WO2014033123A1 - Schaltumkehrverfahren für ein analogisiert betriebenes magnetventil, elektrohydraulische bremsanlage und verwendung der elektrohydraulischen bremsanlage - Google Patents

Schaltumkehrverfahren für ein analogisiert betriebenes magnetventil, elektrohydraulische bremsanlage und verwendung der elektrohydraulischen bremsanlage Download PDF

Info

Publication number
WO2014033123A1
WO2014033123A1 PCT/EP2013/067715 EP2013067715W WO2014033123A1 WO 2014033123 A1 WO2014033123 A1 WO 2014033123A1 EP 2013067715 W EP2013067715 W EP 2013067715W WO 2014033123 A1 WO2014033123 A1 WO 2014033123A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
current
brake system
solenoid valve
Prior art date
Application number
PCT/EP2013/067715
Other languages
English (en)
French (fr)
Inventor
Andreas Neu
Ralph Gronau
Holger Kollmann
Jörg Berntheusel
Tobias Franke
Original Assignee
Continental Teves Ag & Co. Ohg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves Ag & Co. Ohg filed Critical Continental Teves Ag & Co. Ohg
Priority to US14/424,253 priority Critical patent/US20150321653A1/en
Priority to CN201380044289.0A priority patent/CN104583033A/zh
Priority to KR1020157007904A priority patent/KR20150052142A/ko
Priority to EP13756412.6A priority patent/EP2890594A1/de
Publication of WO2014033123A1 publication Critical patent/WO2014033123A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3655Continuously controlled electromagnetic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4863Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems
    • B60T8/4872Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems pump-back systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/061Sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor

Definitions

  • Solenoid valve, electro-hydraulic brake system and use of electro-hydraulic brake system are Solenoid valve, electro-hydraulic brake system and use of electro-hydraulic brake system
  • the invention relates to a Wegumlothabilit for an analogously operated solenoid valve according to the preamble of claim 1, an electro-hydraulic brake system according to
  • Electrohydraulic pressure control is an increasingly important requirement for a variety of different
  • Comfort functions in particular the increasingly popular distance and speed control systems.
  • pressure sensors in each individual wheel brake cylinder while an exact pressure measurement and, consequently, a precise adjustment of the necessary brake pressure is possible at any time, but this leads to high
  • Additional manufacturing costs can be achieved by measuring the opening or closing current in the form of a characteristic curve, which correlates a pressure difference applied to the valve with an exciter current.
  • a substantially accurate pressure control by means of an analogized hydraulic valve.
  • Such a method is disclosed for example in DE 102 24 059 AI.
  • the characteristic is stored here electronically in the control system and via the Exciting current can then be set selectively a pressure difference, without having to resort to actually measured pressure data.
  • DE 10 2005 051 436 AI also proposes a method for pressure regulation in a hydraulic brake system without the use of additional pressure sensors.
  • the analogized hydraulic valves are calibrated by means of the ABS wheel speed sensors present in the vehicle, which determine a speed reduction and thus a braking effect as a function of the exciter current. This method allows valve calibration without the use of additional
  • the so determined control characteristic is electronically stored and used for pressure control.
  • electrohydraulic pressure control unit which is operated during a pressure control with a certain Abeitsstrom according to a stored in the pressure control unit context or map, during the setting of a current far below or far above the working current briefly subjected to an anti-hysteresis.
  • the antihysteresis pulse occurs before each pressure buildup or each
  • Antihysteresis pulses is avoided, however, often caused by the sudden change in current associated with the anti-hysteresis pulses, a perceivable, undesirable reaction of the vehicle brake system in the form of noise or braking force changes for the driver.
  • the object of the present invention is therefore to propose a method which as far as possible avoids the unfavorable influence of the hysteresis effect in the event of a switching reversal of analogized solenoid valves and at the same time does not cause a comfort impairment due to noises or braking force changes perceptible to the driver.
  • Solenoid valve according to claim 1 solved. According to the switching reversal method according to the invention for an analogously operated solenoid valve in a
  • electrohydraulic brake system are from the solenoid valve a closed position, an open position and a plurality of intermediate positions in accordance with an electrical control or regulation ingestible, wherein the control or regulation in turn takes place in accordance with a known current-pressure characteristic of the solenoid valve.
  • Solenoid valve is compensated immediately without prior change of the current Hystereseaus tenugung. This results in the advantage that at a switching reversal, ie a change in direction of the movement of the valve stem of a current this Hystereseausciosgung the Ventilj ochs is taken into account and by balancing a substantially immediate reaction of the solenoid valve is achieved. This in turn allows an immediate and targeted
  • the hysteresis effect usually occurs in different hysteresis pronouncements, which are dependent on the geometry of the solenoid valve, in particular the geometry of the magnetizable valve yoke or a valve yoke corresponding valve component of the solenoid valve, if this deviates from a conventional valve assembly. Furthermore, the Hystereseaus tenugung from the material of the solenoid valve, in particular the material of the valve yoke, and the last applied to the solenoid valve electric current or the last applied to the solenoid pressure. It is irrelevant according to the invention, whether the switching reversal of an actually reached end position, ie the
  • Closed or open position is done, or done only from an intermediate position. It is essential only that a change of the last executed direction of movement of the valve stem takes place, even if the solenoid valve or the valve stem in the meantime for a certain period of time remained in a certain position before a movement in the opposite direction of the last executed movement direction.
  • the switching reversal takes place from a valve opening movement to a valve closing movement. This means that the change in direction of the movement of the valve stem from a valve opening movement n
  • the method according to the invention shows particular advantages here, since the hysteresis characteristics existing in this case likewise the valve closing movement difficult, is compensated from the outset.
  • the current-pressure characteristic indicates a current, which - depending on whether it is a normally open or a normally closed solenoid valve - opening, closing or holding a current valve position or plunger position depending on the force acting on the solenoid valve Pressure causes.
  • an already known valve characteristic is used in order to compensate for the pressure-dependent or current-dependent magnetic hysteresis expression on the basis of this by means of the current offset.
  • the current offset is determined as a function of the desired pressure and / or desired current applied to the solenoid valve immediately prior to the success of the switching reversal. This results in the advantage that the current offset is largely optimally adapted to the actual hysteresis characteristic, since this is significantly influenced by the desired current or nominal pressure.
  • the direction of the switching reversal from a
  • Valve opening movement towards a valve closing movement or vice versa is also the sign of the current offset to pay attention, as this can also be negative. It is particularly preferred for a value of the current offset to be read out of a flow-dependent and / or pressure-dependent hysteresis characteristic curve or a flow-dependent and / or pressure-dependent hysteresis characteristic curve. Thus, no constant recalculation of the value of the current offset is necessary, but this can be rather easily read from a flow and / or pressure-dependent Hysteresekennfeld or a flow and / or pressure-dependent hysteresis.
  • the solenoid valve is a normally open valve.
  • Normally open valves have a design-based fixed predetermined opening force, which e.g. caused by a mechanical spring.
  • This design-based predetermined opening force cumulates with a force also acting in the opening direction, caused by the pressure applied to the valve.
  • An additional occurrence and in particular disregarding a hysteresis effect, which additionally acts in the opening direction, can make effective and rapid pressure regulation within the brake system difficult. Therefore, the invention leads
  • Separating valve of the electro-hydraulic brake system is.
  • the separating valve is usually used for the execution of so-called.
  • the valve-individual determination may be e.g. carried out in a test stand before installing the solenoid valve in the brake system or even after installation in the brake system by means of suitable known Kalibirierhabilit. It is preferably provided that the current-pressure characteristic and / or the hysteresis map and / or the hysteresis curve in an electronic memory of an electronic
  • Control unit of the electro-hydraulic brake system is stored. Since the control of the solenoid valves via the electronic control unit and this usually includes an electronic memory, thus the current-pressure curve or the hysteresis and the hysteresis can be made available in a simple manner and with relatively little overhead.
  • the present invention further relates to a
  • electrohydraulic brake system which at least one master cylinder for Hydraulikfluidbeforratung, at least one inlet valve for admitting a hydraulic pressure in at least one brake cylinder, at least one outlet valve for discharging the hydraulic pressure from the at least one brake cylinder, at least one electrically driven
  • Hydraulic pump for hydraulic pressure build-up according to a
  • Print request of an electronic control unit and comprises at least one analogized isolation valve.
  • the electronic control unit leads by means of the isolation valve and stored in an electronic memory of the electronic control unit current-pressure characteristic of the
  • the electronic brake system is characterized in that in the electronic memory in addition a hysteresis map and / or a hysteresis of the isolation valve is stored. This results in the advantage that the information necessary for compensating occurring hysteresis characteristics of the solenoid valves for a precise and rapid pressure control within the brake system are available and can be used if necessary.
  • the brake system the
  • inventive method performs. This results in the already described advantages in terms of improved, more efficient and accurate pressure control. Furthermore, the invention relates to a use of the electro-hydraulic brake system for hydraulic
  • Fig. 1 shows schematically a flow and pressure-dependent
  • Fig. 2 shows a pressure change operation, which a
  • Fig. 3 shows a possible embodiment of an electro-hydraulic brake system according to the invention.
  • Fig. 1 is exemplary flow and pressure dependent
  • Hystereseaus josgunskurve 11 of a solenoid valve shown.
  • the x-axis indicates the current with which the solenoid valve is acted upon, and the y-axis indicates a pressure applied to the solenoid valve, at which the solenoid valve opens with the respectively set current application.
  • Fig. 2a shows a pressure change operation according to the prior art
  • Fig. 2b shows a pressure change operation according to the shift reversal method according to the invention.
  • the setpoint pressure p S0 n, i in FIG. 2a undergoes an increase in pressure at time t.sub.i, which is represented by the increase in the setpoint pressure curve.
  • Fig. 2a is a short-term, so-called.
  • Antihysteresis pulse I AH given to the solenoid valve. Apart from the anti-hysteresis pulse I AH , the current curve I S0 n, i largely corresponds to the course of the target pressure p S0 n, i. The actual pressure pi st , i thus also largely follows the course of p so n, i, but differs significantly from this at ⁇ ⁇ , since anti-hysteresis pulse I AH causes a hydraulic feedback. Anti-hysteresis pulse I AH is, however, according to the prior art necessary so that actual pressure pi st , i set pressure p S0 n, i can follow.
  • Fig. 2b target pressure p S0 n, 2 can be seen.
  • setpoint pressure p S0 n, 2 is increased.
  • setpoint current I S0 n, 2 is correspondingly changed, a current hysteresis characteristic being compensated directly by applying a current offset I 0 ff to I S0 n, 2.
  • I 0ff corresponds, for example, a pressure change of 4 bar.
  • FIG. 3 shows a schematic structure of a
  • Brake circuits 34, 35 hydraulically coupled.
  • Each brake circuit 34, 35 each includes a switching valve 41, 51, an isolation valve 42, 52, and in each case two wheel brake cylinders 49, 410, 59, 510.
  • Each wheel brake cylinder 49, 410, 59, 510 is in each case an inlet valve 45, 48, 55, 58 and in each case an outlet valve 44, 47, 54, 57 assigned.
  • each brake circuit 34, 35 each includes a low-pressure accumulator 46, 56 and in each case an electrically driven hydraulic pump 43, 53.
  • Hydraulic pumps 43, 53 each generate a hydraulic pressure, which usually goes beyond a issued by electronic control unit 37 pressure request. In order to reduce this pressure beyond the pressure requirement, separating valves 52, 42 each execute an overflow control.
  • isolation valves 52, 42 are energized in such a way that they open as soon as the actual pressure exceeds the pressure requirement. Upon a change in the pressure requirement, separating valves 52, 42 undergo a change in their energization corresponding to the change in the pressure requirement. Because the
  • isolation valves 52, 42 are solenoid valves subjected to a magnetic hysteresis effect, the currently prevalent ones of them must
  • Hystereseaus tenugung for enabling a fast, precise and efficient control immediately and without prior change of hysteresis expression are compensated.
  • the current-pressure characteristics of separating valves 52, 42 are stored in electronic memory 38 of electronic control unit 37, but also the flow and pressure-dependent hysteresis maps of
  • Separation valves 52, 42 From the hysteresis maps are now the flow and pressure-dependent values of the respective current offsets read and added to the different current-pressure characteristics of isolation valves 52, 42. Thus, the prevailing at separating valves 52, 42 magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)

Abstract

Die Erfindung betrifft ein Schaltumkehrverfahren für ein analogisiert betriebenes Magnetventil (52, 42) in einer elektrohydraulischen Bremsanlage (30), bei welchem vom Magnetventil (52, 42) eine Geschlossenstellung, eine Geöffnetstellung und eine Vielzahl von Zwischenstellungen nach Maßgabe einer elektrischen Ansteuerung oder Regelung einnehmbar sind und wobei die Ansteuerung oder Regelung nach Maßgabe einer bekannten Strom-Druck-Kennlinie des Magnetventils (52, 42) erfolgt. Das erfindungsgemäße Schaltumkehrverfahren zeichnet sich dadurch aus, dass bei einer Schaltumkehr des Magnetventils (52, 42) eine druck- und/oder stromabhängige magnetische Hystereseausprägung des Magnetventils (52, 42) unmittelbar ohne vorausgehende Veränderung der aktuellen Hystereseausprägung ausgeglichen wird. Die Erfindung betrifft weiterhin eine elektrohydraulische Bremsanlage (30) sowie eine Verwendung der Bremsanlage (30).

Description

Schaltumkehrverfahren für ein analogisiert betriebenes
Magnetventil, elektrohydraulische Bremsanlage und Verwendung der elektrohydraulischen Bremsanlage
Die Erfindung betrifft ein Schaltumkehrverfahren für ein analogisiert betriebenes Magnetventil gemäß Oberbegriff von Anspruch 1, eine elektrohydraulische Bremsanlage gemäß
Oberbegriff von Anspruch 10 sowie deren Verwendung.
Die möglichst präzise Steuerung von analogisierten
Digitalventilen in modernen Fahrzeugbremssystemen mit
elektrohydraulischer Druckregelung ist eine zunehmend wichtige Voraussetzung für eine Vielzahl unterschiedlicher
Komfortfunktionen, wie insbesondere die immer beliebter werdenden Abstands- und Geschwindigkeitsregelsysteme. Durch die bekannte Verwendung von Drucksensoren in jedem einzelnen der Radbremszylinder ist zwar jederzeit eine exakte Druckmessung und damit einhergehend ein exaktes Einregeln des notwendigen Bremsdrucks möglich, allerdings führt dies zu hohem
Kostenaufwand für die zusätzlichen Drucksensoren und damit verbunden zu höheren Gesamtkosten des Bremssystems, was sich wiederum ungünstig auf die kommerzielle Wettbewerbsfähigkeit derartiger Systeme auswirkt.
Eine im Stand der Technik bekannte Möglichkeit zur Umgehung zusätzlicher Drucksensoren und damit einhergehender,
zusätzlicher Herstellungskosten kann durch Ausmessen des Öffnungs- bzw. Schließstroms in Form einer Kennlinie, welche eine am Ventil anliegende Druckdifferenz mit einem Erregerstrom korreliert, erzielt werden. Dies erlaubt auch ohne zusätzliche Drucksensoren eine im Wesentlichen exakte Druckregelung mittels eines analogisierten Hydraulikventils. Ein derartiges Verfahren ist etwa in der DE 102 24 059 AI offenbart. Die Kennlinie wird hier elektronisch im Regelsystem hinterlegt und über den Erregerstrom kann anschließend gezielt eine Druckdifferenz eingestellt werden, ohne auf tatsächlich gemessene Druckdaten zurückgreifen zu müssen. Die DE 10 2005 051 436 AI schlägt ebenfalls ein Verfahren zur Druckregelung in einem hydraulischen Bremssystem ohne die Verwendung zusätzlicher Drucksensoren vor. Hierbei werden die analogisierten Hydraulikventile mittels der im Fahrzeug vorhandenen ABS-Raddrehzahlsensoren kalibriert, welche eine Drehzahlreduzierung und somit eine Bremswirkung in Abhängigkeit des Erregerstroms ermitteln. Dieses Verfahren erlaubt eine Ventilkalibrierung ohne die Verwendung zusätzlicher
Messsensoren direkt im Fahrzeug selbst. Die derart bestimmte Ansteuerkennlinie wird elektronisch abgespeichert und zur Druckregelung verwendet.
In der DE 102008006653 AI wird ein Verfahren zur Konditionierung eines Regelventils offenbart. Dabei wird mindestens ein elektrisch angesteuertes Solenoidventil in einem
elektrohydraulischen Druckregelaggregat, das während einer Druckregelung mit einem bestimmten Abeitsstrom nach Maßgabe eines im Druckregelaggregat gespeicherten Zusammenhangs oder Kennfelds betrieben wird, während des Einstellens eines Stromes weit unterhalb oder weit oberhalb des Arbeitsstroms kurzzeitig mit einem Antihysteresepuls beaufschlagt. Insbesondere erfolgt der Antihysteresepuls vor jedem Druckaufbau bzw. jedem
Druckabbau und ist so kurz bemessen, dass der Bremsdruck möglichst wenig beeinflusst wird. Nachteilig bei den aus dem Stand der Technik bekannten Verfahren zur sensorlosen Druckregelung in einer Fahrzeugbremsanlage ist es jedoch, dass diese durch auftretende Hystereseeffekte des ferromagnetischen Ventilj ochs der üblicherweise verwendeten analogisierten Magnetventile eine zwangsläufig auftretende Ungenauigkeit aufweisen. Sofern dieser ungünstige Einfluss der Hystereseeffekte gemäß dem Stand der Technik mittels
Antihysteresepulsen vermieden wird, wird durch die mit den Antihysteresepulsen einhergehende plötzliche Stromänderung jedoch oftmals eine für den Fahrer wahrnehmbare, unerwünschte Reaktion der Fahrzeugbremsanlage in Form von Geräuschen oder Bremskraftveränderungen verursacht .
Die Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren vorzuschlagen, welches den ungünstigen Einfluss des Hystereseeffekts bei einer Schaltumkehr von analogisierten Magnetventilen weitestgehend vermeidet und gleichzeitig keine Komfortbeeinträchtigung durch für den Fahrer wahrnehmbare Geräusche oder Bremskraftveränderungen hervorruft.
Diese Aufgabe wird erfindungsgemäß durch das
Schaltumkehrverfahren für ein analogisiert betriebenes
Magnetventil gemäß Anspruch 1 gelöst. Gemäß dem erfindungsgemäßen Schaltumkehrverfahren für ein analogisiert betriebenes Magnetventil in einer
elektrohydraulischen Bremsanlage sind vom Magnetventil eine Geschlossenstellung, eine Geöffnetstellung und eine Vielzahl von Zwischenstellungen nach Maßgabe einer elektrischen Ansteuerung oder Regelung einnehmbar, wobei die Ansteuerung oder Regelung wiederum nach Maßgabe einer bekannten Strom-Druck-Kennlinie des Magnetventils erfolgt. Das erfindungsgemäße
Schaltumkehrverfahren zeichnet sich dadurch aus, dass bei einer Schaltumkehr des Magnetventils eine druck- und/oder
stromabhängige magnetische Hystereseausprägung des
Magnetventils unmittelbar ohne vorausgehende Veränderung der aktuellen Hystereseausprägung ausgeglichen wird. Daraus ergibt sich der Vorteil, dass bei einer Schaltumkehr, also einer Richtungsänderung der Bewegung des Ventilstößels einer aktuell vorliegenden Hystereseausprägung des Ventilj ochs Rechnung getragen wird und durch deren Ausgleichen ein im Wesentlichen sofortiges Reagieren des Magnetventils erzielt wird. Dies wiederum ermöglicht eine sofortige und gezielte
Druckbeeinflussung innerhalb der Bremsanlage und somit ein effektives und schnelles Einstellen eines gewünschten
Zieldrucks .
Der Hystereseeffekt tritt für gewöhnlich in unterschiedlich starken Hystereseausprägungen auf, welche abhängig sind von der Geometrie des Magnetventils, insbesondere der Geometrie des magnetisierbaren Ventiljochs oder eines dem Ventiljoch entsprechenden Ventilbestandteils des Magnetventils, sofern dieses von einem üblichen Ventilaufbau abweicht. Weiterhin wird die Hystereseausprägung vom Material des Magnetventils, insbesondere vom Material des Ventiljochs, und dem zuletzt am Magnetventil anliegenden elektrischen Strom bzw. dem zuletzt am Magnetventil anliegenden Druck geprägt. Es ist dabei erfindungsgemäß unerheblich, ob die Schaltumkehr aus einer tatsächlich erreichten Endposition, also der
Geschlossenstellung oder der Geöffnetstellung heraus erfolgt, oder nur aus einer Zwischenstellung heraus erfolgt. Wesentlich ist ausschließlich, dass eine Änderung der zuletzt ausgeführten Bewegungsrichtung des Ventilstößels erfolgt, selbst wenn das Magnetventil bzw. der Ventilstößel zwischenzeitlich für eine bestimmte Zeitspanne in einer bestimmten Position verharrte, bevor eine Bewegung in die Gegenrichtung der zuletzt ausgeführten Bewegungsrichtung erfolgt.
Bevorzugt ist es vorgesehen, dass die Schaltumkehr von einer Ventilöffnungsbewegung hin zu einer Ventilschließungsbewegung erfolgt. Dies bedeutet also, dass die Richtungsänderung der Bewegung des Ventilstößels von einer Ventilöffnungsbewegung hin n
5 zu einer Ventilschließungsbewegung erfolgt. Eine derartige Schaltumkehr erfolgt typischerweise beim Übergang eines
Druckabbauvorgangs zu einem Druckaufbauvorgang in der
Bremsanlage. Da somit gerade bei einer Schaltumkehr von einer Ventilöffnungsbewegung hin zu einer Ventilschließungsbewegung gegen einen auf das Ventil in Öffnungsrichtung wirkenden Druck schnell eine ausreichend große magnetische Kraft erzeugt werden muss, zeigt das erfindungsgemäße Verfahren hier besondere Vorteile, da die in diesem Fall bestehende Hystereseausprägung, die ebenfalls die Ventilschließungsbewegung erschwert, von vornherein ausgeglichen wird.
Weiterhin ist es bevorzugt, dass die magnetische
Hystereseausprägung mittels eines Strom-Offsets , welcher auf die Strom-Druck-Kennlinie aufaddiert wird, ausgeglichen wird. Die Strom-Druck-Kennlinie gibt dabei einen Strom an, welcher - je nachdem, ob es sich um ein stromlos offenes oder ein stromlos geschlossenes Magnetventil handelt - ein Öffnen, Schließen bzw. Halten einer aktuellen Ventilposition bzw. Stößelposition abhängig vom auf das Magnetventil wirkenden Druck bewirkt. Somit wird eine bereits bekannte Ventilcharakteristik herangezogen, um ausgehend von dieser mittels des Strom-Offsets die druck- bzw. stromabhängige magnetische Hystereseausprägung auszugleichen. Insbesondere ist es bevorzugt, dass der Strom-Offset abhängig vom am Magnetventil unmittelbar vor Erfolgen der Schaltumkehr anliegenden Solldruck und/oder Sollstrom bestimmt wird. Daraus ergibt sich der Vorteil, dass der Strom-Offset weitestgehend optimal an die tatsächlich Hystereseausprägung angepasst ist, da diese maßgeblich vom Sollstrom bzw. Solldruck geprägt ist. Abhängig von der Richtung der Schaltumkehr (von einer
Ventilöffnungsbewegung hin zu einer Ventilschließungsbewegung oder umgekehrt) ist außerdem das Vorzeichen des Strom-Offsets zu beachten, da dieser auch negativ sein kann. Ganz besonders ist es bevorzugt, dass ein Wert des Strom-Offsets aus einem ström- und/oder druckabhängigen Hysteresekennfeld oder einer ström- und/oder druckabhängigen Hysteresekennlinie ausgelesen wird. Somit wird keine ständige Neuberechnung des Werts des Strom-Offsets notwendig, sondern dieser kann vielmehr auf einfache Weise aus einem ström- und/oder druckabhängigen Hysteresekennfeld oder einer ström- und/oder druckabhängigen Hysteresekennlinie ausgelesen werden.
Zweckmäßigerweise ist es vorgesehen, dass das Magnetventil ein stromlos offenes Ventil ist. Stromlos offene Ventile verfügen über eine bauartbedingt fest vorgegebene Öffnungskraft, welche z.B. durch eine mechanische Feder verursacht wird. Diese bauartbedingt vorgegebene Öffnungskraft kummuliert mit einer ebenfalls in Öffnungsrichtung wirkenden, durch den am Ventil anliegenden Druck verursachten Kraft. Ein zusätzliches Auftreten und insbesondere Nicht-Berücksichtigen eines Hystereseeffekts, welcher zusätzlich in Öffnungsrichtung wirkt, kann eine effektive und schnelle Druckregelung innerhalb der Bremsanlage erschweren. Daher führt das erfindungsgemäße
Schaltumkehrverfahren gerade bei stromlos offenen Ventilen zu besonderen Vorteilen. Außerdem ist es vorteilhaft, dass das Magnetventil ein
Trennventil der elektrohydraulischen Bremsanlage ist. Das Trennventil wird üblicherweise zur Ausführung von sog.
Überströmregelungen verwendet, welches einen erzeugten, aber über eine Druckanforderung hinausgehenden Druckaufbau wieder reduziert. Dabei wird das Trennventil derart mit Strom beaufschlagt, dass es öffnet, sobald ein vorgegebener Solldruck überschritten wird und den über den Solldruck hinausgehenden Druck somit abbaut. Da das Trennventil üblicherweise also zur präzisen und schnellen Einregelung von Drücken in der Bremsanlage herangezogen wird, ergeben sich durch die Anwendung des erfindungsgemäßen Schaltumkehrverfahrens an einem Trennventil weitere Vorteile. Zweckmäßigerweise ist es vorgesehen, dass die
Strom-Druck-Kennlinie und/oder das Hysteresekennfeld und/oder die Hysteresekennlinie ventilindividuell bestimmt werden. Dies verbessert die Genauigkeit der Druckregelung, indem die jeweilige Hystereseausprägung präziser ausgeglichen werden kann. Die ventilindividuelle Bestimmung kann dabei z.B. in einem Prüfstand vor dem Einbau des Magnetventils in die Bremsanlage erfolgen oder auch nach dem Einbau in die Bremsanlage mittels geeigneter bekannter Kalibirierverfahren . Bevorzugt ist es vorgesehen, dass die Strom-Druck-Kennlinie und/oder das Hysteresekennfeld und/oder die Hysteresekennlinie in einem elektronischen Speicher einer elektronischen
Steuereinheit der elektrohydraulischen Bremsanlage gespeichert wird. Da die Steuerung der Magnetventile über die elektronische Steuereinheit erfolgt und diese in der Regel einen elektronischen Speicher umfasst, können somit die Strom-Druck-Kennlinie bzw. das Hysteresekennfeld bzw. die Hysteresekennlinie auf einfache Weise und mit vergleichsweise geringem Zusatzaufwand verfügbar gemacht werden.
Die vorliegende Erfindung betrifft weiterhin eine
elektrohydraulische Bremsanlage, welche mindestens einen Hauptzylinder zur Hydraulikfluidbevorratung, mindestens ein Einlassventil zum Einlassen eines hydraulischen Drucks in mindestens einen Bremszylinder, mindestens ein Auslassventil zum Auslassen des hydraulischen Drucks aus dem mindestens einen Bremszylinder, mindestens eine elektrisch antreibbare
Hydraulikpumpe zum Hydraulikdruckaufbau gemäß einer
Druckanforderung einer elektronischen Steuereinheit und mindestens ein analogisiertes Trennventil umfasst. Die elektronische Steuereinheit führt mittels des Trennventils und einer in einem elektronischen Speicher der elektronische Steuereinheit gespeicherten Strom-Druck-Kennlinie des
Trennventils eine Druckregelung aus. Die erfindungsgemäße elektronische Bremsanlage zeichnet sich dadurch aus, dass im elektronischen Speicher zusätzlich ein Hysteresekennfeld und/oder eine Hysteresekennlinie des Trennventils gespeichert ist. Daraus ergibt sich der Vorteil, dass die zum Ausgleichen von auftretenden Hysteresausprägungen der Magnetventile notwendigen Informationen für eine präzise und schnelle Druckregelung innerhalb der Bremsanlage zur Verfügung stehen und bei Bedarf herangezogen werden können. Bevorzugt ist es vorgesehen, dass die Bremsanlage das
erfindungsgemäße Verfahren ausführt. Daraus ergeben sich die bereits beschriebenen Vorteile hinsichtlich einer verbesserten, effizienteren und genaueren Druckregelung. Des Weiteren betrifft die Erfindung eine Verwendung der elektrohydraulischen Bremsanlage zur hydraulischen
Druckregelung in einem Abstands- und/oder
Geschwindigkeitsregelungssystems eines Kraftfahrzeugs. Weitere bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung eines Ausführungsbeispiels an Hand von Figuren.
Es zeigt
Fig. 1 schematisch eine ström- und druckabhängige
Hystereseausprägunskurve eines Magnetventils, Fig. 2 einen Druckänderungsvorgang, welcher eine
Schaltumkehr eines Magnetventils gemäß dem Stand der Technik und gemäß dem erfindungsgemäßen Verfahren umfasst und
Fig. 3 eine mögliche Ausführungsform einer erfindungsgemäßen elektrohydraulischen Bremsanlage .
In Fig. 1 ist beispielhaft ström- und druckabhängige
Hystereseausprägunskurve 11 eines Magnetventils dargestellt. Die x-Achse bezeichnet den Strom, mit welchem an das Magnetventil beaufschlagt ist, und die y-Achse gibt einen am Magnetventil anliegenden Druck wieder, bei welchem das Magnetventil mit der jeweils eingestellten Strombeaufschlagung öffnet. Bei einem Erhöhen der Strombeaufschlagung - ausgehend von Punkt 12 - folgt die magnetische Kraft am Magnetventil, welche das Magnetventil beispielsgemäß geschlossen hält, also den Ventilstößel in der Geschlossenstellung hält, Linie 13 zu höheren Drücken. Die maximale Magnetkraft ist bei Punkt 14 erreicht. Dies entspricht dem maximalen Druck, dem das Magnetventil ohne zu öffnen standhalten kann. Wird nun - ausgehend von Punkt 14 - die Strombeaufschlagung wieder reduziert, so folgt die magnetische Kraft und somit der Druck, bei dem das Magnetventil öffnet, Linie 15. Wie zu sehen ist, entsteht durch den Hystereseeffekt das Phänomen, dass zum Einstellen ein und desselben Werts auf der y-Achse zwei unterschiedliche Werte auf der x-Achse ausgewählt werden müssen, abhängig vom Ausgangspunkt der Stromänderung, d.h. abhängig vom Punkt der Schaltumkehr. Wird der Strom, von Punkt 12 kommend, entlang Linie 13 nur bis zu Punkt 16 erhöht und findet bereits hier eine Schaltumkehr, also eine
Stromreduzierung, statt, so folgt der Öffnungsdruck Linie 18. Somit gibt es zu jedem Wert auf der y-Achse bereits 3
unterschiedliche Werte auf der x-Achse, die jeweils in
Abhängigkeit des Punkts der Schaltumkehr ausgewählt werden 1
müssen. Diese Vieldeutigkeit vermehrt sich auch im umgekehrten Fall, wenn der Strom ausgehend von Punkt 14 bis zu Punkt 17 reduziert wird und ab Punkt 17 wieder erhöht wird. In diesem Fall folgt der Öffnungsdruck Linie 19. Es ist also zu sehen, dass die Wahl des Punktes der Schaltumkehr zu einem jeweils individuellen Strom-Druck-Verhalten des Magnetventils führt, was wiederum eine Druckregelung deutlich erschwert.
Fig. 2a zeigt einen Druckänderungsvorgang gemäß dem Stand der Technik und Fig. 2b zeigt einen Druckänderungsvorgang gemäß dem erfindungsgemäßen Schaltumkehrverfahren. Der Solldruck pS0n, i in Fig. 2a erfährt zum Zeitpunkt ti eine Druckerhöhung, welche durch das Ansteigen der Solldruckkurve dargestellt ist. Gemäß dem Stand der Technik wird in Fig. 2a ein kurzfristiger, sog.
Antihysteresepuls IAH auf das Magnetventil gegeben. Abgesehen von Antihysteresepuls IAH entspricht Stromkurve IS0n,i weitestgehend dem Verlauf von Solldruck pS0n,i. Der Istdruck pist,i folgt somit ebenfalls weitestgehend dem Verlauf von pson,i, weicht jedoch bei ρλ deutlich von diesem ab, da Antihysteresepuls I AH eine hydraulische Rückkopplung verursacht. Antihysteresepuls IAH ist gemäß dem Stand der Technik jedoch notwendig, damit Istdruck pist,i Solldruck pS0n,i folgen kann.
In Fig. 2b ist Solldruck pS0n,2 zu sehen. Zum Zeitpunkt t2 wird Solldruck pS0n,2 erhöht. Um Istdruck PiSt,2 an Solldruck pS0n,2 anzugleichen, wird Sollstrom IS0n, 2 entsprechend verändert, wobei eine aktuelle Hystereseausprägung unmittelbar ausgeglichen wird, indem IS0n,2 mit einem Strom-Offset I0ff beaufschlagt wird. I0ff entspricht beispielsgemäß einer Druckänderung von 4 bar. Wie zu sehen ist, folgt Istdruck PiSt,2 Solldruck PiSt,2 ohne
Druckeinbrüche, wie sie typischerweise von Antihysteresepuls IAH verursacht werden. Fig. 3 zeigt einen schematischen Aufbau einer
elektrohydraulischen Bremsanlage (30) eines Kraftfahrzeugs. Hauptzylinder 31 ist über Hydraulikleitungen 32, 33 mit
Bremskreisen 34, 35 hydraulisch gekoppelt. Jeder Bremskreis 34, 35 umfasst jeweils ein Umschaltventil 41, 51, ein Trennventil 42, 52, sowie jeweils zwei Radbremszylinder 49, 410, 59, 510. Jedem Radbremszylinder 49, 410, 59, 510 ist jeweils ein Einlassventil 45, 48, 55, 58 sowie jeweils ein Auslassventil 44, 47, 54, 57 zugeordnet. Weiterhin umfasst jeder Bremskreis 34, 35 jeweils einen Niederdruckspeicher 46, 56 und jeweils eine elektrisch antreibbare Hydraulikpumpe 43, 53. Hydraulikpumpen 43, 53 erzeugen dabei jeweils einen hydraulischen Druck, welcher in der Regel leicht über eine von elektronischer Steuereinheit 37 ausgegebene Druckanforderung hinausgeht. Um diesen über die Druckanforderung hinausgehenden Druck wieder abzubauen, führen Trennventile 52, 42 jeweils eine Überströmregelung aus. Dabei werden Trennventile 52, 42 derart bestromt, dass sie öffnen, sobald der tatsächliche Druck über die Druckanforderung hinausgeht. Bei einer Änderung der Druckanforderung erfahren Trennventile 52, 42 eine der Änderung der Druckanforderung entsprechende Änderung ihrer Bestromung. Da die
Druckanforderungen in Bremskreisen 34, 35 unterschiedlich sind, werden auch Trennventile 52, 42 unterschiedlich angesteuert bzw. bestromt. Da es sich bei Trennventilen 52, 42 um Magnetventile handelt, welche einem magnetischen Hystereseeffekt unterworfen sind, muss die an ihnen aktuell vorherrschende
Hystereseausprägung zur Ermöglichung einer schnellen, präzisen und effizienten Ansteuerung unmittelbar und ohne vorausgehende Änderung der Hystereseausprägung ausgeglichen werden. Zu diesem Zweck sind in elektronischem Speicher 38 von elektronischer Steuereinheit 37 nicht nur die Strom-Druck-Kennlinien von Trennventilen 52 , 42 gespeichert, sondern darüber hinaus auch die ström- und druckabhängigen Hysteresekennfelder von
Trennventilen 52, 42. Aus den Hysteresekennfeldern werden nun die ström- und druckabhängigen Werte der jeweiligen Strom-Offsets ausgelesen und auf die unterschiedlichen Strom-Druck-Kennlinien von Trennventilen 52, 42 aufaddiert. Somit werden die an Trennventilen 52, 42 vorherrschenden magnetischen
Hysteresausprägungen ausgeglichen und es wird eine schnelle, präzise und effiziente Druckregelung ermöglicht.

Claims

Patentansprüche
1. Schaltumkehrverfahren für ein analogisiert betriebenes Magnetventil (42, 52) in einer elektrohydraulischen
Bremsanlage (30),
- bei welchem vom Magnetventil (42, 52) eine
Geschlossenstellung, eine Geöffnetstellung und eine Vielzahl von Zwischenstellungen nach Maßgabe einer elektrischen Ansteuerung oder Regelung einnehmbar sind und
- wobei die Ansteuerung oder Regelung nach Maßgabe einer bekannten Strom-Druck-Kennlinie des Magnetventils (42, 52) erfolgt,
dadurch gekennzeichnet,
dass bei einer Schaltumkehr des Magnetventils (42, 52) eine druck- und/oder stromabhängige magnetische
Hystereseausprägung des Magnetventils unmittelbar ohne vorausgehende Veränderung der aktuellen Hystereseausprägung ausgeglichen wird.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass die Schaltumkehr von einer Ventilöffnungsbewegung hin zu einer Ventilschließungsbewegung erfolgt.
3. Verfahren nach mindestens einem der Ansprüche 1 und 2, dadurch gekennzeichnet,
dass die magnetische Hystereseausprägung mittels eines Strom-Offsets (I0ff), welcher auf die Strom-Druck-Kennlinie aufaddiert wird, ausgeglichen wird.
4. Verfahren nach Anspruch 3,
dadurch gekennzeichnet,
dass der Strom-Offset (Ioff) abhängig vom am Magnetventil (42, 52) unmittelbar vor Erfolgen der Schaltumkehr anliegenden Solldruck (pson,i, pS0n,2) und/oder Sollstrom (IS0n,i, IS0n,2) bestimmt wird.
5. Verfahren nach Anspruch 4,
dadurch gekennzeichnet,
dass ein Wert des Strom-Offsets (Ioff) aus einem ström- und/oder druckabhängigen Hysteresekennfeld oder einer ström- und/oder druckabhängigen Hysteresekennlinie ausgelesen wird.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet,
dass das Magnetventil (42, 52) ein stromlos offenes Ventil (42, 52) ist.
7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,
dass das Magnetventil (42, 52) ein Trennventil ( 42 , 52) der elektrohydraulischen Bremsanlage (30) ist.
8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet,
dass die Strom-Druck-Kennlinie und/oder das Hysteresekennfeld und/oder die Hysteresekennlinie ventilindividuell bestimmt werden .
9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet,
dass die Strom-Druck-Kennlinie und/oder das Hysteresekennfeld und/oder die Hysteresekennlinie in einem elektronischen Speicher (38) einer elektronischen Steuereinheit (37) der elektrohydraulischen Bremsanlage (30) gespeichert wird.
10. Elektrohydraulische Bremsanlage (30), umfassend mindestens einen Hauptzylinder (31) zur
Hydraulikfluidbevorratung, mindestens ein Einlassventil (55, 58, 45, 48) zum Einlassen eines hydraulischen Drucks in mindestens einen Bremszylinder (59, 510, 49, 410), mindestens ein Auslassventil (54, 57, 44, 47) zum Auslassen des hydraulischen Drucks aus dem mindestens einen Bremszylinder
(59, 510, 49, 410), mindestens eine elektrisch antreibbare Hydraulikpumpe (53, 43) zum Hydraulikdruckaufbau gemäß einer Druckanforderung einer elektronischen Steuereinheit (37) und mindestens ein analogisiertes Trennventil (52, 42), wobei die elektronische Steuereinheit (37) mittels des Trennventils
(52, 42) und einer in einem elektronischen Speicher (38) der elektronische Steuereinheit (37) gespeicherten
Strom-Druck-Kennlinie des Trennventils (52, 42) eine
Druckregelung ausführt,
dadurch gekennzeichnet,
dass im elektronischen Speicher (38) zusätzlich ein
Hysteresekennfeld und/oder eine Hysteresekennlinie des Trennventils (52, 42) gespeichert ist.
11. Bremsanlage nach Anspruch 10,
dadurch gekennzeichnet,
dass die Bremsanlage (30) ein Verfahren nach mindestens einem der Ansprüche 1 bis 9 ausführt,
12. Verwendung der elektrohydraulischen Bremsanlage (30) nach mindestens einem der Ansprüche 10 und 11 zur hydraulischen Druckregelung in einem Abstands- und/oder
Geschwindigkeitsregelungssystems eines Kraftfahrzeugs.
PCT/EP2013/067715 2012-08-29 2013-08-27 Schaltumkehrverfahren für ein analogisiert betriebenes magnetventil, elektrohydraulische bremsanlage und verwendung der elektrohydraulischen bremsanlage WO2014033123A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/424,253 US20150321653A1 (en) 2012-08-29 2013-08-27 Switchover method for a solenoid valve operated in analogized form, electrohydraulic brake system, and use of the electrohydraulic brake system
CN201380044289.0A CN104583033A (zh) 2012-08-29 2013-08-27 用于模拟式运行的电磁阀的转换方法、电液式制动系统以及电液式制动系统的应用
KR1020157007904A KR20150052142A (ko) 2012-08-29 2013-08-27 아날로그화된 형태로 동작되는 솔레노이드 밸브의 전환 방법, 전자 유압식 브레이크 시스템 및 전자 유압식 브레이크 시스템의 이용
EP13756412.6A EP2890594A1 (de) 2012-08-29 2013-08-27 Schaltumkehrverfahren für ein analogisiert betriebenes magnetventil, elektrohydraulische bremsanlage und verwendung der elektrohydraulischen bremsanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012215353.5A DE102012215353A1 (de) 2012-08-29 2012-08-29 Schaltumkehrverfahren für ein analogisiert betriebenes Magnetventil, elektrohydraulische Bremsanlage und Verwendung der elektrohydraulischen Bremsanlage
DE102012215353.5 2012-08-29

Publications (1)

Publication Number Publication Date
WO2014033123A1 true WO2014033123A1 (de) 2014-03-06

Family

ID=49111163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/067715 WO2014033123A1 (de) 2012-08-29 2013-08-27 Schaltumkehrverfahren für ein analogisiert betriebenes magnetventil, elektrohydraulische bremsanlage und verwendung der elektrohydraulischen bremsanlage

Country Status (6)

Country Link
US (1) US20150321653A1 (de)
EP (1) EP2890594A1 (de)
KR (1) KR20150052142A (de)
CN (1) CN104583033A (de)
DE (1) DE102012215353A1 (de)
WO (1) WO2014033123A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6634868B2 (ja) * 2016-02-18 2020-01-22 株式会社アドヴィックス 車両のモータ制御装置
DE102017207705A1 (de) * 2017-05-08 2018-11-08 Robert Bosch Gmbh Verfahren zum Ansteuern eines Ventils
JP6713024B2 (ja) * 2018-08-08 2020-06-24 本田技研工業株式会社 車両用制動装置
DE102018217663A1 (de) * 2018-10-15 2020-04-16 Continental Teves Ag & Co. Ohg Verfahren zum Bestimmen eines Schaltzustands eines Ventils und Elektromagnetventilanordnung
US11667272B2 (en) * 2019-01-24 2023-06-06 ZF Active Safety US Inc. Vehicle brake system with adaptive pressure calibration
CN112455408B (zh) * 2021-02-03 2021-04-16 天津所托瑞安汽车科技有限公司 一种制动系统的控制方法及装置、设备、介质
CN115076440A (zh) * 2022-05-07 2022-09-20 中联重科股份有限公司 用于比例电磁阀的电流标定的方法、处理器及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011350A1 (de) * 2006-03-11 2007-09-13 Zf Friedrichshafen Ag Kompensation einer Hysterese eines elektronischen Druckstellers
GB2439433A (en) * 2006-06-26 2007-12-27 Husco Int Inc A method of reducing hysteresis in an electromagnetic valve
DE102008006653A1 (de) * 2008-01-30 2009-08-06 Continental Teves Ag & Co. Ohg Verfahren zur Konditionierung eines Regelventils
EP2221511A1 (de) * 2009-02-17 2010-08-25 JATCO Ltd Fluiddrucksteuerungsvorrichtung/-verfahren
DE102011114063A1 (de) * 2010-10-21 2012-04-26 Schaeffler Technologies Gmbh & Co. Kg Verfahren zum Ansteuern eines elektrisch betätigbaren Hydraulikventils
EP2447547A1 (de) * 2010-10-28 2012-05-02 Jatco Ltd Vorrichtung zur Steuerung eines hydraulischen Drucks

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19624794A1 (de) * 1996-06-21 1998-01-02 Teves Gmbh Alfred Bremsanlage für Kraftfahrzeuge
DE19848960B4 (de) * 1998-10-23 2006-07-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Drucksteuerventils, insbesondere einer Bremsanlage
KR20040024854A (ko) * 2001-04-24 2004-03-22 셀레리티 그룹 아이엔씨 질량유량 제어장치를 위한 시스템 및 방법
DE10224059A1 (de) 2002-02-14 2003-08-28 Continental Teves Ag & Co Ohg Verfahren zum Einregeln eines vorgegebenen veränderlichen Bremsdruckes
DE10341027A1 (de) * 2002-09-06 2004-03-25 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Regelung einer Bremsanlage für Kraftfahrzeuge
EP1827933B1 (de) * 2003-12-08 2008-10-08 Continental Teves AG & Co. oHG Verfahren zur kalibrierung von analog regelnden elektrisch ansteuerbaren hydraulischen ventilen
DE102005051436A1 (de) 2005-10-27 2007-05-03 Continental Teves Ag & Co. Ohg Verfahren zum Kalibrieren der Strom-/Öffnungskurve eines elektrisch ansteuerbaren, analog regelnden Hydraulikventils in einem Kraftfahrzeugbremssystem
DE102007010514A1 (de) * 2007-03-05 2008-09-11 Continental Teves & Co. Ohg Verfahren zur Kalibrierung von analogisierten Ventilen in einer Druckregelvorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011350A1 (de) * 2006-03-11 2007-09-13 Zf Friedrichshafen Ag Kompensation einer Hysterese eines elektronischen Druckstellers
GB2439433A (en) * 2006-06-26 2007-12-27 Husco Int Inc A method of reducing hysteresis in an electromagnetic valve
DE102008006653A1 (de) * 2008-01-30 2009-08-06 Continental Teves Ag & Co. Ohg Verfahren zur Konditionierung eines Regelventils
EP2221511A1 (de) * 2009-02-17 2010-08-25 JATCO Ltd Fluiddrucksteuerungsvorrichtung/-verfahren
DE102011114063A1 (de) * 2010-10-21 2012-04-26 Schaeffler Technologies Gmbh & Co. Kg Verfahren zum Ansteuern eines elektrisch betätigbaren Hydraulikventils
EP2447547A1 (de) * 2010-10-28 2012-05-02 Jatco Ltd Vorrichtung zur Steuerung eines hydraulischen Drucks

Also Published As

Publication number Publication date
CN104583033A (zh) 2015-04-29
EP2890594A1 (de) 2015-07-08
US20150321653A1 (en) 2015-11-12
DE102012215353A1 (de) 2014-03-06
KR20150052142A (ko) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2014033123A1 (de) Schaltumkehrverfahren für ein analogisiert betriebenes magnetventil, elektrohydraulische bremsanlage und verwendung der elektrohydraulischen bremsanlage
EP1651487B1 (de) Verfahren zum ermitteln des ansteuerstroms eines stellgeräts
DE102009008944B4 (de) Bremssystem mit simultanem bzw. teilsimultanem Druckauf- und Druckabbau in den Radbremsen aus unterschiedlichen Radzylinderdruckniveaus sowie Verfahren zur Einstellung eines Bremsdrucks
EP2809559B1 (de) Verfahren zum betrieb einer bremsanlage für kraftfahrzeuge sowie bremsanlage
DE112009005536B3 (de) Verfahren zur Steuerung einer elektromotorischen Bremskraftverstarkung, Bremssystem
EP2822825B1 (de) Verfahren zum betreiben einer bremsanlage sowie bremsanlage
EP1324906A1 (de) Verfahren und regelsystem zur ansteuerung eines elektronisch regelbaren bremsbetätigungssystems
DE102005056776A1 (de) Elektromagnetisch ansteuerbares Stellgerät und Verfahren zu dessen Herstellung und/oder Justage
EP1651485B1 (de) Verfahren und vorrichtung zur herstellung und/oder justage eines elektromagnetisch ansteuerbaren stellgeräts
DE102007019929A1 (de) Korrekturverfahren zum Korrigieren von Ansteuerkennlinien für analogisierte Hydraulikventile in Kraftfahrzeugbremssystemen
WO2009095287A1 (de) Verfahren zur konditionierung eines regelventils
EP1937529B1 (de) Verfahren zur bestimmung des raddrucks in einem elektronisch ansteuerbaren kraftfahrzeugbremsenregelungssystem
DE102012206419B4 (de) Steuerung für ein Druckregelventil
DE102011080227B4 (de) Verfahren, Verwendung und Fahrzeugbremsanlage zur Optimierung der Druckstellgenauigkeit
WO2015154923A1 (de) Druckspeichereinrichtung für ein kraftfahrzeug-kraftstoff- einspritzsystem, sowie verfahren zum betrieb einer derartigen druckspeichereinrichtung
DE19727945B4 (de) Verfahren und Vorrichtung zur geregelten Ansteuerung eines proportional betriebenen Magnetventils
EP1651486A1 (de) Verfahren und vorrichtung zum messen eines fluiddrucks mittels eines stellgeräts
DE102011075295A1 (de) Verfahren zur Kalibrierung eines analog regelnden Hydraulikventils
DE102013207162B4 (de) Verfahren und Datenverarbeitungseinrichtung zum Reduzieren eines Einschaltstroms für ein Ventil einer Hochdruckpumpe
DE10021436B4 (de) Verfahren und Einrichtung zum Ermitteln einer Stellgröße eines Ventils und Verfahren und Einrichtung zum Ermitteln einer die Bewegungsgeschwindigkeit eines Aktuators eines Ventils wiedergebenden Größe
DE102016203735A1 (de) Verfahren zum Betreiben einer Bremsanlage, Druckregler für eine Bremsanlage und Bremsanlage
DE102008002577B4 (de) Verfahren zur Einstellung eines Aktors in einem Bremssystem eines Fahrzeugs
DE102005015101B4 (de) Verfahren zur Bestimmung der Anschaltzeit eines Magnetventils in einem hydraulischen System
DE102012224030A1 (de) Verfahren zur beschleunigten Ermittlung eines Korrekturwerts für eine drucksensorlose Bestimmung eines hydraulischen Drucks in einem hydraulischen Bremssystem sowie hydraulisches Bremssystem und Verwendung des Bremssystems
DE102020103727A1 (de) Verfahren zum Betrieb eines elektrisch betätigten Ventils eines Kraftfahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13756412

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013756412

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14424253

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157007904

Country of ref document: KR

Kind code of ref document: A