WO2014034655A1 - 光プローブ、検査装置、検査方法 - Google Patents

光プローブ、検査装置、検査方法 Download PDF

Info

Publication number
WO2014034655A1
WO2014034655A1 PCT/JP2013/072854 JP2013072854W WO2014034655A1 WO 2014034655 A1 WO2014034655 A1 WO 2014034655A1 JP 2013072854 W JP2013072854 W JP 2013072854W WO 2014034655 A1 WO2014034655 A1 WO 2014034655A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
diffraction grating
optical circuit
light
optical waveguide
Prior art date
Application number
PCT/JP2013/072854
Other languages
English (en)
French (fr)
Inventor
清水 隆徳
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/422,954 priority Critical patent/US10451520B2/en
Priority to JP2014533017A priority patent/JP6358092B2/ja
Publication of WO2014034655A1 publication Critical patent/WO2014034655A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/35Testing of optical devices, constituted by fibre optics or optical waveguides in which light is transversely coupled into or out of the fibre or waveguide, e.g. using integrating spheres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers

Definitions

  • the present invention relates to an optical probe, an inspection apparatus, and an inspection method used for inspecting optical characteristics of an optical circuit formed on a wafer.
  • An optical evaluation of a planar light circuit is performed by connecting an optical fiber to the optical waveguide of the planar optical circuit and allowing light to enter the optical waveguide from the outside through this optical fiber.
  • the refractive index of the optical waveguide is matched to the refractive index of the optical fiber, and the end face of the optical waveguide and the flat end face of the optical fiber are directly connected.
  • a gap is generated between the end face of the optical waveguide and the end face of the optical fiber due to the rough connection surface, etc., but by interposing matching oil between the both end faces, the boundary portion between the optical waveguide and the optical fiber is Prevents light from scattering.
  • Patent Document 1 and Non-Patent Document 1 disclose a configuration in which an optical circuit is optically evaluated by forming a diffraction grating in the surface of a silicon wafer and entering and exiting the light with an optical fiber.
  • the optical fiber is inclined by about 10 ° with respect to the direction orthogonal to the surface of the silicon wafer so as to face the diffraction grating, and light enters and exits the diffraction grating from the tip of the optical fiber.
  • An object of the present invention is to provide an optical probe, an inspection apparatus, and an inspection method capable of efficiently and reliably inspecting an optical circuit formed on a silicon wafer at a high density.
  • the present invention provides an optical probe for inspecting optical characteristics of an optical circuit formed on an inspection object, an optical waveguide having a core layer and a cladding layer formed to cover the core layer, and the optical waveguide A support member that supports a tip portion of the waveguide, and is provided in the core layer of the optical waveguide, and is provided at an end portion of the optical waveguide core, and outputs light to the outside.
  • a diffraction grating having an input / output surface for inputting light from the outside, and converting an optical axis direction between a propagation direction of light propagated in the optical waveguide core and an input / output direction of light from the input / output surface; And the support member supports the diffraction grating so that the input / output surface faces a predetermined direction.
  • the present invention also includes an optical probe as described above, a stage formed in parallel with an input / output surface of the diffraction grating and having a support surface for supporting the inspection object, the stage, and the optical probe.
  • an inspection apparatus including a moving mechanism that allows relative movement in a plane along the support surface, and an advance / retreat mechanism that advances and retracts the optical probe in a direction to approach and separate from the support surface.
  • the present invention is also an inspection method for inspecting an inspection object provided with an optical circuit side diffraction grating at each of an input end and an output end of an optical circuit, using the optical probe as described above.
  • a step of pressing the diffraction grating of the optical probe to at least a position of the input end of the optical circuit facing the optical circuit side diffraction grating on the surface of the optical circuit, and the optical circuit from the optical waveguide of the optical probe through the diffraction grating A step of inputting light into a side diffraction grating, and a step of evaluating optical characteristics of the optical circuit based on light propagating through the optical circuit and output from the optical circuit side diffraction grating at the output end. Inspection methods are also provided.
  • the optical characteristics of the optical circuit can be evaluated by pressing the diffraction grating of the optical probe against the optical circuit side diffraction grating provided in the optical circuit of the inspection object. This eliminates the need for adjusting the tilt angle of the optical probe, and makes it possible to efficiently and reliably inspect the optical circuit formed on the silicon wafer at a high density.
  • FIG. 9B is a sectional view taken along line XX in FIG. 9A. It is a perspective view which shows the structure of the modification of the probe in 3rd Embodiment.
  • FIG. 10B is a YY sectional view of FIG. 10A. It is a figure which shows the optical waveguide for a reference formed on the measurement wafer in the 4th Embodiment of this invention. It is a figure which shows the relationship between the waveguide length and a loss, and a coupling loss in the case of using the reference optical waveguide.
  • FIG. 1 is a diagram showing a schematic configuration of an inspection apparatus 10 for inspecting a measurement wafer (inspection object) 20.
  • the optical waveguide (optical circuit) 22 of the measurement wafer 20 is inspected by pressing the optical probe 30 against the surface of the measurement wafer 20.
  • a measurement wafer 20 to be inspected includes a wafer substrate 21 made of silicon or the like, and one or more optical waveguides 22 formed on each of a large number of optical integrated circuits (chips) formed on the wafer substrate 21. .
  • the measurement wafer 20 is usually circular, but may be smaller.
  • the wafer substrate 21 may be formed of an SOI (Silicon on Insulator) substrate.
  • the optical waveguide 22 includes a core layer 22a made of, for example, silicon and a clad layer 22b made of, for example, silicon dioxide so as to cover the core layer 22a.
  • a linearly continuous optical waveguide core 25 diffraction gratings (optical circuit side diffraction gratings) 26A and 26B provided at both ends thereof, and tapered waveguide cores 27A and 27B are formed.
  • diffraction gratings optical circuit side diffraction gratings
  • the diffraction gratings 26 ⁇ / b> A and 26 ⁇ / b> B have, for example, a rectangular shape in plan view, and are provided at both ends (input end and output end) of the optical waveguide core 25.
  • the diffraction gratings 26 ⁇ / b> A and 26 ⁇ / b> B have a width larger than the width of the optical waveguide core 25 in the width direction of the optical waveguide core 25 in order to increase the coupling tolerance in the width direction of the optical waveguide core 25.
  • the diffraction gratings 26A and 26B diffract the light propagated in the direction parallel to the surface 20a of the measurement wafer 20 by the optical waveguide core 25 and the tapered waveguide cores 27A and 27B, thereby changing the optical axis direction of the wafer. It changes to the direction which faces the upper direction of the board
  • the tapered waveguide cores 27A and 27B are provided between the optical waveguide core 25 and the diffraction gratings 26A and 26B so that the core width gradually increases in a tapered shape from the optical waveguide core 25 toward the diffraction gratings 26A and 26B. Is formed.
  • Such a measurement wafer 20 is placed on the support surface 100 a of the stage 100.
  • the stage 100 can be moved in two directions (X direction and Y direction) perpendicular to each other within a plane along the surface 20 a of the measurement wafer 20 by a stage moving mechanism (moving mechanism) 110. Thereby, the position of the measurement wafer 20 can be moved in the X direction and the Y direction.
  • the optical probe 30 In order to inspect the optical waveguide 22 of the measurement wafer 20, the optical probe 30 is pressed against the diffraction gratings 26A and 26B provided on both ends of the optical waveguide 22 on the surface 20a of the measurement wafer 20, respectively. .
  • the optical probe 30 includes an optical waveguide 31 and a support member 40 ⁇ / b> A that supports the optical waveguide 31.
  • the optical waveguide 31 has a core layer 31a and a clad layer 31b provided so as to cover the core layer 31a.
  • the core layer 31a and the clad layer 31b are preferably formed using polymer materials having different refractive indexes (refractive index of the clad layer 31b ⁇ refractive index of the core layer 31a) or the like.
  • the core layer 31 a includes an optical waveguide core 33, a tapered waveguide core 34, and a diffraction grating 35.
  • the tapered waveguide core 34 is provided between the optical waveguide core 33 and the diffraction grating 35, and is formed such that the core width gradually increases in a tapered shape from the optical waveguide core 33 toward the diffraction grating 35.
  • the diffraction grating 35 has, for example, a rectangular shape in plan view, and is provided at the distal end portion of the optical waveguide core 33 via a tapered waveguide core 34.
  • the diffraction grating 35 has a width dimension larger than the width of the optical waveguide core 33 in the width direction of the optical waveguide core 33 in order to increase the coupling tolerance in the width direction of the optical waveguide core 33.
  • the diffraction grating 35 has an optical axis direction of the light incident from the outside at the input / output surface 35a or the light emitted to the outside, and the optical axis direction in which the tapered waveguide core 34 and the optical waveguide core 33 are continuous. , Transform by diffraction.
  • the coupling tolerance is increased. It will go down. For this reason, if the diffraction grating 35 and further the diffraction gratings 26A and 26B have a light collecting function, the beam diameter of the diffracted light can be adjusted and the coupling tolerance can be increased.
  • the shapes of the diffraction gratings 26A, 26B, and 35 can be determined by a time domain difference method (FDTD) or the like.
  • FDTD time domain difference method
  • the path length of light changes when light passes through the diffraction gratings 26A, 26B, and 35, and the shapes of the diffraction gratings 26A, 26B, and 35 are generated based on the time difference until the light reaches. This is a known method for determining.
  • Non-Patent Document 2 Suhara et al. IEEE Journal of Quantum Electronics, Volume QE22, No. 6, pages 845-867. June 1986 ( Figure 23)
  • the support member 40 ⁇ / b> A is provided on the upper surface side of the diffraction grating 35 of the optical waveguide 31 and the tapered waveguide core 34 in the optical probe 30.
  • the support member 40 ⁇ / b> A has a plate shape and holds the optical waveguide 31 so that the input / output surface 35 a of the diffraction grating 35 of the optical waveguide 31 faces the measurement wafer 20 on the stage 100.
  • the support member 40A is in a direction (Z direction) perpendicular to the surface 20a of the measurement wafer 20 set on the stage 100 by a probe lifting / lowering mechanism (advancing / retracting mechanism) 120 including an actuator or the like provided in the inspection apparatus 10. It is possible to approach and separate.
  • the tip of the optical probe 30 is pressed against the surface 20a of the measurement wafer 20, and the input / output surface 35a of the diffraction grating 35 of the optical waveguide 31 supported by the support member 40A is made to face the diffraction gratings 26A and 26B. Can be done.
  • the measurement wafer 20 is inspected by the inspection apparatus 10 having the above-described configuration, the measurement wafer 20 is set on the stage 100, and the measurement wafer 20 is fixed to the stage 100 by appropriate means such as vacuum suction.
  • the stage 100 is moved by the stage moving mechanism 110 (see FIG. 1), so that the diffraction gratings 26A and 26B provided at both ends of the optical waveguide 22 of the measurement wafer 20
  • the optical probe 30 is moved to a position facing the diffraction grating 35.
  • each optical probe 30 is moved in a direction approaching the surface 20 a of the measurement wafer 20. Then, as shown in FIG. 1, the tip of each optical probe 30 is abutted on the surface 20a of the measurement wafer 20 at a position facing the diffraction gratings 26A and 26B.
  • the measurement wafer 20 is incident on the measurement wafer 20 from a light source (not shown) such as an external light emitting element through the optical waveguide core 33 of one optical probe 30 (for example, the optical probe 30 facing the diffraction grating 26A).
  • the light propagating through the optical waveguide core 33 is converted in its optical axis by the diffraction grating 35 and output in the direction of the measurement wafer 20 facing the diffraction grating 35.
  • the output light reaches the diffraction grating 26A on one end side of the optical waveguide 22 of the measurement wafer 20, the optical axis direction is converted, and the light is propagated to the optical waveguide core 25 through the tapered waveguide core 27A.
  • the light propagating through the optical waveguide core 25 further passes through the tapered waveguide core 27B, the direction of the optical axis thereof is converted again by the diffraction grating 26B, and is output toward the other optical probe 30 facing the diffraction grating 26B. Is done.
  • the light output from the diffraction grating 26B on the other end side of the optical waveguide 22 of the measurement wafer 20 reaches the diffraction grating 35 of the optical probe 30, the optical axis direction is converted, and the light is transmitted through the tapered waveguide core 34. Propagated to the waveguide core 33. A value of a predetermined parameter such as a loss is evaluated in an evaluation unit that is propagated by the optical waveguide core 33 and provided in the inspection apparatus 10. Thereby, the inspection of the optical waveguide 22 formed on the measurement wafer 20 is completed.
  • a branch path may be formed in the optical waveguide 22, and at that time, there are three or more light input / output units for the optical waveguide 22. In such a case, three or more optical probes 30 may be prepared, pressed against each input / output unit, and simultaneously inspected.
  • the optical probe 30 is provided with the diffraction grating 35 optically coupled to face the diffraction gratings 26A and 26B provided at the end of the optical waveguide 22 of the measurement wafer 20. did. Thereby, the optical waveguide 22 can be inspected only by pressing the diffraction grating 35 of the optical probe 30 against the diffraction gratings 26 ⁇ / b> A and 26 ⁇ / b> B of the measurement wafer 20. At this time, since the optical probe 30 does not need to adjust the inclination angle with respect to the surface 20a of the measurement wafer 20, the optical waveguide 22 can be easily and reliably inspected.
  • the beam diameter of the diffracted light can be adjusted between the optical probe 30 and the measurement wafer 20, and the coupling tolerance is increased. be able to. Further, since the tolerance in the Z direction between the optical probe 30 and the surface 20a of the measurement wafer 20 is increased, only the alignment of the optical probe 30 and the measurement wafer 20 in the X direction and the Y direction is performed with high accuracy. All you have to do is This also makes it possible to easily and reliably inspect the optical waveguide 22.
  • the optical probe 30 is pressed against each of the diffraction gratings 26A and 26B provided at both ends of the optical waveguide 22 for inspection, but as shown in FIG.
  • the light receiving element 50 built in the measurement wafer 20 can be replaced.
  • the optical probe 30 is pressed against the diffraction grating 26A at one end (input end) of the optical waveguide 22, and inspection light is input from the optical probe 30 to the optical waveguide 22, as shown in the above embodiment. Then, light is received by the light receiving element 50 at the other end (output end) of the optical waveguide 22.
  • the received light is converted into an electric signal corresponding to the intensity or the like, and the electric signal is received by the electric prober 70 and output to the evaluation unit of the inspection apparatus 10. Even in such a configuration, the same effect as described above can be obtained.
  • the measurement wafer 20 is set on the stage 100, the stage 100 is moved in two directions (X direction and Y direction) in a plane along the surface 20a of the measurement wafer 20, and light is emitted.
  • the probe 30 is moved in the Z direction orthogonal to the surface 20a, the measurement wafer 20 is kept fixed and the optical probe 30 side is moved in the X direction and the Y direction in addition to the Z direction. You can also.
  • the stage 100 can be configured to move in the three directions of the X direction, the Y direction, and the Z direction while the optical probe 30 side is fixed.
  • an alignment mark capable of recognizing an image is formed on the measurement wafer 20 or the optical waveguide 22. High-precision alignment may be automatically performed by recognizing the image.
  • the inspection apparatus 10 includes a plurality of sets of optical waveguide cores 33, tapered waveguide cores 34, and diffraction gratings 35 arranged in parallel as the optical waveguide 31 on the support member 40B of the optical probe 30. The rest is the same as in the first embodiment. As shown in FIG.
  • the support member 40B is formed in a strip shape along one direction, and a plurality of diffraction gratings 35 and tapered waveguide cores 34 are provided along the longitudinal direction of the support member 40B.
  • the waveguide core 34 is provided with linear optical waveguide cores 33 extending in parallel to each other.
  • a plurality of sets of diffraction gratings 35 are simultaneously opposed to a plurality of optical waveguides 22 on the measurement wafer 20, and each optical waveguide 22 can be evaluated simultaneously.
  • the inspection efficiency is increased, and the operational effects shown in the first embodiment are more remarkable.
  • the support member 40B that supports the optical waveguide 31 provided with a plurality of sets of the optical waveguide core 33, the tapered waveguide core 34, and the diffraction grating 35 as described above may have other shapes as appropriate.
  • a rectangular frame-shaped support member 40 ⁇ / b> C is provided, and the exposure area A so that all optical waveguides 22 located in the exposure area A for one shot can be simultaneously inspected on the measurement wafer 20.
  • a predetermined number of diffraction gratings 35 may be arranged along the outer periphery of each of the optical waveguide cores, and the tapered waveguide core 34 and the optical waveguide core 33 may be led out from the respective diffraction gratings 35 to the outer periphery side of the support member 40C.
  • the support member 40 ⁇ / b> D can be formed in a rectangular shape corresponding to the shape of the exposure area A so as to cover the exposure area A for one shot.
  • the support member 40 ⁇ / b> E may be annular and the predetermined number of diffraction gratings 35 may be annularly arranged along the outer peripheral shape B of the circular measurement wafer 20.
  • the support member 40 ⁇ / b> F may be circular so as to cover the circular measurement wafer 20.
  • the optical probe 30 has a configuration in which an electric signal transmission line 51 is provided in the vicinity of the optical waveguide 31.
  • the transmission line 51 includes a conductor 51a and a pair of conductors 51b arranged on both sides of the surface of the clad layer 31b of the optical probe 30 on the side facing the surface 20a of the measurement wafer 20 as shown in FIG. It is formed by being provided.
  • a ground conductor 51c is formed on the opposite side of the conductor 51b across the clad layer 31b, and the ground conductor 51c is electrically connected to the conductor 51b through a via 51d penetrating the clad layer 31b.
  • the grounded coplanar line can be configured.
  • the transmission line 51 is provided on both sides of the diffraction grating 35.
  • Slots (air gaps) 52 are formed between the transmission lines 51 adjacent to each other, and the cladding layer 31b is exposed.
  • the diffraction grating 35 is disposed at a position facing the slot 52, and light can be input or output through the slot 52.
  • the conductor 51a is disposed between the two optical waveguide cores 33, and the two conductors 51b are disposed outside the two optical waveguide cores 33. May be. Also in this case, the diffraction grating 35 is provided at a position where the cladding layer 31b is exposed in the slot 52 formed between the conductor 51a and the conductors 51b on both sides thereof.
  • the optical waveguide 22 can be optically evaluated by pressing the optical probe 30 against the surface 20a of the measurement wafer 20 as shown in FIG.
  • Electrical evaluation can be performed on the elements provided in 22 and other elements and electric circuits.
  • the constituent members necessary for optical coupling and the constituent members necessary for electrical connection may interfere with each other.
  • both optical coupling and electrical connection can be achieved in a small space.
  • the transmission line 51 as a grounded coplanar line, a high-speed electrical signal such as 10 Gbit / s can be input.
  • the transmission line 51 is a grounded coplanar line.
  • the transmission line 51 is not limited to this, and a microstrip line, another type of coplanar line, or the like may be formed as appropriate.
  • each chip C (one of which is illustrated in the figure) formed on the measurement wafer 20 is arranged in parallel with the optical waveguide 22 that is the original inspection target.
  • One or more reference optical waveguides 60A, 60B,... Having a line length different from that of the optical waveguide 22 are provided.
  • the reference optical waveguides 60A, 60B,... Have diffraction gratings 26A, 26B and tapered waveguide cores 27A, 27B, respectively, and have the same optical connection structure as the optical waveguide 22. is doing.
  • FIG. 12 is a diagram showing the relationship between the difference in loss due to the waveguide length and the coupling loss when such a reference optical waveguide is used.
  • the loss insertion loss
  • the waveguide length of the optical waveguide is 0 (zero).
  • the relationship between the waveguide length and the insertion loss is a linear function, and the inclination thereof becomes an insertion loss per waveguide having a certain length, that is, a propagation loss. Therefore, by measuring the insertion loss in the reference optical waveguides 60A, 60B,...
  • the loss (coupling loss) when the waveguide length is 0 (zero) can be obtained. Then, when inspecting the optical waveguide 22, by correcting the subtraction loss obtained in advance from the insertion loss of the obtained optical waveguide 22 (that is, correcting the evaluation result for the optical waveguide 22), Propagation loss in the optical waveguide 22 can be obtained.
  • optical probe, inspection apparatus, and inspection method of the present invention are not limited to the above-described embodiments described with reference to the drawings, and various modifications can be considered within the technical scope.
  • the diffraction gratings 26A, 26B, and 35 have a condensing function.
  • the light scattering may be suppressed by disposing a diffraction grating having a condensing function between the diffraction gratings 26 ⁇ / b> A and 26 ⁇ / b> B and the diffraction grating 35 without using what is provided.
  • a diffraction grating having a condensing function between the diffraction gratings 26 ⁇ / b> A and 26 ⁇ / b> B and the diffraction grating 35 without using what is provided.
  • the structure and manufacturing process become complicated, and the additional diffraction grating with a condensing function is located on the surface of the measurement wafer or probe, so that it is easy to get scratches and dirt, and the yield may deteriorate.
  • the use of diffraction gratings 26A, 26B, and 35 having a light collecting function can avoid the occurrence of such a problem.
  • the configurations described in the embodiments can be combined as appropriate. In addition to this, as
  • the optical characteristics of the optical circuit can be evaluated by pressing the diffraction grating of the optical probe against the optical circuit side diffraction grating provided in the optical circuit of the inspection object. Angle adjustment or the like is not necessary, and it is possible to efficiently and reliably inspect an optical circuit formed on a silicon wafer at a high density.

Abstract

 コア層と該コア層を覆うよう形成されたクラッド層とを有した光導波路と、 前記光導波路の先端部を支持する支持部材と、を有する光プローブ。前記コア層に、光導波路コアと、その端部に設けられ、外部に光を出力または外部から光を入力する入出力面を有し、前記光導波路コアで伝搬される光の伝搬方向と前記入出力面からの光の入出力方向との間で光軸方向を変換する回折格子とが設けられ、前記支持部材は、前記入出力面が予め定めた方向を向くよう前記回折格子を支持する。

Description

光プローブ、検査装置、検査方法
 本発明は、ウエハに形成された光回路の光特性を検査するのに用いる、光プローブ、検査装置、検査方法に関する。
 平面光回路(Planer Lightwave Circuit、PLC)の光学評価は、平面光回路の光導波路に、光ファイバを接続し、この光ファイバを介して外部から光導波路に光を入射することで行う。このとき、光導波路の屈折率を光ファイバの屈折率に合わせ、光導波路の端面と光ファイバの平坦な端面とを直接接続するようにしていた。その際、接続面の荒れなどによって光導波路の端面と光ファイバの端面との間に隙間が発生するが、両端面間にマッチングオイルを介在させることで、光導波路と光ファイバとの境界部分から光が散乱するのを防いでいる。
 ところで、特許文献1に記載のように、シリコンフォトニクスの発展により、PLCにおいては、シリコンをコア、二酸化シリコンをクラッドとしたシリコン細線導波路が用いられるようになっている。シリコン細線導波路においては、最小曲げ半径を小さくできることから、1つのシリコンウエハに光導波路を有した光集積回路のチップを多数配置することが可能になっている。
 しかし、従来のPLCの光学評価では、光導波路の端面をダイシングなどでチップ化し、個々の測定部位ごとに光導波路の当該端面に光ファイバの端面を押し当てて測定する必要がある。
 ここで、シリコン細線導波路は、光ファイバに対して、導波路幅が1/10程度であるため、光ファイバとシリコン細線導波路との間には、大きな屈折率差が存在する。このため、光ファイバとシリコン細線導波路との間で、光学的に確実な結合を実現するため、光ファイバの先端をレンズ形状にした先球ファイバを用いることも行われている。
 この場合、光ファイバとシリコン細線導波路とを、高い調芯精度で位置合わせする必要があり、これに手間が掛かる。
 そこで、特許文献1、非特許文献1には、シリコンウエハの面内に回折格子を形成し、この回折格子に光ファイバによって光を入出射することによって、光回路の光学評価を行う構成が開示されている。より具体的には、光ファイバを、シリコンウエハの表面に直交する方向に対して10°程度傾けて回折格子に対向させ、光ファイバの先端から回折格子に光を入出射させている。
特開2011-107384号公報
L.Zimmermann et al.、IEEE LEOS NEWSLETTER、2008年12月号、4-14頁
 しかしながら、特許文献1に記載の構成では、光ファイバとシリコンウエハとを、シリコンウエハの表面に沿ったXY方向における相対位置、およびシリコンウエハの表面に直交するZ方向における相対位置、Z方向に対する光ファイバの傾斜角度について、高精度に調整する必要がある。
 シリコンウエハ上には、高密度で形成された光集積回路が多数配置されているため、これらの検査を効率良くかつ確実に行うには、改善の余地がある。
 本発明の目的は、シリコンウエハ上に高密度に形成された光回路の検査を、効率良くかつ確実に行うことのできる光プローブ、検査装置、検査方法を提供することである。
 従って本発明は、検査対象物に形成された光回路の光学特性を検査する光プローブであって、コア層と該コア層を覆うよう形成されたクラッド層とを有した光導波路と、前記光導波路の先端部を支持する支持部材と、を有し、前記光導波路の前記コア層に、光を伝搬する光導波路コアと、前記光導波路コアの端部に設けられ、外部に光を出力または外部から光を入力する入出力面を有し、前記光導波路コアで伝搬される光の伝搬方向と前記入出力面からの光の入出力方向との間で光軸方向を変換する回折格子とが設けられ、前記支持部材は、前記入出力面が予め定めた方向を向くよう前記回折格子を支持することを特徴とする光プローブを提供する。
 本発明はまた、上記したような光プローブと、前記回折格子の入出力面と平行に形成され、前記検査対象物を支持する支持面を有したステージと、前記ステージと前記光プローブとを、前記支持面に沿った面内で相対移動可能とする移動機構と、前記光プローブを、前記支持面に接近・離間する方向に進退させる進退機構と、を備える検査装置も提供する。
 本発明はまた、光回路の入力端および出力端にそれぞれ光回路側回折格子が設けられた検査対象物を、上記したような光プローブを用いて検査する検査方法であって、前記検査対象物の表面において、少なくとも前記光回路の入力端の前記光回路側回折格子に対向する位置に、前記光プローブの前記回折格子を押し付ける工程と、前記光プローブの光導波路から前記回折格子を通して前記光回路側回折格子に光を入力する工程と、前記光回路を伝搬し、前記出力端の前記光回路側回折格子から出力された光に基づき、前記光回路の光学特性を評価する工程と、を備える検査方法も提供する。
 本発明によれば、光プローブの回折格子を、検査対象物の光回路に設けられた光回路側回折格子に押し付けることで、光回路の光学特性を評価することができる。これにより、光プローブの傾斜角度調整等が不要となり、シリコンウエハ上に高密度に形成された光回路の検査を、効率良くかつ確実に行うことが可能となる。
本発明の第1の実施形態に係る検査装置の構成を示す断面図である。 プローブを測定ウエハに接近させる状態を示す断面図である。 第1の実施形態の変形例を示す断面図である。 本発明の第2の実施形態におけるプローブの構成を示す斜視展開図である。 第2の実施形態におけるプローブの変形例を示す斜視展開図である。 第2の実施形態におけるプローブの他の変形例を示す斜視展開図である。 第2の実施形態におけるプローブのさらに他の変形例を示す斜視展開図である。 第2の実施形態におけるプローブのさらに他の変形例を示す斜視展開図である。 本発明の第3の実施形態におけるプローブの構成を示す斜視図である。 図9AのX-X断面図である。 第3の実施形態におけるプローブの変形例の構成を示す斜視図である。 図10AのY-Y断面図である。 本発明の第4の実施形態における、測定ウエハ上に形成された参照用光導波路を示す図である。 参照用光導波路を用いた場合における、導波路長さと損失の違い、および結合損の関係を示す図である。
 以下、添付図面を参照して、本発明による光プローブ、検査装置、検査方法を実施するための最良の形態を説明する。しかし、本発明はこれらの実施形態例のみに限定されるものではない。
(第1の実施形態)
 図1は、測定ウエハ(検査対象物)20を検査するための検査装置10の概略構成を示す図である。
 検査装置10においては、測定ウエハ20の表面に光プローブ30を押し当てることによって、測定ウエハ20の光導波路(光回路)22を検査する。
 検査対象となる測定ウエハ20は、シリコン等からなるウエハ基板21と、ウエハ基板21上に形成された多数の光集積回路(チップ)のそれぞれに形成された1以上の光導波路22と、を有する。また測定ウエハ20は通常は円形であるが、小片化してもよい。
 ウエハ基板21は、SOI(Silicon on Insulator)基板によって形成してもよい。
 光導波路22は、例えばシリコンからなるコア層22aと、コア層22aを覆うように形成された、例えば二酸化シリコンからなるクラッド層22bと、を有する。
 コア層22aには、線状に連続する光導波路コア25と、その両端部にそれぞれ設けられた回折格子(光回路側回折格子)26A,26Bと、テーパ導波路コア27A,27Bと、が形成されている。
 回折格子26A,26Bは、例えば平面視矩形状で、光導波路コア25の両端部(入力端、出力端)に設けられている。この回折格子26A,26Bは、光導波路コア25の幅方向における結合許容度を高めるため、光導波路コア25の幅方向において、光導波路コア25の幅よりも大きな幅を有している。
 この回折格子26A,26Bは、光導波路コア25,テーパ導波路コア27A,27Bによって、測定ウエハ20の表面20aと平行な方向に伝搬されてきた光を回折することによって、その光軸方向をウエハ基板21の上方を向く方向に変換して、表面20aから出射させる。同様に、外部から入射された光の光軸方向を回折により変換し、回折格子に接続されるテーパ導波路コア,光導波路コアが連続する方向に光を向かわせる。
 テーパ導波路コア27A,27Bは、光導波路コア25と回折格子26A,26Bとの間に設けられ、光導波路コア25から回折格子26A,26Bに向けてそのコア幅がテーパ状に漸次拡大するよう形成されている。
 このような測定ウエハ20は、ステージ100の支持面100a上に載置されている。
 ステージ100は、ステージ移動機構(移動機構)110によって、測定ウエハ20の表面20aに沿った平面内で、互いに直交する二方向(X方向、Y方向)に移動可能とされている。これにより、測定ウエハ20の位置を、X方向、Y方向に移動できるようになっている。
 測定ウエハ20の光導波路22を検査するには、測定ウエハ20の表面20aにおいて、光導波路22の両端部に設けられた回折格子26A、26Bに対向した位置に、それぞれ、光プローブ30を押し当てる。
 光プローブ30は、光導波路31と、光導波路31を支持する支持部材40Aと、を備える。
 光導波路31は、コア層31aと、コア層31aを覆うよう設けられたクラッド層31bと、を有する。ここで、コア層31aとクラッド層31bは、屈折率が互いに異なるポリマー材料(クラッド層31bの屈折率<コア層31aの屈折率)等を用いて形成するのが好ましい。
 コア層31aは、光導波路コア33と、テーパ導波路コア34と、回折格子35とを備えている。
 テーパ導波路コア34は、光導波路コア33と回折格子35との間に設けられ、光導波路コア33から回折格子35に向けてそのコア幅がテーパ状に漸次拡大するよう形成されている。
 回折格子35は、例えば平面視矩形状で、光導波路コア33の先端部にテーパ導波路コア34を介して設けられている。この回折格子35は、光導波路コア33の幅方向における結合許容度を高めるため、光導波路コア33の幅方向において、光導波路コア33の幅よりも大きな幅寸法を有している。
 回折格子35は、その入出力面35aにおいて外部から入射された光、または外部に出射する光の光軸方向と、テーパ導波路コア34,光導波路コア33が連続する方向の光軸方向とを、回折により変換する。
 ここで、光プローブ30の回折格子35と、測定ウエハ20の回折格子26A,26Bは、対向する回折格子35と回折格子26A,26Bと間での回折光のビーム径が異なると結合許容度が下がってしまう。このため、回折格子35、さらには回折格子26A、26Bに集光機能を持たせると、回折光のビーム径を調整することができ結合許容度を高めることができる。
 また、回折格子26A,26B,35の形状は、時間領域差分法(Finite Difference Time Domain、FDTD)等によって決定できる。時間領域差分法は、光が回折格子26A,26B,35を通ることによって光の経路長が変わり、これによって生じる、光が到達するまでの時間差に基づいて、回折格子26A,26B,35の形状を決定する公知の手法である。
 また、回折格子26A,26B,35のピッチを調整することによって、反射の影響を抑えるために回折光の光軸を傾けて(例えば10度程度)、コア層22a,31aを伝搬してきた光の回折効率を高めることが可能である。
 ここで、回折格子26,35に集光機能を持たせるには、非特許文献2に示されるように、屈折率を変化させるための直線状の凹凸構造を曲線状の凹凸構造に変えることにより可能となる。
 非特許文献2 T.Suhara et al.、IEEE Jounal of Quantum Electronics、第QE22巻、第6号、845-867頁。1986年6月 (図23)
 支持部材40Aは、光プローブ30において、光導波路31の回折格子35およびテーパ導波路コア34の上面側に設けられている。この支持部材40Aは、プレート状で、光導波路31の回折格子35の入出力面35aがステージ100上の測定ウエハ20に対向するように、光導波路31を保持する。
 支持部材40Aは、検査装置10に備えられたアクチュエータ等からなるプローブ昇降機構(進退機構)120によって、ステージ100上にセットされた測定ウエハ20に対し、その表面20aに直交する方向(Z方向)に接近・離間可能とされている。これにより、光プローブ30の先端部を測定ウエハ20の表面20aに押し当て、支持部材40Aに支持された光導波路31の回折格子35の入出力面35aを、回折格子26A,26Bに対向させることができるようになっている。
 上記したような構成の検査装置10において測定ウエハ20の検査を行うに際しては、ステージ100上に測定ウエハ20をセットし、バキューム吸着等の適宜手段により、ステージ100に測定ウエハ20を固定する。
 そして、図2に示すように、ステージ100をステージ移動機構110(図1参照)によって移動させることで、測定ウエハ20の光導波路22の両端部に設けられた回折格子26A,26Bを、個々の光プローブ30の回折格子35に対向した位置に移動させる。
 次いで、各光プローブ30の支持部材40Aを、測定ウエハ20の表面20aに接近する方向に移動させる。
 そして、図1に示したように、各光プローブ30の先端部を、測定ウエハ20の表面20aにおいて、回折格子26A,26Bに対向した位置に突き当てる。
 そして、外部の発光素子等の光源(図示無し)から、一方の光プローブ30(例えば、回折格子26Aに対向した光プローブ30)の光導波路コア33を介して光を測定ウエハ20に入射させる。光導波路コア33を伝搬してきた光は、回折格子35によってその光軸が変換され、この回折格子35に対向した測定ウエハ20の方向に出力される。
 出力された光は、測定ウエハ20の光導波路22の一端側の回折格子26Aに達し、光軸方向が変換されて、テーパ導波路コア27Aを経て、光導波路コア25に伝搬される。
 光導波路コア25によって伝搬される光は、さらに、テーパ導波路コア27Bを経て、回折格子26Bでその光軸方向が再び変換され、この回折格子26Bに対向した他方の光プローブ30に向けて出力される。
 測定ウエハ20の光導波路22の他端側の回折格子26Bから出力された光は、光プローブ30の回折格子35に到達し、その光軸方向が変換されて、テーパ導波路コア34を経て光導波路コア33に伝搬される。そして、光導波路コア33によって伝搬され、検査装置10に備えられた評価部において、損失等、所定のパラメータの値が評価される。
 これにより、測定ウエハ20に形成された光導波路22の検査が完了する。
 なお、測定ウエハ20には、複数の光導波路22が形成されているため、個々の光導波路22に対し、上記の、ステージ100の移動、光プローブ30の測定ウエハ20への突き当て、光導波路22の評価、といった動作を順次繰り返す。
 また、光導波路22には分岐路が構成される場合もあり、そのときは光導波路22に対する光の入出力部が3つ以上になる。このような場合、光プローブ30を3つ以上用意してそれぞれの入出力部に押し付け、同時に検査を行うようにしてもよい。
 上述したような構成によれば、光プローブ30に、測定ウエハ20の光導波路22の端部に設けられた回折格子26A,26Bに対向して光学的に結合される回折格子35を備えるようにした。これにより、光プローブ30の回折格子35を測定ウエハ20の回折格子26A,26Bに押し当てるのみで、光導波路22の検査を行うことができる。
 このとき、光プローブ30は、測定ウエハ20の表面20aに対する傾斜角度の調整が不要であるため、光導波路22の検査を、容易かつ確実に行うことができる。
 また、回折格子26A,26B,35に、集光機能を有したものを用いることにより、光プローブ30と測定ウエハ20の間で回折光のビーム径を調整することができ、結合許容度を高めることができる。
 また、光プローブ30と測定ウエハ20の表面20aとのZ方向におけるトレランスが拡大するため、実質的に、光プローブ30と測定ウエハ20のX方向、およびY方向の位置合わせのみを高精度に行いさえすれば良い。これによっても、光導波路22の検査を、容易かつ確実に行うことができる。
 なお、上記第1の実施形態において、光導波路22の両端部に設けられた回折格子26A,26Bにそれぞれ光プローブ30を押し当てて検査を行うようにしたが、図3に示すように、その一方は、測定ウエハ20に作り込まれた受光素子50に代えることもできる。
 この場合、光導波路22の一方の端部(入力端)の回折格子26Aに光プローブ30を押し当て、上記実施形態で示したように、光プローブ30から光導波路22に検査光を入力する。
 そして、光導波路22の他方の端部(出力端)の受光素子50で受光する。受光素子50では、受光した光がその強度等に応じた電気信号に変換され、その電気信号を電気プローバ70で受けて、検査装置10の評価部に出力する。
 このような構成においても、上記と同様の作用効果を得ることができる。
 また、上記第1の実施形態では、測定ウエハ20をステージ100上にセットし、ステージ100を測定ウエハ20の表面20aに沿った平面内で二方向(X方向、Y方向)に移動させ、光プローブ30を表面20aに直交するZ方向に移動させるようにしたが、測定ウエハ20は固定したままとし、光プローブ30側を、Z方向に加え、X方向、Y方向に移動させる構成とすることもできる。
 さらに、光プローブ30側を固定したままとし、ステージ100がX方向、Y方向、Z方向の三方向に移動する構成とすることもできる。
 さらに、光プローブ30と測定ウエハ20とのX方向、Y方向の位置合わせを行うために、測定ウエハ20上、あるいは光導波路22上に、画像認識可能なアライメントマークを形成し、このアライメントマークを画像認識することによって、高精度な位置合わせを自動的に行うようにしても良い。
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。以下に説明する第2の実施形態において、上記第1の実施形態と共通する構成については、図中に同符号を付してその説明を省略し、上記第1の実施形態との差異を中心に説明を行う。
 本実施形態における検査装置10は、光プローブ30の支持部材40Bに、光導波路31として、光導波路コア33と、テーパ導波路コア34と、回折格子35とを複数組、並設して備えるようにした他は、上記第1の実施形態と同様である。
 図4に示すように、支持部材40Bは、一方向に沿って帯状に形成され、この支持部材40Bの長手方向に沿って、複数の回折格子35およびテーパ導波路コア34が設けられ、各テーパ導波路コア34には、線状の光導波路コア33が、互いに平行に延びるよう設けられている。
 このような構成によれば、測定ウエハ20において、複数の光導波路22に対し、複数組の回折格子35を同時に対向させ、それぞれの光導波路22の評価を同時に行うことが可能となる。これにより、検査効率が高まり、上記第1の実施形態で示した作用効果が、より顕著なものとなる。
(第2の実施形態の変形例)
 上述のような、複数組の光導波路コア33、テーパ導波路コア34、回折格子35を備えた光導波路31を支持する支持部材40Bは、適宜他の形状とすることができる。
 例えば、図5に示すように、矩形の枠状の支持部材40Cを設け、測定ウエハ20において、1ショット分の露光エリアA内に位置する全ての光導波路22を同時に検査できるよう、露光エリアAの外周部に沿って所定数の回折格子35を配置し、それぞれの回折格子35から支持部材40Cの外周側にテーパ導波路コア34、光導波路コア33を導出させるようにしても良い。 
 これ以外にも、図6に示すように、1ショット分の露光エリアAを覆うよう、支持部材40Dを例えば露光エリアAの形状に対応する矩形状とすることもできる。
 また、図7に示すように、円形の測定ウエハ20の外周部形状Bに沿って、支持部材40Eを環状とするとともに、所定数の回折格子35を環状に配置することもできる。
 図8に示すように、円形の測定ウエハ20を覆うように、支持部材40Fを円形としても良い。
(第3の実施形態)
 次に、本発明の第3の実施形態について説明する。以下に説明する第3の実施形態において、上記第1、第2の実施形態と共通する構成については、図中に同符号を付してその説明を省略し、上記第1の実施形態との差異を中心に説明を行う。
 本実施形態の検査装置10においては、図9A、9Bに示すように、光プローブ30において、光導波路31の近傍に電気信号の伝送線路51が設けられた構成を有している。
 伝送線路51は、光プローブ30のクラッド層31bの表面において、図1に示すような測定ウエハ20の表面20aに対向する側に、導体51aと、その両側に配置された一対の導体51bとが設けられることによって形成されている。伝送線路51は、例えば、クラッド層31bを挟んで導体51bとは反対側に接地導体51cが形成され、この接地導体51cがクラッド層31bを貫通するビア51dを介して導体51bに電気的に接続される、グランデッドコプレーナ線路の構成とすることができる。
 ここで、伝送線路51は、回折格子35を挟んでその両側に設けられている。互いに隣接する伝送線路51間には、スロット(空隙)52が形成され、クラッド層31bが露出している。回折格子35は、スロット52に対向する位置に配置され、このスロット52を通して光の入力または出力が行えるようになっている。
 また、図10A、10Bに示すように、導体51aを、二本の光導波路コア33の間に配置し、2本の導体51bを、これら二本の光導波路コア33の外側に配置するようにしても良い。この場合も、回折格子35は、導体51aと、その両側の導体51bとの間に形成されたスロット52において、クラッド層31bが露出した位置に設けられている。
 このような構成によれば、光プローブ30を図1に示すような測定ウエハ20の表面20aに押し当てることによって、光導波路22の光学的な評価が行えるのに加え、伝送線路51で光導波路22に設けられた素子や、その他の素子や電気回路について、電気的な評価(検査)を行うことができる。
 このとき、光プローブ30に、光導波路31と、伝送線路51とを並設することによって、光学的な結合に必要な構成部材と電気的な接続に必要な構成部材とが互いに干渉することもなく、小さなスペースで光学的な結合と電気的な接続とを両立することができる。
 さらに、伝送線路51をグランデッドコプレーナ線路とすることで、10Gbit/s等の高速の電気信号を入力することができる。
 なお、本実施形態では、伝送線路51をグランデッドコプレーナ線路としたが、これに限らず、適宜マイクロストリップ線路や、他のタイプのコプレーナ線路等を形成してもよい。
(第4の実施形態)
 次に、本発明の第4の実施形態について説明する。以下に説明する第4の実施形態において、上記第1の実施形態と共通する構成については、図中に同符号を付してその説明を省略し、上記第1の実施形態との差異を中心に説明を行う。
 本実施形態においては、図11に示すように、測定ウエハ20に形成された各チップC(図ではそのうちの1つを例示)に、本来の検査対象である光導波路22に並設して、光導波路22とは線路長が異なる1以上の参照用光導波路60A,60B,…を設けるようにした。
 参照用光導波路60A,60B,…は、光導波路22と同様、それぞれ、その両端部に、回折格子26A,26B,テーパ導波路コア27A,27Bを備え、光導波路22と同じ光接続構造を有している。
 このような構成を備えた測定ウエハ20を検査するに際しては、光導波路22だけではなく、参照用光導波路60A,60B,…についても、光導波路22と同様に、両端部の回折格子26A,26Bに光プローブ30の回折格子35を押し当てて、光学的な評価を行うようにする。
 図12は、このような参照用光導波路を用いた場合における、導波路長さによる損失の違い、および結合損の関係を示す図である。図12に示すように、光学的な結合部が同じ光接続構造であり、長さが互いに異なる複数の光導波路におけるロス(挿入損)を測定すると、光導波路の導波路長さが0(ゼロ)のときの結合損が分かる。また、導波路長さと挿入損との関係は一次関数となり、その傾きが、一定長の導波路当たりの挿入損、すなわち伝搬損となる。
 したがって、長さの異なる参照用光導波路60A,60B,…における挿入損を予め測定することで、導波路長さが0(ゼロ)のときのロス(結合損)を求めることができる。
 そして、光導波路22の検査に際しては、得られた光導波路22の挿入損から、予め求めた前記の結合損を差し引いて補正する(即ち、光導波路22に対する評価結果の補正を行う)ことで、光導波路22における伝搬損を求めることが可能となる。
(その他の実施形態)
 なお、本発明の光プローブ、検査装置、検査方法は、図面を参照して説明した上述の各実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
 例えば、上記第1~第4の実施形態では、回折格子26A,26B,35として集光機能を有したものを用いるのが好ましい、としたが、回折格子26A,26B,35として集光機能を有したものを用いず、これら回折格子26A,26Bと回折格子35との間に、集光機能を有した回折格子を配置することによって、光の散乱を押さえるようにしても良い。
 ただしその場合、構造および製造工程が複雑化し、さらに追設した集光機能を有する回折格子は測定ウエハまたはプローブの表面に位置することになって傷や汚れがつきやすく、歩留まりが悪くなる可能性がある。これに対し、上記各実施形態で示したごとく、回折格子26A,26B,35として集光機能を有したものを用いれば、このような問題の発生を回避できる
 また、上記第1~第4の実施形態に記載の構成を適宜組み合わせることもできる。
 これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
 この出願は、2012年8月31日に出願された日本出願特願2012-191648号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明によれば、光プローブの回折格子を、検査対象物の光回路に設けられた光回路側回折格子に押し付けることで、光回路の光学特性を評価することができるので、光プローブの傾斜角度調整等が不要となり、シリコンウエハ上に高密度に形成された光回路の検査を、効率良くかつ確実に行うことが可能となる。
10  検査装置
20  測定ウエハ(検査対象物)
20a 表面
21  ウエハ基板
22  光導波路(光回路)
22a コア層
22b クラッド層
25  光導波路コア
26A,26B  回折格子(光回路側回折格子)
27A,27B  テーパ導波路コア
30  光プローブ
31  光導波路
31a コア層
31b クラッド層
33  光導波路コア
34  テーパ導波路コア
35  回折格子
35a 入出力面
40A~40F  支持部材
50  受光素子
51  伝送線路
51a 導体(第一の導体)
51b 導体(第二の導体)
51c 接地導体
51d ビア
52  スロット
60A,60B, 参照用光導波路
70 電気プローバ
100 ステージ
100a 支持面
110 ステージ移動機構(移動機構)
120 プローブ昇降機構(進退機構)

Claims (10)

  1.  検査対象物に形成された光回路の光学特性を検査する光プローブであって、
     コア層と該コア層を覆うよう形成されたクラッド層とを有した光導波路と、
     前記光導波路の先端部を支持する支持部材と、を有し、
     前記光導波路の前記コア層に、
      光を伝搬する光導波路コアと、
      前記光導波路コアの端部に設けられ、外部に光を出力または外部から光を入力する入出力面を有し、前記光導波路コアで伝搬される光の伝搬方向と前記入出力面からの光の入出力方向との間で光軸方向を変換する回折格子と、
     が設けられ、
     前記支持部材は、前記入出力面が予め定めた方向を向くよう前記回折格子を支持することを特徴とする光プローブ。
  2.  前記回折格子は、前記入出力面から入出力する前記光の集光機能を有することを特徴とする請求項1に記載の光プローブ。
  3.  前記光導波路の前記クラッド層の表面に沿って、電気信号を伝搬する第一の導体および第二の導体が設けられ、
     前記回折格子は、前記第一の導体と第二の導体の間に形成されたスロットに対向するよう配置されていることを特徴とする請求項1または2に記載の光プローブ。
  4.  請求項1から3のいずれか一項に記載の光プローブと、
     前記回折格子の入出力面と平行に形成され、前記検査対象物を支持する支持面を有したステージと、
     前記ステージと前記光プローブとを、前記支持面に沿った面内で相対移動可能とする移動機構と、
     前記光プローブを、前記支持面に接近・離間する方向に進退させる進退機構と、
    を備えることを特徴とする検査装置。
  5.  前記光プローブを二個一対で備え、
     前記移動機構および前記進退機構により、一方の前記光プローブの前記回折格子を、前記ステージの前記支持面に支持された前記検査対象物の前記光回路の入力端に押し付けるとともに、他方の前記光プローブの前記回折格子を、前記光回路の出力端に押し付けることで、前記光回路の検査を行うことを特徴とする請求項4に記載の検査装置。
  6.  前記光回路の出力端に、光を電気信号に変換する受光素子を配置し、
     前記移動機構および前記進退機構により、前記光プローブの前記回折格子を、前記ステージの前記支持面に支持された前記検査対象物の前記光回路の入力端に押し付けるとともに、前記光回路の出力端にある前記受光素子から電気信号を出力させることで、前記光回路の検査を行うことを特徴とする請求項4に記載の検査装置。
  7.  前記支持部材に、複数組の光回路を検査する複数組の光プローブが一体に設けられていることを特徴とする請求項4から6のいずれか一項に記載の検査装置。
  8.  光回路の入力端および出力端にそれぞれ光回路側回折格子が設けられた検査対象物を、請求項1から3のいずれか一項に記載の光プローブを用いて検査する検査方法であって、
     前記検査対象物の表面において、少なくとも前記光回路の入力端の前記光回路側回折格子に対向する位置に、前記光プローブの前記回折格子を押し付ける工程と、
     前記光プローブの前記光導波路から前記回折格子を通して前記光回路側回折格子に光を入力する工程と、
     前記光回路を伝搬し、前記出力端の前記光回路側回折格子から出力された光に基づき、前記光回路の光学特性を評価する工程と、
     を備えることを特徴とする検査方法。
  9.  前記光回路の光学特性を評価する工程は、前記検査対象物の表面において、前記光回路の前記出力端の前記光回路側回折格子に対向する位置に押し付けた他の前記光プローブの前記回折格子を介し、前記出力端の前記光回路側回折格子から出力された光を取り出して前記光回路の光学特性を評価することを特徴とする請求項8に記載の検査方法。
  10.  前記検査対象物に、前記光回路と同じ光接続構造を有し、かつ前記光回路とは伝搬経路長が異なる複数の参照用光回路を設けておき、
     前記光回路の光学特性を評価する工程で、前記光回路における光の損失と、前記参照用光回路における光の損失とをそれぞれ検出し、その検出結果に基づき、前記光回路における評価結果を補正することを特徴とする請求項8または9に記載の検査方法。
PCT/JP2013/072854 2012-08-31 2013-08-27 光プローブ、検査装置、検査方法 WO2014034655A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/422,954 US10451520B2 (en) 2012-08-31 2013-08-27 Optical probe, inspection device, and inspection method
JP2014533017A JP6358092B2 (ja) 2012-08-31 2013-08-27 光プローブ、検査装置、検査方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-191648 2012-08-31
JP2012191648 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034655A1 true WO2014034655A1 (ja) 2014-03-06

Family

ID=50183467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072854 WO2014034655A1 (ja) 2012-08-31 2013-08-27 光プローブ、検査装置、検査方法

Country Status (3)

Country Link
US (1) US10451520B2 (ja)
JP (1) JP6358092B2 (ja)
WO (1) WO2014034655A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085934A1 (ja) * 2015-11-19 2017-05-26 日本電信電話株式会社 シリコン光回路
CN107710042A (zh) * 2015-07-07 2018-02-16 华为技术有限公司 具有表面光栅耦合器和边缘耦合器的光开关
JP2018152542A (ja) * 2017-03-10 2018-09-27 東芝メモリ株式会社 センシングシステム、センシングウェハおよびプラズマ処理装置
JP2019029620A (ja) * 2017-08-03 2019-02-21 富士通オプティカルコンポーネンツ株式会社 波長可変光源、及び光モジュール
WO2019230372A1 (ja) * 2018-05-29 2019-12-05 日本電信電話株式会社 光検査回路
JP2019211626A (ja) * 2018-06-05 2019-12-12 日本電信電話株式会社 調芯用光回路
JP2019219453A (ja) * 2018-06-18 2019-12-26 日本電信電話株式会社 調芯用光回路および光調芯方法
EP3314320B1 (en) * 2015-06-29 2020-11-11 Elenion Technologies, LLC Mode converter with a s-bent taper and related polarization rotator
WO2020255191A1 (ja) * 2019-06-17 2020-12-24 日本電信電話株式会社 光回路ウェハ

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
WO2014034458A1 (ja) * 2012-08-31 2014-03-06 日本電気株式会社 光モジュールと光コネクタとの接続構造
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US9405065B2 (en) * 2013-10-03 2016-08-02 Stmicroelectronics, Inc. Hybrid photonic and electronic integrated circuits
WO2016042283A1 (en) 2014-09-19 2016-03-24 Milan Momcilo Popovich Method and apparatus for generating input images for holographic waveguide displays
CN111323867A (zh) 2015-01-12 2020-06-23 迪吉伦斯公司 环境隔离的波导显示器
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
EP3359999A1 (en) 2015-10-05 2018-08-15 Popovich, Milan Momcilo Waveguide display
US9933577B2 (en) * 2016-03-11 2018-04-03 Globalfoundries Inc. Photonics chip
US9715064B1 (en) * 2016-09-13 2017-07-25 Globalfoundries Inc. Multi-chip modules with vertically aligned grating couplers for transmission of light signals between optical waveguides
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
JP6420932B1 (ja) * 2017-03-30 2018-11-07 旭化成エレクトロニクス株式会社 光学式濃度測定装置および光学式濃度測定装置の製造方法
KR102594414B1 (ko) 2018-10-24 2023-10-30 삼성전자주식회사 프로브 장치 및 이를 포함하는 테스트 장치
CN113692544A (zh) 2019-02-15 2021-11-23 迪吉伦斯公司 使用集成光栅提供全息波导显示的方法和装置
JP7227067B2 (ja) * 2019-05-08 2023-02-21 株式会社日本マイクロニクス 検査用接続装置
WO2020247930A1 (en) 2019-06-07 2020-12-10 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
WO2020255190A1 (ja) * 2019-06-17 2020-12-24 日本電信電話株式会社 検査装置および方法
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11243350B2 (en) * 2020-03-12 2022-02-08 Globalfoundries U.S. Inc. Photonic devices integrated with reflectors
US11490177B1 (en) 2020-06-05 2022-11-01 Luminous Computing, Inc. Optical link system and method for computation
WO2022177854A1 (en) * 2021-02-22 2022-08-25 Luminous Computing, Inc. Photonic integrated circuit system and method of fabrication
WO2023204753A1 (en) * 2022-04-21 2023-10-26 Advanced Micro Foundry Pte Ltd A method and system for measurement of optical loss in wafer level testing via wavelength-route division
CN115236372A (zh) * 2022-06-16 2022-10-25 苏州联讯仪器有限公司 一种多功能探针
US20240069291A1 (en) * 2022-08-26 2024-02-29 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure having grating coupler and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304837A (ja) * 1998-04-27 1999-11-05 Yokogawa Electric Corp プローブ装置
WO2001006279A1 (en) * 1999-07-15 2001-01-25 The University Of Sydney Grating structure and optical devices
JP2001318116A (ja) * 2000-05-11 2001-11-16 Micronics Japan Co Ltd 表示用パネル基板の検査装置
JP2008134211A (ja) * 2006-11-29 2008-06-12 Mitsui Chemicals Inc 光導波路の検査方法および検査装置
JP2009217066A (ja) * 2008-03-11 2009-09-24 Sanyo Electric Co Ltd 光学装置
JP2010139483A (ja) * 2008-12-15 2010-06-24 Synergy Optosystems Co Ltd 光導波路の検査システム及び検査方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330754A (ja) * 2000-05-22 2001-11-30 Nec Corp ファイバ型光カプラ及びその製造方法並びにこれを用いた光部品、光送受信器、光装置
EP1207140A1 (en) * 2000-11-20 2002-05-22 Lucent Technologies Inc. Method for making electrically controllable optical fiber devices
US7194016B2 (en) * 2002-03-22 2007-03-20 The Research Foundation Of The University Of Central Florida Laser-to-fiber coupling
US20040208451A1 (en) * 2002-05-08 2004-10-21 Anders Grunnet-Jepsen Method and apparatus for monitoring optical signals in a planar lightwave circuit via out-of-plane filtering
JP4222141B2 (ja) * 2003-07-25 2009-02-12 沖電気工業株式会社 スーパーストラクチャ・ファイバブラッググレーティングの製造方法及び製造装置
KR101270165B1 (ko) * 2006-12-29 2013-05-31 삼성디스플레이 주식회사 반사 투과형 디스플레이 패널 및 이를 채용한 디스플레이장치
US7480429B1 (en) * 2007-06-28 2009-01-20 International Business Machines Corporation Chip to Chip optical interconnect
JP2011107384A (ja) 2009-11-17 2011-06-02 Nec Corp 光結合デバイスの製造方法
JP5467875B2 (ja) 2010-01-18 2014-04-09 シナジーオプトシステムズ株式会社 光導波路の検査装置
WO2012011370A1 (ja) 2010-07-23 2012-01-26 日本電気株式会社 光接続構造
WO2014023804A2 (en) * 2012-08-08 2014-02-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Directional coupler and optical waveguide
WO2014034458A1 (ja) * 2012-08-31 2014-03-06 日本電気株式会社 光モジュールと光コネクタとの接続構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304837A (ja) * 1998-04-27 1999-11-05 Yokogawa Electric Corp プローブ装置
WO2001006279A1 (en) * 1999-07-15 2001-01-25 The University Of Sydney Grating structure and optical devices
JP2001318116A (ja) * 2000-05-11 2001-11-16 Micronics Japan Co Ltd 表示用パネル基板の検査装置
JP2008134211A (ja) * 2006-11-29 2008-06-12 Mitsui Chemicals Inc 光導波路の検査方法および検査装置
JP2009217066A (ja) * 2008-03-11 2009-09-24 Sanyo Electric Co Ltd 光学装置
JP2010139483A (ja) * 2008-12-15 2010-06-24 Synergy Optosystems Co Ltd 光導波路の検査システム及び検査方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3314320B1 (en) * 2015-06-29 2020-11-11 Elenion Technologies, LLC Mode converter with a s-bent taper and related polarization rotator
CN107710042B (zh) * 2015-07-07 2020-01-10 华为技术有限公司 具有表面光栅耦合器和边缘耦合器的光开关
CN107710042A (zh) * 2015-07-07 2018-02-16 华为技术有限公司 具有表面光栅耦合器和边缘耦合器的光开关
US10190941B2 (en) 2015-11-19 2019-01-29 Nippon Telegraph And Telephone Corporation Silicon optical circuit for flaw detection in an optical circuit element
WO2017085934A1 (ja) * 2015-11-19 2017-05-26 日本電信電話株式会社 シリコン光回路
CN108351469A (zh) * 2015-11-19 2018-07-31 日本电信电话株式会社 硅光路
CN108351469B (zh) * 2015-11-19 2020-09-08 日本电信电话株式会社 硅光路
JPWO2017085934A1 (ja) * 2015-11-19 2018-03-22 日本電信電話株式会社 シリコン光回路
JP2018152542A (ja) * 2017-03-10 2018-09-27 東芝メモリ株式会社 センシングシステム、センシングウェハおよびプラズマ処理装置
JP2019029620A (ja) * 2017-08-03 2019-02-21 富士通オプティカルコンポーネンツ株式会社 波長可変光源、及び光モジュール
US11415752B2 (en) 2018-05-29 2022-08-16 Nippon Telegraph And Telephone Corporation Optical inspection circuit
WO2019230372A1 (ja) * 2018-05-29 2019-12-05 日本電信電話株式会社 光検査回路
JP2019207305A (ja) * 2018-05-29 2019-12-05 日本電信電話株式会社 光検査回路
JP2019211626A (ja) * 2018-06-05 2019-12-12 日本電信電話株式会社 調芯用光回路
WO2019235182A1 (ja) * 2018-06-05 2019-12-12 日本電信電話株式会社 調芯用光回路
JP7167492B2 (ja) 2018-06-05 2022-11-09 日本電信電話株式会社 調芯用光回路
WO2019244555A1 (ja) * 2018-06-18 2019-12-26 日本電信電話株式会社 調芯用光回路および光調芯方法
JP2019219453A (ja) * 2018-06-18 2019-12-26 日本電信電話株式会社 調芯用光回路および光調芯方法
JPWO2020255191A1 (ja) * 2019-06-17 2020-12-24
WO2020255191A1 (ja) * 2019-06-17 2020-12-24 日本電信電話株式会社 光回路ウェハ
JP7222425B2 (ja) 2019-06-17 2023-02-15 日本電信電話株式会社 光回路ウェハ

Also Published As

Publication number Publication date
US10451520B2 (en) 2019-10-22
JP6358092B2 (ja) 2018-07-18
JPWO2014034655A1 (ja) 2016-08-08
US20150211960A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6358092B2 (ja) 光プローブ、検査装置、検査方法
JP6484350B2 (ja) シリコン光回路
US20200241220A1 (en) Optical assemblies, interconnection substrates and methods for forming optical links in interconnection substrates
CN110945316B (zh) 用于检查样品的多通道共焦传感器和相关方法
US20140268120A1 (en) Single-fiber noncritical-alignment wafer-scale optical testing
US11295994B2 (en) Wafer level testing of optical components
WO2009099090A1 (ja) 電磁界計測装置
KR102229048B1 (ko) 두께 측정 장치 및 두께 측정 방법
CN111257722A (zh) 光学测量装置与方法
WO2012118021A1 (ja) 光導波体、レーザ光照射装置およびレーザ光照射装置の組立方法
US11137546B2 (en) Optical element
JP2018146437A (ja) 光導波路の検査方法およびそれを用いた光導波路の製法
CN114981941A (zh) 光探针、探针卡、测定系统以及测定方法
JP2016170025A (ja) 検査用光回路及びその検査方法
CA2653710C (en) Tapered waveguide coupler and spectrometer
JP6110797B2 (ja) 受光デバイス
JP6851410B2 (ja) 光回路集積ウェハ用光電融合プローブ及び測定方法
KR100532183B1 (ko) 광 프로브 및 이를 이용한 평면 광소자의 특성 측정장치
WO2019187073A1 (ja) 光導波路の検査方法およびそれを用いた光導波路の製法
US20220057584A1 (en) Aligning optical circuit and aligning method
Dong et al. Ultracompact and ultralow-loss S-bends with fabrication easiness by numerical

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533017

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14422954

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833672

Country of ref document: EP

Kind code of ref document: A1