WO2014034345A1 - 車両制御システムおよび車両用電子制御装置 - Google Patents

車両制御システムおよび車両用電子制御装置 Download PDF

Info

Publication number
WO2014034345A1
WO2014034345A1 PCT/JP2013/070411 JP2013070411W WO2014034345A1 WO 2014034345 A1 WO2014034345 A1 WO 2014034345A1 JP 2013070411 W JP2013070411 W JP 2013070411W WO 2014034345 A1 WO2014034345 A1 WO 2014034345A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleep
electronic control
control device
wakeup
unit
Prior art date
Application number
PCT/JP2013/070411
Other languages
English (en)
French (fr)
Inventor
櫻井 康平
正裕 松原
成沢 文雄
敦寛 大野
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP13834260.5A priority Critical patent/EP2891581B1/en
Publication of WO2014034345A1 publication Critical patent/WO2014034345A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0239Electronic boxes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40039Details regarding the setting of the power status of a node according to activity on the bus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention relates to a fail-safe technique for a vehicle control system provided with a communication network.
  • the ECUs exchange information with each other via a communication network.
  • each ECU is finely set to sleep / wake according to the driving state of the vehicle.
  • a technique called “Partial Networking” is disclosed (Non-patent Document 1).
  • the ECU of the vehicle control system is divided into clusters, and the ECU that controls sleep / wakeup transmits a sleep / wakeup request for each cluster according to the vehicle control mode, vehicle speed, and the like.
  • Patent Document 2 discloses a method for causing an ECU to shift itself to a sleep state only when all other ECUs permit the ECU to enter a sleep state. ing.
  • the sleep / wake-up control of the ECU is performed while the vehicle is running, so that it is necessary to operate the vehicle control system so as to be fail-safe even when a failure occurs in the communication network or each ECU.
  • this point is not mentioned in any of the above-described conventional techniques.
  • Non-Patent Document 1 and Patent Document 1 an ECU that needs to be operated when a failure occurs in an ECU that controls sleep / wakeup or a communication network and a sleep / wakeup request cannot be transmitted. You will not be able to wake up. Further, in Patent Document 2, it is configured to shift to sleep based on sleep permission from another ECU, but sleep is possible even though the sleep permission is not issued due to a failure of the own ECU or communication network. May be judged.
  • the present invention has been made in view of the above problems, and in a vehicle control system that reduces power consumption by optimally sleeping / wakening up individual ECUs, a failure occurs in a communication network or ECU.
  • it aims at providing the vehicle control system which can ensure safety.
  • An electronic control device for a vehicle is an electronic control device for a vehicle that exchanges information with another electronic control device via a communication network.
  • the electronic control device for a vehicle sleeps according to an operation state of the vehicle.
  • a sleep / wake-up transition unit that sleeps or wakes up based on a sleep / wake-up request signal from an electronic control device that includes a sleep / wake-up control unit that controls wake-up, the other electronic control device, or
  • a sleep avoidance unit that avoids sleep continuation or sleep transition when an abnormality occurs in any of the communication networks.
  • the vehicle control system includes a plurality of electronic control devices including the vehicle electronic control device and other electronic control devices that exchange information with the vehicle electronic control device via a communication network. Is done.
  • the vehicle control system includes a plurality of electronic control units (ECUs) that exchange information via a communication network, and the plurality of ECUs are divided into clusters. At least one of the ECUs includes a sleep / wakeup control unit that controls sleep or wakeup of the plurality of ECUs for each of the clusters according to an operation state of the vehicle, and each of the plurality of ECUs includes the sleep / wakeup control unit.
  • ECUs electronice control units
  • a sleep / wake-up transition unit that sleeps or wakes up based on a sleep / wake-up request signal from a wake-up control unit, and when an abnormality occurs in any of the plurality of ECUs or the communication network, Avoiding sleep continuation or sleep transition of the plurality of ECUs Equipped with a sleep avoiding unit.
  • the sleep avoidance unit prevents the plurality of ECUs or any of the plurality of ECUs from wake-up due to an abnormality in the communication network, or no sleep request from the sleep / wake-up control unit Further, any one of the plurality of ECUs is prevented from sleeping.
  • the sleep avoiding unit monitors the state of the ECU including the sleep / wake-up control unit, and an abnormality of the ECU or the communication network is detected. At this time, the sleep / wake-up control of the ECU is taken over, and the sleep / wake-up request signal is transmitted to the plurality of ECUs. Alternatively, a wakeup request signal is transmitted to the plurality of ECUs without taking over the sleep / wakeup control.
  • the sleep avoidance unit wakes up between the ECUs of the cluster to which the ECU belongs after the ECU provided with the sleep avoidance unit receives the wakeup request signal and the wakeup by the sleep / wakeup transition unit is completed. By exchanging notifications with each other, it is determined whether or not the ECUs in the cluster have waked up normally. If it is determined that there is an ECU in the cluster that has not been woken up normally, a wakeup request Send a signal.
  • the sleep avoidance unit transmits a sleep request transmitted by the sleep / wakeup control unit.
  • the validity of the sleep request signal is determined according to the signal form.
  • the sleep avoiding unit exchanges a sleep request reception notification among the ECUs of the cluster to which the ECU belongs when the ECU including the sleep avoiding unit receives the sleep request signal, and receives the sleep request. Is greater than or equal to a predetermined number, sleep transition is permitted, and when the predetermined number is not reached, sleep transition is prohibited.
  • the sleep avoiding unit exchanges an alive signal indicating that the ECU including the sleep avoiding unit is normal between the ECUs of the cluster to which the ECU belongs, so that the ECU of the cluster to which the ECU belongs It is determined whether or not it is normal, and if it is determined that there is an abnormal ECU, a wake-up request signal is transmitted.
  • the sleep avoidance unit by providing the sleep avoidance unit, it is possible to avoid an unintended sleep state caused by a failure of the communication network or the ECU, and to improve the safety of the vehicle control system. .
  • the sleep avoidance unit monitors the state of the ECU having the sleep / wakeup control unit, and when the ECU is abnormal, the sleep avoidance unit takes over the sleep / wakeup control unit to prevent the ECU from waking up. Can be prevented.
  • the processing load and cost required for the sleep / wake-up control can be eliminated by simply transmitting a wake-up request signal.
  • the completion of wakeup is mutually confirmed by the ECUs in the same cluster, and if there is an ECU that has not been woken up, the wakeup caused by a transient failure of the communication network, etc. is retransmitted by resending the wakeup request signal. Can avoid failure.
  • the sleep avoidance unit by determining the validity of the sleep request signal, or by mutually confirming reception of the sleep request signal between ECUs in the same cluster, due to a transient failure of the communication network, etc. It is possible to avoid the ECU from sleeping accidentally. Even if the user accidentally sleeps, normal operation can be restored in a short time by receiving a wake-up request signal from another ECU in the cluster to which the user belongs.
  • FIG. 1 shows the overall configuration of the vehicle control system.
  • the electronic control system 1 includes a plurality of ECUs 1, ECU 2,... ECUn, and these ECUs are connected by a communication network 2.
  • ECU2 to ECUn are grouped, for example, from cluster 1 to cluster j for each function.
  • the ECU 1 includes a sleep / wake-up control unit 10 that executes calculations for causing the ECUs to sleep / wake up for each cluster based on information such as a vehicle control mode and a vehicle speed, and an interface with the communication network 2.
  • the transmission / reception unit 11 is provided.
  • the sleep / wake-up control unit 10 transmits a sleep / wake-up request signal S1 to the communication network 2 via the transmission / reception unit 11 at an appropriate timing based on the calculation.
  • the sleep / wake-up request signal S1 includes, for example, a data field indicating the cluster number and the presence / absence of the sleep request in the communication frame.
  • the signal waveform can be generated in a predetermined form (a combination of voltage levels High and Low continuous for a predetermined time n times or the like).
  • ECU2 to ECUn each include a transmission / reception unit i1, a sleep / wakeup request signal reception determination unit i2, a sleep / wakeup transition unit i3, and a sleep avoidance unit i4 (i is 2 to n).
  • FIG. 1 shows only the internal configuration of the ECU 2, the other ECUs have the same configuration.
  • the sleep / wake-up request signal reception determination unit 22 determines whether the sleep / wake-up request signal S1 received via the transmission / reception unit 21 is a sleep / wake-up request for a cluster to which the sleep / wake-up request signal belongs. If it is, the sleep / wakeup transition unit 23 is notified. In the case of a sleep request, the sleep / wake-up transition unit 23 causes the ECU 2 to transition to a low power consumption mode such as decreasing the clock frequency or supplying power only to the backup RAM, and in the case of a wake-up request The ECU 2 is changed from the sleep state in the low power consumption mode to the normal state.
  • a sleep avoiding unit 24 is further provided.
  • the sleep avoidance unit 24 maintains the sleep state or enters the sleep state based on the sleep / wakeup request signal reception notification from the sleep / wakeup request signal reception determination unit 22 or information received from the communication network 2. A function to avoid migration is provided. The function of the sleep avoiding unit 24 will be described in detail in each embodiment. In the ECU 2 in FIG. 1, part of the exchange of signals between the functional blocks may or may not be present depending on the embodiment.
  • the sleep avoidance unit monitors the state of the electronic control device including the sleep / wakeup control unit, and when an abnormality occurs in the electronic control device or the communication network. Then, the sleep / wake-up control of the electronic control device is taken over, and the sleep / wake-up request signal is transmitted to another electronic control device.
  • FIG. 3 shows a functional block diagram of the ECU 2 based on the first embodiment.
  • the sleep avoidance unit 24 in this embodiment includes an ECU 1 monitoring unit 241 and a sleep / wake-up control unit 240.
  • the ECU 1 monitoring unit 241 monitors whether there is an abnormality in the ECU (ECU 1 in this embodiment) that executes sleep / wake-up control.
  • the ECU 1 abnormality is transmitted as the ECU 1 monitoring result E1 to the sleep / wake-up control unit 240.
  • the sleep / wake-up control unit 240 takes over the sleep / wake-up control equivalent to that of the ECU 1 and transmits the sleep / wake-up request signal S1 to the other ECUs in the system.
  • the ECU 1 periodically sends an alive signal with a sequential number, and the ECU 2 confirms that the sequential number changes as set in advance, or the ECU 2 sends a certain problem to the ECU 1 periodically. Whether or not the ECU 1 is normal can be determined by a method such as confirming that a predetermined calculation result is returned.
  • the sleep / wake-up control unit 240 equivalent to the ECU 1 is provided, it is possible to monitor whether a predetermined sleep / wake-up signal is transmitted.
  • the vehicle control system is a time trigger type system
  • the communication network 2 is a time trigger type network
  • the transmission timing of the sleep / wake-up signal from the ECU 1 can be determined at the time of design. Therefore, the reception timing of the sleep / wakeup signal can be known without using the sleep / wakeup control unit 240, and the ECU 1 can be monitored using this information.
  • the sleep avoidance unit monitors the state of the electronic control device including the sleep / wakeup control unit, and when an abnormality occurs in the electronic control device or the communication network. Then, a wakeup request signal is transmitted to another electronic control unit.
  • FIG. 4 shows a functional block diagram of the ECU 2 based on the second embodiment.
  • the sleep avoidance unit 24 in this embodiment includes an ECU 1 monitoring unit 241 and a wake-up request signal generation unit 242.
  • the function of the ECU 1 monitoring unit 241 is as described above.
  • the wake-up request signal generation unit 242 wakes up all ECUs in the system or ECUs necessary for ensuring predetermined safety.
  • An up request signal S2 is transmitted.
  • the second embodiment does not take over the sleep / wake-up control equivalent to that of the ECU 1 as in the first embodiment, it is not necessary to obtain information necessary for the sleep / wake-up control and perform calculations based on the information. . Thereby, the calculation processing load and cost of ECU2 can be reduced.
  • Other ECUs in the system can wake up by the wake-up request signal S2, and after the abnormality occurs in the ECU 1, detailed sleep / wake-up control cannot be performed, but the safety of the system can be ensured. .
  • the ECU that monitors the ECU 1 must always be in the normal state during the system operation without shifting to the sleep state.
  • the ECU 2 does not belong to any cluster, and a method in which the ECU 2 is not put to sleep during system operation, or a plurality of ECUs including the ECU 1 monitoring unit are provided, and these are arranged in different clusters.
  • a method of causing the ECU including any one of the ECU 1 monitoring units to be in a normal state is conceivable.
  • the ECU that performs the sleep / wake-up control to be monitored may not be fixed to the ECU 1. For example, when it is necessary to switch the ECU that performs sleep / wake-up control, the ECU that performs monitoring may be switched as well as the ECU to be monitored.
  • the sleep avoidance unit receives the wakeup request signal, and after the wakeup by the sleep / wakeup transition unit is completed, exchanges wakeup notifications with other electronic control devices. By doing so, it is determined whether or not the other electronic control device has waked up normally.
  • the sleep avoidance unit receives the wake-up request signal, and after the wake-up by the sleep / wake-up transition unit is completed, exchanges wake-up notifications with other electronic control devices, and does not wake up normally
  • a wake-up request signal is transmitted to at least the electronic control device.
  • FIG. 5 shows a functional block diagram of the ECU 2 based on the third embodiment.
  • the sleep avoidance unit 24 in this embodiment includes a wakeup notification generation unit 243, a wakeup confirmation unit 244, and a wakeup request signal generation unit 242.
  • the operation of the sleep avoiding unit 24 of this embodiment will be described in detail with reference to the processing flowchart of FIG. Note that the processing flow shown in FIG. 6 and after may be realized by hardware, software, or both.
  • the sleep avoidance unit may periodically check whether a wakeup request signal reception notification from the sleep / wakeup request signal reception determination unit 22 has arrived, and start the processing if it has arrived. Note that when the process is executed, the wake-up process of the ECU 2 is completed, and the ECU 2 is transitioned to the normal state.
  • the sleep avoidance unit 24 firstly uses the wakeup notification generation unit 243 to notify the other ECUs in the cluster to which the sleep avoidance unit 24 has woken up in S10. And send this. Since other ECUs also perform the same process, the wakeup confirmation unit 244 performs a reception process of a wakeup notification S3 from another ECU after a predetermined time (S11), and all ECUs in the cluster to which the ECU belongs belong to. It is confirmed whether or not it has been woken up (S12). If the wake-up of all the ECUs has been completed, the system can operate normally, and thus this process ends.
  • the wake-up of all the ECUs is not completed in S12, that is, if the wake-up notification S3 cannot be received from some ECUs, these ECUs may be connected to the ECU 1 due to a transient failure of the communication network 2 due to noise or the like. Since there is a possibility that reception of the wakeup request signal from the terminal has failed, the wakeup request signal S2 generated by the wakeup request signal generation unit 242 is transmitted (S13). In S14, a wakeup notification S3 is received from the incomplete wakeup ECU after a predetermined time. In S15, it is confirmed whether the wakeup notification S3 has been received normally.
  • the process may return to S13 again, attempt wake-up a plurality of times, and then proceed to S16 only when wake-up is not possible. Moreover, it can also comprise so that the process after S14 may be performed by ECU1.
  • the completion of the wake-up is mutually confirmed by the ECUs in the same cluster or by the ECU 1, and when there is an incomplete wake-up ECU, the wake-up request signal is retransmitted to retransmit the communication network.
  • the wake-up failure caused by the transient failure 2 can be avoided, and the safety of the vehicle control system can be improved.
  • the sleep avoidance unit receives the sleep request signal transmitted from the sleep / wakeup control unit a predetermined number of times within a predetermined time, and then enters the sleep / wakeup transition unit. Output sleep transition permission notification to.
  • FIG. 7 shows a functional block diagram of the ECU 2 based on the fourth embodiment.
  • the sleep avoidance unit 24 in this embodiment includes a sleep availability determination unit 245.
  • the sleep availability determination unit 245 receives the sleep request signal reception notification from the sleep / wakeup request signal reception determination unit 22, determines whether sleep is possible, and then transmits the sleep availability determination result E ⁇ b> 2 to the sleep / wakeup transition unit 23. Even after receiving the sleep request signal reception notification from the sleep / wakeup request signal reception determination unit 22, the sleep / wakeup transition unit 23 enters the sleep state until receiving the sleep availability determination result E2 from the sleep availability determination unit 245. The transition is suspended, and only when the sleep availability determination result E2 is acceptable, the transition to the sleep state is made.
  • the sleep availability determination unit 245 determines the validity of the sleep request signal. For example, in order to prevent the ECU 2 from misinterpreting that the sleep request signal has arrived even though the sleep request signal has not been sent from the ECU 1 due to a transient failure of the communication network 2, the ECU 1 requests the sleep request a plurality of times. In this case, the sleep availability determination unit 245 determines whether a predetermined number of sleep request signals have been received within a predetermined time. Further, as another example of validity determination, in order to avoid the occurrence of a transition to an unintended sleep state in which a fake sleep request signal is injected, It may be configured to add an identifier that changes according to a defined rule to the sleep request signal. In this case, the sleep availability determination unit 245 performs decoding of the sleep request signal and confirmation of the added identifier. To determine whether the sleep request signal is true or false.
  • Example 5 In the vehicular electronic control device according to the fifth embodiment, when the sleep avoidance unit receives a sleep request signal, the sleep avoidance unit determines whether or not sleep is possible by exchanging a sleep request reception notification with another electronic control device.
  • the sleep avoidance unit outputs a sleep transition permission notification to the sleep / wakeup transition unit based on the sleep request reception notification and outputs the sleep transition permission notification to the predetermined number when the electronic control device that has received the sleep request signal is a predetermined number or more. If not, a sleep transition prohibition notification is output to the sleep / wakeup transition unit.
  • FIG. 8 shows a functional block diagram of the ECU 2 based on the fifth embodiment.
  • the sleep avoidance unit 24 in the present embodiment includes a sleep request reception notification generation unit 246 and a sleep availability determination unit 245.
  • a method for preventing the ECU 2 from misidentifying that the sleep request signal has arrived even though the sleep request signal has not been sent from the ECU 1 due to a transient failure of the communication network 2 or the like is another embodiment.
  • the operation of the sleep avoidance unit 24 of this embodiment will be described in detail with reference to the processing flowchart of FIG.
  • the sleep avoidance unit may periodically check whether a sleep request signal reception notification from the sleep / wakeup request signal reception determination unit 22 has arrived, and start the processing if it has arrived.
  • the sleep avoidance unit 24 first uses the sleep request reception notification generation unit 246 to notify other ECUs in the cluster to which the sleep avoidance unit 24 has received the sleep request signal in S20.
  • a sleep request reception notification S4 is generated and transmitted. Since other ECUs also perform the same process, the sleep availability determination unit 245 performs a process of receiving a sleep request reception notification S4 from another ECU after a predetermined time (S21). Then, it is determined whether or not a predetermined number or more of ECUs have received the sleep request (S22).
  • the sleep transition permission notification is transmitted to the sleep / wakeup transition unit 23 as the sleep availability determination result E2 in S23, and this process ends. If the number of ECUs that have received the sleep request is less than the predetermined number, a sleep transition prohibition notice is transmitted in S24 and the process is terminated.
  • the vehicle control system of FIG. 10 includes nine ECUs, ECU1 to ECU9.
  • ECU2 to ECU5 belong to cluster 1
  • ECU6 to ECU9 belong to cluster2.
  • the ECU 1 transmits a sleep request signal S1 for the cluster 2.
  • the sleep request signal S1 includes an identifier for determining the authenticity of the sleep request signal described above in addition to the data indicating the cluster number and the presence / absence of the sleep request.
  • 1 is a sleep request.
  • it is assumed that the ECU 5 belonging to the cluster 1 misidentifies the sleep request signal S1 as a sleep signal for the cluster 1 due to a transient communication failure or the like.
  • the ECUs of cluster 2 send a sleep request reception notification S4 with the sleep request reception presence / absence bit set to 1 (set the sleep request reception presence to 1) according to the processing flow of FIG. Since the request reception presence / absence bit is 1, the transition to the sleep state is permitted.
  • the cluster 1 only the ECU 5 transmits the sleep request reception notification S4 with the sleep request reception presence / absence bit set to 1, but the other three ECUs do not recognize that the sleep request signal has been received.
  • a sleep request reception notification S4 having a sleep request reception presence / absence bit of 0 is transmitted. Therefore, for example, by determining the majority of the four sleep request reception notifications S4, it is found that the sleep request signal is not transmitted, and the transition to the sleep state is prohibited. Thereby, ECU5 can avoid sleeping accidentally.
  • the sleep avoidance unit determines whether the other electronic control device is normal by exchanging an alive signal indicating normality with the other electronic control device. If it is determined that there is an electronic control device that is not normal, a wake-up request signal is transmitted to at least the electronic control device.
  • FIG. 11 shows a functional block diagram of the ECU 2 based on the sixth embodiment.
  • the sleep avoidance unit 24 in this embodiment includes an alive signal generation unit 247, an alive signal confirmation unit 248, and a wakeup request signal generation unit 242. The operation of the sleep avoiding unit 24 of this embodiment will be described in detail with reference to the processing flowchart of FIG.
  • the sleep avoidance process in this embodiment is executed periodically.
  • the alive signal generation unit 247 generates the alive signal S5 and transmits it.
  • the alive signal confirmation unit 248 performs reception processing of the alive signal S5 from other ECUs after a predetermined time (S26), and alives from all ECUs in the cluster to which the ECU belongs. It is confirmed whether or not the signal S5 is transmitted, that is, all the ECUs are normal (S27). If all ECUs are normal, this process is terminated.
  • S28 the receiving process of the alive signal S5 from the ECU is performed after a predetermined time, and in S29, it is confirmed whether or not it has been normally received. If it can be received, that is, if it can be determined that the wake-up of the ECU has been completed and has returned to normal operation, this processing is terminated. If reception is not possible, there is a possibility that the ECU has a permanent failure such as a power failure and cannot be waked up.
  • S16 the failure of the ECU is notified and control without the ECU is possible. Issues a backup processing request notification to execute the backup processing.
  • the sleep availability determination unit determines the validity of the sleep request signal, or mutually confirms reception of the sleep request signal between the ECUs in the same cluster. It is possible to avoid the ECU from going to sleep accidentally due to a transient failure 2 or the like. Even if the user accidentally sleeps, normal operation can be restored in a short time by receiving a wake-up request signal from another ECU in the cluster to which the user belongs.
  • a plurality of electronic control devices are divided into clusters, and the vehicle control system controlled for each cluster has been described as an example.
  • the present invention is not limited to this. It may be one that is not divided.
  • SYMBOLS 1 Vehicle control system, 2 ... Communication network, 10 ... Sleep / wakeup control part, 11 ... Transmission / reception part of ECU1, 21 ... Transmission / reception part of ECU2, 22 ... Sleep / wakeup request signal reception determination part of ECU2, 23 ... ECU 2 sleep / wake-up transition unit 24... ECU 2 sleep avoidance unit 241.
  • ECU 2 ECU 1 monitoring unit 242.
  • Alive signal confirmation unit of ECU2 S1 ... Sleep / wakeup request Signal, S2 ... Wake-up request signal , S3 ... wakeup notification, S4 ... sleep request reception notification, S5 ... alive signal, E1 ... ECU 1 monitoring results, E2 ... sleep determination result

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

個々の電子制御装置(ECU)を最適にスリープ/ウェイクアップさせることで消費電力を低減する車両制御システムにおいて、通信ネットワークやECUに障害が発生しても安全性を確保できる車両制御システムを提供する。 通信ネットワーク2を介して情報をやり取りする複数のECUを備え、前記複数のECUがクラスタに分割された車両制御システム1において、スリープ/ウェイクアップ要求信号S1に基づいてスリープまたはウェイクアップするスリープ/ウェイクアップ移行部23と、前記複数のECU、あるいは、前記通信ネットワーク2のいずれかに異常が生じたときに、前記複数のECUのスリープ継続、または、スリープ移行を回避するスリープ回避部24と、を備える。

Description

車両制御システムおよび車両用電子制御装置
 本発明は、通信ネットワークを備えた車両制御システムのフェールセーフ技術に関するものである。
 近年、自動車では燃費規制が強化され、エンジン等パワートレインの燃費向上だけでなく、電子制御装置(ECU:Electronic Control Unit)により車両を制御する車両制御システムにおいても消費電力低減が求められている。近年の自動車にはECUが数10~100個程度搭載されており、車両制御システムの消費電力は増大している。
 車両制御システムにおいて、ECUは通信ネットワークを介して相互に情報を交換しているが、消費電力を低減するために、自動車の運転状態に応じて、通信ネットワーク経由で個々のECUをきめ細かくスリープ/ウェイクアップさせるPartial Networkingと呼ばれる技術が開示されている(非特許文献1)。これは、車両制御システムのECUをクラスタに分割し、スリープ/ウェイクアップを制御するECUが、車両の制御モードや車速などに応じてクラスタごとにスリープ/ウェイクアップ要求を送信するものである。
 また、同様に車両制御システムの消費電力を低減するための技術として、スリープ/ウェイクアップを制御するマスタECUを備え、当該マスタECUが各スレーブECUのスリープ可否を判断し、スリープ可能なスレーブECUにスリープ要求を送信する技術が特許文献1に開示されている。
 さらに、特許文献2には、あるECUに対して、他の全てのECUが、当該ECUをスリープ状態にすることを許可した場合にのみ、当該ECUは自身をスリープ状態に移行させる方法が開示されている。
特開平3-25046号公報 特開2004-254043号公報
Partial Networking  Deactivation of inactive ECUs: Appliance, Standardization and Validation, 15th International Congress on Electronic Systems for Motor Vehicles, pp.137-147, 2011.
 前述の車両制御システムでは、自動車の走行中にECUのスリープ/ウェイクアップ制御を行うため、通信ネットワークや各ECUの障害時にも車両制御システムをフェールセーフになるように動作させる必要がある。しかしながら、前述のいずれの従来技術においても、この点については言及されていない。
 フェールセーフを実現するためには、ある機能が必要な時に動作しない、すなわち、その機能を実行するECUがスリープ状態にあることを防止する必要がある。より具体的には、あるECUがウェイクアップしないことを防止すること、および、あるECUがスリープ要求なしにスリープすることの二つの事象を防止する必要がある。
 これに対して、非特許文献1や特許文献1では、スリープ/ウェイクアップを制御するECUや通信ネットワークに障害が起こり、スリープ/ウェイクアップ要求を送信できなくなった場合は、動作させる必要のあるECUをウェイクアップすることができなくなる。また、特許文献2では、他のECUからのスリープ許可に基づいてスリープに移行するように構成されているが、自ECUや通信ネットワークの障害により、スリープ許可が出ていないにもかかわらずスリープ可能と判断してしまう可能性がある。
 本発明は、以上のような課題に鑑みてなされたものであり、個々のECUを最適にスリープ/ウェイクアップさせることで消費電力を低減する車両制御システムにおいて、通信ネットワークやECUに障害が発生しても安全性を確保できる車両制御システムを提供することを目的としている。
 本発明に係る車両用電子制御装置は、通信ネットワークを介して他の電子制御装置と情報をやり取りする車両用電子制御装置において、前記車両用電子制御装置は、車両の動作状態に応じてスリープまたはウェイクアップを制御するスリープ/ウェイクアップ制御部を備える電子制御装置からのスリープ/ウェイクアップ要求信号に基づいて、スリープまたはウェイクアップするスリープ/ウェイクアップ移行部と、前記他の電子制御装置、あるいは、前記通信ネットワークのいずれかに異常が生じたときに、スリープ継続、または、スリープ移行を回避するスリープ回避部と、を備えることを特徴とする。
 また、本発明に係る車両制御システムは、前記車両用電子制御装置と、該車両用電子制御装置と通信ネットワークを介して情報をやり取りする他の電子制御装置とを含む複数の電子制御装置によって構成される。
 また、本発明に係る車両制御システムは、通信ネットワークを介して情報をやり取りする複数の電子制御装置(ECU)を備え、前記複数のECUがクラスタに分割された車両制御システムであって、前記複数のECUの少なくとも一つは、車両の動作状態に応じて前記クラスタごとに前記複数のECUのスリープまたはウェイクアップを制御するスリープ/ウェイクアップ制御部を備え、前記複数のECU各々は、前記スリープ/ウェイクアップ制御部からのスリープ/ウェイクアップ要求信号に基づいてスリープまたはウェイクアップするスリープ/ウェイクアップ移行部を備え、前記複数のECU、あるいは、前記通信ネットワークのいずれかに異常が生じたときに、前記複数のECUのスリープ継続、または、スリープ移行を回避するスリープ回避部を備える。
 前記スリープ回避部は、前記複数のECU、あるいは、前記通信ネットワークの異常により、前記複数のECUのいずれかがウェイクアップしないことを防止する、あるいは、前記スリープ/ウェイクアップ制御部からのスリープ要求なしに前記複数のECUのいずれかがスリープすることを防止する。
 前記複数のECUのいずれかがウェイクアップしないことを防止するために、前記スリープ回避部は、前記スリープ/ウェイクアップ制御部を備えるECUの状態を監視し、当該ECU、または、前記通信ネットワークの異常時は、当該ECUのスリープ/ウェイクアップ制御を引き継ぎ、前記複数のECUに前記スリープ/ウェイクアップ要求信号を送信する。あるいは、スリープ/ウェイクアップ制御を引き継がずに、前記複数のECUにウェイクアップ要求信号を送信する。また、前記スリープ回避部は、当該スリープ回避部を備えるECUがウェイクアップ要求信号を受信し、前記スリープ/ウェイクアップ移行部によるウェイクアップが完了した後、当該ECUの属するクラスタのECU間でウェイクアップ通知を相互に交換することで、当該クラスタ内のECUが正常にウェイクアップしたか否かを判定し、当該クラスタ内に正常にウェイクアップしていないECUが存在すると判定した場合は、ウェイクアップ要求信号を送信する。
 一方、前記スリープ/ウェイクアップ制御部からのスリープ要求なしに前記複数のECUのいずれかがスリープすることを防止するために、前記スリープ回避部は、前記スリープ/ウェイクアップ制御部が送信するスリープ要求信号の形態に応じて当該スリープ要求信号の妥当性を判定する。また、前記スリープ回避部は、当該スリープ回避部を備えるECUがスリープ要求信号を受信した時に、当該ECUの属するクラスタのECU間でスリープ要求受信通知を相互に交換し、前記スリープ要求を受信したECUが所定数以上の場合は、スリープ移行を許可し、所定数に満たない場合は、スリープ移行を禁止する。さらに、前記スリープ回避部は、当該スリープ回避部を備えるECUが正常であることを示すアライブ信号を、当該ECUの属するクラスタのECU間で相互に交換することで、当該ECUの属するクラスタのECUが正常か否かを判定し、正常でないECUが存在すると判定した場合は、ウェイクアップ要求信号を送信する。
 本発明の車両制御システムによれば、スリープ回避部を備えることで、通信ネットワークやECUの障害に起因する意図しないスリープ状態を回避することができ、車両制御システムの安全性を向上させることができる。
 より具体的には、スリープ回避部が、スリープ/ウェイクアップ制御部を備えたECUの状態を監視し、当該ECUの異常時はスリープ/ウェイクアップ制御部を引き継ぐことでECUがウェイクアップしないことを防止できる。スリープ/ウェイクアップ制御部を引き継がない場合は、単にウェイクアップ要求信号を送信することにより、スリープ/ウェイクアップ制御に必要な演算処理負荷やコストを不要にできる。また、ウェイクアップの完了を同一クラスタ内のECUで相互に確認し、ウェイクアップ未完了のECUがある場合は、ウェイクアップ要求信号を再送することにより、通信ネットワークの過渡故障等に起因するウェイクアップの失敗を回避することができる。
 さらに、スリープ回避部において、スリープ要求信号の妥当性を判定する、あるいは、同一クラスタ内のECU同士でスリープ要求信号の受信を相互に確認し合うことで、通信ネットワークの過渡的な障害等により、ECUが誤ってスリープすることを避けることができる。万一、誤ってスリープした場合でも、自身が属するクラスタ内の他のECUからウェイクアップ要求信号を受信することで、短時間のうちに通常動作に復帰することができる。
本発明の実施形態に係る車両制御システムの全体構成 スリープ/ウェイクアップ要求信号の実施形態 実施例1に基づくECUの機能ブロック図 実施例2に基づくECUの機能ブロック図 実施例3に基づくECUの機能ブロック図 実施例3に係る処理フロー図 実施例4に基づくECUの機能ブロック図 実施例5に基づくECUの機能ブロック図 実施例5に係る処理フロー図 実施例4,5に係る車両制御システムの全体構成 実施例6に基づくECUの機能ブロック図 実施例6に係る処理フロー図
 以下、図面に基づき、本発明の車両用電子制御装置および車両制御システムに係る実施形態について説明する。
 図1は、車両制御システムの全体構成を示している。電子制御システム1は、複数のECU1、ECU2、・・・ECUnから構成され、これらのECUは通信ネットワーク2により接続されている。ECU2からECUnは、例えば機能ごとにクラスタ1からクラスタjにグループ化されている。
 ECU1は、車両の制御モードや車速などの情報に基づいて、ECU2からECUnをクラスタごとにスリープ/ウェイクアップさせるための演算を実行するスリープ/ウェイクアップ制御部10、および、通信ネットワーク2とのインタフェースである送受信部11を備える。スリープ/ウェイクアップ制御部10は、演算に基づいた適切なタイミングでスリープ/ウェイクアップ要求信号S1を送受信部11経由で通信ネットワーク2に送信する。
 スリープ/ウェイクアップ要求信号S1は、図2に示すように、例えば、スリープ要求信号は、通信フレーム中にクラスタ番号とスリープ要求有無を示すデータフィールドを設けることにより、ウェイクアップ要求信号は、クラスタごとに信号波形を所定の形(所定時間連続する電圧レベルHigh、Lowの組み合わせがn回など)にしておくことにより生成することができる。
 ECU2からECUnは各々、送受信部i1、スリープ/ウェイクアップ要求信号受信判定部i2、スリープ/ウェイクアップ移行部i3、スリープ回避部i4を備える(iは2~n)。図1ではECU2のみ内部構成を示しているが、他のECUも同様な構成である。本明細書では、以降、代表してECU2を例にとり、符号もECU2のもの(i=2)を使用する。
 スリープ/ウェイクアップ要求信号受信判定部22は、送受信部21経由で受信したスリープ/ウェイクアップ要求信号S1が自分の属するクラスタに対するスリープ/ウェイクアップ要求であるかを判別し、これが自分の属するクラスタに対するものである場合は、スリープ/ウェイクアップ移行部23に通知する。スリープ/ウェイクアップ移行部23は、スリープ要求の場合は、クロック周波数を下げる、あるいは、バックアップ用のRAMにだけ電源を供給する等の低消費電力モードにECU2を遷移させ、ウェイクアップ要求の場合は、ECU2を前記低消費電力モードのスリープ状態から通常状態に遷移させる。本実施形態の特徴は、さらにスリープ回避部24を設けたことにある。スリープ回避部24は、スリープ/ウェイクアップ要求信号受信判定部22からのスリープ/ウェイクアップ要求信号受信通知や、通信ネットワーク2から受信した情報に基づいて、スリープ状態の維持、もしくは、スリープ状態への移行を回避する機能を備える。スリープ回避部24の機能については、各実施例において詳述する。なお、図1のECU2において、各機能ブロック間の信号のやり取りの一部については、実施形態によって、ある場合とない場合がある。
 次に、実施例1について説明する。実施例1に係る車両用電子制御装置では、スリープ回避部は、スリープ/ウェイクアップ制御部を備える電子制御装置の状態を監視し、当該電子制御装置、または、通信ネットワークの異常が生じたときは、当該電子制御装置のスリープ/ウェイクアップ制御を引き継ぎ、他の電子制御装置に前記スリープ/ウェイクアップ要求信号を送信する。
 図3に実施例1に基づくECU2の機能ブロック図を示す。本実施例におけるスリープ回避部24は、ECU1監視部241とスリープ/ウェイクアップ制御部240から構成される。ECU1監視部241は、スリープ/ウェイクアップ制御を実行するECU(本実施例ではECU1)の異常有無を監視する。ECU1に異常が発生したと判断した場合は、スリープ/ウェイクアップ制御部240にECU1監視結果E1としてECU1異常を送信する。これにより、スリープ/ウェイクアップ制御部240は、ECU1と同等のスリープ/ウェイクアップ制御を引継ぎ、システム内の他のECUにスリープ/ウェイクアップ要求信号S1を送信する。
 ECU2のECU1監視部241におけるECU1の監視方法にはいくつかの方法が考えられる。ECU1から定期的にシーケンシャル番号付きのアライブ信号を送信し、ECU2でシーケンシャル番号が予め定めた通りに変化することを確認する、あるいは、ECU2からECU1に対して定期的にある問題を送り、ECU1から所定の演算結果が返ってくることを確認するなどの方法により、ECU1が正常であるか否かを判定することができる。また、本実施例では、ECU1と同等のスリープ/ウェイクアップ制御部240を備えているため、所定のスリープ/ウェイクアップ信号が送信されているかを監視することもできる。さらに、車両制御システムがタイムトリガ型のシステムである場合、例えば通信ネットワーク2がタイムトリガ型のネットワークであるとき等は、ECU1からのスリープ/ウェイクアップ信号の送信タイミングを設計時に決定することができるため、スリープ/ウェイクアップ制御部240を利用しなくてもスリープ/ウェイクアップ信号の受信タイミングが分かり、この情報を用いてECU1を監視することができる。
 次に、実施例2について説明する。実施例2に係る車両用電子制御装置では、スリープ回避部は、スリープ/ウェイクアップ制御部を備える電子制御装置の状態を監視し、当該電子制御装置、または、通信ネットワークの異常が生じたときは、他の電子制御装置にウェイクアップ要求信号を送信する。
 図4に実施例2に基づくECU2の機能ブロック図を示す。本実施例におけるスリープ回避部24は、ECU1監視部241とウェイクアップ要求信号生成部242を備えている。ECU1監視部241の機能は前述の通りである。ウェイクアップ要求信号生成部242は、ECU1監視部241からECU1監視結果E1としてECU1異常を受信した場合、システム内の全てのECU、または、予め定めた安全性を確保するうえで必要なECUにウェイクアップ要求信号S2を送信する。
 実施例2は、実施例1のように、ECU1と同等のスリープ/ウェイクアップ制御を引き継ぐわけではないため、スリープ/ウェイクアップ制御に必要な情報を入手し、これに基づいて演算する必要がない。これにより、ECU2の演算処理負荷やコストを低減することができる。システム内の他のECUは、ウェイクアップ要求信号S2によりウェイクアップすることができ、ECU1の異常発生後は、きめ細かなスリープ/ウェイクアップ制御はできなくなるものの、システムの安全性を確保することができる。
 実施例1,2においては、ECU1を監視するECUはスリープ状態に移行することなく、システム動作中は常に通常状態である必要がある。これを実現する方法としては、ECU2はどのクラスタにも属さず、システム動作中はECU2をスリープさせない方法や、ECU1監視部を備えるECUを複数設け、これらを異なるクラスタ内に配置することで、常にいずれかのECU1監視部を備えるECUが通常状態にあるようにする方法などが考えられる。また、監視対象となる、スリープ/ウェイクアップ制御を実施するECUは、ECU1に固定されなくともよい。例えば、スリープ/ウェイクアップ制御を実施するECUを切り替える必要がある場合は、併せて監視を行うECUも監視対象のECUを切り替えるようにすればよい。
 次に、実施例3について説明する。実施例3に係る車両用電子制御装置では、スリープ回避部は、ウェイクアップ要求信号を受信し、スリープ/ウェイクアップ移行部によるウェイクアップが完了した後、他の電子制御装置とウェイクアップ通知を交換することで、他の電子制御装置が正常にウェイクアップしたか否かを判定する。また、スリープ回避部は、ウェイクアップ要求信号を受信し、スリープ/ウェイクアップ移行部によるウェイクアップが完了した後、他の電子制御装置とウェイクアップ通知を交換し、正常にウェイクアップしていない電子制御装置が存在するとき、少なくとも当該電子制御装置にウェイクアップ要求信号を送信する。
 図5に実施例3に基づくECU2の機能ブロック図を示す。本実施例におけるスリープ回避部24は、ウェイクアップ通知生成部243、ウェイクアップ確認部244、ウェイクアップ要求信号生成部242を備える。本実施例のスリープ回避部24の動作を図6の処理フロー図も用いて詳述する。なお、図6以降で示す処理フローはハードウェア、ソフトウェア、その両方のいずれで実現しても良い。
 スリープ/ウェイクアップ要求信号受信判定部22からウェイクアップ要求信号受信通知を受け取ることで、スリープ回避部の処理が始まる。スリープ回避部が定期的にスリープ/ウェイクアップ要求信号受信判定部22からのウェイクアップ要求信号受信通知が届いているかを確認し、届いていれば当該処理を開始するように構成することもできる。なお、当該処理の実行時には、ECU2のウェイクアップ処理は完了しており、ECU2は通常状態に遷移しているものとする。
 図6の処理フロー図において、スリープ回避部24はまず、S10で自身がウェイクアップしたことを自身が属するクラスタ内の他のECUに通知するために、ウェイクアップ通知生成部243でウェイクアップ通知S3を生成し、これを送信する。他のECUも同様な処理を実行するため、ウェイクアップ確認部244で、所定時間後に他のECUからのウェイクアップ通知S3の受信処理を行い(S11)、自身が属するクラスタ内の全てのECUがウェイクアップしたか否かを確認する(S12)。全てのECUのウェイクアップが完了していれば、システムは正常に動作できるため、本処理を終了する。
 S12で全てのECUのウェイクアップが完了していない場合、すなわち一部のECUからウェイクアップ通知S3が受信できない場合は、これらのECUがノイズ等による通信ネットワーク2の過渡故障などのために、ECU1からのウェイクアップ要求信号の受信に失敗している可能性があるため、ウェイクアップ要求信号生成部242で生成したウェイクアップ要求信号S2を送信する(S13)。S14で所定時間後にウェイクアップ未完了ECUからのウェイクアップ通知S3の受信処理を行い、S15でこれが正常に受信できたか否かを確認する。受信できている場合、すなわちウェイクアップ未完了ECUのウェイクアップが完了したと判断できる場合は、本処理を終了する。受信できない場合は、そのECUに、例えば電源異常などの永久故障が発生し、ウェイクアップできない可能性があるため、S16において、当該ECUの失陥を通知し、当該ECUなしの制御ができる場合はバックアップ処理を実行させるためのバックアップ処理要求通知を発行する。
 S15がNoの場合、再びS13に戻り、複数回ウェイクアップを試み、それでもウェイクアップできない場合にはじめてS16に移行するような処理にしても良い。また、S14以下の処理をECU1で実行するように構成することもできる。
 本実施例によれば、ウェイクアップの完了を同一クラスタ内のECUで相互に、あるいはECU1で確認し、ウェイクアップ未完了のECUがある場合は、ウェイクアップ要求信号を再送することにより、通信ネットワーク2の過渡故障等に起因するウェイクアップの失敗を回避することができ、車両制御システムの安全性を向上させることができる。
 次に、実施例4について説明する。実施例4に係る車両用電子制御装置では、スリープ回避部は、スリープ/ウェイクアップ制御部から送信されるスリープ要求信号を所定時間内に予め定めた回数受信したときに、スリープ/ウェイクアップ移行部へスリープ移行許可通知を出力する。
 図7に実施例4に基づくECU2の機能ブロック図を示す。本実施例におけるスリープ回避部24は、スリープ可否判定部245を備えている。スリープ可否判定部245は、スリープ/ウェイクアップ要求信号受信判定部22からスリープ要求信号受信通知を受け取り、スリープ可否を判定した後、スリープ/ウェイクアップ移行部23にスリープ可否判定結果E2を送信する。スリープ/ウェイクアップ移行部23は、スリープ/ウェイクアップ要求信号受信判定部22からスリープ要求信号受信通知を受信後も、スリープ可否判定部245からスリープ可否判定結果E2を受信するまではスリープ状態への移行を保留し、スリープ可否判定結果E2が可の場合にのみスリープ状態へ移行する。
 スリープ可否判定部245ではスリープ要求信号の妥当性の判定を行う。例えば、通信ネットワーク2の過渡故障などにより、ECU1からスリープ要求信号が送られてきていないにもかかわらず、ECU2でスリープ要求信号が届いたと誤認することを防止するために、ECU1が複数回スリープ要求信号を送信するように構成することが考えられるが、この場合は、スリープ可否判定部245では所定時間内に予め定めた回数のスリープ要求信号を受信したか否かを判定する。また、別の妥当性判定の実施例としては、偽のスリープ要求信号が注入され、意図しないスリープ状態への移行が発生することを回避するために、スリープ要求信号を暗号化する、あるいは、予め定めた規則に従って変化する識別子をスリープ要求信号に付加するように構成することが考えられるが、この場合、スリープ可否判定部245は、スリープ要求信号の復号や、付加された識別子の確認を行うことでスリープ要求信号の真偽を判定する。
 次に、実施例5について説明する。実施例5に係る車両用電子制御装置では、スリープ回避部は、スリープ要求信号を受信したときに、他の電子制御装置とスリープ要求受信通知を交換することで、スリープ可否を判定する。また、スリープ回避部は、スリープ要求受信通知に基づき、前記スリープ要求信号を受信した電子制御装置が所定数以上の場合は、スリープ/ウェイクアップ移行部へスリープ移行許可通知を出力し、所定数に満たない場合は、前記スリープ/ウェイクアップ移行部へスリープ移行禁止通知を出力する。
 図8に実施例5に基づくECU2の機能ブロック図を示す。本実施例におけるスリープ回避部24は、スリープ要求受信通知生成部246、および、スリープ可否判定部245を備えている。本実施例は、前述のように、通信ネットワーク2の過渡故障などにより、ECU1からスリープ要求信号が送られてきていないにもかかわらず、ECU2でスリープ要求信号が届いたと誤認することを防止する方法の別の実施例である。本実施例のスリープ回避部24の動作を図9の処理フロー図も用いて詳述する。
 スリープ/ウェイクアップ要求信号受信判定部22からスリープ要求信号受信通知を受け取ることで、スリープ回避部の処理が始まる。スリープ回避部が定期的にスリープ/ウェイクアップ要求信号受信判定部22からのスリープ要求信号受信通知が届いているかを確認し、届いていれば当該処理を開始するように構成することもできる。
 図9の処理フロー図において、スリープ回避部24はまず、S20で自身がスリープ要求信号を受信したことを自身が属するクラスタ内の他のECUに通知するために、スリープ要求受信通知生成部246でスリープ要求受信通知S4を生成し、これを送信する。他のECUも同様な処理を実行するため、スリープ可否判定部245で、所定時間後に他のECUからのスリープ要求受信通知S4の受信処理を行い(S21)、自身が属するクラスタ内のECUのうち、所定数以上のECUがスリープ要求を受信したか否かを判定する(S22)。スリープ要求を受信したECUが所定数以上の場合は、S23でスリープ可否判定結果E2としてスリープ移行許可通知をスリープ/ウェイクアップ移行部23に送信して本処理を終了する。スリープ要求を受信したECUが所定数に満たない場合は、S24でスリープ移行禁止通知を送信して本処理を終了する。
 図10を用いて実施例5に基づく適用例を説明する。図10の車両制御システムは、ECU1からECU9の9台のECUを備えており、ECU2からECU5がクラスタ1に、ECU6からECU9がクラスタ2に属している。ECU1はクラスタ2に対するスリープ要求信号S1を送信する。図10において、スリープ要求信号S1は、クラスタ番号とスリープ要求有無を示すデータに加えて、前述のスリープ要求信号の真偽を判定するための識別子を備えている。スリープ要求有無ビットは1がスリープ要求ありとする。本適用例では、過渡的な通信障害等により、クラスタ1に属するECU5が、このスリープ要求信号S1をクラスタ1に対するスリープ信号と誤認した場合を想定している。
 この場合、クラスタ2のECUは、図9の処理フローに従い、スリープ要求受信有無ビットを1にしたスリープ要求受信通知S4を送信し(スリープ要求受信有を1とする)、4台のECUともにスリープ要求受信有無ビットが1のため、スリープ状態への移行を許可する。一方、クラスタ1では、ECU5だけがスリープ要求受信有無ビットを1にしたスリープ要求受信通知S4を送信するが、他の3台のECUは、スリープ要求信号を受信したという認識はないため、例えば周期処理の中でスリープ要求受信有無ビットが0のスリープ要求受信通知S4を送信する。したがって、例えば、4つのスリープ要求受信通知S4の多数決をとることで、スリープ要求信号が送信されていないことが判明し、スリープ状態への移行は禁止される。これにより、ECU5は誤ってスリープすることを避けることができる。
 次に、実施例6について説明する。実施例6に係る車両用電子制御装置では、スリープ回避部は、正常であることを示すアライブ信号を他の電子制御装置と交換することで、他の電子制御装置が正常か否かを判定し、正常でない電子制御装置が存在すると判定した場合は、少なくとも当該電子制御装置へウェイクアップ要求信号を送信する。
 図11に実施例6に基づくECU2の機能ブロック図を示す。本実施例におけるスリープ回避部24は、アライブ信号生成部247、アライブ信号確認部248、および、ウェイクアップ要求信号生成部242から構成される。本実施例のスリープ回避部24の動作を図12の処理フロー図も用いて詳述する。
 本実施例におけるスリープ回避処理は周期的に実行されるものとする。まず、S25で自身が正常であることを自身が属するクラスタ内の他のECUに通知するために、アライブ信号生成部247でアライブ信号S5を生成し、これを送信する。他のECUも同様な処理を実行するため、アライブ信号確認部248で、所定時間後に他のECUからのアライブ信号S5の受信処理を行い(S26)、自身が属するクラスタ内の全てのECUからアライブ信号S5が送信されている、すなわち、全てのECUが正常であるか否かを確認する(S27)。全てのECUが正常であれば本処理を終了する。
 S27で全てのECUが正常でない場合、すなわち一部のECUからアライブ信号S5が受信できない場合は、このECUのウェイクアップを試みるために、ウェイクアップ要求信号生成部242で生成したウェイクアップ要求信号S2を送信する(S13)。S28で所定時間後に当該ECUからのアライブ信号S5の受信処理を行い、S29でこれが正常に受信できたか否かを確認する。受信できている場合、すなわち当該ECUのウェイクアップが完了し、通常動作に復帰したと判断できる場合は、本処理を終了する。受信できない場合は、当該ECUに、例えば電源異常などの永久故障が発生し、ウェイクアップできない可能性があるため、S16において、当該ECUの失陥を通知し、当該ECUなしの制御ができる場合はバックアップ処理を実行させるためのバックアップ処理要求通知を発行する。
 実施例4から6によれば、スリープ可否判定部において、スリープ要求信号の妥当性を判定する、あるいは、同一クラスタ内のECU同士でスリープ要求信号の受信を相互に確認し合うことで、通信ネットワーク2の過渡的な障害等により、ECUが誤ってスリープすることを避けることができる。万一、誤ってスリープした場合でも、自身が属するクラスタ内の他のECUからウェイクアップ要求信号を受信することで、短時間のうちに通常動作に復帰することができる。
 なお、以上述べた各実施例を適宜組み合わせることで、車両制御システムの安全性をより向上させることができるが、このような実施例も本発明の実施形態に含まれる。
 また、上記実施形態では、複数の電子制御装置がクラスタに分割され、クラスタごとに制御される車両制御システムを例に説明したが、これに限定されるものではなく、複数の電子制御装置をクラスタに分割されないものであってもよい。
1…車両制御システム、2…通信ネットワーク、10…スリープ/ウェイクアップ制御部、11…ECU1の送受信部、21…ECU2の送受信部、22…ECU2のスリープ/ウェイクアップ要求信号受信判定部、23…ECU2のスリープ/ウェイクアップ移行部、24…ECU2のスリープ回避部、241…ECU2のECU1監視部、242…ECU2のウェイクアップ要求信号生成部、243…ECU2のウェイクアップ通知生成部、244…ECU2のウェイクアップ確認部、245…ECU2のスリープ可否判定部、246…ECU2のスリープ要求受信通知生成部、247…ECU2のアライブ信号生成部、248…ECU2のアライブ信号確認部、S1…スリープ/ウェイクアップ要求信号、S2…ウェイクアップ要求信号、S3…ウェイクアップ通知、S4…スリープ要求受信通知、S5…アライブ信号、E1…ECU1監視結果、E2…スリープ可否判定結果

Claims (15)

  1.  通信ネットワークを介して他の電子制御装置と情報をやり取りする車両用電子制御装置において、
     前記車両用電子制御装置は、車両の動作状態に応じてスリープまたはウェイクアップを制御するスリープ/ウェイクアップ制御部を備える電子制御装置からのスリープ/ウェイクアップ要求信号に基づいて、スリープまたはウェイクアップするスリープ/ウェイクアップ移行部と、前記他の電子制御装置、あるいは、前記通信ネットワークのいずれかに異常が生じたときに、スリープ継続、または、スリープ移行を回避するスリープ回避部と、を備えることを特徴とする車両用電子制御装置。
  2.  請求項1に記載の車両用電子制御装置において、
     前記スリープ回避部は、前記他の電子制御装置、あるいは、前記通信ネットワークの異常が発生したときに、ウェイクアップしないことを防止することを特徴とする車両用電子制御装置。
  3.  請求項1に記載の車両用電子制御装置において、
     前記スリープ回避部は、前記他の電子制御装置、あるいは、前記通信ネットワークの異常が発生したときに、前記スリープ/ウェイクアップ制御部からのスリープ要求なしにスリープすることを防止することを特徴とする車両用電子制御装置。
  4.  請求項2に記載の車両用電子制御装置において、
     前記スリープ回避部は、前記スリープ/ウェイクアップ制御部を備える電子制御装置の状態を監視し、当該電子制御装置、または、前記通信ネットワークの異常が生じたときは、当該電子制御装置のスリープ/ウェイクアップ制御を引き継ぎ、前記他の電子制御装置に前記スリープ/ウェイクアップ要求信号を送信することを特徴とする車両用電子制御装置。
  5.  請求項2に記載の車両用電子制御装置において、
     前記スリープ回避部は、前記スリープ/ウェイクアップ制御部を備える電子制御装置の状態を監視し、当該電子制御装置、または、前記通信ネットワークの異常が生じたときは、前記他の電子制御装置にウェイクアップ要求信号を送信することを特徴とする車両用電子制御装置。
  6.  請求項2に記載の車両用電子制御装置において、
     前記スリープ回避部は、ウェイクアップ要求信号を受信し、前記スリープ/ウェイクアップ移行部によるウェイクアップが完了した後、前記他の電子制御装置とウェイクアップ通知を交換することで、前記他の電子制御装置が正常にウェイクアップしたか否かを判定することを特徴とする車両用電子制御装置。
  7.  請求項2に記載の車両用電子制御装置において、
     前記スリープ回避部は、ウェイクアップ要求信号を受信し、前記スリープ/ウェイクアップ移行部によるウェイクアップが完了した後、前記他の電子制御装置とウェイクアップ通知を交換し、正常にウェイクアップしていない電子制御装置が存在するとき、少なくとも当該電子制御装置にウェイクアップ要求信号を送信することを特徴とする車両用電子制御装置。
  8.  請求項3に記載の車両用電子制御装置において、
     前記スリープ回避部は、前記スリープ/ウェイクアップ制御部から送信されるスリープ要求信号を所定時間内に予め定めた回数受信したときに、前記スリープ/ウェイクアップ移行部へスリープ移行許可通知を出力することを特徴とする車両用電子制御装置。
  9.  請求項3に記載の車両用電子制御装置において、
     前記スリープ回避部は、前記スリープ/ウェイクアップ制御部が暗号化したスリープ要求信号を復号した結果に基づき、前記スリープ/ウェイクアップ移行部へスリープ移行許可通知を出力することを特徴とする車両用電子制御装置。
  10.  請求項3に記載の車両用電子制御装置において、
     前記スリープ回避部は、前記スリープ/ウェイクアップ制御部が予め定めた規則に基づいてスリープ要求信号に付加した識別子を確認した結果に基づき、前記スリープ/ウェイクアップ移行部へスリープ移行許可通知を出力することを特徴とする車両用電子制御装置。
  11.  請求項3に記載の車両用電子制御装置において、
     前記スリープ回避部は、スリープ要求信号を受信したときに、他の電子制御装置とスリープ要求受信通知を交換することで、スリープ可否を判定することを特徴とする車両用電子制御装置。
  12.  請求項11に記載の車両用電子制御装置において、
     前記スリープ回避部は、前記スリープ要求受信通知に基づき、前記スリープ要求信号を受信した電子制御装置が所定数以上の場合は、前記スリープ/ウェイクアップ移行部へスリープ移行許可通知を出力し、所定数に満たない場合は、前記スリープ/ウェイクアップ移行部へスリープ移行禁止通知を出力することを特徴とする車両用電子制御装置。
  13.  請求項3に記載の車両用電子制御装置において、
     前記スリープ回避部は、正常であることを示すアライブ信号を他の電子制御装置と交換することで、他の電子制御装置が正常か否かを判定し、正常でない電子制御装置が存在すると判定した場合は、少なくとも当該電子制御装置へウェイクアップ要求信号を送信することを特徴とする車両用電子制御装置。
  14.  請求項1に記載の車両用電子制御装置と、該車両用電子制御装置と通信ネットワークを介して情報をやり取りする他の電子制御装置とを含む複数の電子制御装置によって構成される車両制御システム。
  15.  請求項14に記載の車両制御システムにおいて、
     前記複数の電子制御装置は、クラスタに分割されており、
     各クラスタ内の電子制御装置の少なくとも一つは、前記スリープ/ウェイクアップ制御部を備え、
     各クラスタ内の各電子制御装置は、前記スリープ/ウェイクアップ移行部と、前記スリープ回避部と、を備えることを特徴とする車両制御システム。
PCT/JP2013/070411 2012-08-31 2013-07-29 車両制御システムおよび車両用電子制御装置 WO2014034345A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13834260.5A EP2891581B1 (en) 2012-08-31 2013-07-29 Vehicle control system, and vehicular electronic control unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012190818A JP5997980B2 (ja) 2012-08-31 2012-08-31 車両制御システムおよび車両用電子制御装置
JP2012-190818 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034345A1 true WO2014034345A1 (ja) 2014-03-06

Family

ID=50183165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070411 WO2014034345A1 (ja) 2012-08-31 2013-07-29 車両制御システムおよび車両用電子制御装置

Country Status (3)

Country Link
EP (1) EP2891581B1 (ja)
JP (1) JP5997980B2 (ja)
WO (1) WO2014034345A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149610A (ja) * 2015-02-10 2016-08-18 株式会社デンソー 通信装置
JP2019197999A (ja) * 2018-05-09 2019-11-14 株式会社デンソー 車両用電子制御システムおよび車両用電子制御装置
CN113691396A (zh) * 2021-08-09 2021-11-23 浙江吉利控股集团有限公司 一种整车网络异常休眠唤醒监控方法、装置及存储介质
CN114285915A (zh) * 2021-11-09 2022-04-05 江铃汽车股份有限公司 Ecu故障原因的确定方法、系统、存储介质及设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337783B2 (ja) * 2015-01-21 2018-06-06 トヨタ自動車株式会社 車載ネットワークシステム
CN105553803B (zh) * 2015-12-10 2019-04-09 北京新能源汽车股份有限公司 电动汽车网络管理方法和系统
US11639142B2 (en) 2019-01-11 2023-05-02 Ford Global Technologies, Llc Electronic control module wake monitor
JP7352166B2 (ja) * 2019-10-31 2023-09-28 株式会社オートネットワーク技術研究所 車載通信システム、車載通信装置及び車両用通信方法
KR102371990B1 (ko) * 2020-08-10 2022-03-08 현대오토에버 주식회사 차량용 제어기 및 차량용 제어기 전력 제어 방법
JP7405060B2 (ja) 2020-10-26 2023-12-26 株式会社デンソー ネットワークシステム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325046A (ja) 1989-06-22 1991-02-01 Nissan Motor Co Ltd 車両内ネットワーク制御装置
JPH0774763A (ja) * 1993-09-03 1995-03-17 Furukawa Electric Co Ltd:The 多重伝送システムの動作状態遷移方法
JPH08237286A (ja) * 1995-02-28 1996-09-13 Mazda Motor Corp 多重伝送システム
JPH10107821A (ja) * 1996-09-30 1998-04-24 Mazda Motor Corp 多重伝送装置
JP2004254043A (ja) 2003-02-19 2004-09-09 Denso Corp 車両内ネットワーク制御装置
JP2006290162A (ja) * 2005-04-11 2006-10-26 Denso Corp 自動車用制御ユニット
JP2010136286A (ja) * 2008-12-08 2010-06-17 Denso Corp 車載通信ネットワークシステム
JP2011235770A (ja) * 2010-05-11 2011-11-24 Autonetworks Technologies Ltd 車載用制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4946646B2 (ja) * 2006-07-10 2012-06-06 日産自動車株式会社 通信ネットワークシステム及び未ウェイクアップノードのウェイクアップ方法
DE102006040442B4 (de) * 2006-08-29 2009-04-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Buskommunikationsmanagement bei einem Kraftfahrzeug mit mehreren, über einen Bus verbundenen Steuergeräten
JP5347831B2 (ja) * 2009-08-21 2013-11-20 株式会社デンソー 通信システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325046A (ja) 1989-06-22 1991-02-01 Nissan Motor Co Ltd 車両内ネットワーク制御装置
JPH0774763A (ja) * 1993-09-03 1995-03-17 Furukawa Electric Co Ltd:The 多重伝送システムの動作状態遷移方法
JPH08237286A (ja) * 1995-02-28 1996-09-13 Mazda Motor Corp 多重伝送システム
JPH10107821A (ja) * 1996-09-30 1998-04-24 Mazda Motor Corp 多重伝送装置
JP2004254043A (ja) 2003-02-19 2004-09-09 Denso Corp 車両内ネットワーク制御装置
JP2006290162A (ja) * 2005-04-11 2006-10-26 Denso Corp 自動車用制御ユニット
JP2010136286A (ja) * 2008-12-08 2010-06-17 Denso Corp 車載通信ネットワークシステム
JP2011235770A (ja) * 2010-05-11 2011-11-24 Autonetworks Technologies Ltd 車載用制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Partial Networking Deactivation of Inactive ECUs: Appliance, Standardization and Validation", 15TH INTERNATIONAL CONGRESS ON ELECTRONIC SYSTEMS FOR MOTOR VEHICLES, 2011, pages 137 - 147

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149610A (ja) * 2015-02-10 2016-08-18 株式会社デンソー 通信装置
JP2019197999A (ja) * 2018-05-09 2019-11-14 株式会社デンソー 車両用電子制御システムおよび車両用電子制御装置
JP7003832B2 (ja) 2018-05-09 2022-01-21 株式会社デンソー 車両用電子制御システムおよび車両用電子制御装置
CN113691396A (zh) * 2021-08-09 2021-11-23 浙江吉利控股集团有限公司 一种整车网络异常休眠唤醒监控方法、装置及存储介质
CN114285915A (zh) * 2021-11-09 2022-04-05 江铃汽车股份有限公司 Ecu故障原因的确定方法、系统、存储介质及设备

Also Published As

Publication number Publication date
EP2891581B1 (en) 2019-05-15
JP5997980B2 (ja) 2016-09-28
EP2891581A1 (en) 2015-07-08
JP2014046777A (ja) 2014-03-17
EP2891581A4 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2014034345A1 (ja) 車両制御システムおよび車両用電子制御装置
KR101393539B1 (ko) 자동차 통합 네트워크 시스템
US8665700B2 (en) Fault detection and mitigation for in-vehicle LAN network management
EP1879326B1 (en) Communication network system and wakeup method for un-wakeup node
US20090262649A1 (en) Bus guardian with improved channel monitoring
JP5174025B2 (ja) 複数の制御機器がバスを介して接続された自動車におけるバスを介した通信の管理装置及び方法
JP7030742B2 (ja) 通信システム、および通信制御方法
US20090290485A1 (en) Distributed communication system and corresponding communication method
JP4560000B2 (ja) 動作監視ユニット
JP2017178127A (ja) 車両制御システム
CN103078756A (zh) 模式切换方法及can网络
CN107428297A (zh) 车辆用控制装置及其控制方法
CN102013943A (zh) 一种can总线网络丢帧处理方法
JP2015528411A (ja) 通信チャネルと接続されている装置を監視する方法、監視装置、及び、車両
Rosenstatter et al. Extending AUTOSAR's Counter-Based Solution for Freshness of Authenticated Messages in Vehicles
JP2008131173A (ja) 制御ユニットおよび車載用の多重通信システム
JP2015154189A (ja) 通信システム、ゲートウェイ装置及び通信ノード並びに通信制御方法
JP2013098916A (ja) 中継システム、及び、当該中継システムを構成する中継装置
JP6458150B2 (ja) 電子制御装置
JP2009248711A (ja) 車載通信システム
JP2017050719A (ja) 車載ネットワークシステム
CN113542265B (zh) 局部网络安全管理、装置、计算机设备及存储介质
JP2010258635A (ja) 制御装置
JP6919373B2 (ja) ネットワークシステム
JP2020115620A (ja) 制御装置及び通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834260

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013834260

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE