WO2014040412A1 - 一种led封装结构 - Google Patents

一种led封装结构 Download PDF

Info

Publication number
WO2014040412A1
WO2014040412A1 PCT/CN2013/074037 CN2013074037W WO2014040412A1 WO 2014040412 A1 WO2014040412 A1 WO 2014040412A1 CN 2013074037 W CN2013074037 W CN 2013074037W WO 2014040412 A1 WO2014040412 A1 WO 2014040412A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
transparent
led package
substrate
light
Prior art date
Application number
PCT/CN2013/074037
Other languages
English (en)
French (fr)
Inventor
曹永革
刘著光
陈东川
邓种华
兰海
Original Assignee
中国科学院福建物质结构研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院福建物质结构研究所 filed Critical 中国科学院福建物质结构研究所
Publication of WO2014040412A1 publication Critical patent/WO2014040412A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to the field of LED packaging, and more particularly to a novel LED package structure. Background technique
  • LED Light Emitting Diode
  • the LED chip consists of two parts, one part is a P-type semiconductor, in which the hole dominates, and the other end is an N-type semiconductor, mainly electron.
  • P-N junction When the two semiconductors are connected, a "P-N junction" is formed between them.
  • a current is applied to the wafer through the wire, the electrons are pushed toward the P region. In the P region, the electrons recombine with the holes, and then the energy is emitted in the form of photons. This is the principle of LED illumination.
  • LED As a new type of light source, LED has been widely used in the field of lighting due to its energy saving, environmental protection and long life.
  • the patent applications are: JP19960198585, 19960244339, JP19960245381, JP19960359004, JP19970081010, but the sapphire-based LED chip emits a 360-degree solid angle.
  • the current LED package light source is a single-sided light source, which means that the reflective substrate is required to reflect the light emitted from the back surface and the side surface of the LED chip from the front side. This will cause a large part of the light to be absorbed by the material due to multiple reflections, resulting in a decrease in the overall luminous flux of the LED package light source, thereby limiting the overall light efficiency of the LED light source. Summary of the invention
  • the present invention is directed to solving the aforementioned problems of the prior art, and provides a package structure which is simple in structure, high in luminous efficiency, and reliable in performance.
  • An LED package structure in which an LED chip is packaged on a transparent LED package substrate, wherein the LED package light source is double-sided and light-emitting on the front and back sides.
  • the light emitted from the back surface of the LED chip is directly emitted from the LED package structure through the transparent LED package substrate, thereby forming a front and back double-sided surface. Illuminated LED package light source.
  • the transparent LED package substrate has a transmittance in the visible light region of more than 50% in the range of 380 to 780 nm.
  • LED package structure according to any one of the preceding claims, wherein the LED chip is fixed to one side or both sides of the transparent LED package substrate.
  • the LED chip is fixed on one side of the transparent LED package, and the transparent gel is sealed on one side of the fixed LED chip.
  • the transparent LED package substrate is sealed with a transparent colloid of phosphor on both sides.
  • the number of the LED chips is one or more.
  • a conductive electrode is prepared on one or both sides of the LED package substrate.
  • the present invention provides an LED package structure including a transparent LED package substrate 10 and more than one LED chip 20, and optionally, a conductive electrode 30 is disposed on one side or both sides of the transparent LED package substrate 10.
  • a transparent colloid or a transparent colloid 40 mixed with a phosphor is provided on one side or both sides of the transparent LED package substrate 10.
  • the transparent LED package substrate 10 is a transparent glass, a transparent quartz plate, a transparent ceramic plate, or a transparent crystal.
  • the package substrate of the present invention transmits more than 50% in the visible light region in the range of 380-780 nm. Preferably, the transmittance is greater than 70%.
  • one or more pairs of conductive electrodes may be disposed on one side of the transparent LED package substrate 10 to meet the wire bonding requirements of more than one LED chip 20. It is also possible to provide conductive electrodes on both the front and back sides of the transparent LED package substrate 10 to meet the requirements of bonding wires of two or more LED chips on both sides.
  • the LED chip is a transparent substrate, such as a sapphire substrate, a gallium nitride substrate or the like, and an LED chip prepared thereon.
  • the epitaxial material for preparing the LED chip may be different depending on the light-emitting wavelength of the LED chip.
  • the preparation of blue and green LED chips usually uses a gallium nitride-based material, and the yellow and red LED chips are usually made of a gallium arsenide based material.
  • the solid crystal and the bonding wire of the LED chip can be selected on one side or both sides of the transparent LED package substrate 10.
  • the monochromatic LED package if the solid crystal and the bonding wire are only formed on one side of the transparent LED package substrate 10, a transparent colloid is provided on one side of the chip to protect the LED chip 20.
  • white LED packages whether in a transparent LED package
  • the solid crystal and the bonding wire of the LED chip 20 on the one side of the 10 or the solid crystal and the bonding wire of the LED chip on the front and back sides of the reverse LED package 10 respectively need to be at the position of the LED chip; 3 ⁇ 4 ⁇ phosphor
  • the transparent colloid is to protect the LED chip in this respect, and the other is to make the color temperature and color coordinate of the white light emitted from the front and back sides of the LED package structure coincide.
  • the monochromatic optical package of the LED package structure it is only necessary to use an LED chip of a corresponding wavelength.
  • a well-known blue LED chip plus a phosphor or an ultraviolet LED chip plus a phosphor package is used.
  • the LED package substrate 10 may be of a flat type, a cross shape or any pattern in which two or more planes intersect.
  • the present invention also provides a method for fabricating an LED package structure, comprising the steps of: (1) the LED chip 20 is fixed on one side or both sides of the transparent LED substrate 10 through the transparent colloid 40;
  • the LED chip and the connecting wire are encapsulated by a transparent colloid or a transparent colloid 40 mixed with a phosphor.
  • the invention utilizes a transparent material as the LED package substrate, and adopts a novel double-sided LED package structure, so that the light emitted from the back surface and the side surface of the LED can also be transmitted through the transparent substrate and can be easily ejected. Thereby, the loss of luminous flux caused by multiple reflections of light in the package structure is avoided, and the luminous flux and luminous efficacy of the LED package light source are improved by about 50% compared with the existing LED packaging method.
  • Figure 1 is a single-sided solid crystal blue LED package structure
  • Figure 2 is a double-sided solid crystal blue LED package structure
  • Figure 3 is a single-sided solid crystal white LED package structure diagram
  • Figure 4 is a double-sided solid crystal white LED package structure diagram
  • Figure 5 is a cross-shaped transparent anti-white LED package structure diagram
  • Figure 6 is a single-sided solid crystal blue LED package structure test optical map
  • Figure 7 is a photometric diagram of the double-sided solid crystal blue LED package structure test.
  • Figure 8 is a single-sided solid crystal high-efficiency white light LED package structure test light pan map
  • Figure 9 is a double-sided solid crystal high-efficiency white light LED package structure test light pan map
  • Figure 10 is a single-sided solid crystal high-intensity white light LED package structure test optical language diagram
  • Figure 11 is a double-sided solid crystal high-intensity white light LED package structure test light pan map
  • Figure 12 is a cross-shaped transparent substrate white light LED package structure test optical language diagram
  • a blue LED chip 20 having a peak wavelength of 450 nm is fixed on the slide glass 10 through a transparent silica gel, and the two electrodes of the blue LED chip 20 are connected to the slide glass through a metal wire by a wire bonding process. 10 of the two electrodes 30. Finally, the blue LED chip and the connecting wires are sealed in the transparent silicone 40.
  • the package preparation process is similar to that of Example 1, except that the blue LED chip 20 is fixed on both the front and back sides of the slide glass 10, and the bonding wire and the dispensing are performed.
  • Example 3 As shown in FIG. 3, a blue LED chip 20 having a peak wavelength of 450 nm is crystallized on a transparent YAG ceramic substrate 10 through a transparent silica gel, and the two electrodes of the blue LED chip 20 are connected to the transparent through a metal wire by a wire bonding process.
  • the two electrodes 30 of the YAG ceramic substrate 10 are placed on each other.
  • a transparent silica gel 40 in which a yellow phosphor is mixed is formed on both the front and back sides of the transparent YAG ceramic substrate 10.
  • the mixing ratio of phosphor to silica gel is listed as 1:12.
  • the optical language diagram of the test is shown in Figure 8.
  • two blue LED chips 20 having a peak wavelength of 450 nm are fixed on the front and back sides of the transparent YAG ceramic substrate 10 through transparent silica gel, and the two electrodes of the two blue LED chips 20 are passed through the metal wires by a wire bonding process.
  • the distribution is connected to the electrodes 30 on both the front and back sides of the transparent YAG ceramic substrate 10.
  • a transparent phosphor silica gel 40 in which yellow phosphors are mixed on both sides of the transparent YAG ceramic substrate 10 is used.
  • the mixing ratio of phosphor to silica gel is listed as 1:12.
  • the optical language diagram of the test is shown in Figure 9.
  • a blue LED chip 20 having a peak wavelength of 450 nm is fixed on the transparent YAG ceramic substrate 10 through a transparent silica gel, and the two electrodes of the blue LED chip 20 are connected to the transparent YAG through a metal wire by a wire bonding process.
  • transparent silica gel 40 mixed with green and red phosphors is spotted on both sides of the transparent YAG ceramic substrate 10. The mixing ratio of green phosphor, red phosphor and silica gel is listed as 9:1:80.
  • the photo language diagram of the test is shown in Figure 10.
  • two blue LED chips 20 having a peak wavelength of 450 nm are fixed on the front and back sides of the transparent YAG ceramic substrate 10 through transparent silica gel, and the two electrodes of the two blue LED chips 20 are passed through the metal wires by a wire bonding process.
  • the distribution is connected to the electrodes 30 on both the front and back sides of the transparent YAG ceramic substrate 10.
  • the transparent silica gel 40 in which green and red phosphors are mixed on both sides of the transparent YAG ceramic substrate 10 is spotted.
  • the mixing ratio of green phosphor, red phosphor and silica gel is listed as 9:1:80.
  • four blue LED chips 20 having a peak wavelength of 450 nm are fixed on the four axes of the cross-shaped transparent YAG ceramic substrate 10 through a transparent silica gel, and two of the four blue LED chips 20 are bonded by a wire bonding process.
  • the electrodes are connected to the electrodes 30 of the four axes of the cross-shaped transparent YAG ceramic substrate 10 by metal wire distribution.
  • a transparent phosphor silica gel 40 in which yellow phosphor powder is mixed is formed on both the front and back sides of each of the axes of the cross-shaped transparent YAG ceramic substrate 10.
  • the mixing ratio of phosphor to silica gel is listed as 1:12.
  • the four blue LED chips of the white LED package light source are connected in parallel, and the test condition is 80 mA DC drive.
  • the optical language diagram of the test is shown in Figure 12. The above is only a specific embodiment of the present invention, and is not intended to limit the present invention. Any minor modifications, equivalent changes and modifications made to the above embodiments in accordance with the technical spirit of the present invention, such as the material, shape, and chip of the transparent substrate. The arrangement and the series-parallel relationship and the like are still within the technical content and scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Device Packages (AREA)

Abstract

本发明提供一种LED封装结构,其特征在于,采用在透明的LED封装基板上进行LED芯片封装,利用透明LED封装反替代了现有LED封装的反射式基板,同时在透明LED基板的正反两面都点有透明胶体或混合了荧光粉的透明胶体,形成一个双面发光光源。本发明利用了LED芯片正反两面都能出光的特性,利用透明LED封装反使LED芯片正反两面发出的光都能有效射出,极大地增加了LED封装光源的发光效率。

Description

说明书 一种 LED封装结构
技术领域
本发明涉及 LED封装领域, 尤其涉及一种新型 LED封装结构。 背景技术
发光二极管 ( Light Emitting Diode-LED )可以直接把电能转化为光能。 LED 芯片由两部分组成, 一部分是 P型半导体, 在它里面空穴占主导地位, 另一端是 N 型半导体,主要是电子。 当这两种半导体连接起来的时候, 它们之间就形成一个 "P-N 结"。 当电流通过导线作用于这个晶片的时候, 电子就会被推向 P区, 在 P区里电子 跟空穴复合, 然后就会以光子的形式发出能量, 这就是 LED发光的原理。
LED作为一种新型光源, 由于具有节能、 环保、 寿命长等特点已经被日益广 泛地应用于照明领域。 日本日亚化学最早申请了以蓝宝石衬底为衬底的蓝光 LED专 利申请号分别为: JP19960198585、 19960244339、 JP19960245381, JP19960359004, JP19970081010, 但以蓝宝石为衬底的 LED芯片的发光是 360度立体角, 而目前的 LED封装光源都为单面光源,这就意味着需要利用反射式的基板将由 LED芯片背面 以及侧面发出的光经 反反射后由正面射出。 这将造成很大一部分光线由于多次的 反射而被材料吸收, 致使 LED封装光源的整体光通量下降, 从而限制了 LED光源 整体光效的提高。 发明内容
本发明旨在解决现有技术的前述问题, 而提供一种结构简单, 光效高而且性能 可靠的封装结构。
本发明通过如下技术方案实现:
一种 LED封装结构, 在透明 LED封装基板上封装 LED芯片, 其特征在于, 所 述 LED封装光源为正反面双面发光。
根据上述的 LED封装结构, 其特征在于, 所述 LED芯片背面发出的光, 所述 光透过透明 LED封装基板直接射出所述 LED封装结构, 从而形成一个正反面双面 发光的 LED封装光源。
根据上述任一项的 LED封装结构, 其特征在于, 所述透明 LED封装基板在 380-780nm范围内的可见光区透过率大于 50%。
根据上述任一项的 LED封装结构,其特征在于,所述 LED芯片固定于透明 LED 封装基板的一面或正反两面。
根据上述任一项所述的 LED封装结构, 其特征在于, 对于单色 LED封装, 在 所述透明 LED封装 反单面固定所述 LED芯片, 并在固定 LED芯片的一面封透明 胶体。
根据上述任一项的 LED封装结构, 其特征在于, 对于白光 LED封装, 所述透 明 LED封装基板的两面都封混有荧光粉的透明胶体。
根据本发明, 所述 LED芯片为 1颗以上。
根据本发明, 所述 LED封装基板的一面或两面制备有导电电极。
具体地, 本发明提供一种 LED封装结构, 包括透明 LED封装基板 10和一颗以 上的 LED芯片 20,任选地,在透明 LED封装基板 10的一面或正反两面设置导电电 极 30。
根据本发明, 在透明 LED封装基板 10的一面或正反两面点有透明胶体或混有 荧光粉的透明胶体 40。
根据本发明, 所述透明 LED封装基板 10为透明玻璃, 透明石英片, 透明陶瓷 片, 或者透明晶体。 本发明的封装基板在 380-780nm 范围内的可见光区透过大于 50%。 优选地, 所述透过率大于 70%。
根据本发明, 所述透明 LED封装基板 10的一面可以设置一对或者多对导电电 极, 以满足一颗以上的 LED芯片 20的焊线要求。 也可以在透明 LED封装基板 10 的正反两面都设置有导电电极, 以满足正反两面分别进行两颗以上 LED芯片的焊线 要求。
根据本发明, 所述 LED芯片为透明衬底, 如蓝宝石村底、 氮化镓衬底等, 上制 备的 LED芯片。 根据 LED芯片的发光波长不同, 制备 LED芯片的外延材料可以不 同。 如制备蓝光与绿光 LED芯片通常采用氮化镓基材料, 制备黄光与红光 LED芯 片通常采用砷化镓基材料。 本发明的 LED封装结构在封装完成后可以实现由 LED 芯片 20背面发出的光透过透明 LED封装 反 10而直接射出该封装结构, 从而实现 透明 LED封装基板 10的双面均能发光。
根据本发明,对于该 LED封装结构的单色光或白光封装,可以选择在透明 LED 封装基板 10的一面或正反两面进行 LED芯片的固晶与焊线。对于单色光 LED封装, 如果只在透明 LED封装基板 10的一面进行固晶与焊线, 则只要在固定有芯片的一 面点上透明胶体以保护 LED芯片 20。对于白光 LED封装,无论是在透明 LED封装
10的一面进行 LED芯片 20的固晶与焊线还是在透明 LED封装 反 10的正反 两面分别进行 LED芯片的固晶与焊线, 都需要在 LED芯片的位置点上; ¾ ^荧光粉 的透明胶体, 这一方面是为了保护 LED芯片, 另一方面是为了使由该 LED封装结 构正反两面发出的白光的色温与色坐标一致。
根据本发明,对于所述 LED封装结构的单色光封装,只要使用相应波长的 LED 芯片即可。 对于该 LED封装结构的白光封装, 使用公知的蓝光 LED芯片加荧光粉 或紫外 LED芯片加荧光粉的封装方式。
根据本发明, 所述 LED封装基板 10可以为平面型, 十字形或两个以上平面相 交的任意图形。
本发明还提供一种 LED封装结构的制备方法, 其特征在于, 包括如下步骤: ( 1 ) LED芯片 20通过透明胶体 40固定于透明 LED基板 10的一面或正反两 面上,
( 2 )采用焊线工艺将 LED芯片 20的两电极通过金属导线连接至透明 LED基 板 10的两电极 30上;
( 3 )通过透明胶体或混有荧光粉的透明胶体 40将 LED芯片与连接导线封装。 本发明利用透明材料作为 LED封装基板, 同时采用新型的双面发光的 LED封 装结构, 使由 LED背面与侧面发出的光也能透过透明的基板并很容易地射出。 从而 避免了光线在封装结构内的多次反射造成的光通量损失, 使 LED封装光源的光通量 与光效较现有的 LED封装方式提高了 50%左右。 附图说明
图 1为单面固晶蓝光 LED封装结构图
图 2为双面固晶蓝光 LED封装结构图
图 3为单面固晶白光 LED封装结构图 图 4为双面固晶白光 LED封装结构图
图 5为十字形透明 反白光 LED封装结构图
图 6为单面固晶蓝光 LED封装结构测试光语图
图 7为双面固晶蓝光 LED封装结构测试光语图
图 8为单面固晶高光效白光 LED封装结构测试光潘图
图 9为双面固晶高光效白光 LED封装结构测试光潘图
图 10为单面固晶高显指白光 LED封装结构测试光语图
图 11为双面固晶高显指白光 LED封装结构测试光潘图
图 12为十字形透明基板白光 LED封装结构测试光语图
其中各附图标记的含义如下:
10、 透明封装 反(或载玻片); 20、 LED芯片; 30、 电极; 40、 透明硅胶。
具体实施方式
实施例 1
如图 1所示,将一颗峰值波长为 450nm的蓝光 LED芯片 20通过透明硅胶固定 于载玻片 10上, 并采用焊线工艺将蓝光 LED芯片 20的两电极通过金属导线连接至 载玻片 10的两电极 30上。 最后通过透明硅胶 40将蓝光 LED芯片与连接导线封于 其内。 该蓝光 LED封装光源的测试条件为 20mA直流驱动, 其测试结果为: 辐射通 量 Φ=35πιλ¥, 其测试光语图如图 6所示, 其辐射通量与同等条件下的普通贴片 3528 封装提高了 50%。 实施例 2
如图 2所示,其封装制备过程与例 1相似, 其不同在于在载玻片 10的正反两面 都固定了蓝光 LED芯片 20并进行了焊线与点胶。 该蓝光 LED封装光源的两蓝光 LED芯片 20为并联连接, 其测试条件为 40mA直流驱动, 其测试结果为: 辐射通量 0=68mW, 其测试光谱图如图 7所示。 实施例 3 如图 3所示,将一颗峰值波长为 450nm的蓝光 LED芯片 20通过透明硅胶固晶 于透明 YAG陶瓷基板 10上, 并采用焊线工艺将蓝光 LED芯片 20的两电极通过金 属导线连接至透明 YAG陶瓷基板 10的两电极 30上。 同时在透明 YAG陶瓷基板 10 的正反两面都点有混合了黄色荧光粉的透明硅胶 40。 荧光粉与硅胶的混合比列为 1:12。 该白光 LED封装光源的测试条件为 20mA直流驱动, 其测试结果为: 色温 Tc=5744K, 显色指数 Ra=64.5, 光效 η=2241πι/\¥。 其测试的光语图如图 8所示。 实施例 4
如图 4所示,将两颗峰值波长为 450nm的蓝光 LED芯片 20通过透明硅胶固定 于透明 YAG陶瓷基板 10的正反两面, 并采用焊线工艺将两蓝光 LED芯片 20的两 电极通过金属导线分布连接至透明 YAG陶瓷基板 10正反两面的电极 30上。 同时在 透明 YAG陶瓷基板 10的正反两面都点上混合了黄色荧光粉的透明硅胶 40。 荧光粉 与硅胶的混合比列为 1:12。 该白光 LED封装光源的两蓝光 LED芯片为并联连接, 其测试条件为 40mA直流驱动, 其测试结果为: 色温 Tc=5714K, 显色指数 Ra=63.3, 光效 η=2131πι/\¥。 其测试的光语图如图 9所示。 实施例 5
如图 3所示,将一颗峰值波长为 450nm的蓝光 LED芯片 20通过透明硅胶固定 于透明 YAG陶瓷基板 10上, 并采用焊线工艺将蓝光 LED芯片 20的两电极通过金 属导线连接至透明 YAG陶瓷基板 10的两电极 30上。 同时在透明 YAG陶瓷基板 10 的正反两面都点有混合了绿色与红色荧光粉的透明硅胶 40。 绿色荧光粉、 红色荧光 粉与硅胶的混合比列为 9:1:80。该白光 LED封装光源的测试条件为 20mA直流驱动, 其测试结果为: 色温 Tc=5880K, 显色指数 Ra=93.9, 光效 η=156.71πι/\¥。 其测试的 光语图如图 10所示。 实施例 6
如图 4所示,将两颗峰值波长为 450nm的蓝光 LED芯片 20通过透明硅胶固定 于透明 YAG陶瓷基板 10的正反两面, 并采用焊线工艺将两蓝光 LED芯片 20的两 电极通过金属导线分布连接至透明 YAG陶瓷基板 10正反两面的电极 30上。 同时在 透明 YAG陶瓷基板 10的正反两面都点上混合了绿色与红色荧光粉的透明硅胶 40。 绿色荧光粉、 红色荧光粉与硅胶的混合比列为 9:1:80。 该白光 LED封装光源的两蓝 光 LED 芯片为并联连接, 其测试条件为 40mA 直流驱动, 其测试结果为: 色温 Tc=5769K, 显色指数 Ra=93.2, 光效 η=139.51πι/\¥。 其测试的光谱图如图 11所示。 实施例 7
如图 5所示,将四颗峰值波长为 450nm的蓝光 LED芯片 20通过透明硅胶固定 于十字形透明 YAG陶瓷基板 10的四个轴上, 并采用焊线工艺将四颗蓝光 LED芯片 20的两电极通过金属导线分布连接至十字形透明 YAG陶瓷基板 10四个轴的电极 30 上。 同时在十字形透明 YAG陶瓷基板 10的每个轴的正反两面都点上混合了黄色荧 光粉的透明硅胶 40。 荧光粉与硅胶的混合比列为 1:12。该白光 LED封装光源的四颗 蓝光 LED 芯片为并联连接, 其测试条件为 80mA直流驱动, 其测试结果为: 色温 Tc=5880K, 显色指数 Ra=66.5, 光效 η=1981πι/\¥。 其测试的光语图如图 12所示。 上述内容只是本发明的具体实施例, 而并非对本发明的限制, 凡是依据本发明 的技术实质对上面的实施例所作的任何细微修改、 等同变化与修饰, 如透明基板的 材料, 形状, 芯片的排布与串并联关系等, 均仍属于本发明的技术内容和范围。

Claims

权 利 要求
1. 一种 LED封装结构, 在透明 LED封装基板上封装 LED芯片, 其特征在于, 所 述 LED封装光源为正反面双面发光。
2. 根据权利要求 1 的 LED封装结构, 其特征在于, 所述 LED芯片背面发出光, 所 述光透过透明 LED封装基板直接射出所述 LED封装结构, 从而形成一个正反面 双面发光的 LED封装光源。
3. 根据权利要求 1或 2的 LED封装结构, 其特征在于, 所述透明 LED封装基板在
380-780nm范围内的可见光区透过率大于 50%。
4. 根据权利要求 1-3任一项的 LED封装结构, 其特征在于, 所述 LED芯片固定于 透明 LED封装基板的一面或正反两面。
5. 根据权利要求 1-4任一项所述的 LED封装结构, 其特征在于, 对于单色 LED封 装, 在所述透明 LED封装 反单面固定所述 LED芯片, 并在固定 LED芯片的 一面封透明胶体。
6. 根据权利要求 1-5任一项所述的 LED封装结构, 其特征在于, 对于白光 LED封 装, 所述透明 LED封装基板的两面都封混有荧光粉的透明胶体。
7. 根据权利要求 1-6任一项的 LED封装结构,其特征在于, 所述封装结构包括透明 LED封装基板 10和一颗以上的 LED芯片 20,任选地,在透明 LED封装基板 10 的一面或正反两面设置导电电极 30
8. —种权利要求 1-7任一项的 LED封装结构的制备方法,其特征在于, 包括如下步 骤:
( 1 ) LED芯片 20通过透明胶体 40固定于透明 LED基板 10的一面或正反两面上,
( 2 )采用焊线工艺将 LED芯片 20的两电极通过金属导线连接至透明 LED基板 10 的两电极 30上;
( 3 )任选地, 通过透明胶体或; ¾ ^荧光粉的透明胶体 40将 LED芯片与连接导 线封装。
PCT/CN2013/074037 2012-09-17 2013-04-10 一种led封装结构 WO2014040412A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201220473988 2012-09-17
CN201220473988.X 2012-09-17

Publications (1)

Publication Number Publication Date
WO2014040412A1 true WO2014040412A1 (zh) 2014-03-20

Family

ID=48678584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074037 WO2014040412A1 (zh) 2012-09-17 2013-04-10 一种led封装结构

Country Status (2)

Country Link
CN (1) CN103187514A (zh)
WO (1) WO2014040412A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103423641A (zh) * 2013-07-23 2013-12-04 杭州杭科光电股份有限公司 一种带反射配光的led光源模组
TWI642874B (zh) * 2013-09-11 2018-12-01 晶元光電股份有限公司 發光二極體組件以及相關之照明裝置
CN103629575A (zh) * 2013-11-29 2014-03-12 华南理工大学 一种具有柔性透明衬底的led灯具
CN104051603B (zh) * 2014-03-20 2017-06-09 苏州东山精密制造股份有限公司 一种双面发光的led灯条的制造工艺
CN103840071B (zh) 2014-03-21 2016-08-17 苏州东山精密制造股份有限公司 一种led灯条制作方法及led灯条
CN103996785A (zh) * 2014-06-04 2014-08-20 宁波亚茂照明电器有限公司 一种内置驱动全角度发光led光源与封装工艺
CN104701439B (zh) * 2015-03-20 2017-10-24 河北耀博照明电器有限公司 Led灯具和led灯具组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030141813A1 (en) * 2002-01-31 2003-07-31 Citizen Electronics Co., Ltd. Double-face LED device for an electronic instrument
CN101800270A (zh) * 2009-02-11 2010-08-11 亿光电子工业股份有限公司 发光二极管装置及其封装方法
CN201904333U (zh) * 2010-12-11 2011-07-20 山东开元电子有限公司 瓷基集成封装功率led光源

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100394274C (zh) * 2003-06-04 2008-06-11 友达光电股份有限公司 发光二极管组合光源及背光模块
CN101465345B (zh) * 2007-12-19 2013-01-09 富士迈半导体精密工业(上海)有限公司 光源装置的制造方法
CN102194962A (zh) * 2010-03-04 2011-09-21 展晶科技(深圳)有限公司 侧向发光之半导体组件封装结构
CN102194801A (zh) * 2010-03-04 2011-09-21 展晶科技(深圳)有限公司 正向发光的发光二极管封装结构及其形成方法
CN101930937A (zh) * 2010-08-03 2010-12-29 普照光电科技股份有限公司 一种光电组件的封装方法及其封装载体结构
CN102437149A (zh) * 2010-09-29 2012-05-02 比亚迪股份有限公司 一种led发光装置及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030141813A1 (en) * 2002-01-31 2003-07-31 Citizen Electronics Co., Ltd. Double-face LED device for an electronic instrument
CN101800270A (zh) * 2009-02-11 2010-08-11 亿光电子工业股份有限公司 发光二极管装置及其封装方法
CN201904333U (zh) * 2010-12-11 2011-07-20 山东开元电子有限公司 瓷基集成封装功率led光源

Also Published As

Publication number Publication date
CN103187514A (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
WO2014040412A1 (zh) 一种led封装结构
JP5209881B2 (ja) リードフレーム及びこれを用いた発光素子パッケージ
CN104103659B (zh) 单晶双光源发光元件
TW201106460A (en) White light-emitting diode packages with tunable color temperature
WO2014201774A1 (zh) 一种全方向出光的led球泡灯
TW201419592A (zh) 發光裝置
CN104465895B (zh) Led芯片及其制作方法
JP2010226088A (ja) 交流駆動型発光装置
TW200947665A (en) High color rendering light-emitting diodes
TW201413171A (zh) 照明裝置及其製造方法、發光照明模組
TW201143160A (en) Light-emitting device
KR20160116270A (ko) 발광 다이오드 패키지
WO2014036939A1 (zh) 暖白光发光二极管及其制作方法
TWI506818B (zh) 發光模組及交流發光裝置
JP2007266283A (ja) 発光装置
CN106848032B (zh) 一种晶圆级封装的led器件结构
CN203607398U (zh) 一种高显色性白光led结构
KR20080041818A (ko) 렌즈 및 이를 포함하는 발광 소자 패키지
CN201936915U (zh) 一种led封装结构及其led模组
CN104576627A (zh) 一种高显色性白光led结构及其制作方法
US9054278B2 (en) Lighting apparatuses and driving methods regarding to light-emitting diodes
TWI485844B (zh) 發光二極體模組
JP5805175B2 (ja) 発光ダイオード光源
JP5242661B2 (ja) 発光装置の製造方法
TWI422060B (zh) 暖色系光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837493

Country of ref document: EP

Kind code of ref document: A1