WO2014034565A1 - 膜厚測定装置 - Google Patents

膜厚測定装置 Download PDF

Info

Publication number
WO2014034565A1
WO2014034565A1 PCT/JP2013/072583 JP2013072583W WO2014034565A1 WO 2014034565 A1 WO2014034565 A1 WO 2014034565A1 JP 2013072583 W JP2013072583 W JP 2013072583W WO 2014034565 A1 WO2014034565 A1 WO 2014034565A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
film thickness
head
product substrate
Prior art date
Application number
PCT/JP2013/072583
Other languages
English (en)
French (fr)
Inventor
教和 方志
坂上 英和
徳実 原田
山脇 千明
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201380035853.2A priority Critical patent/CN104412062A/zh
Priority to US14/420,714 priority patent/US20150219450A1/en
Publication of WO2014034565A1 publication Critical patent/WO2014034565A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/633Specific applications or type of materials thickness, density, surface weight (unit area)

Definitions

  • the present invention relates to a film thickness measuring device for measuring a film thickness on a substrate.
  • Patent Document 1 JP-A-11-6804
  • This film thickness measuring apparatus measures the film thickness on a substrate using an X-ray reflectivity method.
  • the conventional film thickness measurement apparatus uses the X-ray reflectivity method
  • the X-ray spot diameter on the film becomes large, and a minute region of the film on the substrate cannot be measured.
  • the X-ray reflectivity method has a problem that the measurement time becomes long. For this reason, the X-ray reflectivity method is particularly unsuitable for measuring the film thickness of a large substrate.
  • an object of the present invention is to provide a film thickness measuring apparatus capable of improving the film thickness measurement accuracy and shortening the film thickness measurement time.
  • the film thickness measuring device of the present invention is The base, A substrate stage that is provided on the base and on which the formed product substrate is placed; A gantry extending in the first direction with respect to the substrate stage and attached to the base so as to be movable in the second direction with respect to the substrate stage; A slider attached to the gantry movably in the first direction; A measurement head that is fixed to the slider and detects a fluorescent X-ray generated from the film by irradiating a film of the product substrate placed on the substrate stage with a primary X-ray; Analyzing means for obtaining the thickness of the film from the intensity of the fluorescent X-ray detected by the measuring head.
  • the product substrate includes a substrate and one or more films formed on the substrate.
  • the measuring head irradiates the film of the product substrate with primary X-rays to detect fluorescent X-rays generated from the film, and the analyzing means is operated by the measuring head.
  • the thickness of the film is obtained from the detected intensity of the fluorescent X-ray.
  • the film thickness is obtained by the fluorescent X-ray analysis method, it is possible to measure a minute region of the film of the product substrate, and to improve the measurement accuracy of the film thickness. Further, in the fluorescent X-ray analysis method, the film thickness measurement time can be shortened as compared with the X-ray reflectance method.
  • the measurement head is movable in the first direction and the second direction with respect to the substrate stage, the film thickness at a plurality of locations on the product substrate can be measured with this measurement head. Thereby, it becomes suitable for the film thickness measurement of a large-sized product substrate.
  • a camera that is fixed to the slider and detects an alignment mark of the product substrate placed on the substrate stage;
  • Substrate position correcting means for correcting the position information of the product substrate placed on the substrate stage based on the detection result of the camera;
  • a displacement sensor that is fixed to the slider and that measures a distance from the product substrate placed on the substrate stage; Based on the measurement value of the displacement sensor, the position of the measurement head is adjusted so that the distance between the product substrate placed on the substrate stage and the measurement head becomes a predetermined constant value.
  • Head position adjusting means is provided.
  • the camera detects an alignment mark of a product substrate placed on the substrate stage, and the substrate position correcting means is based on the detection result of the camera.
  • the position information of the product substrate placed on is corrected.
  • the displacement sensor measures a distance from the product substrate placed on the substrate stage, and the head position adjustment unit is configured to detect the distance between the product substrate placed on the substrate stage based on the measurement value of the displacement sensor.
  • the position of the measurement head is adjusted so that the distance to the measurement head becomes a constant value.
  • the position of the product substrate is adjusted, and the distance between the product substrate and the measurement head is adjusted to a constant value, so the measurement accuracy of the film thickness of the product substrate Can be further improved.
  • the measuring head irradiates the film of the product substrate with primary X-rays to detect fluorescent X-rays generated from the film, and the analyzing means is operated by the measuring head. Since the thickness of the film is obtained from the detected intensity of the fluorescent X-ray, the film thickness measurement accuracy can be improved and the film thickness measurement time can be shortened.
  • FIG. 6A It is a top view which shows the film thickness measuring apparatus of one Embodiment of this invention. It is a side view of the film thickness measuring apparatus seen from the arrow U direction of FIG. It is explanatory drawing explaining operation
  • FIG. 1 is a plan view showing a film thickness measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a side view seen from the direction of arrow U in FIG.
  • the film thickness measuring apparatus includes a base 1, a substrate stage 2, a calibration stage 3, a gantry 4, a slider 5, and a plurality of measuring devices 21, 22, and 23. And control means 30.
  • the substrate stage 2 includes a stage provided on the base 1 and divided into a plurality of stages. On the substrate stage 2, the formed product substrate 10 is placed.
  • the substrate stage 2 is provided with a plurality of air holes 2a. By sucking air from the air holes 2a, the product substrate 10 can be brought into close contact with the substrate stage 2, while air is blown out from the air holes 2a. The product substrate 10 can be lifted from the substrate stage 2.
  • the product substrate 10 is, for example, a liquid crystal TFT used for a liquid crystal display.
  • the product substrate 10 includes a substrate and one or more films formed on the substrate.
  • the film is formed on the substrate by, for example, a sputtering method, a vapor deposition method, or a plating method.
  • the substrate is, for example, a glass substrate, and the film is a metal film such as aluminum, titanium, tungsten, or molybdenum.
  • the calibration stage 3 is provided on the base 1 and is provided separately from the substrate stage 2.
  • the calibration stage 3 is provided with a plurality of recesses 3a, and various types of calibration samples 60 and 70 are fitted into the recesses 3a, and the calibration samples 60 and 70 are used for the measurement devices 21, 22, and 23. Calibration is performed.
  • the gantry 4 extends in the first direction with respect to the substrate stage 2 and the calibration stage 3.
  • the gantry 4 is attached to the base 1 so as to be movable in the second direction with respect to the substrate stage 2 and the calibration stage 3.
  • the first direction refers to the direction of arrow A
  • the second direction refers to the direction of arrow B.
  • the first direction and the second direction are orthogonal to each other.
  • the base 1 is provided with two rail portions 6 and 6 extending in the second direction (arrow B direction).
  • the two rail portions 6 and 6 are arranged so as to sandwich the substrate stage 2 and the calibration stage 3.
  • the gandries 4 are stretched over the two rail portions 6 and 6 and can move along the rail portions 6 and 6 in the second direction.
  • the slider 5 is attached to the gantry 4 so as to be movable in the first direction (arrow A direction).
  • a camera 21, a displacement sensor 22, and a measurement head 23 as the measurement device are fixed to the slider 5.
  • the measuring devices 21, 22, and 23 can cover the entire range of the substrate stage 2 and the calibration stage 3 in the second direction (arrow B direction) by the movable range Z 1 of the gun dolly 4. Further, the measuring devices 21, 22, and 23 can cover the entire range of the substrate stage 2 and the calibration stage 3 in the first direction (arrow A direction) by the movable range Z ⁇ b> 2 of the slider 5.
  • the control unit 30 includes a substrate position correcting unit 31, a head position adjusting unit 32, an analyzing unit 33, and a measuring device calibration unit 34.
  • the camera 21 detects the alignment mark of the product substrate 10 placed on the substrate stage 2.
  • This alignment mark is a mark that can be identified by the camera 21, and is provided at, for example, the four corners of the product substrate 10.
  • the substrate position correcting means 31 corrects the position information in the plane direction (first and second directions) of the product substrate 10 placed on the substrate stage 2 based on the detection result of the camera 21.
  • the base 1 is provided with a plurality of clamps 7 so as to press each side around the product substrate 10. After fixing the product substrate 10 to a predetermined position by the clamp 7, the alignment mark is detected by the camera 21, and the position information of the product substrate 10 is corrected by the substrate position correcting means 31 based on the detection result.
  • the displacement sensor 22 measures the distance in the height direction from the product substrate 10 placed on the substrate stage 2 as shown in FIG.
  • the displacement sensor 22 measures the distance from the predetermined measurement point P of the product substrate 10 using, for example, light rays such as infrared rays.
  • the head position adjusting means 32 is configured so that the distance between the product substrate 10 placed on the substrate stage and the measurement head 23 becomes a predetermined constant value.
  • the position of the measuring head 23 in the height direction is adjusted. Specifically, the distance in the height direction between the measurement point P of the product substrate 10 and the light emitting / receiving unit 23a of the measurement head 23 is adjusted to be 2 mm ⁇ 30 ⁇ m.
  • the head position adjusting means 32 moves the measuring head 23 to a position where the measuring head 23 can measure the measurement point P of the product substrate 10 after adjusting the position of the measuring head 23 in the height direction.
  • the measurement head 23 includes an X-ray irradiation unit 231 and a fluorescent X-ray detection unit 232 as shown in FIG.
  • the X-ray irradiation unit 231 irradiates the measurement point P of the product substrate 10 with the primary X-ray 51 from the light emitting / receiving unit 23a.
  • the primary X-ray 51 is, for example, rhodium, molybdenum, tungsten, or the like. Then, as shown in FIG. 5, the film 12 on the substrate 11 of the product substrate 10 generates fluorescent X-rays 52 by irradiation with the primary X-rays 51.
  • the fluorescent X-ray detector 232 detects the fluorescent X-rays 52 generated from the film 12 from the light emitting / receiving unit 23a.
  • the fluorescent X-ray detector 232 is, for example, a silicon drift detector.
  • the analyzing means 33 obtains the thickness of the film 12 from the intensity of the fluorescent X-ray 52 detected by the measuring head 23.
  • the analysis means 33 includes a preamplifier 331 and a multi-channel analyzer (hereinafter referred to as MCA) 332.
  • the preamplifier 331 amplifies the electric signal output from the fluorescent X-ray detection unit 232.
  • the MCA 332 analyzes the electrical signal amplified by the preamplifier 331. In the MCA 332, the energy output from the fluorescent X-ray detection unit 232 is selected, and the pulse is measured to obtain the X-ray intensity of the elements constituting the film 12. And based on this X-ray intensity, the thickness of the film
  • the film 12 is a titanium film or a molybdenum film
  • the relationship between the X-ray intensity and the film thickness is as shown in FIGS. 6A and 6B.
  • the measurement of the thickness of the single-layer film has been described, but the thickness of the multiple-layer film can also be measured.
  • fluorescent X-rays generated from each film are detected by the measuring head 23, and the X-ray intensity of each element constituting each film is obtained by the analyzing means 33, and the thickness of each film is determined based on this X-ray intensity.
  • the composition ratio of each element can also be obtained from the X-ray intensity of each element.
  • the measuring device calibration means 34 moves the measuring devices 21, 22, and 23 to the calibration stage 3 to calibrate the measuring devices 21, 22, and 23. Calibration of the measuring devices 21, 22, and 23 is performed at predetermined intervals.
  • the predetermined interval is, for example, every predetermined time such as performing calibration once a day, or every predetermined number of processes such as performing calibration after measuring the film thickness of a predetermined number of product substrates 10.
  • the first calibration sample 60 and the second calibration sample 70 are installed on the calibration stage 3.
  • the first calibration sample 60 is a sample for adjusting the gain of the fluorescent X-ray detection unit 232 of the measurement head 23, for example.
  • the second calibration sample 70 is a sample for adjusting the offset amount of each measuring device 21, 22, 23, for example.
  • the calibration of the measuring devices 21, 22, and 23 is performed using the first and second calibration samples 60 and 70.
  • the product substrate 10 is transferred onto the substrate stage 2 from the right direction (arrow R direction) of the film thickness measuring apparatus.
  • the product substrate 10 transported onto the substrate stage 2 is fixed at a predetermined position by the clamp 7.
  • the alignment mark is detected by the camera 21, and the position information of the product substrate 10 is corrected by the substrate position correcting unit 31 based on the detection result.
  • the head position adjusting means 32 adjusts the position of the measuring head 23 in the height direction so that the distance between the first measuring point and the measuring head 23 becomes a constant value based on this measured value. To do.
  • the measurement head 23 is moved directly above the first measurement point by the head position adjusting means 32, and the film of the product substrate 10 is irradiated with primary X-rays to detect fluorescent X-rays generated from this film. To do. Then, the analysis means 33 obtains the thickness of the film from the detected intensity of the fluorescent X-ray.
  • the film thickness of the other measurement points is measured by the measurement head 23.
  • the film thicknesses of all the measurement points of the product substrate 10 are measured, and it is determined whether or not the product substrate 10 is defective based on the measurement result.
  • the measuring device calibration means 34 moves the measuring devices 21, 22, 23 to the calibration stage 3 at predetermined intervals to calibrate the measuring devices 21, 22, 23.
  • the measuring head 23 detects the fluorescent X-rays 52 generated from the film 12 by irradiating the film 12 of the product substrate 10 with the primary X-ray 51, and the analyzing means. 33 obtains the thickness of the film 12 from the intensity of the fluorescent X-ray 52 detected by the measuring head 23.
  • the film thickness is obtained by the fluorescent X-ray analysis method, a minute region of the film 12 of the product substrate 10 can be measured, and the measurement accuracy of the film thickness can be improved. Further, in the fluorescent X-ray analysis method, the film thickness measurement time can be shortened as compared with the X-ray reflectance method.
  • the measurement head 23 is movable in the first direction and the second direction with respect to the substrate stage 2, the film thickness at a plurality of locations on the product substrate 10 can be measured with the measurement head 23. Thereby, it becomes suitable for the film thickness measurement of the large-sized product substrate 10.
  • the camera 21 detects the alignment mark of the product substrate 10 placed on the substrate stage 2, and the substrate position correcting means 31 is placed on the substrate stage 2 based on the detection result of the camera 21.
  • the position information of the product substrate 10 is corrected.
  • the displacement sensor 22 measures the distance from the product substrate 10 placed on the substrate stage 2, and the head position adjusting means 32 is placed on the substrate stage 2 based on the measurement value of the displacement sensor 22.
  • the position of the measurement head 23 is adjusted so that the distance between the placed product substrate 10 and the measurement head 23 becomes a constant value.
  • the position of the product substrate 10 is adjusted, and the distance between the product substrate 10 and the measurement head 23 is adjusted to a constant value.
  • the film thickness measurement accuracy can be further improved.
  • the present invention is not limited to the above-described embodiment.
  • the camera 21 and the displacement sensor 22 may be omitted, and only the measurement head 23 may be provided.
  • the calibration stage 3 may be omitted and only the substrate stage 2 may be provided.
  • first direction that is the extending direction of the gantry 4 and the second direction that is the moving direction of the gantry 4 may cross each other without being orthogonal to each other.
  • the number of the camera 21, the displacement sensor 22, and the measuring head 23 is not limited to one, and may be plural.
  • calibration samples 60 and 70 are installed on the calibration stage 3, the number of calibration samples can be freely increased or decreased. Also, other types of calibration samples may be used, for example, calibration samples for calibrating X-ray intensity drift.
  • the film thickness measuring device of the present invention may be used to measure the film thickness of a small product substrate.
  • the film thickness of a semiconductor substrate such as an organic EL may be measured. Also good.

Abstract

 測定ヘッド(23)は、製品基板(10)の膜(12)に1次X線を照射してこの膜(12)から発生する蛍光X線を検出する。解析手段(33)は、測定ヘッド(23)により検出された蛍光X線の強度から膜(12)の厚みを求める。

Description

膜厚測定装置
 この発明は、基板上の膜厚を測定する膜厚測定装置に関する。
 従来、膜厚測定装置としては、特開平11-6804号公報(特許文献1)に記載されたものがある。この膜厚測定装置は、X線反射率法を用いて、基板上の膜厚を測定している。
 しかしながら、上記従来の膜厚測定装置では、X線反射率法を用いているので、膜上のX線のスポット径が大きくなり、基板上の膜の微小領域を測定できず、膜厚の測定精度が劣る問題があった。また、X線反射率法では、測定時間が長くなる問題があった。このため、X線反射率法は、特に大型の基板の膜厚測定には、不適であった。
特開平11-6804号公報
 そこで、この発明の課題は、膜厚の測定精度を向上できると共に膜厚の測定時間を短縮できる膜厚測定装置を提供することにある。
 上記課題を解決するため、この発明の膜厚測定装置は、
 基台と、
 上記基台に設けられると共に、成膜された製品基板を載置する基板ステージと、
 上記基板ステージに対して第1方向に延在すると共に、上記基板ステージに対して第2方向に移動可能となるように上記基台に取り付けられるガントリーと、
 上記ガントリーに上記第1方向に移動可能に取り付けられるスライダーと、
 上記スライダーに固定されると共に、上記基板ステージに載置された上記製品基板の膜に1次X線を照射してこの膜から発生する蛍光X線を検出する測定ヘッドと、
 上記測定ヘッドにより検出された上記蛍光X線の強度から上記膜の厚みを求める解析手段と
を備えることを特徴としている。
 ここで、上記製品基板は、基板と、この基板上に形成された一層以上の膜とを有する。
 この発明の膜厚測定装置によれば、上記測定ヘッドは、製品基板の膜に1次X線を照射してこの膜から発生する蛍光X線を検出し、上記解析手段は、上記測定ヘッドにより検出された上記蛍光X線の強度から上記膜の厚みを求める。
 このように、蛍光X線分析法により膜厚を求めるので、製品基板の膜の微小領域を測定できて、膜厚の測定精度を向上できる。また、蛍光X線分析法では、X線反射率法に比べて、膜厚の測定時間を短縮できる。
 さらに、上記測定ヘッドは、上記基板ステージに対して第1方向および第2方向に移動可能であるので、この測定ヘッドで、製品基板の複数箇所の膜厚を測定できる。これにより、大型の製品基板の膜厚測定に好適となる。
 また、一実施形態の膜厚測定装置では、
 上記スライダーに固定されると共に、上記基板ステージに載置された上記製品基板のアライメントマークを検出するカメラと、
 上記カメラの検出結果に基づいて、上記基板ステージに載置された上記製品基板の位置情報を補正する基板位置補正手段と、
 上記スライダーに固定されると共に、上記基板ステージに載置された上記製品基板との距離を測定する変位センサと、
 上記変位センサの測定値に基づいて、上記基板ステージに載置された上記製品基板と上記測定ヘッドとの間の距離が予め定められた一定値となるように、上記測定ヘッドの位置を調整するヘッド位置調整手段と
を備える。
 この実施形態の膜厚測定装置によれば、上記カメラは、基板ステージに載置された製品基板のアライメントマークを検出し、上記基板位置補正手段は、このカメラの検出結果に基づいて、基板ステージに載置された製品基板の位置情報を補正する。そして、上記変位センサは、基板ステージに載置された製品基板との距離を測定し、上記ヘッド位置調整手段は、この変位センサの測定値に基づいて、基板ステージに載置された製品基板と測定ヘッドとの間の距離が一定値となるように、測定ヘッドの位置を調整する。
 このように、上記測定ヘッドで膜厚を測定する前に、製品基板の位置を調整し、製品基板と測定ヘッドとの間の距離を一定値に調整するので、製品基板の膜厚の測定精度を一層向上できる。
 この発明の膜厚測定装置によれば、上記測定ヘッドは、製品基板の膜に1次X線を照射してこの膜から発生する蛍光X線を検出し、上記解析手段は、上記測定ヘッドにより検出された上記蛍光X線の強度から上記膜の厚みを求めるので、膜厚の測定精度を向上できると共に膜厚の測定時間を短縮できる。
本発明の一実施形態の膜厚測定装置を示す平面図である。 図1の矢印U方向からみた膜厚測定装置の側面図である。 変位センサの動作を説明する説明図である。 測定ヘッドの動作を説明する説明図である。 1次X線の照射により蛍光X線が発生する状態を説明する説明図である。 チタン膜とモリブデン膜におけるX線強度と膜厚との関係を示す表である。 図6Aのデータをプロットしたグラフである。
 以下、この発明を図示の実施の形態により詳細に説明する。
 図1は、この発明の一実施形態の膜厚測定装置を示す平面図である。図2は、図1の矢印U方向からみた側面図である。図1と図2に示すように、この膜厚測定装置は、基台1と、基板ステージ2と、校正ステージ3と、ガンドリー4と、スライダー5と、複数の測定機器21,22,23と、制御手段30とを有する。
 上記基板ステージ2は、上記基台1に設けられ、複数に分割されたステージからなる。基板ステージ2上には、成膜された製品基板10が載置される。
 上記基板ステージ2には、複数の空気孔2aが設けられ、この空気孔2aからエアを吸い込むことで、製品基板10を基板ステージ2に密着でき、一方、空気孔2aからエアを吹き出すことで、製品基板10を基板ステージ2から浮上できる。
 上記製品基板10は、例えば、液晶ディスプレイに用いられる液晶TFTである。この製品基板10は、基板と、この基板上に形成された一層以上の膜とを有する。上記膜は、例えば、スパッタリング工法や蒸着工法やメッキ工法により、上記基板に成膜される。上記基板は、例えば、ガラス基板であり、上記膜は、例えば、アルミニウム、チタン、タングステン、モリブデンなどの金属膜である。
 上記校正ステージ3は、上記基台1に設けられ、上記基板ステージ2とは別に設けられる。この校正ステージ3には、複数の凹部3aが設けられ、この凹部3aに様々な種類の校正試料60,70が嵌め込まれ、この校正試料60,70を用いて上記測定機器21,22,23の校正が行われる。
 上記ガントリー4は、上記基板ステージ2および上記校正ステージ3に対して第1方向に延在する。ガンドリー4は、基板ステージ2および校正ステージ3に対して第2方向に移動可能となるように、基台1に取り付けられる。第1方向とは、矢印A方向をいい、第2方向とは、矢印B方向をいう。第1方向と第2方向とは、互いに直交する。
 つまり、上記基台1には、第2方向(矢印B方向)に延在する2本のレール部6,6が設けられている。この2本のレール部6,6は、基板ステージ2および校正ステージ3を挟むように、配置されている。上記ガンドリー4は、この2本のレール部6,6に架け渡され、このレール部6,6に沿って第2方向に移動可能となる。
 上記スライダー5は、上記ガントリー4に第1方向(矢印A方向)に移動可能に取り付けられる。このスライダー5には、上記測定機器としてのカメラ21、変位センサ22および測定ヘッド23が、固定されている。
 そして、上記測定機器21,22,23は、ガンドリー4の可動範囲Z1により、基板ステージ2および校正ステージ3の第2方向(矢印B方向)の全範囲をカバーできる。また、上記測定機器21,22,23は、スライダー5の可動範囲Z2により、基板ステージ2および校正ステージ3の第1方向(矢印A方向)の全範囲をカバーできる。
 上記制御手段30は、基板位置補正手段31と、ヘッド位置調整手段32と、解析手段33と、測定機器校正手段34とを有する。
 上記カメラ21は、基板ステージ2に載置された製品基板10のアライメントマークを検出する。このアライメントマークは、カメラ21で判別可能なマークであり、例えば、製品基板10の四隅に設けられる。
 上記基板位置補正手段31は、上記カメラ21の検出結果に基づいて、基板ステージ2に載置された製品基板10の平面方向(第1、第2方向)の位置情報を補正する。具体的に述べると、上記基台1には、製品基板10の周囲の各辺を押圧するように、複数のクランプ7が設けられている。クランプ7により製品基板10を所定の位置に固定後、カメラ21にてアライメントマークを検出し、この検出結果に基づいて基板位置補正手段31によって、製品基板10の位置情報を補正する。
 上記変位センサ22は、図3に示すように、基板ステージ2に載置された製品基板10との高さ方向の距離を測定する。変位センサ22は、例えば赤外線などの光線を用いて、製品基板10の予め定めた測定ポイントPとの距離を測定する。
 上記ヘッド位置調整手段32は、上記変位センサ22の測定値に基づいて、基板ステージに載置された製品基板10と測定ヘッド23との間の距離が予め定められた一定値となるように、測定ヘッド23の高さ方向の位置を調整する。具体的に述べると、製品基板10の測定ポイントPと測定ヘッド23の受発光部23aとの間の高さ方向の距離が、2mm±30μmとなるように、調整される。
 また、上記ヘッド位置調整手段32は、測定ヘッド23の高さ方向の位置を調整した後、測定ヘッド23が製品基板10の測定ポイントPを測定できる位置に、測定ヘッド23を移動する。
 上記測定ヘッド23は、図4に示すように、X線照射部231と蛍光X線検出部232とを有する。
 上記X線照射部231は、受発光部23aから製品基板10の測定ポイントPへ、1次X線51を照射する。1次X線51は、例えば、ロジウムや、モリブデンや、タングステンなどである。すると、図5に示すように、製品基板10の基板11上の膜12は、1次X線51の照射により、蛍光X線52を発生する。
 上記蛍光X線検出部232は、上記膜12から発生した上記蛍光X線52を、受発光部23aから検出する。蛍光X線検出部232は、例えば、シリコンドリフト検出器である。
 上記解析手段33は、上記測定ヘッド23により検出された上記蛍光X線52の強度から上記膜12の厚みを求める。具体的に述べると、解析手段33は、プリアンプ331とマルチ・チャンネル・アナライザ(以下、MCAという)332とを有する。
 上記プリアンプ331は、蛍光X線検出部232から出力される電気信号を増幅する。上記MCA332は、プリアンプ331で増幅された電気信号を解析する。MCA332では、蛍光X線検出部232から出力されたエネルギーを選別し、パルスを計測することで、膜12を構成する元素のX線強度を求める。そして、このX線強度に基づいて、既知のデータから、膜12の厚みを求める。なお、MCA332を用いているため、膜12に混入する異物や不純物を検出できる。
 例えば、上記膜12が、チタン膜、または、モリブデン膜である場合、X線強度と膜厚との関係は、図6Aと図6Bに示すような関係となる。
 なお、上述では、単層の膜(図5)の厚みの測定を説明したが、複数層の膜の厚みを測定することもできる。この場合、各膜から発生する蛍光X線を測定ヘッド23によって検出し、解析手段33によって、各膜を構成する各元素のX線強度を求め、このX線強度に基づいて、各膜の厚みを求める。さらに、この各元素のX線強度から、各元素の組成比をも、求めることができる。
 上記測定機器校正手段34は、図1に示すように、上記測定機器21,22,23を校正ステージ3に移動して、測定機器21,22,23の校正を行う。測定機器21,22,23の校正は、所定間隔で、行う。この所定間隔とは、例えば、1日に1回の校正を行うといった所定時間毎や、所定枚数の製品基板10の膜厚を測定した後に校正を行うといった所定処理数毎である。
 上記校正ステージ3には、第1校正試料60と第2校正試料70とが、設置されている。第1校正試料60は、例えば、測定ヘッド23の蛍光X線検出部232のゲインを調整するための試料である。第2校正試料70は、例えば、各測定機器21,22,23のオフセット量を調整するための試料である。
 そして、上記測定機器21,22,23の校正は、上記第1、上記第2校正試料60,70を用いて、行われる。
 次に、上記構成の膜厚測定装置の動作を説明する。
 図1に示すように、まず、上記製品基板10が、膜厚測定装置の右方向(矢印R方向)から基板ステージ2上に、搬送される。基板ステージ2上に搬送された製品基板10は、クランプ7により所定の位置に固定される。その後、カメラ21にてアライメントマークを検出し、この検出結果に基づいて基板位置補正手段31によって、製品基板10の位置情報を補正する。
 その後、上記製品基板10の複数の測定ポイントのうちの第1の測定ポイントにおいて、変位センサ22により、第1の測定ポイントと変位センサ22との間の高さ方向の距離を測定する。そして、上記ヘッド位置調整手段32は、この測定値に基づいて、第1の測定ポイントと測定ヘッド23との間の距離が一定値となるように、測定ヘッド23の高さ方向の位置を調整する。
 その後、上記測定ヘッド23は、ヘッド位置調整手段32により、第1の測定ポイントの直上に移動され、製品基板10の膜に1次X線を照射してこの膜から発生する蛍光X線を検出する。そして、上記解析手段33は、この検出された蛍光X線の強度から膜の厚みを求める。
 その後、上記製品基板10の他の測定ポイントについても、同様に、測定ヘッド23の高さを調整してから、測定ヘッド23によって他の測定ポイントの膜厚を測定する。
 このようにして、上記製品基板10の全ての測定ポイントの膜厚を測定し、この測定結果に基づいて、製品基板10が不良品であるか否かを判断する。
 その後、上記測定機器校正手段34は、所定間隔で、上記測定機器21,22,23を校正ステージ3に移動して、測定機器21,22,23の校正を行う。
 上記構成の膜厚測定装置によれば、上記測定ヘッド23は、製品基板10の膜12に1次X線51を照射してこの膜12から発生する蛍光X線52を検出し、上記解析手段33は、上記測定ヘッド23により検出された上記蛍光X線52の強度から上記膜12の厚みを求める。
 このように、蛍光X線分析法により膜厚を求めるので、製品基板10の膜12の微小領域を測定できて、膜厚の測定精度を向上できる。また、蛍光X線分析法では、X線反射率法に比べて、膜厚の測定時間を短縮できる。
 さらに、上記測定ヘッド23は、上記基板ステージ2に対して第1方向および第2方向に移動可能であるので、この測定ヘッド23で、製品基板10の複数箇所の膜厚を測定できる。これにより、大型の製品基板10の膜厚測定に好適となる。
 また、上記カメラ21は、基板ステージ2に載置された製品基板10のアライメントマークを検出し、上記基板位置補正手段31は、このカメラ21の検出結果に基づいて、基板ステージ2に載置された製品基板10の位置情報を補正する。そして、上記変位センサ22は、基板ステージ2に載置された製品基板10との距離を測定し、上記ヘッド位置調整手段32は、この変位センサ22の測定値に基づいて、基板ステージ2に載置された製品基板10と測定ヘッド23との間の距離が一定値となるように、測定ヘッド23の位置を調整する。
 このように、上記測定ヘッド23で膜厚を測定する前に、製品基板10の位置を調整し、製品基板10と測定ヘッド23との間の距離を一定値に調整するので、製品基板10の膜厚の測定精度を一層向上できる。
 なお、この発明は上述の実施形態に限定されない。例えば、カメラ21や変位センサ22や省略して、測定ヘッド23のみを設けるようにしてもよい。また、校正ステージ3を省略して、基板ステージ2のみを設けるようにしてもよい。
 また、ガントリー4の延在方向である第1方向と、ガントリー4の移動方向である第2方向とは、互いに直交しないで、交差するようにしてもよい。
 また、カメラ21、変位センサ22および測定ヘッド23の数量は、一つに限らず、複数であってもよい。
 また、校正ステージ3には、2つの校正試料60,70を設置しているが、校正試料の数量の増減は、自由である。また、他の種類の校正試料であってもよく、例えば、X線強度のドリフトを校正するための校正試料であってもよい。
 また、本発明の膜厚測定装置にて、小型の製品基板の膜厚を測定するようにしてもよく、また、液晶TFT以外に、有機ELなどの半導体基板の膜厚を測定するようにしてもよい。
 1 基台
 2 基板ステージ
 3 校正ステージ
 4 ガントリー
 5 スライダー
 6 レール部
 7 クランプ
 10 製品基板
 21 カメラ
 22 変位センサ
 23 測定ヘッド
 30 制御手段
 31 基板位置補正手段
 32 ヘッド位置調整手段
 33 解析手段
 34 測定機器校正手段
 60 第1校正試料
 70 第2校正試料
 A 第1方向
 B 第2方向

Claims (2)

  1.  基台(1)と、
     上記基台(1)に設けられると共に、成膜された製品基板(10)を載置する基板ステージ(2)と、
     上記基板ステージ(2)に対して第1方向(A)に延在すると共に、上記基板ステージ(2)に対して第2方向(B)に移動可能となるように上記基台(1)に取り付けられるガントリー(4)と、
     上記ガントリー(4)に上記第1方向(A)に移動可能に取り付けられるスライダー(5)と、
     上記スライダー(5)に固定されると共に、上記基板ステージ(2)に載置された上記製品基板(10)の膜(12)に1次X線を照射してこの膜(12)から発生する蛍光X線を検出する測定ヘッド(23)と、
     上記測定ヘッド(23)により検出された上記蛍光X線の強度から上記膜(12)の厚みを求める解析手段(33)と
    を備えることを特徴とする膜厚測定装置。
  2.  請求項1に記載の膜厚測定装置において、
     上記スライダー(5)に固定されると共に、上記基板ステージ(2)に載置された上記製品基板(10)のアライメントマークを検出するカメラ(21)と、
     上記カメラ(21)の検出結果に基づいて、上記基板ステージ(2)に載置された上記製品基板(10)の位置情報を補正する基板位置補正手段(31)と、
     上記スライダー(5)に固定されると共に、上記基板ステージ(2)に載置された上記製品基板(10)との距離を測定する変位センサ(22)と、
     上記変位センサ(22)の測定値に基づいて、上記基板ステージ(2)に載置された上記製品基板(10)と上記測定ヘッド(23)との間の距離が予め定められた一定値となるように、上記測定ヘッド(23)の位置を調整するヘッド位置調整手段(32)と
    を備えることを特徴とする膜厚測定装置。
PCT/JP2013/072583 2012-08-31 2013-08-23 膜厚測定装置 WO2014034565A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380035853.2A CN104412062A (zh) 2012-08-31 2013-08-23 膜厚测定装置
US14/420,714 US20150219450A1 (en) 2012-08-31 2013-08-23 Film thickness measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012192030A JP2014048182A (ja) 2012-08-31 2012-08-31 膜厚測定装置
JP2012-192030 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034565A1 true WO2014034565A1 (ja) 2014-03-06

Family

ID=50183378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072583 WO2014034565A1 (ja) 2012-08-31 2013-08-23 膜厚測定装置

Country Status (4)

Country Link
US (1) US20150219450A1 (ja)
JP (1) JP2014048182A (ja)
CN (1) CN104412062A (ja)
WO (1) WO2014034565A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245678B (zh) * 2013-04-26 2015-12-09 深圳市华星光电技术有限公司 一种异物检测装置
CN105091843B (zh) * 2015-06-25 2018-01-23 深圳市华星光电技术有限公司 一种测量膜缩的方法
CN105157629A (zh) * 2015-09-18 2015-12-16 深圳市和胜金属技术有限公司 一种基于x-射线光谱仪测量碳化钒薄膜厚度的方法
JP6501230B2 (ja) * 2016-03-08 2019-04-17 株式会社リガク 多元素同時型蛍光x線分析装置および多元素同時蛍光x線分析方法
CN107883866B (zh) * 2016-09-30 2019-11-26 上海微电子装备(集团)股份有限公司 一种光学测量装置和方法
CN107883887B (zh) * 2016-09-30 2019-11-26 上海微电子装备(集团)股份有限公司 一种光学测量装置和方法
CN107883884B (zh) * 2016-09-30 2019-10-25 上海微电子装备(集团)股份有限公司 一种光学测量装置和方法
CN111750774B (zh) * 2019-03-29 2021-09-24 上海微电子装备(集团)股份有限公司 光学测量装置及方法
CN112113509B (zh) * 2019-06-20 2022-06-17 上海微电子装备(集团)股份有限公司 龙门式测量装置及龙门式测量方法
US20230288196A1 (en) * 2021-10-24 2023-09-14 Nova Measuring Instruments Inc. Small spot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115312A (ja) * 1985-11-13 1987-05-27 Seiko Instr & Electronics Ltd 螢光x線オンライン厚み測定装置
JP2007258359A (ja) * 2006-03-22 2007-10-04 Sharp Corp 半導体デバイスの製造方法および半導体デバイスの成膜装置
JP2009198485A (ja) * 2008-01-21 2009-09-03 Toppan Printing Co Ltd カラーフィルタの製造方法
JP2009288016A (ja) * 2008-05-28 2009-12-10 National Institute Of Advanced Industrial & Technology 蛍光x線分析装置及びそれを用いた半導体装置の評価システム
JP2011047898A (ja) * 2009-08-28 2011-03-10 Sii Nanotechnology Inc X線分析装置及びx線分析方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394444A (ja) * 1989-05-10 1991-04-19 Fujitsu Ltd 膜厚測定方法と装置および薄膜製造装置
CN1316229C (zh) * 2005-09-30 2007-05-16 电子科技大学 无标样测量薄膜厚度和密度的方法
JP2011232204A (ja) * 2010-04-28 2011-11-17 Rigaku Corp カラーフィルタ基板検査方法及び検査装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115312A (ja) * 1985-11-13 1987-05-27 Seiko Instr & Electronics Ltd 螢光x線オンライン厚み測定装置
JP2007258359A (ja) * 2006-03-22 2007-10-04 Sharp Corp 半導体デバイスの製造方法および半導体デバイスの成膜装置
JP2009198485A (ja) * 2008-01-21 2009-09-03 Toppan Printing Co Ltd カラーフィルタの製造方法
JP2009288016A (ja) * 2008-05-28 2009-12-10 National Institute Of Advanced Industrial & Technology 蛍光x線分析装置及びそれを用いた半導体装置の評価システム
JP2011047898A (ja) * 2009-08-28 2011-03-10 Sii Nanotechnology Inc X線分析装置及びx線分析方法

Also Published As

Publication number Publication date
US20150219450A1 (en) 2015-08-06
JP2014048182A (ja) 2014-03-17
CN104412062A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2014034565A1 (ja) 膜厚測定装置
JP6501230B2 (ja) 多元素同時型蛍光x線分析装置および多元素同時蛍光x線分析方法
US8891729B2 (en) X-ray analyzer and X-ray analysis method
TW201602569A (zh) 螢光x射線分析裝置
TW200427982A (en) Beam centering and angle calibration for x-ray reflectometry
JP6346036B2 (ja) 蛍光x線分析装置及びその測定位置調整方法
US20130101085A1 (en) X-ray fluorescence spectrometer and x-ray fluorescence analyzing method
US8937714B2 (en) Inspecting apparatus and inspecting method
WO2014038403A1 (ja) 膜厚測定装置
JP5919146B2 (ja) 膜厚測定装置
WO2014038404A1 (ja) オフセット量校正試料および膜厚測定装置
JP6520795B2 (ja) 膜厚分布測定方法
WO2014038405A1 (ja) ゲイン校正試料、膜厚測定装置およびゲイン校正方法
WO2014041990A1 (ja) 膜厚測定装置および膜厚測定方法
CN112146581A (zh) 薄膜厚度的测量方法及装置
JP2005241316A (ja) 金属腐食度測定方法および装置
TWI666428B (zh) 偏光光測定裝置、及偏光光照射裝置
JP4514785B2 (ja) 全反射蛍光x線分析装置
WO2017141299A1 (ja) 膜厚分布測定方法
JP2009097906A (ja) 全反射蛍光x線分析装置およびその装置に用いるプログラム
JP6037798B2 (ja) 全反射蛍光x線分析方法
JP6340223B2 (ja) 薄膜中の不純物濃度の測定方法及びその測定装置
JP2009002719A (ja) 二次イオン質量分析装置に於ける試料ステージの傾斜角度較正方法及び二次イオン質量分析方法
JP2013253795A (ja) 全反射蛍光x線分析装置
JP2005062065A (ja) 試料表面の測定方法及び分析方法並びに試料表面の測定装置及び分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14420714

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832840

Country of ref document: EP

Kind code of ref document: A1