WO2014030623A1 - エンドミル及びその製造方法 - Google Patents

エンドミル及びその製造方法 Download PDF

Info

Publication number
WO2014030623A1
WO2014030623A1 PCT/JP2013/072130 JP2013072130W WO2014030623A1 WO 2014030623 A1 WO2014030623 A1 WO 2014030623A1 JP 2013072130 W JP2013072130 W JP 2013072130W WO 2014030623 A1 WO2014030623 A1 WO 2014030623A1
Authority
WO
WIPO (PCT)
Prior art keywords
end mill
blade
outer peripheral
rake face
angle
Prior art date
Application number
PCT/JP2013/072130
Other languages
English (en)
French (fr)
Inventor
梶ヶ谷明
Original Assignee
田代精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田代精工株式会社 filed Critical 田代精工株式会社
Priority to JP2014501347A priority Critical patent/JP5540167B1/ja
Publication of WO2014030623A1 publication Critical patent/WO2014030623A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/02Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of milling cutters
    • B24B3/06Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of milling cutters of face or end milling cutters or cutter heads, e.g. of shank type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0407Cutting angles
    • B23C2210/0442Cutting angles positive
    • B23C2210/0457Cutting angles positive radial rake angle

Definitions

  • the present invention relates to an end mill for cutting a material, and more particularly to an end mill having an outer peripheral edge and a bottom edge, which is suitable for cutting difficult-to-cut materials and non-ferrous metals, and a manufacturing method thereof.
  • CFRP carbon fiber reinforced plastic
  • Patent Document 1 there is a method of increasing the cutting edge strength by devising the shape of the flank for the outer peripheral edge.
  • Patent Document 2 discloses a method of machining a rake face using a grinding wheel having a relatively large diameter, which has a rotation axis substantially in the relationship of an axial direction of an end mill and a position of torsion. According to this, there is a problem that it is difficult to make the cross-sectional shape of the rake face of the outer peripheral blade into an arc shape due to the interference between the grindstone and the outer peripheral blade portion, and it is difficult to take a large rake angle. It was.
  • the problem to be solved is that it is difficult to suppress the occurrence of burrs and whips when performing an end mill of difficult-to-cut materials.
  • the present invention is an end mill having an outer peripheral blade and a bottom blade for solving the above-mentioned problems, and the outer peripheral blade has a rake face section formed in an arc shape and a rake angle in the range of 40 to 55 degrees. It is what. Thereby, an outer peripheral blade will have a very sharp blade edge.
  • the cross section of the bottom blade rake face is formed in an arc shape, the rake angle is in the range of 45 degrees to 55 degrees, and the bottom blade second angle is in the range of 6 degrees to 10 degrees. It is what. Thereby, the bottom blade has a very sharp blade edge.
  • the configuration of the outer peripheral blade or the bottom blade of the present invention is effective even when used alone, and an end mill can be configured in combination with the bottom blade and the outer peripheral blade of other configurations.
  • produces in an outer peripheral part can be eliminated, and a work material is not damaged at the time of the process by an outer peripheral blade.
  • the end mill manufacturing method of the present invention is an end mill manufacturing method in which a rake face section is formed in an arc shape with respect to an outer peripheral blade, and is raked using a grinding wheel having the same outer diameter as the arc shape of the rake face section.
  • a manufacturing method for processing a surface is an end mill manufacturing method in which a rake face section is formed in an arc shape with respect to an outer peripheral blade, and is raked using a grinding wheel having the same outer diameter as the arc shape of the rake face section.
  • the grinding wheel has a rotation axis in a direction parallel to the tangential direction of the spiral shape due to the twist angle of the outer peripheral edge of the end mill, and has the same outer diameter as the arc shape of the rake face cross section, at least the tip is cylindrical It has become.
  • the rake face can be formed in an arc shape up to the outer peripheral edge portion, and the rake angle can be formed to be a sharp edge.
  • the grinding wheel has a rotation axis in a direction perpendicular to the tangential direction of the spiral shape due to the twist angle of the outer peripheral edge of the end mill, and has the same outer diameter as the arc shape of the rake face cross section, at least the tip is a sphere or It is part of the shape of a sphere.
  • the rake face can be formed into an arc shape up to the outer peripheral edge portion, and the rake angle can be formed large to obtain a sharp cutting edge.
  • the rake face sections of the outer peripheral edge and the bottom edge are arc-shaped, and by increasing the rake angle, a sharp cutting edge can be obtained, and cutting of difficult-to-cut materials is performed.
  • a sharp cutting edge can be obtained, and cutting of difficult-to-cut materials is performed.
  • non-ferrous metal work materials such as aluminum and copper
  • cutting resistance can be reduced, sharpness is improved, thermal deformation of the work material is reduced, beautiful finish surface and high cutting efficiency Can be obtained.
  • the chips are not continuous but short and discontinuous, there is an advantage that cutting can be easily performed.
  • FIG. 1 is a perspective view of an end mill 1 according to a first embodiment of the present invention
  • FIG. 2 is a front view of the end mill 1
  • FIG. 3 is a plan view of the end mill 1, and an outer peripheral blade 11, a bottom blade 15, and a shank 19. have.
  • the material of the end mill 1 is a cemented carbide containing tungsten carbide (WC) suitable for processing difficult-to-cut materials, and the outer peripheral blade 11 extends in the tip direction from the shank to the outer peripheral portion around the rotation axis of the end mill 1.
  • WC tungsten carbide
  • Four are formed on the right side when viewed. Further, each blade has a twist angle in the right direction with respect to the rotation axis of the end mill 1 when viewed from the shank to the end mill tip direction. The magnitude of the twist angle is about 37 degrees.
  • the bottom blade 15 is formed at four locations at the tip of the end mill 1. Furthermore, the two blades at the diagonal positions are projected in the end mill tip direction from the other two blades.
  • the protrusion amount is preferably about 0.1 mm, but is not limited to this.
  • the shank 19 has a cylindrical shape and is a part for fixing the end mill 1 to a device such as a milling machine.
  • the shape is not limited to a cylindrical shape, and a conical (tapered) shape or various notches and protrusions may be provided so as to be securely fixed to the apparatus.
  • FIG. 4 shows an AA cross section of the end mill 1, where the cross-sectional shape of the outer peripheral blade 11 perpendicular to the rotation axis of the end mill 1 has a rake face 12 formed in a substantially arc shape
  • the rake angle 13 that is, the angle formed by the straight line connecting the cutting edge tip of the outer peripheral blade 11 and the rotation center of the end mill 1 and the tangent line of the rake face 12 at the cutting edge tip of the outer peripheral blade 11 is 40 to 55 degrees.
  • the range is preferably 50 to 55 degrees
  • the range is preferably 40 to 45 degrees.
  • the rake face 12 is formed in a truly arc shape.
  • FIG. 5 is an enlarged explanatory view of a portion of the bottom blade 15 of the end mill, the cross section of the bottom blade rake face 16 is formed in an arc shape, and the bottom blade rake angle 17 is in the range of 45 to 55 degrees.
  • the bottom blade second angle 18 was in the range of 6 to 10 degrees.
  • the operation of the end mill 1 with this configuration will be described.
  • the end mill 1 is driven by a device such as a milling machine (not shown) and rotates rightward from the shank as viewed from the tip.
  • a device such as a milling machine (not shown) and rotates rightward from the shank as viewed from the tip.
  • the work material is cut in the plane direction from the end face by sending the work material in a direction orthogonal to the axial direction of the end mill 1. That is, by rotating the end mill 1, the outer peripheral edge 11 simultaneously cuts the side surface of the work material, and the bottom blade 15 simultaneously cuts the surface of the work material.
  • a sharp cutting edge is formed by the large bottom blade rake angle 17 and the bottom blade second angle 18, so that smooth surface cutting is performed even on difficult-to-cut materials
  • the outer peripheral blade 11 since the cross section of the rake face 12 is formed in an arc shape and the rake angle 13 is in the range of 50 to 55 degrees in the case of difficult-to-cut materials, the outer peripheral blade is extremely sharp. The side of the difficult-to-cut material can be cut with minimal occurrence of burr and peeling, and chips can be discharged smoothly.
  • the rake face 12 is formed in an arc shape, and the rake angle 13 is in the range of 40 degrees to 45 degrees.
  • Has a sharp cutting edge can reduce cutting resistance, can reduce thermal deformation of the work material, and can obtain a beautiful finished surface and high cutting efficiency.
  • the chips are not continuous but short and discontinuous, cutting can be easily performed.
  • the rake angle 13 in the range of 40 degrees to 45 degrees, it is possible to obtain an appropriate balance between sharpening the cutting edge and extending the life of the cutting edge with respect to non-ferrous metal.
  • FIG. 6 is a perspective view of the end mill 2 according to the second embodiment of the present invention
  • FIG. 7 is a front view of the end mill 2
  • FIG. 8 is a plan view of the end mill 2 and an outer peripheral blade 21, a bottom blade 25, and a shank 29. have.
  • what is different from the first embodiment is the number of outer peripheral blades 21 and bottom blades 25.
  • four blades are used, but in the second embodiment, two blades are used. It is.
  • Two blades are better for discharging chips, but both have advantages and disadvantages, such as a decrease in rigidity of the end mill, and a suitable number of blades may be selected depending on the application.
  • the material of the end mill 2 is the same as that of the first embodiment, and two outer peripheral blades 21 are formed on the right side when viewed from the shank toward the front end in the outer peripheral portion around the rotation axis of the end mill 2.
  • Each blade has a twist angle in the right direction with respect to the rotational axis of the end mill 2 when viewed from the shank to the end mill tip direction.
  • the magnitude of the twist angle is about 37 degrees.
  • Two bottom blades 25 are formed at the tip of the end mill 2. Do not project either blade as in the case of 4 blades.
  • the shank 29 has a cylindrical shape and is a part for fixing the end mill 2 to a device such as a milling machine.
  • the shape is not limited to a cylindrical shape, as in the first embodiment.
  • FIG. 9 shows an AA cross section of the end mill 1.
  • the cross sectional shape of the outer peripheral blade 21 perpendicular to the rotation axis of the end mill 2 has a rake face 22 formed in a substantially arc shape
  • the rake angle 23, that is, the angle formed by the straight line connecting the cutting edge tip of the outer peripheral blade 21 and the rotation center of the end mill 2 and the tangent line of the rake face 22 at the cutting edge tip of the outer peripheral blade 21, is 40 to 55 degrees.
  • the range is preferably 50 to 55 degrees
  • the range is preferably 40 to 45 degrees.
  • the rake face 12 is formed in a truly arc shape.
  • FIG. 10 is an enlarged explanatory view of a portion of the bottom blade 25 of the end mill, wherein the cross section of the bottom blade rake face 26 is formed in an arc shape, and the bottom blade rake angle 27 is in the range of 45 to 55 degrees.
  • the bottom blade second angle 28 was in the range of 6 to 10 degrees.
  • the cemented carbide containing tungsten carbide is used in both the first embodiment and the second embodiment.
  • the material is not limited to this, and may be of other composition, including high speed steel.
  • the surface of these materials may be strengthened by coating DLC (diamond-like carbon) or the like by physical vapor deposition or the like.
  • a cemented carbide partially used may be used, such as brazing or throwaway.
  • a hard-to-cut material containing fibers and non-ferrous metals such as aluminum and copper have been illustrated and described.
  • the present invention is not limited to this, and any work material of any material or manufacturing method may be used.
  • good cutting results can be obtained if the outer edge rake angle, the bottom edge rake angle, and the bottom edge horn angle are appropriately selected within the above-mentioned range according to the work material. It is done.
  • the twist angle of the end mill is about 37 degrees in the right direction in both the first embodiment and the second embodiment, it is not limited to this direction and numbers.
  • the torsion angle may be a larger torsion angle, in which case there is an advantage that the feed speed can be increased. On the other hand, a smaller torsion angle may be used. In this case, there is an advantage that occurrence of chatter vibration is suppressed.
  • the number of blades of the end mill may be 1 blade, 3 blades, 5 blades or more in addition to 4 blades and 2 blades, and can be used as appropriate according to the application.
  • a nick (notch) or V-groove may be added to the outer peripheral edge of the end mill of the present invention. Thereby, cutting workability (biting to a work material) and chip discharging property may be improved.
  • FIG.11 and FIG.12 is explanatory drawing which shows the manufacturing method of an end mill.
  • the rake face 12 is truly arcuate in a cross section perpendicular to the tangential direction of the helical shape due to the twist angle of the outer peripheral edge 11.
  • the manufacturing method of the end mill 1 is formed with a rotating shaft 31 in a direction parallel to the helical tangential direction due to the torsion angle of the outer peripheral blade 11 of the end mill 1 and the same as the arc shape of the rake face section at the tip of the shaft. It is the manufacturing method which processes a rake face using the grindstone 30 for grinding with the cylindrical shape which has the outer diameter of.
  • the grinding wheel 30 is preferably a diamond electrodeposition grindstone in which diamond abrasive grains are fixed to the shaft tip portion by electrodeposition in terms of grinding performance, but is not limited thereto, and is a CBN (cubic boron nitride) electrodeposition grindstone. Or other grindstones can be used.
  • CBN cubic boron nitride
  • the rotating shaft 31 is held by a collet 32 and a holder 33 of the grindstone spindle, and the grinding wheel 30 is integrally formed at the tip of the rotating shaft 31.
  • the end mill 1 is held by a chuck 34 and a holder 35 of a helical device.
  • the outer periphery of the cylindrical grinding wheel 30 is inscribed in the rake face 12.
  • the grinding wheel 30 is expressed as a cylindrical shape, but even if the whole is not cylindrical, only the portion related to the grinding of the outer peripheral edge 11 at the tip may be cylindrical, and the other portions The shape may be different. Furthermore, as for the shape of the columnar shape, a shape that can be regarded as a substantially cylindrical shape is included in addition to the true columnar shape. *
  • This end mill manufacturing method can be used from the beginning of the end mill processing, but can also be used in the finishing stage after a rough shape is formed by a conventional method. Moreover, it is used not only when the end mill is first manufactured but also when re-polishing.
  • FIG. 13, FIG. 14 and FIG. 15 are explanatory views showing a method of manufacturing an end mill.
  • the rake face 12 is truly arcuate in a cross section perpendicular to the tangential direction of the helical shape due to the twist angle of the outer peripheral edge 11.
  • the manufacturing method of the end mill 1 formed in the above has a rotating shaft 41 in a direction perpendicular to the helical tangential direction due to the torsion angle of the outer peripheral blade 11 of the end mill 1, and is the same as the arc shape of the rake face section at the tip of the shaft. It is a manufacturing method which processes a rake face using the spherical grinding wheel 40 which has the outer diameter of.
  • the grinding wheel 40 is preferably a diamond electrodeposition grindstone in which diamond abrasive grains are fixed to the shaft tip by electrodeposition in terms of grinding performance, but is not limited thereto, and is a CBN (cubic boron nitride) electrodeposition grindstone. Or other grindstones can be used.
  • CBN cubic boron nitride
  • the rotating shaft 41 is held by a collet 42 and a holder 43 of the grindstone spindle, and the grinding wheel 40 is integrally formed at the tip of the rotating shaft 41.
  • the end mill 1 is held by a chuck 34 and a holder 35 of a helical device.
  • the direction of the rotating shaft 41 of the grinding wheel 40 is as shown in FIG. 14 as long as it is on a cross section perpendicular to the tangential direction of the spiral shape due to the twist angle of the outer peripheral blade 11.
  • the tangential direction of the outer periphery circle of the end mill 1 as described above, or the direction of the outer periphery circle of the end mill 1 in the direction toward the center may be any direction. In either case, The outer periphery of the spherical grinding wheel 40 is inscribed in the rake face 12.
  • the rotating shaft 41 and the grinding wheel 40 are rotated by the grinding wheel spindle through the collet 42 and the holder 43.
  • the outer peripheral portion of the grinding wheel 40 is moved to the peripheral blade 11 by causing the helical device to advance the end mill 1 in the direction of the grinding wheel 40 while rotating appropriately, that is, in the left direction in FIG.
  • An arc-shaped rake face 12 can be formed in any cross-section along the twist of.
  • the grinding wheel 40 is expressed as a spherical shape. However, even if the whole is not spherical, only the portion related to the grinding of the outer peripheral blade 11 at the tip may be spherical, and the shape of the other portions is different. It may be. Further, the shape of a sphere includes a material that can be regarded as a sphere in addition to a true sphere. *
  • This end mill manufacturing method can be used from the beginning of the end mill processing, but can also be used in the finishing stage after a rough shape is formed by a conventional method. Moreover, it is used not only when the end mill is first manufactured but also when re-polishing.
  • FIG. 16 is an explanatory view showing a manufacturing method of the end mill. Although it manufactures by the method using a spherical grinding wheel similar to FIG. 13, here, as shown in FIG. 16, the taper part 51 is provided in the base side of the spherical grinding wheel 50. As shown in FIG. By grinding the outer peripheral blade 52 with the taper portion 51, the outer peripheral blade rake angle 53 is slightly reduced, but an end mill with a longer life can be manufactured.
  • the end mill manufacturing method of the present invention is a method using a grinding wheel having a rotational axis in a direction parallel to or perpendicular to the helical tangential direction depending on the torsion angle of the outer peripheral blade, but is parallel or perpendicular to the tangential direction.
  • the angle may be any angle.
  • the shape of the grinding wheel is not only the whole or a part of the cylinder, and the whole or a part of the sphere or the sphere, but also the conical shape, the truncated cone shape, the spindle shape, etc.
  • the shape which has a diameter in part may be sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

【課題】CFRP(炭素繊維強化プラスチック)の板材、ハニカム材、及びそれらを組み合わせたものなどの難削材やアルミ・銅などの非鉄金属のエンドミルによる切削加工を行う際に、ばりやむしれの発生を抑えて加工すること。 【解決手段】外周刃と底刃を有するエンドミルであって、外周刃について、すくい面の断面を円弧状に形成し、かつ、すくい角を40度から55度の範囲とし、また、底刃については、底刃すくい面の断面を円弧状に形成し、かつ、すくい角を45度から55度の範囲とし、更に、底刃二番角を6度から10度の範囲とする。更に、このようなエンドミルの外周刃を加工するために、外周刃すくい面断面の円弧形状と同一の外径を有する、例えば、円柱形などの研削用砥石を用いて、外周刃すくい面を加工する。

Description

エンドミル及びその製造方法
 本発明は、素材の切削加工を行うエンドミルに関し、特に難削材や非鉄金属の切削に好適な、外周刃と底刃を有するエンドミルおよびその製造方法に関する。
 近年、航空機、自動車などに使用される、様々な素材が実用化されている。その中でも、CFRP(炭素繊維強化プラスチック)の板材、ハニカム材、及びそれらを組み合わせたもの、その他、繊維質を含むものが、軽量で強度の高い素材として注目されている。しかしながら、これらの素材は、繊維質などの影響で、切削加工が極めて難しく、ばりやむしれを生じやすくなっている。
 また、アルミ・銅などの非鉄金属の切削においても、仕上げ面が美麗で、しかも効率よく加工できる方法が望まれている。
 そのために、従来から、特許文献1に示すように、外周刃について、逃げ面の形状を工夫することによって、切れ刃強度を高める方法がある。
 ところが、従来の方法では、難削材の場合に被削材への食い付きが悪いため、切削に伴うばり、むしれ、けば立ちの発生を抑えることができず、仕上げ工程でそれらの除去作業に多大な人手を要するという問題点があった。
 また、それらの問題点を解消するためには、外周刃のすくい面の断面形状が円弧状で、かつ、すくい角を大きくすることが望ましいことは知られているが、そのようなエンドミルの製造方法がないという問題点があった。例えば、特許文献2には、エンドミルの軸線方向と、ほぼねじれの位置の関係にある回転軸を有する、比較的大きな径の研削用砥石を用いてすくい面を加工する方法が示されているが、これによれば、砥石と外周刃部分の干渉によって、外周刃のすくい面の断面形状を円弧状にすることが困難で、かつ、すくい角を大きく取ることは困難であるという問題点があった。
特開平7- 40128号公報 特開平2-212055号公報
 解決しようとする問題点は、難削材のエンドミルによる切削加工を行う際に、ばりやむしれの発生を抑えることが難しい点である。
 本発明は、上記課題を解決するための外周刃と底刃を有するエンドミルであって、外周刃について、すくい面の断面を円弧状に形成し、かつ、すくい角を40度から55度の範囲としたものである。これにより、外周刃は極めて鋭利な刃先を有することとなる。
 本発明の底刃については、底刃すくい面の断面を円弧状に形成し、かつ、すくい角を45度から55度の範囲とし、更に、底刃二番角を6度から10度の範囲としたものである。
これにより、底刃は極めて鋭利な刃先を有することとなる。
 なお、本発明の外周刃または底刃の構成は、単独でも効果を発揮し、他の構成の底刃、外周刃と組み合わせてエンドミルを構成することも可能である。
 また、本発明の底刃について、刃数が4刃の場合に、対角位置の2刃について他の2刃よりも軸先端方向に突出させている。これにより、外周部に発生する段差を解消することができ、外周刃による加工時に被削材に傷をつけることがない。
 本発明のエンドミル製造方法は、外周刃について、すくい面の断面を円弧状に形成したエンドミルの製造方法であって、すくい面断面の円弧形状と同一の外径を有する研削用砥石を用いてすくい面を加工する製造方法である。
 例えば、研削用砥石が、エンドミルの外周刃のねじれ角によるらせん形状の接線方向と平行な方向に回転軸を有し、すくい面断面の円弧形状と同一の外径を有する、少なくとも先端が円柱形となっている。すくい面を外周刃の部分まで円弧状とすることができ、かつ、すくい角を大きく形成し、鋭利な刃先とすることができる。
 あるいは、研削用砥石が、エンドミルの外周刃のねじれ角によるらせん形状の接線方向と垂直な方向に回転軸を有し、すくい面断面の円弧形状と同一の外径を有する、少なくとも先端が球または球の一部の形状となっている。これによっても、すくい面を外周刃の部分まで円弧状とすることができ、かつ、すくい角を大きく形成し、鋭利な刃先とすることができる。
 本発明のエンドミル及びその製造方法では、外周刃及び底刃のすくい面断面が円弧状で、かつ、すくい角を大きくすることによって、鋭利な切れ刃とすることができ、難削材の切削加工時に、ばりやむしれの発生を最小限に抑え、それにより、切れ味が向上し、効率的に部品製作ができるという利点がある。また、アルミ・銅など非鉄金属の被削材を切削する場合は、切削抵抗を小さくすることができ、切れ味が向上、被削材の熱変形を少なくして、美麗な仕上げ面と高い切削効率を得ることができる。更に、切り屑が連続せず、短く不連続になることから、切削加工が容易に実行できるという利点もある。
本発明の第1の実施形態のエンドミルの斜視図である。 本発明の第1の実施形態のエンドミルの正面図である。 本発明の第1の実施形態のエンドミルの平面図である。 本発明の第1の実施形態のエンドミルのA-A断面の説明図である。 本発明の第1の実施形態のエンドミルの底刃の部分拡大説明図である。 本発明の第2の実施形態のエンドミルの斜視図である。 本発明の第2の実施形態のエンドミルの正面図である。 本発明の第2の実施形態のエンドミルの平面図である。 本発明の第2の実施形態のエンドミルのA-A断面の説明図である。 本発明の第2の実施形態のエンドミルの底刃の部分拡大説明図である。 本発明の一実施形態のエンドミル製造方法の説明のための斜視図である。 本発明の一実施形態のエンドミル製造方法の説明のための断面図である。 本発明の別の実施形態のエンドミル製造方法の説明のための斜視図である。 本発明の別の実施形態のエンドミル製造方法の説明のための断面図である。 本発明の別の実施形態のエンドミル製造方法の説明のための斜視図である。 本発明の更に別の実施形態のエンドミル製造方法の説明のための断面図である。
 本発明の第1の実施形態を図面を用いて説明する。図1は本発明の第1の実施形態のエンドミル1の斜視図、図2は同じくエンドミル1の正面図、図3は同じくエンドミル1の平面図であり、外周刃11、底刃15、シャンク19を有している。
 エンドミル1の材質は、難削材の加工に適した炭化タングステン(WC)を含む超硬合金であり、外周刃11は、エンドミル1の回転軸を中心とする外周部分に、シャンクから先端方向を見て右側に4本形成される。また、それぞれの刃が、エンドミル1の回転軸に対し、シャンクからエンドミル先端方向を見て右方向にねじれ角を有している。ねじれ角の大きさは、37度程度とする。
 底刃15は、エンドミル1の先端に4ヶ所形成される。更に、対角位置の2刃について他の2刃よりもエンドミル先端方向に突出させている。突出量は、概ね0.1mm程度が好ましいが、これに限定されない。
 シャンク19は、円柱形で、エンドミル1をフライス盤などの装置に固着するための部分である。形状は円柱形に限らず、装置と確実に固着するように、円錐(テーパー)状や種々の切り欠き、突起が設けられていてもよい。
 図4は、エンドミル1のA-A断面を示しており、ここで、外周刃11の、エンドミル1の回転軸に垂直な断面形状は、ほぼ円弧状に形成されたすくい面12を有し、そのすくい角13、すなわち、外周刃11の切刃先端とエンドミル1の回転中心を結ぶ直線と、外周刃11の切刃先端でのすくい面12の接線とのなす角を、40度から55度の範囲とし、特に、難削材の場合には、好ましくは50度から55度、アルミ・銅などの非鉄金属の被削材の場合には、好ましくは40度から45度の範囲とした。ここで、厳密には外周刃11のねじれ角によるらせん形状の接線方向と垂直な断面において、すくい面12は、真に円弧状に形成されている。
 図5は、エンドミルの底刃15の部分の拡大説明図であり、底刃すくい面16の断面を円弧状に形成し、かつ、底刃すくい角17を45度から55度の範囲とし、更に、底刃二番角18を6度から10度の範囲とした。
 この構成によるエンドミル1の動作について説明する。エンドミル1は図示しないフライス盤などの装置によって駆動され、シャンクから先端方向を見て右方向に回転する。この状態で、被削材をエンドミル1の軸線方向と直交する方向に送ることにより、被削材をその端面から平面方向に切削加工する場合を想定する。すなわち、エンドミル1の回転により、外周刃11が被削材の側面を、底刃15が被削材の表面を、同時に切削加工していくものとする。
 この場合に、底刃については、大きな底刃すくい角17と底刃二番角18により、鋭利な切刃が形成されるため、難削材に対してもスムーズな表面切削がなされ、かつ、外周刃11についても、すくい面12の断面を円弧状に形成し、かつ、すくい角13を、難削材の場合には50度から55度の範囲としたことから、外周刃は極めて鋭利な刃先を有し、難削材の側面について、ばりやむしれの発生を最小限に抑えて切削加工することができ、また、切り屑が滑らかに排出できる。
 また、アルミ・銅などの非鉄金属の被削材の場合は、すくい面12の断面を円弧状に形成し、かつ、すくい角13を、40度から45度の範囲としたことから、外周刃は鋭利な刃先を有し、切削抵抗を小さくすることができ、被削材の熱変形を少なくして、美麗な仕上げ面と高い切削効率を得ることができる。更に、切り屑が連続せず、短く不連続になることから、切削加工が容易に実行できる。なお、すくい角13を、40度から45度の範囲としたことで、非鉄金属に関して、刃先を鋭利にすることと、刃先の寿命を長くすることの適正なバランスが得られる。
 また、底刃15の4ヶ所の刃のうち、対角位置の2刃について他の2刃よりも軸先端方向に0.1mm程度、突出させている。これにより、エンドミル1の外周部に発生する段差を解消することができ、外周刃11による加工時に被削材に傷をつけることがない。
 なお、表面仕上げの精度を求められない粗削りの場合は、この対角位置の2刃の突出は、行わなくてもよい。その場合、4刃を用いて切削加工できるため、加工速度が早い利点がある。
 次に、本発明の第2の実施形態を図面を用いて説明する。図6は本発明の第2の実施形態のエンドミル2の斜視図、図7は同じくエンドミル2の正面図、図8は同じくエンドミル2の平面図であり、外周刃21、底刃25、シャンク29を有している。ここで第1の実施形態と異なるのは、外周刃21、底刃25の数であり、第1の実施形態では、それぞれ4刃ずつであったが、第2の実施形態ではそれぞれ2刃ずつである。2刃の方が、切り屑の排出がよりよいが、エンドミルの剛性が低下するなど、どちらも得失があり、用途によって好適な刃数を選択すればよい。
 エンドミル2の材質は、第1の実施形態と同様であり、外周刃21は、エンドミル2の回転軸を中心とする外周部分に、シャンクから先端方向を見て右側に2本形成される。また、それぞれの刃が、エンドミル2の回転軸に対し、シャンクからエンドミル先端方向を見て右方向にねじれ角を有している。ねじれ角の大きさは、37度程度とする。
 底刃25は、エンドミル2の先端に2ヶ所形成される。4刃の場合のように、どちらかの刃を突出させることはおこなわない。
 シャンク29は、円柱形で、エンドミル2をフライス盤などの装置に固着するための部分である。形状は第1の実施形態と同様に、円柱形に限らない。
 図9は、エンドミル1のA-A断面を示しており、ここで、外周刃21の、エンドミル2の回転軸に垂直な断面形状は、ほぼ円弧状に形成されたすくい面22を有し、そのすくい角23、すなわち、外周刃21の切刃先端とエンドミル2の回転中心を結ぶ直線と、外周刃21の切刃先端でのすくい面22の接線とのなす角を、40度から55度の範囲とし、特に、難削材の場合には、好ましくは50度から55度、アルミ・銅などの非鉄金属の被削材の場合には、好ましくは40度から45度の範囲とした。ここで、厳密には外周刃21のねじれ角によるらせん形状の接線方向と垂直な断面において、すくい面12は、真に円弧状に形成されている。
 図10は、エンドミルの底刃25の部分の拡大説明図であり、底刃すくい面26の断面を円弧状に形成し、かつ、底刃すくい角27を45度から55度の範囲とし、更に、底刃二番角28を6度から10度の範囲とした。
 この構成によるエンドミル2の動作については、第1の実施形態と同様であるので説明を省略する。
 ここで、エンドミルの材質について、第1の実施形態でも、第2の実施形態でも、炭化タングステンを含む超硬合金としたが、これに限らず、他の組成のものでもよく、ハイスも含めたこれらの材質の表面にDLC(ダイアモンドライクカーボン)などを物理的蒸着法などによりコーティングして強化したものでもよい。あるいは、ろう付けやスローアウェイのような、部分的に超硬合金を用いたものであってもよい。
 また、被削材として、繊維質を含む難削材、アルミ・銅などの非鉄金属を例示して説明したが、これに限定されるものではなく、どのような素材や製法の被削材でもよく、その場合に、被削材に対応して、外周刃すくい角、底刃すくい角、底刃二番角を、各々、前述した範囲内で適切に選択すれば、良好な切削結果が得られる。
 同様に、エンドミルのねじれ角について、第1の実施形態でも、第2の実施形態でも、右方向に37度程度としたが、この方向、数字には限定されない。ねじれ角については、更に大きなねじれ角でもよく、その場合は送り速度を上げられるなどの利点がある。一方、更に小さなねじれ角でもよく、その場合は、びびり振動の発生が抑えられるなどの利点がある。
 また、エンドミルの刃数についても、4刃、2刃以外にも、1刃、3刃、5刃以上でもよく、それぞれ、用途に応じて適宜使用することができる。
 更に、本発明のエンドミルの外周刃に、ニック(切り欠き)やV溝を追加してもよい。それにより、切削加工性(被削材への食い付き)や切り屑排出性が改良されることもある。
 次に、本発明の一実施形態のエンドミル製造方法を図を用いて説明する。図11及び図12はエンドミルの製造方法を示す説明図である。ここでは、本発明の第1の実施形態である4刃のエンドミル1の外周刃11について、外周刃11のねじれ角によるらせん形状の接線方向と垂直な断面において、すくい面12を真に円弧状に形成したエンドミル1の製造方法に関し、エンドミル1の外周刃11のねじれ角によるらせん形状の接線方向と平行の方向の回転軸31を有し、軸の先端部にすくい面断面の円弧形状と同一の外径を有する円柱形の研削用砥石30を用いて、すくい面を加工する製造方法である。
 研削用砥石30は、ダイヤモンドの砥粒を電着によって軸先端部に固着させた、ダイヤモンド電着砥石が研削性能の点で好ましいが、それに限定されず、CBN(立方晶窒化ホウ素)電着砥石や、それ以外の砥石を用いることもできる。
 ここで、図11に示すように、回転軸31は、砥石主軸のコレット32及びホルダー33に保持されており、研削用砥石30は、その回転軸31の先端部分に一体として形成されている。一方、エンドミル1は、ヘリカル装置のチャック34及びホルダー35に保持されている。
 また、図12に模式的に示すように、円柱形の研削用砥石30の外周は、すくい面12に内接するようになっている。
 また、ここで、研削用砥石30は、円柱形と表現したが、全体が円柱形でなくとも、先端の外周刃11の研削に関わる部分だけが円柱形であればよく、それ以外の部分の形状が異なっていてもよい。更に、円柱形という形状については、真の円柱形以外にも、実質的に円柱と見なせるものも含むものとする。 
 この状態で、砥石主軸により、コレット32、ホルダー33を介して、回転軸31と研削用砥石30を回転させる。一方、ヘリカル装置により、エンドミル1を、適切に回転しつつ、研削用砥石30の方向、すなわち図11の図中で左方向へ進行させることによって、研削用砥石30の外周部分が、外周刃11のねじれに沿って、どの断面においても円弧状のすくい面12を形成することができる。  
 このエンドミル製造方法は、エンドミル加工の最初から用いることもできるが、従来の方法で概略の形状を形成したあと、仕上げ段階で用いることもできる。また、エンドミルを最初に製造する場合のほか、再研磨をする場合にも用いられる。
 なお、底刃15については、従来の加工方法によって加工することができるので、その説明は省略する。また、この製造方法は、第2の実施形態の2刃のエンドミル2、あるいはその他の刃数のエンドミルにも適用できることはもちろんである。
 次に、本発明の別の実施形態のエンドミル製造方法を図を用いて説明する。図13、図14及び図15はエンドミルの製造方法を示す説明図である。ここでは、本発明の第1の実施形態である4刃のエンドミル1の外周刃11について、外周刃11のねじれ角によるらせん形状の接線方向と垂直な断面において、すくい面12を真に円弧状に形成したエンドミル1の製造方法に関し、エンドミル1の外周刃11のねじれ角によるらせん形状の接線方向と垂直の方向の回転軸41を有し、軸の先端部にすくい面断面の円弧形状と同一の外径を有する球状の研削用砥石40を用いて、すくい面を加工する製造方法である。
 研削用砥石40は、ダイヤモンドの砥粒を電着によって軸先端部に固着させた、ダイヤモンド電着砥石が研削性能の点で好ましいが、それに限定されず、CBN(立方晶窒化ホウ素)電着砥石や、それ以外の砥石を用いることもできる。
 ここで、図13に示すように、回転軸41は、砥石主軸のコレット42及びホルダー43に保持されており、研削用砥石40は、その回転軸41の先端部分に一体として形成されている。一方、エンドミル1は、ヘリカル装置のチャック34及びホルダー35に保持されている。
 また、図14及び図15に模式的に示すように、外周刃11のねじれ角によるらせん形状の接線方向と垂直の断面上であれば、研削用砥石40の回転軸41の方向は、図14のようなエンドミル1の外周円の、接線方向であっても、エンドミル1の外周円の、概ね中心へ向かう方向であっても、どのような方向であってもよい。いずれの場合においても、 
球状の研削用砥石40の外周は、すくい面12に内接するようになっている。
 この状態で、砥石主軸により、コレット42、ホルダー43を介して、回転軸41と研削用砥石40を回転させる。一方、ヘリカル装置により、エンドミル1を、適切に回転しつつ、研削用砥石40の方向、すなわち図13の図中で左方向へ進行させることによって、研削用砥石40の外周部分が、外周刃11のねじれに沿って、どの断面においても円弧状のすくい面12を形成することができる。
 ここで、図15の場合、この断面図においては、研削用砥石40の挿入に際し、外周刃11と干渉するように見えるが、研削用砥石40の挿入はエンドミル1をヘリカル装置にて回転させながら、エンドミル1の底刃15の前方から入れるため、干渉せずに挿入できる。  
 また、ここで、研削用砥石40は、球状と表現したが、全体が球状でなくとも、先端の外周刃11の研削に関わる部分だけが球状であればよく、それ以外の部分の形状が異なっていてもよい。更に、球状という形状については、真の球状以外にも、実質的に球と見なせるものも含むものとする。  
 このエンドミル製造方法は、エンドミル加工の最初から用いることもできるが、従来の方法で概略の形状を形成したあと、仕上げ段階で用いることもできる。また、エンドミルを最初に製造する場合のほか、再研磨をする場合にも用いられる。
 なお、底刃15については、従来の加工方法によって加工することができるので、その説明は省略する。また、この製造方法は、第2の実施形態の2刃のエンドミル2、あるいはその他の刃数のエンドミルにも適用できることはもちろんである。
 なお、本発明のエンドミルについては、これらの製造方法が、簡便で正確に加工ができることから好ましいが、この製造方法に限定したものではなく、周知の製造方法を単独で、または組み合わせて使用することで製造することも可能であり、それらも本発明のエンドミルには含まれるものとする。
 次に、本発明の更に別の実施形態のエンドミル製造方法を図を用いて説明する。図16はエンドミルの製造方法を示す説明図である。図13と同様の、球状研削砥石を用いる方法によって製造するが、ここでは図16に示すように、球状の研削砥石50の根元側に、テーパー部51を設けるものである。このテーパー部51によって、外周刃52を研削することによって、外周刃すくい角53は若干減少するが、より長寿命のエンドミルを製造することができる。
なお、本発明のエンドミルの製造方法としては、外周刃のねじれ角によるらせん形状の接線方向と平行、または垂直の方向の回転軸を有する研削用砥石による方法としたが、接線方向と平行または垂直でなくとも任意の角度であってもよい。また、その場合の研削用砥石の形状も全部または一部が円柱形、全部が球状または球状の一部だけでなく、円錐形や円錐台形、紡錘形など、すくい面断面の円弧形状と同一の外径を一部にでも有する形状であってもよい。
1、  2 エンドミル
11、21 外周刃
12、22 すくい面
13、23 すくい角
15、25 底刃
16、26 底刃すくい面
17、27 底刃すくい角
18、28 底刃二番角
19、29 チャック
30    研削用砥石
31    研削用砥石回転軸
40    研削用砥石
41    研削用砥石回転軸
  

Claims (8)

  1. 外周刃を有するエンドミルであって、前記外周刃について、すくい面の断面を円弧状に形成し、かつ、すくい角を40度から55度の範囲としたことを特徴とするエンドミル。
  2. 請求項1に記載のエンドミルであって、更に、底刃を有し、前記底刃について、底刃すくい面の断面を円弧状に形成し、かつ、底刃すくい角を45度から55度の範囲とし、更に、底刃二番角を6度から10度の範囲としたことを特徴とするエンドミル。
  3. 請求項1又は請求項2に記載のエンドミルであって、刃数が4の底刃を有し、前記底刃について対角位置の2刃が他の2刃よりも前記エンドミルの軸先端方向に突出していることを特徴とするエンドミル。
  4. 底刃を有するエンドミルであって、前記底刃について、底刃すくい面の断面を円弧状に形成し、かつ、底刃すくい角を45度から55度の範囲とし、更に、底刃二番角を6度から10度の範囲としたことを特徴とするエンドミル。
  5. 刃数が4の底刃を有するエンドミルであって、前記底刃について対角位置の2刃が他の2刃よりも前記エンドミルの軸先端方向に突出していることを特徴とするエンドミル。
  6. 外周刃を有し、前記外周刃のすくい面の断面を円弧状に形成するエンドミルの製造方法であって、前記すくい面断面の円弧形状と同一の外径を有する研削用砥石を用いて前記すくい面を加工することを特徴とするエンドミル製造方法。
  7. 請求項6に記載のエンドミル製造方法であって、前記研削用砥石が、前記エンドミルの前記外周刃のねじれ角によるらせん形状の接線方向と平行な方向に回転軸を有し、前記すくい面断面の円弧形状と同一の外径を有する、少なくとも先端が円柱形であることを特徴とするエンドミル製造方法。
  8. 請求項6に記載のエンドミル製造方法であって、前記研削用砥石が、前記エンドミルの前記外周刃のねじれ角によるらせん形状の接線方向と垂直な方向に回転軸を有し、前記すくい面断面の円弧形状と同一の外径を有する、少なくとも先端が球または球の一部の形状であることを特徴とするエンドミル製造方法。
     

     
PCT/JP2013/072130 2012-08-22 2013-08-20 エンドミル及びその製造方法 WO2014030623A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014501347A JP5540167B1 (ja) 2012-08-22 2013-08-20 エンドミルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-183688 2012-08-22
JP2012183688 2012-08-22

Publications (1)

Publication Number Publication Date
WO2014030623A1 true WO2014030623A1 (ja) 2014-02-27

Family

ID=50149932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072130 WO2014030623A1 (ja) 2012-08-22 2013-08-20 エンドミル及びその製造方法

Country Status (2)

Country Link
JP (3) JP5540167B1 (ja)
WO (1) WO2014030623A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166119A (ja) * 2014-03-04 2015-09-24 三菱電機株式会社 エンドミル
US20220266357A1 (en) * 2019-08-09 2022-08-25 Kamen Petrov Kamenov Milling bit with spherical ending for cnc milling of industrial clay

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110340752A (zh) * 2019-06-29 2019-10-18 芜湖市零一精密工具制造有限公司 一种周边磨提高正六边形刀片加工精度方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650720U (ja) * 1992-12-17 1994-07-12 本田技研工業株式会社 軟質材料用切削工具
JP2004276180A (ja) * 2003-03-17 2004-10-07 Denso Corp 穴あけ工具
JP2005297108A (ja) * 2004-04-09 2005-10-27 Nachi Fujikoshi Corp エンドミル

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189418U (ja) * 1984-11-16 1986-06-11
JP4831568B2 (ja) * 2005-01-28 2011-12-07 株式会社不二越 エンドミル、加工装置、切削方法及び、加工物
JP2010076069A (ja) * 2008-09-29 2010-04-08 Precision Hasegawa:Kk 切削加工方法およびその装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650720U (ja) * 1992-12-17 1994-07-12 本田技研工業株式会社 軟質材料用切削工具
JP2004276180A (ja) * 2003-03-17 2004-10-07 Denso Corp 穴あけ工具
JP2005297108A (ja) * 2004-04-09 2005-10-27 Nachi Fujikoshi Corp エンドミル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166119A (ja) * 2014-03-04 2015-09-24 三菱電機株式会社 エンドミル
US20220266357A1 (en) * 2019-08-09 2022-08-25 Kamen Petrov Kamenov Milling bit with spherical ending for cnc milling of industrial clay

Also Published As

Publication number Publication date
JPWO2014030623A1 (ja) 2016-07-28
JP5599526B2 (ja) 2014-10-01
JP5540167B1 (ja) 2014-07-02
JP5616543B2 (ja) 2014-10-29
JP2014073577A (ja) 2014-04-24
JP2014176965A (ja) 2014-09-25

Similar Documents

Publication Publication Date Title
JP5135614B2 (ja) 複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置
EP1627706B1 (en) Abrasive tool, method for its (re)-manufacture and process for point abrasive machining
JP5641204B2 (ja) クリスマスカッタおよび、これを用いたタービン翼根部の切削加工方法
US7090442B2 (en) Shaper router and method
CN109890545B (zh) 铣削刀具
JP5616543B2 (ja) エンドミル
CN110167702B (zh) 模具加工用立铣刀
JPWO2018074542A1 (ja) 切削インサート及び刃先交換式回転切削工具
JP2010240818A (ja) ニック付きエンドミル
JP2018027595A (ja) バリ抑制エンドミル
CN214517800U (zh) 一种用于蜗杆加工的锥度铣刀
JP2013013962A (ja) Cbnエンドミル
JP2000503604A (ja) 金属を除去する機械加工方法
JP2003165016A (ja) タービンブレード取り付け部加工用総形フライス
US8257149B2 (en) Method of producing rotationally symmetrical surfaces on a workpiece
JP2010260115A (ja) 繊維強化複合材料用穴あけ工具
JP5786770B2 (ja) 切削インサート
CN112828368A (zh) 一种用于蜗杆加工的锥度铣刀
JP5906838B2 (ja) スクエアエンドミル
JP6626853B2 (ja) 回転切削工具
JPH0957515A (ja) ドリル
JP2004160581A (ja) ダイヤモンドコーティング工具の製造方法およびダイヤモンドコーティング工具
CN217749517U (zh) 适用于涡旋盘的成型铣刀
CN217492805U (zh) 麻花钻
JP3185869U (ja) エンドミル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014501347

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831456

Country of ref document: EP

Kind code of ref document: A1