満の領域を空気の領域、TH以上の領域を空気以外の領域として判定する。図16のように、大FOV200内の大FOV像において、非完全収集領域244を閾値判定した結果、非完全収集領域244に寝台243の一部が存在している場合には、修正要否判定部231が大FOV像の修正を必要有として判定する。
 CT値の閾値を用いる他に、予め取り込んでおいた寝台243等の処理対象の形状情報、位置情報等の情報と領域拡張法を組み合わす方法を用いることも可能である。本実施形態では、一例として寝台243を処理対象としたが、本実施形態に限ることなく、ストリークアーチファクトや被写体等を処理対象として判定することもある。
 以上より、大FOV像の修正を必要としない場合は、余分な計算量を増加させることなく、小FOV像のCT値精度の低下を抑制できる。
 <実施形態5>
 次に実施形態5として、実施形態4の一部を変更した、逐次近似再構成ソフトウェアを搭載するX線CT装置について説明する。
 実施形態5のX線CT装置では、修正要否判定部231が、チャネル方向におけるX線検出器2の端部の検出素子の測定投影データを探索することにより、非完全収集領域244内における構造物の存在有無を判定する点が実施形態4と異なっている。以下、実施形態5のX線CT装置の要部について説明する。その他の構成は実施形態1~4で説明したX線CT装置の構成と同様であるので、ここでは説明を省略する。
 修正要否判定部231は、図17に示すように、補正処理部135が出力する測定投影データ251を探索し、チャネル方向におけるX線検出器2の端部領域252の出力値(CT値データの積分値)が閾値以上である場合には、非完全収集領域244に構造物またはストリークアーチファクトが存在すると判定する。測定投影データ251のX線検出器2の端部領域252の出力値が閾値以下である場合には、非完全収集領域244には構造物やストリークアーチファクトがないと判定する。閾値としては、例えばTH=50[HU]を設定することができ、TH未満を空気と判定し、TH以上を空気以外の構造物として判定する。
 なお、図17に示す測定投影データ251は、横軸がチャネル方向の投影データ、縦軸が投影角度であり、本実施形態では投影角度0度から360度の範囲である。図17に示す測定投影データ251は、構造物等によって測定投影データの値(X線検出器2の出力値)が大きいほど白く表示され、測定投影データの値が小さいほどグレーで表されている。
 X線検出器2の端部領域252は、例えば、片側それぞれ検出素子5個ずつとする。それぞれ片側5個の検出素子の出力値を平均処理したデータを用いて、端部領域252の出力値が閾値以上かどうか判定することも可能である。これにより、ランダム成分であるノイズの影響を低減でき、誤判定を防止できる。
 修正要否判定部231は、非完全収集領域244に構造物等がないと判定した場合には、逐次近似再構成処理を実施せず、背景画像作成部167に大FOV像を受け渡す。以上より、大FOV像の修正を省略することができ、余分な計算量を増加させることなく、小FOV像のCT値精度の低下を抑制できる。
 本実施形態において、修正要否判定部231は、大FOV解析的再構成部161の後に構成されているが、大FOV解析的再構成部161の前に配置することも可能である。
 <実施形態6>
 次に実施形態6として、拡大再構成技術を用いない通常の逐次近似再構成手法において、実施形態3のように、重みの種類を逐次近似再構成の途中で変更する構成のX線CT装置について説明する。
 このX線CT装置は、第1の実施形態の図1および図2と同様の構成であるが、図2の再構成処理部136は、通常の逐次近似再構成のために図18の構成である。すなわち、再構成処理部136は、FOV像の逐次近似再構成する際の重みW(i)を選択するFOV重み選択部285と、FOV解析的再構成部280、FOV順投影部281、差分部(データ比較部)282、FOV逆投影処理部283、および、FOV画像更新部284を含む。これらの機能および動作は、図9の大FOV重み選択部151、大FOV解析的再構成部161、大FOV順投影部162、差分部163、大FOV逆投影処理部164、および、大FOV画像更新部165にそれぞれ対応しており、FOV像に対して、逐次近似再構成を行う。
 このとき、図18のFOV重み選択部285は、実施形態3の大FOV重み選択部151と同様に、FOV像(大FOV像)の修正に用いる重みW(i)として、まず統計値重みを選択して、予め定めた十分な更新回数であるk回において逐次近似再構成を繰り返した後、修正に用いる重みW(i)を一定値重みに変更して、k回よりも少ない更新回数であるk回で逐次近似再構成を繰り返し実行させる。
 これにより、FOV像の量子ノイズ、回路ノイズ、ストリークアーチファクトを低減できるとともに、FOV像のビームハードニング効果、不完全再構成の誤差、リファレンス補正の誤差も低減できる。これにより、FOV像に生じる異なる種類の誤差に対して、統計値重みと一定値重みの長所を利用することでいずれも低減できる。この詳細は、実施形態3で述べた通りである。
 なお、本実施形態の逐次近似再構成を行う機能ブロックを第3逐次近似再構成部として、実施形態1~5のX線CT装置にさらに備える構成にすることも可能である。この場合、実施形態1~5の第1及び第2逐次近似再構成部152、155と、実施形態6の第3逐次近似再構成部を操作者の指示に応じて選択的に用いることが可能になる。
 本実施形態の有効性を検証するため実験を行った。撮影するファントムは、骨盤を模擬した人体ファントムに加えて、外側にポリエチレン素材のファントムを巻いた。使用した人体ファントムは、生体組織に近いCT値を有する構造を成している。
 再構成した結果を図19(a)、(b)に示す。図19(a)は、修正に統計値重みを用い、更新回数は100回に設定してFOV像を逐次近似再構成したものである。一方、図19(b)は、統計値重みを用いて更新回数100回で逐次近似再構成を行った後、重みを一定値重みに変更し、更新回数3回で逐次近似再構成を行ったものである。図19の(a)、(b)の画像再構成は、公知であるサブセット法を用いたOS-SPSを用い、サブセット数=24とした。図19(a)、(b)は、WL=0[HU]、WW=400[HU]、FOV=550[mm]である。
 図19(c)、(d)は、図19(a)(b)に示す逐次近似再構成手法の結果から、従来の解析的再構成法であるFBP法の結果との差分をとった画像である。図19(c)、(d)は、WL=0[HU]、WW=100[HU]である。
 図19(a)、(c)に示す点線261は、完全収集領域と非完全収集領域の境界である。完全収集領域と非完全収集領域は、実施形態2および実施形態4と同様である。
 本実施形態では、非完全収集領域のCT値精度については言及せず、完全収集領域のCT値精度のみ評価を行うこととする。
 評価の結果、図19(a)、(b)の違いは明らかではないが、図19(c)の画像では、矢印の箇所で低周波成分を主とするCT値精度の低下が見られる。しかし、図19(d)に示す画像では、低周波成分を主とするCT値の低下を抑制できており、ビームハードニング効果、不完全再構成による誤差、リファレンス補正の誤差を低減できたことがわかる。これにより、本実施形態6のように、通常の逐次近似再構成においても、重みを統計値重み、一定値重みで変更することにより、誤差低減に有効であることが示された。
 本実施形態では、更新回数の大小による説明を行ったが、更新回数毎の修正速度が早い場合、小さい更新回数で済むことは言うまでもない。
1…X線管、2…X線検出器、3…ガントリー、4…回転板、5…寝台、6…撮影対象、7…円形の開口部、101…入力部、102…撮影部、103…画像生成部、111…キーボード、112…マウス、113…メモリ、114…中央処理装置、115…HDD装置、116…ガントリー制御器、117…X線制御部、118…寝台制御器、119…DAS、120…メモリ、121…中央処理装置、122…HDD装置、123…モニタ、131…撮影条件入力部、132…撮影制御部、133…撮影部、134…信号収集部、135…補正処理部、136…再構成処理部、137…画像表示部、141…撮影条件受付画面、142…X線条件設定領域、143…再構成範囲設定領域、144…再構成条件設定領域、145…撮影部位設定領域、151…大FOV重み選択部、152…第1逐次近似再構成部、153…局所測定投影データ抽出部、154…小FOV重み選択部、155…第2逐次近似再構成部、161…大FOV解析的再構成部、162…大FOV順投影部、163…差分部(データ比較部)、164…大FOV逆投影処理部、165…大FOV画像更新部、167…背景画像作成部、168…背景画像順投影部、169…差分部(データ比較部)、170…小FOV解析的再構成部、171…小FOV順投影部、172…差分部(データ比較部)、173…小FOV逆投影処理部、174…小FOV画像更新部、211…完全収集領域と非完全収集領域の境界、212…小FOV、213…上段の関心領域、214…中段の関心領域、215…下段の関心領域、231…大FOV重み選択部、241…完全収集領域、244…非完全収集領域、243…寝台、251…測定投影データ、252…端部領域

Claims (15)

  1.  X線を発生するX線発生部と、
     被写体を透過後の前記X線を検出し、測定投影データを得るX線検出部と、
     前記X線発生部と前記X線検出部とを搭載して前記被写体の周囲を回転する回転板と、
     前記X線検出部が得た測定投影データから、前記被写体の第1の再構成範囲についての第1のCT画像を再構成し、前記第1のCT画像を用いて、前記第1の再構成範囲内の第2の再構成範囲に対応する局所測定投影データを前記測定投影データから抽出する局所測定投影データ抽出部と、
     前記局所測定投影データから前記第2の再構成範囲についての第2のCT画像を再構成し、前記第2のCT画像を計算により順投影して求めた局所計算投影データと、前記局所測定投影データ抽出部が抽出した前記局所測定投影データとが等しくなるように前記第2のCT画像を逐次修正する第2逐次近似再構成部とを有し、
     前記局所測定投影データ抽出部は、前記第1のCT画像を計算により順投影して求めた計算投影データと、前記X線検出部が検出した測定投影データとが等しくなるように、前記第1のCT画像を逐次修正する第1逐次近似再構成部を備え、逐次修正された前記第1のCT画像を用いて、前記第2の再構成範囲に対応する前記局所測定投影データを抽出することを特徴とするX線CT装置。
  2.  請求項1に記載のX線CT装置において、前記局所測定投影データ抽出部は、前記第1のCT画像の逐次修正に用いる重みを選択する第1の重み選択部を有し、第2の逐次近似再構成部は、前記第2のCT画像の逐次修正に用いる重みを選択する第2の重み選択部を有し、
     前記第1および第2の重み選択部は、前記X線検出部を構成する複数の検出素子の出力の大きさに応じて前記複数の検出素子の出力データに付与する重みを異ならせる統計値重み、および、前記複数の検出素子の出力データに同じ重みを付与する一定値重みのうちの一方を選択して設定することを特徴とするX線CT装置。
  3.  請求項1に記載のX線CT装置において、前記局所測定投影データ抽出部は、前記第1逐次近似再構成部が逐次修正した前記第1のCT画像から前記第2の再構成範囲の画素を除いた背景画像を生成する背景画像作成部と、前記背景画像を計算により順投影して背景投影データを求める背景画像順投影部と、前記X線検出部が検出した測定投影データから前記背景投影データを差し引いて前記局所測定投影データを求める差分部とを有することを特徴とするX線CT装置。
  4.  請求項2に記載のX線CT装置において、操作者から重みの指定を受け付ける入力部をさらに有し、
     前記第1および第2の重み選択部は、前記入力部が受け付けた指定に応じて、前記統計値重みおよび前記一定値重みのうちの一方を選択することを特徴とするX線CT装置。
  5.  請求項4に記載のX線CT装置において、前記第1および第2の重み選択部は、ストリークアーチファクトを優先的に低減する指示を操作者から前記入力部が受け付けた場合には、前記統計値重みを選択し、CT値精度を優先する指示を操作者から前記入力部が受け付けた場合には、前記一定値重みを選択することを特徴とするX線CT装置。
  6.  請求項5に記載のX線CT装置において、前記第1および第2の重み選択部は、一方が統計値重みを、他方が一定値重みを選択することを特徴とするX線CT装置。
  7.  請求項2に記載のX線CT装置において、前記第1および第2逐次近似再構成部のうち少なくとも一方は、重みの種類を変更して2回の逐次修正を行う構成であり、1回目の逐次修正は統計値重みを用い、2回目の逐次修正には一定値重みを用い、かつ、前記1回目の逐次修正の更新回数は、前記2回目の逐次修正の更新回数よりも大きいことを特徴とするX線CT装置。
  8.  請求項4に記載のX線CT装置において、前記入力部は、操作者から重みの種類を変更して逐次修正を行う指定を受け付け可能であり、
    前記重みの種類を変更して逐次修正を行う指定を前記入力部が受け付けた場合に、前記第1および第2逐次近似再構成部のうち少なくとも一方は、重みの種類を変更して2回の逐次修正を行う構成であり、1回目の逐次修正は、統計値重みを用い、2回目の逐次修正には一定値重みを用い、かつ、前記1回目の逐次修正の更新回数は、前記2回目の逐次修正の更新回数よりも大きいことを特徴とするX線CT装置。
  9.  請求項1に記載のX線CT装置において、前記局所測定投影データ抽出部は、前記X線検出部が得た測定投影データから再構成した前記第1のCT画像から逐次修正の要否を判定する修正要否判定部をさらに有し、前記修正要否判定部が逐次修正が必要と判定した場合に、前記第1逐次近似再構成部が前記第1のCT画像の逐次修正を行うことを特徴とするX線CT装置。
  10.  請求項9に記載のX線CT装置において、前記修正要否判定部は、X線検出部が得た測定投影データから再構成した前記第1のCT画像の完全収集領域の外の非完全収集領域に構造物があるかどうかを探索し、探索結果によって修正有無を判定することを特徴とするX線CT装置。
  11.  請求項9に記載のX線CT装置において、前記修正要否判定部は、前記X線検出部の端部のX線検出素子の出力値によって、修正有無を判定することを特徴とするX線CT装置。
  12.  請求項1に記載のX線CT装置において、前記X線検出部が得た測定投影データから前記被写体の第1の再構成範囲についての第1のCT画像を再構成し、前記第1のCT画像を計算により順投影して求めた計算投影データと、前記X線検出部が検出した測定投影データとが等しくなるように、前記第1のCT画像を逐次修正する第3逐次近似再構成部をさらに有し、
     前記第3逐次近似再構成部は、重みの種類を変更して2回の逐次修正を行う構成であり、1回目の逐次修正には、前記X線検出部を構成する複数の検出素子の出力の大きさに応じて前記複数の検出素子の出力データに付与する重みを異ならせる統計値重みを用い、2回目の逐次修正には、前記複数の検出素子の出力データに同じ重みを付与する一定値重みを用い、かつ、前記1回目の逐次修正の更新回数は、前記2回目の逐次修正の更新回数よりも大きいことを特徴とするX線CT装置。
  13.  X線を発生するX線発生部と、
     被写体を透過後の前記X線を検出し、測定投影データを得るX線検出部と、
     前記X線発生部と前記X線検出部とを搭載して前記被写体の周囲を回転する回転板と、
     前記X線検出部が得た測定投影データから前記被写体の所定の再構成範囲についてのCT画像を再構成し、前記CT画像を計算により順投影して求めた計算投影データと、前記X線検出部が検出した測定投影データとが等しくなるように、前記CT画像を逐次修正する逐次近似再構成部とを有し、
     前記逐次近似再構成部は、重みの種類を変更して2回の逐次修正を行うことを特徴とするX線CT装置。
  14.  請求項13に記載のX線CT装置において、前記逐次近似再構成部は、前記2回の逐次修正のうち1回目の逐次修正に、前記X線検出部を構成する複数の検出素子の出力の大きさに応じて前記複数の検出素子の出力データに付与する重みを異ならせる統計値重みを用い、2回目の逐次修正には、前記複数の検出素子の出力データに同じ重みを付与する一定値重みを用い、かつ、前記1回目の逐次修正の更新回数は、前記2回目の逐次修正の更新回数よりも大きいことを特徴とするX線CT装置。
  15.  X線CT装置のX線検出部が検出した被写体の投影データから第1の再構成範囲の第1のCT画像を再構成し、前記第1のCT画像を用いて前記第1の再構成範囲内の第2の再構成範囲に対応する局所測定投影データを前記測定投影データから抽出し、前記局所測定投影データから前記第2の再構成範囲について第2のCT画像を生成するX線CT画像の処理方法であって、
     前記第1のCT画像から投影計算により求めた第1の計算投影データと、前記被写体の投影データとが等しくなるように逐次的に前記第1のCT画像を修正し、
     逐次修正された前記第1のCT画像を用いて、前記第2の再構成範囲に対応する前記局所測定投影データを抽出し、
     抽出した前記局所測定投影データと前記第2のCT画像から投影計算により求めた第2の計算投影データが等しくなるように逐次的に前記第2のCT画像を修正することを特徴とするX線CT画像の処理方法。
PCT/JP2013/069206 2012-09-13 2013-07-12 X線ct装置およびx線ct画像の処理方法 WO2014041889A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/408,576 US9420986B2 (en) 2012-09-13 2013-07-12 X-ray CT apparatus and X-ray CT image processing method
JP2014535413A JP5918374B2 (ja) 2012-09-13 2013-07-12 X線ct装置およびx線ct画像の処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-201808 2012-09-13
JP2012201808 2012-09-13

Publications (1)

Publication Number Publication Date
WO2014041889A1 true WO2014041889A1 (ja) 2014-03-20

Family

ID=50278019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069206 WO2014041889A1 (ja) 2012-09-13 2013-07-12 X線ct装置およびx線ct画像の処理方法

Country Status (3)

Country Link
US (1) US9420986B2 (ja)
JP (1) JP5918374B2 (ja)
WO (1) WO2014041889A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017063569A1 (en) * 2015-10-14 2017-04-20 Shanghai United Imaging Healthcare Co., Ltd. System and method for image correction
JP2018057855A (ja) * 2016-09-30 2018-04-12 キヤノンメディカルシステムズ株式会社 画像再構成処理装置、x線コンピュータ断層撮像装置及び画像再構成処理方法
JP2019213623A (ja) * 2018-06-11 2019-12-19 キヤノンメディカルシステムズ株式会社 医用情報処理装置、医用情報処理方法、およびプログラム
JP2020062407A (ja) * 2018-10-16 2020-04-23 キヤノンメディカルシステムズ株式会社 医用画像処理装置及びx線ct装置
WO2020250900A1 (ja) * 2019-06-11 2020-12-17 キヤノン株式会社 画像処理装置及び画像処理方法、プログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6218334B2 (ja) * 2012-11-30 2017-10-25 株式会社日立製作所 X線ct装置及びその断層画像撮影方法
WO2014165611A1 (en) * 2013-04-02 2014-10-09 The Regents Of The University Of California Thermoplastic 3-d phantom
US9600913B2 (en) * 2013-07-31 2017-03-21 Koninklijke Philips N.V. Iterative CT image reconstruction of a ROI with objects outside the scan FoV
CN105374012B (zh) * 2014-08-27 2018-11-27 通用电气公司 用于消除由性能差异的探测器单元所致的条状伪影的方法
JPWO2016132880A1 (ja) * 2015-02-16 2017-11-30 株式会社日立製作所 演算装置、x線ct装置、及び画像再構成方法
CN107920793B (zh) * 2015-08-17 2021-08-06 株式会社岛津制作所 图像重建处理方法、图像重建处理存储介质以及搭载了该图像重建处理存储介质的断层摄影装置
WO2019010648A1 (en) 2017-07-12 2019-01-17 Shenzhen United Imaging Healthcare Co., Ltd. SYSTEM AND METHOD FOR CORRECTION TO AIR
CN107203959B (zh) * 2017-07-27 2021-07-23 上海联影医疗科技股份有限公司 图像获取方法、装置及数字化x射线摄影设备
CN115153608A (zh) * 2017-11-08 2022-10-11 上海联影医疗科技股份有限公司 校正投影图像的系统和方法
WO2019090541A1 (en) 2017-11-08 2019-05-16 Shenzhen United Imaging Healthcare Co., Ltd. Systems and methods for correcting projection images in computed tomography image reconstruction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177396A (ja) * 2010-03-03 2011-09-15 Hitachi Medical Corp X線ct装置
WO2011122613A1 (ja) * 2010-03-30 2011-10-06 株式会社 日立メディコ 再構成演算装置、再構成演算方法、及びx線ct装置
WO2012081245A1 (ja) * 2010-12-15 2012-06-21 富士フイルム株式会社 放射線断層画像生成方法および装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004065706A (ja) 2002-08-08 2004-03-04 Ge Medical Systems Global Technology Co Llc 投影データ補正方法、画像生成方法およびx線ct装置
JP4535795B2 (ja) 2004-07-12 2010-09-01 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 画像処理装置及びx線ctシステム
US7680240B2 (en) * 2007-03-30 2010-03-16 General Electric Company Iterative reconstruction of tomographic image data method and system
US7920670B2 (en) * 2007-03-30 2011-04-05 General Electric Company Keyhole computed tomography
DE102009014726A1 (de) * 2009-03-25 2010-10-07 Siemens Aktiengesellschaft Verfahren und Bildrekonstruktionseinrichtung zur Rekonstruktion von Bilddaten

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177396A (ja) * 2010-03-03 2011-09-15 Hitachi Medical Corp X線ct装置
WO2011122613A1 (ja) * 2010-03-30 2011-10-06 株式会社 日立メディコ 再構成演算装置、再構成演算方法、及びx線ct装置
WO2012081245A1 (ja) * 2010-12-15 2012-06-21 富士フイルム株式会社 放射線断層画像生成方法および装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017063569A1 (en) * 2015-10-14 2017-04-20 Shanghai United Imaging Healthcare Co., Ltd. System and method for image correction
GB2548303A (en) * 2015-10-14 2017-09-13 Shanghai United Imaging Healthcare Co Ltd System and method for image correction
GB2548303B (en) * 2015-10-14 2018-02-21 Shanghai United Imaging Healthcare Co Ltd System and method for image correction
JP2018057855A (ja) * 2016-09-30 2018-04-12 キヤノンメディカルシステムズ株式会社 画像再構成処理装置、x線コンピュータ断層撮像装置及び画像再構成処理方法
JP2019213623A (ja) * 2018-06-11 2019-12-19 キヤノンメディカルシステムズ株式会社 医用情報処理装置、医用情報処理方法、およびプログラム
JP7300811B2 (ja) 2018-06-11 2023-06-30 キヤノンメディカルシステムズ株式会社 医用情報処理装置、医用情報処理方法、およびプログラム
US11734817B2 (en) 2018-06-11 2023-08-22 Canon Medical Systems Corporation Medical information processing apparatus, magnetic resonance imaging apparatus, and medical information processing method
JP2020062407A (ja) * 2018-10-16 2020-04-23 キヤノンメディカルシステムズ株式会社 医用画像処理装置及びx線ct装置
JP7370802B2 (ja) 2018-10-16 2023-10-30 キヤノンメディカルシステムズ株式会社 医用画像処理装置及びx線ct装置
WO2020250900A1 (ja) * 2019-06-11 2020-12-17 キヤノン株式会社 画像処理装置及び画像処理方法、プログラム

Also Published As

Publication number Publication date
JP5918374B2 (ja) 2016-05-18
JPWO2014041889A1 (ja) 2016-08-18
US9420986B2 (en) 2016-08-23
US20150190106A1 (en) 2015-07-09

Similar Documents

Publication Publication Date Title
JP5918374B2 (ja) X線ct装置およびx線ct画像の処理方法
CN109561869B (zh) 用于计算机断层扫描的方法和系统
JP6215449B2 (ja) X線ct装置、及び処理装置
JP6162241B2 (ja) X線ct装置
JP6470837B2 (ja) X線ct装置および逐次修正パラメータ決定方法
JP5726288B2 (ja) X線ct装置、および方法
US20180211418A1 (en) Image processing device, radiation detecting device, and image processing method
US11419566B2 (en) Systems and methods for improving image quality with three-dimensional scout
EP3738512A1 (en) Systems and methods for automatic tube potential selection in dual energy imaging
JP5588697B2 (ja) X線ct装置
US11337671B2 (en) Methods and systems for improved spectral fidelity for material decomposition
US7379525B2 (en) Method and system for efficient helical cone-beam reconstruction
JP5858760B2 (ja) X線ct装置
JP6317511B1 (ja) X線トモシンセシス装置
US20230145920A1 (en) Systems and methods for motion detection in medical images
US11810276B2 (en) Systems and methods for adaptive blending in computed tomography imaging
WO2016186746A1 (en) Methods and systems for automatic segmentation
US20230363724A1 (en) X-ray ct apparatus and high-quality image generation device
JP7225307B2 (ja) 多材料分解のための方法およびシステム
US20230132514A1 (en) System and method for controlling errors in computed tomography number
WO2018116791A1 (ja) 医用画像処理装置及びそれを備えたx線ct装置、医用画像処理方法
JP2023183108A (ja) インテリアctの画像再構成方法、画像再構成装置、及び、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535413

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14408576

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836603

Country of ref document: EP

Kind code of ref document: A1