WO2014034714A1 - 鋼板 - Google Patents
鋼板 Download PDFInfo
- Publication number
- WO2014034714A1 WO2014034714A1 PCT/JP2013/072989 JP2013072989W WO2014034714A1 WO 2014034714 A1 WO2014034714 A1 WO 2014034714A1 JP 2013072989 W JP2013072989 W JP 2013072989W WO 2014034714 A1 WO2014034714 A1 WO 2014034714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot
- steel sheet
- less
- steel
- forming
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
Definitions
- the present invention relates to a steel plate (hot forming steel plate) suitable for use in which quenching is performed simultaneously with hot forming or immediately after hot forming, such as hot pressing. More specifically, the present invention suppresses strain-induced ferrite transformation in the molded part even when hot molding with high strain molding is performed, for example, the molded part undergoes plastic strain of 20% or more.
- the present invention relates to a steel sheet for hot forming that has a uniform hardness after hot forming, excellent toughness and little toughness anisotropy after hot forming.
- the forming is performed by roll forming instead of press forming, a certain degree of processing is possible even for high-strength steel sheets.
- roll forming there is a restriction that it can be applied only to processing a member having a uniform cross section in the longitudinal direction, and the degree of freedom of the member shape is remarkably limited.
- Patent Document 1 discloses a hot forming (eg, hot press) technique in which a material to be formed is heated and then formed. Has been.
- a soft steel plate is molded before or simultaneously with molding, immediately after molding, or after molding, while ensuring good formability during molding, and after molding, a molded member having high strength by quenching.
- the hot press as described above is applied to a member having a relatively simple shape, and is expected to be applied to a member subjected to more severe forming such as burring.
- strain-induced ferrite transformation occurs in the high strain forming portion, and there is a concern that the hardness locally decreases in the member after hot forming. .
- Patent Document 1 describes that pressing is performed at 850 ° C. or higher, but in an actual hot press, a steel plate heated to about 900 ° C. in a heating furnace or the like is extracted from the heating furnace and pressed. There is a case where the temperature is lowered to 850 ° C. or lower while being transported to the machine. In such a case, it is difficult to suppress strain-induced ferrite transformation in molding.
- Patent Document 2 discloses that the material cooling process by heat removal in the press die can be omitted.
- a method for producing a hot-pressed high-strength steel member having excellent properties is disclosed.
- the method disclosed in Patent Document 2 is a very excellent invention, it is necessary to contain a large amount of an element having an effect of improving the hardenability such as Mn, Cr, Cu and Ni in steel. Therefore, the technique of Patent Document 2 has a problem that costs increase.
- the member manufactured using the technology of Patent Document 2 toughness deterioration caused by various existing inclusions and toughness anisotropy caused by inclusions (mainly MnS) elongated in the rolling direction are present. Concerned.
- Japanese Unexamined Patent Publication No. 2002-102980 Japanese Unexamined Patent Publication No. 2006-213959 Japanese Unexamined Patent Publication No. 2009-242910
- the hot press has been applied only to members having a relatively simple shape. Therefore, a member after hot forming caused by strain-induced ferrite transformation in a high strain forming part (a hot forming step) can occur when considering application to a member subjected to more severe forming such as burring forming.
- Technical issues such as local hardness reduction, toughness anisotropy and toughness value reduction have never been studied.
- the present inventors have intensively studied to solve the above problems. As a result, by controlling the chemical composition, inclusion amount and center segregation of the steel sheet, even when hot forming with high strain forming is performed, strain-induced ferrite transformation is suppressed, and after hot forming It has been newly found that a steel sheet for hot forming that has uniform hardness, excellent toughness after hot forming, and little toughness anisotropy can be obtained. In the following description, the fact that the hardness is uniform may mean that the hardness distribution is stable.
- the gist of the present invention based on the above new findings is as follows.
- the steel sheet according to one embodiment of the present invention has a chemical composition of mass%, C: 0.18% to 0.275%, Si: 0.02% to 0.15%, Mn: 1.85. % To 2.75%, sol.
- the chemical composition is further replaced by a part of the Fe, in mass%, Ni: 0.02% to 0.15% and Cu: 0.003%. It may contain one or two selected from the group consisting of ⁇ 0.05%.
- the chemical composition further includes Ti: 0.005% to 0.1% and Nb: One or two selected from the group consisting of 0.005% to 0.2% may be contained.
- a plating layer may be further provided on the surface of the steel plate.
- the hot forming may be performed according to a conventional method.
- the steel plate is heated to a temperature of Ac 3 points or higher (about 800 ° C) and Ac 3 points + 200 ° C or lower, held for 0 seconds to 600 seconds, transported to a press machine, press-formed, and bottom dead center Can hold for more than 5 seconds.
- the heating method may be appropriately selected.
- rapid heating current heating or high frequency heating can be performed.
- furnace heating set at a heating temperature or the like can be used. Since it is air-cooled during conveyance to the press machine, if the conveyance time is long, ferrite transformation may occur and soften before the press starts. Therefore, it is desirable that the conveyance time is 15 seconds or less.
- the mold may be cooled.
- the cooling method may be a cooling method according to need, such as cooling pipes in the mold and flowing refrigerant.
- Chemical composition (1) C 0.18% to 0.275% C is an important element for increasing the hardenability of steel, determining the strength after quenching, and controlling the local ductility and toughness after hot forming. Further, since C is an austenite-forming element, it has an effect of suppressing strain-induced ferrite transformation during high strain forming and facilitating obtaining a stable hardness distribution in the member after hot forming. However, if the C content is less than 0.18%, it is difficult to ensure a tensile strength of 1100 MPa or more, which is a preferable strength after quenching, and the effect of obtaining a stable hardness distribution due to the above action cannot be obtained. .
- the C content is 0.18% to 0.275%.
- the upper limit with preferable C content is 0.26%, and a more preferable upper limit is 0.24%.
- Si 0.02% to 0.15%
- Si is an element that enhances hardenability and improves scale adhesion after hot forming.
- the lower limit for the Si content is 0.02%.
- a preferred lower limit is 0.03%.
- the Si content exceeds 0.15%, the heating temperature required for austenite transformation during hot forming becomes extremely high. For this reason, the cost required for heat treatment may increase, and quenching may be insufficient due to insufficient heating.
- Si is a ferrite-forming element
- the Si content is too high, strain-induced ferrite transformation is likely to occur during high strain forming, and the hardness is locally reduced and stable in the member after hot forming.
- the hardness distribution obtained may not be obtained.
- the upper limit of the Si content is 0.15%.
- Mn 1.85% to 2.75%
- Mn is an effective element for enhancing the hardenability of the steel and stably securing the strength of the steel after quenching. Further, since Mn is an austenite-forming element, it suppresses strain-induced ferrite transformation during high strain forming and facilitates obtaining a stable hardness distribution in the member after hot forming. However, if the Mn content is less than 1.85%, the above effects may not be sufficiently obtained. Therefore, the lower limit of the Mn content is 1.85%. On the other hand, when the Mn content exceeds 2.75%, the above effect is saturated, and rather the toughness deterioration after quenching is caused. Therefore, the upper limit of the Mn content is 2.75%. The upper limit with preferable Mn content is 2.5%.
- sol.Al 0.0002% to 0.5%
- Al is an element that deoxidizes molten steel and makes the steel sound. If the sol.Al content is less than 0.0002%, deoxidation is not sufficient. Therefore, the lower limit of the sol.Al content is 0.0002%.
- Al is an element effective for enhancing the hardenability of the steel sheet and stably ensuring the strength after quenching, so Al may be positively incorporated. However, even if the content exceeds 0.5%, the effect is not only saturated but also the cost is increased. For this reason, the upper limit of the Al content is set to 0.5%. Note that sol. Al indicates acid-soluble Al, and the content thereof does not include the amount of Al contained in Al 2 O 3 or the like that does not dissolve in acid.
- Cr 0.05% to 1.00% Cr is an element that enhances the hardenability of steel.
- Cr is an austenite-generating element, it suppresses strain-induced ferrite transformation during high strain forming and facilitates obtaining a stable hardness distribution in the member after hot forming.
- the lower limit of the Cr content is 0.05%.
- a preferred lower limit is 0.1%, and a more preferred lower limit is 0.2%.
- the upper limit of the Cr content is 1.00%.
- the upper limit with preferable Cr content is 0.8%.
- B 0.0005% to 0.01%
- B is an element effective for enhancing the hardenability of steel and stably securing the strength after quenching.
- the lower limit of the B content is set to 0.0005%.
- the upper limit of the B content is 0.01%.
- a preferable upper limit of the B content is 0.005%.
- P 0.1% or less
- P is an element generally contained as an impurity. However, it has the effect of enhancing the hardenability of the steel and further ensuring the strength of the steel after quenching stably, so it may be actively incorporated.
- the P content exceeds 0.1%, the toughness is remarkably deteriorated. Therefore, the P content is limited to 0.1%.
- the upper limit with preferable P content is 0.05%.
- the lower limit of the P content is not particularly limited, but excessive reduction of the P content causes a significant cost increase. For this reason, it is good also considering the minimum of P content as 0.0002%.
- S 0.0033% or less S is an element contained as an impurity.
- MnS is formed and becomes a main factor of toughness reduction and toughness anisotropy. If the S content exceeds 0.0033%, the toughness deteriorates significantly, so the S content is limited to 0.0033%.
- the lower limit of the S content is not particularly limited, but excessive reduction of the S content causes a significant cost increase, so the lower limit of the S content may be set to 0.0002%.
- N 0.01% or less N is an element contained as an impurity.
- the lower limit of the N content is not particularly limited, but excessive reduction of the N content causes a significant cost increase. For this reason, the lower limit of the N content may be 0.0002%. A more preferable lower limit of the N content is 0.0008% or more.
- the steel sheet according to this embodiment may contain the following optional elements. These elements are not necessarily contained. Therefore, there is no need to particularly limit the lower limit of the content, and the lower limit thereof is 0%.
- Ni: 0.15% or less, Cu: 0.05% or less Ni and Cu are effective elements for enhancing the hardenability of the steel and stably securing the strength after quenching. Therefore, you may contain 1 type or 2 types of these elements. However, even if any element is contained exceeding the upper limit, the above effect is saturated and disadvantageous in cost. Accordingly, the content of each element is as described above. Preferably, the Ni content is 0.10% or less and the Cu content is 0.03% or less. In order to acquire the said effect more reliably, it is preferable to contain 1 type or 2 types selected from the group which consists of Ni: 0.02% or more and Cu: 0.003% or more.
- Ti and Nb suppress recrystallization when heating the steel sheet to Ac 3 points or more and subjecting it to hot forming, and further finer It is an element that forms carbides to suppress grain growth and makes austenite grains fine. When the austenite grains become fine, the toughness of the hot formed member is greatly improved.
- TiN is preferentially bonded to N in steel to produce TiN, and B is prevented from being consumed by the precipitation of BN. As a result, the hardenability by B can be improved by containing Ti. In order to acquire the said effect, you may contain 1 type or 2 types of these elements.
- the content of each element is as described above.
- the upper limit of Ti content is 0.08% and the upper limit of Nb content is 0.15%.
- the balance other than the above is Fe and impurities.
- Impurities refer to raw materials such as ores and scraps and those mixed from the manufacturing environment.
- the steel sheet according to the present invention may be either a hot-rolled steel sheet or a cold-rolled steel sheet, or may be an annealed hot-rolled steel sheet or an annealed cold-rolled steel sheet obtained by annealing a hot-rolled steel sheet or a cold-rolled steel sheet.
- the cleanliness in the present embodiment is defined by the sum of arithmetic amounts of A, B, and C inclusions contained in the steel sheet specified in JIS G0555. Is done. Increasing the amount of inclusions facilitates crack propagation, leading to toughness deterioration and toughness anisotropy increase. Therefore, the upper limit of cleanliness is 0.08%. A preferable upper limit is 0.04%.
- MnS which is an A-based inclusion, is a major cause of anisotropy reduction in toughness. Therefore, it is particularly desirable that the A-based inclusion is 0.06% or less. More preferably, the A-based inclusion is 0.03% or less.
- the cleanliness is preferably low, but the lower limit may be 0.003% or 0.005% from the viewpoint of cost.
- the Mn segregation degree ⁇ is preferably close to 1.0 (that is, there is no segregation), but the lower limit may be set to 1.03 or 1.05 from the viewpoint of cost.
- ⁇ [maximum Mn concentration (mass%) at the thickness center portion] / [average Mn concentration (mass%) at the 1/4 depth position of the thickness from the surface] (Formula 1)
- Plating layer A plated layer may be formed on the surface of the hot-forming steel plate according to the present invention for the purpose of improving corrosion resistance and the like, and may be a surface-treated steel plate. Even if it has a plating layer, the effect of this embodiment is not impaired.
- the plating layer may be an electroplating layer or a hot dipping layer. Examples of the electroplating layer include an electrogalvanizing layer and an electro Zn—Ni alloy plating layer.
- the hot dip galvanized layer includes hot dip galvanized layer, alloyed hot dip galvanized layer, hot dip aluminum plated layer, hot dip Zn-Al alloy plated layer, hot dip Zn-Al-Mg alloy plated layer, hot dip Zn-Al-Mg-Si alloy. A plating layer etc. are illustrated.
- the plating adhesion amount is not particularly limited and may be within a general range.
- the molten steel having the above chemical composition is made into a steel slab by a continuous casting method.
- the molten steel temperature is 5 ° C higher than the liquidus temperature
- the molten steel casting amount per unit time is 6 ton / min or less
- the center segregation reduction treatment is performed before the slab is completely solidified. It is preferable to apply.
- the casting amount (casting speed) per unit time of the molten steel exceeds 6 ton / min during continuous casting, the molten steel flow in the mold is fast, so that inclusions are easily captured and inclusions in the slab increase.
- the molten steel temperature is less than 5 ° C.
- the temperature of the molten steel is 8 ° C. or more from the liquidus temperature and the casting amount is 5 ton / min or less.
- the concentrated portion can be relaxed or discharged by performing electromagnetic stirring or unsolidified layer pressure reduction on the unsolidified layer before the slab is completely solidified.
- S2 Slab homogenization process
- a slab homogenization process in which the slab is heated to 1150 to 1350 ° C. and held for 10 to 50 hours may be performed.
- the degree of segregation can be further reduced.
- the upper limit with preferable heating temperature is 1300 degreeC
- the upper limit with preferable holding time is 30 hours.
- Hot rolling step (S3) to cooling step (S4) to winding step (S5) The steel slab obtained by performing the above-mentioned continuous casting process and, if necessary, the slab homogenization process is heated to 1050 ° C. to 1350 ° C. and hot-rolled to obtain a steel plate.
- the steel sheet that has been hot-rolled is held in that temperature range for 5 to 20 seconds. After the holding, the steel sheet is cooled to a temperature range of 400 ° C. to 700 ° C. by water cooling. Next, the cooled steel sheet is wound up.
- the steel slab may contain non-metallic inclusions that cause deterioration of the toughness and local deformability of the member after quenching the steel plate. Therefore, when the steel slab is subjected to hot rolling, it is preferable to sufficiently dissolve these nonmetallic inclusions.
- the temperature of the steel slab used for hot rolling is preferably 1050 ° C. or higher.
- the temperature of the steel piece used for hot rolling should just be 1050 degreeC or more, and what is necessary is just to heat the steel piece which became less than 1050 degreeC and to be 1050 degreeC or more.
- the rolling texture remains and becomes the cause of anisotropy in the final product. Therefore, it is preferable to hold for 5 seconds or more in the temperature range after the completion of rolling of the steel sheet so that the transformation from the recrystallized austenite occurs. In order to perform holding for 5 seconds or more in the production line, for example, it may be conveyed without water cooling in the cooling zone after finish rolling.
- the ferrite area ratio in the metal structure can be increased by setting the winding temperature to 400 ° C. or higher.
- the winding temperature is preferably 400 ° C. or higher.
- the winding temperature is preferably 700 ° C. or lower.
- untransformed austenite remains after winding, and when the untransformed austenite undergoes ferrite transformation after winding, the coil winding tension is lost due to volume expansion due to ferrite transformation and subsequent thermal contraction.
- Pickling step (S6) You may perform pickling about the steel plate after the said winding-up process.
- Pickling may be performed according to a conventional method. Before or after pickling, skin pass rolling may be performed for flattening correction or scale peeling promotion, and the effect of this embodiment is not affected.
- the elongation rate in the case of performing the skin pass rolling does not have to be specified, and may be, for example, 0.3% or more and less than 3.0%.
- the pickled steel sheet obtained by the pickling process may be cold-rolled as necessary.
- the cold rolling method may be performed according to a conventional method.
- the rolling reduction of cold rolling may be within a normal range, and is generally 30% to 80%.
- Annealing process The hot rolled steel sheet obtained in the winding step (S5) or the cold rolled steel sheet obtained in the cold rolling step (S7) can be annealed at 700 ° C. to 950 ° C. as necessary.
- the hot-rolled steel sheet and the cold-rolled steel sheet By subjecting the hot-rolled steel sheet and the cold-rolled steel sheet to annealing at a temperature range of 700 ° C. or higher, the influence of hot-rolling conditions can be reduced, and further stabilization of the properties after quenching can be achieved. . Moreover, about a cold-rolled steel plate, a steel plate softens by recrystallization and it can improve the workability before hot forming. Therefore, when annealing a hot-rolled steel plate or a cold-rolled steel plate, it is preferable to hold
- the annealing temperature to 950 ° C. or less, it is possible to suppress the cost required for annealing and ensure high productivity. Moreover, since coarsening of the structure can be suppressed, better toughness can be secured after quenching. Therefore, when annealing a hot-rolled steel plate or a cold-rolled steel plate, it is preferable to hold
- cooling after annealing is preferably performed at an average cooling rate of 3 ° C./second to 20 ° C./second up to 550 ° C.
- average cooling rate 3 ° C./second or more
- generation of coarse pearlite and coarse cementite is suppressed, and the characteristics after quenching can be improved.
- the average cooling rate 20 ° C./second or less, it becomes easy to stabilize the material.
- both electroplating and hot dipping may be performed according to ordinary methods.
- hot dip galvanizing a continuous hot dip galvanizing facility may be used, and the annealing process and the plating process continuously performed in the equipment may be carried out, and the plating process may be performed independently of the annealing process. May be implemented.
- the hot dip galvanizing may be further performed as an alloying hot dip galvanizing by alloying treatment.
- the alloying treatment temperature is preferably 480 ° C. to 600 ° C. By setting the alloying treatment temperature to 480 ° C.
- the amount of inclusions and the degree of segregation in this steel sheet are almost determined in the process up to hot rolling and do not change substantially before and after hot forming. Therefore, if the chemical composition, inclusion amount (cleanliness), and segregation degree of the steel sheet before hot forming satisfy the range of this embodiment, the hot press member manufactured by hot pressing from this is also implemented in the same manner. Meet the range of forms.
- Hot rolling was performed using the slab thus prepared, and then cooled and wound up to obtain a hot-rolled steel sheet having a thickness of 5.0 mm or 2.9 mm.
- the hot rolling conditions at this time were a slab heating temperature of 1250 ° C., a rolling start temperature of 1150 ° C., a rolling end temperature of 900 ° C., and a winding temperature of 650 ° C.
- Hot rolling was performed by multi-pass rolling, and held for 10 seconds after the end of rolling. Cooling after hot rolling was performed by water cooling. Some were not retained for comparison.
- the casting speed differs between the actual production equipment and the test continuous casting machine used in this example. For this reason, Table 2 shows values converted into casting speeds in actual production equipment in consideration of the size factor.
- the molten steel heating temperature difference in Table 2 is a value obtained by subtracting the liquidus temperature from the molten steel temperature.
- the obtained hot-rolled steel sheet was pickled according to a conventional method to obtain a pickled steel sheet.
- the pickled steel sheet having a thickness of 5.0 mm was cold-rolled to obtain a 2.9 mm cold-rolled steel sheet.
- Some hot rolled steel sheets were electroplated.
- Some cold-rolled steel sheets were subjected to recrystallization annealing (annealing temperature 800 ° C., annealing time 60 seconds) in a continuous annealing facility, and further subjected to electrogalvanization for a part thereof.
- a part of the hot-rolled steel sheet and the cold-rolled steel sheet was annealed (annealing temperature 800 ° C., annealing time 60 seconds) and hot-dip galvanized in a continuous hot-dip galvanizing facility.
- the temperature of the hot dip galvanizing bath was 460 ° C., and a part thereof was subjected to an alloying treatment at 540 ° C. for 20 seconds to obtain a hot dip galvanized steel plate and an alloyed hot dip galvanized steel plate.
- the manufactured steel plate was used as a test material, and hot press forming was performed using a hot press test apparatus.
- Blank size 150 mm square, punched hole diameter: 36 mm (clearance: 10%)
- a steel plate that had been punched was heated in a heating furnace until the steel plate surface temperature reached 900 ° C., and held at that temperature for 4 minutes, It was taken out from the heating furnace. Then, it cooled by standing_to_cool until it became 750 degreeC, when it reached 750 degreeC, hot burring shaping
- the hot burring molding conditions are as follows. Punch shape: cone, Punch diameter: 60mm, Press speed: 40 mm / second, Cooling after molding was performed by mold cooling that was held for 1 minute at the bottom dead center.
- the burring part high strain forming part subjected to plastic strain of 20% or more
- flange part low strain forming part whose plastic strain amount is 5% or less.
- the hardness at the 1/4 depth position of the thickness of the cross section was measured with a Vickers hardness tester.
- the measurement load was 98 kN.
- the measuring method was based on JIS Z2244. This hardness measurement was performed 5 times in total while moving at the same plate thickness position at a pitch of 200 ⁇ m.
- the average value of the five Vickers hardness values obtained for each member was determined and used as the average hardness (Hv).
- the manufactured steel plate was used as a test material, and the toughness value (absolute value of toughness) and the anisotropy of toughness were investigated.
- the survey was conducted as follows. First, the 2.9 mm steel plate was heated in a heating furnace until the steel sheet surface temperature reached 900 ° C., held at that temperature for 4 minutes, and then taken out from the heating furnace. Subsequently, it cooled by standing to cool to 750 degreeC, and when it reached 750 degreeC, it pinched from the upper and lower sides with the flat plate metal mold
- a Charpy impact test sample was taken so that the longitudinal direction of the sample was in the direction perpendicular to the rolling direction. At this time, the notch was a V-notch having a depth of 2 mm.
- the test temperature was room temperature, and an impact test was performed according to JISZ 2242.
- the ratio of the impact value (absorbed energy / cross-sectional area) in the rolling direction to the impact value in the direction perpendicular to the rolling was used as an anisotropy index.
- Table 3 As a result of the test, if the impact value in the longitudinal rolling direction was 70 J / cm 2 or more and the impact value ratio was 0.65 or more, it was determined that the characteristics were good.
- the cleanliness of the steel sheet was investigated according to JIS G0555. Cut out the test materials from 5 locations for the steel plates of each test number, and at each position of 1/8, 1/4, 1/2, 3/4 and 7/8 of the plate thickness, the cleanliness was calculated by point calculation. investigated. Among the results at each plate thickness position, the value with the highest cleanliness value was defined as the cleanliness of the specimen. The cleanliness was defined as the sum of the A, B, and C inclusions.
- the degree of segregation of Mn was determined by conducting a component surface analysis of Mn with EPMA. Cut out specimens from 5 locations for each test number steel sheet, measure 10 fields of view at a magnification of 500 times at 1/4 and 1/2 positions of the sheet thickness, and adopt the average value of the degree of Mn segregation in each field of view. did.
- the average hardness of the burring portion that is the high strain deformation portion is significantly lower than the average hardness of the flange portion that is the low strain deformation portion, and the value of ⁇ Hv is 41. Increased to 99. This is because the burring portion has been softened by the strain-induced ferrite transformation caused by burring. In such a case, the manufactured hot-formed product has locally different hardness, and the strength of the molded product is not uniform and partially low, so that reliability as a product is impaired. Further, in test numbers 4, 8, 10, 12, 15, 18, 20, 23, and 24, the chemical composition, cleanliness, or segregation are outside the scope of the present invention, so the rolling direction impact value and / or impact. Value ratio was not enough.
- the steel sheet having the chemical composition of the present invention has ⁇ Hv of ⁇ 4 to 24 regardless of the presence or absence of the cold rolling process, the presence or absence of the annealing process, and the type of plating, and the average hardness and burring of the flange portion.
- the difference from the average hardness of the part was small, and the hardness and strength stability during high strain molding were excellent.
- sufficient value was shown also about the toughness after hot rolling, and the anisotropy of toughness.
- the steel sheet of the present invention has a stable hardness after hot forming because strain-induced ferrite transformation in the formed part is suppressed even when hot forming with high strain forming such as burring is performed.
- a steel sheet having a distribution and excellent toughness after hot forming and low toughness anisotropy is obtained. Since this steel plate is suitable as a material for machine structural members such as automobile body structural members, suspension members and the like, for example, the present invention is extremely useful industrially.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Electroplating Methods And Accessories (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本願は、2012年08月28日に、日本に出願された特願2012-187959号に基づき優先権を主張し、その内容をここに援用する。
その結果、鋼板の化学組成、介在物量及び中心偏析を制御することにより、高ひずみ成形を伴う熱間成形が施された場合であっても、ひずみ誘起フェライト変態が抑制され、熱間成形後において、硬さが均一で、熱間成形後に靱性に優れかつ靱性の異方性が少ない、熱間成形用鋼板を得ることができることを新たに知見した。なお、以下の説明において、硬さが均一であることを、硬度分布が安定するという場合がある。
(1)本発明の一態様に係る鋼板は、化学組成が、質量%で、C:0.18%~0.275%、Si:0.02%~0.15%、Mn:1.85%~2.75%、sol.Al:0.0002%~0.5%、Cr:0.05%~1.00%、B:0.0005%~0.01%、P:0.1%以下、S:0.0035%以下、N:0.01%以下、Ni:0~0.15%、Cu:0~0.05%、Ti:0~0.1%、Nb:0~0.2%、を含有し、残部がFeおよび不純物であり;金属組織における清浄度が0.08%以下であり;下記式aで表されるMnの偏析度であるαが、1.6以下であり;熱間成形において、5%以下の塑性ひずみを受けた低ひずみ成形部と、20%以上の塑性ひずみを受けた高ひずみ成形部との、前記熱間成形後の平均硬さの差ΔHvが40以下であることを特徴とする鋼板。
α=(前記鋼板の板厚中心部での、単位が質量%の最大Mn濃度)/(前記鋼板の表面から板厚の1/4の深さ位置での、単位が質量%の平均Mn濃度)・・・式a
なお、熱間成形は、常法に従って行えばよい。例えば、素材鋼板をAc3点以上(約800℃)、Ac3点+200℃以下の温度に加熱し、0秒以上600秒以下の保持を行い、プレス機まで搬送しプレス成形し、下死点で5秒以上の保持を行うことができる。この際、加熱方式は適宜選べばよく、急速加熱の場合は通電加熱や高周波加熱を行うことができる。また通常加熱では加熱温度に設定された炉加熱などを用いることができる。プレス機までの搬送の間に空冷されるため、搬送時間が長くなるとプレス開始までにフェライト変態が起こり軟化する可能性がある。そのため搬送時間は15秒以下とするのが望ましい。金型温度の上昇を防ぐため、金型の冷却を行ってもよい。その場合、冷却方法は金型内に冷却配管を行い、冷媒を流すなど、必要に応じた冷却方式を行えば良い。
(1)C:0.18%~0.275%
Cは、鋼の焼入れ性を高め、焼入れ後の強度を決定し、さらに熱間成形後の局部延性・靭性を制御するために重要な元素である。また、Cはオーステナイト生成元素であるので、高ひずみ成形時におけるひずみ誘起フェライト変態を抑制し、熱間成形後の部材において安定した硬度分布を得ることを容易にする作用を有する。しかしながら、C含有量が0.18%未満では、焼入れ後において好ましい強度である1100MPa以上の引張強度を確保することが困難であり、また、上記作用による安定した硬度分布を得る効果が得られない。一方、C含有量が0.275%を超えると、局部延性と靭性とが低下する。したがって、C含有量は0.18%~0.275%とする。C含有量の好ましい上限は0.26%であり、より好ましい上限は0.24%である。
Siは、焼入れ性を高めるとともに、熱間成形後のスケール密着性を向上させる元素である。しかしながら、Si含有量が0.02%未満では、上記効果を十分に得られない場合がある。したがって、Si含有量の下限は0.02%とする。好ましい下限は0.03%である。一方、Si含有量が0.15%を超えると、熱間成形の際にオーステナイト変態させるのに必要な加熱温度が著しく高温となる。このため、熱処理に要するコストの上昇を招いたり、加熱不足により焼入れが不十分となったりする場合がある。また、Siはフェライト生成元素であるため、Si含有量が高すぎると、高ひずみ成形時にひずみ誘起フェライト変態が生じやすくなり、熱間成形後の部材において局所的に硬さが低下して、安定した硬度分布が得られない場合がある。さらに、多量のSiの含有は、溶融めっき処理を施す場合のぬれ性の低下により不めっき生じる場合がある。したがって、Si含有量の上限は0.15%とする。
Mnは、鋼の焼入れ性を高め、かつ焼入れ後の鋼の強度を安定して確保するために有効な元素である。また、Mnはオーステナイト生成元素であるので、高ひずみ成形時におけるひずみ誘起フェライト変態を抑制し、熱間成形後の部材において安定した硬度分布を得ることを容易にする。しかしながら、Mn含有量が1.85%未満では上記効果を十分に得られない場合がある。したがって、Mn含有量の下限を1.85%とする。一方、Mn含有量が2.75%を超えると上記効果は飽和し、むしろ焼入れ後の靭性劣化を招く。したがって、Mn含有量の上限は2.75%とする。Mn含有量の好ましい上限は2.5%である。
Alは、溶鋼を脱酸して鋼を健全化する元素である。sol.Al含有量が0.0002%未満では脱酸が十分でない。したがって、sol.Al含有量の下限は0.0002%とする。さらに、Alは鋼板の焼入れ性を高め、かつ焼入れ後の強度を安定して確保するために有効な元素でもあるので、積極的に含有させてもよい。しかし、0.5%を超えて含有させてもその効果は飽和するだけでなく、コストの増加を招く。このため、Al含有量の上限は0.5%とする。
なお、sol.Alとは、酸可溶性Alを示し、その含有量には、酸に溶解しないAl2O3等中に含まれるAl量を含まない。
Crは、鋼の焼入れ性を高める元素である。また、Crはオーステナイト生成元素であるため、高ひずみ成形時におけるひずみ誘起フェライト変態を抑制し、熱間成形後の部材において安定した硬度分布を得ることを容易にする。しかしながら、Cr含有量が0.05%未満では、上記効果を十分に得られない場合がある。したがって、Cr含有量の下限は0.05%とする。好ましい下限は0.1%であり、より好ましい下限は0.2%である。一方、Cr含有量が1.00%を超えると、Crが鋼中の炭化物に濃化する。その結果、熱間成形に供する際の加熱工程における炭化物の固溶が遅延し、焼入れ性が低下する。したがって、Cr含有量の上限は1.00%とする。Cr含有量の好ましい上限は0.8%である。
Bは、鋼の焼入れ性を高め、かつ焼入れ後の強度を安定して確保するために有効な元素である。しかしながら、B含有量が0.0005%未満では、上記効果を十分に得られない場合がある。したがって、B含有量の下限は0.0005%とする。一方、B含有量が0.01%超では、上記効果は飽和し、さらに焼入れ部の靭性劣化を招く。したがって、B含有量の上限は0.01%とする。B含有量の好ましい上限は0.005%である。
Pは、一般に不純物として含有される元素である。しかし、鋼の焼入れ性を高め、さらに、焼入れ後の鋼の強度を安定して確保する作用を有するので、積極的に含有させてもよい。しかし、P含有量が0.1%を超えると靭性が著しく劣化する。したがって、P含有量は0.1%に制限する。P含有量の好ましい上限は0.05%である。P含有量の下限は特に限定する必要はないが、P含有量の過剰な低減は著しいコスト上昇を招く。このため、P含有量の下限を0.0002%としてもよい。
Sは不純物として含有される元素である。また、特にMnSを形成し、靱性低下および靱性の異方性の主な要因となる。S含有量が0.0035%を超えると靭性の劣化が顕著となるので、S含有量は0.0035%に制限する。S含有量の下限は特に限定する必要はないが、S含有量の過剰な低減は著しいコスト上昇を招くため、S含有量の下限を0.0002%としてもよい。
Nは、不純物として含有される元素である。N含有量が0.01%を超えると鋼中に粗大な窒化物を形成して局部変形能及び靭性を著しく劣化させる。したがって、N含有量は0.01%に制限する。N含有量の下限は特に限定する必要はないが、N含有量の過剰な低減は著しいコスト上昇を招く。このため、N含有量の下限は0.0002%としてもよい。N含有量のさらに好ましい下限は0.0008%以上である。
NiおよびCuは、鋼の焼入れ性を高め、かつ焼入れ後の強度を安定して確保するために有効な元素である。したがって、これらの元素の1種または2種を含有させてもよい。しかし、上記上限値を超えていずれかの元素を含有させても、上記効果は飽和する上、コスト的に不利になる。したがって、各元素の含有量は上記のとおりとする。好ましくはNi含有量が0.10%以下、Cu含有量が0.03%以下である。上記効果をより確実に得るには、Ni:0.02%以上およびCu:0.003%以上からなる群から選択された1種または2種を含有させることが好ましい。
TiおよびNbは、鋼板をAc3点以上に加熱して熱間成形に供する際に、再結晶を抑制し、さらに微細な炭化物を形成して粒成長を抑制し、オーステナイト粒を細粒にする元素である。オーステナイト粒が細粒になると、熱間成形部材の靱性が大きく改善する。また、Tiには、鋼中のNと優先的に結合することでTiNを生成し、BNの析出によりBが消費されることを抑制する。その結果としてTiを含有させることで、Bによる焼入れ性を高めることができる。上記効果を得るため、これらの元素の1種または2種を含有させてもよい。しかし、上記上限値を超えていずれかの元素を含有させると、TiCやNbCの析出量が増加してCが消費され、焼入れ後の強度が低下する場合がある。したがって、各元素の含有量は上記のとおりとする。好ましくは、Ti含有量の上限が0.08%、Nb含有量の上限が0.15%である。なお、上記効果をより確実に得るには、Ti:0.005%以上およびNb:0.005%以上からなる群から選択された1種または2種を含有させることが好ましい。
本発明に係る鋼板は、熱延鋼板、冷延鋼板のいずれでもよく、また熱延鋼板又は冷延鋼板に焼鈍を施した焼鈍熱延鋼板または焼鈍冷延鋼板でもよい。
(1)清浄度:0.08%以下
本実施形態における清浄度はJIS G0555に規定された、鋼板中に含まれるA系、B系、C系介在物量の算術計算での総和で定義される。介在物量が増加すると亀裂伝播が容易になり靱性劣化および靱性の異方性増加を招く。よって清浄度の上限を0.08%とする。好ましい上限は0.04%である。本実施形態に係る鋼板ではA系介在物であるMnSが主な靱性の異方性低下の要因となる。そのため、特に、A系介在物が0.06%以下であることが望ましい。さらに好ましくは、A系介在物が0.03%以下である。
なお、清浄度は低い方が好ましいが、コストの観点からその下限を0.003%または0.005%としてもよい。
Mnは、鋳造時に鋼板の板厚中心部付近に偏析しやすい。この中心偏析が大きい場合、偏析部にMnS等の介在物が集中し、靱性の低下および靱性の異方性の増加を招く。さらに、焼入時に偏析部に生成するマルテンサイトは硬質なため、靱性が劣化する。またMnとPとの相互作用により、Mn偏析部には、P偏析も増加し、これによっても靱性劣化を招く。そのため、下記式1で表されるMn偏析度αを1.6以下とする。Mn偏析度αは、1.0に近い(すなわち偏析がない)ことが好ましいが、コストの観点から、その下限を1.03、または1.05としてもよい。
α=[板厚中心部での最大Mn濃度(質量%)]/[表面から板厚の1/4深さ位置での平均Mn濃度(質量%)]・・・(式1)
本発明に係る熱間成形用鋼板の表面に、耐食性の向上等を目的としてめっき層を形成し、表面処理鋼板としてもよい。めっき層を有しても、本実施形態の効果を損なわない。めっき層は電気めっき層であってもよく溶融めっき層であってもよい。電気めっき層としては、電気亜鉛めっき層、電気Zn-Ni合金めっき層等が例示される。溶融めっき層としては、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、溶融アルミニウムめっき層、溶融Zn-Al合金めっき層、溶融Zn-Al-Mg合金めっき層、溶融Zn-Al-Mg-Si合金めっき層等が例示される。めっき付着量は特に制限されず一般的な範囲内でよい。
次に本発明に係る熱間成形用鋼板の代表的な製造方法について説明する。以下の工程を含む製造方法を用いることによって、容易に本実施形態に係る鋼板を得ることができる。
上述の化学組成を有する溶鋼を連続鋳造法により、鋼片(スラブ)にする。この連続鋳造工程では、溶鋼温度を液相線温度から5℃以上高い温度とし、かつ単位時間当たりの溶鋼鋳込み量を6ton/分以下とし、さらに鋳片が完全凝固する前に中心偏析低減処理を施すことが好ましい。
連続鋳造時に溶鋼の単位時間あたりの鋳込み量(鋳込み速度)が6ton/分を超えると、鋳型内での溶鋼流動が速いので介在物が補足されやすくなり、スラブ中の介在物が増加する。また溶鋼温度が液相線温度から5℃未満であると粘度が上昇し、介在物が浮上しにくくなり、鋼中の介在物量が増加し、清浄度が悪化(値が増加)する。溶鋼を連続鋳造する際に、溶鋼の温度を液相線温度より8℃以上、鋳込み量を5ton/分を以下とすることがさらに好ましい。
中心偏析低減処理としては、例えば、鋳片が完全凝固する前の未凝固層に対して電磁撹拌や未凝固層圧下などを行うことにより、濃化部の緩和または排出を行うことができる。
スラブが完全に凝固した後の偏析低減処理として、さらに、スラブを1150℃~1350℃に加熱し、10時間~50時間の保持を行うスラブ均質化処理を行ってもよい。上記条件でスラブ均質化処理を行うことで、さらに偏析度を低減することができる。なお、加熱温度の好ましい上限は1300℃、好ましい保持時間の上限は30時間である。
上述した連続鋳造工程及び必要に応じてスラブ均質化処理工程を行うことにより得られた鋼片を1050℃~1350℃とした後に熱間圧延を施し鋼板とする。熱間圧延が完了した鋼板を5秒~20秒、その温度域で保持する。保持後に水冷にて400℃~700℃の温度域まで鋼板を冷却する。次いで、冷却された鋼板について巻き取りを行う。
上記巻き取り工程後の鋼板について、酸洗を行ってもよい。酸洗は常法にしたがって行えばよい。酸洗前または酸洗後において、平坦矯正やスケール剥離促進のためにスキンパス圧延を施してもよく、本実施形態の効果に影響することはない。スキンパス圧延を施す場合の伸び率は特に規定する必要はなく、例えば0.3%以上3.0%未満とすればよい。
上記酸洗工程により得られた酸洗鋼板には、必要に応じて冷間圧延を施してもよい。冷間圧延方法は常法にしたがって行えばよい。冷間圧延の圧下率は通常の範囲内でよく、一般的には30%~80%である。
上記巻き取り工程(S5)で得られた熱延鋼板または上記冷間圧延工程(S7)で得られた冷延鋼板には、必要に応じて700℃~950℃の焼鈍を施すことができる。
鋼板表面にめっき層を形成し、めっき鋼板とする場合は、電気めっきおよび溶融めっきともに常法に従って行えばよい。溶融亜鉛めっきの場合は、連続溶融亜鉛めっき設備を使用し、設備内で上記焼鈍工程とこれに連続させためっき処理とを実施してもよく、また、上記焼鈍工程から独立させて、めっき処理を実施してもよい。溶融亜鉛めっきは、さらに合金化処理を施して合金化溶融亜鉛めっきとしてもよい。合金化処理を施す場合には、合金化処理温度を480℃~600℃とすることが好ましい。合金化処理温度を480℃以上とすることで、合金化処理むらを抑制することができる。また、合金化処理温度を600℃以下とすることで、製造コストを抑制するとともに高い生産性を確保することができる。溶融亜鉛めっき後は、平坦矯正のため必要に応じスキンパス圧延を施してもよい。スキンパス圧延の伸び率は常法に従えばよい。
なお、鋳込み速度は、実機生産設備と本実施例で用いた試験用連続鋳造機では、設備の大きさが異なる。そのため、表2には、サイズファクターを考慮して、実機生産設備における鋳込み速度に換算した値を記載している。また、表2中の溶鋼加熱温度差とは、溶鋼温度から液相線温度を引いた値である。
パンチ形状:円錐、
パンチ径:60mm、
プレス速度:40mm/秒、
成形後の冷却は下死点にて1分間保持する金型冷却により行った。
なお、ひずみ量は、加工された鋼板の各位置の板厚を測定し、加工前の板厚に対する加工後の板厚の減少量から求めた。
調査は、以下の要領で行った。まず、上記2.9mmの鋼板を、加熱炉内で鋼板表面温度が900℃に到達するまで加熱し、その温度にて4分間保持した後、加熱炉より取り出した。次いで、750℃になるまで放冷により冷却し、750℃に到達した時点で平板金型にて上下からはさみ、1分間保持を行った。その後、供試材からの表裏面を研削し、2.5mmの厚さにした。サンプルの長手方向が、圧延方向と圧延直角方向となるように、シャルピー衝撃試験サンプルを採取した。この際ノッチは2mm深さのVノッチであった。試験温度は室温としてJISZ 2242に準じて衝撃試験を行った。圧延方向の衝撃値(吸収エネルギー/断面積)と圧延直角方向の衝撃値との比を異方性の指標とした。
結果を表3に示す。試験の結果、長手圧延方向の衝撃値が70J/cm2以上、かつ衝撃値比0.65以上であれば、が特性良好であると判定した。
また、試験番号4、8、10、12、15、18、20、23、24では、化学組成、清浄度または偏析度が本発明の範囲を外れているため、圧延方向衝撃値及び/または衝撃値比が十分でなかった。
また、熱間圧延後の靭性及び靭性の異方性についても十分な値を示していた。
Claims (4)
- 化学組成が、質量%で、
C:0.18%~0.275%、
Si:0.02%~0.15%、
Mn:1.85%~2.75%、
sol.Al:0.0002%~0.5%、
Cr:0.05%~1.00%、
B:0.0005%~0.01%
P:0.1%以下、
S:0.0035%以下、
N:0.01%以下、
Ni:0~0.15%、
Cu:0~0.05%、
Ti:0~0.1%、
Nb:0~0.2%、
を含有し、
残部がFeおよび不純物であり;
金属組織における清浄度が0.08%以下であり;
下記式1で表されるMnの偏析度であるαが、1.6以下であり;
熱間成形において、5%以下の塑性ひずみを受けた低ひずみ成形部と、20%以上の塑性ひずみを受けた高ひずみ成形部との、前記熱間成形後の平均硬さの差ΔHvが40以下である
ことを特徴とする鋼板。
α=(前記鋼板の板厚中心部での、単位が質量%の最大Mn濃度)/(前記鋼板の表面から板厚の1/4の深さ位置での、単位が質量%の平均Mn濃度)・・・式1 - 前記化学組成が、さらに前記Feの一部に代えて、質量%で、Ni:0.02%~0.15%およびCu:0.003%~0.05%からなる群から選択された1種または2種を含有することを特徴とする請求項1に記載の鋼板。
- 前記化学組成が、さらに前記Feの一部に代えて、質量%で、Ti:0.005%~0.1%およびNb:0.005%~0.2%からなる群から選択された1種または2種を含有することを特徴とする請求項1または請求項2に記載の鋼板。
- 前記鋼板の表面に、さらにめっき層を有することを特徴とする請求項1~3のいずれか一項に記載の鋼板。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2015002530A MX2015002530A (es) | 2012-08-28 | 2013-08-28 | Lamina de acero. |
EP13832615.2A EP2891727B1 (en) | 2012-08-28 | 2013-08-28 | Steel sheet |
PL13832615T PL2891727T3 (pl) | 2012-08-28 | 2013-08-28 | Blacha stalowa cienka |
US14/423,782 US20150225821A1 (en) | 2012-08-28 | 2013-08-28 | Steel sheet |
JP2013557955A JP5541428B1 (ja) | 2012-08-28 | 2013-08-28 | 鋼板 |
IN1523DEN2015 IN2015DN01523A (ja) | 2012-08-28 | 2013-08-28 | |
CN201380044652.9A CN104583445B (zh) | 2012-08-28 | 2013-08-28 | 钢板 |
KR1020157004763A KR101683406B1 (ko) | 2012-08-28 | 2013-08-28 | 강판 |
BR112015004191-4A BR112015004191B1 (pt) | 2012-08-28 | 2013-08-28 | Chapa de aço |
ES13832615T ES2707893T3 (es) | 2012-08-28 | 2013-08-28 | Chapa de acero |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-187959 | 2012-08-28 | ||
JP2012187959 | 2012-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014034714A1 true WO2014034714A1 (ja) | 2014-03-06 |
Family
ID=50183522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/072989 WO2014034714A1 (ja) | 2012-08-28 | 2013-08-28 | 鋼板 |
Country Status (12)
Country | Link |
---|---|
US (1) | US20150225821A1 (ja) |
EP (1) | EP2891727B1 (ja) |
JP (1) | JP5541428B1 (ja) |
KR (1) | KR101683406B1 (ja) |
CN (1) | CN104583445B (ja) |
BR (1) | BR112015004191B1 (ja) |
ES (1) | ES2707893T3 (ja) |
IN (1) | IN2015DN01523A (ja) |
MX (1) | MX2015002530A (ja) |
PL (1) | PL2891727T3 (ja) |
TW (1) | TWI481730B (ja) |
WO (1) | WO2014034714A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015182596A1 (ja) * | 2014-05-29 | 2015-12-03 | 新日鐵住金株式会社 | 熱処理鋼材及びその製造方法 |
CN107406953A (zh) * | 2015-04-08 | 2017-11-28 | 新日铁住金株式会社 | 热处理用钢板 |
WO2018151325A1 (ja) * | 2017-02-20 | 2018-08-23 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
WO2018151330A1 (ja) * | 2017-02-20 | 2018-08-23 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
EP3282031A4 (en) * | 2015-04-08 | 2018-09-12 | Nippon Steel & Sumitomo Metal Corporation | Heat-treated steel sheet member, and production method therefor |
EP3282030A4 (en) * | 2015-04-08 | 2018-09-12 | Nippon Steel & Sumitomo Metal Corporation | Heat-treated steel sheet member, and production method therefor |
WO2021181866A1 (ja) * | 2020-03-11 | 2021-09-16 | 株式会社神戸製鋼所 | 局所的に軟化された部分を有する鋼部品の製造方法 |
RU2807262C1 (ru) * | 2020-03-11 | 2023-11-13 | Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) | Способ получения стальной детали, имеющей локально размягченную часть |
JP7464495B2 (ja) | 2020-03-11 | 2024-04-09 | 株式会社神戸製鋼所 | 局所的に軟化された部分を有する鋼部品の製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112016021766A2 (pt) | 2014-03-26 | 2017-08-15 | Nippon Steel & Sumitomo Metal Corp | Elemento chapa de aço conformado a quente de alta resistência |
CN107849662B (zh) * | 2015-07-29 | 2020-01-24 | 杰富意钢铁株式会社 | 冷轧钢板、镀覆钢板和它们的制造方法 |
US10941471B2 (en) | 2015-12-28 | 2021-03-09 | Jfe Steel Corporation | High-strength steel sheet, high-strength galvanized steel sheet, method for manufacturing high-strength steel sheet, and method for manufacturing high-strength galvanized steel sheet |
BR112019016766A2 (pt) * | 2017-02-20 | 2020-03-31 | Nippon Steel Corporation | Chapa de aço de alta resistência |
JP6825747B2 (ja) * | 2019-01-31 | 2021-02-03 | Jfeスチール株式会社 | 熱間プレス部材、熱間プレス部材用冷延鋼板、およびそれらの製造方法 |
WO2023195496A1 (ja) * | 2022-04-06 | 2023-10-12 | 日本製鉄株式会社 | バーリング構造部材 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002102980A (ja) | 2000-07-28 | 2002-04-09 | Aisin Takaoka Ltd | 車輌用衝突補強材の製造方法および車輌用衝突補強材 |
JP2006213959A (ja) | 2005-02-02 | 2006-08-17 | Nippon Steel Corp | 生産性に優れたホットプレス高強度鋼製部材の製造方法 |
JP2007314817A (ja) * | 2006-05-23 | 2007-12-06 | Sumitomo Metal Ind Ltd | 熱間プレス用鋼板および熱間プレス鋼板部材ならびにそれらの製造方法 |
JP2009242910A (ja) | 2008-03-31 | 2009-10-22 | Kobe Steel Ltd | 被削性と強度異方性に優れた機械構造用鋼および機械構造用部品 |
JP2011099149A (ja) * | 2009-11-06 | 2011-05-19 | Sumitomo Metal Ind Ltd | 熱処理用鋼板およびその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4325277B2 (ja) * | 2003-05-28 | 2009-09-02 | 住友金属工業株式会社 | 熱間成形法と熱間成形部材 |
JP4696615B2 (ja) * | 2005-03-17 | 2011-06-08 | 住友金属工業株式会社 | 高張力鋼板、溶接鋼管及びそれらの製造方法 |
KR20080012942A (ko) * | 2005-06-29 | 2008-02-12 | 제이에프이 스틸 가부시키가이샤 | 고탄소열간압연강판 및 그 제조방법 |
JP4282731B2 (ja) * | 2006-08-11 | 2009-06-24 | 新日本製鐵株式会社 | 疲労特性に優れた自動車足回り部品の製造方法 |
WO2010106748A1 (ja) * | 2009-03-16 | 2010-09-23 | 新日本製鐵株式会社 | 焼入れ性に優れたボロン添加鋼板および製造方法 |
WO2010109778A1 (ja) * | 2009-03-27 | 2010-09-30 | 新日本製鐵株式会社 | 浸炭焼入れ性の優れた炭素鋼板およびその製造方法 |
JP5440371B2 (ja) | 2010-05-12 | 2014-03-12 | 新日鐵住金株式会社 | 熱処理用鋼板およびその製造方法 |
WO2012053642A1 (ja) * | 2010-10-22 | 2012-04-26 | 新日本製鐵株式会社 | 縦壁部を有するホットスタンプ成形体の製造方法及び縦壁部を有するホットスタンプ成形体 |
CN103314120B (zh) * | 2010-10-22 | 2014-11-05 | 新日铁住金株式会社 | 热锻压成形体的制造方法及热锻压成形体 |
-
2013
- 2013-08-28 IN IN1523DEN2015 patent/IN2015DN01523A/en unknown
- 2013-08-28 US US14/423,782 patent/US20150225821A1/en not_active Abandoned
- 2013-08-28 CN CN201380044652.9A patent/CN104583445B/zh active Active
- 2013-08-28 MX MX2015002530A patent/MX2015002530A/es active IP Right Grant
- 2013-08-28 BR BR112015004191-4A patent/BR112015004191B1/pt not_active IP Right Cessation
- 2013-08-28 KR KR1020157004763A patent/KR101683406B1/ko active IP Right Grant
- 2013-08-28 EP EP13832615.2A patent/EP2891727B1/en active Active
- 2013-08-28 PL PL13832615T patent/PL2891727T3/pl unknown
- 2013-08-28 ES ES13832615T patent/ES2707893T3/es active Active
- 2013-08-28 JP JP2013557955A patent/JP5541428B1/ja active Active
- 2013-08-28 WO PCT/JP2013/072989 patent/WO2014034714A1/ja active Application Filing
- 2013-08-28 TW TW102130791A patent/TWI481730B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002102980A (ja) | 2000-07-28 | 2002-04-09 | Aisin Takaoka Ltd | 車輌用衝突補強材の製造方法および車輌用衝突補強材 |
JP2006213959A (ja) | 2005-02-02 | 2006-08-17 | Nippon Steel Corp | 生産性に優れたホットプレス高強度鋼製部材の製造方法 |
JP2007314817A (ja) * | 2006-05-23 | 2007-12-06 | Sumitomo Metal Ind Ltd | 熱間プレス用鋼板および熱間プレス鋼板部材ならびにそれらの製造方法 |
JP2009242910A (ja) | 2008-03-31 | 2009-10-22 | Kobe Steel Ltd | 被削性と強度異方性に優れた機械構造用鋼および機械構造用部品 |
JP2011099149A (ja) * | 2009-11-06 | 2011-05-19 | Sumitomo Metal Ind Ltd | 熱処理用鋼板およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2891727A4 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015182596A1 (ja) * | 2014-05-29 | 2015-12-03 | 新日鐵住金株式会社 | 熱処理鋼材及びその製造方法 |
JPWO2015182596A1 (ja) * | 2014-05-29 | 2017-04-20 | 新日鐵住金株式会社 | 熱処理鋼材及びその製造方法 |
US10662494B2 (en) | 2014-05-29 | 2020-05-26 | Nippon Steel Corporation | Heat-treated steel material and method of manufacturing the same |
EP3282031A4 (en) * | 2015-04-08 | 2018-09-12 | Nippon Steel & Sumitomo Metal Corporation | Heat-treated steel sheet member, and production method therefor |
US10822680B2 (en) | 2015-04-08 | 2020-11-03 | Nippon Steel Corporation | Steel sheet for heat treatment |
EP3282029A4 (en) * | 2015-04-08 | 2018-08-29 | Nippon Steel & Sumitomo Metal Corporation | Steel sheet for heat treatment |
US11041225B2 (en) | 2015-04-08 | 2021-06-22 | Nippon Steel Corporation | Heat-treated steel sheet member and method for producing the same |
CN107406953A (zh) * | 2015-04-08 | 2017-11-28 | 新日铁住金株式会社 | 热处理用钢板 |
US10563281B2 (en) | 2015-04-08 | 2020-02-18 | Nippon Steel Corporation | Heat-treated steel sheet member and method for producing the same |
EP3282030A4 (en) * | 2015-04-08 | 2018-09-12 | Nippon Steel & Sumitomo Metal Corporation | Heat-treated steel sheet member, and production method therefor |
WO2018151325A1 (ja) * | 2017-02-20 | 2018-08-23 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
RU2716178C1 (ru) * | 2017-02-20 | 2020-03-06 | Ниппон Стил Корпорейшн | Горячештампованное тело |
JP6384645B1 (ja) * | 2017-02-20 | 2018-09-05 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
WO2018151330A1 (ja) * | 2017-02-20 | 2018-08-23 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
JP6384643B1 (ja) * | 2017-02-20 | 2018-09-05 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
WO2021181866A1 (ja) * | 2020-03-11 | 2021-09-16 | 株式会社神戸製鋼所 | 局所的に軟化された部分を有する鋼部品の製造方法 |
RU2807262C1 (ru) * | 2020-03-11 | 2023-11-13 | Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) | Способ получения стальной детали, имеющей локально размягченную часть |
JP7464495B2 (ja) | 2020-03-11 | 2024-04-09 | 株式会社神戸製鋼所 | 局所的に軟化された部分を有する鋼部品の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20150038303A (ko) | 2015-04-08 |
US20150225821A1 (en) | 2015-08-13 |
IN2015DN01523A (ja) | 2015-07-10 |
CN104583445B (zh) | 2016-10-19 |
EP2891727B1 (en) | 2018-11-07 |
EP2891727A1 (en) | 2015-07-08 |
TW201420776A (zh) | 2014-06-01 |
BR112015004191B1 (pt) | 2020-03-24 |
CN104583445A (zh) | 2015-04-29 |
KR101683406B1 (ko) | 2016-12-06 |
BR112015004191A2 (pt) | 2017-07-04 |
PL2891727T3 (pl) | 2019-04-30 |
ES2707893T3 (es) | 2019-04-05 |
TWI481730B (zh) | 2015-04-21 |
JP5541428B1 (ja) | 2014-07-09 |
EP2891727A4 (en) | 2016-05-04 |
JPWO2014034714A1 (ja) | 2016-08-08 |
MX2015002530A (es) | 2015-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5541428B1 (ja) | 鋼板 | |
JP4725415B2 (ja) | 熱間プレス用鋼板および熱間プレス鋼板部材ならびにそれらの製造方法 | |
JP6237884B2 (ja) | 高強度熱間成形鋼板部材 | |
JP6315087B2 (ja) | 熱間成形鋼板部材 | |
WO2014162984A1 (ja) | ホットスタンプ成形体、冷延鋼板、及びホットスタンプ成形体の製造方法 | |
JP6202096B2 (ja) | 熱処理鋼材及びその製造方法 | |
US20180037969A1 (en) | High-strength cold-rolled steel sheet and method of producing the same | |
JP5391801B2 (ja) | 溶融めっき熱延鋼板およびその製造方法 | |
KR102058601B1 (ko) | 합금화 용융 아연 도금 강판 및 그 제조 방법 | |
MX2014009571A (es) | Plancha de acero laminada en frio, plancha de acero chapada y metodo para fabricarla. | |
JP5835624B2 (ja) | 熱間プレス用鋼板および表面処理鋼板とそれらの製造方法 | |
JP5071125B2 (ja) | 角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板およびその製造方法ならびに製品形状に優れた自動車用部品 | |
JP2014098210A (ja) | 構造部材 | |
JPWO2020110795A1 (ja) | 高強度鋼板およびその製造方法 | |
JP5987999B1 (ja) | 高強度鋼板およびその製造方法 | |
JP2013060644A (ja) | 加工性に優れた薄鋼板、めっき薄鋼板及びそれらの製造方法 | |
TW201634713A (zh) | 高強度熱成形鋼板構件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013557955 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13832615 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157004763 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14423782 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2015/002530 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201501289 Country of ref document: ID |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015004191 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015004191 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150226 |