WO2014034926A1 - 光学レンズの製造方法 - Google Patents

光学レンズの製造方法 Download PDF

Info

Publication number
WO2014034926A1
WO2014034926A1 PCT/JP2013/073501 JP2013073501W WO2014034926A1 WO 2014034926 A1 WO2014034926 A1 WO 2014034926A1 JP 2013073501 W JP2013073501 W JP 2013073501W WO 2014034926 A1 WO2014034926 A1 WO 2014034926A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical lens
coating
coating liquid
application
Prior art date
Application number
PCT/JP2013/073501
Other languages
English (en)
French (fr)
Inventor
渡辺 誠
佐藤 大介
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2014533148A priority Critical patent/JPWO2014034926A1/ja
Priority to US14/423,930 priority patent/US20150198746A1/en
Priority to EP13832606.1A priority patent/EP2891905A4/en
Publication of WO2014034926A1 publication Critical patent/WO2014034926A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00923Applying coatings; tinting; colouring on lens surfaces for colouring or tinting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses

Definitions

  • the present invention relates to a method for manufacturing an optical lens in which a coating liquid is applied to an optical lens substrate while the optical lens substrate is rotated in the vertical direction.
  • a plastic spectacle lens which is one of optical lenses, is provided with performance required for spectacle lenses by applying various coating processes to the surface thereof.
  • Various coating processes include a primer process, a process for generating a hard coat film, and a process for generating an antireflection film.
  • the primer film produced by the primer treatment has a function of adding performance such as impact resistance, adhesion and crack mitigation using softness.
  • the hard coat film is required to have high hardness in order to improve the scratch resistance.
  • An antireflection film is provided on the outermost layer that is the outer surface of the hard coat film. By providing this antireflection film on the outermost layer, performances such as an antireflection function, durability, and scratch resistance are further added.
  • the primer layer at the time of primer treatment and the hard coat layer that becomes the hard coat film are formed by applying a coating solution to the lens surface.
  • methods for applying the coating liquid to the lens surface include a dipping method, a spin coating method, a spray coating method, and an ink jet method as described in Patent Document 1.
  • the application of the coating liquid by the ink jet method disclosed in Patent Document 1 is performed by rotating the spectacle lens substrate with the lens surface oriented in the vertical direction so that the film thickness is uniform over the entire lens surface. Is called.
  • the lens surface is divided into a plurality of concentric application areas, and the amount of application liquid is adjusted for each application area.
  • interference fringes may occur on the lens surface of the spectacle lens in a state where the various films described above are provided. It is known that the interference fringes are reduced by forming the hard coat film thick.
  • the inventor is considering to form a thicker hard coat film in order to further improve the abrasion resistance of the spectacle lens and to reduce the occurrence of the above-described interference fringes.
  • it is difficult to apply the coating liquid for forming the hard coat film on the lens surface so as to have a thickness of 5 ⁇ m or more.
  • the coating liquid can be applied so as to have a thickness of 10 ⁇ m or more.
  • the coating solution is applied so that the film thickness greatly exceeds 10 ⁇ m by the spray coating method or the ink jet method, a new problem has occurred that the film thickness distribution is not constant. It is considered that the reason why the film thickness distribution is not constant is that the lens surface is formed by a convex curved surface or a concave curved surface, and so-called “liquid dripping” occurs.
  • Liquid sag is a phenomenon in which the coating film gradually flows and gathers under the curvature surface due to its own weight (the outer peripheral portion on the convex curved surface and the center on the concave curved surface). Such dripping can be improved to some extent by reducing the fluidity of the coating solution. However, if the fluidity of the coating solution is low, the film surface is not formed smoothly, but is formed in a so-called “wound skin”.
  • An object of the present invention is to provide a manufacturing method of an optical lens that can apply a coating fluid having a normal fluidity thickly on a lens surface so as not to cause dripping.
  • the optical lens manufacturing method provides a first coating condition in which an angle with respect to the horizontal axis of the optical lens substrate is a predetermined angle with respect to the convex side.
  • a second coating condition the first lens is rotated within a predetermined rotational speed at which the coating liquid on the lens surface is held at the coating position with the axis as the center.
  • the optical lens manufacturing method includes each step of applying a coating liquid to the lens surface of the optical lens substrate, wherein the rotating step is performed at a predetermined angle.
  • the direction of gravity acting on the coating solution adhering to the optical lens substrate alternately changes between the lens center direction and the outer peripheral direction as the optical lens substrate rotates. Therefore, the coating liquid adhering to the rotating optical lens substrate does not flow in one direction even though it has fluidity. For this reason, the influence of gravity, which is the main factor of “liquid sag”, can be eliminated by the longitudinal rotation of the optical lens substrate, so that the coating liquid does not flow along the lens surface and “liquid sag” does not occur. Therefore, according to the present invention, it is possible to provide a method for manufacturing an optical lens that can apply a coating fluid having a normal fluidity thickly on a lens surface so as not to cause dripping.
  • FIG. 1 is a cross-sectional view of a spectacle lens substrate on which a hard coat film is formed by the spectacle lens manufacturing method according to the first embodiment.
  • FIG. 2 is a flowchart for explaining a method of manufacturing a spectacle lens according to the first embodiment.
  • FIG. 3 is a side view of the spectacle lens substrate tilted so that the convex curved surface is directed obliquely upward.
  • FIG. 4 is a side view of the spectacle lens substrate tilted so that the convex curved surface is directed obliquely downward.
  • FIG. 5 is a side view of the rotating device.
  • FIG. 6 is a side view of a coating apparatus and a rotating apparatus that perform the coating step.
  • FIG. 7 is a front view of a lens surface for explaining a plurality of application regions according to the second embodiment.
  • FIG. 8 is a flowchart for explaining a method of manufacturing a spectacle lens according to the second embodiment.
  • FIG. 9 is a side view of a spectacle lens substrate and a coating nozzle for explaining a coating direction according to the third embodiment.
  • FIG. 10 is a flowchart for explaining a spectacle lens manufacturing method according to the third embodiment.
  • FIG. 11 is a flowchart for explaining a spectacle lens manufacturing method according to the fourth embodiment.
  • FIG. 12 is a cross-sectional view of a curing apparatus that performs the curing step.
  • the spectacle lens manufacturing method according to this embodiment applies the coating liquid 3 to the lens surface 2 (convex curved surface 2a and concave curved surface 2b) by rotating the spectacle lens substrate 1 shown in FIG. 1 in the vertical direction. Is the method.
  • the method for manufacturing a spectacle lens according to this embodiment is a method for constituting the invention described in claim 1.
  • the coating solution 3 shown in FIG. 1 is drawn thicker for the sake of convenience.
  • the spectacle lens manufacturing method is performed by a preparation step S1 and a coating step S2.
  • Preparation step S1 is a step for satisfying the condition for applying the coating liquid 3 (coating liquid coating condition).
  • the coating liquid application condition includes a first step S1A for satisfying a first condition described later and a second step S1B for satisfying a second condition described later.
  • the first condition is satisfied when the angle of the axis C1 of the eyeglass lens substrate 1 with respect to the horizontal is within a predetermined angle range.
  • the predetermined angle range is a range between the angle ⁇ 1 shown in FIG. 3 and the angle ⁇ 2 shown in FIG.
  • the angle ⁇ 1 shown in FIG. 3 indicates that the spectacle lens substrate 1 is moved clockwise from the state in which the axis C1 is horizontal (in the direction in which the lens surface 2 including the convex curved surface 2a is directed upward), and the lens surface 2 Is the maximum tilt angle of the axis C1 when tilted so that the outer peripheral edge P of the lens surface 2 is located at the highest position H.
  • the angle ⁇ 2 shown in FIG. 4 indicates that the spectacle lens base material 1 is in the counterclockwise direction in the figure from the state where the axis is horizontal (in the direction in which the lens surface 2 including the convex curved surface 2a is directed downward), and the lens surface 2 Is the maximum tilt angle of the axis C1 when tilted so that the outer peripheral edge P of the lens surface 2 is located at the lowest position L.
  • the second condition is satisfied when the spectacle lens substrate 1 rotates at a predetermined rotation speed about the axis C1.
  • the substrate 1 can be held by a rotating device 11 as shown in FIG. .
  • the rotation device 11 includes a support 12, a rotation drive unit 14 that is rotatably supported by the support 12 via a horizontal support shaft 13, and a holder that is attached to the rotation shaft 15 of the rotation drive unit 14. 16 or the like.
  • the rotation drive unit 14 is inclined with respect to the support base 12 around the support shaft 13 so that the base material 1 is inclined at a desired angle.
  • the rotation drive unit 14 rotates the rotating shaft 15 at a predetermined constant rotation speed.
  • This rotation speed can be set to about 15 to 50 RPM, for example, corresponding to the fluidity of the coating liquid 3.
  • the rotational speed of the rotating shaft 15 is not limited to the said range.
  • the rotation speed is set to a speed at which the coating liquid 3 is not caused to flow toward the outer peripheral side of the lens surface 2 by centrifugal force.
  • the holder 16 is for holding the substrate 1. Although not shown in detail, the holder 16 sandwiches the outer peripheral surface of the base material 1 with a plurality of clamp members, and holds the base material 1 on the same axis as the rotary shaft 15.
  • Application step S2 is a step of applying the application liquid 3 to the lens surface 2 of the substrate 1.
  • the coating liquid 3 is applied to the substrate 1 by a coating apparatus 21 shown in FIG.
  • the coating device 21 includes a support member 22 and a coating unit 24 that is rotatably supported by the support member 22 via a horizontal support shaft 23.
  • the coating unit 24 supports the coating nozzle 26 via the parallel movement mechanism 25.
  • the coating nozzle 26 is for ejecting the coating liquid 3 and is moved in the radial direction of the substrate 1 by being driven by the parallel movement mechanism 25.
  • the ejection direction of the coating liquid 3 can be appropriately changed by the coating unit 24 being inclined with respect to the support member 22. That is, when the axis C1 of the substrate 1 is not horizontal but is inclined with respect to the horizontal, the coating unit 24 is applied to the support member 22 so that the coating liquid 3 is ejected with reference to the axis C1 of the substrate 1. It is inclined with respect to.
  • the coating liquid 3 is a general one having fluidity such as a hard coat film forming coating liquid or a light control film forming coating liquid, and is supplied to the coating nozzle 26 from a supply device (not shown).
  • the coating nozzle 26 according to this embodiment ejects the coating liquid 3 as fine droplets by a spray coating method so that the ejection amount becomes constant.
  • the range in which the coating liquid 3 is applied by the coating nozzle 26 is narrower than that of the lens surface 2. For this reason, the application nozzle 26 is moved in the radial direction of the substrate 1 by the parallel movement mechanism 25 in a state where the application liquid 2 is sprayed onto the lens surface 2.
  • the coating liquid 3 is applied to the entire area of the lens surface 2 by moving the range in which the coating liquid 3 is applied by the coating nozzle 26 in the radial direction of the base 1 while the base 1 is rotating. Can do.
  • the application nozzle 26 is not illustrated, what the liquid coating liquid 3 ejects can be used.
  • the parallel moving mechanism 25 is configured to be able to change the moving speed according to the position of the application nozzle 26.
  • the moving speed of the application nozzle 26 is slower than when the application nozzle 26 faces the center portion of the substrate 1.
  • the preparation step S1 is carried out.
  • the base material 1 is mounted on the rotating device 11, the base material 1 is set up so that the axis C1 has a predetermined inclination angle, and the base material 1 is rotated at a predetermined rotation speed.
  • the base material 1 is erected so that the axis C ⁇ b> 1 is horizontal and the lens surface 2 extends in the vertical direction.
  • the substrate 1 is rotated at a predetermined rotation speed by driving by the rotating device 11.
  • coating step S2 is performed.
  • the coating nozzle 26 is opposed to the convex curved surface 2a or the concave curved surface 2b of the lens surface 2 while the base material 1 is rotating in the vertical direction as described above. This is carried out by ejecting the coating liquid 3 from the coating nozzle 26.
  • the coating liquid 3 in the form of droplets is ejected from the coating nozzle 26 in parallel with the axis C1 of the substrate 1 and sprayed onto the lens surface 2.
  • the application nozzle 26 according to this embodiment is translated in the radial direction of the substrate 1 from the outer peripheral side of the lens surface 2 to the central side by driving by the parallel movement mechanism 25.
  • the coating liquid 3 is sequentially applied to the rotating substrate 1 from the outer peripheral portion side toward the central portion side.
  • the coating liquid 3 after coating rotates integrally with the substrate 1.
  • the direction of gravity acting on the coating liquid 3 adhered to the base material 1 is alternately changed between the lens center direction and the outer peripheral direction as the base material 1 rotates. Since the direction in which the gravity acts in this way is not constant, the coating liquid 3 does not flow in one direction, but remains at the attachment position even though it has fluidity. For this reason, the influence of gravity, which is the main factor of “liquid dripping”, can be eliminated by the longitudinal rotation of the spectacle lens substrate 1, so that the coating liquid 3 flows along the lens surface 2 and “liquid dripping” occurs. Absent.
  • the coating fluid 3 having normal fluidity can be thickly applied to the lens surface 2 so as not to cause dripping.
  • a layer of the coating liquid 3 having a thickness of at least 10 ⁇ m can be formed on the lens surface 2 so as to have a uniform thickness over the entire area of the lens surface 2 in the coating step S2.
  • a coating liquid for forming a hard coat film is used as the coating liquid 3
  • a hard coat film is formed on the substrate 1 with a film thickness of at least 10 ⁇ m.
  • a spectacle lens having such a hard coat film has significantly higher scratch resistance than conventional spectacle lenses, and also reduces interference fringes.
  • the present invention is not limited to such a limitation. That is, even if the application nozzle 26 moves from the lower end side of the lens surface 2 to the upper side (center side) or the application nozzle 26 moves in the horizontal direction, the same effect can be obtained.
  • the coating step S2 is completed by continuing the rotation of the substrate 1 for a predetermined time while maintaining the state where the first and second conditions are satisfied even after the coating of the coating liquid 3 is completed.
  • the time for which the rotation of the base material 1 is continued is a time for which the fluidity of the coating liquid 3 is lost to such an extent that the coating liquid 3 applied to the base material 1 does not move on the base material 1.
  • the coating liquid 3 containing a volatile solvent is one in which a part of the solvent volatilizes after coating, whereby the viscosity increases and the fluidity decreases.
  • the ultraviolet curable coating liquid 3 is one in which the viscosity increases and the fluidity decreases when it is exposed to ultraviolet rays included in the illumination of the coating environment.
  • the rotation of the base material 1 stops after the fluidity of the coating liquid 3 is lowered so that the coating liquid 3 does not move on the base material 1. Therefore, the next step, for example, a curing step for curing the coating solution 3 is performed in a state where the thickly applied coating solution 3 is held on the substrate 1 and so-called “liquid dripping” does not occur. Can do.
  • the coating step S2 is completed by stopping the rotation of the base material 1 after the fluidity of the coating liquid 3 has decreased.
  • coating step S2 can be complete
  • FIG. the coating step S2 ends with the substrate 1 rotating, and the next step (for example, a curing step) is performed as it is.
  • This method can be realized, for example, by moving the rotating device 11 between the coating device 21 and a curing device (not shown) provided with a heater for heating the coating liquid 3 or an ultraviolet lamp. That is, the substrate 1 is transferred from the coating device 21 to the curing device while being rotated by driving by the rotating device 11.
  • FIGS. 7 and 8 the application of the coating liquid can be performed by changing the setting for each of a plurality of application regions.
  • the same or equivalent members as those described with reference to FIGS. 1 to 6 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
  • FIG. 7 is a front view of a lens surface for explaining another embodiment of the coating step S2
  • FIG. 8 is a flowchart for explaining a method for manufacturing a spectacle lens according to this embodiment.
  • the method for manufacturing a spectacle lens according to this embodiment is a method for constituting the invention according to claim 2.
  • the spectacle lens manufacturing method is implemented by a preparation step S1 and an application step S2 having first to fourth divided application steps S2A to S2D, which will be described later, for example, as shown in FIG.
  • the application step S2 is performed by changing the application parameters for each of the plurality of application regions #A to #D shown in FIG.
  • the coating liquid 3 is applied by the same method as in the first embodiment. That is, the droplet of the coating liquid 3 is sprayed from the coating nozzle 26 to a part of the target application position on the lens surface 2 in a predetermined amount, and the target application position is moved in the radial direction of the lens surface 2. .
  • the application nozzle 26 according to this embodiment translates from the outer peripheral side of the lens surface 2 (convex curved surface 2a or concave curved surface 2b) toward the center.
  • the parameter that is changed with respect to the coating is the moving speed of the coating nozzle 26.
  • This moving speed is set for each of the plurality of application areas #A to #D shown in FIG.
  • the plurality of application areas #A to #D shown in FIG. 7 are obtained by dividing the radius r from the center O of the lens surface 2 toward the outer periphery at regular intervals and dividing the lens surface 2 by circles passing through the dividing points. Is formed.
  • the center of each circle passing through each division point coincides with the center of the lens surface 2. That is, each of the application areas #A to #D is formed by dividing the lens surface 2 into a plurality of concentric circles.
  • the moving speed of the coating nozzle 26 is set based on the size of the area of each coating region #A to #D. This moving speed becomes slower as the area becomes larger. That is, the moving speed becomes the slowest when the coating liquid 3 is applied to the first application region #A including the outer peripheral edge of the lens surface 2, and the second application region #B located radially inside from here.
  • the moving speed is increased. For this reason, the moving speed is faster when the third application area #C is applied than when the second application area #B is applied, and the fourth area than when the third area #C is applied. It is faster when applying D.
  • the coating step S2 is performed by first to fourth divided coating steps S2A to S2D as shown in FIG.
  • the first divided application step S2A is a step of applying the application liquid 3 to the first application region #A located on the outermost periphery side among the first to fourth application regions #A to #D.
  • the moving speed of the application nozzle 26 at this time is set to a speed (slowest speed) corresponding to the area of the first application region #A.
  • the application liquid 3 is applied to the second application region #B in the second divided application step S2B.
  • the process proceeds from the third division application step S2C to the fourth division application step S2D, and also to the third and fourth application regions #C and #D.
  • the coating nozzle 26 moves at a moving speed corresponding to the area, and the coating liquid 3 is applied.
  • the application of the application liquid 3 in the application step S2 is performed so that the amount of the application liquid 3 deposited per unit area becomes a predetermined amount over the entire area of the lens surface 2. Therefore, the coating liquid 3 can be applied so that the film thickness is uniform over the entire lens surface 2.
  • the amount of the coating liquid 3 can be controlled based on the area of the lens surface 2, the control of the amount of adhesion is simplified.
  • the lens surface 2 is divided into a plurality of application areas #A to #D, the radius of the lens surface 2 is divided at equal intervals, and the lens surface 2 is divided by a circle passing through the dividing point. Therefore, the areas of the application areas #A to #D can be easily calculated.
  • the “parameter to be changed regarding application” described above is not limited to the movement speed of the application nozzle 26, and may be, for example, the ejection amount of the coating liquid 3 ejected from the application nozzle 26. Both are good.
  • the movement speed of the coating nozzle 26 can be kept constant, and the amount of the coating liquid 3 to be ejected can be maximized when the first application region #A is applied. In this case, when the coating liquid 3 is applied to the second to fourth coating areas #B to #D, it is desirable to reduce the ejection amount of the coating liquid 3 in this order.
  • the direction in which the coating liquid is applied in the coating step can be a direction inclined with respect to the axis of the substrate.
  • the base material 1 shown in FIG. 9 has a relatively large curvature of the lens surface 2 (convex curved surface 2a).
  • the coating liquid 3 is sprayed onto the lens surface 2 having such a large curvature in parallel with the axial direction of the substrate 1, the coating liquid 3 is formed at the periphery of the lens surface 2 as shown by a two-dot chain line in FIG.
  • the droplets adhere to the lens surface 2 while flowing toward the outer peripheral edge. For this reason, the thickness of the coating liquid 3 applied to the central portion of the lens surface 2 becomes thinner than the thickness of the coating liquid 3 applied to the outer peripheral portion.
  • the coating solution 3 is applied to the lens surface 2 from an oblique direction so that the coating solution 3 flows toward the center of the lens surface 2 and the above-described problem is solved.
  • the application direction of the application liquid 3 according to this embodiment is the target application position from the side opposite to the axis C1 of the substrate 1 with respect to the normal L1 passing through the target application position T of the lens surface 2. It is the direction that points to T.
  • the center line C2 of the coating nozzle 26 according to this embodiment is a normal line L2 at the outer peripheral edge of the lens surface 2 in a virtual plane including the axis C1 and the normal line L1 of the substrate 1. It is almost parallel to.
  • the application step S2 is performed by an angle setting step S2E and first to fourth divided application steps S2A to S2D, as shown in the flowchart of FIG.
  • the first to fourth division coating steps S2A to S2D are the same as the steps described in the second embodiment.
  • the angle setting step S2E the application direction of the application nozzle 26 is set to be inclined with respect to the lens surface 2 as described above.
  • the angle setting step S2E the application nozzle 26 is directed to the target application position T from the side opposite to the axis C1 of the substrate 1 with respect to the normal L1 passing through the target application position T of the lens surface 2. become.
  • the application liquid 3 is applied over the entire lens surface 2 in the first to fourth divided application steps S2A to S2D.
  • the coating liquid 3 is applied obliquely so as to go to the center of the lens surface 2, so that the coating liquid 3 applied to the lens surface 2 is the lens surface 2. Can be prevented from flowing to the outer peripheral side of the.
  • the coating liquid 3 is not applied relatively thickly to the outer peripheral portion of the lens surface 2 due to liquid dripping, so that the film thickness distribution on the lens surface 2 is made uniform.
  • the spraying direction of the coating nozzle 26 may be changed corresponding to the curvature of the target coating position T during parallel movement.
  • coating can be performed so that the amount of the coating liquid 3 flowing toward the center of the lens surface 2 is constant, so that the film thickness distribution is made uniform with high accuracy.
  • the optical lens manufacturing method according to the present invention can perform the curing step after the coating liquid is applied to the lens surface.
  • members identical or equivalent to those described with reference to FIGS. 1 to 10 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
  • This liquid sag occurs immediately after application of the coating liquid 3 as long as the coating liquid 3 has fluidity, and continues until the drying or curing of the film proceeds and the fluidity disappears.
  • the coating liquid 3 is thermosetting, the viscosity decreases when the temperature of the liquid film rises during the curing process, so that dripping occurs significantly. For this reason, even if it can apply
  • the curing step S3 is performed under the same conditions as the coating step S2. have.
  • the curing step S3 is performed by a first step S3A that satisfies the first condition, a second step S3B that satisfies the second condition, and a heating step S3C.
  • the heating step S3C is performed in a state where the first and second steps are performed, that is, in a state where the substrate 1 is tilted so that the angle of the axis C1 with respect to the horizontal is included in a predetermined angle range (15 to 15).
  • the coating liquid 3 is heated together with the base material 1 while being longitudinally rotated at about 50 RPM). The heating is performed until at least the fluidity of the coating liquid 3 is lost.
  • the curing step S3 can be performed using, for example, a curing device 31 shown in FIG.
  • the curing device 31 includes a curing container 32 and a rolling device 33 accommodated in the curing container 32.
  • a curing container 32 when the coating liquid 3 is thermosetting, a container having a heater 34 is used.
  • the coating liquid 3 when the coating liquid 3 is an ultraviolet curing type, the curing container 32 having an ultraviolet lamp (not shown) is used.
  • the rolling device 33 is for rotating the base material 1 together with the holder 35.
  • the holder 35 is formed in a cylindrical shape that can accommodate the base material 1, sandwiches the outer peripheral surface of the base material 1 with a plurality of clamp members 36, and holds the base material 1 on the same axis.
  • the holder 35 is placed on the two rollers 37 and 37 of the rolling device 33 in a state where the holder is set up so that the axis is oriented in the horizontal direction.
  • rollers 37 are driven by a motor (not shown) and rotate in the same direction at a predetermined rotational speed. By rotating these rollers 37, the substrate 1 rotates with the holder 35. That is, by using the curing device 31, the base material 1 can be heated while being vertically rotated in the curing container 32 to cure the coating liquid 3.
  • the heating step S3C is performed in a state where the first condition and the second condition when the coating step S2 is performed.
  • the coating liquid 3 can be cured in a state where it does not flow in one direction due to gravity. Therefore, according to this embodiment, since the coating solution 3 is cured while the coating solution 3 is applied so that the film thickness is uniform on the lens surface 2, a high quality film is formed.
  • the coating liquid 3 is applied to one of the convex curved surface 2a and the concave curved surface 2b of the lens surface 2 and then the other curved surface 2b.
  • the coating liquid 3 is applied to the lens surface 2, and then the coating liquid 3 applied to both lens surfaces 2 and 2 is cured to such an extent that fluidity is lost.
  • the coating liquid 3 applied to both the convex curved surface 2a and the concave curved surface 2b can be efficiently cured.
  • the manufacturing method of the optical lens according to the present invention includes the application of the coating liquid 3 to the convex curved surface 2a, the coating of the coating liquid 3 to the concave curved surface 2b, and the coating liquid 3 applied to the convex curved surface 2a and the concave curved surface 2b. It can be applied when curing.
  • the coating and curing of the coating liquid 3 on both lens surfaces 2 can be performed for each lens surface 2.
  • the coating liquid 3 is applied to any one of the convex curved surface 2a and the concave curved surface 2b of the lens surface 2, and the coating liquid 3 is cured to such an extent that the fluidity is lost. Thereafter, the coating liquid 3 is applied to the other lens surface 2 and the coating liquid 3 is cured.
  • the present invention can be applied when the coating liquid 3 is applied to each lens surface 2 and the coating liquid 3 applied to both lens surfaces 2 is cured.
  • the method is not limited to the method described in the above embodiment, and can be changed as appropriate.
  • a film such as a hard coat film or a light control film is formed on the spectacle lens substrate 1 has been described.
  • the present invention is applicable to other optical lenses different from the spectacle lens. Can also be applied.
  • Example 1 Above 1.
  • the coating solution prepared in (1) was applied to the surface of the plastic lens substrate using an ultrasonic atomizer manufactured by Sono-Tek.
  • the lens was set in a lens holder and rotated at a rotation speed of 50 rpm so that the axis of the lens was horizontal. While rotating the lens, the coating liquid 3 was sprayed onto the concave and convex surfaces of the lens from the spray nozzle disposed on the optical axis of the lens.
  • the spray nozzle was moved at a constant speed of 30 mm / min from the outer periphery of the lens toward the center, and sprayed at a constant amount of 1.0 ml / min.
  • the lens surface was heated to 50 ° C. with a panel heater disposed on both sides of the lens while maintaining the lens angle and rotation speed, and heated for 2 minutes until the coating solution lost its fluidity.
  • the lens was removed from the holder, the appearance of the coating film of the lens obtained by heating and curing in a thermosetting furnace at 100 ° C. for 1 hour was examined, and the film thicknesses at the center and outer periphery of the lens were measured.
  • the film thickness measurement was performed using a film thickness measurement system manufactured by Opto Sirius Co., Ltd.
  • Example 2 When moving the spray nozzle from the outer peripheral part of the lens to the center part, the area was calculated for each area concentrically divided at a pitch of 5 mm, and coating was performed in the same manner as in Example 1 except that the moving speed was adjusted according to the area. .
  • Example 3 When applying the convex surface side of the lens, it was applied in the same manner as in Example 2 except that the angle of the nozzle was inclined 30 degrees to the outer peripheral side with respect to the axis.
  • SYMBOLS 1 Base material for spectacle lenses, 2 ... Lens surface, 2a ... Convex curved surface, 2b ... Concave curved surface, (theta) 1, (theta) 2 ... Angle, H ... Position to become high, P ... Outer periphery, T ... Target application position, L1 ... Normal

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Eyeglasses (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 光学レンズ用基材の塗布液塗布条件が満たされる準備ステップ(S1)と、光学レンズ用基材のレンズ面に塗布液が塗布される塗布ステップ(S2)とを有する。凸面側を基準とした塗布液塗布条件は、第1の条件と第2の条件とがある。第1の条件は、光学レンズ用基材1の軸線の水平に対する角度が予め定めた角度の範囲内に入ることが条件である。第2の条件は、光学レンズ用基材が軸線を中心にして予め定めた回転速度で回転することが条件である。前記予め定めた角度の範囲は、レンズ面の最も高くなる位置にレンズ面の外周縁が位置するような軸線の最大傾斜角度と、レンズ面の最も低くなる位置にレンズ面の外周縁が位置するような軸線の最大傾斜角度との間の角度範囲である。予め定めた回転速度はレンズ面に塗布された塗布液が塗布位置に保持される回転速度である。

Description

光学レンズの製造方法
 本発明は、光学レンズ用基材を縦方向に回転させながら光学レンズ用基材に塗布液を塗布する光学レンズの製造方法に関する。
 光学レンズの一つであるプラスチック製の眼鏡レンズは、その表面に各種のコーティング処理を施すことによって、眼鏡レンズに求められる性能が付加されている。各種のコーティング処理とは、プライマー処理や、ハードコート膜を生成する処理、反射防止膜を生成する処理などがある。
 プライマー処理によって生成されるプライマー膜は、軟度を利用して耐衝撃性や密着性、クラック緩和などの性能を付加する機能を有している。ハードコート膜には、耐擦傷性の向上のために高い硬度が求められる。このハードコート膜の外面となる最表層には、反射防止膜が設けられる。この反射防止膜が最表層に設けられることによって、反射防止機能、耐久性、耐擦傷性等の性能がさらに付加される。
 プライマー処理時のプライマー層や、ハードコート膜になるハードコート層は、塗布液をレンズ面に塗布することによって形成されている。レンズ面に塗布液を塗布する方法としては、ディッピング方式、スピンコート方式、スプレーコート方式、特許文献1に記載されているようなインクジェット方式などがある。この特許文献1に開示されたインクジェット方式による塗布液の塗布は、眼鏡用レンズ基材をレンズ面が上下方向を指向する状態で回転させ、レンズ面の全域にわたって膜厚が均一になるように行われる。
 膜厚を均一にするにあたっては、レンズ面を同心円状の複数の塗布領域に分割し、塗布領域毎に塗布液量を調整して行われている。
 ところで、眼鏡レンズのレンズ面には、上述した各種の膜が設けられた状態において干渉縞が生じることがある。この干渉縞は、ハードコート膜の膜厚を厚く形成することによって低減されることが知られている。
特開2004-122115号公報
 発明者は、眼鏡レンズの耐擦傷性をさらに向上させたり、上述した干渉縞の発生を低減するために、ハードコート膜を更に厚く形成することを考えている。しかし、従来のディッピング方式やスピンコート方式では、ハードコート膜形成用の塗布液をレンズ面に5μm以上の厚みとなるように塗布することは困難である。
 一方、スプレーコート方式やインクジェット方式によれば、厚みが10μm以上となるように塗布液を塗布することはできる。ところが、スプレーコート方式やインクジェット方式で膜厚が10μmを大きく上回るように塗布液を塗布すると、膜厚分布が一定にならないという新たな不具合が生じた。膜厚分布が一定にならない原因は、レンズ面が凸曲面や凹曲面によって形成されており、いわゆる「液ダレ」が生じるからであると考えられる。
 液ダレは、塗膜が自重により徐々に曲率面の下側(凸曲面では外周部、凹曲面では中心)に流れて集まる現象である。このような液ダレは、塗布液の流動性を少なくすることによってある程度は改善することができる。しかし、塗布液の流動性が少ないと、膜表面が平滑に形成されずにいわゆる「ゆず肌状」に形成されてしまう。
 本発明の目的は、通常の流動性を有する塗布液を液ダレが生じることがないようにレンズ面に厚く塗布できる光学レンズの製造方法を提供することにある。
 このような目的を達成するために、本発明に係る光学レンズの製造方法は、第1の塗布条件として、光学レンズ用基材の軸線の水平に対する角度を凸面側を基準として予め定められた角度範囲内に設定し、第2の塗布条件として、光学レンズ用基材を軸線を中心にしてそのレンズ面上の塗布液が塗布位置に保持される予め定められた回転速度で回転させ、第1および第2の塗布条件が満たされたときに、光学レンズ用基材のレンズ面に塗布液を塗布する各ステップを備える光学レンズの製造方法であって、回転させるステップは、予め定められた角度の範囲として、光学レンズ基材のレンズ面の最も高くなる位置にレンズ面の外周縁が位置する軸線の最大傾斜角度と、前記光学レンズ基材のレンズ面の最も低くなる位置にレンズ面の外周縁が位置する軸線の最大傾斜角度との範囲で光学レンズ基材の回転を行うステップを備える。
 本発明によれば、光学レンズ用基材に付着した塗布液に作用する重力の方向は、光学レンズ基材が回転することによって、レンズ中心方向と外周方向とに交互に変わる。したがって、回転する光学レンズ用基材上に付着した塗布液は、流動性を有しているにもかかわらず、一方向に流れることはない。このため、「液ダレ」の主要因である重力の影響を光学レンズ基材の縦回転により解消できるため、塗布液がレンズ面に沿って流れて「液ダレ」が生じることはない。したがって、本発明によれば、通常の流動性を有する塗布液を液ダレが生じることがないようにレンズ面に厚く塗布可能な光学レンズの製造方法を提供することができる。
図1は、第1の実施の形態による眼鏡レンズの製造方法によってハードコート膜が形成された眼鏡レンズ用基材の断面図である。 図2は、第1の実施の形態による眼鏡レンズの製造方法を説明するためのフローチャートである。 図3は、凸曲面が斜め上を指向するように傾斜した眼鏡レンズ用基材の側面図である。 図4は、凸曲面が斜め下を指向するように傾斜した眼鏡レンズ用基材の側面図である。 図5は、回転装置の側面図である。 図6は、塗布ステップを実施する塗布装置と回転装置の側面図である。 図7は、第2の実施の形態による複数の塗布領域を説明するためのレンズ面の正面図である。 図8は、第2の実施の形態による眼鏡レンズの製造方法を説明するためのフローチャートである。 図9は、第3の実施の形態による塗布方向を説明するための眼鏡レンズ用基材と塗布ノズルの側面図である。 図10は、第3の実施の形態による眼鏡レンズの製造方法を説明するためのフローチャートである。 図11は、第4の実施の形態による眼鏡レンズの製造方法を説明するためのフローチャートである。 図12は、硬化ステップを実施する硬化装置の断面図である。
(第1の実施の形態)
 以下、本発明に係る光学レンズの製造方法の一実施の形態を図1~図6によって詳細に説明する。ここでは、眼鏡レンズに本発明を適用する場合の形態について説明する。
 この実施の形態による眼鏡レンズの製造方法は、図1に示す眼鏡レンズ用基材1を縦方向に回転させてレンズ面2(凸曲面2aおよび凹曲面2b)に塗布液3を塗布するための方法である。この実施の形態による眼鏡レンズの製造方法は、請求項1に記載した発明を構成する方法である。図1に示す塗布液3は、便宜上、実際より厚く描いてある。この眼鏡レンズの製造方法は、図2のフローチャートに示すように、準備ステップS1と、塗布ステップS2とによって実施する。
 準備ステップS1は、塗布液3を塗布するための条件(塗布液塗布条件)が満たされるようにするためのステップである。塗布液塗布条件は、後述する第1の条件が満たされるようにするための第1ステップS1Aと、後述する第2の条件が満たされるようにするための第2ステップS1Bとからなる。
 第1の条件は、図3および図4に示すように、眼鏡レンズ用基材1の軸線C1の水平に対する角度が予め定めた角度の範囲内に入ることにより満たされる。予め定めた角度の範囲は、図3に示す角度θ1と、図4に示す角度θ2との間の範囲である。図3に示す角度θ1は、眼鏡レンズ用基材1を軸線C1が水平となる状態から同図において時計方向へ(凸曲面2aからなるレンズ面2が上方を指向する方向へ)、レンズ面2の最も高くなる位置Hにレンズ面2の外周縁Pが位置する状態が保たれるように傾斜させたときの軸線C1の最大傾斜角度である。
 図4に示す角度θ2は、眼鏡レンズ用基材1を軸線が水平となる状態から同図において反時計方向へ(凸曲面2aからなるレンズ面2が下方を指向する方向へ)、レンズ面2の最も低くなる位置Lにレンズ面2の外周縁Pが位置する状態が保たれるように傾斜させたときの軸線C1の最大傾斜角度である。
 第2の条件は、眼鏡レンズ用基材1が軸線C1を中心にして予め定めた回転速度で回転することにより満たされる。眼鏡レンズ用基材1を第1の条件が満たされる状態で所定の回転速度で回転させるためには、図5に示すように、基材1を回転装置11に保持させて実施することができる。回転装置11は、支持台12と、この支持台12に水平な支軸13を介して回動可能に支持された回転駆動ユニット14と、この回転駆動ユニット14の回転軸15に取付けられたホルダー16などによって構成されている。
 回転駆動ユニット14は、基材1が所望の角度で傾斜するように、支軸13を中心にして支持台12に対して傾斜させられる。また、この回転駆動ユニット14は、回転軸15を予め定めた一定の回転速度で回転させるものである。この回転速度は、塗布液3の流動性に対応させて例えば15~50RPM程度とすることができる。なお、回転軸15の回転速度は上記範囲に限定されない。塗布液3の流動性が高い場合は、回転速度が相対的に遅く設定される。また、この回転速度は、塗布液3が遠心力でレンズ面2の外周側へ流されるようなことがない速度に設定される。ホルダー16は、基材1を保持するためのものである。このホルダー16は、詳細には図示してはいないが、基材1の外周面を複数のクランプ部材で挟み、この基材1を回転軸15と同一軸線上に保持する。
 塗布ステップS2は、基材1のレンズ面2に塗布液3を塗布するステップである。塗布液3は、図6に示す塗布装置21によって基材1に塗布される。塗布装置21は、支持部材22と、この支持部材22に水平な支軸23を介して回動可能に支持された塗布ユニット24とを備えている。塗布ユニット24は、平行移動機構25を介して塗布ノズル26を支持している。塗布ノズル26は、塗布液3を噴出させるためのもので、平行移動機構25による駆動によって基材1の径方向に移動させられる。
 塗布液3の噴出方向は、塗布ユニット24が支持部材22に対して傾斜することによって、適宜変更することが可能である。すなわち、基材1の軸線C1が水平ではなく、水平に対して傾斜している場合は、塗布液3が基材1の軸線C1を基準にして噴出するように塗布ユニット24が支持部材22に対して傾斜させられる。
 塗布液3は、ハードコート膜形成用塗布液や、調光膜形成用塗布液などの流動性を有する一般的なもので、図示していない供給装置から塗布ノズル26に供給される。
この実施の形態による塗布ノズル26は、塗布液3を微細な液滴としてスプレーコート方式で噴出量が一定となるように噴出させるものである。この塗布ノズル26によって塗布液3が塗布される範囲は、レンズ面2より狭い。このため、塗布ノズル26は、塗布液2がレンズ面2に吹き付けられている状態で平行移動機構25によって基材1の径方向に移動させられる。
 すなわち、基材1が回転している状態で塗布ノズル26によって塗布液3が塗布される範囲が基材1の径方向に移動することによって、レンズ面2の全域に塗布液3を塗布することができる。なお、塗布ノズル26は、図示してはいないが、液状の塗布液3が噴出するものを用いることができる。
 平行移動機構25は、塗布ノズル26の位置に応じて移動速度を変えることができるように構成されている。塗布ノズル26が基材1の外周部と対向する場合は、塗布ノズル26が基材1の中心部と対向している場合と較べて塗布ノズル26の移動速度が遅くなる。
 この実施の形態による眼鏡レンズの製造方法を実施するにあたっては、先ず、準備ステップS1が実施される。準備ステップS1においては、基材1が回転装置11に装着され、軸線C1が所定の傾斜角度となるように基材1が立てられるとともに、基材1が所定の回転速度で回転させられる。基材1は、例えば、図5に示すように、軸線C1が水平となってレンズ面2が上下方向に延びるように立てられる。そして、基材1は、回転装置11による駆動によって所定の回転速度で回転させられる。
 次に、塗布ステップS2が実施される。塗布ステップS2においては、図6に示すように、基材1が上述したように縦方向に回転している状態で塗布ノズル26をレンズ面2の凸曲面2aまたは凹曲面2bと対向させ、この塗布ノズル26から塗布液3を噴出させて実施される。この実施の形態においては、液滴となった塗布液3が塗布ノズル26から基材1の軸線C1と平行に噴出し、レンズ面2に吹き付けられる。また、この実施の形態による塗布ノズル26は、平行移動機構25による駆動によって、レンズ面2の外周部側から中心部側へ基材1の径方向に平行移動させられる。
 このため、塗布液3は、回転中の基材1に外周部側から中心部側へ向けて順次塗布される。塗布後の塗布液3は、基材1と一体に回転する。基材1に付着した塗布液3に作用する重力の方向は、基材1が回転することによって、レンズ中心方向と外周方向とに交互に変わる。このように重力が作用する方向が一定ではなくなるために、塗布液3は、流動性を有しているにもかかわらず、一方向に流れることはなく、付着位置に留まる。このため、「液ダレ」の主要因である重力の影響を眼鏡レンズ用基材1の縦回転により解消できるため、塗布液3がレンズ面2に沿って流れて「液ダレ」が生じることはない。
 したがって、この実施の形態によれば、通常の流動性を有する塗布液3を液ダレが生じることがないようにレンズ面2に厚く塗布できるようになる。この実施の形態によれば、塗布ステップS2でレンズ面2に厚みが少なくとも10μmの塗布液3の層をレンズ面2の全域にわたって均等な厚みとなるように形成することができた。塗布液3としてハードコート膜形成用塗布液を使用する場合は、基材1に少なくとも10μmの膜厚でハードコート膜が形成される。このような厚みのハードコート膜を有する眼鏡レンズは、従来の眼鏡レンズと較べると耐擦傷性が著しく高く、しかも干渉縞が低減する。
 なお、図6に示す塗布装置21は、塗布ノズル26が上から下に移動するように描いてあるが、本発明はこのような限定にとらわれることはない。すなわち、塗布ノズル26がレンズ面2の下端側から上側(中心側)に移動したり、塗布ノズル26が水平方向に移動しても同等の効果が得られる。
 塗布ステップS2は、塗布液3の塗布が終了した後も第1、第2の条件が満たされる状態を維持しながら基材1の回転を予め定めた時間だけ継続させて終了する。この基材1の回転を継続させる時間は、基材1に塗布された塗布液3が基材1上で移動することがない程度に塗布液3の流動性が失われる時間である。揮発性を有する溶剤を含む塗布液3は、塗布後に溶剤の一部が揮発することによって、粘度が上昇して流動性が低下するものである。また、紫外線硬化型の塗布液3は、塗布環境の照明に含まれる紫外線が当たることによって、粘度が上昇して流動性が低下するものである。すなわち、この実施の形態において、基材1の回転は、塗布液3が基材1上を移動することがないように塗布液3の流動性が低くなった後に停止する。このため、厚く塗布された塗布液3が基材1上に保持され、いわゆる「液ダレ」が生じることがない状態で次のステップ、たとえば塗布液3を硬化させるための硬化ステップを実施することができる。
 この実施の形態においては、塗布液3の流動性が低下した後に基材1の回転を停止させることによって塗布ステップS2が終了する例を示した。しかし、塗布ステップS2は、基材1を回転させた状態で終了させることができる。この場合は、基材1が回転している状態で塗布ステップS2が終了し、そのまま次のステップ(例えば硬化ステップ)が実施されることになる。この方法は、例えば、回転装置11を塗布装置21と、塗布液3を硬化させるための加熱用ヒータまたは紫外線ランプを備えた硬化装置(図示せず)との間で移動させることによって実現できる。すなわち、基材1は、回転装置11による駆動で回転しながら塗布装置21から硬化装置に移される。
(第2の実施の形態)
 塗布液の塗布は、図7および図8に示すように、複数の塗布領域毎に設定を変えて行うことができる。この実施の形態において、図1~図6によって説明したものと同一もしくは同等の部材については、同一符号を付し、詳細な説明を適宜省略する。図7は、塗布ステップS2の他の実施の形態を説明するためのレンズ面の正面図、図8はこの実施の形態による眼鏡レンズの製造方法を説明するためのフローチャートである。この実施の形態による眼鏡レンズの製造方法は、請求項2に記載した発明を構成する方法である。
 この実施の形態による眼鏡レンズの製造方法は、例えば図8に示すように、準備ステップS1と、後述する第1~第4の分割塗布ステップS2A~S2Dを有する塗布ステップS2とによって実施される。
 塗布ステップS2は、図7に示す複数の塗布領域#A~#D毎に、塗布に関するパラメータを変えて行われる。各塗布領域#A~#Dで塗布液3を塗布するにあたっては、第1の実施の形態を採るときと同一の方法で塗布液3が塗布される。すなわち、塗布液3の液滴が塗布ノズル26からレンズ面2の一部の目標塗布位置に予め定めた量で吹き付けられるとともに、目標塗布位置がレンズ面2の径方向に移動するように行われる。この実施の形態による塗布ノズル26は、レンズ面2(凸曲面2aまたは凹曲面2b)の外周側から中心に向けて平行移動する。
 この実施の形態において、塗布に関して変えられるパラメータは、塗布ノズル26の移動速度である。この移動速度は、図7に示す複数の塗布領域#A~#D毎に設定される。図7に示す複数の塗布領域#A~#Dは、レンズ面2の中心Oから外周へ向かう半径rを一定間隔毎に分割し、各分割点を通る円でレンズ面2を分割することによって形成されている。各分割点を通る各円の中心は、レンズ面2の中心と一致している。すなわち、各塗布領域#A~#Dは、レンズ面2を複数の同心円で分割することにより形成されている。
 塗布ノズル26の移動速度は、各塗布領域#A~#Dの面積の大きさに基づいて設定されている。この移動速度は、面積が大きくなればなるほど遅くなる。すなわち、移動速度は、レンズ面2の外周縁を含む第1の塗布領域#Aに塗布液3を塗布するときに最も遅くなり、ここより径方向の内側に位置する第2の塗布領域#Bに塗布液3を塗布するときは移動速度が速くなる。このため、移動速度は、第2の塗布領域#Bを塗布するときより第3の塗布領域#Cを塗布するときの方が速く、第3の領域#Cを塗布するときより第4の領域Dを塗布するときの方が速くなる。
 この実施の形態による塗布ステップS2は、図8に示すように、第1~第4の分割塗布ステップS2A~S2Dによって実施される。第1の分割塗布ステップS2Aは、第1~第4の塗布領域#A~#Dのうち、最も外周側に位置する第1の塗布領域#Aに塗布液3を塗布するステップである。このときの塗布ノズル26の移動速度は、第1の塗布領域#Aの面積に対応した速度(最も遅い速度)に設定される。
 第1の塗布領域#Aの内周側端部まで塗布が終了した後は、第2の分割塗布ステップS2Bにおいて、第2の塗布領域#Bについて塗布液3の塗布が行われる。第2の塗布領域#Bに塗布液3が塗布された後、第3の分割塗布ステップS2Cから第4の分割塗布ステップS2Dに進み、第3、第4の塗布領域#C,#Dにも面積に応じた移動速度で塗布ノズル26が移動して塗布液3が塗布される。
 このため、この実施の形態によれば、塗布ステップS2における塗布液3の塗布は、単位面積当たりの塗布液3の付着量がレンズ面2の全域にわたって予め定めた量となるように行われる。したがって、レンズ面2の全域にわたって膜厚が均一となるように塗布液3を塗布することができる。特に、塗布液3の付着量を制御するにあたってレンズ面2の面積に基づいて行うことができるから、付着量の制御が簡易化される。また、この実施の形態においては、レンズ面2を複数の塗布領域#A~#Dに分割するにあたって、レンズ面2の半径を等間隔で分割し、分割点を通る円でレンズ面2を分割しているから、各塗布領域#A~#Dの面積を簡単に計算することができる。
 なお、上述した「塗布に関して変えるパラメータ」は、塗布ノズル26の移動速度に限定されることはなく、例えば塗布ノズル26から噴出する塗布液3の噴出量であってもよく、移動速度と噴出量の両方でもよい。塗布液3の噴出量を変える場合は、例えば、塗布ノズル26の移動速度を一定とし、第1の塗布領域#Aを塗布するときに塗布液3の噴出量を最大として実施可能である。この場合、第2~第4の塗布領域#B~#Dに塗布液3を塗布するときは、塗布液3の噴出量をこの順で減少させることが望ましい。
(第3の実施の形態)
 塗布ステップで塗布液を塗布する方向は、基材の軸線に対して傾斜した方向とすることができる。この実施の形態を図9および図10によって詳細に説明する。図9および図10において、図1~図8によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
 図9に示す基材1は、レンズ面2(凸曲面2a)の曲率が相対的に大きくなるものである。このような曲率が大きいレンズ面2に塗布液3を基材1の軸線方向と平行に吹き付けると、図9中に二点鎖線で示すように、レンズ面2の周辺部においては塗布液3の液滴がレンズ面2に外周縁側へ流れながら付着する。このため、レンズ面2の中心部に塗布された塗布液3の厚みは、外周部に塗布された塗布液3の厚みより薄くなってしまう。
 この実施の形態においては、塗布液3がレンズ面2の中心に向けて流れて上記不具合が解消されるように、塗布液3がレンズ面2に対して斜め方向から塗布される。この実施の形態による塗布液3の塗布方向は、図9に示すように、レンズ面2の目標塗布位置Tを通る法線L1に対して基材1の軸線C1とは反対側から目標塗布位置Tを指向する方向である。この実施の形態による塗布ノズル26の中心線C2は、図9に示すように、基材1の軸線C1と法線L1とが含まれる仮想平面内において、レンズ面2の外周縁における法線L2と略平行である。
 この実施の形態による塗布ステップS2は、図10のフローチャートに示すように、角度設定ステップS2Eと、第1~第4の分割塗布ステップS2A~S2Dとによって実施される。第1~第4の分割塗布ステップS2A~S2Dは、第2の実施の形態で説明したステップと同一である。角度設定ステップS2Eは、塗布ノズル26の塗布方向を上述したようにレンズ面2に対して傾斜するように設定するステップである。角度設定ステップS2Eが実施されることにより、塗布ノズル26がレンズ面2の目標塗布位置Tを通る法線L1に対して基材1の軸線C1とは反対側から目標塗布位置Tを指向するようになる。
 この塗布ステップS2においては、角度設定ステップS2Eで塗布ノズル26の角度が設定された後に第1~第4の分割塗布ステップS2A~S2Dでレンズ面2の全域に塗布液3が塗布される。この第1~第4の分割塗布ステップS2A~S2Dにおいては、塗布液3がレンズ面2の中心に向かうように斜めに塗布されるから、レンズ面2に塗布された塗布液3がレンズ面2の外周側に流されることを防ぐことができる。
 したがって、この実施の形態によれば、塗布液3が液ダレによってレンズ面2の外周部に相対的に厚く塗布されることがないから、レンズ面2の膜厚分布が均一化される。なお、塗布ノズル26の噴射方向は、平行移動時に目標塗布位置Tの曲率に対応させて変えてもよい。この構成を採ることにより、塗布液3がレンズ面2の中心側へ流れる量が一定となるように塗布を行うことができるから、高い精度で膜厚分布が均一化される。
 また、この実施の形態においては、塗布ステップS2において塗布液3を塗布するときにレンズ面2を複数の塗布領域に分けて塗布領域毎に塗布ノズル26の移動速度を変える例を示した。しかし、塗布ノズル26の移動速度を全ての塗布領域にわたって一定とし、塗布液3の噴出量を塗布領域毎に変えて塗布液3を塗布することもできる。
(第4の実施の形態)
 本発明に係る光学レンズの製造方法は、図11および図12に示すように、レンズ面に塗布液が塗布された後に硬化ステップを実施することができる。図11および図12において、図1~図10によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
 眼鏡レンズ用基材1のレンズ面2に厚みが10μmを越えるように塗布された塗布液3は、基材1が水平状態で載置されると自重で流動し、液ダレとなって低い部分(凸曲面2aの外周部や凹曲面2bの中心部)に集まる。この液ダレは、塗布液3の塗布直後から、塗布液3に流動性がある限り発生し、膜の乾燥または硬化が進んで流動性がなくなるまで継続する。塗布液3が熱硬化性のものである場合は、硬化の過程で液膜の温度が上昇すると粘度が低下するので、液ダレが顕著に生じる。このため、塗布液3を厚みが均等になるように厚く塗布できたとしても、硬化時に液ダレが生じてしまい、最終的に膜厚不良になるおそれがある。
 この実施の形態による眼鏡レンズの製造方法は、図11に示すように、塗布液3を眼鏡レンズ用基材1に塗布する塗布ステップS2の後に、塗布ステップS2と同等の条件で行う硬化ステップS3を有している。硬化ステップS3は、第1の条件が満たされる第1ステップS3Aと、第2の条件が満たされる第2ステップS3Bと、加熱ステップS3Cとによって実施される。加熱ステップS3Cは、第1、第2ステップが実施された状態、すなわち基材1を軸線C1の水平に対する角度が所定の角度範囲に含まれるように傾斜させた状態で所定の回転速度(15~50RPM程度)で縦回転させながら、基材1とともに塗布液3を加熱して実施される。加熱は、少なくとも塗布液3の流動性が失われるまで行われる。
 硬化ステップS3は、例えば図12に示す硬化装置31を用いて実施することができる。この硬化装置31は、硬化用容器32と、この硬化用容器32の中に収容された転動装置33とを備えている。硬化用容器32は、塗布液3が熱硬化性のものである場合はヒータ34を有するものが用いられる。なお、硬化用容器32は、塗布液3が紫外線硬化型のものである場合は、紫外線ランプ(図示せず)を有するものが用いられる。
 転動装置33は、基材1をホルダー35とともに回転させるためのものである。ホルダー35は、基材1を収容可能な円筒状に形成されており、基材1の外周面を複数のクランプ部材36で挟み、この基材1を同一軸線上に保持する。このホルダー35は、軸線が水平方向を指向するように立てた状態で転動装置33の二つのローラ37,37の上に載せられる。
 これらのローラ37は、図示していないモータによって駆動させられて同一方向に所定の回転速度で回転する。これらのローラ37が回転することによって、基材1がホルダー35とともに回転する。すなわち、この硬化装置31を用いることにより、基材1を硬化用容器32内で縦回転させながら加熱し、塗布液3を硬化させることができる。
 この実施の形態による眼鏡レンズの製造方法によれば、塗布ステップS2を実施するときの第1の条件と第2の条件とが満たされる状態で加熱ステップS3Cが実施されるから、塗布液3が重力で一方向に流れることがない状態で塗布液3を硬化させることができる。したがって、この実施の形態によれば、レンズ面2に膜厚が均等となるように塗布液3が塗布された状態を保ちながら塗布液3が硬化するから、高い品質の膜が形成される。
 なお、この実施の形態においては、塗布ステップS2において塗布液3を塗布するときにレンズ面2を複数の塗布領域に分けて塗布領域毎に塗布ノズル26の移動速度を変える例を示した。しかし、塗布ノズル26の移動速度を全ての塗布領域にわたって一定とし、塗布液3の噴出量を塗布領域毎に変えて塗布液3を塗布することもできる。
 眼鏡レンズ用基材1に例えばハードコート膜を形成するためには、レンズ面2の凸曲面2aと凹曲面2bとのうちいずれか一方のレンズ面2に塗布液3を塗布し、引き続き他方のレンズ面2に塗布液3を塗布し、その後、両レンズ面2,2に塗布された塗布液3を流動性が失われる程度に硬化させる。この方法を採ることにより、凸曲面2aと凹曲面2bの両面に塗布された塗布液3の硬化を効率よく行うことができる。また、この方法を採ることにより、例えば凸曲面2aへの塗布液3の塗布が終了して凹曲面2bに塗布液3を塗布しているときに、塗布液3の液滴が凸曲面2a側に回り込んで凸曲面2aに付着したとしても、この液滴が凸曲面2a上の塗膜に吸収されて外観が良好になる。本発明に係る光学レンズの製造方法は、凸曲面2aへの塗布液3の塗布と、凹曲面2bへの塗布液3の塗布と、凸曲面2aと凹曲面2bとに塗布された塗布液3の硬化とを行うときに適用可能である。
 両レンズ面2への塗布液3の塗布と硬化は、レンズ面2毎に行うこともできる。この場合は、先ず、レンズ面2の凸曲面2aと凹曲面2bとのうちいずれか一方のレンズ面2に塗布液3を塗布し、この塗布液3を流動性が失われる程度に硬化させる。その後、他方のレンズ面2に塗布液3を塗布し、この塗布液3を硬化させる。この場合であっても各レンズ面2への塗布液3の塗布と、両レンズ面2に塗布された塗布液3の硬化とを行うときに本発明を適用可能である。
 なお、本発明を実施するにあたっては、上述した実施の形態に示した方法に限定されることはなく、適宜変更することが可能である。また、上述した実施の形態においては、眼鏡レンズ用基材1にハードコート膜や調光膜などの膜を形成する例を示したが、本発明は、眼鏡レンズとは異なる他の光学レンズにも適用することができる。
 以下、実施例により本発明を更に説明する。但し、本発明は実施例に示す態様に限定されるものではない。
1.ハードコート形成用塗布液3の調製 有機ケイ素化合物γ-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM-403)17質量部にメタノールを溶媒として20質量部添加した。これを10分間撹拌した後に加水分解触媒として0.1mol/Lの塩酸を3.9質量部添加し、24時間撹拌した。こうして得られた溶液にイソプロピルアルコール20質量部とメタノール分散コロイダルシリカ(日産化学工業株式会社製メタノールシリカゾル)44質量部を添加し10分間室温で撹拌した。
 10分間撹拌後、硬化剤としてアルミニウムアセチルアセトナート1質量部とレベリング剤(東レ・ダウコーニング株式会社製FZ-77)0.1質量部を添加し、さらに48時間室温撹拌してハードコート形成用塗布液を調製した。得られた塗布液の粘度は7mPa・S(20℃)であった。
2.スプレーコートによるハードコート形成にかかる実施例・比較例
[実施例1]
 上記1.で調製した塗布液をSono-Tek社製超音波霧化装置にてプラスチックレンズ基材表面に塗布した。レンズ基材としては、HOYA株式会社製プラスチックレンズ(商品名「ニュールックス1.6」)度数-2.0D、曲率半径凸面R=300mm凹面R=150mmの凹凸面に塗布を行った。
 レンズをレンズホルダーにセットし、レンズの軸線が水平となる様にして50rpmの回転速度で回転した。レンズを回転させながら、レンズの光軸線上に配置した上記スプレーノズルから塗布液3をレンズ凹面上と凸面上に噴霧した。スプレーノズルはレンズ外周部から中心部に向かって毎分30mmの一定速度で移動し、噴霧液量を毎分1.0mlの一定量で噴霧した。
 塗布後、レンズの角度と回転数を維持したままレンズ両側面に配置したパネルヒーターによりレンズ表面を50℃に加熱し、塗布液に流動性が無くなるまで2分間加熱した。その後レンズをホルダーから取り外し、100℃1時間熱硬化炉内で加熱硬化し得られたレンズの塗膜外観を調べ、レンズ中心部、外周部の膜厚を測定した。膜厚測定は、オプトシリウス株式会社製の膜厚測定システムを使用して行った。
[実施例2]
 スプレーノズルをレンズ外周部から中心部に移動する際、同心円状に5mmピッチで分割したエリアごとに面積を計算し、その面積に応じて移動速度を調整した以外は実施例1と同様に塗布した。
[実施例3]
 レンズの凸面側を塗布する際、ノズルの角度を軸線に対し30度外周側へ傾けた以外は実施例2と同様の方法で塗布した。
[比較例1]
 レンズを回転する際、レンズの軸線が鉛直になる様に(レンズを水平に回転)回転した以外は実施例2と同様に塗布。
[比較例2]
 レンズを回転する際、回転数を100rpmとした以外は実施例2と同様に塗布。
[比較例3]
 レンズを回転する際、回転数を100rpmとした以外は実施例3と同様に塗布。
 上述した実施例1~3と比較例1~3とについて、凸面の液ダレおよびゆず肌の有無と凸面の液ダレおよびゆず肌の有無とを目視にて判別し、凸面の膜厚と凹面の膜厚とを測定したところ、下記の表1に示すような結果が得られた。表1の目視の結果において、◎は「全く無し」、○は「ほとんど無し」、△は「わずかに有り」、×は「目立つように有り」をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
 1…眼鏡レンズ用基材、2…レンズ面、2a…凸曲面、2b…凹曲面、θ1,θ2…角度、H…高くなる位置、P…外周縁、T…目標塗布位置、L1…法線

Claims (4)

  1.  第1の塗布条件として、光学レンズ用基材の軸線の水平に対する角度を凸面側を基準として予め定められた角度範囲内に設定し、
     第2の塗布条件として、前記光学レンズ用基材を軸線を中心にしてそのレンズ面上の塗布液が塗布位置に保持される予め定められた回転速度で回転させ、
     前記第1および第2の塗布条件が満たされたときに、前記光学レンズ用基材のレンズ面に塗布液を塗布する
     各ステップを備える光学レンズの製造方法であって、
     回転させるステップは、予め定められた角度の範囲として、前記光学レンズ基材のレンズ面の最も高くなる位置にレンズ面の外周縁が位置する軸線の最大傾斜角度と、前記光学レンズ基材のレンズ面の最も低くなる位置にレンズ面の外周縁が位置する軸線の最大傾斜角度との範囲で前記光学レンズ基材の回転を行うステップを備えることを特徴とする光学レンズの製造方法。
  2.  請求項1記載の光学レンズの製造方法において、
     塗布するステップは、単位面積当たりの塗布液の付着量が前記光学レンズ基材のレンズ面の全域にわたって予め定められた量となるように、塗布液の液滴をレンズ面の外周部と中心部との間で移動する目標塗布位置に吹き付けるステップを備えることを特徴とする光学レンズの製造方法。
  3.  請求項2記載の光学レンズの製造方法において、
     塗布するステップは、塗布液の液滴を凸曲面からなるレンズ面に塗布する際に、前記光学レンズ基材のレンズ面の目標塗布位置を通る法線に対して前記光学レンズ用基材の軸線とは反対側から目標塗布位置を指向する方向に塗布するステップを備えることを特徴とする光学レンズの製造方法。
  4.  請求項1記載の光学レンズの製造方法において、
     前記光学レンズ基材のレンズ面に塗布液を塗布した後に、第1の条件と第2の条件とが満たされた状態で前記光学レンズのレンズ面上の塗布液を硬化させるステップをさらに備えることを特徴とする光学レンズの製造方法。
PCT/JP2013/073501 2012-08-31 2013-09-02 光学レンズの製造方法 WO2014034926A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014533148A JPWO2014034926A1 (ja) 2012-08-31 2013-09-02 光学レンズの製造方法
US14/423,930 US20150198746A1 (en) 2012-08-31 2013-09-02 Method for manufacturing optical lens
EP13832606.1A EP2891905A4 (en) 2012-08-31 2013-09-02 METHOD FOR MANUFACTURING OPTICAL LENS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012191868 2012-08-31
JP2012-191868 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034926A1 true WO2014034926A1 (ja) 2014-03-06

Family

ID=50183724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073501 WO2014034926A1 (ja) 2012-08-31 2013-09-02 光学レンズの製造方法

Country Status (4)

Country Link
US (1) US20150198746A1 (ja)
EP (1) EP2891905A4 (ja)
JP (1) JPWO2014034926A1 (ja)
WO (1) WO2014034926A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340802A (zh) * 2019-08-30 2022-04-12 京瓷株式会社 涂装装置、涂装膜及涂装方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180224329A1 (en) * 2017-02-09 2018-08-09 Corning Incorporated Probe based rolling optic hyperspectral data collection system
CN113231274A (zh) * 2021-06-04 2021-08-10 浙江美迪凯光学半导体有限公司 一种透镜薄膜的喷涂工艺
CN113385397B (zh) * 2021-06-21 2022-06-03 杭州美迪凯光电科技股份有限公司 一种透镜薄膜点胶旋涂一体的涂布工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246220A (ja) * 1993-02-23 1994-09-06 Seiko Epson Corp 表面処理方法及び表面処理装置
JP2001327908A (ja) * 2000-05-23 2001-11-27 Seiko Epson Corp 液体の塗布方法、平滑処理方法およびこれを用いた光学部材の製造方法並びに光学部材加工装置
JP2004122115A (ja) 2002-08-02 2004-04-22 Seiko Epson Corp 塗布方法及び塗布装置並びに光学部材及び光学装置
JP2005013873A (ja) * 2003-06-26 2005-01-20 Tokuyama Corp スピンコート装置
JP2009285978A (ja) * 2008-05-29 2009-12-10 Hoya Corp プラスチックレンズの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2551383B1 (fr) * 1983-09-02 1986-07-04 Essilor Int Procede et dispositif pour le surfacage d'une lentille optique a surface(s) de revolution
FR2551382B1 (fr) * 1983-09-02 1986-05-16 Essilor Int Procede et dispositif pour le surfacage d'une lentille optique
JPH09173946A (ja) * 1995-12-22 1997-07-08 Pioneer Electron Corp スピンコーティング装置
US6352747B1 (en) * 1999-03-31 2002-03-05 Ppg Industries Ohio, Inc. Spin and spray coating process for curved surfaces
JP2001264514A (ja) * 2000-03-22 2001-09-26 Ricoh Opt Ind Co Ltd 光学膜形成装置及びレンズ形成方法及びレンズ
FI20070131L (fi) * 2007-02-14 2008-08-15 Olavi Matti Kalervo Nieminen Uusi menetelmä valmistaa optisia tuotteita
JP2009101354A (ja) * 2008-12-01 2009-05-14 Seiko Epson Corp 光学部材の製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246220A (ja) * 1993-02-23 1994-09-06 Seiko Epson Corp 表面処理方法及び表面処理装置
JP2001327908A (ja) * 2000-05-23 2001-11-27 Seiko Epson Corp 液体の塗布方法、平滑処理方法およびこれを用いた光学部材の製造方法並びに光学部材加工装置
JP2004122115A (ja) 2002-08-02 2004-04-22 Seiko Epson Corp 塗布方法及び塗布装置並びに光学部材及び光学装置
JP2005013873A (ja) * 2003-06-26 2005-01-20 Tokuyama Corp スピンコート装置
JP2009285978A (ja) * 2008-05-29 2009-12-10 Hoya Corp プラスチックレンズの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2891905A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340802A (zh) * 2019-08-30 2022-04-12 京瓷株式会社 涂装装置、涂装膜及涂装方法
US20220379337A1 (en) * 2019-08-30 2022-12-01 Kyocera Corporation Coating device, coating film, and coating method
CN114340802B (zh) * 2019-08-30 2023-09-29 京瓷株式会社 涂装装置、涂装膜及涂装方法

Also Published As

Publication number Publication date
JPWO2014034926A1 (ja) 2016-08-08
US20150198746A1 (en) 2015-07-16
EP2891905A1 (en) 2015-07-08
EP2891905A4 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
US8613982B2 (en) Method of producing coated lenses
WO2014034926A1 (ja) 光学レンズの製造方法
JP4229853B2 (ja) 塗布方法及び眼鏡レンズの製造方法
EP3845956A1 (en) Eyeglass lens, method for manufacturing eyeglass lens, and lens coating
JP4859463B2 (ja) 塗布方法及び調光レンズの製造方法
CN103298566A (zh) 涂敷装置以及涂敷方法
WO2014034927A1 (ja) 光学レンズの製造方法
JPWO2009028351A1 (ja) プラスチックレンズの表面に塗膜を形成する方法
WO2013065746A1 (ja) 眼鏡レンズおよびその製造方法
JP4346359B2 (ja) スピンコート装置
JP2021105692A (ja) 眼鏡レンズの製造方法
JP2015121805A (ja) 偏光素子及び偏光レンズの製造方法
JPWO2008062817A1 (ja) 光学部材及びその製造方法
WO2020040076A1 (ja) 塗布物質塗布済対象物の製造方法
US20050213923A1 (en) Method and apparatus for applying materials to an optical substrate
JP2007185608A (ja) 機能性被膜形成ガラス基材の製法
JP2013205562A (ja) 眼鏡レンズの製造方法
CN111672720B (zh) 喷涂方法
JPH1120037A (ja) 薄膜形成装置、薄膜形成方法及びそれを用いる複合レンズの製造方法
JP2014010344A (ja) 眼鏡レンズの製造方法
JP2004014062A (ja) 光ディスクの製造方法及び光ディスク
JP2013244461A (ja) 薄膜製造方法および光学部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533148

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423930

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE