WO2014032429A1 - 一种带功率因数校正的恒流控制电路及方法 - Google Patents

一种带功率因数校正的恒流控制电路及方法 Download PDF

Info

Publication number
WO2014032429A1
WO2014032429A1 PCT/CN2013/073914 CN2013073914W WO2014032429A1 WO 2014032429 A1 WO2014032429 A1 WO 2014032429A1 CN 2013073914 W CN2013073914 W CN 2013073914W WO 2014032429 A1 WO2014032429 A1 WO 2014032429A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
output
constant current
current
control
Prior art date
Application number
PCT/CN2013/073914
Other languages
English (en)
French (fr)
Inventor
张义
陶志波
Original Assignee
上海占空比电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海占空比电子科技有限公司 filed Critical 上海占空比电子科技有限公司
Publication of WO2014032429A1 publication Critical patent/WO2014032429A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to a constant current control circuit based on a Flybak or buck-bootst topology of a switching power supply, in particular to a constant current control circuit and method with power factor correction.
  • Figure 1 is a conventional output constant current circuit based on the switching power supply Flybak topology with power factor correction.
  • the constant current circuit includes a rectifier bridge 802, AC sampling resistors 701 and 702, a power factor correction chip (such as L6562), and a peripheral circuit 710, a switch 708, a transformer 712, a relay diode 713, a filter capacitor 714, and an output current sampling resistor. 715 and optocoupler 716.
  • the input AC voltage 801 is connected to the two input ends of the rectifier bridge 802.
  • the positive output end of the rectifier bridge 802 is connected to one end of the AC sampling resistor 701 and one end of the transformer winding 712 main winding group Np, and the sampling resistor 701 is connected to the sampling resistor 702 and the power factor correction chip.
  • the other end of the main winding Np of the transformer 712 is connected to the switch tube 708, and the other end of the switch tube 708 is connected to the power factor correction chip.
  • the control end of the switch tube 708 is connected to the power factor correction chip (such as L6562) and the Gate of the peripheral circuit 710, and the output winding Ns of the transformer 712 is connected to the positive pole of the relay diode 713.
  • the negative terminal of the relay diode 712 is connected to the positive terminal and the output positive terminal of the filter capacitor 714, and the other end of the output winding Ns of the transformer 712 is connected to one end of the output current sampling resistor 715 and the negative terminal of the filter capacitor 714.
  • the input negative terminal of the photocoupler 716, the other end of the output current sampling resistor 715 is coupled to the input positive terminal of the photocoupler 716 and the output load.
  • the output of the photocoupler 716 is connected to the power factor correction chip (such as L6562) and the Vcc terminal of the peripheral circuit 710.
  • the output of the photocoupler 716 is connected to the power factor correction chip (such as L6562) and the FB terminal of the peripheral circuit 710.
  • the constant current principle is that the input end of the photocoupler 716 reflects the output current magnitude signal on the output current sampling resistor 715, and is sent to the power factor correction chip (such as L6562) and the peripheral circuit through the output end of the photocoupler 716.
  • the FB terminal of 710 is compared to a reference within the power factor correction chip (e.g., L6562) to generate a control signal to control the turn-on time of switch 708. Finally, the purpose of controlling the output current is achieved.
  • the object of the present invention is to provide a constant current control circuit and method with power factor correction, so that the driving power supply not only eliminates the output current collecting resistor and the photocoupler, but also Reduced size and cost.
  • a constant current control circuit with power factor correction comprising: a power conversion circuit, a current sampling circuit, and a control and constant current output circuit; the power conversion circuit is connected to the mains to supply voltage and current to the circuit, and converts the alternating current signal Is a constant current signal; the current The sampling circuit collects the DC signal and converts it into a signal matching the output current, and then outputs a constant current through the control and constant current output circuit.
  • the power conversion circuit includes: two input ends of the rectifier connected to two poles of the main power, and a positive output end of the rectifier is connected to one end of the transformer main winding Np; the negative pole of the rectifier is grounded.
  • the current sampling circuit comprises: the other end of the Np is connected to one end of the switch tube, the other end of the switch tube is connected to one end of the sampling resistor and the input end of the peak sampling circuit, and the output end of the peak sample is connected to an input end of the D' modulation circuit
  • the other input end of the D' modulation circuit is connected to the output end of the D' sampling circuit, the output end of the D' modulation circuit is connected to the high frequency filter, D
  • the input end of the sampling circuit is connected to the input end of the QR sampling circuit and the first detection
  • One end of the resistor and the second detecting resistor, the other end of the first detecting circuit is connected to one end of the transformer auxiliary winding Nf; and the other ends of the sampling resistor, the second detecting resistor and the transformer auxiliary winding Nf are grounded.
  • the control and constant current output circuit comprises: an output end of the high frequency filter connected to an input end of the constant current comparator, and the other input end of the constant current comparator is connected to the current reference, and the output end of the constant current comparator is connected and compensated
  • One end of the capacitor and the input end of the Ton controller is connected to the r terminal of the control & drive circuit, the s terminal of the control & drive circuit is connected to the output of the QR sampling circuit, and the output of the control & drive circuit is connected to the switch a control terminal of the tube;
  • the compensation capacitor is grounded to the other end of the current reference;
  • one end of the output winding Ns of the transformer is connected to the anode of the relay diode, and the cathode of the relay diode is connected to the anode of the output filter capacitor and the anode of the output terminal, the transformer The other end of the output winding Ns is connected to the negative terminal of the output filter capacitor and the negative terminal of the output terminal.
  • the sampling resistor reflects a signal of the current magnitude of the main winding Np of the transformer, and sends the signal to the peak sampling circuit, and the peak sampling circuit sends the maximum value of the period on the sampling resistor to the D' modulation circuit, and the D' modulation circuit will
  • the signal sent from the peak sampling circuit is modulated by the D' signal from the D' sampling circuit and sent to the high frequency filter, and then sent to the constant current comparator for comparison with the current reference, and an error signal is sent to the Ton controller.
  • the Ton controller sends the Ton control signal to the control & drive circuit to control the turn-on time of the switch, which ultimately results in a constant output current.
  • the high frequency filter filters the signal reflecting the magnitude of the output current and compares it with the current reference, and generates an error signal.
  • the error signal is sent to the Ton controller through the compensation capacitor, and the Ton controller sends the Ton control signal to the control & drive circuit to control the turn-on time of the switch.
  • the compensation capacitor will filter the error signal of the entire power frequency cycle, so that the Ton controller outputs a constant turn-on time signal throughout the power frequency cycle, and finally achieves a high power factor.
  • a constant current control method with power factor correction comprising:
  • Step 1 After the mains is rectified, an input current is supplied to the transformer main winding Np;
  • Step 2 The sampling current is used to sample the magnitude of the input current described in step 1, and the sampling result is sent to the peak sampling circuit, and the peak sampling circuit sends the peak sampling result to the D' modulation circuit, and the D 'modulation circuit
  • the modulated signal is sent to a high frequency filter for high frequency filtering
  • Step 3 Using the constant current comparator to pass the high frequency filtered signal to a current reference Comparing, generating an error signal and sending it to the Ton controller;
  • Step 4 The Ton controller outputs a Ton control signal to the control & drive circuit to control the turn-on time of a switch connected to the other end of the transformer main winding Np, thereby finally outputting a constant current at the output of the transformer.
  • the peak sampling circuit sends the period maximum value on the sampling resistor to the D' modulation circuit.
  • the error signal is sent to the Ton controller through a compensation capacitor, which will filter the error signal of the entire power frequency cycle, so that the Ton controller outputs a constant turn-on time signal throughout the power frequency cycle, and finally achieves high Power factor.
  • the invention has the advantages that the invention has the advantages of small power loss, low application cost, small circuit size and more stable output current compared with the prior art.
  • FIG. 1 is a circuit diagram of a conventional power factor correction constant current control circuit based on a Flyback topology of a switching power supply;
  • FIG. 2 is a circuit diagram of a constant current control circuit with power factor correction. detailed description
  • FIG. 1 is a conventional power factor corrected constant current control circuit based on a switching power supply Flyback topology. This control method is required to isolate the output current and the photocoupler through the sampling resistor 715, not only the power loss on the sampling resistor, but also In terms of the cost of the optocoupler, the volume will automatically be larger.
  • a constant current control circuit with power factor correction has the following circuit structure:
  • the two input ends of the rectifier 802 are connected to the two poles of the mains 801, the positive output end of the rectifier 802 is connected to one end of the main winding Np of the transformer 803, the other end of the Np is connected to one end of the switch tube 808, and the other end of the switch tube 808 is connected to the sampling resistor 809.
  • An input end of the peak sampling circuit 810 is connected to an input end of the D' modulation circuit 811, and the other input end of the D' modulation circuit 811 is connected to the output end of the D' sampling circuit 812.
  • the sampling circuit The input end of the 812 is connected to the input end of the QR sampling circuit 814 and one end of the first detecting resistor 806 and the second detecting resistor 807.
  • the other end of the first detecting circuit 806 is connected to the transformer 803 to assist one end of the winding Nf, D 'modulating circuit 811
  • the output of the high frequency filter 813 is connected to an input of the constant current comparator 816, and the other input of the constant current comparator 816 is connected to the output of the reference 815 and the constant current comparator 816.
  • One end of the compensation capacitor 817 is connected to the input end of the Ton controller 818, and the output of the Ton controller 818 is connected to the r terminal of the control & drive circuit 820, and the control & drive circuit 820 Connected to the output of the QR sampling circuit 814, the output of the control & drive circuit 820 is connected to the control terminal of the switch 808, wherein the negative terminal of the rectifier 802, the other end of the auxiliary winding Nf of the transformer 803, the other end of the sampling resistor 809, and the current reference
  • the anode of 815 and the other end of the compensation capacitor 817 are both connected to ground; one end of the output winding Ns of the transformer 803 is connected to the anode of the relay diode 804, and the relay diode
  • the negative pole of 804 is connected to the positive pole of the output filter capacitor 805 and the output positive pole, and the other end of the output winding Ns of the transformer 803 is connected to the negative pole of the output filter capacitor 805 and the output negative
  • the present invention detects the current on the main winding Np of the transformer 803 by using the sampling resistor 809, and takes the maximum value on the sampling resistor 809 through the peak sampling circuit 810, and demodulates the peak sampling circuit with the D' signal from the D' sampling circuit 812.
  • the signal sent by 810 is then sent to the high frequency filter 813, and then sent to the constant current comparator 816 for comparison with the current reference 815, the error signal is sent to the Ton setting circuit 818, and the Ton control circuit 818 sends the Ton control signal.
  • the control & drive circuit 820 controls the turn-on time of the switch 808 to finally output a constant current.
  • the output current can be derived from:
  • Vref is the current reference
  • Res is the sampling resistor
  • Nx is the transformer main winding Np than the output winding Ns.
  • the error signal generated by the method after comparing the signal of the reaction output current filtered by the high frequency filter 813 with the current reference 815 is sent to the Ton controller 818 through the compensation capacitor 817, and the Ton controller 818 sends the Ton control signal to the Ton controller 818.
  • the control & drive circuit 820 controls the turn-on time of the switch 808.
  • the compensation capacitor 817 will filter the error signal of the entire power frequency cycle, allowing the Ton controller to output a constant turn-on time signal throughout the power frequency cycle, ultimately achieving a high power factor.
  • the present invention uses the Flyback topology as an example to illustrate its working principle.
  • the method is also applied to other topologies of switching power supplies, such as Buck-boost, buck, cuk, and sepic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

一种带功率因数校正的恒流控制电路,包括:电源转化电路、电流采样电路和控制及恒流输出电路;所述电源转化电路连接市电为电路提供电压与电流,并将交流电信号转化为直流电信号;所述电流采样电路采集所述直流电信号,并转化为与输出电流相匹配的信号,再经所述控制及恒流输出电路,最终输出恒定电流。与现有技术相比,该恒流控制电路具备功率损耗小、应用成本低、电路体积小巧且输出电流更加稳定等优势。

Description

一种带功率因数校正的恒流控制电路及方法 技术领域
本发明涉及一种基于开关电源 Flybak或 buck-bootst拓扑的恒 流控制电路, 特别涉及一种带功率因数校正的恒流控制电路及方法。 背景技术
图 1是一种传统的基于开关电源 Flybak拓扑带功率因数校正的 输出恒流电路。
这种恒流电路包括整流桥 802、 交流采样电阻 701和 702、 功率 因数校正芯片(如 L6562 )及周边电路 710、开关管 708、变压器 712、 继流二极管 713、 滤波电容 714、 输出电流采样电阻 715以及光电耦 合器 716。 其中, 输入交流电压 801连接整流桥 802的两输入端, 整 流桥 802的正输出端连接交流采样电阻 701的一端和变压器 712主绕 组 Np的一端, 采样电阻 701连接采样电阻 702和功率因数校正芯片
(如 L6562 )及周边电路 710的 Mult脚, 变压器 712的主绕组 Np的 另一端连接开关管 708, 开关管 708的另一端连接功率因数校正芯片
(如 L6562 ) 及周边电路 710的 CS端, 开关管 708的控制端连接功 率因数校正芯片(如 L6562 )及周边电路 710的 Gate , 变压器 712的 输出绕组 Ns —端连接继流二极管 713的正极, 继流二极管 712的负 极连接滤波电容 714的正极和输出正端, 变压器 712的输出绕组 Ns 另一端连接输出电流采样电阻 715的一端和滤波电容 714的负极以及 光电耦合器 716的输入负极,输出电流采样电阻 715的另一端连接光 电耦合器 716的输入正极和输出负载。光电耦合器 716的输出正极连 接功率因数校正芯片 (如 L6562 )及周边电路 710的 Vcc端, 光电耦 合器 716的输出负极连接功率因数校正芯片 (如 L6562 )及周边电路 710的 FB端。
其恒流原理是光电耦合器 716的输入端通过采样在输出电流采 样电阻 715上反应输出电流大小的信号,并通过光电耦合器 716的输 出端送到功率因数校正芯片 (如 L6562 ) 及周边电路 710的 FB端与 功率因数校正芯片 (如 L6562 ) 内部的基准比较产生控制信号去控制 开关管 708的开通时间。 最终达到控制输出电流的目的。
这种控制方式由于需要通过采样电阻 715采样输出电流和光电 耦合器来隔离, 不但存在采样电阻上的功率损耗, 还会由于需要光电 耦合器带来的成本问题, 体积自动也会大些。 发明内容
针对上述现有技术中存在的问题, 本发明的目的是: 提供了一种 带功率因数校正的恒流控制电路及方法,使得驱动电源不但省去了输 出电流采电阻和光电耦合器, 同时也降低了体积和成本。
本发明解决其技术问题所采用的技术方案是:
一种带功率因数校正的恒流控制电路, 包括: 电源转化电路、电 流采样电路和控制及恒流输出电路;所述电源转化电路连接市电为电 路提供电压与电流, 并将交流电信号转化为一直流电信号; 所述电流 采样电路采集所述直流电信号, 并转化为一与输出电流相匹配的信 号, 再经所述控制及恒流输出电路, 最终输出一恒定电流。
所述电源转化电路, 包括: 整流器的两输入端连接市电的两极, 整流器的正输出端连接变压器主绕组 Np的一端; 所述整流器的负极 接地。
所述电流采样电路, 包括: Np的另一端连接开关管的一端, 开 关管的另一端连接采样电阻的一端和峰值采样电路的输入端,峰值采 样的输出端连接 D'调制电路的一输入端, D ' 调制电路的另一输入端 连接 D' 采样电路的输出端, D' 调制电路的输出端连接高频滤波器, D,采样电路的输入端连接 QR采样电路的输入端以及第一检测电阻和 第二检测电阻的一端, 第一检测电路的另一端连接变压器辅助绕阻 Nf 的一端; 所述的采样电阻、 第二检测电阻及变压器辅助绕组 Nf 的 另一端都接地。
所述控制及恒流输出电路, 包括: 高频滤波器的输出端连接恒流 比较器的一输入端, 恒流比较器的另一输入端连接电流基准、恒流比 较器的输出端连接补偿电容的一端和 Ton控制器的输入端, Ton控制 器的输出端连接控制 &驱动电路的 r端, 控制 &驱动电路的 s端连接 QR采样电路的输出端,控制&驱动电路的输出端连接开关管的控制端; 所述补偿电容与所述电流基准的另一端接地; 变压器的输出绕组 Ns 的一端连接继流二极管的正极,继流二极管的负极连接输出滤波电容 的正极和输出端正极, 变压器的输出绕组 Ns的另一端连接输出滤波 电容的负极和输出端负极。 进一步, 所述采样电阻上反应变压器主绕组 Np的电流大小的信 号, 并送至峰值采样电路, 峰值采样电路将会把采样电阻上的周期最 大值送到 D ' 调制电路, D ' 调制电路将用从 D ' 采样电路上的 D ' 信 号调制从峰值采样电路送来的信号, 并送至高频滤波器, 之后再送至 恒流比较器与电流基准比较, 产生误差信号送至 Ton控制器, Ton控 制器将 Ton控制信号送到控制&驱动电路去控制开关管的开通时间, 最终恒定输出电流。
进一步,所述高频滤波器将反应输出电流大小的信号滤波后与电 流基准比较, 并产生一误差信号。
进一步, 所述误差信号通过补偿电容送至 Ton控制器, Ton控制 器将 Ton控制信号送到控制&驱动电路去控制开关管的开通时间。
进一步, 所述补偿电容将会滤平整个工频周期的误差信号, 使 Ton控制器在整个工频周期内输出恒定的开通时间信号, 最终实现高 的功率因数。
一种带功率因数校正的恒流控制方法, 包括:
步骤 1 : 将市电经过经过整流后为变压器主绕组 Np提供一输入 电流;
步骤 2 :利用采样电阻对步骤 1中所述的输入电流的大小进行采 样, 并将采样结果送至峰值采样电路, 峰值采样电路将峰值采样结果 送至 D'调制电路, D ' 调制电路再将调制后的信号送至高频滤波器进 行高频滤波;
步骤 3: 利用恒流比较器将经过高频滤波后的信号与一电流基准 进行比较, 产生一误差信号, 并送至 Ton控制器;
步骤 4: Ton控制器输出一 Ton控制信号至控制 &驱动电路, 从而 去控制一与变压器主绕组 Np另一端连接的开关管的开通时间, 从而 最终实现变压器输出端输出一恒定电流。
其中, 所述峰值采样电路会将采样电阻上的周期最大值送至 D' 调制电路。
所述误差信号通过一补偿电容送至 Ton控制器,所述补偿电容将 会滤平整个工频周期的误差信号,使 Ton控制器在整个工频周期内输 出恒定的开通时间信号, 最终实现高的功率因数。
本发明的有益效果是: 本发明与现有技术相比具备功率损耗小、 应用成本低、 电路体积小巧且输出电流更加稳定等优势。 附图说明
图 1是一种传统的基于开关电源 Flyback拓扑的带功率因数校正 恒流控制电路的电路图;
图 2是一种带功率因数校正的恒流控制电路的电路图。 具体实施方式
现在结合附图对本发明作进一步详细的说明。
如图 1是一种传统的基于开关电源 Flyback拓扑的带功率因数校 正恒流控制电路。这种控制方式由于需要通过采样电阻 715采样输出 电流和光电耦合器来隔离, 不但存在采样电阻上的功率损耗, 还会由 于需要光电耦合器带来的成本问题, 体积自动也会大些。
为消除上述问题,结合图 2具体实施电路来阐述本发明的具体实 施方式。
如图 2所示, 一种带功率因数校正的恒流控制电路,其电路结构 具体如下:
整流器 802的两输入端连接市电 801的两极,整流器 802的正输 出端连接变压器 803主绕组 Np的一端, Np的另一端连接开关管 808 的一端、开关管 808的另一端连接采样电阻 809的一端和峰值采样电 路 810的输入端, 峰值采样电路 810的输出端连接 D ' 调制电路 811 的一输入端、 D ' 调制电路 811的另一输入端连接 D ' 采样电路 812 的输出端, 采样电路 812的输入端连接 QR采样电路 814的输入端以 及第一检测电阻 806和第二检测电阻 807的一端, 第一检测电路 806 的另一端连接变压器 803辅助绕阻 Nf 的一端, D ' 调制电路 811的输 出端连接高频滤波器 813, 高频滤波器 813的输出端连接恒流比较器 816的一输入端, 恒流比较器 816的另一输入端连接基准 815、 恒流 比较器 816的输出端连接补偿电容 817的一端和 Ton控制器 818的输 入端, Ton控制器 818的输出端连接控制&驱动电路 820的 r端, 控 制&驱动电路 820的 s端连接 QR采样电路 814的输出端, 控制 &驱动 电路 820的输出端连接开关管 808的控制端, 其中, 整流器 802的负 极、 变压器 803辅助绕组 Nf 的另一端、 采样电阻 809的另一端、 电 流基准 815的负极以及补偿电容 817的另一端都连接到地; 变压器 803的输出绕组 Ns的一端连接继流二极管 804的正极, 继流二极管 804的负极连接输出滤波电容 805的正极和输出正极, 变压器 803的 输出绕组 Ns的另一端连接输出滤波电容 805的负极和输出负极。
本发明通过利用采样电阻 809检测变压器 803主绕组 Np上的电 流, 并通过峰值采样电路 810取出采样电阻 809上的最大值, 并用从 D' 采样电路 812上的 D ' 信号去调制从峰值采样电路 810送来的信 号, 然后送至高频滤波器 813, 之后再送至恒流比较器 816与电流基 准 815比较,产生误差信号送至 Ton设定电路 818, Ton控制电路 818 将 Ton控制信号送到控制&驱动电路 820去控制开关管 808的开通时 间, 最终输出恒定电流。
其输出电流可由下式得出:
其中 lout为输出电流, Vref为电流基准, Res为采样电阻, Nx 为变压器主绕组 Np比输出绕组 Ns。
同时本方法利用经高频滤波器 813滤波后反应输出电流大小的 信号与电流基准 815比较后产生的误差信号将通过补偿电容 817送至 Ton控制器 818, Ton控制器 818将 Ton控制信号送到控制&驱动电路 820去控制开关管 808的开通时间。 补偿电容 817将会滤平整个工频 周期的误差信号,使 Ton控制器在整个工频周期内输出恒定的开通时 间信号, 最终实现高的功率因数。
应该理解, 本发明以 Flyback拓扑为例来说明其工作原理, 本方 法同样也试用于其它几种开关电源的拓扑结构 , 如 Buck-boost, buck, cuk以及 sepic等。
本说明书中所描述的只是本发明的优选具体实施例,以上实施例 仅用以说明本发明的技术方案而非对本发明的限制。凡本领域技术人 员依本发明的构思通过逻辑分析、推理或者有限的实验可以得到的技 术方案, 皆应在如权利要求所界定的本发明的范围之内。

Claims

权 利 要 求 书
1、 一种带功率因数校正的恒流控制电路, 其特征在于, 包括: 电源转化电路、 电流采样电路和控制及恒流输出电路; 所述电源转化 电路连接市电为电路提供电压与电流,并将交流电信号转化为一直流 电信号; 所述电流采样电路采集所述直流电信号, 并转化为一与输出 电流相匹配的信号, 再经所述控制及恒流输出电路, 最终输出一恒定 电流。
2、 如权利要求 1所述的一种带功率因数校正的恒流控制电路, 其特征在于, 所述电源转化电路, 包括: 整流器的两输入端连接市电 的两极, 整流器的正输出端连接变压器主绕组 Np的一端; 所述整流 器的负极接地。
3、 如权利要求 1所述的一种带功率因数校正的恒流控制电路, 其特征在于, 所述电流采样电路, 包括: Np的另一端连接开关管的 一端, 开关管的另一端连接采样电阻的一端和峰值采样电路的输入 端, 峰值采样的输出端连接 D'调制电路的一输入端, D' 调制电路的 另一输入端连接 D ' 采样电路的输出端, D ' 调制电路的输出端连接 高频滤波器, D'采样电路的输入端连接 QR采样电路的输入端以及第 一检测电阻和第二检测电阻的一端,第一检测电路的另一端连接变压 器辅助绕阻 Nf 的一端; 所述的采样电阻、 第二检测电阻及变压器辅 助绕组 Nf 的另一端都接地。
4、 如权利要求 1所述的一种带功率因数校正的恒流控制电路, 其特征在于, 所述控制及恒流输出电路, 包括: 高频滤波器的输出端 连接恒流比较器的一输入端, 恒流比较器的另一输入端连接电流基 准、 恒流比较器的输出端连接补偿电容的一端和 Ton控制器的输入 端, Ton控制器的输出端连接控制 &驱动电路的 r端, 控制&驱动电路 的 s端连接 QR采样电路的输出端,控制&驱动电路的输出端连接开关 管的控制端; 所述补偿电容与所述电流基准的另一端接地; 变压器的 输出绕组 Ns的一端连接继流二极管的正极, 继流二极管的负极连接 输出滤波电容的正极和输出端正极, 变压器的输出绕组 Ns的另一端 连接输出滤波电容的负极和输出端负极。
5、 如权利要求 1所述的一种带功率因数校正的恒流控制电路, 其特征在于,所述高频滤波器将反应输出电流大小的信号滤波后与电 流基准比较, 并产生一误差信号, 所述误差信号通过补偿电容送至 Ton控制器, Ton控制器将 Ton控制信号送到控制 &驱动电路去控制开 关管的开通时间。
6、 如权利要求 5所述的一种带功率因数校正的恒流控制电路, 其特征在于, 所述补偿电容将会滤平整个工频周期的误差信号, 使 Ton控制器在整个工频周期内输出恒定的开通时间信号, 最终实现高 的功率因数。
7、 一种带功率因数校正的恒流控制方法, 其特征在于, 包括: 步骤 1 : 将市电经过经过整流后为变压器主绕组 Np提供一输入 电流;
步骤 2 :利用采样电阻对步骤 1中所述的输入电流的大小进行采 样, 并将采样结果送至峰值采样电路, 峰值采样电路将峰值采样结果 送至 D'调制电路, D ' 调制电路再将调制后的信号送至高频滤波器进 行高频滤波;
步骤 3: 利用恒流比较器将经过高频滤波后的信号与一电流基准 进行比较, 产生一误差信号, 并送至 Ton控制器;
步骤 4: Ton控制器输出一 Ton控制信号至控制 &驱动电路, 从而 去控制一与变压器主绕组 Np另一端连接的开关管的开通时间, 从而 最终实现变压器输出端输出一恒定电流。
8、 如权利要求 7所述的一种带功率因数校正的恒流控制方法, 其特征在于, 所述峰值采样电路会将采样电阻上的周期最大值送至 D'调制电路。
9、 如权利要求 8所述的一种带功率因数校正的恒流控制方法, 其特征在于, 所述误差信号通过一补偿电容送至 Ton控制器, 所述补 偿电容将会滤平整个工频周期的误差信号,使 Ton控制器在整个工频 周期内输出恒定的开通时间信号, 最终实现高的功率因数。
PCT/CN2013/073914 2012-08-27 2013-04-08 一种带功率因数校正的恒流控制电路及方法 WO2014032429A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210308801.5A CN103631293B (zh) 2012-08-27 2012-08-27 一种带功率因数校正的恒流控制电路及方法
CN201210308801.5 2012-08-27

Publications (1)

Publication Number Publication Date
WO2014032429A1 true WO2014032429A1 (zh) 2014-03-06

Family

ID=50182438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073914 WO2014032429A1 (zh) 2012-08-27 2013-04-08 一种带功率因数校正的恒流控制电路及方法

Country Status (2)

Country Link
CN (1) CN103631293B (zh)
WO (1) WO2014032429A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322803A (zh) * 2015-11-02 2016-02-10 深圳创维-Rgb电子有限公司 恒压恒流同步输出电源及电视机
CN105992425A (zh) * 2015-01-29 2016-10-05 赛尔富电子有限公司 一种led驱动电路及led驱动器的电流输出控制方法
TWI711264B (zh) * 2019-07-12 2020-11-21 通嘉科技股份有限公司 應用於電源轉換器的一次側的初級控制器及其操作方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242650B (zh) * 2014-09-09 2017-01-11 深圳市昌豪微电子有限公司 一种电源电路及电源
CN106954293B (zh) * 2016-06-17 2019-03-19 上海占空比电子科技有限公司 高效率的可控硅调光线性led驱动电路
WO2018010155A1 (zh) * 2016-07-15 2018-01-18 张升泽 电子芯片的电流调制方法及系统
CN107528458B (zh) * 2017-06-23 2019-12-10 上海源微电子科技有限公司 开关电源中有源钳位电路
CN107528475B (zh) * 2017-06-23 2019-11-12 上海源微电子科技有限公司 双绕组有源钳位开关电源控制电路
CN111506144B (zh) * 2020-05-20 2022-07-01 上海维安半导体有限公司 一种应用于ldo中的低功耗方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070285953A1 (en) * 2006-06-13 2007-12-13 Gwan-Bon Koo Quasi-resonant converter and controlling method thereof
US20090086513A1 (en) * 2007-09-28 2009-04-02 Stmicroelectronics S.R.L. Control method and device for switching power supplies
CN101826796A (zh) * 2009-03-02 2010-09-08 昂宝电子(上海)有限公司 利用多模控制的准谐振系统和方法
CN202009514U (zh) * 2011-03-02 2011-10-12 成都创芯微科技有限公司 一款隔离式ac-dc反激led驱动电源
US20110266969A1 (en) * 2010-04-30 2011-11-03 Werner Ludorf Dimmable LED Power Supply with Power Factor Control
CN102790531A (zh) * 2012-07-24 2012-11-21 昂宝电子(上海)有限公司 用于电源变换系统的电流控制的系统和方法
CN202550880U (zh) * 2012-03-27 2012-11-21 上海占空比电子科技有限公司 一种电源恒流输出控制装置
CN202840938U (zh) * 2012-08-27 2013-03-27 上海占空比电子科技有限公司 一种带功率因数校正的恒流控制电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295652A (ja) * 1993-04-06 1994-10-21 Omron Corp リレーターミナル
DE10145415A1 (de) * 2001-09-14 2003-04-03 Aloys Wobben Messwandler, insbesondere für einen Wechselrichter einer Windenergieanlage
CN201805600U (zh) * 2010-09-30 2011-04-20 杭州电子科技大学 一种led驱动器原边恒流控制装置
CN101951716B (zh) * 2010-09-30 2013-04-03 杭州电子科技大学 恒导通时间的高功率因数led驱动器原边恒流控制装置
CN202206616U (zh) * 2011-08-26 2012-04-25 上海新华电子设备有限公司 用于led照明的恒流驱动电源

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070285953A1 (en) * 2006-06-13 2007-12-13 Gwan-Bon Koo Quasi-resonant converter and controlling method thereof
US20090086513A1 (en) * 2007-09-28 2009-04-02 Stmicroelectronics S.R.L. Control method and device for switching power supplies
CN101826796A (zh) * 2009-03-02 2010-09-08 昂宝电子(上海)有限公司 利用多模控制的准谐振系统和方法
US20110266969A1 (en) * 2010-04-30 2011-11-03 Werner Ludorf Dimmable LED Power Supply with Power Factor Control
CN202009514U (zh) * 2011-03-02 2011-10-12 成都创芯微科技有限公司 一款隔离式ac-dc反激led驱动电源
CN202550880U (zh) * 2012-03-27 2012-11-21 上海占空比电子科技有限公司 一种电源恒流输出控制装置
CN102790531A (zh) * 2012-07-24 2012-11-21 昂宝电子(上海)有限公司 用于电源变换系统的电流控制的系统和方法
CN202840938U (zh) * 2012-08-27 2013-03-27 上海占空比电子科技有限公司 一种带功率因数校正的恒流控制电路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992425A (zh) * 2015-01-29 2016-10-05 赛尔富电子有限公司 一种led驱动电路及led驱动器的电流输出控制方法
CN105992425B (zh) * 2015-01-29 2018-07-17 赛尔富电子有限公司 一种led驱动电路及led驱动器的电流输出控制方法
CN105322803A (zh) * 2015-11-02 2016-02-10 深圳创维-Rgb电子有限公司 恒压恒流同步输出电源及电视机
CN105322803B (zh) * 2015-11-02 2018-03-06 深圳创维-Rgb电子有限公司 恒压恒流同步输出电源及电视机
TWI711264B (zh) * 2019-07-12 2020-11-21 通嘉科技股份有限公司 應用於電源轉換器的一次側的初級控制器及其操作方法

Also Published As

Publication number Publication date
CN103631293A (zh) 2014-03-12
CN103631293B (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2014032429A1 (zh) 一种带功率因数校正的恒流控制电路及方法
TWI472139B (zh) The control circuit of the flyback converter, the control method and the AC-DC power conversion circuit
US10097076B2 (en) Control circuit, control method and flyback converter
TWI508613B (zh) High efficiency LED driver circuit and its driving method
TWI389444B (zh) Efficient global switching power supply
US9318960B2 (en) High efficiency and low loss AC-DC power supply circuit and control method
TWI516010B (zh) AC / DC converter
US8994286B2 (en) Operating device for a lamp having a power correction circuit
US9030049B2 (en) Alternating current (AC) to direct current (DC) converter device
WO2012119556A1 (zh) 电流基准发生电路、恒流开关电源的控制电路及方法
TWI511435B (zh) AC - DC power converter
WO2012103795A1 (zh) 一种原边控制led恒流驱动开关电源控制器及其方法
TWI489762B (zh) High efficiency AC - DC voltage conversion circuit
US10122257B2 (en) Ripple suppression method, circuit and load driving circuit thereof
TWI516007B (zh) DC power supply unit
TW201308842A (zh) 降壓轉換器及其控制電路與控制方法
JP5004559B2 (ja) スイッチング電源装置
CN211267157U (zh) 一种高效率led驱动电路
CN114614674A (zh) 反激变换器、恒流控制方法及照明系统
TW202125964A (zh) 電源供應裝置及其操作方法
WO2023015453A1 (en) Power supply circuit, driver and controlling method
US20230067735A1 (en) Control circuit and switching power supply thereof
TW201308849A (zh) 具電氣隔離之單相交流-直流電源轉換器
CN113381613B (zh) 电源控制电路和显示设备
TW201820759A (zh) 單相隔離式功因調整電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/06/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13832568

Country of ref document: EP

Kind code of ref document: A1