WO2014038919A1 - 리튬 황 전지용 전해질 및 이를 포함하는 리튬 황 전지 - Google Patents
리튬 황 전지용 전해질 및 이를 포함하는 리튬 황 전지 Download PDFInfo
- Publication number
- WO2014038919A1 WO2014038919A1 PCT/KR2013/008168 KR2013008168W WO2014038919A1 WO 2014038919 A1 WO2014038919 A1 WO 2014038919A1 KR 2013008168 W KR2013008168 W KR 2013008168W WO 2014038919 A1 WO2014038919 A1 WO 2014038919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrolyte
- lithium
- polymer
- carbonate
- sulfur
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lithium sulfur battery electrolyte and a lithium sulfur battery including the same.
- the lithium-sulfur battery uses a sulfur-based compound having a sulfur-sulfur combination as a cathode active material, and a carbon-based material in which an alkali metal such as lithium or metal ions such as lithium ions are inserted and removed.
- a secondary battery used as a negative electrode active material an oxidation-reduction in which a reduction in the number of oxides of S occurs during the reduction reaction (discharge) and an oxidation-reduction in which the number of oxides of S decreases during the oxidation reaction (charge). Reactions are used to store and generate electrical energy.
- lithium-sulfur battery systems there are no examples of successful commercialization with lithium-sulfur battery systems.
- the reason why the lithium-sulfur battery is not commercialized is that when sulfur is used as an active material, the utilization rate indicating the amount of sulfur participating in the electrochemical redox reaction in the battery relative to the amount of sulfur injected is low. Because it represents.
- elemental sulfur is generally an insulator that is not electrically conductive, and therefore, an electroconductive material that can provide a smooth electrochemical reaction site must be used in order for an electrochemical reaction to occur.
- the positive electrode structure using elemental sulfur so far known has a structure in which sulfur and a conductive carbon powder are independently present in the positive electrode active material layer (mixture) and are simply mixed as described in US Pat. Nos. 5,523,179 and 5,582,623.
- sulfur becomes polysulfide and is eluted in the liquid phase in the electrolyte during charging and discharging, the electrode structure collapses and adversely affects the capacity and life characteristics of the lithium-sulfur battery.
- lithium secondary batteries In lithium secondary batteries, electrons move from the negative electrode to the positive electrode through an electron conduction path during discharge, and lithium ions (Li + ) move from the negative electrode to the positive electrode through an electrolytic solution or electrolyte. An ideal cell would only move electrons through the wires and only ions through the electrolyte. In the case of a lithium secondary battery, lithium ions must be able to move in the movement of ions by the electrolyte. Lithium salt-containing organic electrolytes and lithium salt-containing polymer electrolytes (including gel and channel forms) have been used as ion conducting media because they can stabilize ions.
- the present invention is to solve the problems of the prior art as described above, and an object of the present invention is to provide a new lithium sulfur battery electrolyte and a lithium sulfur battery comprising the same.
- the present invention provides an electrolyte containing lithium polysulfide represented by the following formula (1) to solve the above problems.
- the concentration of the lithium polysulfide in the electrolyte solution is characterized in that 0.01 to 1.0 M.
- the electrolyte according to the present invention includes LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 S0 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 S0 2 (COCF 3 ), LiAsF 6 and a combination thereof is characterized in that it further comprises a lithium salt selected from the group consisting of.
- the concentration of the lithium salt in the electrolyte is characterized in that 0.01 to 2.0 M.
- the molar ratio of the lithium salt and the lithium polysulfide in the electrolyte is 10: 1 to 100: 1.
- the electrolyte is characterized in that it comprises a non-aqueous solvent.
- the non-aqueous solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
- a carbonate, ester, ether, ketone, alcohol or aprotic solvent may be used.
- the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC) and the like
- the ester solvent is methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethylethyl acetate, methyl propionate , Ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone and the like may be used.
- ether solvent dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, polyethyleneglymedimethyl ether, tetrahydrofuran, etc.
- ketone solvent cyclo Hexanon and the like can be used.
- ethyl alcohol, isopropyl alcohol, and the like may be used as the alcohol solvent, and as the aprotic solvent, R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, Nitriles such as bond aromatic rings or ether bonds), amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolane and the like.
- the non-aqueous solvent is preferably selected from the group consisting of 1,3-dioxolane, sulfolane, and tetraethylene glycol dimethyl ether, wherein the non-aqueous organic solvent is used alone or in combination of one or more.
- the mixing ratio when used in combination with one or more can be appropriately adjusted according to the desired battery performance, which can be widely understood by those skilled in the art.
- the electrolyte including the lithium polysulfide may be a polymer electrolyte.
- the polymer electrolyte is characterized in that the filler and Li 2 S is dispersed in a composite of a polymer and a lithium salt.
- the polymers are polyethylene oxide (PEO), polypropylene oxide (PPO), polyacrylonitrile (PAN), polyvinylidene fluoride (PVDF), polymethacrylate (PMA), polymethyl methacrylate (PMMA) and It may be selected from the group consisting of a combination of these.
- the lithium salt dispersed in the polymer electrolyte may be selected from the group consisting of LiCF 3 SO 3 , LiPF 6 , LiClO 4 , LiBOB, LiTFSI and combinations thereof.
- the filler may be selected from the group consisting of ZrO 2 , Al 2 O 3 , SiO 2 and combinations thereof, and the average size of the filler may be 10 nm to 20 nm.
- the Li 2 S is contained in a ratio of 1 to 10 parts by weight based on 100 parts by weight of the polymer.
- the present invention also provides
- It may include; the second press for 60 minutes to 90 minutes at a pressure of 4 to 5 tons at 80 °C to 90 °C.
- the step of immersing the polymer matrix in a solvent including lithium salt and lithium polysulfide is characterized in that it is carried out for 2 hours or more.
- Gel-like polymer electrolyte prepared according to the production process according to the present invention has the advantage that can be operated at a wide range of temperatures without the risk of evaporation of the liquid component.
- the present invention also provides
- An anode comprising an electrically active sulfur-containing material
- a negative electrode comprising lithium
- An electrochemical device comprising an electrolyte containing lithium polysulfide according to the present invention is provided.
- the electrochemical device is a lithium sulfur battery.
- the positive electrode and the negative electrode are materials that occlude and release lithium, and those generally used in conventional nonaqueous electrolyte secondary batteries may be used, and carbon materials such as lithium metal, lithium alloy, and graphite may be used.
- carbon materials such as lithium metal, lithium alloy, and graphite may be used.
- silicon alloyed with lithium of Korean Application No. 10-2011-0028246 or carbon sulfur composite of Korean Application No. 10-2012-0047023.
- the electrolyte according to the present invention includes lithium polysulfide, wherein the lithium polysulfide inhibits the elution of the sulfur compound from the positive electrode material containing sulfur in a lithium sulfur battery, and acts as an active material on the surface of the positive electrode material, and the eluted sulfur compound By suppressing side reactions between the negative electrode and the negative electrode, the lithium sulfur battery including the lithium sulfur battery electrolyte according to the present invention exhibits stable life characteristics and high efficiency.
- Figure 1 shows a TEM picture of the hollow carbon ball and hollow carbon sulfur composite obtained in one embodiment of the present invention.
- Figure 2 shows the results of measuring the TGA for the hollow carbon sulfur composite obtained in one embodiment of the present invention.
- Figure 3 shows the results of measuring the charge and discharge characteristics for the battery made in one embodiment of the present invention.
- Example 1-1 Li 2 S 8 0.05
- Example 1-2 Li 2 S 8 0.025
- Example 1-3 Li 2 S 6 0.05
- Example 1-4 Li 2 S 4 0.05
- An electrolyte solution was prepared in the same manner as in Example 1, except that sulfolane was used as a non-aqueous solvent and LiTFSI at a concentration of 1 M was used instead of LiCF 3 SO 3 as a lithium salt.
- LiCF 3 SO 3 polyethylene oxide, ZrO 2 and Li 2 S were hot-pressed to prepare a polymer matrix.
- the hot-pressing process was carried out by the first press for 20 minutes at a pressure of 1 ton at 90 ° C, and then the second press for 60 minutes at a pressure of 5 tons at 90 ° C.
- the polymer matrix was immersed in a TEGDME solution to which 0.05 M lithium polysulfide (Li 2 S 8 ) and 1 M LiCF 3 SO 3 were added for 2 hours or more to complete the polymer electrolyte.
- the hollow carbon sulfur composite was prepared by preparing hollow carbon balls according to the method described in 10-2012-0047023 filed by the inventor on May 3, 2012, and carrying sulfur thereon. First, 100 g of water and 1 g of 3-mercaptopropyltrimethoxysilane were added to a 250 ml beaker and stirred at room temperature for 1 hour, and then 0.1 ml of NH 4 OH was slowly added to the reactor. It was stirred for 5 hours at the same temperature. After completion of the reaction, the product obtained was dispersed in 50 ml of water, and then sucrose was added, stirred, and transferred to a Teflon vessel, and reacted at 170 ° C. for 5 hours in a hydrothermal reactor. The product was filtered, washed three times with water and ethanol, dried and heat-treated at 1000 ° C. in an Ar atmosphere to prepare silica-carbon balls.
- the silica-carbon ball was stirred in an aqueous HF solution for 24 hours, the silica was etched away, and dried at 100 ° C. for 12 hours to prepare a hollow carbon ball.
- the hollow carbon ball and sulfur were mixed in a 1: 5 mass ratio, placed in a Y-shaped glass tube, and heat-treated at 600 ° C. for 4 hours in a vacuum state to complete a sulfur sulfur-supported carbon sulfur composite.
- FIGS. 1A and 1B TEM images of the hollow carbon ball and the hollow carbon sulfur composite obtained in Example 4 are shown in FIGS. 1A and 1B.
- the TGA of the hollow carbon sulfur composite prepared in Example 4 was measured to determine the temperature of the sulfur content and the weight change reduction point included in the hollow carbon sulfur composite. TGA was measured by heating at a rate of 10 ° C. min ⁇ 1 under nitrogen condition, and the TGA measurement result graph is shown in FIG. 2. As shown in FIG. 2, sulfur is supported up to the inside of the hollow carbon sulfur composite, and it can be seen that the entire carbon sulfur composite supports 40 wt% to 50 wt% sulfur.
- a hollow carbon sulfur composite prepared in Example 4 a carbon black conductive material, and a polyethylene oxide binder were mixed in an acetonitrile solvent at a ratio of 60:20:20 to prepare a slurry.
- the slurry was coated on aluminum foil with a thickness of 40 ⁇ m, roll-pressed, and dried at 50 ° C. to remove residual solvent, thereby preparing a positive electrode plate.
- Lithium-sulfur batteries were prepared by using lithium foil as the positive electrode and the negative electrode, and using the electrolytes prepared in Examples 1 to 3 as the electrolyte.
- Example 1 a battery was prepared in the same manner as in Example 5 using a TEGDME electrolyte solution containing only LiCF 3 SO 3 without polysulfide.
- Example 2 a battery was prepared in the same manner as in Example 5, using a sulfolane electrolyte solution containing only LiTFSI without polysulfide.
- Example 3 a battery was prepared in the same manner as in Example 5 using a polymer electrolyte immersed in a TEGDME solution containing no polysulfide but only LiCF 3 SO 3 added.
- Example 2 As shown in Table 3, the capacity retention and the efficiency after 80 cycles were also improved in Example 2 including the addition of polysulfide and the sulfolane solvent as the organic solvent and the polymer electrolyte immersed in the TEGDME solution containing lithium polysulfide. Compared with Comparative Example 2 and Comparative Example 3, respectively, it can be confirmed that the present invention improves the life characteristics and efficiency of the battery using the electrolyte containing polysulfide.
- Example 1-1 to which Li 2 S 8 type lithium polysulfide is added has a longer lifespan than Example 1-3 to which Li 2 S 6 is added and Example 1-4 to which Li 2 S 4 is added. It can be confirmed that excellent.
- Example 1-1 having a concentration of lithium polysulfide of 0.05 M was 0.025 M.
- the electrolyte according to the present invention includes lithium polysulfide, wherein the lithium polysulfide inhibits the elution of the sulfur compound from the positive electrode material containing sulfur in a lithium sulfur battery, and acts as an active material on the surface of the positive electrode material, and the eluted sulfur compound By suppressing side reactions between the negative electrode and the negative electrode, the lithium sulfur battery including the lithium sulfur battery electrolyte according to the present invention exhibits stable life characteristics and high efficiency.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 리튬 황 전지용 전해질 및 이를 포함하는 리튬 황 전지에 관한 것이다. 본 발명의 리튬 황 전지용 전해질은 전해질에 리튬폴리설파이드를 포함시킴으로써 상기 리튬폴리설파이드가 황을 포함하는 양극재로부터 황화합물의 용출을 억제하여 전해액의 안정성이 향상되고 결과적으로 용출된 황 화합물과 음극의 부반응을 억제함으로써 안정적인 수명 특성을 나타낸다.
Description
본 발명은 리튬 황 전지용 전해질 및 이를 포함하는 리튬 황 전지에 관한 것이다.
휴대용 전자 기기의 급속한 발전에 따라 이차 전지의 수요가 증가되고 있다. 특히, 휴대용 전자 기기의 작고, 가볍고, 얇고, 작아지는 추세에 부응할 수 있는 고에너지 밀도의 전지의 등장이 지속적으로 요구되고 있으며, 또한, 값싸고 안전하며 환경친화적인 면을 만족시켜야 하는 전지가 요구되고 있다.
리튬-황 전지는 황-황 결합(Sulfur-Sulfur combination)을 가지는 황 계열 화합물을 양극 활물질로 사용하고, 리튬과 같은 알카리 금속 또는 리튬 이온 등과 같은 금속 이온의 삽입 및 탈삽입이 일어나는 탄소계 물질을 음극 활물질로 사용하는 이차 전지로서, 환원 반응시(방전시) S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응시(충전시) S의 산화수가 증가하면서 S-S 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장 및 생성한다.
그러나, 아직 리튬-황 전지 시스템으로 상용화에 성공한 예는 없는 실정이다. 리튬-황 전지가 상용화되지 못한 이유는 우선 황을 활물질로 사용하면 투입된 황의 양에 대한 전지 내 전기화학적 산화환원 반응에 참여하는 황의 양을 나타내는 이용률이 낮아, 이론 용량과 달리 실제로는 극히 낮은 전지 용량을 나타내기 때문이다.
또한, 원소 황은 일반적으로 전기전도성이 없는 부도체이므로 전기화학 반응이 일어나기 위해서는 원활한 전기화학적 반응 사이트를 제공할 수 있는 전기적 도전재를 사용하여야 한다.
현재까지 알려진 원소 황을 이용한 양극 구조는 미국 특허 제5,523,179호 및 제5,582,623호에 기재된 바와 같이 양극 활물질 층(합제)에 황과 도전재인 카본 분말이 각각 독립적으로 존재하여 단순 혼합되어 있는 구조를 가진다. 그러나, 이러한 구조의 경우 충방전시 황이 폴리설파이드로 되면서 전해질에 액상으로 용출되면 전극 구조가 붕괴되어 리튬-설퍼 전지의 용량과 수명 특성에 나쁜 영향을 미친다.
리튬 이차 전지는 근본적으로 방전 시에는 전자가 전선(electron conduction path)을 통하여 음극으로부터 양극으로 이동하고, 리튬 이온(Li+)은 전해질(electrolytic solution or electrolyte)을 통하여 음극으로부터 양극으로 이동한다. 이상적인 전지는 전선으로는 전자만 이동하고, 전해질로는 이온만 이동해야 한다. 리튬 이차 전지의 경우, 전해질에 의한 이온의 이동에 있어서 리튬 이온이 이동할 수 있어야 한다. 리튬염 함유 유기전해액 및 리튬염 함유 고분자계열 전해질[겔(gel) 형태 및 채널(channel) 형태 포함]은 이온들을 안정화시킬 수 있어 이온전도 매질로 사용하여 왔다.
그러나, 리튬 황 이차전지에 있어서는 기존의 유기전해액 및 고분자 전해질이 리튬이온 뿐만 아니라, 다른 이온들도 용이하게 이동시킬 수 있는데 문제가 있었다. 즉, Sx
2- 이온 종들이 유기전해액 및 고분자 계열 전해질 매질을 통과하여 음극에 도달하는 문제가 있다.
상기와 같은 문제점을 해결하기 위하여, 황을 흡착하는 성질을 지니는 첨가제를 양극 활물질슬러리에 첨가하여 양극 활물질의 유출을 지연시키는 방법이 연구되고 있다. 이런 목적을 위한 흡착제로서 일본특개 평 9-147868호(1997. 6 . 6.)에서는 활성 탄소 섬유를 사용하였고, 미국 특허 제5,919,587호에서는 다공성이 높고, 섬유형 및 미세 스폰지형(highly porous, fibrous and ultra-fine sponge like) 구조를 지니는 전이 금속 칼코게나이드 사이에 양극 활물질을 집어넣거나(embed), 이들로 양극 활물질을 코팅처리(encapsulating)시키는 방법이 기술되어 있다.
그러나, 이러한 종래 기술들은 리튬-황 전지의 용량 특성과 수명 특성을 크게 개선하지 못하는 문제점이 있었다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 새로운 리튬 황 전지용 전해질 및 이를 포함하는 리튬 황 전지를 제공하는 것을 목적으로 한다.
본 발명은 상기와 같은 과제를 해결하기 위하여 하기 화학식 1로 표시되는 리튬폴리설파이드를 함유하는 전해질을 제공한다.
[화학식1] LixSy (1≤x≤2, 1≤y≤10)
본 발명에 있어서, 상기 전해액 중의 상기 리튬폴리설파이드의 농도가 0.01 내지 1.0 M 인 것을 특징으로 한다.
본 발명에 의한 전해질은 LiBF4, LiPF6, LiCF3SO3, LiC4F9SO3, LiN(CF3S02)2, LiN(C2F5SO2)2, LiN(CF3S02)(COCF3), LiAsF6 및 이들의 조합으로 이루어진 군에서 선택되는 리튬염을 더 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 전해질 중에 상기 리튬염의 농도가 0.01 내지 2.0 M 인 것을 특징으로 한다.
본 발명에 있어서, 상기 전해질 중에 상기 리튬염과 상기 리튬폴리설파이드의 몰비가 10 : 1 내지 100 : 1 인 것을 특징으로 한다.
본 발명에 있어서, 상기 전해질은 비수성 용매를 포함하는 것을 특징으로 한다. 상기 비수성 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 비수성 용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트(DPC), 메틸 프로필카보네이트(MPC), 에틸프로필카보네이트(EPC), 메틸에틸카보네이트(MEC), 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 부틸렌카보네이트(BC) 등이 사용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 1,1-디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트,γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 폴리에틸렌 글라임디메틸 에테르, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 술포란(sulfolane) 등이 사용될 수 있다. 본 발명에 있어서, 상기 비수성 용매는 1,3-디옥솔란, 술포란, 및 테트라에틸렌글리콜디메틸 에테르로 이루어진 그룹에서 선택되는 것이 바람직하며, 상기 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용될 수 있고, 하나 이상 혼합하여 사용되는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있으며, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
본 발명에 있어서, 상기 리튬폴리설파이드를 포함하는 전해질은 고분자 전해질일 수 있다.
본 발명에 있어서, 상기 고분자 전해질은 고분자와 리튬염의 복합체에 필러 및 Li2S 가 분산되어 있는 것을 특징으로 한다.
상기 고분자는 폴리에틸렌 옥사이드(PEO), 폴리프로필렌 옥사이드(PPO), 폴리아크릴로니트릴(PAN), 폴리비닐리덴 플루오라이드(PVDF), 폴리메타크릴레이트(PMA), 폴리메틸메타크릴레이트(PMMA) 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다.
본 발명에 있어서, 상기 고분자 전해질에 분산되는 리튬염은 LiCF3SO3, LiPF6, LiClO4, LiBOB, LiTFSI 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다.
본 발명에 있어서, 상기 필러는 ZrO2, Al2O3, SiO2 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있으며, 상기 필러의 평균 크기는 10 nm 내지 20 nm 일 수 있다.
본 발명에 있어서, 상기 고분자 100 중량부에 대하여 상기 Li2S 는 1 내지 10 중량부의 비율로 포함되는 것을 특징으로 한다.
본 발명은 또한,
(1)리튬염, 고분자, 필러 및 Li2S 를 혼합하는 단계;
(2)상기 혼합물을 핫프레스 하여 고분자 매트릭스를 형성하는 단계; 및
(3)상기 고분자 매트릭스를 리튬염과 하기 화학식 1로 표시되는 리튬폴리설파이드를 포함한 용매에 침지하는 단계;를 포함하는 고분자 전해질의 제조 방법을 제공한다.
[화학식1] LixSy (1≤x≤2, 1≤y≤10)
본 발명에 의한 고분자 전해질의 제조 방법에 있어서, 상기 혼합물을 핫프레스 하여 고분자 매트릭스를 형성하는 단계는
80 ℃ 내지 90 ℃ 에서 0.2 톤 내지 1 톤 의 압력으로 15 분 내지 20 분간 1차 프레스 하는 단계; 및
80 ℃ 내지 90 ℃ 에서 4 톤 내지 5 톤 의 압력으로 60 분 내지 90 분간 2차 프레스 하는 단계;를 포함할 수 있다.
본 발명에 의한 고분자 전해질의 제조 방법에 있어서, 상기 고분자 매트릭스를 리튬염과 리튬폴리설파이드를 포함한 용매에 침지하는 공정은 2시간 이상 수행하는 것을 특징으로 한다.
본 발명에 의한 상기 제조공정에 따라 제조된 겔형 고분자 전해질은 액체 성분의 증발 위험 없이 넓은 범위의 온도에서 작동 가능한 이점이 있다.
본 발명은 또한,
전기 활성 황-함유 물질을 포함하는 양극;
리튬을 포함하는 음극; 및
본 발명에 의한 리튬폴리설파이드를 함유하는 전해질을 포함하는 전기 화학 소자를 제공한다.
본 발명에 있어서 전기 화학 소자는 리튬 황 전지인 것을 특징으로 한다.
본 발명의 전기 화학 전지에 있어서, 상기 양극 및 음극은 리튬을 흡장 방출하는 재료로, 종래의 비수 전해액 이차전지에서 일반적으로 사용되고 있는 것이 사용될 수 있고, 리튬 금속, 리튬 합금, 흑연 등의 탄소재료를 사용할 수 있지만, 높은 에너지 밀도를 갖는 전기화학 전지를 얻기 위해서는 한국 출원번호 10-2011-0028246 호의 리튬과 합금화된 실리콘 또는 한국 출원번호 10-2012-0047023 호의 카본 황 복합체를 사용하는 것이 바람직하다.
본 발명에 의한 전해질은 리튬폴리설파이드를 포함하여 상기 리튬폴리설파이드가 리튬 황 전지에서 황을 포함하는 양극재로부터 황화합물의 용출을 억제하고, 양극재의 표면에서 활성물질로 작용하며, 또한 용출된 황 화합물과 음극의 부반응을 억제하여 본 발명에 의한 리튬 황 전지용 전해질을 포함하는 리튬 황 전지는 안정적인 수명 특성 및 높은 효율을 나타낸다.
도 1은 본 발명의 일 실시예에서 얻어진 중공 카본 볼 및 중공 카본 황 복합체의 TEM 사진을 나타낸다.
도 2는 본 발명의 일 실시예에서 얻어진 중공 카본 황 복합체에 대하여 TGA를 측정한 결과를 나타낸다.
도 3은 본 발명의 일 실시예에서 만들어진 전지에 대한 충방전 특성을 측정한 결과를 나타낸다.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
<실시예1> 리튬폴리설파이드가 첨가된 TEGDME 전해액의 제조
황을 60 ℃ 의 진공 오븐에서 72 시간 동안 건조하고, 2 ㎜ × 2 ㎜ × 0.1 ㎜ 의 리튬 조각을 준비한 후, 상기 리튬 조각과 상기 건조된 황을 아래 표 1에서와 같이 비수성 용매인 TEGDME 에 용해시키고, 상기 용액에 1 M 농도의 LiCF3SO3 를 첨가하여 아래 표 1과 같은 전해액을 제조하였다.
표 1
리튬폴리설파이드 | 리튬폴리설파이드의 농도(M) | |
실시예 1-1 | Li2S8 | 0.05 |
실시예 1-2 | Li2S8 | 0.025 |
실시예 1-3 | Li2S6 | 0.05 |
실시예 1-4 | Li2S4 | 0.05 |
<실시예2> 리튬폴리설파이드가 첨가된 술포란(sulfolane) 전해액의 제조
비수성 용매로 술포란을 이용하고 리튬염으로서 LiCF3SO3 대신 1 M 농도의 LiTFSI 를 이용한 것을 제외하고, 상기 실시예 1 과 동일한 방법으로 아래 표 2와 같은 전해액을 제조하였다.
표 2
리튬폴리설파이드 | 리튬폴리설파이드의 농도(M) | |
실시예2-1 | Li2S8 | 0.01 |
실시예2-2 | Li2S8 | 0.025 |
실시예2-3 | Li2S8 | 0.05 |
<실시예 3> 고분자 전해질의 제조
LiCF3SO3, poly ethylene oxide, ZrO2 및 Li2S 를 핫-프레스하여 고분자 매트릭스를 제조하였다.
상기 핫-프레스 공정은 90 ℃ 에서 1 톤의 압력으로 20 분간 1차 프레스 한 후, 다시 90 ℃ 에서 5 톤의 압력으로 60 분간 2차 프레스하는 공정으로 실시하였다.
제조된 고분자 매트릭스를 0.05 M 리튬폴리설파이드(Li2S8) 및 1M LiCF3SO3 가 첨가된 TEGDME 용액에 2시간 이상 침지하여 고분자 전해질을 완성하였다.
<실시예 4> 중공 카본 황 복합체의 제조
중공 카본 황 복합체는 본 발명자가 2012년 5월 3일 출원한 10-2012-0047023 에 기재된 방법에 따라 중공 카본 볼을 제조하고, 여기에 황을 담지시켜 제조하였다. 먼저 250 ml 비이커에 물 100 g 및 3-머캅토프로필트리메톡시실란(3-mercaptopropyltrimethoxysilane) 1 g 을 첨가하고 상온에서 1 시간 동안 교반 한 후, 상기 반응기에 0.1 ml 의 NH4OH 를 천천히 첨가하고 동일 온도에서 5시간 더 교반하였다. 반응 완료 후 얻어진 생성물을 50 ml 의 물에 분산시킨 후, 수크로스를 첨가하여 교반하고 테플론 용기에 옮겨 담아 수열 반응기에서 170 ℃ 로 5시간 반응시켰다. 생성물을 여과하고 물과 에탄올로 3차례 세척한 후 건조하고 Ar 분위기에서 1000 ℃ 로 열처리하여 실리카-카본 볼을 제조하였다.
상기 실리카-카본 볼을 HF 수용액에서 24시간 동안 교반한 후, 실리카를 에칭하여 제거하고, 100 ℃ 에서 12 시간 동안 건조하여, 중공 카본 볼을 제조하였다.
상기 중공 카본 볼과 황을 1 : 5 질량비로 혼합하고 Y자형 유리관에 넣은 후 진공 상태로 600 ℃ 에서 4 시간 동안 열처리하여 중공 카본 볼의 내부로 황이 담지 된 카본 황 복합체를 완성하였다.
<실험예 1> 주사전자 현미경 분석
상기 실시예4 에서 얻어진 중공 카본 볼 및 중공 카본 황 복합체의 TEM 사진을 도 1a 및 도 1b 에 나타내었다.
도 1b 에서 보는 바와 같이 중공 카본 볼의 내부로 황이 담지된 중공 카본 황 복합체가 생성되었음을 알 수 있다.
< 실험예 2> 열중량분석법(Thermogravimetric Analysis) 분석
상기 실시예4 에서 제조된 중공 카본 황 복합체에 대하여 TGA를 측정하여 상기 중공 카본 황 복합체에 포함된 황 함량 및 중량 변화 감량 지점의 온도를 확인하였다. 질소 조건 하에서 10 ℃ min-1 의 속도로 승온 시켜 TGA를 측정하였으며, 이러한 TGA 측정 결과 그래프를 도 2에 나타내었다. 도 2에서 보는 바와 같이 황은 중공 카본 황 복합체 내부까지 담지되어 있으며, 전체 카본 황 복합체가 40 중량 % 내지 50 중량 % 의 황을 담지하고 있음을 알 수 있다.
<실시예5> 전극 및 전지의 제조
상기 실시예4 에서 제조된 중공 카본 황 복합체와 카본 블랙 도전재, 폴리에틸렌 옥사이드 바인더를 60 : 20 : 20 의 비율로 아세토니트릴 용매에 혼합하여 슬러리를 제조하였다. 제조된 슬러리를 알루미늄 호일에 40 ㎛ 두께로 코팅하고 롤프레싱한 후 50 ℃ 에서 건조시켜 잔존 용매를 제거하여 양극판을 제조하였다.
상기 양극판과 음극으로 리튬 호일을 사용하고, 전해질로는 상기 실시예 1 내지 3 에서 제조된 전해질을 사용하여 리튬-황 전지를 제조하였다.
<비교예 1>
비교예1 로서, 폴리설파이드를 포함하지 않고 LiCF3SO3 만 첨가된 TEGDME 전해액을 사용하여 실시예5 와 동일한 방법으로 전지를 제조하였다.
<비교예 2>
비교예2 로서, 폴리설파이드를 포함하지 않고 LiTFSI 만 첨가된 술포란 전해액을 사용하여 실시예5 와 동일한 방법으로 전지를 제조하였다
<비교예3>
비교예3 으로서, 폴리설파이드를 포함하지 않고 LiCF3SO3 만 첨가된 TEGDME 용액에 침지한 고분자 전해질을 사용하여 실시예5 와 동일한 방법으로 전지를 제조하였다
<실험예 3> 전지의 수명 특성 평가
상기 실시예 5에서 제조된 상기 실시예 1 내지 3 의 전해질을 포함하는 전지 및 비교예 1 내지 3에서 만들어진 전지에 대하여 수명 특성을 평가하고, 그 결과를 아래 표 3에 나타내었다.
아래 표3 에서 보는 바와 같이 0.05 M Li2S8 을 첨가한 TEGDME 전해질(실시예 1-1)을 이용한 전지의 경우, Li2S8 을 첨가하지 않은 비교예 1 보다 80 사이클 후 수명 특성이 20 % 정도 개선되는 것을 확인할 수 있다.
표3 에서 보는 바와 같이 폴리설파이드를 첨가하고 유기 용매로서 술포란 용매를 사용한 실시예 2와 리튬폴리설파이드를 포함한 TEGDME 용액에 침지한 고분자 전해질을 포함하는 실시예 3에서도 80 사이클후 용량 유지율 및 효율이 각각 비교예 2 및 비교예 3 과 비교하여 개선되어, 본 발명에 의하여 폴리설파이드를 포함하는 전해질을 이용한 전지의 수명 특성 및 효율이 향상되는 것을 확인할 수 있다.
표 3
80사이클 후 용량 유지율 | 효율(80번째 사이클 충전용량 대비 방전용량의 비) | |
실시예 1-1 | 68.4 % | 82.7 % |
실시예 1-2 | 62.4 % | 81.9 % |
실시예 1-3 | 58.3 % | 80.8 % |
실시예 1-4 | 60.5 % | 80.9 % |
실시예 2-1 | 61.2 % | 91.2 % |
실시예 2-2 | 65.3 % | 93.1 % |
실시예 2-3 | 69.4 % | 95.9 % |
실시예 3 | 73.1 % | 94.2 % |
비교예 1 | 50.4 % | 60.9 % |
비교예 2 | 28.4 % | 87.6 % |
비교예 3 | 33.5 % | 73.2 % |
실시예 1-1 내지 1-4 의 전해질을 이용하여 제조한 전지 및 비교예 1의 전지를 통해 첨가되는 리튬폴리설파이드의 종류 및 농도에 따른 수명 특성을 측정하고 그 결과를 도 3에 나타내었다.
도 3에서 Li2S8 형태의 리튬폴리설파이드를 첨가한 실시예 1-1이 Li2S6를 첨가한 실시예 1-3, Li2S4 를 첨가한 실시예 1-4 보다 수명 특성이 우수함을 확인할 수 있다.
또한, 리튬폴리설파이드의 농도가 0.05 M 인 실시예 1-1 이 0.025 M 인 실시예 1-2 보다 수명 특성이 우수하게 평가되었다.
본 발명에 의한 전해질은 리튬폴리설파이드를 포함하여 상기 리튬폴리설파이드가 리튬 황 전지에서 황을 포함하는 양극재로부터 황화합물의 용출을 억제하고, 양극재의 표면에서 활성물질로 작용하며, 또한 용출된 황 화합물과 음극의 부반응을 억제하여 본 발명에 의한 리튬 황 전지용 전해질을 포함하는 리튬 황 전지는 안정적인 수명 특성 및 높은 효율을 나타낸다.
Claims (20)
- 하기 화학식 1로 표시되는 리튬폴리설파이드를 함유하는 전해질[화학식1] LixSy (1≤x≤2, 1≤y≤10)
- 제 1 항에 있어서,상기 전해질 중에 상기 리튬폴리설파이드의 농도가 0.01 내지 1.0 M 인 것을 특징으로 하는 전해질
- 제 1 항에 있어서,상기 전해질은 LiBF4, LiPF6, LiCF3SO3, LiC4F9SO3, LiN(CF3S02)2, LiN(C2F5SO2)2, LiN(CF3S02)(COCF3), LiAsF6 및 이들의 조합으로 이루어진 군에서 선택되는 리튬염을 더 포함하는 전해질
- 제 3 항에 있어서,상기 전해질 중에 상기 리튬염의 농도가 0.01 내지 2.0 M 인 전해질
- 제 3 항에 있어서,상기 전해질 중에 상기 리튬염과 상기 리튬폴리설파이드의 농도비가 10 : 1 내지 100 : 1 인 전해질
- 제 1 항에 있어서,상기 전해질은 비수성 용매를 포함하는 것을 특징으로 하는 전해질
- 제 6 항에 있어서,상기 비수성 용매가 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트(DPC), 메틸 프로필카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸카보네이트(MEC), 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 부틸렌카보네이트(BC), 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 1,1-디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone), 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 폴리에틸렌 글라임디메틸 에테르, 테트라히드로퓨란, 시클로헥사논, R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 로 표시되는 니트릴류디메틸포름아미드, 1,3-디옥솔란, 디에틸렌글리콜디메틸 에테르, 트리에틸렌글리콜디메틸 에테르, 테트라에틸렌글리콜디메틸 에테르, 폴리에틸렌글리콜디메틸 에테르, 디프로필렌글리콜디메틸 에테르, 디옥솔란, 설포란(sulfolane) 및 이들의 조합으로 이루어진 군에서 선택되는 것을 특징으로 하는 전해질
- 제 6 항에 있어서,상기 비수성 용매가 1,3-디옥솔란, 술포란 및 테트라에틸렌글리콜디메틸 에테르로 이루어진 그룹에서 선택되는 하나 이상인 것을 특징으로 하는 전해질
- 제 1 항에 있어서,상기 전해질은 고분자 전해질인 것을 특징으로 하는 고분자 전해질
- 제 9 항에 있어서,상기 고분자 전해질은 고분자와 리튬염의 복합체에 필러 및 Li2S 가 분산되어 있는 것을 특징으로 하는 고분자 전해질
- 제 10 항에 있어서,상기 고분자는 폴리에틸렌 옥사이드(PEO), 폴리프로필렌 옥사이드(PPO), 폴리아크릴로니트릴(PAN), 폴리비닐리덴 플루오라이드(PVDF), 폴리메타크릴레이트(PMA), 폴리메틸메타크릴레이트(PMMA) 및 이들의 조합으로 이루어진 군에서 선택되는 것인 고분자 전해질
- 제 10 항에 있어서,상기 고분자 전해질에 분산되는 리튬염은 LiCF3SO3, LiPF6, LiClO4, LiBOB, LiTFSI 및 이들의 조합으로 이루어진 군에서 선택되는 것인 고분자 전해질
- 제 10 항에 있어서,상기 필러는 ZrO2, Al2O3, SiO2 및 이들의 조합으로 이루어진 군에서 선택되는 것인 고분자 전해질
- 제 10 항에 있어서,상기 필러의 평균 크기는 10 nm 내지 20 nm 인 고분자 전해질
- 제 10 항에 있어서,상기 고분자 100 중량부에 대하여 상기 Li2S 는 1 내지 10 중량부의 비율로 포함되는 것인 고분자 전해질
- (1)리튬염, 고분자, 필러 및 Li2S 를 혼합하는 단계;(2)상기 혼합물을 핫프레스 하여 고분자 매트릭스를 형성하는 단계; 및(3)상기 고분자 매트릭스를 리튬염과 하기 화학식 1로 표시되는 리튬폴리설파이드를 포함한 용매에 침지하는 단계;를 포함하는 제 9 항에 의한 고분자 전해질의 제조 방법[화학식1] LixSy (1≤x≤2, 1≤y≤10)
- 제 16 항에 있어서,상기 혼합물을 핫프레스 하여 고분자 매트릭스를 형성하는 단계는80 ℃ 내지 90 ℃ 에서 0.2 톤 내지 1 톤 의 압력으로 15 분 내지 20 분간 1차 프레스 하는 단계; 및80 ℃ 내지 90 ℃ 에서 4 톤 내지 5 톤 의 압력으로 60 분 내지 90 분간 2차 프레스 하는 단계를 포함하는 고분자 전해질의 제조 방법
- 제 16 항에 있어서,상기 (3)단계의 침지 공정은 2시간 이상 수행하는 것인 고분자 전해질의 제조 방법
- 전기 활성 황-함유 물질을 포함하는 양극;리튬을 포함하는 음극; 및제 1 항에 의한 전해질을 포함하는 전기 화학 소자
- 제 19 항에 있어서,상기 전기 화학 소자는 리튬 황 전지인 전기 화학 소자
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120099718 | 2012-09-10 | ||
KR10-2012-0099718 | 2012-09-10 | ||
KR10-2013-0108319 | 2013-09-10 | ||
KR20130108319A KR101511206B1 (ko) | 2012-09-10 | 2013-09-10 | 리튬 황 전지 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014038919A1 true WO2014038919A1 (ko) | 2014-03-13 |
Family
ID=50237434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/008168 WO2014038919A1 (ko) | 2012-09-10 | 2013-09-10 | 리튬 황 전지용 전해질 및 이를 포함하는 리튬 황 전지 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014038919A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005190695A (ja) * | 2003-12-24 | 2005-07-14 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2005251473A (ja) * | 2004-03-02 | 2005-09-15 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
KR20090037932A (ko) * | 2006-08-10 | 2009-04-16 | 옥시스 에너지 리미티드 | 금속 리튬 전극을 구비한 전지 및 그러한 전지용 전해질 |
KR101107731B1 (ko) * | 2009-04-08 | 2012-01-20 | 한양대학교 산학협력단 | 리튬-설퍼 고분자 전지 |
KR20120092918A (ko) * | 2011-02-14 | 2012-08-22 | 한양대학교 산학협력단 | 리튬 이차 전지용 고분자 복합 전해질 및 이를 포함하는 리튬 이차 전지 |
-
2013
- 2013-09-10 WO PCT/KR2013/008168 patent/WO2014038919A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005190695A (ja) * | 2003-12-24 | 2005-07-14 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2005251473A (ja) * | 2004-03-02 | 2005-09-15 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
KR20090037932A (ko) * | 2006-08-10 | 2009-04-16 | 옥시스 에너지 리미티드 | 금속 리튬 전극을 구비한 전지 및 그러한 전지용 전해질 |
KR101107731B1 (ko) * | 2009-04-08 | 2012-01-20 | 한양대학교 산학협력단 | 리튬-설퍼 고분자 전지 |
KR20120092918A (ko) * | 2011-02-14 | 2012-08-22 | 한양대학교 산학협력단 | 리튬 이차 전지용 고분자 복합 전해질 및 이를 포함하는 리튬 이차 전지 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019112390A1 (ko) | 리튬 이차전지용 음극 활물질 및 이의 제조방법 | |
WO2014014274A1 (ko) | 탄소-실리콘 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질 | |
WO2019088672A1 (ko) | 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자 | |
WO2015041450A1 (ko) | 다공성 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지 | |
KR20140034087A (ko) | 리튬 황 전지용 전해질 및 이를 포함하는 리튬 황 전지 | |
WO2019078544A1 (ko) | 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지 | |
WO2019078690A2 (ko) | 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 | |
WO2013191476A1 (ko) | 첨가제를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2015099243A1 (ko) | 붕소 화합물 함유 전극 활물질 및 이를 이용한 전기화학소자 | |
WO2018062882A1 (ko) | 리튬 이차전지 | |
WO2016032211A1 (ko) | 탄소-실리콘 복합 전극 물질 및 이의 제조 방법 | |
WO2016052996A1 (ko) | 비수 전해액 리튬 이차전지 | |
WO2019050216A2 (ko) | 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 | |
WO2022131873A1 (ko) | 리튬이온 이차전지용 금속계-탄소계 복합 음극재, 이의 제조방법 및 이를 포함하는 이차전지 | |
CN112652735A (zh) | 二次电池 | |
WO2022108267A1 (ko) | 음극 활물질 및 이를 포함하는 리튬 이차 전지 | |
WO2022080809A1 (ko) | 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지 | |
KR101201136B1 (ko) | 리튬 이차 전지용 양극 슬러리 조성물 및 이를 이용한 리튬이차 전지 | |
WO2014027841A1 (ko) | 리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지 | |
WO2019022358A1 (ko) | 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지 | |
WO2020226329A1 (ko) | 촉매점이 도입된 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지 | |
WO2023182612A1 (ko) | 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지 | |
WO2020085859A1 (ko) | 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지 | |
WO2017030416A1 (ko) | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2019198949A1 (ko) | 인화철의 제조방법, 인화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13834527 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13834527 Country of ref document: EP Kind code of ref document: A1 |