WO2014032476A1 - 外径波动光纤预制棒的拉丝方法及装置 - Google Patents

外径波动光纤预制棒的拉丝方法及装置 Download PDF

Info

Publication number
WO2014032476A1
WO2014032476A1 PCT/CN2013/078733 CN2013078733W WO2014032476A1 WO 2014032476 A1 WO2014032476 A1 WO 2014032476A1 CN 2013078733 W CN2013078733 W CN 2013078733W WO 2014032476 A1 WO2014032476 A1 WO 2014032476A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber preform
outer diameter
base
furnace
Prior art date
Application number
PCT/CN2013/078733
Other languages
English (en)
French (fr)
Inventor
张振众
龙胜亚
邱文斌
张文俊
李国巍
黎绍平
王瑞春
Original Assignee
长飞光纤光缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆有限公司 filed Critical 长飞光纤光缆有限公司
Publication of WO2014032476A1 publication Critical patent/WO2014032476A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02736Means for supporting, rotating or feeding the tubes, rods, fibres or filaments to be drawn, e.g. fibre draw towers, preform alignment, butt-joining preforms or dummy parts during feeding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/80Means for sealing the preform entry or upper end of the furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • C03B2205/92Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles using means for gradually reducing the cross-section towards the outlet or around the preform draw end, e.g. tapered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a wire drawing method and a fitting device for an outer diameter fluctuation, in particular, a large-sized outer diameter fluctuation optical fiber preform, and belongs to the technical field of optical fiber processing and manufacturing.
  • the fiber drawing process in order to ensure the quality of the drawing, it is necessary to strictly control the outside air to enter the inner cavity of the drawing furnace.
  • a glass ring matching the outer diameter of the preform is placed at the upper end of the furnace mouth of the drawing furnace to make the outer diameter of the preform and the glass ring. Keep the gap as small as possible while providing an inert gas blowing passage at the upper end of the furnace chamber to prevent outside air from entering the furnace chamber and ensure the stability of the airflow in the drawing furnace.
  • the gap between the preform and the glass ring will depend on the change in the outer diameter of the preform itself, if the outer diameter of the preform is larger and the glass ring is The gap between the gaps is within an acceptable range, which inevitably causes the gap between the outer diameter of the preform to be too large and the gap between the glass member rings, thereby causing the airflow in the drawing furnace to be disordered, and the outer diameter of the bare fiber cannot be controlled, with the outside air.
  • the graphite heating element material in the drawing furnace will be oxidized, which will seriously affect its service life and affect the performance and strength of the optical fiber. The adverse consequences of double damage to products and processing equipment. Summary of the invention
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art described above and to provide a wire drawing method and apparatus applicable to an outer diameter fluctuating optical fiber preform to improve fiber production capacity and reduce optical fiber manufacturing cost.
  • the optical fiber preform is placed in the drawing furnace for clamping, the rear end of the optical fiber preform is fastened to the chuck of the drawing furnace feeding mechanism, the optical fiber preform is adjusted into position by the feeding mechanism, and the front end of the optical fiber preform is drawn into the drawing.
  • the inert gas is delivered to the upper portion of the heating chamber of the drawing furnace to meet the inert gas and the optical fiber preform, and to generate a gas flowing at a gap between the heating chamber of the drawing furnace and the optical fiber preform;
  • the front end of the optical fiber preform is softened by heating in the heating cavity, and the optical fiber of the desired diameter is continuously drawn from the softened front tapered end; during the drawing process, the feeding mechanism slowly feeds the optical fiber preform into the heating cavity until the optical fiber preform is The effective deposition tail is drawn into the fiber;
  • the utility model is characterized in that a radial sealing adjustable device is arranged at the upper end of the heating cavity of the drawing furnace, and in the drawing process, the optical fiber preform is closely attached to the radial sealing adjustable device, so that the diameter between the optical fiber preform and the radial sealing adjustable device
  • the gap that is, the difference between the outer diameter of the optical fiber preform and the sealing aperture of the radial seal adjustable device, is maintained in the range of 0 to 0.2 mm.
  • the small diameter extension rod is welded at the rear end of the optical fiber preform, and the auxiliary device is arranged at the joint of the lower end of the small diameter extension rod and the optical fiber preform, and the auxiliary device includes upper and lower washers, A quartz wool gasket is interposed between the lower gaskets, and the inner holes of the upper and lower gaskets and the quartz wool gasket are arranged with the small diameter elongated rods, and the outer diameters of the upper and lower gaskets are larger than the diameter of the radial sealing adjustable device The upper end of the small diameter elongated rod is fastened as a rear end of the optical fiber preform and the chuck of the drawing furnace feeding mechanism.
  • the change of the sealing aperture of the radial sealing adjustable device changes synchronously with the change of the outer diameter of the optical fiber preform, and the scaling amount (the difference between the maximum sealing aperture and the minimum sealing aperture) is 0 ⁇ 30 mm. .
  • the technical solution of the wire drawing device of the present invention comprises: a drawing furnace body, a heating cavity disposed in the furnace body of the wire drawing furnace, and an inert gas blowing channel at the upper end of the heating cavity, characterized in that the heating cavity of the wire drawing furnace The upper end of the furnace mouth is provided with a radial sealing adjustable device.
  • the radial seal adjustable device includes a base disposed at an upper end of the heating cavity, and an annular groove is disposed on the upper end surface of the base, and a quartz wool sealing washer is disposed in the annular groove, and is disposed at the upper end of the base Gland.
  • the quartz wool sealing gasket is composed of a quartz tampon, and the quartz tampon is densely filled in the annular groove of the base.
  • the base and the gland are made of quartz glass or ceramic material.
  • the radial sealing adjustable device comprises a base, a telescopic closed loop and a sleeve, the base is fixed to the upper end of the heating cavity, the lower end of the base is provided with an annular cooling water tank, and the upper end of the base is provided with an annular cavity.
  • a telescopic closed loop is disposed in the annular cavity, and a sleeve is disposed at an upper end of the annular cavity, thereby forming an annular cavity having an inner opening, and the annular cavity is connected to the shielding gas pipeline.
  • the telescopic closed loop is formed by the inner and outer telescopic rings being respectively arranged and connected by a sliding groove and a slider respectively disposed on the outer circumference and the inner circumference, and the inner layer expansion ring is composed of multiple inner blocks.
  • the circular arc block is formed by splicing the sliding grooves and the sliding blocks on both sides, and the outer elastic ring is composed of a plurality of outer circular arc blocks.
  • the outer elastic ring is provided with a ring groove on the outer circumference, and a tension spring is arranged in the annular groove.
  • the outer telescopic ring is tightly wrapped around the outer circumference of the inner telescopic ring, and the inner and outer telescopic rings have the same axial thickness.
  • the inner arc block and the outer arc block are alternately arranged in the circumferential direction.
  • the lower end of the sleeve is provided with an outer end disc having a larger outer diameter, and the upper end surface of the end disc is provided with a pressure plate.
  • the base is a metal base
  • the telescopic closed loop is a boron nitride telescopic closed loop
  • the sleeve is a quartz glass sleeve
  • the pressure plate is a metal platen.
  • the beneficial effects of the present invention are as follows: 1.
  • a radial sealing adjustable device at the upper end of the heating chamber of the drawing furnace, so that the large-sized preform with uneven outer diameter changes and the radially sealed adjustable device
  • the radial clearance is always kept within the small allowable clearance range or tends to zero during the wire feeding.
  • an inert gas blowing passage is arranged at the upper end of the furnace cavity to prevent outside air from entering the furnace cavity and ensuring the stability of the airflow in the drawing furnace.
  • the technical problem of the outer diameter fluctuation, especially the large-size outer diameter fluctuation fiber preform can not be directly drawn is solved; 2.
  • the process of wire drawing is simplified, the fiber production capacity and the processing efficiency are further improved, The drawing length of the single preform is increased, and the manufacturing cost of the optical fiber is further reduced; 3.
  • the isolation from the outside air can effectively avoid the oxidation of the graphite heating element material in the heating cavity of the drawing furnace, and improve the effective service life of the equipment, and Effectively prevent the overflow of the protective gas in the drawing furnace and save the protective gas in the drawing furnace .
  • FIG. 1 is a cross-sectional structural view of an embodiment of a wire drawing device of the present invention.
  • FIG. 2 is a cross-sectional structural view showing another embodiment of the wire drawing device of the present invention.
  • FIG 3 is a front elevational view showing a boron nitride expansion ring according to an embodiment of the present invention.
  • FIG. 4 is an enlarged structural view of an inner and outer arc block of a boron nitride expansion ring.
  • FIG. 5 is a diagram showing the fluctuation of the outer diameter of a large-sized preform using a quartz wool seal according to the present invention.
  • FIG. 6 is a diameter distribution diagram of a fiber-clad cladding of a large-sized preform which is sealed with quartz wool according to the present invention.
  • FIG. 7 is a distribution diagram of the outer diameter fluctuation of a preform sealed by a boron nitride expansion ring according to the present invention.
  • FIG. 8 is a distribution diagram of a fiber cladding diameter of a preform which is sealed by a boron nitride expansion ring according to the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the drawing device used is as shown in FIG. 1 , and comprises a drawing furnace body 1 , wherein a heating cavity is arranged in the furnace body of the drawing furnace, and an inert gas blowing channel is arranged at the upper end of the heating cavity, and the furnace mouth is arranged at the upper end of the heating cavity of the wire drawing furnace.
  • Radial seal adjustable device is arranged in the drawing furnace body 1 , wherein a heating cavity is arranged in the furnace body of the drawing furnace, and an inert gas blowing channel is arranged at the upper end of the heating cavity, and the furnace mouth is arranged at the upper end of the heating cavity of the wire drawing furnace.
  • the radial sealing adjustable device comprises a quartz glass base 2 mounted on the upper end of the heating cavity, an annular groove is arranged on the upper end surface of the base, and a quartz cotton sealing gasket 3 is arranged in the annular groove, the quartz cotton sealing gasket It is composed of a quartz tampon, and the quartz tampon is densely filled in the annular groove of the base, and a quartz glass gland 4 is disposed at the upper end of the base.
  • the inner end surface of the quartz glass gland is provided with a boss and an annular groove.
  • the small diameter extension rod 9 is welded at the rear end of the optical fiber preform 5, and an auxiliary device is provided at the joint of the lower end of the small diameter extension rod and the optical fiber preform, and the auxiliary device includes upper and lower quartz glass.
  • Gaskets 6, 8 are sandwiched between the upper and lower quartz glass gaskets, and the inner holes of the upper and lower quartz glass gaskets and the quartz wool gasket are arranged with the small diameter elongated rods, upper and lower.
  • the outer diameter of the quartz glass gasket is larger than the diameter of the heating chamber of the drawing furnace, and the upper end of the small diameter elongated rod is fastened as the rear end of the optical fiber preform and the chuck of the drawing furnace feeding mechanism.
  • the front end of the optical fiber preform is inserted into the heating chamber of the drawing furnace, and the inert gas is sent to the upper part of the heating chamber of the drawing furnace, so that the inert gas and the optical fiber preform meet, and the gap between the heating chamber of the drawing furnace and the optical fiber preform is generated.
  • the auxiliary device When the front end of the small-diameter extension rod enters the heating chamber, the auxiliary device is attached to the quartz glass gland 4, and the quartz cotton gasket 7 covers the outer diameter of the small-diameter extension rod to ensure that the tail portion is sealed, so that the heating chamber is isolated from the outside air. Due to the good temperature-resistant sealing effect of quartz wool, the outer diameter fluctuation of the bare fiber can be controlled to about 125 ⁇ 0.2 ⁇ ⁇ throughout the drawing process (as shown in Figure 6).
  • Embodiment 2 is a diagrammatic representation of Embodiment 1
  • the drawing device used is as shown in Figure 2-4, and includes a drawing furnace body 1, a heating cavity is arranged in the furnace body of the drawing furnace, and an inert gas blowing channel is arranged at the upper end of the heating cavity, and the upper end of the heating cavity of the drawing furnace is set.
  • the mouth is provided with a radial seal adjustable device.
  • the radial sealing adjustable device comprises a metal base 13, a boron nitride telescopic closed loop 16 and a quartz glass sleeve 17, the metal base is fixed on the upper end of the heating cavity, and the lower end of the metal base is provided with an annular cooling water tank 14, the upper end of the base An annular cavity is arranged, a boron nitride expansion and contraction ring is arranged in the annular cavity, and a quartz glass sleeve is arranged at an upper end of the annular cavity, thereby forming an annular cavity with an inner opening, the annular cavity and the shielding gas
  • the lines 15 are in communication.
  • the boron nitride expansion and contraction ring is formed by connecting the inner and outer boron nitride expansion rings through a sliding groove and a slider respectively disposed on the outer circumference and the inner circumference, and the inner layer expansion ring is nitrided by 12 pieces.
  • the boron inner arc block 10 is formed by splicing the sliding grooves and the sliding blocks on both sides, one slider is arranged on one side of the circular arc block in each boron nitride, one sliding slot is arranged on the other side, and two sliding surfaces are arranged on the outer peripheral surface.
  • the outer telescopic ring is composed of 11 pieces of boron nitride outer circular arc block 11 and one boron nitride outer circular connecting arc block 12, and each inner peripheral surface of the boron nitride outer circular arc block is arranged
  • Two sliders are arranged with two sliding groove items on the outer peripheral surface of the circular arc block inside the boron nitride, the inner arc block and the outer arc block are alternately arranged in the circumferential direction, and the outer ring is opened at the outer circumference.
  • a tension spring 19 is disposed in the ring groove, so that the outer telescopic ring tightly surrounds the outer circumference of the inner telescopic ring, and the inner and outer telescopic rings have the same axial thickness.
  • the lower end of the quartz glass sleeve is provided with an outer end disc having a larger outer diameter, and the upper end surface of the end disc is provided with a metal pressing plate 18. [0031] The processing object of this embodiment is shown in Table 2.
  • the radial sealing adjustable device of the boron nitride telescopic closed loop is fixed to the upper end of the heating cavity, the preform is fed into the heating cavity of the drawing furnace, and the metal base is cooled by the cooling water, the annular cavity
  • the boron nitride telescopic closed loop is protected by nitrogen or argon.
  • the other processes are the same as in the previous embodiment. Because the boron nitride expansion and contraction ring can automatically expand and contract with the outer diameter of the preform under the action of the external spring, it has better flexibility and sealing effect.
  • the outer diameter fluctuation of the bare fiber can be controlled at 124.85 ⁇ 0.1 ⁇ ⁇ or so (as shown in Figure 8).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

一种外径波动、尤其是大尺寸外径波动光纤预制棒的拉丝方法及装置,其特征在于在拉丝炉发热腔上端炉口设置径向密封可调装置,拉丝过程中,光纤预制棒紧贴径向密封可调装置,使得光纤预制棒外径与径向密封可调装置密封孔径之差保持在0~0.2mm范围。这使得外径变化不均匀的大尺寸预制棒与径向密封可调装置之间的径向间隙在拉丝进给时始终保持在较小的可允许间隙范围内或趋于零,从而保证拉丝的质量。

Description

外径波动光纤预制棒的拉丝方法及装置 技术领域
[0001] 本发明涉及一种外径波动、 尤其是大尺寸外径波动光纤预制棒的拉丝方法及配套装 置, 属于光纤加工制造技术领域。
背景技术
[0002] 随着光纤预制棒制造工艺的发展, 光纤预制棒尺寸越来越大。 目前, 单根光纤预制棒 拉丝长度可达 3500~4200km,甚至 8000km,这对提高光纤产能和降低光纤制造成本是非常有 效的。 然而, 对于有些大尺寸预制棒, 例如: 采用外部气相沉积 (OVD) 工艺制造的多孔玻 璃光纤预制棒, 在经过脱羟基加热处理之后, 会变成沿轴向外径尺寸波动相对较大的透明预 制棒。 通常情况下, 对于此类预制棒, 需通过拉伸工艺将其拉制成尺寸较小, 外径比较均匀 的预制棒, 由于受拉丝加工设备对光纤预制棒长度的限制, 当预制棒被拉伸较长时往往需要 将其截成几段, 这在一定程度上, 减小了单根预制棒拉丝长度, 增加了预制棒更换频率, 从 而降低了光纤产能并增加了光纤制造成本。 在光纤拉丝加工时, 为了保证拉丝质量需要严格 控制外界空气进入到拉丝炉内腔,通常在拉丝炉炉口上端放置与预制棒外径相匹配的玻璃环, 使预制棒外径与玻璃环之间保持尽可能小的间隙, 同时在炉腔上端设置惰性气体吹气通道, 从而防止外界空气进入炉腔, 保证拉丝炉内气流的稳定。
[0003] 然而对于外径尺寸沿轴向波动较大的预制棒, 预制棒与玻璃环之间的间隙将取决于预 制棒本身外径的变化, 如果预制棒外径较大处与玻璃环之间的间隙在可接受范围内, 那么必 然造成预制棒外径较小处与玻璃件环之间的间隙过大, 从而造成拉丝炉内气流紊乱, 裸光纤 外径不能得到控制, 随着外界空气不断进入拉丝炉, 拉丝炉内的石墨发热体材料将会氧化, 将严重影响其使用寿命, 并影响光纤性能及强度。造成产品和加工设备双重受损的不利后果。 发明内容
[0004] 本发明所要解决的技术问题在于克服上述现有技术存在的不足提供一种可适用于外 径波动光纤预制棒的拉丝方法及装置, 以提高光纤产能和降低光纤制造成本。
[0005] 本发明为解决上述提出的问题所采用的拉丝方法技术方案为:
将光纤预制棒放入拉丝炉进行装夹, 使光纤预制棒后端与拉丝炉进给机构的卡盘相联紧固, 通过进给机构将光纤预制棒调整到位, 光纤预制棒的前端进入拉丝炉发热腔;
将惰性气体输送到拉丝炉发热腔上部, 以使惰性气体和光纤预制棒相遇, 并产生在拉丝炉发 热腔和光纤预制棒之间的间隙处流动的气体; 通过发热腔发热软化光纤预制棒的前端, 从软化的前锥端连续拉制出所需直径的光纤; 拉丝过程中, 进给机构缓慢将光纤预制棒进给进入发热腔, 直至光纤预制棒的有效沉积尾端 被拉制成光纤为止;
其特征在于在拉丝炉发热腔上端炉口设置径向密封可调装置, 拉丝过程中, 光纤预制棒紧贴 径向密封可调装置, 使得光纤预制棒与径向密封可调装置之间的径向间隙, 即光纤预制棒外 径与径向密封可调装置密封孔径之差保持在 0~0.2mm范围。
[0006] 按上述方案, 在光纤预制棒后端熔接小直径延长棒, 在小直径延长棒下端与光纤预制 棒的联接处套装辅助装置, 所述的辅助装置包括上、 下垫圈, 在上、 下垫圈之间夹垫石英棉 密封垫, 所述的上、 下垫圈和石英棉密封垫的内孔与小直径延长棒相配置, 上、 下垫圈的外 径大于径向密封可调装置的孔径, 小直径延长棒的上端作为光纤预制棒后端与拉丝炉进给机 构的卡盘相联紧固。
[0007] 按上述方案, 所述的径向密封可调装置密封孔径的变化随光纤预制棒外径的变化而同 步变化, 缩放量 (最大密封孔径与最小密封孔径之差) 为 0~30 mm。
[0008] 本发明拉丝装置的技术方案为: 包括有拉丝炉炉体, 拉丝炉炉体中设置上下贯穿的发 热腔, 发热腔上端部设置惰性气体吹气通道, 其特征在于在拉丝炉发热腔上端炉口设置径向 密封可调装置。
[0009] 按上述方案, 所述的径向密封可调装置包括安设在发热腔上端炉口的底座, 底座上端 面设置环形凹槽, 环形凹槽中安设石英棉密封垫圈, 在底座上端配置压盖。
[0010] 按上述方案, 所述的石英棉密封垫圈由石英棉条构成, 石英棉条密实充填于底座的环 形凹槽。
[0011] 按上述方案, 所述的底座和压盖由石英玻璃或陶瓷材料制成。
[0012] 按上述方案, 所述的径向密封可调装置包括底座、 伸缩密闭环和套筒, 底座固定于发 热腔上端炉口, 底座下端设置有环形冷却水槽, 底座上端设置环形凹腔, 环形凹腔内安设伸 缩密闭环, 在环形凹腔的上端安设套筒, 由此形成内侧开口的环形凹腔, 所述的环形凹腔与 保护气体管路相连。
[0013] 按上述方案, 所述的伸缩密闭环由内、 外层伸缩环通过外周和内周分别设置的滑槽和 滑块相互配置连接而成, 所述的内层伸缩环由多块内圆弧块通过两侧的滑槽和滑块相互拼接 构成, 所述的外层伸缩环由多块外圆弧块相互拼接构成, 外伸缩环外周开设有环槽, 环槽中 安设有拉簧, 使得外伸缩环紧密包绕内伸缩环的外周, 所述的内、外伸缩环的轴向厚度相同。
[0014] 按上述方案, 所述的内圆弧块和外圆弧块沿周向内、 外交错布设。 [0015] 按上述方案, 所述的套筒下端设置外径较大的端盘, 端盘的上端面安设有压盘。
[0016] 按上述方案, 所述的底座为金属底座, 所述的伸缩密闭环为氮化硼伸缩密闭环, 所述 的套筒为石英玻璃套筒, 所述的压盘为金属压盘。
[0017] 本发明的有益效果在于: 1、 通过在拉丝炉发热腔上端炉口设置径向密封可调装置, 使得外径变化不均匀的大尺寸预制棒与径向密封可调装置之间的径向间隙在拉丝进给时始终 保持在较小的可允许间隙范围内或趋于零, 同时在炉腔上端设置惰性气体吹气通道, 防止外 界空气进入炉腔, 保证拉丝炉内气流的稳定, 从而保证拉丝的质量, 解决了外径波动、 尤其 是大尺寸外径波动光纤预制棒无法直接拉丝加工的技术难题; 2、 简化了拉丝加工的工序, 光 纤产能和加工效率得到进一步提高, 也提高了单根预制棒的拉丝长度, 进一步降低了光纤制 造成本; 3、 与外界空气的隔绝不仅可有效避免拉丝炉发热腔中石墨发热体材料的氧化, 提高 设备的有效使用寿命, 而且由于可以有效阻止拉丝炉内保护气体的溢出, 节省拉丝炉内的保 护气体的用量。
附图说明
[0018] 图 1为本发明拉丝装置一个实施例的剖视结构图。
[0019] 图 2为本发明拉丝装置另一个实施例的剖视结构图。
[0020] 图 3为本发明一个实施例中氮化硼伸缩环正视结构图。
[0021] 图 4为氮化硼伸缩环内、 外圆弧块放大结构图。
[0022] 图 5为本发明采用石英棉密封的大尺寸预制棒外径波动分布图。
[0023] 图 6为本发明采用石英棉密封的大尺寸预制棒所拉光纤包层直径分布图。
[0024] 图 7为本发明采用氮化硼伸缩环密封的预制棒外径波动分布图。
[0025] 图 8为本发明采用氮化硼伸缩环密封的预制棒所拉光纤包层直径分布图。
具体实施方式
[0026] 以下结合附图进一步说明本发明的实施例。
[0027] 实施例一:
采用的拉丝装置如图 1所示, 包括有拉丝炉炉体 1, 拉丝炉炉体中设置上下贯穿的发热腔, 发热腔上端部设置惰性气体吹气通道, 在拉丝炉发热腔上端炉口设置径向密封可调装置。 所 述的径向密封可调装置包括安设在发热腔上端炉口的石英玻璃底座 2, 底座上端面设置环形 凹槽, 环形凹槽中安设石英棉密封垫圈 3, 所述的石英棉密封垫圈由石英棉条构成, 石英棉 条密实充填于底座的环形凹槽, 在底座上端配置石英玻璃压盖 4。 石英玻璃压盖内端面设置 凸台与环形凹槽相配置。 [0028] 本实施例的加工对象如表 1所列, 表中 O.D. Ave.为发热腔的规格, O.D. Max为预制 棒最大外径, O.D. Min为预制棒最小外径, O.D.Fluctuation为外径波动量。
[0029] 表 1.大尺寸预制棒信息
Figure imgf000006_0001
针对表 1 中的预制棒, 在光纤预制棒 5后端熔接小直径延长棒 9, 在小直径延长棒下端与光 纤预制棒的联接处套装辅助装置, 所述的辅助装置包括上、 下石英玻璃垫圈 6、 8, 在上、 下 石英玻璃垫圈之间夹垫石英棉密封垫 7, 所述的上、 下石英玻璃垫圈和石英棉密封垫的内孔 与小直径延长棒相配置, 上、 下石英玻璃垫圈的外径大于拉丝炉发热腔孔径, 小直径延长棒 的上端作为光纤预制棒后端与拉丝炉进给机构的卡盘相联紧固。 光纤预制棒对中后前端进入 拉丝炉发热腔, 将惰性气体输送到拉丝炉发热腔上部, 以使惰性气体和光纤预制棒相遇, 并 产生在拉丝炉发热腔和光纤预制棒之间的间隙处流动的气体; 拉丝炉升温, 开始拉丝; 进给 机构缓慢将光纤预制棒进给进入发热腔,直至光纤预制棒的有效沉积尾端被拉制成光纤为止。 当小直径延长棒前端进入发热腔时, 辅助装置与石英玻璃压盖 4贴合, 石英棉密封垫 7包覆 小直径延长棒外径, 确保尾部密封, 使发热腔与外界空气隔绝。 由于石英棉良好的耐温密封 效果, 在整个拉丝过程中, 裸光纤外径波动可控制在 125 ±0.2 μ ιη左右 (如图 6所示) 。
[0030] 实施例二:
采用的拉丝装置如图 2-4所示, 包括有拉丝炉炉体 1, 拉丝炉炉体中设置上下贯穿的发热腔, 发热腔上端部设置惰性气体吹气通道, 在拉丝炉发热腔上端炉口设置径向密封可调装置。 所 述的径向密封可调装置包括金属底座 13、 氮化硼伸缩密闭环 16和石英玻璃套筒 17, 金属底 座固定于发热腔上端炉口, 金属底座下端设置有环形冷却水槽 14, 底座上端设置环形凹腔, 环形凹腔内安设氮化硼伸缩密闭环, 在环形凹腔的上端安设石英玻璃套筒, 由此形成内侧开 口的环形凹腔, 所述的环形凹腔与保护气体管路 15相连通。 所述的氮化硼伸缩密闭环由内、 外层氮化硼伸缩环通过外周和内周分别设置的滑槽和滑块相互配置连接而成, 所述的内层伸 缩环由 12块氮化硼内圆弧块 10通过两侧的滑槽和滑块相互拼接构成, 每块氮化硼内圆弧块 一侧设置一个滑块, 另一侧设置一个滑槽, 外周面上设置两个滑槽, 所述的外层伸缩环由 11 块氮化硼外圆弧块 11和 1块氮化硼外圆连接弧块 12相互拼接构成, 每块氮化硼外圆弧块内 周面上设置两个滑块, 与氮化硼内圆弧块外周面上设置两个滑槽项配置, 内圆弧块和外圆弧 块沿周向内、 外交错布设, 外伸缩环外周开设有环槽, 环槽中安设有拉簧 19, 使得外伸缩环 紧密包绕内伸缩环的外周, 所述的内、 外伸缩环的轴向厚度相同。 所述的石英玻璃套筒下端 设置外径较大的端盘, 端盘的上端面安设有金属压盘 18。 [0031] 本实施例的加工对象如表 2所示。
[0032] 表 2.大尺寸预制棒信息
Figure imgf000007_0001
针对表 2中的预制棒, 将氮化硼伸缩密闭环的径向密封可调装置固定于发热腔上端炉口, 将 预制棒进至拉丝炉发热腔, 金属底座用冷却水冷却, 环形凹腔中的氮化硼伸缩密闭环用氮气 或氩气保护。 其它过程与上一个实施例相同。 由于氮化硼伸缩密闭环在外界弹簧的作用下随 着预制棒外径变化可自动伸缩, 具有较好的伸缩性和密封效果, 在拉丝过程中, 裸光纤外径 波动可控制在 124.85 ± 0.1 μ ιη左右 (如图 8所示) 。

Claims

权利 要 求 书
1. 一种外径波动光纤预制棒的拉丝方法, 将光纤预制棒放入拉丝炉进行装夹, 使光纤预制棒后端与拉丝炉进给机构的卡盘相联紧固,通过进给机构将光纤预制 棒调整到位, 光纤预制棒的前端进入拉丝炉发热腔;
将惰性气体输送到拉丝炉发热腔上部, 以使惰性气体和光纤预制棒相遇, 并产生 在拉丝炉发热腔和光纤预制棒之间的间隙处流动的气体;
通过发热腔发热软化光纤预制棒的前端,从软化的前锥端连续拉制出所需直径的 光纤;
拉丝过程中,进给机构缓慢将光纤预制棒进给进入发热腔,直至光纤预制棒的有 效沉积尾端被拉制成光纤为止;
其特征在于在拉丝炉发热腔上端炉口设置径向密封可调装置, 拉丝过程中,光纤 预制棒紧贴径向密封可调装置,使得光纤预制棒与径向密封可调装置之间的径向 间隙, 即光纤预制棒外径与径向密封可调装置密封孔径之差保持在 0~0.2mm范 围。
2. 按权利要求 1所述的外径波动光纤预制棒的拉丝方法, 其特征在于在光纤预 制棒后端熔接小直径延长棒,在小直径延长棒下端与光纤预制棒的联接处套装辅 助装置,所述的辅助装置包括上、下垫圈,在上、下垫圈之间夹垫石英棉密封垫, 所述的上、下垫圈和石英棉密封垫的内孔与小直径延长棒相配置, 上、下垫圈的 外径大于径向密封可调装置的孔径,小直径延长棒的上端作为光纤预制棒后端与 拉丝炉进给机构的卡盘相联紧固。
3. 按权利要求 1或 2所述的外径波动光纤预制棒的拉丝方法, 其特征在于所述 的径向密封可调装置密封孔径的变化随光纤预制棒外径的变化而同步变化,缩放 量为 0-30 mm。
4. 一种外径波动光纤预制棒的拉丝装置, 其特征在于包括有拉丝炉炉体, 拉丝 炉炉体中设置上下贯穿的发热腔, 发热腔上端部设置惰性气体吹气通道,其特征 在于在拉丝炉发热腔上端炉口设置径向密封可调装置。
5. 按权利要求 4所述的外径波动光纤预制棒的拉丝装置, 其特征在于所述的径 向密封可调装置包括安设在发热腔上端炉口的底座, 底座上端面设置环形凹槽, 环形凹槽中安设石英棉密封垫圈, 在底座上端配置压盖。
6. 按权利要求 5所述的外径波动光纤预制棒的拉丝装置, 其特征在于所述的石 英棉密封垫圈由石英棉条构成, 石英棉条密实充填于底座的环形凹槽。
7. 按权利要求 4或 5所述的外径波动光纤预制棒的拉丝装置, 其特征在于所述 的底座和压盖由石英玻璃或陶瓷材料制成。
8. 按权利要求 4所述的外径波动光纤预制棒的拉丝装置, 其特征在于所述的径 向密封可调装置包括底座、伸缩密闭环和套筒, 底座固定于发热腔上端炉口, 底 座下端设置有环形冷却水槽, 底座上端设置环形凹腔, 环形凹腔内安设伸缩密闭 环, 在环形凹腔的上端安设套筒, 由此形成内侧开口的环形凹腔, 所述的环形凹 腔与保护气体管路相连。
9. 按权利要求 8所述的外径波动光纤预制棒的拉丝装置, 其特征在于所述的伸 缩密闭环由内、外层伸缩环通过外周和内周分别设置的滑槽和滑块相互配置连接 而成, 所述的内层伸缩环由多块内圆弧块通过两侧的滑槽和滑块相互拼接构成, 所述的外层伸缩环由多块外圆弧块相互拼接构成, 外伸缩环外周开设有环槽, 环 槽中安设有拉簧, 使得外伸缩环紧密包绕内伸缩环的外周, 所述的内、外伸缩环 的轴向厚度相同。
10. 按权利要求 9所述的外径波动光纤预制棒的拉丝装置,其特征在于所述的内 圆弧块和外圆弧块沿周向内、 外交错布设。
11. 按权利要求 8或 9 所述的外径波动光纤预制棒的拉丝装置, 其特征在于所 述的套筒下端设置外径较大的端盘, 端盘的上端面安设有压盘。
12. 按权利要求 11所述的外径波动光纤预制棒的拉丝装置, 其特征在于所述的 底座为金属底座, 所述的伸缩密闭环为氮化硼伸缩密闭环, 所述的套筒为石英玻 璃套筒, 所述的压盘为金属压盘。
PCT/CN2013/078733 2012-08-28 2013-07-03 外径波动光纤预制棒的拉丝方法及装置 WO2014032476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210308558.7A CN102838275B (zh) 2012-08-28 2012-08-28 外径波动光纤预制棒的拉丝方法及装置
CN201210308558.7 2012-08-28

Publications (1)

Publication Number Publication Date
WO2014032476A1 true WO2014032476A1 (zh) 2014-03-06

Family

ID=47366042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078733 WO2014032476A1 (zh) 2012-08-28 2013-07-03 外径波动光纤预制棒的拉丝方法及装置

Country Status (2)

Country Link
CN (1) CN102838275B (zh)
WO (1) WO2014032476A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164131A (zh) * 2017-12-29 2018-06-15 通鼎互联信息股份有限公司 一种非干预式大外径波动光纤预制棒拉丝密封装置及拉丝方法
CN109264985A (zh) * 2018-11-14 2019-01-25 杭州金星通光纤科技有限公司 一种光纤预制棒的脱气方法及装置
CN110885185A (zh) * 2019-12-27 2020-03-17 湖北凯乐量子通信光电科技有限公司 一种用于光纤拉丝炉光纤预制棒加热的石墨组件
CN113880423A (zh) * 2021-11-06 2022-01-04 江苏永鼎股份有限公司 一种用于光纤预制棒拉丝的工装及其使用方法
CN115417590A (zh) * 2022-10-11 2022-12-02 江苏亨通光导新材料有限公司 一种光纤预制棒延伸炉口的自动密封装置及方法
EP4245732A1 (en) * 2022-03-16 2023-09-20 Sterlite Technologies Limited Flexible sealing assembly for optical fiber draw furnace and optical fiber

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102838275B (zh) * 2012-08-28 2015-02-04 长飞光纤光缆股份有限公司 外径波动光纤预制棒的拉丝方法及装置
WO2014115849A1 (ja) 2013-01-24 2014-07-31 住友電気工業株式会社 光ファイバ用線引炉のシール構造、光ファイバの線引方法
CN103553324A (zh) * 2013-10-25 2014-02-05 江苏通鼎光电股份有限公司 一种外径波动光纤预制棒的拉丝方法及拉丝装置
CN103708722B (zh) * 2013-12-09 2016-04-27 江苏亨通光电股份有限公司 一种沉积光纤预制棒用母棒及其制造方法
CN105271706B (zh) * 2015-11-13 2018-07-06 成都中住光纤有限公司 一种高压氩气光纤拉丝炉
CN105271704B (zh) * 2015-11-17 2018-09-07 富通集团有限公司 一种双包层光纤的制作方法
CN106219963B (zh) * 2016-08-29 2018-12-28 中天科技光纤有限公司 一种拉丝炉炉口密封装置及其控制方法
CN107021616B (zh) * 2017-05-31 2023-03-10 江苏富春江光电有限公司 小变径预制棒用光纤拉丝炉气封装置
CN107555780B (zh) * 2017-09-05 2023-08-08 江苏斯德雷特光纤科技有限公司 一种延伸炉下密封装置
CN111479786B (zh) * 2017-12-20 2022-08-02 贺利氏石英北美有限责任公司 用于光学预成型件炉的可变直径密封件
CN108516677B (zh) * 2018-06-08 2021-03-02 长飞光纤光缆股份有限公司 一种在线光纤预制棒拉丝定位压紧装置
US20220024800A1 (en) * 2018-11-21 2022-01-27 Sumitomo Electric Industries, Ltd. Seal structure of wire drawing furnace for optical fiber, and production method for optical fiber
CN109384382B (zh) * 2018-11-27 2023-11-03 通鼎互联信息股份有限公司 一种光纤拉丝炉的密封装置
CN110357413B (zh) * 2019-06-21 2022-03-25 江苏永鼎光纤科技有限公司 一种预制棒拉丝用拉丝炉密封装置及密封方法
CN110357412B (zh) * 2019-07-29 2021-08-31 富通集团有限公司 光纤的制造工艺
CN112299704B (zh) * 2020-11-13 2023-12-29 中国电子科技集团公司第四十六研究所 一种提高保偏光纤预制棒几何精度的夹具及夹持方法
CN112830670A (zh) * 2021-01-21 2021-05-25 陈富伦 一种石英玻璃管棒生产炉及石英玻璃管棒的生产方法
CN113336434A (zh) * 2021-05-20 2021-09-03 威海威信光纤科技有限公司 一种自动调节密封装置尺寸的光纤拉丝炉
CN115490418B (zh) * 2022-09-06 2023-11-03 烽火通信科技股份有限公司 一种熔缩炉气封装置及气封方法
CN115745396A (zh) * 2022-10-23 2023-03-07 武汉鑫友泰光电科技有限公司 一种石英玻璃纤维拉丝装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200508164A (en) * 2003-06-18 2005-03-01 Shinetsu Chemical Co Optical fiber drawing apparatus and gas seal mechanism
CN1876588A (zh) * 2005-06-10 2006-12-13 日立电线株式会社 光纤拔丝装置、用于该装置的密封机构以及光纤的拔丝方法
CN101746950A (zh) * 2008-12-05 2010-06-23 株式会社藤仓 光纤制造装置和光纤的制造方法
CN102303950A (zh) * 2011-08-19 2012-01-04 长飞光纤光缆有限公司 一种大尺寸光纤预制棒拉制光纤的方法及其辅助装置
CN102838275A (zh) * 2012-08-28 2012-12-26 长飞光纤光缆有限公司 外径波动光纤预制棒的拉丝方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2898010Y (zh) * 2005-11-17 2007-05-09 江苏亨通光纤科技有限公司 光纤拉丝炉气封装置
CN201890845U (zh) * 2010-07-30 2011-07-06 江苏亨通光纤科技有限公司 用于大直径光纤预制棒拉丝的拉丝炉的气封装置
CN202116442U (zh) * 2011-05-23 2012-01-18 江苏亨通光电股份有限公司 一种用于制造大尺寸光纤预制棒的设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200508164A (en) * 2003-06-18 2005-03-01 Shinetsu Chemical Co Optical fiber drawing apparatus and gas seal mechanism
CN1876588A (zh) * 2005-06-10 2006-12-13 日立电线株式会社 光纤拔丝装置、用于该装置的密封机构以及光纤的拔丝方法
CN101746950A (zh) * 2008-12-05 2010-06-23 株式会社藤仓 光纤制造装置和光纤的制造方法
CN102303950A (zh) * 2011-08-19 2012-01-04 长飞光纤光缆有限公司 一种大尺寸光纤预制棒拉制光纤的方法及其辅助装置
CN102838275A (zh) * 2012-08-28 2012-12-26 长飞光纤光缆有限公司 外径波动光纤预制棒的拉丝方法及装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164131A (zh) * 2017-12-29 2018-06-15 通鼎互联信息股份有限公司 一种非干预式大外径波动光纤预制棒拉丝密封装置及拉丝方法
CN108164131B (zh) * 2017-12-29 2023-11-03 通鼎互联信息股份有限公司 一种非干预式大外径波动光纤预制棒拉丝密封装置及拉丝方法
CN109264985A (zh) * 2018-11-14 2019-01-25 杭州金星通光纤科技有限公司 一种光纤预制棒的脱气方法及装置
CN109264985B (zh) * 2018-11-14 2023-09-22 杭州金星通光纤科技有限公司 一种光纤预制棒的脱气方法及装置
CN110885185A (zh) * 2019-12-27 2020-03-17 湖北凯乐量子通信光电科技有限公司 一种用于光纤拉丝炉光纤预制棒加热的石墨组件
CN110885185B (zh) * 2019-12-27 2024-04-19 国网湖北省电力有限公司荆州供电公司 一种用于光纤拉丝炉光纤预制棒加热的石墨组件
CN113880423A (zh) * 2021-11-06 2022-01-04 江苏永鼎股份有限公司 一种用于光纤预制棒拉丝的工装及其使用方法
EP4245732A1 (en) * 2022-03-16 2023-09-20 Sterlite Technologies Limited Flexible sealing assembly for optical fiber draw furnace and optical fiber
CN115417590A (zh) * 2022-10-11 2022-12-02 江苏亨通光导新材料有限公司 一种光纤预制棒延伸炉口的自动密封装置及方法

Also Published As

Publication number Publication date
CN102838275B (zh) 2015-02-04
CN102838275A (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
WO2014032476A1 (zh) 外径波动光纤预制棒的拉丝方法及装置
CA2370494C (en) Method and induction furnace for drawing large diameter preforms to optical fibres
US10571627B2 (en) Optical fiber, and system and method for manufacturing optical fiber
CN103626381B (zh) 一种用于烧结玻璃松散体的石墨炉
WO2014129471A1 (ja) 光ファイバ線引方法および光ファイバ線引装置
CN102303950A (zh) 一种大尺寸光纤预制棒拉制光纤的方法及其辅助装置
CN111186999A (zh) 一种用于光纤制造的真空拉丝炉
WO2018145519A1 (zh) 一种光纤预制棒自动拉丝装置及自动拉丝方法
CN114014534B (zh) 采用立体石墨毡密封结构的光纤拉丝炉气封方法及装置
CN106903466B (zh) 一种焊接钢管焊缝内整形装置及工艺
CN202849232U (zh) 一种用于烧结玻璃松散体的石墨炉
CN104478209B (zh) 一种光纤生产过程中降低冷却管氦气用量的装置
CN211896679U (zh) 一种用于光纤制造的真空拉丝炉
CN104710106A (zh) 一种用于光纤预制棒熔缩的感应炉
JPH038738A (ja) 光ファイバ線引炉および線引方法
JP5750900B2 (ja) 石英管と金属管との接続構造
CN111021042B (zh) 一种双频程控电源一体化差动法杜美丝生产工艺系统
JP6421569B2 (ja) 光ファイバ製造方法及び光ファイバ製造装置
CN208440677U (zh) 一种大管径薄壁管焊后热处理装置
CN107619919A (zh) 一种无水冷型陶瓷辊
CN111018337B (zh) 一种hec光纤熔缩炉气路系统及气封方法
CN210381424U (zh) 一种适用于高频等离子体焰炬的冷却气体分配结构
CN206614167U (zh) 一种焊接钢管焊缝内整形装置
CN1246240C (zh) 光纤物品热处理的方法
CN206616136U (zh) 拉边机辊轴及拉边机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832655

Country of ref document: EP

Kind code of ref document: A1