WO2014030931A1 - 수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템 - Google Patents

수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템 Download PDF

Info

Publication number
WO2014030931A1
WO2014030931A1 PCT/KR2013/007513 KR2013007513W WO2014030931A1 WO 2014030931 A1 WO2014030931 A1 WO 2014030931A1 KR 2013007513 W KR2013007513 W KR 2013007513W WO 2014030931 A1 WO2014030931 A1 WO 2014030931A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
evaporator
water
hot water
refrigerant
Prior art date
Application number
PCT/KR2013/007513
Other languages
English (en)
French (fr)
Inventor
배희봉
정희철
Original Assignee
주식회사 스노우폴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스노우폴 filed Critical 주식회사 스노우폴
Priority to CN201380055056.0A priority Critical patent/CN104755862B/zh
Publication of WO2014030931A1 publication Critical patent/WO2014030931A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • F25C1/14Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes
    • F25C1/142Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes from the outer walls of cooled bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery

Definitions

  • the present invention relates to an ice maker for producing ice, and in particular, by taking part of the water supplied to produce ice and using it as a heat source in the condenser, the conventional ice maker solves the problem of raising the room temperature.
  • Ice making machine can produce a portion of the water supplied for the production of ice as cold water using a low temperature refrigerant passing through the condenser to produce not only ice but also hot water and cold water, the refrigerant in the conventional rotary evaporator structure
  • the ice is generated on the upper surface of the fixed sealed evaporator to solve the problem of the refrigerant flowing into the evaporator, and the spray nozzle and the cutting blade having a symmetrical structure around the rotating shaft are fixed while rotating. Ice formation and cutting are organically and efficiently implemented on top of the evaporator.
  • FIG. 1 is a configuration diagram showing the configuration of the conventional ice maker system.
  • Korean Unexamined Patent Publication No. 10-2009-0039291 “Quick freezing ice maker and ice blasting apparatus using the same” is presented.
  • the ice maker system condenses and liquefies a gaseous refrigerant of high temperature and high pressure, which has passed through the compressor 1, using an air heat source in the condenser 2, and then passes through the expansion valve 3 again.
  • the refrigerant cools water in the reservoir 5 to produce ice.
  • the ice maker system in the prior art is merely a device for producing only ice, so to use cold water or hot water, there is no choice but to use a separate cold or hot water heater in addition to the ice maker.
  • the rotating drum-type evaporator 4 freezes the water on the evaporator surface while rotating in the reservoir 5 where the water is accumulated
  • the cutting blade (6) is a structure that produces the ice by scraping the frozen ice on the surface of the evaporator (4) that rotates. Accordingly, in the structure in which the refrigerant flows into the rotating drum-type evaporator 4, there is a problem that the refrigerant leaks between the rotating portion and the refrigerant pipe.
  • An object of the present invention is to solve the problem of the prior art that the room temperature is raised by an ice maker using an air heat source by taking a portion of the water supplied to generate ice and using it as a heat source in the condenser and producing and providing hot water together It is to provide an ice maker system that can.
  • Another object of the present invention is to provide an ice maker system in which a portion of the water supplied for ice generation is produced as cold water using a low temperature refrigerant passing through a condenser to produce hot water and cold water together with ice.
  • Ice maker system for producing cold water, hot water, ice using the heat source according to the present invention for achieving the above object includes the following configuration.
  • a compressor cycle unit having a compressor, a condenser, an expansion valve, and an evaporator sequentially connected to form a cycle: ice generation to generate ice through heat exchange with the evaporator by supplying water to the evaporator Wealth; It is characterized in that it comprises a; hot water generating unit for taking a portion of the water supplied to the ice producing unit to use as a heat source for heat exchange with the condenser to produce hot water without raising the room temperature.
  • the hot water generating unit includes a hot water tank unit for storing hot water generated through heat exchange with a condenser, and an auxiliary heat source unit for maintaining a temperature of the hot water tank unit in a predetermined state.
  • According to another embodiment of the present invention further comprises a cold water generating unit to take a portion of the water supplied to the ice producing unit to generate cold water through heat exchange with the low temperature refrigerant passing through the condenser.
  • the cold water generating unit includes a second expansion valve for allowing the refrigerant passing through the condenser to be in a low temperature low pressure state, and the refrigerant passing through the second expansion valve is withdrawn from the water supplied to the ice producing unit.
  • a cold water tank unit configured to store cold water generated through heat exchange with the second evaporator, so that cold water is generated by heat exchange with water.
  • the evaporator is formed in a hermetically sealed container in which the introduced refrigerant is stored, and includes an injection unit for spraying the low-temperature low-pressure refrigerant passing through the expansion valve on the uppermost surface of the evaporator and forming ice.
  • the unit is characterized by supplying water to the upper surface of the evaporator to generate ice through heat exchange with the evaporator.
  • the ice making unit is formed on one side of the rotating shaft around the rotating shaft and sprays water onto the upper surface of the evaporator, and is formed on the other side of the rotating shaft around the rotating shaft and sprayed from the spraying nozzle. It characterized in that it comprises a cutting blade for cutting the ice formed on the upper surface of the evaporator, and an ice tank portion which is cut by the cutting blade and the ice falling from the upper surface of the evaporator is loaded.
  • the evaporator is positioned in the ice tank unit and is characterized in that the temperature of the ice loaded in the ice tank unit is kept at a low temperature by using a refrigerant stored in the evaporator.
  • an on / off valve positioned in a conduit for allowing refrigerant passing through the second evaporator to flow into the expansion valve and the evaporator, and a conduit for allowing refrigerant passing through the second evaporator to enter the compressor.
  • a second on-off valve it characterized in that to selectively produce ice.
  • the present invention solves the problem of raising the room temperature of an ice maker using a conventional air heat source by taking a part of the water supplied to generate ice and using it as a heat source in the condenser and producing and providing hot water together.
  • the present invention has the effect of producing a portion of the water supplied for the ice to produce cold water using a low temperature refrigerant passing through the condenser, as well as hot and cold water as well as ice.
  • the present invention can selectively produce ice using the first and second open / close valves, and has an effect of switching to a cold / hot water system.
  • the present invention has the effect of solving the problems of the prior art that the refrigerant leaks in the structure of the rotary evaporator structure by forming ice on the upper surface of the fixed evaporator of the fixed form.
  • the present invention has an effect of organically and efficiently implementing ice formation and cutting on the upper surface of the fixed evaporator while rotating the injection nozzle and the cutting blade of the structure symmetrical about the rotation axis.
  • the present invention has the effect of maintaining the temperature of the ice loaded in the ice tank portion at a low temperature using the refrigerant stored in the evaporator by placing the evaporator in which the low temperature refrigerant is stored in the ice tank.
  • FIG. 1 is a block diagram of an ice maker system according to the prior art.
  • FIG. 2 is a block diagram of an ice maker system according to an embodiment of the present invention.
  • Figure 3 is an enlarged view of the evaporator and ice making unit in the ice maker system of the present invention.
  • FIG. 4 is a reference diagram showing a process of generating ice in the ice producing unit in the present invention.
  • FIG. 5 is a block diagram of an ice maker system according to another embodiment of the present invention.
  • the ice maker system according to an embodiment of the present invention, the compressor 110, the condenser 120, the expansion valve 130, the evaporator 140 is sequentially installed to form one cycle of the refrigerant Cycle unit 10 and: Ice generation unit 20 for supplying water to the evaporator 140 to generate ice through heat exchange with the evaporator 140; It takes a portion of the water supplied to the ice generator 20 is used as a heat source for heat exchange with the condenser 120 by using a hot water generating unit 30 to generate hot water without raising the room temperature.
  • the refrigerant cycle unit 10 is a component that allows ice, hot water, and cold water to be made through heat exchange in a process in which a refrigerant circulates one cycle and causes a phase change between a high temperature high pressure gas state and a low temperature low pressure liquid state.
  • Compressor 110, condenser 120, expansion valve 130, the evaporator 140 is a configuration that is installed in order to form one cycle. That is, when looking at the phase change in the circulation process of the refrigerant in the refrigerant cycle unit 10, the hot refrigerant of the high temperature and high pressure gas state flowing out from the compressor 110 passes through the condenser 120, through the heat exchange unit 30 After heating the hot water in) is converted to a liquid state.
  • the refrigerant changed into the liquid state at low temperature and low pressure while passing through the expansion valve 130 passes through the evaporator 140 to generate ice in the ice producing unit 20 through heat exchange, and then back to the gas state.
  • the process of change goes through one cycle.
  • the hot water generating unit 30 takes in a portion of the water supplied to the ice producing unit 20 and uses it as a heat source for heat exchange with the condenser 120 to generate hot water additionally without raising the room temperature, which is a problem of the prior art. Configuration. That is, as mentioned above as a problem of the prior art, the conventional ice maker system uses the outside air to condense and liquefy the refrigerant at a high temperature and high pressure in the condenser (2).
  • the hot water generating unit 30 takes a portion of the water supplied to the ice producing unit 20 through a separate pipe and sends the water to the condenser 120 to exchange heat with the high temperature and high pressure refrigerant of the condenser 120. Through condensation and liquefaction of the refrigerant through the hot water was taken to the structure that is generated, stored, supplied.
  • the hot water generating unit 30 includes a hot water tank unit 310 for storing hot water generated through heat exchange with the condenser 120, and an auxiliary heat source unit 320 for maintaining a temperature of the hot water tank unit 310 in a predetermined state. ) May be included.
  • the hot water tank unit 310 is configured to store the hot water generated by heat exchange with the condenser 120, and a part of the water through a separate piping line in the water supply line supplied to the ice producing unit 20 to generate ice.
  • the water is taken in and the line passes adjacent to the condenser 120 to absorb heat through heat exchange with the high temperature and high pressure refrigerant passing through the condenser 120 to generate high temperature hot water.
  • Stored in 310 is supplied to use hot water as needed.
  • the auxiliary heat source unit 320 is an auxiliary heat source that can be used to maintain the temperature of the hot water tank unit 310 in a constant state, and the hot water tank unit 310 when the hot water stored in the hot water tank unit 310 is irregularly supplied. ) It can be difficult to keep the temperature of hot water constantly constant. Accordingly, even in such a case, the auxiliary heat source unit 320 is operatively controlled in the hot water tank unit 310 as necessary so that the temperature of the hot water in the hot water tank unit 310 can be constantly maintained. As the auxiliary heat source 320, various heat sources such as an electric coil may be used.
  • the ice generator 20 supplies water to the evaporator 140 to generate ice through heat exchange with the evaporator 140.
  • the cutter 6 rotates. 4
  • the refrigerant leaks between the rotating portion and the refrigerant pipe due to the way in which the refrigerant is introduced into the rotary drum type evaporator 4 in the structure of producing ice by scraping the ice frozen on the surface.
  • the present invention focuses on developing and applying a new structure to fundamentally solve these problems.
  • the evaporator 140 is formed in a sealed container in which the refrigerant is introduced, and also has a low temperature and low pressure introduced into the evaporator 140 after passing through the expansion valve 130. It includes an injection unit 141 for injecting the refrigerant so that the refrigerant is sprayed toward the uppermost surface in the evaporator 140, the ice producing unit 20 supplies water (upper) to the upper surface (upper side) of the evaporator 140
  • the present invention provides a structure in which ice is generated through heat exchange with a low temperature low pressure refrigerant in the evaporator 140.
  • the evaporator 140 takes a fixed structure, not a rotating structure, and takes a sealed cylindrical shape, preferably a hexahedral shape in which an upper surface forms a plane so that refrigerant introduced into the evaporator 140 can be stored.
  • the low-temperature low-pressure refrigerant flowing through a separate pipe line into the evaporator 140 of the closed barrel form through the injection unit 141 toward the upper surface inside the evaporator 140.
  • the low-temperature low-pressure refrigerant sprayed toward the upper side in the evaporator 140 through the injection unit 141 is the upper surface of the evaporator 140 through heat exchange with water sprayed on the upper surface (upper side) of the evaporator 140 outside the evaporator 140.
  • the refrigerant is directly sprayed on the upper side inside the evaporator 140 through the injection unit 141, the water and the refrigerant sprayed on the upper surface outside the evaporator 140 may directly exchange heat via the upper surface of the evaporator 140. Heat transfer, that is, heat exchange efficiency.
  • the ice making unit 20 supplies (sprays) water to the upper surface (upper side) of the evaporator 140 to be sprayed on the upper portion of the evaporator 140 inside the evaporator 140 through the spraying unit 141 in the evaporator 140. Ice is generated on the upper surface of the evaporator 140 through heat exchange with the refrigerant.
  • the injection nozzle 220 is formed on one side of the rotating shaft 210 to spray water on the upper surface of the evaporator 140, and the other side of the rotating shaft 210 is formed on the injection nozzle ( After cutting from the ice 220 is injected from the cutting blade 230 for cutting the ice formed on the upper surface of the evaporator 140, the ice tank portion 240 is cut by the cutting blade 230 is loaded with ice falling from the upper surface of the evaporator (140) ) May be included.
  • the ice generator 20 sprays water on the upper surface (upper side) of the evaporator 140 while rotating the upper side as the evaporator 140 is fixed, and when the sprayed water is formed of ice, Take a structure to cut and load and store ice.
  • the injection nozzle 220 and the cutting blade 230 are alternately positioned around the rotation axis 210 to rotate around the rotation axis 210 while the water sprayed from the injection nozzle 220 is on the upper surface of the evaporator 140.
  • the cutting blade 230 passing through the portion cuts the ice on the upper surface of the evaporator 140 so that the ice is loaded in the ice tank unit 240.
  • the injection nozzle 220 is a component that is formed on one side of the rotating shaft 210 around the rotating shaft 210 to inject water onto the upper surface of the evaporator 140.
  • the line for supplying water to the ice making unit 20 is connected to the spray nozzle 220 through the rotating shaft 210, and the supplied water is supplied to the evaporator through the spray nozzle 220.
  • 140 is sprinkled on an upper surface (upper side) to form ice on the upper surface (upper side) of the evaporator 140 through heat exchange with a low temperature low pressure refrigerant in the evaporator 140 on the upper surface (upper side) of the evaporator 140.
  • the cutting blade 230 is formed on the other side of the rotating shaft 210 around the rotating shaft 210 is a component for cutting the ice formed on the upper surface of the evaporator 140 after being injected from the injection nozzle 220. As shown in FIGS. 3 and 4, the cutting blade 230 is preferably symmetrically positioned with respect to the rotational axis 210 with the injection nozzle 220, so that the injection blade is positioned at the right side of the rotational axis 210. Water sprayed from the nozzle 220 forms ice on the upper surface of the evaporator 140.
  • the cutting blade 230 positioned on the right side of the rotation shaft 210 cuts the ice formed on the upper surface of the evaporator 140 to cut the ice tank 240. Allow ice to be loaded inside.
  • the instant injection nozzle 220 continuously sprays water from the left side of the rotating shaft 210 to generate ice on the upper surface of the evaporator 140, and this process is performed continuously along the rotation of the rotating shaft 210. .
  • Ice tank unit 240 is a component that is cut by the cutting blade 230 is loaded with ice falling from the upper surface of the evaporator 140.
  • the evaporator 140 takes the structure located in the ice tank unit 240 and uses the low temperature and low pressure refrigerant stored in the evaporator 140 to store the ice loaded in the ice tank unit 240. Can always be kept at a low temperature. By such a structure, before the ice loaded in the ice tank unit 240 is used, the problem of melting or extinguishing or sticking the ice to each other can be prevented in advance.
  • a portion of water supplied to the ice generating unit 20 may be collected to generate cold water through heat exchange with a low temperature refrigerant passing through the condenser 120 ( 40); more.
  • the cold water generating unit 40 is a component that takes in a portion of the water supplied to the ice producing unit 20 and generates cold water through heat exchange with the low temperature refrigerant passing through the condenser 120, and the hot water generating unit 30.
  • cold water is further generated and provided by using a part of the water supplied to generate ice through heat exchange with the refrigerant circulating in the refrigerant cycle unit 10.
  • the cold water generating unit 40 includes a second expansion valve 410 and a second expansion valve 410 for allowing the refrigerant having passed through the condenser 120 to be in a low temperature low pressure state.
  • the refrigerant passing through the heat exchanger is formed through heat exchange with the second evaporator 420 and the second evaporator 420 to allow heat exchange with water taken from the water supplied to the ice making unit 20. It may be configured to include a cold water tank unit 430 for storing cold water.
  • a line into which the refrigerant flows from the refrigerant cycle unit 10 to the cold water generation unit 40, more specifically, the second evaporator 420 is formed as a line branching from the main line.
  • the coolant outflow into the second evaporator 420 can be selectively controlled (blocked) to adjust cold water generation as necessary.
  • the second expansion valve 410 is a component that allows the refrigerant passing through the condenser 120 to be in a low temperature low pressure state.
  • the second expansion valve 410 performs the same function as the expansion valve 130, but the second expansion valve 410 is located in front of the second evaporator 420, unlike the expansion valve 130, the second evaporator ( The refrigerant to be introduced into 420 changes into a liquid state of low temperature and low pressure while passing through the second expansion valve 410 in advance.
  • the second evaporator 420 allows the low temperature low pressure refrigerant passing through the second expansion valve 410 to exchange heat with water taken from the water supplied to the ice making unit 20, thereby generating cold water. to be.
  • the refrigerant which is in a low temperature low pressure state, passes through the second evaporator 420, and is supplied with water for ice generation in the ice generator 20.
  • Cold water of low temperature is generated through heat exchange with the refrigerant line of low temperature and low pressure while passing through the second evaporator 420 through the second evaporator 420.
  • the cold water tank unit 430 is a component that stores cold water generated through heat exchange with the second evaporator 420. As shown in FIG. 5, a portion of the water is drawn through a separate pipe line from the water supply line supplied to the ice making unit 20 to generate ice, and the line passes through the second evaporator 420 to obtain a low temperature low pressure. Heat is released through heat exchange with the refrigerant to form cold water of low temperature. At this time, the generated cold water is stored in the cold water tank unit 430 and selectively supplied as needed.
  • the refrigerant (passed through the second evaporator 420) is located in the pipeline (first pipeline 510) to allow the expansion valve 130 and the evaporator 140 to flow into And a second on / off valve 511 located in a conduit (second conduit 520) for allowing the refrigerant passing through the second evaporator 420 to flow into the compressor 110. .
  • the first on-off valve 511 is closed and the second on-off valve 521 is opened so as not to produce ice.
  • the first on-off valve 511 may be opened and the second on / off valve 521 may be closed.
  • the opening / closing amount of the first opening / closing valve 511 and the second opening / closing valve 521 may be adjusted.
  • ice may be produced by using the first on-off valve 511 and the second on-off valve 521 or, optionally, the ice maker system may be switched to a cold / hot water system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

본 발명은 얼음을 생산하는 제빙기에 관한 것으로, 특히 얼음을 생성하기 위해 공급되는 물의 일부를 취수하여 응축기에서의 수열원으로 사용함으로써 종래의 제빙기가 실내 온도를 높이는 문제점을 해결하였다. 본 발명에 따른 제빙기는 얼음 생성을 위해 공급되는 물의 일부를 응축기를 통과한 저온 냉매를 이용하여 냉수로 생성되도록 하여 얼음은 물론 온수 및 냉수를 함께 생산할 수 있고, 종래 회전방식의 증발부 구조에서 냉매가 누설되는 문제점을 해결하기 위해 고정형태의 밀폐형 증발부 상면에서 얼음이 생성되도록 구성함으로써 증발부로 유입되는 냉매가 유출되는 종래기술의 문제를 해결하고, 회전축을 중심으로 대칭되는 구조의 분사노즐과 컷팅날이 회전하면서 고정형태의 증발부 상면에서 얼음생성과 컷팅이 유기적이고 효율적으로 구현되는 장점이 있다.

Description

수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템
본 발명은 얼음을 생산하는 제빙기에 관한 것으로, 특히 얼음을 생성하기 위해 공급되는 물의 일부를 취수하여 응축기에서의 수열원으로 사용함으로써 종래의 제빙기가 실내 온도를 높이는 문제점을 해결하였다.
본 발명에 따른 제빙기는 얼음 생성을 위해 공급되는 물의 일부를 응축기를 통과한 저온 냉매를 이용하여 냉수로 생성함으로써 얼음은 물론 온수 및 냉수를 함께 생산할 수 있고, 종래 회전방식의 증발부 구조에서 냉매가 누설되는 문제점을 해결하기 위해 고정형태의 밀폐형 증발부 상면에서 얼음이 생성되도록 하여 증발부로 유입되는 냉매가 유출되는 문제를 해결하고, 회전축을 중심으로 대칭되는 구조의 분사노즐과 컷팅날이 회전하면서 고정형태의 증발부 상면에서 얼음생성과 컷팅을 유기적이고 효율적으로 구현한다.
최근 지구온난화 및 기후변화의 영향으로 특히 여름철에는 갈수록 이상고온현상이 빈번하게 발생하여 얼음을 생성하는 제빙기 시스템에 대한 수요가 갈수록 증대되고 있다.
도 1은 종래 제빙기 시스템의 구성관계를 도시한 구성도이다. 선행기술문헌으로는 대한민국 공개특허공보 제10-2009-0039291호 "급속동결 제빙기 및 이를 이용한 아이스 블라스트 장치"이 제시된다.
도 1을 참조하면, 종래기술에 따른 제빙기 시스템은 압축기(1)를 거쳐 나온 고온고압의 기체상태의 냉매를 응축기(2)에서 공기열원을 이용하여 응축 액화하고 다시 팽창밸브(3)를 거치면서 저온저압으로 증발기(4)에 유입되어 회전하는 드럼형태의 증발기에서 냉매가 저수조(5)의 물을 냉각하여 얼음을 생산한다.
이러한 종래의 제빙기 시스템에서는 특히 공기열원을 이용하여 응축기(2)에서 고온고압 상태의 냉매를 응축 액화시키기 때문에 응축기(2)에서 고온고압의 냉매를 공기열원을 이용하여 응축 액화시키는 과정에서 고온의 공기가 발생하여 제빙기 외부로 방출된다. 통상적으로 제빙기는 매장이나 가정과 같은 실내에 위치하므로 고온의 공기로 인해 실내온도가 올라가게 된다.
그에 따라 높은 실내온도를 다시 낮추기 위해서는 별도의 에어컨 가동과 같은 2차적인 에너지 소모를 발생시키는 문제를 야기시키게 된다. 또한, 위와 같은 공기열원을 사용하는 방식에서는 공기를 순환시키기 위한 팬가동 등으로 인해 실내에서 많은 소음이 발생하는 문제점이 있다. 기능의 면을 살펴보더라도, 종래기술에서의 제빙기 시스템은 단순히 얼음만을 생산하는 장치에 불과하기 때문에 냉수나 온수를 사용하기 위해서는 제빙기 이외에 별도의 냉수기나 온수기를 사용할 수밖에 없게 된다.
또한, 종래기술에서 증발기(4)에서 얼음을 생산하는 구조를 보면, 먼저 회전하는 드럼 형태의 증발기(4)가 물이 고인 저수조(5) 내에서 회전하면서 물을 증발기 표면에서 얼리게 한 후, 컷터날(6)이 회전하는 증발기(4) 표면에 얼린 얼음을 깍아내어 얼음을 생산하는 구조이다. 그에 따라, 이처럼 회전하는 드럼형태의 증발기(4) 내로 냉매가 유입되는 구조에서는 회전 부위와 냉매 배관 사이에서 냉매가 누설되는 문제점이 나타난다.
본 발명의 목적은 공기열원을 사용하는 제빙기에 의해 실내 온도가 올라가는 종래기술의 문제점을 얼음을 생성하기 위해 공급되는 물의 일부를 취수하여 응축기에서의 수열원으로 사용함으로써 해결하고 온수도 함께 생산하여 제공할 수 있는 제빙기 시스템을 제공하는 것이다.
본 발명의 다른 목적은 얼음 생성을 위해 공급되는 물의 일부를 응축기를 통과한 저온 냉매를 이용하여 냉수로 생성함으로써 얼음 외에도 온수와 냉수가 함께 생산되는 제빙기 시스템을 제공하는 것이다.
본 발명의 또다른 목적은 제 1,2 개폐밸브를 이용하여 선택적으로 얼음을 생산할 수 있고 선택에 따라 냉·온수 시스템으로 전환할 수 있는 제빙기 시스템을 제공하는 것이다.
본 발명의 또다른 목적은 고정형태의 밀폐형 증발부 상면에서 얼음이 생성되도록 구성함으로써 증발부로 유입되는 냉매가 유출되는 종래기술의 문제를 근본적으로 해결한 제빙기 시스템을 제공하는 것이다.
본 발명의 또다른 목적은 회전축을 중심으로 대칭되는 구조의 분사노즐과 컷팅날이 회전하면서 고정형태의 증발부 상면에서 얼음생성과 컷팅을 유기적이고 효율적으로 구현하는 제빙기 시스템을 제공하는 것이다.
본 발명의 또다른 목적은 저온 냉매가 저장되는 증발기를 얼음탱크부 내에 배치함으로써 얼음탱크부 내에 적재된 얼음의 온도를 증발기에 저장된 냉매를 이용하여 저온으로 유지하는 제빙기 시스템을 제공하는 것이다.
상술한 목적을 달성하기 위한 본 발명에 따른 수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템은 다음의 구성을 포함한다.
본 발명의 일 실시예에 따르면 압축기, 응축기, 팽창밸브, 증발기가 하나의 사이클을 이루도록 순차적으로 연결설치된 냉매사이클부와: 증발기에 물을 공급하여 증발기와의 열교환을 통해 얼음이 생성되도록 하는 얼음생성부와; 얼음생성부로 공급되는 물의 일부를 취수하여 응축기와 열교환하는 수열원으로 사용함으로써 실내 온도를 높이지 않고 온수가 생성되도록 하는 온수생성부;를 포함하는 것을 특징으로 한다.
본 발명의 다른 실시예에 따르면 온수생성부는 응축기와의 열교환을 통해 생성된 온수를 저장하는 온수탱크부와, 온수탱크부의 온도를 일정 상태로 유지시키는 보조열원부를 포함하는 것을 특징으로 한다.
본 발명의 또다른 실시예에 따르면 얼음생성부로 공급되는 물의 일부를 취수하여 응축기를 통과한 저온 냉매와의 열교환을 통해 냉수가 생성되도록 하는 냉수생성부;를 추가로 포함하는 것을 특징으로 한다.
본 발명의 또다른 실시예에 따르면 냉수생성부는 응축기를 통과한 냉매가 통과하면서 저온저압 상태가 되도록 하는 제 2 팽창밸브와, 제 2 팽창밸브를 통과한 냉매가 얼음생성부로 공급되는 물로부터 취수된 물과 열교환이 이루어지도록 하여 냉수가 생성되도록 하는 제 2 증발기와, 제 2 증발기와의 열교환을 통해 생성된 냉수를 저장하는 냉수탱크부를 포함하는 것을 특징으로 한다.
본 발명의 또다른 실시예에 따르면 증발기는 유입된 냉매가 저장되는 밀폐된 통형태로 형성되며, 팽창밸브를 통과한 저온저압의 냉매가 증발기 내 가장 상면에 뿌려지도록 하는 분사부를 포함하고, 얼음생성부는 증발기의 상면에 물을 공급하여 증발기와의 열교환을 통해 얼음이 생성되도록 하는 것을 특징으로 한다.
본 발명의 또다른 실시예에 따르면 얼음생성부는 회전축을 중심으로 회전축의 일측에 형성되어 물을 증발기의 상면에 분사하는 분사노즐과, 회전축을 중심으로 회전축의 타측에 형성되어 분사노즐로부터 분사된 후 증발기 상면에 형성된 얼음을 컷팅하는 컷팅날과, 컷팅날에 의해 컷팅되어 증발기 상면으로부터 낙하하는 얼음이 적재되는 얼음탱크부를 포함하는 것을 특징으로 한다.
본 발명의 또다른 실시예에 따르면 증발기는 얼음탱크부 내에 위치하여 증발기에 저장되는 냉매를 이용해 얼음탱크부 내에 적재된 얼음의 온도를 저온으로 유지시키는 것을 특징으로 한다.
본 발명의 또다른 실시예에 따르면 제 2 증발기를 통과한 냉매가 팽창밸브 및 증발기로 유입되도록 하는 관로에 위치하는 개폐밸브와, 제 2 증발기를 통과한 냉매가 압축기로 유입되도록 하는 관로에 위치하는 제 2 개폐밸브를 포함하여, 선택적으로 얼음을 생산할 수 있도록 하는 것을 특징으로 한다.
본 발명에 따르면 다음과 같은 효과를 얻을 수 있다.
본 발명은 종래 공기열원을 사용하는 제빙기가 갖는 실내 온도를 높이는 문제점을 얼음을 생성하기 위해 공급되는 물의 일부를 취수하여 응축기에서의 수열원으로 사용함으로써 해결하고 온수도 함께 생산하여 제공할 수 있는 효과를 갖는다.
본 발명은 얼음 생성을 위해 공급되는 물의 일부를 응축기를 통과한 저온 냉매를 이용하여 냉수로 생성함으로써 얼음은 물론 온수 및 냉수를 함께 생산하여 제공할 수 있는 효과를 갖는다.
본 발명은 제 1,2 개폐밸브를 이용하여 선택적으로 얼음을 생산할 수 있고 냉·온수 시스템으로 전환할 수 있는 효과를 갖는다.
본 발명은 고정형태의 밀폐형 증발부 상면에서 얼음이 생성되도록 구성함으로써 회전방식의 증발부 구조에서 냉매가 누설되는 종래기술의 문제점을 해결할 수 있는 효과를 갖는다.
본 발명은 회전축을 중심으로 대칭되는 구조의 분사노즐과 컷팅날이 회전하면서 고정형태의 증발부 상면에서 얼음생성과 컷팅을 유기적이고 효율적으로 구현하는 효과를 갖는다.
본 발명은 저온 냉매가 저장되는 증발기를 얼음탱크부 내에 배치함으로써 얼음탱크부 내에 적재된 얼음의 온도를 증발기에 저장되는 냉매를 이용하여 저온으로 유지시키는 효과를 갖는다.
도 1은 종래기술에 따른 제빙기 시스템의 구성도.
도 2는 본 발명의 일 실시예에 따른 제빙기 시스템의 구성도.
도 3은 본 발명의 제빙기 시스템에서 증발기와 얼음생성부의 확대도.
도 4는 본 발명에서 얼음생성부에서 얼음이 생성되는 과정을 도시한 참고도.
도 5는 본 발명의 다른 실시예에 따른 제빙기 시스템의 구성도.
이하에서는 본 발명에 따른 수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템의 바람직한 실시예를 도면을 참조하여 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지기능에 해당하는 부분이거나, 또는 구성에 대한 구체적인 설명이 오히려 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그에 관한 상세한 설명을 생략한다.
도 2 내지 4를 참조하면, 본 발명의 일 실시예에 따른 제빙기 시스템은 압축기(110), 응축기(120), 팽창밸브(130), 증발기(140)가 하나의 사이클을 이루도록 순차적으로 연결설치된 냉매사이클부(10)와: 증발기(140)에 물을 공급하여 증발기(140)와의 열교환을 통해 얼음이 생성되도록 하는 얼음생성부(20)와; 얼음생성부(20)로 공급되는 물의 일부를 취수하여 응축기(120)와 열교환하는 수열원으로 사용함으로써 실내 온도를 높이지 않고 온수가 생성되도록 하는 온수생성부(30);를 포함하여 이루어진다.
냉매사이클부(10)는 냉매가 하나의 사이클을 순환하면서 고온고압의 기체상태와 저온저압의 액체상태 사이의 상변화를 일으키는 과정에서의 열교환을 통해 얼음, 온수, 냉수가 만들어지도록 하는 구성요소로서 압축기(110), 응축기(120), 팽창밸브(130), 증발기(140)가 하나의 사이클을 이루도록 순차적으로 연결 설치된 구성이다. 즉, 냉매사이클부(10)에서 냉매의 순환과정에서의 상변화를 살펴보면, 압축기(110)로부터 유출되는 고온고압의 기체상태의 냉매가 응축기(120)를 통과하면서 열교환을 통해 온수생성부(30)에서의 온수를 가열시킨 후 액체상태로 변환하게 된다. 그리고 나서, 팽창밸브(130)를 통과하면서 다시 저온저압의 액체상태로 변화한 냉매가 증발기(140)를 거치면서 열교환을 통해 얼음생성부(20)에서의 얼음을 생성시킨 후 기체상태로 다시 상변화하게 되는 과정을 하나의 순환사이클로 거치게 된다.
온수생성부(30)는 얼음생성부(20)로 공급되는 물의 일부를 취수하여 응축기(120)와 열교환하는 수열원으로 사용함으로써 종래기술의 문제점인 실내 온도를 높이지 않으면서 추가적으로 온수를 생성하는 구성이다. 즉, 앞서 종래기술의 문제점으로 언급한 바와 같이, 종래의 제빙기 시스템에서는 외부 공기를 이용하여 응축기(2)에서 고온고압상태의 냉매를 응축 액화시키기 때문에 응축기(2)에서 고온고압의 냉매를 공기를 이용하여 응축 액화시키는 과정에서 고온의 공기가 발생하여 실내로 방출되게 되고 그에 따라 높은 실내온도를 다시 낮추기 위해서 별도의 에어컨 가동과 같은 2차적인 에너지 소모를 발생시키는 문제를 야기시키게 됨은 물론 위와 같이 공기를 사용하는 방식의 경우 공기를 순환시키기 위한 팬가동 등으로 인해 실내에서 많은 소음이 발생하는 문제점이 있었다. 본 발명에서는 얼음생성을 위해 공급되는 물의 일부를 취수하여 이 물을 이용해 응축기(120)에서의 냉매를 응축 액화시키면서 아울러 온수도 생성하여 공급할 수 있도록 하는 구조를 취함으로써 종래기술의 문제점을 해결한 데에 특징이 있다.
즉, 온수생성부(30)는 얼음생성부(20)로 공급되는 물의 일부를 별도의 배관을 통해 취수하여 이 물을 응축기(120)에 보내 응축기(120)의 고온고압의 냉매와의 열교환을 통해 냉매를 응축 액화시키고 물은 뜨거운 온수로 생성되어 저장, 공급되는 구조를 취하였다. 이를 위해 온수생성부(30)는 응축기(120)와의 열교환을 통해 생성된 온수를 저장하는 온수탱크부(310)와, 온수탱크부(310)의 온도를 일정 상태로 유지시키는 보조열원부(320)를 포함할 수 있다.
온수탱크부(310)는 응축기(120)와의 열교환을 통해 생성된 온수를 저장하는 구성으로서, 얼음 생성을 위해 얼음생성부(20)로 공급되는 물의 공급라인에서 별도의 배관라인을 통해 물의 일부를 취수하여 이 라인이 응축기(120)를 인접하여 거치면서 응축기(120)를 통과하는 고온고압의 냉매와의 열교환을 통해 열을 흡수하여 고온의 온수가 생성되게 되는데, 이때 생성된 온수는 온수탱크부(310) 내에 저장되어 필요에 따라 온수를 사용할 수 있도록 공급된다.
보조열원부(320)는 온수탱크부(310)의 온도를 일정 상태로 유지시키기 위해 사용될 수 있는 보조열원으로서, 온수탱크부(310)에 저장된 온수가 불규칙적으로 공급되는 경우에 온수탱크부(310) 내 온수의 온도를 항상 일정하게 유지하는 것이 어려울 수 있다. 그에 따라, 이러한 경우에도 온수탱크부(310) 내 온수의 온도를 항상 일정하게 유지할 수 있도록 필요에 따라 보조열원부(320)가 온수탱크부(310) 내에서 가동 제어된다. 보조열원부(320)로는 전기코일 등 다양한 열원이 사용될 수 있다.
얼음생성부(20)는 증발기(140)에 물을 공급하여 증발기(140)와의 열교환을 통해 얼음을 생성하는 구성이다. 특히, 종래의 일반적인 제빙기 시스템에서는 회전하는 드럼형태의 증발기(4)가 물이 고인 저수조(5) 내에서 회전하면서 물을 증발기(4) 표면에서 얼리게 되면 컷터날(6)이 회전하는 증발기(4) 표면에 얼린 얼음을 깍아내어 얼음을 생산하는 구조에서 회전 드럼 형태의 증발기(4) 내로 냉매가 유입되는 방식으로 인해 회전 부위와 냉매 배관 사이에서 냉매가 누설되는 등의 문제점이 있었다. 본 발명은 이러한 문제점을 근본적으로 해결할 수 있도록 새로운 구조를 개발, 적용하는 데에 주안을 두고 있는 것이다.
이를 위해 도 3 및 도 4에 도시된 바와 같이 증발기(140)는 유입된 냉매가 저장되는 밀폐된 통 형태로 형성됨과 아울러 팽창밸브(130)를 통과한 이후 증발기(140) 내로 유입되는 저온저압의 냉매가 증발기(140) 내 가장 상면을 향해 뿌려지도록 냉매를 분사하는 분사부(141)를 포함하고, 얼음생성부(20)는 증발기(140)의 상면(상측)에 물을 공급하여(뿌려) 증발기(140) 내 저온저압의 냉매와의 열교환을 통해 얼음이 생성되도록 하는 구조를 제시한다.
즉, 증발기(140)는 회전 구조가 아닌 고정된 구조를 취하면서 증발기(140) 내로 유입된 냉매가 저장될 수 있도록 밀폐된 통 형태, 바람직하게는 상면이 평면을 이루는 육면체 형태를 취한다. 도 3 및 도 4에 도시된 바와 같이, 밀폐된 통 형태의 증발기(140) 내로 별도의 배관라인을 통해 유입되는 저온저압의 냉매는 증발기(140) 내부에서 상면을 향하는 분사부(141)를 통해 증발기(140) 내 상측면을 향해 뿌려져 상측면을 적셔 상측면을 냉각시킨 다음 증발기(140) 내에 저장되고, 증발기(140) 내에 일정 수위 이상의 냉매가 모이게 되면 이후 별도의 배수라인(142)을 통해 냉매가 배수되어 압축기(110)로 순환된다.
분사부(141)를 통해 증발기(140) 내 상측면을 향해 뿌려진 저온저압의 냉매는 증발기(140) 외부에서 증발기(140)의 상면(상측)에 뿌려진 물과의 열교환을 통해 증발기(140) 상면에 얼음을 생성한다. 이와 같은 본 발명에 따른 증발기(140) 구조에서는 종래와 달리 증발기(140) 자체가 회전하지 않고 고정된 구조이며 그 고정된 증발기(140) 내로 냉매배관을 통해 냉매가 유입되므로, 종래와 같은 냉매 유출 등의 문제는 근본적으로 차단된다. 또한, 분사부(141)를 통해 증발기(140) 내부에서 상측면에 냉매가 직접 뿌려지므로 증발기(140) 외부의 상면에 분사되는 물과 냉매가 증발기(140) 상면을 매개로 직접적으로 열교환을 할 수 있게 되어 열전달 즉, 열교환 효율이 증대된다.
또한, 얼음생성부(20)는 증발기(140)의 상면(상측)에 물을 공급하여(뿌려) 증발기(140) 내에서 분사부(141)를 통해 증발기(140) 내측 상부에 뿌려지는 저온저압의 냉매와의 열교환을 통해 증발기(140) 상면에서 얼음이 생성된다. 도 3 및 도 4에 도시된 바와 같이, 회전축(210)의 일측에 형성되어 물을 증발기(140)의 상면에 분사하는 분사노즐(220)과, 회전축(210)의 타측에 형성되어 분사노즐(220)로부터 분사된 후 증발기(140) 상면에 형성된 얼음을 컷팅하는 컷팅날(230)과, 컷팅날(230)에 의해 컷팅되어 증발기(140) 상면으로부터 낙하하는 얼음이 적재되는 얼음탱크부(240)를 포함할 수 있다.
즉, 본 발명에서 얼음생성부(20)는 증발기(140)가 고정됨에 따라 그 상측에서 회전하면서 증발기(140) 상면(상측)에 물을 분사하고 그 분사된 물이 얼음으로 생성되면 그 얼음을 컷팅하여 얼음을 적재, 보관하는 구조를 취한다. 이때, 분사노즐(220)과 컷팅날(230)이 회전축(210)을 중심으로 서로 엇갈려 위치하여 회전축(210)을 중심으로 회전하면서 분사노즐(220)로부터 분사된 물이 증발기(140) 상면에서 열교환을 통해 얼음으로 생성되게 되면 이후 그 부위를 지나게 되는 컷팅날(230)이 증발기(140) 상면의 얼음을 컷팅하여 떨어뜨려 얼음탱크부(240) 내에 얼음이 적재되도록 하게 된다.
분사노즐(220)은 회전축(210)을 중심으로 회전축(210)의 일측에 형성되어 물을 증발기(140)의 상면에 분사하는 구성요소이다. 도 3 및 도 4에 도시된 바와 같이 얼음생성부(20)에 물을 공급하는 라인은 회전축(210)을 통해 분사노즐(220)에 연결되어 공급된 물이 분사노즐(220)을 통해 증발기(140) 상면(상측)에 뿌려져 증발기(140) 상면(상측)에서 증발기(140) 내 저온저압의 냉매와의 열교환을 통해 증발기(140) 상면(상측)에 얼음을 형성하게 된다.
컷팅날(230)은 회전축(210)을 중심으로 회전축(210)의 타측에 형성되어 분사노즐(220)로부터 분사된 후 증발기(140) 상면에 형성된 얼음을 컷팅하는 구성요소이다. 도 3 및 도 4에 도시된 바와 같이 컷팅날(230)은 분사노즐(220)과는 회전축(210)을 중심으로 바람직하게는 대칭되게 위치하여, 회전축(210)의 오른쪽에 위치하는 순간의 분사노즐(220)에서 분사된 물이 증발기(140) 상면에 얼음을 형성하게 된다. 그후, 회전축(210)의 회전에 따라 180도 회전이 이루어지게 되면서 회전축(210)의 오른쪽에 위치하게 되는 컷팅날(230)이 증발기(140) 상면에 형성된 얼음을 컷팅하여 얼음탱크부(240) 내에 얼음이 적재되도록 한다.
또한, 그 순간 분사노즐(220)은 연속해서 회전축(210)의 왼쪽에서 물을 분사하여 증발기(140) 상면에 얼음을 생성하는데, 이러한 과정이 회전축(210)의 회전을 따라 연속적으로 이루어지게 된다.
얼음탱크부(240)는 컷팅날(230)에 의해 컷팅되어 증발기(140) 상면으로부터 낙하하는 얼음이 적재되는 구성요소이다. 도 3 및 도 4에 도시된 바와 같이 증발기(140)가 얼음탱크부(240) 내에 위치하는 구조를 취하여 증발기(140) 내에 저장되는 저온저압의 냉매를 이용해 얼음탱크부(240) 내에 적재된 얼음의 온도를 항상 저온으로 유지시킬 수 있다. 이와 같은 구조에 의해 얼음탱크부(240) 내에 적재된 얼음이 사용되기 전에 이미 녹아 소멸되거나 얼음끼리 붙게 되는 문제가 사전에 방지될 수 있다.
도 5를 참조하면, 본 발명의 다른 실시예에서는 얼음생성부(20)로 공급되는 물의 일부를 취수하여 응축기(120)를 통과한 저온 냉매와의 열교환을 통해 냉수가 생성되도록 하는 냉수생성부(40);를 더 포함한다.
냉수생성부(40)는 얼음생성부(20)로 공급되는 물의 일부를 취수하여 응축기(120)를 통과한 저온 냉매와의 열교환을 통해 냉수가 생성되도록 하는 구성요소로서, 온수생성부(30)와 더불어 본 발명의 제빙기 시스템에서 냉매사이클부(10)를 순환하는 냉매와의 열교환을 통해 얼음을 생성하기 위해 공급되는 물의 일부를 이용하여 추가로 냉수를 생성, 제공한다.
이를 위해 냉수생성부(40)는 도 5에 도시된 바와 같이, 응축기(120)를 통과한 냉매가 통과하면서 저온저압 상태가 되도록 하는 제 2 팽창밸브(410)와, 제 2 팽창밸브(410)를 통과한 냉매가 얼음생성부(20)로 공급되는 물로부터 취수된 물과 열교환이 이루어지도록 하여 냉수가 생성되도록 하는 제 2 증발기(420)와, 제 2 증발기(420)와의 열교환을 통해 생성된 냉수를 저장하는 냉수탱크부(430)를 포함하여 구성될 수 있다.
참고로, 도 5에 도시된 바와 같이 냉매사이클부(10)에서 냉수생성부(40), 좀더 구체적으로는 제 2 증발기(420)로 냉매가 유입되는 라인은 메인라인에서 분기되는 라인으로 형성하여 제 2 증발기(420)로의 냉매 유출입을 선택적으로 조절(차단)할 수 있게 형성하여 냉수생성을 필요에 따라 조절할 수 있다.
제 2 팽창밸브(410)는 응축기(120)를 통과한 냉매가 통과하면서 저온저압 상태가 되도록 하는 구성요소이다. 제 2 팽창밸브(410)는 팽창밸브(130)와 동일한 기능을 수행하나 다만, 제 2 팽창밸브(410)는 팽창밸브(130)와 달리 제 2 증발기(420) 전단에 위치하여 제 2 증발기(420)로 유입될 냉매가 제 2 팽창밸브(410)를 사전에 통과하면서 저온저압의 액체상태로 변화한다.
제 2 증발기(420)는 제 2 팽창밸브(410)를 통과한 저온저압의 냉매가 얼음생성부(20)로 공급되는 물로부터 취수된 물과 열교환이 이루어지도록 하여 이를 통해 냉수를 생성하는 구성요소이다. 도 5에 도시된 바와 같이 제 2 팽창밸브(410)를 통과한 후 저온저압 상태가 된 냉매는 제 2 증발기(420)를 거치고 또한, 얼음생성부(20)에서의 얼음 생성을 위해 공급되는 물의 배관라인으로부터 분기되는 라인을 통해 일부 취수된 물 역시 제 2 증발기(420)를 거치면서 저온저압의 냉매라인과의 열교환을 통해 저온의 냉수가 생성된다.
냉수탱크부(430)는 제 2 증발기(420)와의 열교환을 통해 생성된 냉수를 저장하는 구성요소이다. 도 5에 도시된 바와 같이 얼음 생성을 위해 얼음생성부(20)로 공급되는 물의 공급라인에서 별도의 배관라인을 통해 물의 일부를 취수하여 이 라인이 제 2 증발기(420)를 거치면서 저온저압의 냉매와의 열교환을 통해 열을 방출하여 저온의 냉수가 생성된다. 이때 생성된 냉수는 냉수탱크부(430) 내에 저장되어 필요에 따라 선택적으로 공급된다.
또한, 본 발명에서는 도 5에 도시된 바와 같이 제 2 증발기(420)를 통과한 냉매가 팽창밸브(130) 및 증발기(140)로 유입되도록 하는 관로(제 1 관로(510))에 위치하는 제 1 개폐밸브(511)와, 제 2 증발기(420)를 통과한 냉매가 압축기(110)로 유입되도록 하는 관로(제 2 관로(520))에 위치하는 제 2 개폐밸브(521)를 포함하여 이루어진다.
얼음생산이 필요없거나 얼음생산이 곤란한 경우에는 제 1 개폐밸브(511)를 폐쇄하고 제 2 개폐밸브(521)를 개방하여 얼음을 생산하지 않도록 조절하고, 반대로 얼음을 생산하는 경우에는 제 1 개폐밸브(511)를 개방하고 제 2 개폐밸브(521)를 폐쇄할 수 있다. 이때, 필요에 따라서는 제 1 개폐밸브(511)와 제 2 개폐밸브(521)의 개폐량을 조절할 수도 있다. 이와 같이 본 발명에서는 제 1 개폐밸브(511)와 제 2 개폐밸브(521)를 이용하여 얼음을 생산하거나, 선택적으로 제빙기 시스템을 냉·온수 시스템으로 전환할 수도 있다.

Claims (6)

  1. 압축기, 응축기, 팽창밸브, 증발기가 하나의 사이클을 이루도록 순차적으로 연결설치된 냉매사이클부:
    상기 증발기에 물을 공급하여 증발기와의 열교환을 통해 얼음이 생성되도록 하는 얼음생성부;
    상기 얼음생성부로 공급되는 물의 일부를 취수하여 상기 응축기와 열교환하는 수열원으로 사용함으로써 실내 온도를 높이지 않고 온수가 생성되도록 하는 온수생성부;
    를 포함하여 구성되고,
    상기 증발기는 유입된 냉매가 저장되는 밀폐된 통형태로 형성되고, 상기 팽창밸브를 통과한 저온저압의 냉매를 상기 증발기 내의 상면에 뿌리는 분사부를 포함하여 구성되고,
    상기 얼음생성부는 상기 증발기의 상면에 물을 공급하여 증발기와의 열교환을 통해 얼음을 생성하는 것으로, 회전축을 중심으로 회전축의 일측에 형성되어 물을 상기 증발기의 상면에 분사하는 분사노즐과, 회전축을 중심으로 상기 회전축의 타측에 형성되어 상기 분사노즐로부터 분사된 후 증발기 상면에 형성된 얼음을 컷팅하는 컷팅날과, 상기 컷팅날에 의해 컷팅되어 증발기 상면으로부터 낙하하는 얼음이 적재되는 얼음탱크부를 포함하여 구성되는 것을 특징으로 하는 수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템.
  2. 청구항 1에 있어서,
    상기 온수생성부는 상기 응축기와의 열교환을 통해 생성된 온수를 저장하는 온수탱크부와, 상기 온수탱크부의 온도를 일정 상태로 유지시키는 보조열원부를 포함하여 구성되는 것을 특징으로 하는 수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템.
  3. 청구항 1에 있어서,
    상기 얼음생성부로 공급되는 물의 일부를 취수하여 상기 응축기를 통과한 저온 냉매와의 열교환을 통해 냉수를 생성하는 냉수생성부;
    를 더 포함하여 구성되는 수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템.
  4. 청구항 3에 있어서,
    상기 냉수생성부는 상기 응축기를 통과한 냉매가 통과하면서 저온저압 상태가 되도록 하는 제 2 팽창밸브와, 상기 제 2 팽창밸브를 통과한 냉매가 상기 얼음생성부로 공급되는 물로부터 취수된 물과 열교환이 이루어지도록 하여 냉수를 생성하는 제 2 증발기와, 상기 제 2 증발기와의 열교환을 통해 상기 생성된 냉수를 저장하는 냉수탱크부를 포함하여 구성되는 것을 특징으로 하는 수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템.
  5. 청구항 1에 있어서,
    상기 증발기는 상기 얼음탱크부 내에 위치하여 증발기에 저장되는 냉매를 이용해 얼음탱크부 내에 적재된 얼음의 온도를 저온으로 유지시키는 것을 특징으로 하는 수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템.
  6. 청구항 4에 있어서,
    상기 제 2 증발기를 통과한 냉매가 상기 팽창밸브 및 증발기로 유입되도록 하는 관로에 위치하는 제 1 개폐밸브와, 상기 제 2 증발기를 통과한 냉매가 상기 압축기로 유입되도록 하는 관로에 위치하는 제 2 개폐밸브를 포함하여 선택적으로 얼음을 생산할 수 있도록 구성된 것을 특징으로 하는 수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템.
PCT/KR2013/007513 2012-08-23 2013-08-22 수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템 WO2014030931A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380055056.0A CN104755862B (zh) 2012-08-23 2013-08-22 用于利用水热源来提供冷水、热水和冰块的制冰机系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0092328 2012-08-23
KR1020120092328A KR101244618B1 (ko) 2012-08-23 2012-08-23 수열원을 이용하는 냉수 및 온수 생산을 포함하는 제빙기시스템

Publications (1)

Publication Number Publication Date
WO2014030931A1 true WO2014030931A1 (ko) 2014-02-27

Family

ID=48182053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007513 WO2014030931A1 (ko) 2012-08-23 2013-08-22 수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템

Country Status (3)

Country Link
KR (1) KR101244618B1 (ko)
CN (1) CN104755862B (ko)
WO (1) WO2014030931A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101474544B1 (ko) * 2014-02-05 2014-12-22 주식회사캐로스 저빙고 냉각기능을 구비하는 얼음 분말 제조장치
KR101658487B1 (ko) 2015-03-24 2016-09-23 주식회사 엠티에스 탈부착형 제빙회전드럼 위생세척용 저수조 탱크가 구비된 빙삭기
KR101659965B1 (ko) 2015-05-08 2016-09-26 주식회사 금산 제빙기를 이용한 냉수공급장치
KR101583315B1 (ko) 2015-06-10 2016-01-08 주식회사 엠티에스 냉매누설 및 드럼외측면 결빙방지를 포함한 외부모세관을 이용한 2단 냉매팽창용 빙삭기
KR101679283B1 (ko) * 2016-03-24 2016-11-24 에이테크 주식회사 히트파이프를 이용한 정수기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734269Y2 (ja) * 1989-08-30 1995-08-02 株式会社間組 氷蓄熱式空調システム
KR200193565Y1 (ko) * 2000-03-31 2000-08-16 주식회사일신랩 냉수, 온수 및 제빙 기능을 갖는 복합 냉동시스템
KR100577986B1 (ko) * 2006-01-09 2006-05-11 (주) 스노우아트 인공 눈 제조장치
JP2009145017A (ja) * 2007-12-17 2009-07-02 Fukuoka Prefecture アンモニアを用いた製氷装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258009A (ja) * 1999-03-08 2000-09-22 Hoshizaki Electric Co Ltd 自動製氷機
JP2003056953A (ja) * 2001-08-08 2003-02-26 Hoshizaki Electric Co Ltd 製氷機
JP2005201545A (ja) * 2004-01-15 2005-07-28 Hoshizaki Electric Co Ltd 自動製氷機の多重製氷判定方法および運転方法
KR100825980B1 (ko) * 2007-04-24 2008-04-29 주식회사 에스엔아이테크 제빙기용 제빙드럼유닛

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734269Y2 (ja) * 1989-08-30 1995-08-02 株式会社間組 氷蓄熱式空調システム
KR200193565Y1 (ko) * 2000-03-31 2000-08-16 주식회사일신랩 냉수, 온수 및 제빙 기능을 갖는 복합 냉동시스템
KR100577986B1 (ko) * 2006-01-09 2006-05-11 (주) 스노우아트 인공 눈 제조장치
JP2009145017A (ja) * 2007-12-17 2009-07-02 Fukuoka Prefecture アンモニアを用いた製氷装置

Also Published As

Publication number Publication date
KR101244618B1 (ko) 2013-03-18
CN104755862A (zh) 2015-07-01
CN104755862B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2014030931A1 (ko) 수열원을 이용하여 냉수, 온수, 얼음을 생산하는 제빙기 시스템
KR101790462B1 (ko) 냉동 장치의 디프로스트 시스템 및 냉각 유닛
CN105518399A (zh) 冷冻箱
JP6568938B2 (ja) 複合熱源を利用したヒートポンプ冷暖房システムおよびその制御方法
US4970869A (en) Tube type freezing unit and in-tube freezing method
CN106017178B (zh) 一种制冷剂水合物循环蓄冷系统
CN110466728A (zh) 使用异丁烷制冷剂的船舶用冷冻装置
CN101957112A (zh) 制冰装置
KR101463305B1 (ko) 드럼식 제빙기의 냉매 분배장치
CN104315635B (zh) 中小型大温差双工况动态流态冰冰蓄冷空调
KR20160060524A (ko) 제상설비를 구비한 히트 펌프시스템
JP2019124385A (ja) 製氷システム
CN108151362B (zh) 一种制冷系统
JPH10205834A (ja) 冷熱装置及び冷凍設備
CN106679211B (zh) 一种室内冷却和造雪二合一系统
KR101770806B1 (ko) 냉.온 축열 시스템
JP2009204297A (ja) 自動製氷機
CN106257196A (zh) 冰箱和它用的制冰方法
KR20210013005A (ko) 디프로스트 시스템
KR101343120B1 (ko) 하이브리드형 공기열 히트펌프 시스템
CN108709331A (zh) 一种带除霜功能的间接冷却系统实验台
JP2875510B2 (ja) 冷却機器の冷却方法および冷却装置
JPH01212842A (ja) 氷蓄熱式水熱源ヒートポンプシステム
KR200280250Y1 (ko) 제빙유니트의 얼음 탈빙장치
KR20090013533A (ko) 냉장고 제상시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831242

Country of ref document: EP

Kind code of ref document: A1