WO2014034856A1 - 脳機能評価システム及び脳機能評価方法 - Google Patents
脳機能評価システム及び脳機能評価方法 Download PDFInfo
- Publication number
- WO2014034856A1 WO2014034856A1 PCT/JP2013/073344 JP2013073344W WO2014034856A1 WO 2014034856 A1 WO2014034856 A1 WO 2014034856A1 JP 2013073344 W JP2013073344 W JP 2013073344W WO 2014034856 A1 WO2014034856 A1 WO 2014034856A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subject
- index
- indicator
- display device
- unit
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
- A61B5/4082—Diagnosing or monitoring movement diseases, e.g. Parkinson, Huntington or Tourette
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1124—Determining motor skills
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/4064—Evaluating the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
- A61B5/4088—Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/742—Details of notification to user or communication with user or patient ; user input means using visual displays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/7475—User input or interface means, e.g. keyboard, pointing device, joystick
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/34—Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
- G02B30/36—Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using refractive optical elements, e.g. prisms, in the optical path between the images and the observer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
Definitions
- the present invention relates to a brain function evaluation system and a brain function evaluation method that objectively evaluate brain functions.
- Patent Document 1 after instructing a subject on an indicator on a display screen, an instruction function is moved to a target part, and the time required for this movement is compared with a test result of a healthy person to obtain a motor function.
- a motor function evaluation method to be evaluated is described.
- Motor dysfunction may occur due to cerebral disease or cerebellar disease.
- the intention of the subject in Patent Document 1, the intention to move the instruction part to the target part
- the motor function disorder It was not possible to identify whether the cerebral was caused by the cerebrum or the cerebellum.
- the cerebellar evaluation method currently uses qualitative evaluation methods based on the balance of the body, skillful movement of the limbs, the presence or absence of articulation disorder during speech, etc.
- both quantitative and accurate are lacking and measurement is not possible in real time, it is required to construct a quantitative and highly accurate evaluation method for the cerebellum (especially motor learning).
- the present invention has been made in view of such a demand, and provides a brain function evaluation system and a brain function evaluation method for evaluating motor dysfunction associated with a brain disease by a new method that has not been conventionally used.
- the brain function evaluation system that can accurately identify motor dysfunction caused by the cerebellum
- the second object is to provide a method for evaluating brain function.
- a display device that displays an index instructed by a subject, an indication position specifying unit that specifies an indication position instructed by the subject on the display device, a display position of the indicator, and the indication position of the subject
- a cerebral function evaluation system comprising:
- the brain function evaluation system of (1) it is possible to cause the subject to indicate an index on the display device, and to evaluate the brain function of the subject from the amount of deviation between the indicated position and the index. For example, when there is a disorder in motor function, such as shaking hands, the amount of divergence becomes larger than that of a healthy person, so that the brain function of the subject can be objectively and quantitatively evaluated. Thereby, the motor dysfunction accompanying a brain disease can be evaluated by a new method that has not existed before.
- a reference position detection unit that detects that an instruction unit that indicates the index is at a reference position, and a visual control unit that controls the visibility of the index, and the visual control unit includes the reference position
- the indicator is visible to the subject on condition that the detection unit detects that the instruction unit is at a reference position, or on the condition that the instruction unit instructs on the display device, and the instruction unit
- motor dysfunction associated with brain disease can be evaluated by a new method that has not been conventionally used, and motor dysfunction caused by cerebellum can be accurately identified.
- FIG. 1 It is a block diagram which shows the functional structure of the brain function evaluation system of this invention. It is a figure which shows the hardware constitutions for implement
- the brain function evaluation system 1 includes a display device 11, a line-of-sight correction unit 12, a reference position detection unit 13, a pointing position specifying unit 14, a visual control unit 15, a deviation amount calculation unit 16, an evaluation unit 17, It is comprised including.
- the display device 11 displays an indicator as an instruction target for the subject.
- the line-of-sight correction unit 12 corrects the subject's line of sight so as to shift.
- the line-of-sight correction unit 12 corrects the subject's line of sight to the right or left in the range of 7 degrees to 60 degrees, preferably in the range of 15 degrees to 40 degrees.
- the test subject designates the indicator displayed on the display device 11 in a state where the line of sight is not corrected (the line of sight is not displaced) with an instruction unit (for example, his / her finger) a predetermined number of times. Repeating a specified number of times by using the instruction unit (for example, one's finger) to indicate the index displayed on the display device 11 in a state where the line of sight has been corrected (the line of sight has been shifted). Conduct a test to evaluate.
- the reference position detection unit 13 detects whether or not the instruction unit is at the reference position, and notifies the visual control unit 15 of the result.
- the designated position specifying unit 14 detects that an arbitrary position on the display device has been designated by the subject, and notifies the visual control unit 15 of the result. Further, the indicated position specifying unit 14 specifies a position (hereinafter referred to as “instructed position”) indicated by the subject on the display device, and notifies the specified amount to the deviation amount calculating unit 16.
- indication position the coordinate on the display apparatus 11 is employable, for example.
- the visual recognition control unit 15 controls whether or not the index displayed on the display device 11 is visible to the subject, and the display device 11 displays the index at an arbitrary position (hereinafter referred to as “display position”). To do. For example, the display device 11 randomly determines the display position a predetermined number of times, and displays an index at the determined display position. In addition, the visual recognition control unit 15 makes the indicator displayed on the display device 11 visible to the subject when the instruction unit is at the reference position, and displays the indicator on the display device 11 when the instruction unit is away from the reference position. The indicator is not visible. And if the instruction
- the divergence amount calculation unit 16 calculates the divergence amount between the display position of the index and the indication position by the subject, that is, the divergence amount between the coordinates indicating the display position and the coordinates indicating the indication position (distance between both coordinates), and the calculation result Is notified to the evaluation unit 17.
- the evaluation unit 17 evaluates the degree of divergence based on the divergence amount calculated by the divergence amount calculation unit 16 (for example, by comparing with a statistical value of the divergence amount of a healthy person). Although details of the evaluation will be described later, the evaluation unit 17 determines that when the divergence amount of the subject is large (when the absolute value is large, or when the relative value compared with the statistical value of the divergence amount of the healthy person is large), The amount of deviation is displayed (printing, screen output, etc.) so that it can be evaluated that there is a significant difference between healthy individuals. At this time, the evaluation unit 17 also displays the change tendency of the divergence amount when the test is repeatedly performed.
- the brain function evaluation system 1 includes a management terminal 2, a client terminal 3, glasses 4, and a touch sensor 5.
- the management terminal 2 is a terminal device used by an administrator Z (for example, a doctor or a test engineer) who manages a test by the brain function evaluation system 1, and is connected to the client terminal 3 so as to be communicable.
- the management terminal 2 is installed with a management program for performing a test, and operates according to the management program executed by the administrator Z to determine the display position, calculate the amount of divergence, and the statistical value of healthy subjects. Implement various functions such as comparison.
- the client terminal 3 is a terminal device installed so as to face the subject X to be tested, and includes a display 31.
- the display 31 is a liquid crystal display, and displays an index toward the subject X as the client terminal 3 is controlled.
- a touch panel 311 is disposed on the front surface of the display 31 and is configured to be able to specify the designated position designated by the subject X.
- the glasses 4 are configured such that a prism lens 41 can be installed on the front side, and is attached to the subject X.
- the prism lens 41 is a plate-like prism lens that can be attached and detached by being inserted and removed from the left side surface of the glasses 4 and corrects the subject's X line of sight.
- an electromagnetic shutter that is transparent or opaque when voltage is applied is incorporated in the forefront of the glasses 4 so that the index displayed on the display 31 is visible to the subject X or is not visible. be able to.
- the touch sensor 5 detects whether or not the subject X is touching, and notifies the detection result to the client terminal 3 and the glasses 4 connected via USB (Universal Serial Bus), wireless LAN, or the like.
- USB Universal Serial Bus
- the ear clip type touch sensor 5 is used. That is, the reference position in the present embodiment refers to the position of the touch sensor 5 attached to the ear.
- the client terminal 3 functions as the display device 11, and the glasses 4 with the prism lens 41 inserted function as the line-of-sight correction unit 12. That is, the line of sight of the subject X wearing the glasses 4 is corrected by the prism lens 41 inserted into the front side of the glasses 4, and the subject X is displayed at a position where the index displayed on the display 31 is shifted from the actual position. It will be visible.
- the prism lens 41 corrects the line of sight of the subject X to the right or left in the range of 7 degrees to 60 degrees, preferably in the range of 15 degrees to 40 degrees. When the correction amount is less than 15 degrees (especially 7 degrees), the line of sight shift is small and the correction is not substantially corrected. When the correction amount is greater than 40 degrees (especially 60 degrees), the learning limit of the motor function is exceeded. It becomes difficult to evaluate the function of the cerebellum.
- the touch sensor 5 functions as the reference position detection unit 13, and the touch panel 311 functions as the designated position specifying unit 14. That is, when the subject X touches the touch sensor 5 attached to the ear with a finger, it is detected that the instruction unit (subject X's finger) is at the reference position, and when the finger is separated from the touch sensor 5, the instruction unit ( It is detected that the finger of the subject X is not at the reference position. Further, the position where the subject X's finger touches the touch panel 311 arranged on the front surface of the display 31 displaying the index is specified as the indicated position instructed by the subject X.
- the electromagnetic shutter of the glasses 4 functions as the visual control unit 15. That is, when the management terminal 2 randomly determines the display position for displaying the index and notifies the client terminal 3, the client terminal 3 displays the index at the display position of the display 31 according to this notification. Then, the electromagnetic shutter of the glasses 4 connected so as to be communicable with the touch sensor 5 and the touch panel 311 allows the subject X to visually recognize the indicator when the touch sensor 5 detects a finger contact, In a state where the sensor 5 has not detected finger contact, the subject X is prevented from seeing the index until the touch panel 311 detects finger contact thereafter.
- the management terminal 2 functions as the deviation amount calculation unit 16 and the evaluation unit 17. That is, the management terminal 2 receives the indicated position specified by the touch panel 311 from the client terminal 3 and compares it with the display position of the index, so that the difference between the indicated position indicated by the subject X from the display position of the index. Or calculate. Further, the client terminal 3 displays the screen or prints out the tendency of the deviation amount for the predetermined number of times obtained as a result of the test so that it can be evaluated that there is a significant difference from the healthy person. Be able to judge the brain function of X.
- Test method of brain function evaluation system 1 The configuration of the brain function evaluation system 1 according to this embodiment has been described above. Next, a test procedure using the brain function evaluation system 1 will be described with reference to FIG.
- the subject X waits at a position where his / her finger can contact the touch panel 311 with an appropriate pressure (for example, about 50 cm in front of the display 31 and appropriately adjusted according to the length of the arm of the subject X).
- the glasses 4 and the touch sensor 5 are attached.
- the subject X sits and waits with his chin placed on a table (not shown).
- the test in a state where the line of sight is not corrected and the test in a state where the line of sight is corrected are repeatedly performed a predetermined number of times. Therefore, a dummy transparent acrylic plate that does not correct the line of sight or a prism lens 41 that corrects the line of sight is inserted into the glasses 4 as necessary.
- FIG. 3 it is assumed that the subject X wears the glasses 4 into which the prism lens 41 is inserted, that is, the subject X's line of sight is corrected and shifted to the right by 25 degrees.
- FIG. 3A when the subject X touches the touch sensor 5 with his / her finger, an index is displayed at the display position P1 instructed from the management terminal 2 of the display 31.
- the subject X since the line of sight of the subject X is corrected, the subject X appears to display an index at the corrected position P2 that is deviated 25 degrees to the right from the actual display position P1.
- the display 31a and the correction position P2 are displayed in the upper right direction of the display 31 and the display position P1, but this may cause the neck of the subject X to be tested to tilt in the dark. It is described taking this into consideration.
- the test is performed when the subject X removes his / her finger from the touch sensor 5 and indicates the index on the touch panel 311 with the finger.
- the subject X performs the instruction operation rhythmically at a constant speed.
- FIG. 3B when the subject X lifts his / her finger from the touch sensor 5, the subject X cannot see the index on the display 31 due to the electromagnetic shutter of the glasses 4. Thereby, it becomes difficult for the subject X to consciously adjust the finger position toward the index during the instruction operation, and the adjustment due to the intention of the subject X can be prevented. That is, it cuts the function of the cerebrum.
- the index of the display 31 can be visually recognized by the subject X again as shown in FIG.
- the subject X since the line of sight of the subject X is corrected, the subject X indicates the designated position P3 in the vicinity of the corrected position P2, not the display position P1.
- the designated position P3 and the display position P1 are transmitted to the management terminal 2, and a deviation amount (distance) between the designated position P3 and the display position P1 is calculated.
- the next test indicator is displayed on the display 31 at a display position different from the previous time. Will be visible.
- the instruction operation for such an index is repeatedly performed, and the subject X is determined based on the amount of deviation between the indication position P3 of the subject X and the display position P1, more specifically, the tendency of the deviation amount to change. Determine brain function.
- the present inventors include healthy subjects (FIG. 4 (A)), patients with spinocerebellar ataxia type 31 (FIG. 4 (B)), patients with late cerebellar cortical atrophy (FIG. 5 (C)), and A test using the brain function evaluation system 1 was conducted with a patient with Parkinson's disease (FIG. 5D) as a subject.
- healthy subjects are subjects whose brain is not impaired regardless of the cerebrum / cerebellum, and those with spinocerebellar ataxia type 31 and those with late-onset cerebellar cortical atrophy are impaired in the cerebellum.
- a subject is a subject whose cerebellum is not impaired and whose cerebrum is impaired.
- the prism lens 41 whose visual line was shifted 25 degrees to the right was inserted.
- the test was repeated 100 times with the glasses 4 attached, and then the test was repeated 50 times with the glasses 4 with the dummy transparent acrylic plate inserted again.
- the reason for using the dummy transparent acrylic plate is to prevent the subject from knowing whether or not the line of sight is corrected.
- the prism lens 41 that had been inserted was removed, and the gaze correction was canceled by returning it to the dummy transparent acrylic plate. Although the position was indicated, the learning function worked again by repeating the test, and there was a tendency to indicate the vicinity of the index gradually.
- patients with late-onset cerebellar cortical atrophy having a cerebellar disorder showed a tendency similar to that of patients with spinocerebellar ataxia type 31.
- the line of sight is not corrected, there is a tendency to instruct the position shifted from the index separately, and even when the line of sight is corrected, the shift from the index is shifted by the correction amount. There was a tendency to stay close to the indicator.
- the cerebellum initially indicated a position deviated from the index by the amount that the cerebellum had learned, but the learning function worked again gradually by repeating the test. There was a tendency to indicate the vicinity of the indicator.
- the subject is instructed on the index displayed on the display 31, and the tendency of the divergence amount is observed to determine whether the subject has a motor dysfunction associated with a cerebral or cerebellar disorder.
- FIG.6 and FIG.7 the adaptation index
- This adaptive index shows a comparison with the test result of an arbitrary healthy person (for example, the healthy person in FIG. 4A), and the closer the adaptive index is to 1, the more healthy the person is.
- FIG. 6 a comparison was made between an Alzheimer's disease patient (FIG. 6 (E)) and a healthy person older than the patient (FIG. 6 (F)). Further, in FIG. 7, a comparison was made between before treatment (FIG. 7G) and after treatment (FIG.
- FIG. 7H for Parkinson's disease patients. That is, in FIGS. 7G and 7H, the same patient is tested. Specifically, FIG. 7 (G) shows the test results at the first visit stage where no drug treatment was performed, and FIG. 7 (H) took a drug for Parkinson's disease for several months, making life easier. The test results at the time are shown.
- the Alzheimer's disease patient when comparing an Alzheimer's disease patient with a subject older than the patient, the Alzheimer's disease patient has a lower adaptation index. This is considered because the patient with Alzheimer's disease has a weak ability to memorize the index displayed on the display 31. From this, according to the brain function evaluation system 1, it is possible to determine whether the human memory function called working memory is good or bad. That is, since it was found that the results of the additional test decreased in patients with Alzheimer's disease, the brain function evaluation system 1 can be applied to a test for dementia such as Alzheimer's disease.
- the adaptation index which was low before treatment, was significantly improved after treatment. That is, overall variation is reduced and operation is improved.
- FIG. 7 it can be seen that the symptoms of Parkinson's disease improved by treatment appear as test results. From this, according to the brain function evaluation system 1, it can utilize suitably for evaluation of Parkinson's symptom, and drug efficacy evaluation. In addition, shaking of the subject's hand can be quantitatively evaluated.
- the brain function of the subject is evaluated based on the amount of deviation between the indication position of the subject and the index. For example, when there is a disorder in motor function such as shaking hands, the amount of divergence increases, and therefore, objectively and quantitatively evaluate the subject's brain function by comparing with the results of healthy subjects Can do. Thereby, the presence or absence of the motor dysfunction accompanying a brain disease can be determined by a new method that has not been conventionally used.
- the subject's brain function is evaluated by comparing the change tendency of the divergence amount between the indication position and the index with the line of sight corrected with the change tendency of the divergence amount of the healthy person. Even if the cerebellum is a healthy person, even if the line of sight is corrected, the cerebellar motor learning can gradually indicate the index, but the subject with a cerebellar disorder has reduced motor learning ability. Therefore, it is impossible to accurately indicate the index even if the test is repeated. Therefore, the cerebellum can be quantitatively evaluated, and it can be discriminated whether the brain disease is caused by the cerebellum or the cerebrum.
- cerebellar diseases such as spinocerebellar ataxia type 31 and spinocerebellar degeneration
- extrapyramidal diseases such as Parkinson's disease and essential tremor that do not damage the cerebellum
- Parkinson's It can be differentiated from extrapyramidal diseases such as multiple system atrophy that are accompanied by symptoms and can also damage the cerebellum.
- extrapyramidal diseases such as multiple system atrophy that are accompanied by symptoms and can also damage the cerebellum.
- cerebellar disorder-like symptoms that are difficult to distinguish by medical examination and MRI such as ataxia deficiency hemiplegia caused by cerebrovascular disorder and multiple sclerosis, are useful for excluding cerebellar disorders. That is, in addition to diseases that affect the cerebellum, it can be widely applied to various diseases and differentiation of brain development / aging.
- the brain function evaluation system 1 in order to make the index on the display 31 invisible while the subject is instructing the index, when the finger is brought close to the index, the test subject is in the middle position of the finger and the index. The positional relationship cannot be specified, and the misalignment cannot be corrected in the middle of the instruction operation. Thereby, the correction of the indicated position by the subject's intention can be prevented, and the motor function of the cerebellum can be quantitatively evaluated while cutting the function of the cerebrum.
- the brain function evaluation system 1 can be widely used for elucidation of brain functions such as functional linkage in the brain and evaluation of child brain maturation. Furthermore, the brain function evaluation system 1 can also be used for function evaluation in the autism spectrum where the cerebellum is surely involved.
- whether or not the index is visible is realized by the control of the visual control unit 15, but is not limited thereto.
- a physical shutter may be provided on the front surface of the display device 11 (display 31) so that the subject cannot be physically visually recognized by the subject.
- a so-called normally white liquid crystal display that becomes a white screen when no voltage is applied, an indicator is displayed or hidden according to an instruction from the management terminal 2 or the client terminal 3. It can also be realized.
- the dummy transparent acrylic plate, the prism lens 41 whose line of sight is shifted by 25 degrees in the right direction, and the dummy transparent acrylic plate are inserted into the glasses 4 in this order, but the test is limited to this. is not.
- a dummy transparent acrylic plate, a prism lens 41 that deviates 25 degrees in the right direction, a prism lens 41 that deviates 25 degrees in the left direction, and a dummy transparent acrylic plate in that order are lined up in the reverse direction. It is also possible to insert a prism lens 41 that shifts.
- the prism lens 41 whose line of sight is shifted in the opposite direction can give a more prominent tendency than the dummy transparent acrylic plate.
- the line-of-sight shift angle is not limited to 25 degrees, and similar test results can be obtained at 15 degrees and 40 degrees, and a practical test is possible within the range of 7 degrees to 60 degrees.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Neurology (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Neurosurgery (AREA)
- Psychology (AREA)
- Developmental Disabilities (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Physics & Mathematics (AREA)
- Psychiatry (AREA)
- Child & Adolescent Psychology (AREA)
- Hospice & Palliative Care (AREA)
- Human Computer Interaction (AREA)
- Optics & Photonics (AREA)
- Eye Examination Apparatus (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
特に小脳の評価方法としては、体のバランスや四肢の巧緻運動、発語の際の構音障害の有無等に基づく定性的な評価方法が用いられているのが現状であり、ダーツ投げのプリズム適応では定量性と正確性のいずれもが欠け、リアルタイムにも計測できないことから、小脳(特に運動学習)についての定量的かつ高精度な評価方法の構築が求められている。
初めに、図1を参照して、本発明の一つの実施形態としての脳機能評価システム1の機能的構成について説明する。
脳機能評価システム1は、表示装置11と、視線矯正部12と、基準位置検知部13と、指示位置特定部14と、視認制御部15と、乖離量算出部16と、評価部17と、を含んで構成される。
脳機能評価システム1では、被験者は、視線が矯正されていない(視線にずれのない)状態で表示装置11に表示された指標を指示部(例えば、自分の指)で指示することを所定回数繰り返し、また、視線が矯正された(視線がずらされた)状態で表示装置11に表示された指標を指示部(例えば、自分の指)で指示することを所定回数繰り返すことで、脳機能を評価するための試験を行う。
指示位置特定部14は、被験者によって表示装置上の任意の位置が指示されたことを検知し、その結果を視認制御部15に通知する。また、指示位置特定部14は、表示装置上の被験者によって指示された位置(以下「指示位置」と呼ぶ)を特定し、特定した指示位置を乖離量算出部16に通知する。なお、指示位置としては、例えば、表示装置11上の座標を採用することができる。
また、視認制御部15は、指示部が基準位置にある場合に表示装置11に表示された指標を被験者に視認可能とし、指示部が基準位置から離れた場合に表示装置11に表示している指標を視認不可能とする。そして、視認制御部15は、その後指示部が表示装置11上を指示すると、視認不可能としていた指標を被験者に再び視認可能とする。
また、表示装置11は、指標の表示位置を乖離量算出部16に通知する。なお、表示位置としては、例えば、表示装置11上の座標を採用することができる。
続いて、図1に示す機能的構成を具体的に実現するためのハードウェア構成を図2を参照して説明する。なお、図2に示す構成は一例に過ぎず、図1に示す機能を発揮可能であればその他の構成により実現することとしてもよい。
図2に示すように、脳機能評価システム1は、管理端末2と、クライアント端末3と、メガネ4と、タッチセンサー5と、を含んで構成される。
クライアント端末3は、試験が行われる被験者Xに対面するように設置された端末装置であり、ディスプレイ31を含んで構成される。ディスプレイ31は、液晶ディスプレイであり、クライアント端末3の制御に伴い被験者Xに向けて指標を表示する。また、ディスプレイ31の前面にはタッチパネル311が配置され、被験者Xにより指示された指示位置を特定可能に構成される。
タッチセンサー5は、被験者Xによりタッチされているか否かを検知し、USB(Universal Serial Bus)や無線LAN等を介して接続されたクライアント端末3及びメガネ4に対してその検知結果を通知する。本実施形態では、イヤークリップ型のタッチセンサー5を用いることとしている。即ち、本実施形態における基準位置とは、耳に装着されたタッチセンサー5の位置をいう。
そして、タッチセンサー5及びタッチパネル311と通信可能に接続されたメガネ4の電磁シャッターは、タッチセンサー5が指の接触を検知している状態では、被験者Xに対して指標を視認できるようにし、タッチセンサー5が指の接触を検知していない状態では、その後タッチパネル311が指の接触を検知するまで被験者Xに指標を視認できないようにする。
以上、本実施形態の脳機能評価システム1の構成について説明した。続いて、脳機能評価システム1を用いた試験の手順について、図3を参照して説明する。
また、図3(B)に示すように、被験者Xがタッチセンサー5から指を離すと、メガネ4の電磁シャッターの働きにより、被験者Xは、ディスプレイ31の指標が視認できなくなる。これにより、指示動作の途中で被験者Xが指の位置を指標に向けて意識的に調整することが困難になり、被験者Xの意思による調整を防止することができる。即ち、大脳の働きをカットする。
続いて、図4及び図5を参照して、脳機能評価システム1を用いた試験の実施例について説明する。本発明者らは、健常者(図4(A))、脊髄小脳失調症31型の患者(図4(B))、晩発性小脳皮質萎縮症の患者(図5(C))、及びパーキンソン病の患者(図5(D))を被験者として脳機能評価システム1を用いた試験を行った。これら被験者のうち、健常者は大脳・小脳に関わらず脳に障害がみられない被験者であり、脊髄小脳失調症31型の患者及び晩発性小脳皮質萎縮症の患者は小脳に障害がみられる被験者であり、パーキンソン病の患者は小脳には障害がみられず大脳に障害がみられる被験者である。
実施例では、被験者がプリズムレンズ41の代わりにダミーの透明アクリル板を挿入したメガネ4を装着した状態で50回の試験を繰り返した後に、右方向に25度視線がずれるプリズムレンズ41を挿入したメガネ4を装着した状態で100回の試験を繰り返し、その後再びダミーの透明アクリル板を挿入したメガネ4を装着した状態で50回の試験を繰り返すことで行った。なお、ダミーの透明アクリル板を用いるのは、視線の矯正の有無を被験者に知られないようにするためである。
最初の50回の試験では、プリズムレンズ41が挿入されておらず、ダミーの透明アクリル板であることから視線が矯正されていないため、健常者は、指標の近傍を指示する傾向がみられた。
続く100回の試験では、健常者は、初めのうちは指標からずれた位置を指示していたものの、繰り返し試験を行うことで徐々に指標の近傍を指示する傾向がみられた。これは、プリズムレンズ41により視線が矯正されているため、当初矯正分だけずれが生じていたのに対し、その後の繰り返しにより小脳の運動学習機能が働き指標を正確に指示できるようになったと考えられる。
その後の50回の試験では、挿入していたプリズムレンズ41を外し、ダミーの透明アクリル板に戻すことによって視線の矯正を解除したため、初めのうちは小脳が学習していた分だけ指標からずれた位置を指示していたものの、繰り返し試験を行うことで再び学習機能が働き徐々に指標の近傍を指示する傾向がみられた。
最初の50回の試験では、視線が矯正されていないにも関わらず指標からずれた位置をばらばらに指示する傾向がみられた。これは、被験者に運動機能障害があるためと考えられる。
続く100回の試験では、視線の矯正に伴い指標からのずれが矯正分だけシフトする傾向もみられなくはないものの、相変わらずばらばらな指示で、繰り返し行っても指標の近傍に近づくことがなかった。これは、小脳の障害により運動学習機能が働かないためと考えられる。
続く50回の試験では、視線の矯正を解除したことに伴い、矯正分のシフトが解除されているが、最初の50回の試験と同じく指標からずれた位置をばらばらに指示する傾向がみられた。なお、健常者のように当初矯正分とは逆方向にずれる傾向はみられなかった。これは、100回の試験において運動学習機能が働かなかったため、健常者のように学習した分のずれが生じなかったためと考えられる。
最初の50回の試験では、視線が矯正されていないにも関わらず指標からずれた位置を指示する傾向がみられたが、脊髄小脳失調症31型や晩発性小脳皮質萎縮症の患者に比べてばらつきの程度は小さい。これは、被験者に、小脳に起因しない運動機能障害があるためと考えられる。
一方、続く100回の試験では、健常者と同様に、当初矯正分だけずれが生じていたものの、その後の繰り返しにより指標を概ね指示できるようになる傾向がみられた。これは、繰り返しにより小脳の運動学習機能が働き指標を指示できるようになったためと考えられる。
続く50回の試験でも、健常者と同様に、初めのうちは小脳が学習していた分だけ指標からずれた位置を指示していたものの、繰り返し試験を行うことで再び学習機能が働き徐々に指標の近傍を指示するようになる傾向がみられた。
続いて、図6及び図7を参照して、脳機能評価システム1を用いた追加試験の実施例について説明する。なお、追加試験の方法は、図4及び図5で行った試験の方法と同一である。また、図6及び図7では、各被験者における適応指数を図示している。この適応指数は、任意の健常者(一例としては図4(A)の健常者)の試験結果との比較を示し、適応指数が1に近いほど健常であることを示す。
図6では、アルツハイマー病の患者(図6(E))と当該患者よりも高齢の健常者(図6(F))との比較を行った。また、図7では、パーキンソン病の患者について治療前(図7(G))と治療後(図7(H))との比較を行った。即ち、図7(G)(H)では同一の患者について試験を行っている。具体的には、図7(G)は、薬物治療をしていない初診段階での試験結果を示し、図7(H)は、パーキンソン病に対する薬を数ヶ月間服用し、生活が楽になった時点での試験結果を示す。
このことから、脳機能評価システム1によれば、作業記憶と呼ばれる人間の記憶機能の善し悪しを判定することができる。即ち、追加試験によって、アルツハイマー病の患者では結果が低下することが判明したため、脳機能評価システム1は、アルツハイマー病等の認知症の試験に応用することができる。
このことから、脳機能評価システム1によれば、パーキンソン症状の評価や薬効評価に好適に利用することができる。また、被験者の手の震え等も定量的に評価することができる。
一例として、脊髄小脳失調症31型や脊髄小脳変性症のように小脳疾患の診断に利用することができるとともに、小脳を障害しないパーキンソン病や本態性振戦等の錐体外路系疾患と、パーキンソン症状を伴いかつ小脳も障害し得る多系統萎縮症等の錐体外路系疾患とを鑑別することができる。日常の臨床では、病早期や複雑な合併症がある場合等で、この両者の鑑別が難しい場面があるため、脳機能評価システム1の有用性が発揮できる。更に、診察やMRIでは区別しにくい小脳障害類似症状、例えば、脳血管障害や多発性硬化症で起きる運動失調性不全片麻痺でも小脳障害の除外に有用である。即ち、小脳を侵す疾患以外にも多数の疾患や脳発達・老化の鑑別にまで広く応用可能である。
11 表示装置
12 視線矯正部
13 基準位置検知部
14 指示位置特定部
15 視認制御部
16 乖離量算出部
17 評価部
2 管理端末
3 クライアント端末
31 ディスプレイ
311 タッチパネル
4 メガネ
41 プリズムレンズ
5 タッチセンサー
Claims (10)
- 被験者によって指示される指標を表示する表示装置と、
前記表示装置上の前記被験者によって指示された指示位置を特定する指示位置特定部と、
前記指標の表示位置と前記被験者の前記指示位置との乖離量を算出する乖離量算出部と、
を備える脳機能評価システム。 - 前記被験者の視線がずれるように矯正する視線矯正部、を更に備え、
前記指示位置特定部は、前記視線矯正部により視線が矯正された状態における前記被験者の指示位置を特定し、
前記乖離量算出部は、算出された複数回の前記乖離量の変化を記憶する、
請求項1に記載の脳機能評価システム。 - 前記指標を指示する指示部が基準位置にあることを検知する基準位置検知部と、
前記指標の視認性を制御する視認制御部と、
を備え、
前記視認制御部は、前記基準位置検知部により前記指示部が基準位置にあると検知されることを条件に、又は前記指示部が前記表示装置上を指示することを条件に、前記指標を前記被験者に視認可能とし、前記指示部が前記基準位置から離れ前記表示装置上を指示するまでの間は前記指標を前記被験者に視認不可能とする、
請求項1又は2に記載の脳機能評価システム。 - 被験者によって指示される指標を表示装置に表示するステップと、
前記表示装置に表示した前記指標を前記被験者に指示させるステップと、
前記表示装置上の前記被験者によって指示された指示位置を特定するステップと、
前記指標の表示位置と前記被験者の前記指示位置との乖離量を算出するステップと、
を含む脳機能評価方法。 - 前記指標を前記被験者に指示させるステップは、前記被験者の視線がずれるように矯正する視線矯正部を装着させた状態で行う、
請求項4に記載の脳機能評価方法。 - 前記指標を指示する指示部が基準位置にあることを検知するステップと、
前記指示部が基準位置にあると検知されることを条件に、前記指標を前記被験者に視認可能とするステップと、
前記指示部が基準位置から離れることを条件に前記指標を前記被験者に視認不可能とするステップと、
前記指示部が前記表示装置上を指示することを条件に、前記指標を前記被験者に視認可能とするステップと、
を含む請求項4又は5に記載の脳機能評価方法。 - 被験者によって指示される指標を表示する表示装置と、
前記指標を指示する前記被験者の指先が自身の耳上の基準位置にあることを検知する基準位置検知部と、
前記表示装置上の前記被験者によって指示された指示位置を特定する指示位置特定部と、
前記指標の表示位置と前記被験者の指示位置との乖離量を算出する乖離量算出部と、
前記被験者の視線がずれるように矯正する視線矯正部と、
前記指標の視認性を制御する視認制御部と、
を備え、
前記視認制御部は、前記基準位置検知部により前記被験者の指先が基準位置にあると検知されることを条件に前記指標を前記被験者に視認可能とし、前記被験者の指先が基準位置から離れることを条件に前記指標を前記被験者に視認不可能とし、
前記指示位置特定部は、前記視線矯正部により視線が矯正された状態における前記被験者の指示位置を特定し、
前記乖離量算出部は、算出された複数回の前記乖離量の変化を記憶する脳機能評価システム。 - 前記視認制御部は、前記被験者の指先が前記基準位置から離れ前記表示装置上を指示するまでの間は前記指標を前記被験者に視認不可能とし、前記被験者の指先が前記表示装置上を指示することを条件に前記指標を前記被験者に視認可能とする、請求項7に記載の脳機能評価システム。
- 被験者によって指示される指標を表示装置に表示するステップと、
前記指標を指示する前記被験者の指先が自身の耳上の基準位置にあることを検知するステップと、
前記表示装置に表示した前記指標を前記被験者に指示させるステップと、
前記被験者の指先が基準位置にあると検知されることを条件に前記指標を前記被験者に視認可能とするステップと、
前記被験者の指先が基準位置から離れることを条件に前記指標を前記被験者に視認不可能とするステップと、
前記表示装置上の前記被験者によって指示された指示位置を特定するステップと、
前記指標の表示位置と前記被験者の指示位置との乖離量を算出するステップと、
を含み、
前記指標を前記被験者に指示させるステップは、前記被験者の視線がずれるように矯正する視線矯正部を装着させた状態で行う、脳機能評価方法。 - 前記被験者の指先が前記表示装置上を指示することを条件に前記指標を前記被験者に視認可能とするステップ、
を含む請求項9に記載の脳機能評価方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157006175A KR20150052078A (ko) | 2012-08-31 | 2013-08-30 | 뇌기능 평가 시스템 및 뇌기능 평가 방법 |
JP2014533111A JP6218286B2 (ja) | 2012-08-31 | 2013-08-30 | 脳機能評価システム及び脳機能評価システムの作動方法 |
EP13832370.4A EP2891456A4 (en) | 2012-08-31 | 2013-08-30 | BRAIN FUNCTIONAL ASSESSMENT SYSTEM AND BRAIN FUNCTIONAL ASSESSMENT PROCEDURE |
IN2508DEN2015 IN2015DN02508A (ja) | 2012-08-31 | 2013-08-30 | |
CN201380044666.0A CN104602613A (zh) | 2012-08-31 | 2013-08-30 | 脑功能评价系统及脑功能评价方法 |
CA2883505A CA2883505A1 (en) | 2012-08-31 | 2013-08-30 | Brain function evaluation system and brain function evaluation method |
US14/431,966 US20150320350A1 (en) | 2012-08-31 | 2013-08-30 | Brain function evaluation system and brain function evaluation method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012192339 | 2012-08-31 | ||
JP2012-192339 | 2012-08-31 | ||
JP2012193894 | 2012-09-04 | ||
JP2012-193894 | 2012-09-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014034856A1 true WO2014034856A1 (ja) | 2014-03-06 |
Family
ID=50183661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/073344 WO2014034856A1 (ja) | 2012-08-31 | 2013-08-30 | 脳機能評価システム及び脳機能評価方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20150320350A1 (ja) |
EP (1) | EP2891456A4 (ja) |
JP (1) | JP6218286B2 (ja) |
KR (1) | KR20150052078A (ja) |
CN (1) | CN104602613A (ja) |
CA (1) | CA2883505A1 (ja) |
IN (1) | IN2015DN02508A (ja) |
TW (1) | TW201422208A (ja) |
WO (1) | WO2014034856A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015173695A (ja) * | 2014-03-13 | 2015-10-05 | シャープ株式会社 | 認知症診断支援装置 |
WO2016195082A1 (ja) * | 2015-06-05 | 2016-12-08 | 株式会社Eyeresh | 軽度認知症の早期発見・予防プログラム及びシステム |
JP2017536872A (ja) * | 2014-10-21 | 2017-12-14 | ユニヴェルシテ パリ デカルトUniversite Paris Descartes | 乳幼児検査方法及びその検査方法の実装に適した装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105407800B (zh) * | 2013-09-11 | 2019-04-26 | 麦克赛尔株式会社 | 脑功能障碍评价装置及存储介质 |
WO2017113375A1 (zh) * | 2015-12-31 | 2017-07-06 | 深圳市洛书和科技发展有限公司 | 一种基于触屏的数据处理方法和人体健康检测系统 |
WO2018085193A1 (en) * | 2016-11-01 | 2018-05-11 | Mayo Foundation For Medical Education And Research | Oculo-cognitive addition testing |
KR101907181B1 (ko) * | 2016-12-30 | 2018-10-12 | 서울대학교산학협력단 | 가상 모델을 이용하는 시각 자극 생성 방법, 시스템 및 컴퓨터 판독 가능한 기록 매체 |
US11529492B2 (en) | 2017-06-28 | 2022-12-20 | Mayo Foundation For Medical Education And Research | Methods and materials for treating hypocapnia |
IT201900004269A1 (it) * | 2019-03-25 | 2020-09-25 | Restorative Neurotechnologies S R L | Sistema per il potenziamento o la riabilitazione cognitiva |
KR102234995B1 (ko) * | 2020-12-31 | 2021-04-01 | 주식회사 델바인 | 가상 객체 모델을 이용한 인지기능 재활훈련 방법, 장치 및 시스템 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004057357A (ja) | 2002-07-26 | 2004-02-26 | Kumamoto Technology & Industry Foundation | 運動機能評価方法 |
WO2009028221A1 (ja) * | 2007-08-31 | 2009-03-05 | Tokyo Metropolitan Organization For Medical Research | 定量的運動機能評価システム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996020643A1 (en) * | 1994-12-29 | 1996-07-11 | Burgan, Pinny | System and method for detection and quantification of parkinson's disease |
US6485417B1 (en) * | 1997-09-15 | 2002-11-26 | Bowles-Langley Technology, Inc. | Alzheimer's tester |
US7981058B2 (en) * | 2004-03-12 | 2011-07-19 | The Trustees Of Dartmouth College | Intelligent wearable monitor systems and methods |
CN102548474B (zh) * | 2009-09-30 | 2014-09-03 | 三菱化学株式会社 | 针对体动信号的信息处理方法、信息处理系统及信息处理装置 |
-
2013
- 2013-08-30 EP EP13832370.4A patent/EP2891456A4/en not_active Withdrawn
- 2013-08-30 CA CA2883505A patent/CA2883505A1/en not_active Abandoned
- 2013-08-30 IN IN2508DEN2015 patent/IN2015DN02508A/en unknown
- 2013-08-30 US US14/431,966 patent/US20150320350A1/en not_active Abandoned
- 2013-08-30 WO PCT/JP2013/073344 patent/WO2014034856A1/ja active Application Filing
- 2013-08-30 JP JP2014533111A patent/JP6218286B2/ja active Active
- 2013-08-30 KR KR1020157006175A patent/KR20150052078A/ko not_active Application Discontinuation
- 2013-08-30 CN CN201380044666.0A patent/CN104602613A/zh active Pending
- 2013-08-30 TW TW102131496A patent/TW201422208A/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004057357A (ja) | 2002-07-26 | 2004-02-26 | Kumamoto Technology & Industry Foundation | 運動機能評価方法 |
WO2009028221A1 (ja) * | 2007-08-31 | 2009-03-05 | Tokyo Metropolitan Organization For Medical Research | 定量的運動機能評価システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2891456A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015173695A (ja) * | 2014-03-13 | 2015-10-05 | シャープ株式会社 | 認知症診断支援装置 |
JP2017536872A (ja) * | 2014-10-21 | 2017-12-14 | ユニヴェルシテ パリ デカルトUniversite Paris Descartes | 乳幼児検査方法及びその検査方法の実装に適した装置 |
WO2016195082A1 (ja) * | 2015-06-05 | 2016-12-08 | 株式会社Eyeresh | 軽度認知症の早期発見・予防プログラム及びシステム |
JP6229867B2 (ja) * | 2015-06-05 | 2017-11-15 | 視空間工房株式会社 | 軽度認知症の早期発見・予防プログラム及びシステム |
JPWO2016195082A1 (ja) * | 2015-06-05 | 2017-12-28 | 視空間工房株式会社 | 軽度認知症の早期発見・予防プログラム及びシステム |
US11000221B2 (en) | 2015-06-05 | 2021-05-11 | Shikuukankoubou Co., Ltd. | Program and system for early detection and prevention of mild dementia |
Also Published As
Publication number | Publication date |
---|---|
US20150320350A1 (en) | 2015-11-12 |
CA2883505A1 (en) | 2014-03-06 |
KR20150052078A (ko) | 2015-05-13 |
EP2891456A4 (en) | 2016-06-01 |
IN2015DN02508A (ja) | 2015-09-11 |
JPWO2014034856A1 (ja) | 2016-08-08 |
JP6218286B2 (ja) | 2017-10-25 |
EP2891456A1 (en) | 2015-07-08 |
TW201422208A (zh) | 2014-06-16 |
CN104602613A (zh) | 2015-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6218286B2 (ja) | 脳機能評価システム及び脳機能評価システムの作動方法 | |
US10194794B2 (en) | Self guided subjective refraction instruments and methods | |
CA2984179C (en) | Method and device for determining the visual acuity of a user | |
JP2020509790A5 (ja) | ||
JP5421146B2 (ja) | 視野検査システム | |
US20170065168A1 (en) | Quantification of inter-ocular suppression in binocular vision impairment | |
JP2019171022A (ja) | 評価装置、評価方法、及び評価プログラム | |
Grant et al. | Reach-to-precision grasp deficits in amblyopia: Effects of object contrast and low visibility | |
Rubin | Visual acuity and contrast sensitivity | |
WO2017002846A1 (ja) | 視機能測定装置、および視機能測定プログラム | |
KR102295587B1 (ko) | 가상현실 기반의 시야검사 방법 및 시스템 | |
Shapiro et al. | Accommodative state of young adults using reading spectacles | |
Craig et al. | The crossed-hands deficit in tactile temporal-order judgments: the effect of training | |
JP2006263067A (ja) | 視力測定装置 | |
WO2020137544A1 (ja) | 視野検査装置 | |
US20210298593A1 (en) | Systems, methods, and program products for performing on-off perimetry visual field tests | |
JP2024525811A (ja) | 複数の機能的な眼のパラメーターを決定するためのコンピュータープログラム、方法、及び装置 | |
Johansson et al. | Methodological aspects of using a wearable eye-tracker to support diagnostic clinical evaluation of prolonged disorders of consciousness | |
JP2018149061A (ja) | 視野検査システム | |
RU2217039C1 (ru) | Способ офтальмологического исследования поля зрения | |
JP7379292B2 (ja) | 視覚検査装置、視覚検査システム及び視覚検査プログラム | |
Predebon | Convergence responses to monocularly viewed objects: implications for distance perception | |
Nowakowski et al. | Eye tracking by Virtual Reality Head Mounted Display provides biofeedback for gaze stabilisation exercises and enables on-the-fly measurement of Vestibulo-Ocular Reflex gain | |
Piller | From darkness to light: Effects of vision restoration on action and perception after prolonged visual deprivation | |
DE102021202451A1 (de) | Verfahren, System und Computerprogrammprodukt zur Bestimmung optometrischer Parameter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13832370 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014533111 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2883505 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157006175 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013832370 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013832370 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14431966 Country of ref document: US |