WO2014026573A1 - 天线单元、天线组件、多天线组件及无线互连设备 - Google Patents

天线单元、天线组件、多天线组件及无线互连设备 Download PDF

Info

Publication number
WO2014026573A1
WO2014026573A1 PCT/CN2013/081239 CN2013081239W WO2014026573A1 WO 2014026573 A1 WO2014026573 A1 WO 2014026573A1 CN 2013081239 W CN2013081239 W CN 2013081239W WO 2014026573 A1 WO2014026573 A1 WO 2014026573A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna unit
unit
group
conductor
Prior art date
Application number
PCT/CN2013/081239
Other languages
English (en)
French (fr)
Inventor
刘若鹏
徐冠雄
吕晶
李春锋
邓存喜
李双双
杨煜昌
尹柳中
Original Assignee
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210286511.5A external-priority patent/CN103594780B/zh
Priority claimed from CN201210286555.8A external-priority patent/CN102800954B/zh
Priority claimed from CN201210385136.XA external-priority patent/CN103682604B/zh
Priority claimed from CN201210554682.1A external-priority patent/CN103887599A/zh
Priority claimed from CN201310105507.9A external-priority patent/CN103794882B/zh
Application filed by 深圳光启创新技术有限公司 filed Critical 深圳光启创新技术有限公司
Priority to EP13829171.1A priority Critical patent/EP2887456B1/en
Publication of WO2014026573A1 publication Critical patent/WO2014026573A1/zh
Priority to US14/621,404 priority patent/US20150171522A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/067Two dimensional planar arrays using endfire radiating aerial units transverse to the plane of the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the invention relates to the field of wireless communication devices, and more particularly to an antenna unit, an antenna assembly, a multi-antenna assembly, and a wireless interconnection device.
  • a conventional distributed antenna system can overcome channel path loss caused by large-scale fading and shadow fading, can form good system coverage in a cell, solve a communication dead angle in a cell, and improve communication service quality.
  • new network protocols such as IEEE 802.11a/g/b/n/ac
  • Yagi antenna also known as Yagi-Uda antenna
  • the main vibrator also known as the active vibrator
  • the reflector is located on one side of the main vibrator to weaken the side electromagnetic wave, and the length is slightly longer than the main vibrator; the director is located on the other side of the main vibrator, slightly shorter than the main vibrator, for enhancing the electromagnetic wave on the side of the side.
  • the advantage of Yagi antenna is that it has good directivity, and the effect of direction finding and long-distance communication is very good.
  • the existing Yagi antennas are made of metal rods, which are large in size and occupy space, and are mainly used outdoors. How to apply the advantages of Yagi antenna to small antennas such as ceiling antennas and wireless routers for wireless coverage is a problem to be solved by the present invention.
  • existing wireless network requirements place higher demands on the gain of the antenna.
  • the Chinese invention patent CN 102800954 A discloses an antenna unit comprising a dielectric substrate, a main vibrator for connecting to the feeder, a director for enhancing radio waves on the side, and the main vibrator and the director are attached. Conductor lines on the dielectric substrate.
  • the above patent further relates to an antenna assembly comprising a dielectric reflecting surface for reflecting radio waves used by the antenna assembly and an antenna group on a side of the reflecting surface of the medium, the antenna group comprising at least one of the antenna elements, and a dielectric reflecting surface, each The directors of the antenna elements are respectively located on both sides of the main oscillator of the corresponding antenna unit.
  • the above patent also relates to a multi-antenna assembly having a plurality of the aforementioned antenna groups.
  • a drawback of the above patent is that the arrangement of the antenna elements in the antenna assembly results in poor overall reception performance of the antenna assembly.
  • the present invention provides an antenna unit, an antenna assembly, a multi-antenna assembly, and a wireless interconnection device. Specifically, the present invention provides a miniaturized antenna unit, an antenna assembly, and a multi-antenna assembly based on the Yagi antenna principle. Further, the present invention provides an antenna unit and a multi-antenna assembly that are miniaturized and have high gain based on the Yagi antenna principle. Further, an antenna (multi-antenna assembly) is provided to at least make the antenna (multi-antenna assembly) have good overall reception performance.
  • a first aspect of the present invention provides an antenna unit including a dielectric substrate and an antenna conductor attached to the dielectric substrate, wherein a maximum gain direction of the antenna unit coincides with a direction in which the dielectric substrate plane extends.
  • the dielectric substrate is made of a material having a dielectric constant of less than 10 and a loss tangent of less than 0.04.
  • the dielectric substrate is made of a material having a dielectric constant of less than 6.5 and a loss tangent of less than 0.009.
  • the dielectric substrate is made of one or two or more materials.
  • the dielectric substrate is an epoxy resin plate, a polytetrafluoroethylene plate, a Teflon plate, a halogen-free plate, a Rogers high-frequency plate or a ceramic plate.
  • the dielectric substrate is made of a metamaterial board including a substrate and a microstructure attached to the substrate.
  • the size of the microstructure is less than one-half of the wavelength of the electromagnetic wave corresponding to the operating frequency of the antenna unit.
  • the size of the microstructure is less than a quarter of a wavelength of an electromagnetic wave corresponding to an operating frequency of the antenna unit.
  • the size of the microstructure is less than one sixth of the wavelength of the electromagnetic wave corresponding to the operating frequency of the antenna unit.
  • the antenna conductor includes a main vibrator for connecting to a feeder, and a director for enhancing radio waves on a side where the wireless side is located, the main vibrator and the director are both conductors attached to the dielectric substrate line.
  • the director is a scattering structure composed of a conductor material disposed along an electromagnetic wave propagation direction, and further, the main oscillator is a straight line or a curved line.
  • the line widths of the conductor lines of the main vibrator are equal or not exactly equal.
  • the main vibrator is an open curve ring or an open folding ring.
  • the main vibrator is a rhombic ring, a circular ring, a rectangular ring or a triangular ring or a polygonal ring that is open at any corner.
  • the dielectric substrate includes two surfaces, and at least one of the directors is disposed on another surface different from a surface on which the main vibrator is located.
  • the antenna conductor includes a first antenna conductor disposed on one of the surfaces of the dielectric substrate and a second antenna conductor disposed on the other surface.
  • the antenna unit comprises a multilayer dielectric substrate, and the antenna conductor is disposed on one or more of the dielectric substrates.
  • the conductor line is a metal line.
  • the director has a plurality of conductors that form a set of mutually parallel conductor lines. Further, the centers of the plurality of directors are on the same line and the line is perpendicular to the director.
  • the main vibrator includes two conductor lines that are collinear, and are respectively level with the conductor lines of the director
  • the antenna conductor includes a main vibrator and at least one director disposed at intervals on the surface of the dielectric substrate, the main vibrator and the director are both conductor strips, and the main vibrator The two ends are the feeding point and the grounding point respectively.
  • the main vibrator is an open curve loop or an open fold loop, and the feed point and the ground point are respectively located at ends of the opening. Further, the conductor strips at the openings partially overlap, and the overlapping portions form the opening ⁇ at intervals.
  • the conductor strip is a metal wire, a wire composed of a non-metallic conductive material or a conductive wire composed of a metal and a non-metal.
  • the director has a plurality of conductors that form a set of conductor strips that are parallel to each other.
  • the main vibrator is a diamond ring having an opening at any corner.
  • the dielectric substrate includes two surfaces, and at least one of the directors is disposed on another surface different from a surface on which the main vibrator is located.
  • a second aspect of the present invention provides an antenna assembly including a medium reflection surface for reflecting radio waves used by the antenna assembly and an antenna group on a side of the medium reflection surface, the antenna group including at least one such as The antenna unit according to any one of the tenth to 31st aspect, wherein the medium reflecting surface and the director of each of the antenna units are respectively located on two sides of a main oscillator of the corresponding antenna unit.
  • the antenna group includes three identical antenna units, and the dielectric substrate of each of the antenna units is perpendicular to the medium reflecting surface, and the three antenna units are 120 degrees apart from each other and intersect with each other by the same straight line. The lines and the distances to the extended intersection lines are equally set.
  • the antenna group includes three identical antenna units, and the dielectric substrate of each of the antenna units is perpendicular to the dielectric reflecting surface, and the three antenna units are mutually 60 degrees, and the dielectric substrate of the three antenna units is along The respective surface directions are extended and intersected to form an equilateral triangle.
  • a third aspect of the present invention provides a multi-antenna assembly including a medium reflecting surface and at least one antenna group mounted on the medium reflecting surface, wherein different antenna groups use different radio wave frequencies, and each antenna group includes at least An antenna unit according to any of the first aspects of the invention.
  • the dielectric reflecting surface is a conductive microstructure having a geometric pattern.
  • the size of the conductive microstructure is less than one-half of a wavelength corresponding to a radio wave frequency used by the antenna group. Further, the size of the conductive microstructure is less than a quarter of a wavelength corresponding to a radio wave frequency used by the antenna group. Further, the size of the conductive microstructure is less than one sixth of a wavelength corresponding to a radio wave frequency used by the antenna group.
  • the multi-antenna assembly includes two antenna groups, which are a first antenna group and a second antenna group, respectively, and the antenna elements of the two antenna groups have different main oscillator sizes.
  • the multiple antenna component includes two antenna groups, which are a first antenna group and a second antenna group, respectively, the first antenna group and the second antenna group include the same number of antenna units, and the first antenna group The antenna elements are spaced apart by the antenna elements of the second antenna group.
  • the multiple antenna component includes two antenna groups, which are a first antenna group and a second antenna group, respectively, and the first antenna group and the second antenna group respectively comprise the same antenna unit, and each The antenna elements are evenly distributed on the medium reflecting surface in an angular array.
  • a reflector is disposed outside each of the antenna units. Further, the reflector has an opening structure with a small end and a large end, and the opening faces the maximum gain direction of the antenna unit.
  • the antenna unit of each of the antenna groups is the antenna unit according to any one of 10 to 31, wherein the medium reflective surface, each The directors of the antenna units are respectively located on both sides of the main oscillator of the corresponding antenna unit.
  • the multi-antenna assembly includes two antenna groups, which are a first antenna group and a second antenna group, respectively, and the main antenna element size of the former antenna unit is larger than the main oscillator size of the latter antenna unit.
  • the first antenna group and the second antenna group respectively comprise three identical antenna units, a dielectric substrate of each of the antenna units is perpendicular to the medium reflection surface, and three of the first antenna groups
  • the antenna elements are 120 degrees apart from each other, the same straight line is used as the extended intersection line, and the distances to the extended intersection line are equally set.
  • the three antenna elements of the second antenna group are mutually 60 degrees and three antenna elements
  • the dielectric substrates are elongated in the surface direction and intersect to form an equilateral triangle. Further, three antenna units of the second antenna group are sequentially located in three adjacent intervals of three antenna units of the first antenna group.
  • a fourth aspect of the present invention provides a multi-antenna assembly including a dielectric reflector for reflecting radio waves used by the multi-antenna assembly and at least one antenna group on a side of the dielectric reflector, the antenna group
  • the antenna unit according to any one of the tenth to 31st aspects of the present invention, wherein the dielectric reflector, the director of each of the antenna units are respectively located in a main oscillator of the corresponding antenna unit On both sides.
  • the multi-antenna assembly includes a first antenna group and a second antenna group having the same number of antenna units, and the antenna units of the first antenna group are spaced apart by the antenna unit of the second antenna group Settings.
  • first antenna group and the second antenna group respectively comprise respective identical antenna units, and the respective antenna units are evenly distributed on the medium reflection plate in an angular array. Further, the first antenna group and the second antenna group respectively comprise three antenna units. Further, the antenna unit of the first antenna group and the antenna unit of the second antenna group have similar structures with different sizes.
  • the multi-antenna assembly includes a reflector having the reflective surface of the medium and at least one antenna element array disposed on the reflective surface of the medium, the antenna element array including two antenna groups, respectively An antenna group and a second antenna group, the first antenna group includes a plurality of first antenna units having a first operating frequency band, and the second antenna group includes at least one second antenna unit having a second operating frequency band, The plurality of first antenna units are surrounded by one week, and the second antenna unit is located in the first antenna unit of the week. Further, each of the first antenna unit and the second antenna unit has a dielectric substrate vertically fixed on the same reflective surface side, and a main vibrator and a director formed on the dielectric substrate.
  • the first antenna unit has three, and the median surfaces of the three first antenna units respectively having a vertical plane perpendicular to the reflective surface are intersected by one line, and each adjacent two middle surfaces are sandwiched The angle is 120°; the dielectric substrate of the second antenna unit is perpendicular to the dielectric substrate of one of the first antenna units. Further, in each of the inner side surfaces of the dielectric substrates of the three first antenna units, a linear distance between the center points of each of the two inner side surfaces is in a range of 30-40 mm. Further, the other two of the dielectric substrates of the three first antenna units are mirror-arranged with respect to the dielectric substrate of the second antenna unit.
  • a positional relationship between the main vibrator and the director is set to: away from the outer normal direction of the medium reflecting surface
  • the dielectric reflecting surfaces of the reflector are arranged in sequence.
  • the main vibrator and the director are both wires.
  • the wire is any one of a copper wire, an aluminum wire, a silver wire or an alloy wire.
  • the main vibrator and the director are composed of wires of the same material.
  • each of the main vibrators is composed of a first wire and a second wire which are arranged at intervals and on the same straight line
  • the director of the first antenna unit and the director of the second antenna unit are both Forming at least one in-line wire, wherein each of the in-line wires is parallel to the first wire and the second wire of the same antenna unit, and both are located on the same side of the main oscillator in the same antenna unit
  • the director of the first antenna unit and the director of the second antenna unit are respectively composed of 2-16 wires, wherein all the in-line conductors are in the same antenna unit Arranged in a direction perpendicular to the direction of the first wire and the second wire in the same antenna unit.
  • each of the first antenna elements is identical in shape, wherein a total length of the main oscillators in the first antenna unit is greater than each of the one-shaped conductors in the first antenna unit length.
  • the perpendicular lines of each of the first antenna elements perpendicular to the length direction of the in-line conductors are all on the same straight line, and both pass through the center of the total length of the main vibrators in the first antenna unit. position.
  • each of the first type of wires in the second antenna unit is the same, wherein a total length of the main vibrators in the second antenna unit is greater than each of the one-shaped wires in the second antenna unit length.
  • the perpendicular lines of each of the second antenna elements perpendicular to the longitudinal direction of the in-line conductors are all on the same straight line, and both pass through the center of the total length of the main vibrators in the second antenna unit. position.
  • the reflector is a reflective plate, the dielectric reflecting surface of the reflecting plate is a conductor reflecting surface, and all antenna element arrays share one of the conductor reflecting surfaces.
  • the antenna is used in a transportation system.
  • the transportation system is any one of a fixed line subway transportation system, a light rail transportation system, an air transportation system, a sea transportation system, a highway transportation system, a submarine tunnel transportation system, or a bus transportation system.
  • the first working frequency band of the first antenna unit and the second working frequency band of the second antenna unit are mutually different frequency bands selected from 1.8 to 12G.
  • the first working frequency band or the second working frequency band is 4.9 GHz to 6 GH.
  • the first working frequency band or the second working frequency band is 5 GHz to 5.9 GHz.
  • the first working frequency band or the second working frequency band is 2 GHz to 2.6 GHz.
  • the first working frequency band or the second working frequency band is 2.4 GHz to 2.5 GHz.
  • a fifth aspect of the present invention provides a wireless interconnection device, comprising: the antenna unit according to any one of the first aspects of the present invention, or the antenna assembly according to any one of the second aspect of the present invention or the third aspect of the present invention And a multi-antenna assembly according to the fourth aspect, a feeder corresponding to the antenna unit, and a housing accommodating the antenna unit or the antenna assembly or the multi-antenna assembly. Further, a switch unit that controls the operation of the antenna unit or the antenna group is further included. Further, the housing includes an upper case and a lower case that are engaged to form a closed cavity, and further includes the multiple antenna assembly located in the cavity.
  • each antenna group includes at least one of the antenna units
  • the antenna unit includes a dielectric substrate, a main vibrator for connecting with the feeder, a director for enhancing radio waves on the side, the main vibrator and
  • the directors are conductor lines attached to the dielectric substrate, and the dielectric reflecting surface and the director of each of the antenna units are respectively located on two sides of the main oscillator of the corresponding antenna unit.
  • the beneficial effects of the present invention are as follows:
  • the antenna unit, the antenna assembly, and the multi-antenna assembly designed according to the Yagi antenna principle have good directivity, and have the advantages of high frequency bandwidth, high gain, and easy debugging.
  • the beneficial effects of the present invention are as follows:
  • the antenna unit and the multi-antenna component designed according to the Yagi antenna principle can meet the requirements of miniaturization of the antenna, and can improve the coverage effect of the wireless network, especially the application of the MIMO technology can meet the new requirements.
  • the requirements of the network protocol for the antenna can meet the requirements of miniaturization of the antenna, and can improve the coverage effect of the wireless network, especially the application of the MIMO technology can meet the new requirements.
  • the requirements of the network protocol for the antenna can meet the requirements of miniaturization of the antenna, and can improve the coverage effect of the wireless network, especially the application of the MIMO technology can meet the new requirements.
  • the requirements of the network protocol for the antenna can meet the requirements of miniaturization of the antenna,
  • the beneficial effects of the present invention are as follows: (1) In the present invention, the respective vertical planes of the dielectric substrates of the three first antenna elements meet in one line, between each adjacent two vertical surfaces. The included angle is 120°; the dielectric substrate of the second antenna unit is perpendicular to one of the dielectric substrates of the three first antenna units, which makes the overall receiving performance of the antenna of the present invention excellent. (2) when the opposite side extension faces of the inner side faces of each of the dielectric substrates of the three first antenna elements in the present invention intersect to form a regular triangular prism, the median plane of the dielectric substrate of the second antenna unit is in the positive triangular prism When one of the corners is evenly divided, the overall receiving performance of the antenna of the present invention is more excellent.
  • FIG. 1 is a schematic structural diagram of an antenna unit according to a first embodiment of the present invention
  • FIG. 2 is a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of another embodiment of a multi-antenna assembly having the antenna unit shown in FIG. 1 according to a first embodiment of the present invention
  • FIG. 4 is a schematic view of a first embodiment of the present invention
  • FIG. 5 is a view showing the multi-antenna assembly of the first embodiment of the present invention at a frequency of 5.72 GHz
  • FIG. 6 is a view showing the first embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an antenna unit in the multi-antenna assembly of FIG. 6 according to the first embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of an antenna unit according to a second embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of an antenna assembly having the antenna unit shown in FIG.
  • FIG. 10 is a multi-antenna assembly having at least two antenna groups according to a second embodiment of the present invention
  • FIG. 11 is a plan view of the multi-antenna assembly of FIG. 10 according to a second embodiment of the present invention
  • FIG. 12 is a view showing the size of the antenna unit of the first antenna group of the multi-antenna assembly of FIG. 10 according to the second embodiment of the present invention
  • FIG. 13 is a schematic diagram showing the size of an antenna unit of a second antenna group of the multi-antenna assembly shown in FIG. 10 according to a second embodiment of the present invention
  • FIG. 14 is a multi-antenna shown in FIG. 10 and FIG. Component low frequency voltage standing wave ratio simulation
  • Figure 15 is a perspective view of the above multi-antenna assembly at a frequency of 2.45 GHz according to a second embodiment of the present invention
  • 16 is a high frequency band standing wave ratio simulation of the multi-antenna assembly shown in FIG. 10 and FIG. 11 according to a second embodiment of the present invention
  • FIG. 17 is a schematic diagram of the above-described multi-antenna assembly at a frequency of 5.72 GHz according to a second embodiment of the present invention
  • FIG. 18 is a schematic structural view of an antenna unit according to a third embodiment of the present invention
  • 3 is a schematic structural view of a multi-antenna assembly having the antenna unit shown in FIG. 18
  • FIG. 20 is a plan view of a multi-antenna assembly having at least two antenna groups according to a third embodiment of the present invention
  • FIG. 22 is a plan view of the antenna unit of FIG. 19 according to a third embodiment of the present invention
  • FIG. 23 is a view showing a third embodiment of the present invention
  • 22 is a S11 graph of a multi-antenna assembly
  • FIG. 24 and FIG. 25 are diagrams showing a multi-antenna assembly of FIG. 22 at a frequency of 2.45 GHz according to a third embodiment of the present invention
  • FIG. 26 is a fourth embodiment of the present invention.
  • FIG. 27 is a plan view of the antenna shown in FIG. 26 according to a fourth embodiment of the present invention
  • FIG. 28 is a first antenna unit of FIG. 26 according to a fourth embodiment of the present invention
  • Main view 29 is a front view of the second antenna unit of FIG. 26 according to the fourth embodiment of the present invention
  • FIG. 30 is an exploded view of the structure of the antenna according to the fifth embodiment of the present invention
  • FIG. 31 is a diagram showing the fifth embodiment of the present invention.
  • FIG. 32 is a plan view of a multi-antenna assembly of the antenna of FIG. 30 according to a fifth embodiment of the present invention
  • FIG. 33 is a first antenna of the multi-antenna assembly of FIG. 32 according to the fifth embodiment of the present invention
  • FIG. 34 is a schematic diagram showing the size of an antenna unit of a second antenna group of the multiple antenna assembly shown in FIG. 32 according to a fifth embodiment of the present invention
  • 35 is a simulation diagram of a low-band voltage standing wave ratio of the multi-antenna assembly shown in FIG. 30 and FIG. 31 according to a fifth embodiment of the present invention
  • FIG. 33 is a first antenna of the multi-antenna assembly of FIG. 32 according to the fifth embodiment of the present invention
  • FIG. 34 is a schematic diagram showing the size of an antenna unit of a second antenna group of the multiple antenna assembly shown in FIG. 32 according to a fifth embodiment of the present invention
  • 35 is a simulation diagram of a low-band voltage standing wave ratio of the multi-ant
  • FIG. 36 is a view showing the above-described multi-antenna assembly at a frequency of 2.45 GHz according to the fifth embodiment of the present invention
  • 37 is a simulation diagram of a high-band voltage standing wave ratio of the multi-antenna assembly shown in FIG. 30 and FIG. 32 according to a fifth embodiment of the present invention
  • FIG. 38 is a diagram showing the above-described multi-antenna assembly at a frequency according to a fifth embodiment of the present invention
  • the pattern is at 5.72 GHz.
  • a first embodiment of the present invention relates to an antenna unit including a dielectric substrate and an antenna conductor attached to the dielectric substrate.
  • the maximum gain direction of the antenna unit is consistent with the extending direction of the dielectric substrate, that is, the antenna unit is end-fired. antenna.
  • end-fire antennas There are a variety of end-fire antennas, and several end-fire antennas will be described in the first embodiment of the present invention.
  • the dielectric substrate is made of a material having a dielectric constant of less than 10 and a loss tangent of less than 0.02, preferably a material having a dielectric constant of less than 6.5 and a loss tangent of less than 0.009.
  • the material may be a pure material or a composite of two or more materials.
  • the dielectric substrate is an epoxy resin plate, a Teflon plate, a Teflon plate, a halogen-free plate, a Rogers high-frequency plate, or a ceramic plate.
  • the dielectric substrate can also be made of a composite material composed of a fiber cloth and an epoxy resin crosslinking reaction compound.
  • the dielectric substrate is made of a metamaterial board including a substrate and a microstructure attached to the substrate.
  • the size of the microstructure is less than one-half, preferably less than one-quarter, and most preferably less than one-sixth the wavelength of the electromagnetic wave corresponding to the operating frequency of the antenna element.
  • the antenna unit 4 of the first embodiment of the present invention includes a dielectric substrate 40 and is attached to the dielectric substrate.
  • the antenna conductor on 40, the antenna conductor includes a main vibrator and a director.
  • the dielectric substrate 40 is made of FR4, F4b materials, or other substrate materials used in existing antennas.
  • the main vibrator is connected to the feeder, and includes two conductor lines, which are a first conductor line 48 and a second conductor line 49, respectively, wherein the first conductor line 48 is electrically connected to the outer conductor of the coaxial line feeder, and the second conductor line 49 is electrically connected. Electrically connected to the core of the coaxial feeder.
  • the positions of the first conductor line 48 and the second conductor line 49 are interchangeable. As shown in FIG. 1, the first conductor line 48 and the second conductor line 49 are on the same straight line with a certain interval therebetween.
  • the director may have only one or a plurality of conductors, which are conductor wires attached to the surface of the dielectric substrate 40.
  • the conductor lines constituting the director are parallel to each other and are located on the same side of the main oscillator to enhance the electromagnetic wave intensity on the side of the main oscillator.
  • the specific structure is shown in Fig. 1. Show.
  • the third conductor line 45, the fourth conductor line 46, and the fifth conductor line 47 in FIG. 1 respectively constitute three directors, and the three directors are arranged in parallel with each other and with the first conductor line constituting the main vibrator. 48.
  • the second conductor line 49 is parallel.
  • the directors may not be parallel or parallel to the main vibrator.
  • the lengths of the three directors may be the same or different, and the length is equal for the electromagnetic wave guiding effect.
  • the number of directors may be three, or two or even one, or more than three.
  • the straight line where the main vibrator is located is parallel to any one of the above conductor lines and the total length is larger than any one of the above conductor lines.
  • the center of the main vibrator is on the same straight line as the three center points of the first, second and third conductor lines.
  • the first to fifth conductor lines are each made of a conductive material, preferably a metal wire such as copper, aluminum or the like.
  • the director is a scattering structure composed of a conductor material disposed along the direction of propagation of the electromagnetic wave, and the structure is not limited to the shape of the parallel wires described above, and may be a straight line or a curve whose curves or line widths are not completely equal.
  • the main oscillator can be a straight line or a curved line, and the line widths of the conductor lines can be equal or not equal.
  • the main vibrator may also be an open curve loop or an open fold loop, such as a diamond ring, a circular ring, a rectangular ring or a triangular ring or a polygonal ring that is open at either corner.
  • the dielectric substrate comprises two surfaces, and at least one of the directors is disposed on another surface different from the surface on which the main vibrator is located.
  • the first embodiment of the present invention also protects a multi-antenna assembly, as shown in Fig. 2, comprising a dielectric reflecting surface 1 and the above-described antenna unit 4 mounted on the dielectric reflecting surface 1.
  • a multi-antenna assembly as shown in Fig. 2, comprising a dielectric reflecting surface 1 and the above-described antenna unit 4 mounted on the dielectric reflecting surface 1.
  • the medium reflecting surface 1 is for reflecting radio waves used by any of the antenna elements 4, and the radio waves used are electromagnetic waves generated by each antenna unit or electromagnetic waves received by each antenna unit.
  • the reflective media face 1 can be made of copper or other conductive material and can have a non-planar surface. It can be understood that the reflective medium surface 1 may have discontinuous points, such as a mesh surface structure or a hole-opening function to realize a dielectric surface function, wherein the mesh structure or the size of the hole is smaller than the multi-antenna. One tenth of the wavelength of the radio wave used by the component.
  • the dielectric reflecting surface may also be a conductive microstructure having a geometric pattern, and the conductive microstructure may be of any shape, and as long as it is made of a conductive material, radio waves can be reflected.
  • Conductive microstructure The size is less than one-half, preferably less than one-quarter, and most preferably less than one-sixth of the wavelength corresponding to the radio wave frequency used by the antenna group.
  • the conductive microstructures may be arranged according to a certain regularity or may be randomly arranged on a bottom plate.
  • the medium reflecting surface 1 and the director on each antenna unit 4 are respectively located on both sides of the main vibrator of the antenna unit 4, wherein the dielectric reflecting surface 1 is a reflector, the first conductor line 48 and the second conductor line of the main vibrator 49 constitutes an active vibrator, and the third, fourth, and fifth conductor lines constitute three directors.
  • the main vibrator and the director of the present invention adopt the form of a conductor wire instead of a metal tube, the volume is greatly reduced, the structure is more compact, and the antenna continues the good directivity of the Yagi antenna.
  • the plurality of antenna elements 4 share a dielectric reflecting surface 1, which can also save space and reduce the volume of the antenna.
  • they are preferably arranged in accordance with a certain regularity.
  • each antenna unit 4 there are three identical antenna units 4, and the dielectric substrate 40 of each antenna unit 4 is vertically mounted on the dielectric reflecting surface 1, three antenna units are mutually 60 degrees, and the dielectric substrate 40 of the three antenna units 4 is along The respective surface directions are extended and intersect to form an equilateral triangle.
  • the three antenna elements 4 can also be arranged in another manner, that is, the dielectric substrate 40 of each antenna unit 4 is also mounted perpendicularly on the dielectric reflecting surface 1 and the three antenna elements 4 are 120 degrees apart from each other.
  • the straight line is an extended intersection line of the surfaces of any two dielectric substrates, and the distances of the three antenna elements 4 to the extended intersection line are equal.
  • the antenna assembly of the present invention does not necessarily have only three antenna elements, and may have only one, two or more than three.
  • the antenna elements are also not necessarily arranged in the manner of the above-mentioned equally divided angles, and may also be arranged in an array or in a random manner.
  • the antenna unit 4 is incomplete. The same, when the respective operating frequencies are different, will be divided into different antenna groups according to different operating frequencies.
  • the entirety of the medium reflecting surface 1 having at least one antenna group is referred to as a multi-antenna assembly. As shown in FIG.
  • the multi-antenna assembly in the first embodiment of the present invention has two antenna groups, each antenna group includes three identical antenna units, and hereinafter, a large-sized antenna unit is referred to as a first antenna unit 2.
  • the antenna group formed by three identical first antenna elements 2 is referred to as a first antenna group.
  • the antenna unit having a small size is referred to as a second antenna unit 3, and the antenna group composed of three identical second antenna units 3 is referred to as a second antenna group. Since the size of the first antenna unit 2 is larger than that of the second antenna unit 3, the first antenna unit 2 and the medium reflecting surface 1 are formed.
  • the operating frequency of the antenna is lower than the antenna formed by the second antenna unit and the dielectric reflecting surface 1.
  • the multi-antenna assembly of this embodiment belongs to a dual-band antenna.
  • the main factor affecting the operating frequency here is the size of the main vibrator. Therefore, even if the sizes of the dielectric substrates of the first antenna unit 2 and the second antenna unit 3 are the same, as long as the main vibrator size of the first antenna unit 2 is larger than the second
  • the main oscillator of the antenna unit 3 then the former's operating frequency is usually lower than the latter.
  • the dielectric substrate of each antenna unit is perpendicular to the dielectric reflecting surface 1 and is mounted such that the director of the antenna unit and the dielectric reflecting surface 1 are located on both sides of the main unit of the antenna unit. As shown in FIG.
  • the three first antenna elements 2 are 120 degrees apart from each other, and the same straight line is the extended intersection line of the three dielectric substrate surfaces, and the distances of the three first antenna elements 2 to the extended intersection line are both equal. It can also be understood that the three first antenna units 2 are rotated at the same point, and any of the first antenna units 2 is rotated by 120 degrees with the center of rotation and then overlaps with the other first antenna unit 2.
  • the three second antenna elements 3 are arranged in the manner shown in FIG. 2, that is, the two sides are mutually 60 degrees, and the dielectric substrates of the three second antenna elements 3 are elongated in the surface direction and intersect to form an equilateral triangle.
  • a second antenna unit 3 is disposed between each of the two first antenna units 2, and the two first antenna units 2 are symmetrically positioned on both sides of the second antenna unit 3 such that the three first antenna units 2 are sequentially located.
  • each antenna group does not necessarily have only three antenna elements, and there may be only one, two or more than three.
  • the antenna elements are also not necessarily arranged in the manner of the above-mentioned equally divided angles, and may also be arranged in an array or in a random manner.
  • the dielectric substrate of the first antenna unit 2 is 95 mm long and 50 mm wide, and the first conductor line and the second conductor line are both 20mm long and 1.5mm wide.
  • the dielectric substrate of the first antenna unit 2 and the second antenna unit 3 has a length of 55 mm and a width of 25 mm, and the first conductor line and the second conductor line are both 9 mm long and 1 mm wide.
  • the dielectric reflecting surface 1 is a copper foil. Simulations are performed using a multi-antenna assembly having the above dimensions and arranged as shown in Figure 3, as shown in Figures 4 and 5.
  • Figure 4 and Figure 5 show that the multi-antenna module has very good impedance matching in the two frequency ranges of 2.4000 ⁇ 2.4800GHz and 5.7250 ⁇ 5.8500GHz.
  • the antenna unit, the antenna assembly, and the multi-antenna assembly of the first embodiment of the present invention have good directivity, and the working frequency band is 2.4 GHz and B 5.8 GHz, which belong to a dual-band antenna and has a frequency bandwidth.
  • the advantages of high gain and easy debugging Obviously, when the multi-antenna assembly of the present invention has three or more antenna groups, a multi-frequency antenna can be obtained, which is also within the scope of the present invention.
  • the antenna group of the present embodiment is directly mounted on the reflective surface of the medium, so that the medium reflecting surface corresponds to the mounting bottom plate.
  • the antenna group can be relatively fixed by other mounting structures before being connected to the reflective surface of the medium, or even not connected.
  • the reflective surface of the medium is only used to transmit and receive the antenna unit of the antenna group. Electromagnetic waves do not necessarily function as installations. Therefore, the antenna assembly and the multi-antenna assembly of the present invention are within the protection scope of the present invention as long as the medium reflection surface is located on one side of the antenna unit.
  • the antenna conductor may also be other structures, and the antenna conductor may include a first antenna conductor disposed on one of the surfaces of the dielectric substrate and a second antenna conductor disposed on the other surface.
  • each of the antenna units includes a dielectric substrate 34, a first antenna conductor 32 attached to the side surface of the dielectric substrate 34, and another substrate 34 attached to the dielectric substrate 34.
  • a reflector 33 is disposed on the outside of each antenna unit, and the reflector 33 has an opening structure with a small end at one end, and the opening faces the maximum gain direction of the enclosed antenna unit.
  • the antenna unit of the present invention may have other structures.
  • the maximum gain direction of the antenna unit here is consistent with the extending direction of the plane of the dielectric substrate, including the case where the maximum gain direction is smaller than the plane of the dielectric substrate, for example, when the angle between the two is less than 45 degrees, The direction of the maximum gain coincides with the direction in which the plane of the dielectric substrate extends.
  • a first embodiment of the present invention is also directed to a wireless interconnection device including a housing having an internal cavity, the antenna unit or the multi-antenna assembly housed in the cavity, and an antenna unit or a multi-antenna assembly
  • the antenna unit corresponds to the connected feeder.
  • the wireless interconnection device can be a variety of wireless devices such as a wifi ceiling antenna, a wireless router, and a television set top box.
  • the antenna unit and the multi-antenna assembly of the first embodiment of the present invention have good directivity and long-distance transmission performance because the maximum gain direction is consistent with the extending direction of the plane of the dielectric substrate, and the wireless interconnection device using the multi-antenna assembly Can also get good data transmission performance.
  • Second Embodiment Referring now in detail to the second embodiment described in Figures 8 to 17.
  • the antenna unit 4 of the second embodiment of the present invention includes a dielectric substrate 40 and a main vibrator and a director attached to the dielectric substrate 40.
  • the dielectric substrate 40 is made of FR4, F4b materials, or other substrate materials used in existing antennas.
  • the main vibrator is connected to the feeder, and includes two conductor lines, which are a first conductor line 48 and a second conductor line 49, respectively, wherein the first conductor line 48 is electrically connected to the outer conductor of the coaxial line feeder, and the second conductor line 49 is electrically connected. Electrically connected to the core of the coaxial feeder. Obviously, the positions of the first conductor line 48 and the second conductor line 49 are interchangeable. As shown in Fig. 8, the first conductor line 48 and the second conductor line 49 are on the same straight line with a certain interval therebetween.
  • the director may have only one or a plurality of conductors, which are conductor wires attached to the surface of the dielectric substrate 40.
  • the conductor lines constituting the director are parallel to each other and are located on the same side of the main oscillator to enhance the electromagnetic wave intensity on the side of the main oscillator.
  • the specific structure is shown in Fig. 8. Show.
  • the third conductor line 45, the fourth conductor line 46, and the fifth conductor line 47 in FIG. 8 respectively constitute three directors, and the three directors are arranged in parallel with each other and with the first conductor line constituting the main vibrator. 48.
  • the second conductor line 49 is parallel.
  • the lengths of the three directors may be the same or different, and the length is equal for the electromagnetic wave guiding effect.
  • the number of directors may be three, or two or even one, or more than three.
  • the influence of the director on the electromagnetic field is less than five, and in order to save space and materials, it is preferable to have three directors.
  • three points of the center point of the third, fourth, and fifth conductor lines 45, 46, 47 are on a straight line, and the line is perpendicular to any one of the three conductor lines.
  • the straight line where the main vibrator is located is parallel to any one of the above conductor lines and the total length is larger than any one of the above conductor lines.
  • the center of the main vibrator is on the same line as the three center points of the first, second and third conductor lines. .
  • the first to fifth conductor lines are each made of a conductive material, preferably a metal wire such as copper, aluminum or the like.
  • a structure similar to the Yagi antenna can be constructed.
  • Yagi antenna also known as Yagi-Uda antenna, usually becomes a "king" shape.
  • the main vibrator also known as the active vibrator
  • the main vibrator is in the middle of the word " ⁇ " and is connected to the feeder.
  • the reflector is located on one side of the main vibrator to weaken the side electromagnetic wave, and the length is slightly longer than the main vibrator; the director is located on the other side of the main vibrator, slightly shorter than the main vibrator, for enhancing the electromagnetic wave on the side of the side.
  • the advantage of Yagi antenna is that it has good directivity, and the effect of direction finding and long-distance communication is very good.
  • the existing Yagi antennas are made of metal rods, which are large in size and occupy space, and are mainly used outdoors. How to apply the advantages of Yagi antenna to small antennas such as ceiling antennas and wireless routers for wireless coverage is a problem to be solved by the present invention.
  • the second embodiment of the present invention also protects an antenna assembly, as shown in Fig. 9, comprising a dielectric reflecting surface 1 and the above-described antenna unit 4 mounted on the dielectric reflecting surface 1.
  • the medium reflecting surface 1 is for reflecting radio waves used by any of the antenna elements 4, and the radio waves used are electromagnetic waves generated by each antenna unit or electromagnetic waves received by each antenna unit.
  • the reflective media face 1 can be made of copper or other conductive material and can have a non-planar surface.
  • the reflective medium surface 1 may have discontinuous points, such as a mesh surface structure or a hole-opening function to realize a dielectric surface function, wherein the mesh structure or the size of the hole is smaller than the multi-antenna.
  • the medium reflecting surface 1 and the director on each antenna unit 4 are respectively located on both sides of the main vibrator of the antenna unit 4, and integrally form a miniaturized Yagi antenna, wherein the medium reflecting surface 1 is the above reflector, the main vibrator
  • the first conductor line 48 and the second conductor line 49 constitute the above-described active vibrator, and the third, fourth, and fifth conductor lines constitute three directors.
  • the main vibrator and the director of the present invention adopt the form of a conductor wire instead of a metal tube, the volume is greatly reduced, the structure is more compact, and the antenna continues the good directivity of the Yagi antenna.
  • the plurality of antenna elements 4 share a dielectric reflecting surface 1, which can also save space and reduce the volume of the antenna.
  • they are preferably arranged in accordance with a certain regularity.
  • the operating frequencies of the three antenna elements 4 are also substantially the same, forming an antenna group for transmitting and receiving radio waves of the operating frequency.
  • the dielectric substrate 40 of each antenna unit 4 is vertically mounted on the reflective surface 1 of the substrate, the three antenna units are 60 degrees apart, and the dielectric substrate 40 of the three antenna units 4 The extensions in the respective surface directions form an equilateral triangle.
  • the three antenna elements 4 can also be arranged in another manner, that is, the dielectric substrate 40 of each antenna unit 4 is also mounted perpendicularly on the dielectric reflecting surface 1 and the three antenna elements 4 are 120 degrees apart from each other.
  • the straight line is an extended intersection line of the surfaces of any two dielectric substrates, and the distances of the three antenna elements 4 to the extended intersection line are equal.
  • the antenna assembly of the present invention does not necessarily have only three antenna elements, and may have only one, two or more than three.
  • the antenna elements are also not necessarily arranged in the manner of the above-mentioned equally divided angles, and may also be arranged in an array or in a random manner.
  • the antenna unit 4 is incomplete. The same, when the respective operating frequencies are different, will be divided into different antenna groups according to different operating frequencies.
  • the whole of the medium reflecting surface 1 having a plurality of antenna groups is called a multi-antenna assembly.
  • the multi-antenna assembly in this embodiment has two antenna groups, each antenna group includes three identical antenna units, and hereinafter, a large-sized antenna unit is referred to as a first antenna unit 2.
  • the antenna group formed by three identical first antenna elements 2 is referred to as a first antenna group.
  • the antenna unit having a small size is referred to as a second antenna unit 3, and the antenna group composed of three identical second antenna units 3 is referred to as a second antenna group.
  • the multi-antenna assembly of this embodiment belongs to a dual-band antenna.
  • the main factor affecting the operating frequency here is the size of the main vibrator. Therefore, even if the sizes of the dielectric substrates of the first antenna unit 2 and the second antenna unit 3 are the same, as long as the main vibrator size of the first antenna unit 2 is larger than the second The main oscillator of the antenna unit 3, then the former's operating frequency is usually lower than the latter.
  • the dielectric substrate of each antenna unit is perpendicular to the dielectric reflecting surface 1 and is mounted such that the director of the antenna unit and the dielectric reflecting surface 1 are located on both sides of the main unit of the antenna unit.
  • the three first antenna elements 2 are 120 degrees apart from each other, and the same straight line is the extended intersection line of the three dielectric substrate surfaces, and the distances of the three first antenna elements 2 to the extended intersection line are both equal. It can also be understood that, in the top view shown in FIG. 11, the three first antenna units 2 are rotated at the same point, and any of the first antenna units 2 is rotated by 120 degrees with the center of rotation and the other first antenna. Unit 2 coincides.
  • the three second antenna elements 3 are arranged in the manner shown in FIG.
  • the two sides are mutually 60 degrees, and the dielectric substrates of the three second antenna elements 3 are elongated in the surface direction and intersect to form an equilateral triangle.
  • a second antenna unit 3 is disposed between each two first antenna units 2, and the two first antenna units 2 are symmetrically positioned on both sides of the second antenna unit 3, such that three The first antenna unit 2 is sequentially located in three adjacent intervals of the three second antenna elements 3.
  • the dimensions of the first antenna unit 2 and the second antenna unit 3 are as shown in FIG. 12 and FIG.
  • the dielectric substrate 20 of the antenna unit 2 has a length of 95.2 mm and a width of 52.6 mm, and the first conductor line 28 and the second conductor line 29 are each 22.8 mm long and 1.5 mm wide, and the third conductor line 25, the fourth conductor line 26, and the fifth conductor are Line 27 is 40 mm long and 1.5 mm wide.
  • the dielectric substrate 20 of the first antenna unit 2 and the second antenna unit 3 is 55 mm long and 25 mm wide, and the first conductor line 38 and the second conductor line 39 are each 9 mm long and 0.7 mm wide, and the third conductor line 35 and the fourth conductor line 36.
  • the fifth conductor line 37 is 17 mm long and 0.7 mm wide.
  • the dielectric reflecting surface 1 is a copper foil having a diameter of 200 mm.
  • the simulation was carried out using a multi-antenna assembly having the above dimensions and arranged as shown in Figs. 10 and 11, as shown in Figs. 14 to 17 .
  • Figure 14 shows the simulation diagram of the low frequency band standing wave ratio.
  • the coordinate parameters of the three points ml, m2, m3 marked in Figure 14 in the simulation diagram are: Name X(GHz) Y
  • FIG. 15 is a pattern of the above multi-antenna assembly in an electromagnetic field at a frequency of 2.45 GHz. As can be seen from the figure, the radiation directivity at this frequency is very good, and can meet the requirements of wireless signal transmission and reception.
  • Figure 16 shows the simulation diagram of the high frequency band standing wave ratio. The coordinate parameters of the two points ml, m2 marked in Figure 16 in the simulation diagram are:
  • FIG. 17 is a pattern of the above multi-antenna assembly in an electromagnetic field having a frequency of 5.725 GHz.
  • the radiation directivity at this frequency is very good, and can meet the requirements of wireless signal transmission and reception.
  • the antenna unit, the antenna assembly, and the multi-antenna assembly designed according to the Yagi antenna principle have good directivity, and the working frequency bands are two frequency bands of 2.4 GHz and 5.8 GHz, belonging to a dual-frequency antenna, and having a frequency bandwidth and a gain. High and easy to debug advantages.
  • the multi-antenna assembly of the present invention has three or more antenna groups, a multi-frequency antenna can be obtained, which is also within the scope of the present invention.
  • the antenna group of the present embodiment is directly mounted on the reflective surface of the medium, so that the medium reflecting surface corresponds to the mounting bottom plate.
  • the antenna group can be relatively fixed by other mounting structures before being connected to the reflective surface of the medium, or even not connected.
  • the reflective surface of the medium is only used to reflect the electromagnetic waves emitted and received by the antenna unit of the antenna group, and does not necessarily function as a mounting.
  • FIG. 18 is a schematic structural view of an embodiment of an antenna unit according to a third embodiment of the present invention.
  • the antenna unit 2 includes a dielectric substrate 21 and a director 22 and a vibrator 23 attached to the dielectric substrate 21 (with a main oscillator). Correct Should).
  • the dielectric substrate 21 is made of FR4 or F4b material, or a substrate material used in other existing antennas.
  • the dielectric substrate 21 includes two surfaces, and the director 22 and the vibrator 23 are disposed on the same surface of the dielectric substrate 21.
  • Both the director 22 and the vibrator 23 are conductor strips, and the director 22 may be three, or two or even one, or more than three, and only one is provided in the present embodiment.
  • a plurality of directors may be disposed, and the conductor strips constituting the director are arranged in parallel on the dielectric substrate. The spacing of the conductor strips is better for the electromagnetic wave guiding effect, and preferably the length is equal. The effect on the electromagnetic field is less changed after more than five directional devices, preferably three directors. In order to save space and materials, this embodiment uses a director.
  • the director 22 is a straight conductor strip, and a curved conductor strip may be used.
  • a curved conductor strip having a large curvature or a wave-shaped conductor strip is used.
  • the vibrator 23 has an open rhombic ring shape, and the opening is disposed at a corner of the rhombic back of the diverter 22.
  • the part of the conductor strip at the opening has a part of the upper and lower overlapping, and the overlapping portions are spaced apart to form an opening and overlap.
  • the partial conductor strips form two L-shaped structures, the two longer sides of the two L-shaped structures are opposite, and the two shorter sides are respectively on the longer sides of the longer sides, respectively on the two longer sides of the L-shaped
  • a feeding point 231 and a grounding point 232 are provided.
  • the feeding point 231 is disposed on the upper L-shaped longer side
  • the grounding point 232 is disposed on the lower L-shaped longer side, which can conveniently realize the vertical of the antenna. Direct feed.
  • the vibrator 23 may be an open curve ring or an open fold ring, and the open curve ring may be an open elliptical ring, an open stitching hyperbola or a parabola ring, an open wavy line, etc., and the open fold ring includes various openings. Polygon rings of equal length and irregular polygon rings of openings.
  • the guide 22 and the vibrator 23 are disposed on the same surface of the dielectric substrate 21, and the guide 22 may be disposed on a surface different from the surface of the dielectric substrate 21 where the vibrator 23 is located, when the guide 22 has a plurality of At least one of the guides may be disposed on a surface different from the surface of the dielectric substrate 21 on which the vibrator 23 is located.
  • FIG. 19 is a schematic structural diagram of an embodiment of a multi-antenna assembly according to a third embodiment of the present invention.
  • a multi-antenna assembly includes an antenna group and a dielectric reflector 1 , wherein the antenna group includes only one antenna group. The antenna unit 2, therefore, will not be described in detail.
  • the dielectric reflector 1 generally uses a copper clad laminate, and some embodiments use a dielectric substrate with a metal mesh.
  • 20 and FIG. 21 are top views of further embodiments of a multi-antenna assembly.
  • the multi-antenna assembly includes two antenna groups, each antenna group including three antenna units 2 and an antenna. Unit 3,
  • the antenna unit 2 and the antenna unit 3 may be antenna units of the same structure, but differ in size, thereby generating an effect of radiating electromagnetic waves in different frequency bands.
  • the antenna unit 2 and the antenna unit 3 of the two antenna groups are evenly distributed on the dielectric reflector, and each antenna unit 2 is between the two antenna units 3, only in Fig. 21.
  • the multi-antenna assembly of the present invention may comprise one or more antenna elements.
  • the antenna elements are also not necessarily arranged in the manner of the above-mentioned equally divided angles, and may be arranged in a straight line or in an array or in a random manner.
  • Fig. 22 is a dimensional view of the antenna unit 2 of Fig. 19, wherein the guide 22 is 50 mm x 2 mm, the outer edge of the open diamond ring is 34 mm long, and the side length is 3.6 mm, and is arranged in accordance with the simulation shown in Fig. 19.
  • Figure 23 shows the S11 parameter map.
  • the coordinate parameters of the three points ml, m2, m3 marked in Figure 23 in the simulation diagram are:
  • the above table shows that the multi-antenna assembly of the third embodiment of the present invention has very good impedance matching in the frequency range of 2.3994 ⁇ 2.4955 GHz.
  • 24 and 25 are patterns of the above-described multi-antenna assembly in an electromagnetic field having a frequency of 2.4 GHz.
  • the radiation directivity at this frequency is very good, and can meet the requirements of wireless signal transmission and reception.
  • the antenna group of the third embodiment is directly mounted on the dielectric reflector, and thus the dielectric reflector corresponds to the mounting substrate. Obviously, the antenna group can be relatively fixed by other mounting structures before being connected to the dielectric reflector, or even not connected.
  • the antenna (corresponding to the multi-antenna assembly) of the fourth embodiment of the present invention includes: a reflector 4, and at least one antenna element array (this embodiment) In the example, an antenna unit array). All antenna element arrays are disposed on the reflective surface side of the reflector 4. If the reflector The two opposite faces are reflective surfaces, and the antenna element array is the smallest unit, which can be disposed on both sides of the reflective surface.
  • the antenna unit array includes a plurality of first antenna units 2 having a first operating frequency band and at least one second antenna unit 6 having a second operating frequency band, the plurality of first antenna units 2 In one week, the second antenna unit 6 is located in the first antenna unit 2 of the week.
  • each antenna element array is composed of three first antenna units 2 having a first operating frequency band and a second antenna unit 6 having a second operating frequency band.
  • the second working frequency band is smaller than the first working frequency band.
  • the first working frequency band or the second working frequency band may be 4.9 GHz to 6 GHz.
  • the first working band or the second working band may be 5 GHz to 5.9 GHz.
  • the first working band or the second working band may be 2 GHz to 2.6 GHz.
  • the first working band or the second working band may be 2.4 GHz to 2.5 GHz.
  • each of the first antenna elements 2 is fixed to the dielectric substrate 21 vertically on the reflecting surface side of the reflector 4, and the main vibrator 22 formed on the dielectric substrate 21 and directed The device 29 (shown in Figure 28) is constructed.
  • the second antenna unit 6 is composed of a dielectric substrate 61 vertically fixed on the reflection surface side of the reflector 4, and a main vibrator 62 and a director 69 (shown in FIG. 29) formed on the dielectric substrate 61. Composition. Further, the position of the dielectric substrates 21 of the three first antenna units is shown in FIG.
  • the three dielectric substrates 21 each have a vertical plane perpendicular to the reflecting surface, and then three of the three dielectric substrates 21 The median planes intersect at a line. At this time, the angle between each adjacent two of the median planes is 120°; the dielectric substrate 61 of the second antenna unit 6 is arranged to be: perpendicular to the three first One of the dielectric substrates 21 of the antenna unit.
  • the other two dielectric substrates in the dielectric substrate 21 of the three first antenna units 2 except for the medium perpendicular to the dielectric substrate 61 of the second antenna unit 6) Outside the substrate, it is mirror-arranged with respect to the dielectric substrate 61 of the second antenna unit 6.
  • the three dielectric substrates 21 disposed at intervals of 120° from each other as described above, and the dielectric substrates 61 perpendicular to one of the dielectric substrates 21 are spaced apart from each other.
  • the projections of the dielectric substrate 21 of the three first antenna elements 2 and the dielectric substrate 61 of the second antenna unit 6 on the reflecting surface of the reflector 4 are spaced apart from each other.
  • each of the first antenna unit 2 and the second antenna unit 6 has: an outer side surface for arranging the main vibrator and the director, an inner side opposite to the outer side, and the outer side and the inner side Parallel and equidistant median planes.
  • an antenna unit array of the antenna according to the fourth embodiment of the present invention may be configured as: The opposite two of the respective intermediate planes of the dielectric substrate 21 of one antenna unit The intersection of the side extension faces constitutes a regular triangular prism, and the intermediate plane of the dielectric substrate 61 of the second antenna unit is located on an angular bisector of the regular triangular prism.
  • each of the inner sides of the dielectric substrate 21 of the three first antenna elements has good isolation when the linear distance between the center points is in the range of 30-40 mm.
  • all of the main vibrators 22, 62, and the directors 29, 69 of the fourth embodiment of the present invention are wires, rather than the metal tubes of the prior art Yagi antenna. These wires may be any of copper wire, aluminum wire or silver wire. Further, the main vibrators 22, 62, and the directors 29, 69 may be the same conductor material.
  • the reflector 4 and the director 29 are respectively located on opposite sides of the main vibrator 22 along the outer normal direction of the reflecting surface.
  • the positional relationship between the main vibrator 22 and the director 29 is set to be sequentially arranged away from the reflecting surface of the reflector 4 in the outer normal direction perpendicular to the reflecting surface of the reflector 4.
  • Each of the main vibrators 22 is constituted by a first wire 23 and a second wire 25 which are arranged at intervals and which are on the same straight line
  • the director 29 of the first antenna unit 2 is constituted by at least one in-line wire 27.
  • the in-line conductor 27 can have 2-16 strips, of which 5 are preferred.
  • Each of the in-line conductors 27 is parallel to the first conductor 23 and the second conductor 25 of the same antenna unit, and is located on the same side of the main oscillator 22 in the same antenna unit.
  • the positional relationship between the main vibrator 62 and the director 69 is set to be sequentially arranged along the reflecting surface away from the reflector 4.
  • Each of the main vibrators 62 is constituted by a first wire 62 and a second wire 65 which are arranged at intervals and which are on the same straight line
  • the director 69 of the second antenna unit 6 is constituted by at least one in-line wire 67.
  • the in-line conductors 67 may have 2-16 strips, wherein when the first antenna unit 2 has 5 strips of in-line, the font of the second antenna unit is a font.
  • the number of wires is preferably three.
  • Each of the in-line wires 67 is parallel to the first wire 63 and the second wire 65 of the same antenna unit, and is located on the same side of the main vibrator 62 in the same antenna unit.
  • all of the in-line conductors are away from the first and second conductors in a direction perpendicular to the first and second conductors in the same antenna unit. And arranged in order at intervals.
  • the number of the in-line conductors 27 constituting the director 29 in the first antenna unit 2 may be greater than The number of in-line conductors 67 constituting the director 69 in the second antenna unit 6.
  • the material, length, width, and thickness of each of the in-line conductors 27 in the first antenna unit 2 are the same; and the total length of the main vibrators 22 in the first antenna unit 2 , greater than the length of each of the in-line conductors 27 in the first antenna unit 2.
  • each of the in-line conductors 67 in the second antenna unit 6 are the same, and the total length of the main vibrators 62 in the second antenna unit 6 is greater than that of the second antenna unit 6.
  • the length of each of the in-line wires 67 in the middle It can also be seen from FIG. 28 that the perpendicular lines of each of the first-shaped conductors 27 in the first antenna unit 2 perpendicular to the longitudinal direction thereof are on the same straight line, and the intermediate vertical lines pass through the first antenna unit. 2 The center position of the total length of the main vibrator. It can also be seen from FIG.
  • the perpendicular lines of each of the in-line conductors 67 in the second antenna unit 6 perpendicular to the longitudinal direction thereof are all on the same straight line, and the center line also passes through the second line.
  • the center position of the total length of the main vibrator 62 in the antenna unit 6. 26 to 29, the dielectric substrate 21 of the three first antenna units 2 and the dielectric substrate 61 of the second antenna unit 6 may be perpendicular to the reflective surface of the reflector 4.
  • the dielectric substrate 21 and the dielectric substrate 61 are both rectangular, and their longitudinal directions are perpendicular to the reflecting surface of the reflector 4.
  • the dielectric substrate 21 in the first antenna unit and the dielectric substrate 61 in the second antenna unit are all printed circuit boards.
  • the dielectric substrates 21 and 61 may be made of FR4 material or other substrate materials used in existing antennas.
  • various methods of the prior art can be employed. For example, a conductor layer is plated on the surface of the dielectric substrates 21, 61, and then the conductor layer is selectively etched to obtain a corresponding in-line conductor, and a first conductor and a second conductor. Of course, other processes such as silk screen printing and laser engraving are also possible.
  • the reflector 4 of the antenna of the fourth embodiment of the present invention as shown in Fig.
  • the reflector 4 may be a reflecting plate, and the reflecting surface of the reflecting plate is a conductor reflecting surface, that is, the material of the reflecting surface is a conductor.
  • the conductor reflecting surface is any one of a copper reflecting surface, an aluminum reflecting surface, an alloy reflecting surface, and a silver reflecting surface. It will be apparent that all of the antenna element arrays in the antenna share one of the conductor reflecting surfaces. For example, for one antenna element array, the dielectric substrates constituting each antenna unit of the one antenna element array are fixed on the reflection surface side of the same reflector. It is also shown in Fig. 27 that the reflecting plate of the antenna is preferably a circular reflecting plate, and of course the shape may be other shapes than a circular shape, such as a polygon or the like.
  • the first antenna unit can operate independently of the second antenna unit, and only a single first antenna unit can work independently.
  • the second antenna unit can also operate independently of all first antenna units.
  • the number of antenna element arrays is not limited to the above one, and may be any number, except for the case where the number of antenna element arrays is different, and the foregoing has an antenna element array according to the fourth embodiment of the present invention. the same.
  • the positional relationship between each two antenna element arrays may be determined on a case-by-case basis, with no special requirements. It is further preferred that all of the antenna element arrays can be arranged on the same reflective surface side of the reflector.
  • any of the aforementioned antennas of the present invention is used for a fixed line transportation system, for example, a subway transportation system, a light rail transit system, an air transportation system, a marine transportation system, a highway transportation system, a submarine tunnel transportation system, or a bus transportation. Any of the systems, etc.
  • the antenna of the present invention may be a bridge antenna of a subway wireless coverage vehicle-to-ground system.
  • the antenna of the present invention can be used for bridging between train signals and external network signals as well as for data transmission.
  • Fifth Embodiment Referring now in detail to the fifth embodiment described in FIGS. 30 to 38.
  • the antenna of the fifth embodiment of the present invention includes an upper case 4, a lower case 42, a multi-antenna assembly, and a mounting board 41.
  • the upper casing 4 is a cap-shaped casing, and is engaged with the plate-shaped lower casing 42 to form a closed cavity.
  • the multi-antenna assembly and the mounting plate 41 are located in the cavity.
  • the overall structure of these components is shown in Figure 31.
  • the antenna has the advantages of small size, light weight and beautiful appearance. As shown in FIGS.
  • the multi-antenna assembly includes a dielectric reflecting surface 1 and at least one antenna group on the same side of the dielectric reflecting surface 1.
  • the antenna group here is defined as a set of one or more antenna elements in the same frequency band of the operating frequency (the frequency of the electromagnetic wave used). Therefore, when there are a plurality of antenna groups (including two), the electromagnetic wave frequencies used by the plurality of antenna groups are different from each other.
  • the different frequency bands here refer to the frequency range applicable in one channel, for example, not less than 50 MHz.
  • the multi-antenna assembly in this embodiment has two antenna groups, each antenna group includes three identical antenna units, and hereinafter, a large-sized antenna unit is referred to as a first antenna unit 2.
  • the antenna group formed by three identical first antenna elements 2 is referred to as a first antenna group.
  • the antenna unit having a small size is referred to as a second antenna unit 3, and the antenna group composed of three identical second antenna units 3 is referred to as a second antenna group. Since the size of the first antenna unit 2 is larger than that of the second antenna unit 3, the antenna composed of the first antenna unit 2 and the medium reflecting surface 1 has an operating frequency lower than that of the second antenna unit and the medium reflecting surface 1. Therefore, the multi-antenna assembly of this embodiment belongs to a dual-band antenna.
  • the first antenna unit 2 includes a dielectric substrate 20 and a main vibrator and a director attached to the dielectric substrate 20.
  • the dielectric substrate 20 is made of FR4, F4b materials, or other substrate materials used in existing antennas. It should be noted that the main factor affecting the operating frequency here is the size of the main vibrator. Therefore, even if the sizes of the dielectric substrates of the first antenna unit 2 and the second antenna unit 3 are the same, as long as the main vibrator size of the first antenna unit 2 is the same. More than the main oscillator of the second antenna unit 3, the former's operating frequency is usually lower than the latter.
  • the dielectric substrate 20 of each of the first antenna units 2 is perpendicular to the dielectric reflecting surface 1 and is fixedly mounted on the mounting board 41 by plugging, and then the pins of each antenna unit pass through the mounting board 41 and pass through the medium.
  • the reflecting surface 1 and the lower case 42 are thus connected to an external circuit.
  • the mounting of each antenna unit is such that the director of the antenna unit and the dielectric reflecting surface 1 are located on both sides of the main unit of the antenna unit.
  • the main vibrator is connected to the feed line, and includes two conductor lines, which are a first conductor line 28 and a second conductor line 29, respectively, wherein the first conductor line 28 is electrically connected to the outer conductor of the coaxial line feed line, and the second conductor line 29 is electrically connected. Electrically connected to the core of the coaxial feeder. Obviously, the positions of the first conductor line 28 and the second conductor line 29 are interchangeable. As shown in Fig.
  • the first conductor line 28 and the second conductor line 29 are on the same straight line with a certain interval therebetween.
  • the conductor lines constituting the director are parallel to each other and are located on the same side of the main oscillator to enhance the electromagnetic wave intensity on the side of the main oscillator.
  • the specific structure is shown in Figure 33. Show.
  • the third conductor line 25, the fourth conductor line 26, and the fifth conductor line 27 in Fig. 33 respectively constitute three directors, and the three directors are arranged in parallel with each other and with the first conductor line constituting the main vibrator. 28.
  • the second conductor line 29 is parallel.
  • the lengths of the three directors may be the same or different, and the length is equal for the electromagnetic wave guiding effect.
  • the number of directors may be three, or two or even one, or more than three.
  • the influence of the director on the electromagnetic field is less than five, and in order to save space and materials, it is preferable to have three directors.
  • three points of the center point of the third, fourth, and fifth conductor lines 25, 26, 27 are on a straight line, and the line is perpendicular to any one of the three conductor lines.
  • the straight line where the main vibrator is located is parallel to any one of the above conductor lines and the total length is larger than any one of the above conductor lines.
  • the center of the main vibrator is on the same line as the three center points of the first, second and third conductor lines.
  • the first to fifth conductor lines are each made of a conductive material, preferably a metal wire such as copper, aluminum or the like.
  • the second antenna unit 3 also has a completely similar structure, and also includes the dielectric substrate 30 and the first conductor line 38 and the second conductor line 39 attached as the main vibrator on the dielectric substrate 30, and the third as the director.
  • the conductor line 35, the fourth conductor line 36, and the fifth conductor line 37 is applicable to the corresponding portion of the second antenna unit 3.
  • Yagi antenna also known as Yagi-Uda antenna
  • the main vibrator also known as the active vibrator
  • the reflector is located on one side of the main vibrator to weaken the side electromagnetic wave, and the length is slightly longer than the main vibrator; the director is located on the other side of the main vibrator, slightly shorter than the main vibrator, for enhancing the electromagnetic wave on the side of the side.
  • the dielectric reflecting surface 1 and the director on each antenna unit are respectively located on both sides of the main oscillator of the antenna unit, and integrally form a miniaturized Yagi antenna, wherein the dielectric reflecting surface 1 is the above reflector, and the first antenna
  • the first conductor line 28 and the second conductor line 29 of the main vibrator constitute the above-described active vibrator
  • the third, fourth, and fifth conductors 25, 26, and 27 lines constitute three directors. Since the main vibrator and the director of the present invention adopt the form of a conductor wire instead of a metal tube, the volume is greatly reduced, the structure is more compact, and the antenna continues the good directivity of the Yagi antenna.
  • the medium reflecting surface 1 is for reflecting radio waves used by any of the antenna elements 4, and the radio waves used are electromagnetic waves generated by each antenna unit or electromagnetic waves received by each antenna unit.
  • the reflective media face 1 can be made of copper or other conductive material and can have a non-planar surface. It can be understood that the reflective medium surface 1 may have discontinuous points, such as a mesh surface structure or a hole-opening function to realize a dielectric surface function, wherein the mesh structure or the size of the hole is smaller than the multi-antenna.
  • One tenth of the wavelength of the radio wave used by the component As shown in FIG.
  • the three first antenna elements 2 are 120 degrees apart from each other, and the same straight line is the extended intersection line of the three dielectric substrate surfaces, and the distances of the three first antenna elements 2 to the extended intersection line are both equal. It can also be understood that, in the top view shown in FIG. 32, the three first antenna units 2 are rotated at the same point, and any of the first antenna units 2 is rotated by 120 degrees with the center of rotation and the other first antenna. Unit 2 coincides.
  • the three second antenna elements 3 are arranged in the manner shown in FIG. 32, that is, the two sides are mutually 60 degrees, and the dielectric substrates of the three second antenna elements 3 are extended in the surface direction to form an equilateral triangle. As shown in FIG.
  • a second antenna unit 3 is disposed between each two first antenna units 2, and the two first antenna units 2 are symmetrically positioned on both sides of the second antenna unit 3, such that three The first antenna unit 2 is sequentially located in three adjacent intervals of the three second antenna elements 3.
  • the size of the first antenna unit 2 and the second antenna unit 3 are as shown in FIG. 33 and FIG. 34, wherein the medium of the first antenna unit 2 is as shown in FIG. 33 and FIG.
  • the substrate 20 is 95.2 mm long and 3 ⁇ 4 52.6 mm long.
  • the first conductor line 28 and the second conductor line 29 are both 22.8 mm long and 1.5 mm wide.
  • the third conductor line 25, the fourth conductor line 26, and the fifth conductor line 27 are each 40 mm long. , 1.5mm wide.
  • the dielectric substrate 20 of the first antenna unit 2 and the second antenna unit 3 is 55 mm long and 25 mm wide, and the first conductor line 38 and the second conductor line 39 are each 9 mm long and 0.7 mm wide, and the third conductor line 35 and the fourth conductor line are both long. 36.
  • the fifth conductor line 37 is 17 mm long and 0.7 mm wide.
  • the dielectric reflecting surface 1 is a copper foil having a diameter of 80 mm.
  • the simulation is carried out using a multi-antenna assembly having the above dimensions and arranged as shown in Figs. 30 and 32 as shown in Figs. 35 to 38. Among them, Figure 35 shows the simulation diagram of the low frequency band standing wave ratio.
  • the coordinate parameters of the three points ml, m2, m3 marked in Figure 35 in the simulation diagram are:
  • Figure 36 is a pattern of the above multi-antenna assembly in an electromagnetic field having a frequency of 2.45 GHz. As can be seen from the figure, the radiation directivity at this frequency is very good, and can meet the requirements of wireless signal transmission and reception.
  • Figure 37 shows the simulation diagram of the high-frequency standing wave ratio. The coordinate parameters of the two points ml, m2 marked in Figure 37 in the simulation diagram are:
  • FIG. 38 is a pattern of the above multi-antenna assembly in an electromagnetic field having a frequency of 5.725 GHz.
  • the radiation directivity at this frequency is very good, and can meet the requirements of wireless signal transmission and reception.
  • the antenna designed according to the Yagi antenna principle has good directivity, and the working frequency band is 2.4 GHz and B 5.8 GHz. It belongs to a dual-band antenna and has the advantages of high frequency bandwidth, high gain and easy debugging.
  • each antenna group of the present invention does not necessarily include three antenna elements, and Take only one antenna unit, or two or more than three.
  • the arrangement of the antenna elements is not necessarily required to be divided into spaces on the side of the medium reflecting surface, and may be arranged in other manners such as being arranged in parallel with each other.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明涉及一种天线单元,包括介质基板和附着在所述介质基板上的天线导体,所述天线单元的最大增益方向与所述介质基板板面延伸方向一致。本发明还涉及具有该天线单元的天线组件、多天线组件以及具有该天线单元、天线组件或多天线组件的无线互连设备。本发明的天线单元具有良好的方向性,且具有频带宽、增益高、易调试的优点,使得多天线组件和无线互连设备都具有很好的性能。

Description

天线单元、 天线组件、 多天线组件及无线互连设备 技术领域 本发明涉及无线通讯器件领域, 更具体地说, 涉及一种天线单元、 天线组件、 多 天线组件及无线互连设备。 背景技术 传统的分布式天线系统可以克服大尺度衰落和阴影衰落造成的信道路径损耗, 能 够在小区内形成良好的系统覆盖, 解决小区内的通信死角, 提高通信服务质量。 随着 无线移动互联网的高速发展,新的网络协议,如 IEEE 802.11a/g/b/n/ac等对无线移动互 联网设备和系统提出了更高的要求, 同时也对天线设计提出更高的技术参数要求。 因 此需要提供用于无线电子设备的改进的天线、 天线系统及及其应用, 例如, 其应用包 括无线接入设备、 MIMO通讯设备及无线路由设备等应用。 八木天线, 又称八木 -宇田天线,通常成 "王"字形。主振子(又称有源振子)居"王" 字中间, 与馈线相连。 反射器位于主振子一侧, 起削弱该侧电磁波的作用, 长度稍长 于主振子; 引向器位于主振子另一侧, 稍短于主振子, 用于增强所在的这一侧的电磁 波。 八木天线的优点是具有很好的方向性, 测向、 远距离通信的效果非常好。 但是现 有的八木天线都是用金属棒做成的, 体积大, 占用空间, 主要用于室外。 如何将八木 天线的优势应用在无线覆盖的小型天线如吸顶天线、 无线路由器等天线上, 是本发明 所要解决的问题。 此外, 现有的无线网络需求对天线的增益也提出了更高的要求。 已知中国发明专利 CN 102800954 A公开了一种天线单元,包括介质基板、用来与 馈线连接的主振子、 用来增强所在侧的无线电波的引向器, 主振子和引向器均为附着 在介质基板上的导体线。 上述专利还涉及一种天线组件, 包括用于反射天线组件所使 用的无线电波的介质反射面和位于介质反射面一侧的天线组, 天线组包括至少一个上 述天线单元, 且介质反射面、 每个天线单元的引向器分别位于相应的天线单元的主振 子两侧。 上述专利还涉及具有多个上述天线组的多天线组件。 上述专利的缺陷在于: 天线组件中各天线单元的布置方式使得天线组件的整体接收性能不良。 发明内容 针对上述技术问题, 本发明提供一种天线单元、 天线组件、 多天线组件及无线互 连设备。 具体地, 本发明提供一种基于八木天线原理的小型化的天线单元、 天线组件 及多天线组件。 进一步地, 本发明提供一种基于八木天线原理的小型化且具有高增益 的天线单元及多天线组件。 进一步地, 提供一种天线(多天线组件), 以至少使得天线 (多天线组件) 具有良好的整体接收性能。 本发明的第一方面提供一种天线单元, 包括介质基板和附着在所述介质基板上的 天线导体, 所述天线单元的最大增益方向与所述介质基板板面延伸方向一致。 进一步地,所述介质基板由介电常数小于 10、损耗角正切值小于 0.04的材料制成。 进一步地, 所述介质基板由介电常数小于 6.5、 损耗角正切值小于 0.009的材料制 成。 进一步地, 所述介质基板由一种或两种或两种以上材料制成。 进一步地, 所述介质基板为环氧树脂板、 聚四氟乙烯板、 铁氟龙板、 无卤素板、 罗杰斯高频板或陶瓷板。 进一步地, 所述介质基板由超材料板制成, 所述超材料板包括基板和附着在基板 上的微结构。 进一步地, 所述微结构的尺寸小于所述天线单元的工作频率所对应的电磁波波长 的二分之一。 进一步地, 所述微结构的尺寸小于所述天线单元的工作频率所对应的电磁波波长 的四分之一。 进一步地, 所述微结构的尺寸小于所述天线单元的工作频率所对应的电磁波波长 的六分之一。 进一步地, 所述天线导体包括用来与馈线连接的主振子、 用来增强无线所在侧的 无线电波的引向器, 所述主振子和引向器均为附着在所述介质基板上的导体线。 步地, 所述引向器为沿电磁波传播方向设置的由导体材料组成的散射结构, 进一步地, 所述主振子为直线或曲线,
行 进一步地, 所述主振子的导体线的线宽处处相等或不完全相等。 进一步地, 所述主振子为开口曲线环或开口折线环。 进一步地, 所述主振子为在任一角开口的菱形环、 圆形环、 矩形环或三角形环或 多边形环。 进一步地, 所述介质基板包括两表面, 至少一所述引向器设置在与所述主振子所 在表面不同的另一表面。 进一步地, 所述天线导体包括设置在所述介质基板其中一表面上的第一天线导体 和设置在另一表面上的第二天线导体。 进一步地, 所述天线单元包括多层介质基板, 天线导体设置在其中一层或多层介 质基板上。 进—步地, 所述导体线为金属线。 进—步地, 所述引向器有多个, 构成一组相互平行的导体线。 进—步地, 多个所述引向器的中心在同一直线上且所述直线垂直于所述引向器。 进 -步地, 所述主振子包括共线的两条导体线, 且分别与所述引向器的导体线平
进—步地, 所述主振子的总长度大于每个所述引向器的长度。 进— -步地, 所述天线导体包括间隔地设置在所述介质基板表面的主振子和至少一 引向器, 所述主振子和所述引向器均为导体条, 所述主振子的两端分别为馈电点和接 地点。 进一步地, 所述主振子为开口曲线环或开口折线环, 所述馈电点和所述接地点分 别位于所述开口的端部。 进一步地, 所述开口处的所述导体条部分重叠, 所述重叠部分间隔地形成所述开 π。 进一步地, 所述导体条为金属线、 非金属导电物质构成的线或金属与非金属组成 的导电线。 进一步地, 所述引向器有多个, 构成一组相互平行的导体条。 进一步地, 所述主振子为开口在任一角的菱形环。 进一步地, 所述介质基板包括两表面, 至少一所述引向器设置在与所述主振子所 在表面不同的另一表面。 本发明的第二方面提供一种天线组件, 包括用于反射所述天线组件所使用的无线 电波的介质反射面和位于所述介质反射面一侧的天线组, 所述天线组包括至少一个如 本发明第一方面中第 10至 31中任一项所述的天线单元, 且所述介质反射面、 每个所 述天线单元的引向器分别位于相应的天线单元的主振子两侧。 进一步地, 所述天线组包括三个相同的天线单元, 每个所述天线单元的介质基板 垂直于所述介质反射面,且三个所述天线单元互成 120度、 以同一直线为延长相交线、 且到所述延长相交线的距离均相等地设置。 进一步地, 所述天线组包括三个相同的天线单元, 每个所述天线单元的介质基板 垂直于所述介质反射面,三个天线单元互成 60度、且三个天线单元的介质基板沿各自 表面方向延长后相交构成正三角形地设置。 本发明的第三方面提供一种多天线组件, 包括介质反射面和安装在所述介质反射 面上的至少一个天线组, 不同天线组所使用的无线电波频率不相同, 每个天线组包括 至少一个如本发明第一方面中任一项所述的天线单元。 进一步地, 所述介质反射面为具有几何图案的导电微结构。 进一步地, 所述导电微结构的尺寸小于所述天线组所使用的无线电波频率所对应 的波长的二分之一。 进一步地, 所述导电微结构的尺寸小于所述天线组所使用的无线电波频率所对应 的波长的四分之一。 进一步地, 所述导电微结构的尺寸小于所述天线组所使用的无线电波频率所对应 的波长的六分之一。 进一步地, 所述多天线组件包括两个天线组, 分别为第一天线组和第二天线组, 且两个天线组的天线单元的主振子尺寸不同。 进一步地, 所述多天线组件包括两个天线组, 分别为第一天线组和第二天线组, 所述第一天线组和第二天线组包括相同数目的天线单元, 所述第一天线组的所述天线 单元被所述第二天线组的所述天线单元间隔地设置。 进一步地, 所述多天线组件包括两个天线组, 分别为第一天线组和第二天线组, 所述第一天线组和所述第二天线组分别包括各自相同的天线单元, 且各自的所述天线 单元呈角度阵列的均布在所述介质反射面上。 进一步地, 每个所述天线单元外部设置有一反射器。 进一步地, 所述反射器呈一端小一端大的开口结构, 且所述开口朝向所述天线单 元的最大增益方向。 进一步地, 包括至少两个天线组, 每个所述天线组的所述天线单元为根据本发明 第一方面中 10至 31中任一项所述的天线单元, 其中所述介质反射面、 每个所述天线 单元的引向器分别位于相应的天线单元的主振子两侧。 进一步地, 所述多天线组件包括两个天线组, 分别为第一天线组和第二天线组, 且前者的天线单元的主振子尺寸大于后者的天线单元的主振子尺寸。 进一步地, 所述第一天线组和第二天线组分别包括三个相同的天线单元, 每个所 述天线单元的介质基板垂直于所述介质反射面, 且所述第一天线组的三个天线单元互 成 120度、 以同一直线为延长相交线、 且到所述延长相交线的距离均相等地设置, 所 述第二天线组的三个天线单元互成 60度、且三个天线单元的介质基板沿表面方向延长 后相交构成正三角形地设置。 进一步地, 所述第二天线组的三个天线单元依次位于所述第一天线组的三个天线 单元的三个相邻间隔中。 本发明的第四方面提供一种多天线组件, 包括用于反射所述多天线组件所使用的 无线电波的介质反射板和位于所述介质反射板一侧的至少一天线组, 所述天线组包括 至少一个如本发明第一方面中第 10至 31中任一项所述的天线单元, 且所述介质反射 板、 每个所述天线单元的引向器分别位于相应的天线单元的主振子两侧。 进一步地, 所述多天线组件包括具有相同数目天线单元的第一天线组和第二天线 组, 所述第一天线组的所述天线单元被所述第二天线组的所述天线单元间隔地设置。 进一步地, 所述第一天线组和所述第二天线组分别包括各自相同的天线单元, 且 各自的所述天线单元呈角度阵列的均布在所述介质反射板上。 进一步地, 所述第一天线组和所述第二天线组分别包括三个天线单元。 进一步地, 所述第一天线组的所述天线单元和所述第二天线组的所述天线单元具 有尺寸不同的相似的结构。 进一步地, 所述多天线组件包括具有所述介质反射面的反射器以及设于所述介质 反射面上的至少一个天线单元阵列, 所述天线单元阵列包括两个所述天线组, 分别为 第一天线组和第二天线组, 所述第一天线组包括多个具有第一工作频段的第一天线单 元, 所述第二天线组包括至少一个具有第二工作频段的第二天线单元, 所述多个第一 天线单元围成一周, 所述第二天线单元位于所述一周第一天线单元之中。 进一步地, 所述第一天线单元和第二天线单元均分别具有垂直地固定在同一所述 反射面侧上的介质基板、 及形成于所述介质基板上的主振子和引向器。 进一步地, 所述第一天线单元有三个, 三个第一天线单元的介质基板各自具有的 与所述反射面垂直的中垂面汇交于一条线, 每相邻两中垂面之间夹角为 120°; 所述第 二天线单元的介质基板垂直于其中一个所述第一天线单元的介质基板。 进一步地, 所述三个第一天线单元的介质基板各自内侧面中, 每两个内侧面的中 心点之间的直线距离在 30-40mm的范围内。 进一步地, 所述三个第一天线单元的介质基板中的另两个介质基板, 相对于所述 第二天线单元的介质基板镜像布置。 进一步地, 在每个所述第一天线单元和第二天线单元中, 所述主振子和引向器之 间的位置关系设置为: 沿着所述介质反射面的外法线方向远离所述反射器的所述介质 反射面依次布置。 进一步地, 所述主振子、 以及引向器均为导线。 进一步地, 所述导线为铜导线、 铝导线、 银导线或合金导线中任一种。 进一步地, 所述主振子与所述引向器由相同材料的导线构成。 进一步地, 每个所述主振子由间隔布置的、 并且在同一直线上的第一导线和第二 导线构成, 所述第一天线单元的引向器和第二天线单元的引向器均由至少一条一字型 导线构成, 在同一天线单元中, 每条一字型导线均平行于该同一天线单元中的第一导 线和第二导线, 并且均位于该同一天线单元中主振子的同一侧。 进一步地, 所述第一天线单元的引向器和第二天线单元的引向器, 分别均由 2-16 条所述导线构成, 其中, 在同一天线单元中, 所有的一字型导线沿着垂直于在该同一 天线单元中第一导线和第二导线的方向依次间隔地布置。 进一步地, 所述第一天线单元中的构成引向器的一字型导线的数量、 大于所述第 二天线单元中的构成引向器的一字型导线的数量。 进一步地, 所述第一天线单元中每条一字型导线均相同, 其中, 所述第一天线单 元中主振子的总长度, 大于所述第一天线单元中每条所述一字型导线的长度。 进一步地, 所述第一天线单元中每条一字型导线的垂直于其长度方向的中垂线均 在同一直线上, 并且均穿过所述第一天线单元中主振子的总长度的中心位置。 进一步地, 所述第二天线单元中每条一字型导线均相同, 其中, 所述第二天线单 元中主振子的总长度, 大于所述第二天线单元中每条所述一字型导线的长度。 进一步地, 所述第二天线单元中每条一字型导线的垂直于其长度方向的中垂线均 在同一直线上, 并且均穿过所述第二天线单元中主振子的总长度的中心位置。 进一步地,所述反射器为反射平板,所述反射板的所述介质反射面为导体反射面, 所有天线单元阵列共用一个所述导体反射面。 进一步地, 所述天线用于交通系统。 进一步地, 所述交通系统为固定线路的地铁交通系统、 轻轨交通系统、 空运交通 系统、 海运交通系统、 高速公路交通系统、 海底隧道交通系统或公交车交通系统中任 一个。 进一步地, 所述第一天线单元的所述第一工作频段、 和所述第二天线单元的所述 第二工作频段为选自 1.8~12G的彼此各异的频段。 进一步地, 所述第一工作频段或第二工作频段为 4.9GHz~6GH。 进一步地, 所述第一工作频段或第二工作频段为 5GHz~5.9GHz。 进一步地, 所述第一工作频段或第二工作频段为 2GHz~2.6GHz。 进一步地, 所述第一工作频段或第二工作频段为 2.4GHz~2.5GHz。 本发明的第五方面提供一种无线互连设备, 包括: 本发明第一方面中任一项所述 的天线单元或本发明第二方面中任一项所述的天线组件或本发明第三方面及第四方面 中所述的多天线组件, 与所述天线单元对应的馈线以及容置所述天线单元或所述天线 组件或所述多天线组件的壳体。 进一步地, 还包括一控制所述天线单元或所述天线组工作的开关单元。 进一步地, 所述壳体包括相扣合形成封闭腔体的上壳与下壳, 还包括位于所述腔 体中的所述多天线组件。 进一步地,每个天线组包括至少一个所述天线单元,所述天线单元包括介质基板、 用来与馈线连接的主振子、 用来增强所在侧的无线电波的引向器, 所述主振子和引向 器均为附着在所述介质基板上的导体线, 且所述介质反射面、 每个所述天线单元的引 向器分别位于相应的天线单元的主振子两侧。 相对于现有技术, 本发明的有益效果在于: 由于最大增益方向与介质基板板面延 伸方向一致, 具有很好的方向性和远距离传输性能, 采用该多天线组件的无线互连设 备也能获得很好的数据传输性能。 相对于现有技术,本发明的有益效果还在于: 依据八木天线原理设计的天线单元、 天线组件、 多天线组件具有良好的方向性, 且具有频带宽、 增益高、 易调试的优点。 相对于现有技术,本发明的有益效果还在于: 依据八木天线原理设计的天线单元、 多天线组件能够满足天线小型化的要求, 能够改善无线网络的覆盖效果, 特别是应用 MIMO技术能够满足新的网络协议对天线的要求。 相比于现有技术, 本发明的有益效果还在于: (1 ) 本发明中, 三个第一天线单元 的介质基板的各自中垂面汇交于一条线, 每相邻两垂面之间夹角为 120°; 第二天线单 元的介质基板垂直于所述三个第一天线单元的介质基板之一, 这使得本发明天线整体 接收性能优良。 (2) 当本发明中三个所述第一天线单元的介质基板中每个的内侧面的 相反两侧延长面相交构成正三棱柱, 第二天线单元的介质基板的中间平面在该正三棱 柱内的其中一角平分面上时, 本发明天线整体接收性能更加优良。 (3 ) 进一步, 在本 发明天线为上述(2) 的布置的情形下, 并且所有第一天线单元的介质基板、 以及第二 天线单元的介质基板彼此没有直接物理接触而是相距一定距离时, 如果每相邻两个第 一天线单元的介质基板内侧面中心点之间的距离为 30-40mm, 则本发明天线具有良好 的隔离度。 附图说明 下面将结合附图及实施例对本发明作进一步说明: 图 1为本发明第一实施例的天线单元的结构示意图; 图 2为本发明第一实施例的具有图 1所示天线单元的多天线组件一实施例的结构 示意图; 图 3为本发明第一实施例的具有图 1所示天线单元的多天线组件另一实施例的结 构示意图; 图 4为本发明第一实施例的上述多天线组件在频率为 2.45GHz时的方向图; 图 5为本发明第一实施例的上述多天线组件在频率为 5.72GHz时的方向图; 图 6为本发明第一实施例的本发明的另一多天线组件的结构示意图; 图 7为本发明第一实施例的图 6所示多天线组件中的天线单元的结构示意图; 图 8为本发明第二实施例的天线单元的结构示意图; 图 9为本发明第二实施例的具有图 8所示天线单元的天线组件的结构示意图; 图 10为本发明第二实施例的具有至少两个天线组的多天线组件的结构示意图; 图 11为本发明第二实施例的图 10所示多天线组件的俯视图; 图 12为本发明第二实施例的图 10所示多天线组件的第一天线组的天线单元的尺 寸示意图; 图 13为本发明第二实施例的图 10所示多天线组件的第二天线组的天线单元的尺 寸示意图; 图 14为本发明第二实施例的图 10、 图 11所示多天线组件的低频段电压驻波比仿
图 15为本发明第二实施例的上述多天线组件在频率为 2.45GHz时的方向图; 图 16为本发明第二实施例的图 10、 图 11所示多天线组件的高频段电压驻波比仿
图 17为本发明第二实施例的上述多天线组件在频率为 5.72GHz时的方向图; 图 18为本发明第三实施例的天线单元一种实施方式的结构示意图; 图 19为本发明第三实施例的具有图 18所示天线单元的多天线组件的结构示意图; 图 20为本发明第三实施例的具有至少两个天线组的多天线组件的俯视图; 图 21 为本发明第三实施例的具有至少两个天线组的多天线组件的另一实施方式 的俯视图; 图 22为本发明第三实施例的图 19中天线单元的尺寸图; 图 23为本发明第三实施例的图 22所示多天线组件的 S11曲线图; 图 24、图 25为本发明第三实施例的图 22所示多天线组件在频率为 2.45GHz时的 方向图; 图 26为本发明第四实施例的天线 (多天线组件) 的一个实施例的立体图; 图 27为本发明第四实施例的图 26所示天线的俯视图; 图 28为本发明第四实施例的图 26中第一天线单元的主视图; 图 29为本发明第四实施例的图 26中第二天线单元的主视图; 图 30为本发明第五实施例的天线的结构爆炸图; 图 31为本发明第五实施例的图 30所示天线组装起来的结构示意图; 图 32为本发明第五实施例的图 30所示天线的多天线组件的俯视图; 图 33为本发明第五实施例的图 32所示多天线组件的第一天线组的天线单元的尺 寸示意图; 图 34为本发明第五实施例的图 32所示多天线组件的第二天线组的天线单元的尺 寸示意图; 图 35为本发明第五实施例的图 30、 图 31所示多天线组件的低频段电压驻波比仿 真图; 图 36为本发明第五实施例的上述多天线组件在频率为 2.45GHz时的方向图; 图 37为本发明第五实施例的图 30、 图 32所示多天线组件的高频段电压驻波比仿 真图; 图 38为本发明第五实施例的上述多天线组件在频率为 5.72GHz时的方向图。 具体实施方式 现在详细参考附图中描述本发明的各实施例。 为了全面理解本发明, 在以下详细 描述中提到了众多具体细节。 但是本领域技术人员应该理解, 本发明可以无需这些具 体细节而实现。 在其他实施方式中, 不详细描述公知的方法、 过程、 组件和电路, 以 免不必要地使实施例模糊。 第一实施例 首先详细参考附图 1至图 7中描述本发明第一实施例。 本发明第一实施例涉及一种天线单元, 包括介质基板和附着在介质基板上的天线 导体, 天线单元的最大增益方向与所述介质基板板面延伸方向一致, 也即该天线单元 为端射天线。 端射天线有多种, 本发明第一实施例中将对几种端射天线进行描述。 上述介质基板由介电常数小于 10、损耗角正切值小于 0.02的材料制成,优选介电 常数小于 6.5、 损耗角正切值小于 0.009的材料。 这种材料可以是一种纯材料构成, 也 可以是两种或两种以上材料构成的复合材料。 例如, 介质基板为环氧树脂板、 聚四氟 乙烯板、 铁氟龙板、 无卤素板、 罗杰斯高频板或陶瓷板。 介质基板也可以由纤维布以 及环氧树脂交联反应化合物构成的复合材料制成。 另外, 介质基板由超材料板制成, 所述超材料板包括基板和附着在基板上的微结构。 通常, 微结构的尺寸小于所述天线 单元的工作频率所对应的电磁波波长的二分之一, 优选小于四分之一, 最佳为小于六 分之一。 如图 1所示,本发明第一实施例的天线单元 4包括介质基板 40和附着在介质基板
40上的天线导体, 天线导体包括主振子和引向器。介质基板 40采用 FR4、 F4b材料制 成, 或者其他现有天线所采用的基板材料。 主振子用来与馈线连接, 包括两条导体线, 分别为第一导体线 48 和第二导体线 49, 其中第一导体线 48与同轴线馈线的外导体电连接, 第二导体线 49与同轴线馈线 的芯线电连接。 显然, 第一导体线 48、 第二导体线 49的位置可互换。 如图 1所示, 第一导体线 48和第二导体线 49在同一条直线上, 二者之间隔有一定间距。 引向器可以只有一个, 也可有多个, 均为附着在介质基板 40表面上的导体线。 当 引向器有多个时, 每个构成引向器的导体线相互平行, 且均位于主振子的同一侧, 用 来增强所处的主振子一侧的电磁波强度, 具体结构如图 1所示。 图 1中的第三导体线 45、 第四导体线 46、 第五导体线 47分别构成三个引向器, 三个引向器相互平行地排 布, 并与构成主振子的第一导体线 48、 第二导体线 49平行当然, 引向器之间可不平 行, 也不必与主振子平行。 三个引向器的长度可以相同, 也可以不同, 为了电磁波引 向效果更好, 优选长度相等。 另外, 引向器的数量可以为三个, 也可以为两个甚至一 个, 或者多于三个。 主振子所在的直线与上述任一条导体线平行且总长度大于上述任 一条导体线, 优选主振子的中心与上述第一、 第二、 第三导体线的三个中心点在同一 直线上。 上述第一至第五导体线均采用导电材料制成, 优选金属线, 例如铜、 铝等。 引向器为沿电磁波传播方向设置的由导体材料组成的散射结构, 其结构不限于上 述平行导线的形状, 还可以为曲线或线宽不完全相等的直线或曲线。 同样, 主振子可 以为直线或曲线, 且其导体线的线宽可以处处相等, 也可不完全相等。 主振子还可以 是开口曲线环或开口折线环, 例如为在任一角开口的菱形环、 圆形环、 矩形环或三角 形环或多边形环。 还可以是, 介质基板包括两表面, 至少一所述引向器设置在与所述 主振子所在表面不同的另一表面。 本发明第一实施例还保护一种多天线组件, 如图 2所示, 包括介质反射面 1和装 在介质反射面 1上的上述天线单元 4。 当天线单元 4有多个, 且这些天线单元 4的工 作频率在同一频率或同一频段时, 它们构成一个天线组。 介质反射面 1用于反射任一天线单元 4所使用的无线电波, 使用的无线电波是指 每个天线单元产生的电磁波或者每个天线单元接收的电磁波。 在一些实施例中, 反射 介质面 1可以采用铜或其它导电材料制成, 且可以一个非平面的表面。可以理解地是, 反射介质面 1可以具有不连续的点, 如加工成网状结构或者开设有孔等方式实现反射 电波功能的介质表面, 其中网状结构或者孔的尺寸大小小于所述多天线组件使用的无 线电波波长的十分之一。 介质反射面也可以为具有几何图案的导电微结构, 导电微结 构可以为任意形状, 只要其为导电材料制成, 即可对无线电波进行反射。 导电微结构 的尺寸小于所述天线组所使用的无线电波频率所对应的波长的二分之一, 优选小于四 分之一, 最佳为小于六分之一。 导电微结构可以按照一定规律排布, 也可随机地排布 在一底板上。 介质反射面 1和每个天线单元 4上的引向器分别位于该天线单元 4的主振子两侧, 其中介质反射面 1即为反射器, 主振子的第一导体线 48和第二导体线 49构成有源振 子, 而第三、 第四、 第五导体线构成了三个引向器。 而由于本发明的主振子、 引向器 都采用了导体线而非金属管的形式, 因此体积大大减小, 结构更加紧凑, 而天线也延 续八木天线的良好方向性。 同时, 多个天线单元 4共用一个介质反射面 1, 也能大大 节省空间, 减小天线的体积。 当天线单元 4有多个时, 优选按照一定地规律来排布。 图 2所示的天线单元 4有 三个, 且三个天线单元 4完全相同。 那么这三个天线单元 4的工作频率也基本相同, 构成一个天线组, 用于收发该工作频率的无线电波。 图 2中有三个相同的天线单元 4, 每个天线单元 4的介质基板 40垂直地安装在介 质反射面 1上, 三个天线单元互成 60度, 且三个天线单元 4的介质基板 40沿各自表 面方向延长后相交构成正三角形。 三个天线单元 4还可以按照另一种方式来排布, 即每个天线单元 4的介质基板 40 同样垂直地安装在介质反射面 1上, 且三个天线单元 4互成 120度、 以同一直线为任 意两个介质基板表面的延长相交线,且三个天线单元 4到该延长相交线的距离均相等。 当然, 本发明的天线组件不必然只有三个天线单元, 可以只有一个、 两个或者多 于三个。 天线单元也不必然按照上述等分角度的方式来排布, 也可按照阵列或随机方 式来排布。 当介质反射面 1上的天线单元 4有多个 (本文的多个, 都是指两个及两个以上), 且多个天线单元 4的工作频率不完全相同、 或者说天线单元 4不完全相同使得各自的 工作频率不同时, 将按照不同的工作频率来划分成不同的天线组。 介质反射面 1上具 有至少一个天线组而构成的整体, 称作多天线组件。 如图 3所示, 本发明第一实施例中的多天线组件具有两个天线组, 每个天线组包 括三个相同的天线单元, 下文中将尺寸大的天线单元称为第一天线单元 2, 三个相同 的第一天线单元 2构成的天线组称之为第一天线组。 尺寸小的天线单元称之为第二天 线单元 3, 三个相同的第二天线单元 3构成的天线组称之为第二天线组。 由于第一天 线单元 2的尺寸大于第二天线单元 3, 因此, 第一天线单元 2与介质反射面 1构成的 天线的工作频率要低于第二天线单元与介质反射面 1构成的天线。 因此, 本实施例的 多天线组件属于双频天线。 当然, 这里影响工作频率的主要因素是主振子的尺寸, 因 此, 即使第一天线单元 2和第二天线单元 3的介质基板的尺寸都相同, 只要第一天线 单元 2的主振子尺寸大于第二天线单元 3的主振子, 那么前者的工作频率通常都会低 于后者。 每个天线单元的介质基板都垂直于介质反射面 1, 且其安装使得该天线单元的引 向器和所述介质反射面 1位于该天线单元主振子的两侧。 如图 3所示, 三个第一天线单元 2互成 120度, 并以同一直线为三个介质基板表 面的延长相交线, 且三个第一天线单元 2到所述延长相交线的距离均相等。 也可以理 解为, 三个第一天线单元 2以同一点为旋转中心, 任一第一天线单元 2以该旋转中心 旋转 120度后与另一第一天线单元 2重合。 三个第二天线单元 3按图 2所示的方式排布, 即两两互成 60度、且三个第二天线 单元 3的介质基板沿表面方向延长后相交构成正三角形。 每两个第一天线单元 2之间 设置有一个第二天线单元 3, 且该两个第一天线单元 2对称地位于此第二天线单元 3 两侧, 使得三个第一天线单元 2依次位于三个第二天线单元 3的三个相邻间隔中。 当 然, 每个天线组不必然只有三个天线单元, 可以只有一个、 两个或者多于三个。 天线 单元也不必然按照上述等分角度的方式来排布, 也可按照阵列或随机方式来排布。 为了验证本发明第一实施例的天线组件及多天线组件的效果,例举一具体实施例, 其中第一天线单元 2的介质基板长 95mm, 宽 50mm, 第一导体线、 第二导体线均长 20mm, 宽 1.5mm。 第一天线单元 2、 第二天线单元 3的介质基板长 55mm, 宽 25mm, 第一导体线、 第二导体线均长 9mm, 宽 lmm。 介质反射面 1 为铜箔。 用具有上述尺 寸、 且如图 3所示排布的多天线组件进行仿真如图 4、 5所示。 图 4、 图 5表明, 该多 天线组件在 2.4000~2.4800GHz和 5.7250~5.8500GHz两个频段范围内, 都具有非常良 好的阻抗匹配。 综上所述, 本发明第一实施例的天线单元、 天线组件、 多天线组件具有良好的方 向性, 且工作频段为 2.4GHz禾 B 5.8GHz两个频段, 属于双频天线, 且具有频带宽、 增 益高、 易调试的优点。 显然, 当本发明的多天线组件具有三个或更多的天线组时, 即 可得到多频天线, 也属于本发明的保护范围。 另外, 需要说明的是, 本实施例的天线组是直接安装在介质反射面上的, 因此介 质反射面相当于安装底板。 显然, 天线组可以先通过其他安装结构相对固定后再与介 质反射面连接, 甚至不连接。 介质反射面只用来反射天线组的天线单元发出和接收的 电磁波, 并不必然起安装作用。 因此, 本发明的天线组件和多天线组件, 只要介质反 射面位于天线单元的一侧即可, 即属于本发明的保护范围之内。 所述天线导体还可以是其他结构, 天线导体可以包括设置在所述介质基板其中一 表面上的第一天线导体和设置在另一表面上的第二天线导体。 例如图 6、 图 7所示的 多天线组件及其天线单元中, 每个天线单元包括介质基板 34、 附着在介质基板 34— 侧表面上的第一天线导体 32和附着在介质基板 34另一侧表面上的第二天线导体 35。 两个天线导体均为近似的 L形, 且 L形的朝向相反。 每个天线单元的外部都围设有一 反射器 33, 反射器 33呈一端小一端大的开口结构, 且所述开口朝向被围的天线单元 的最大增益方向。 当然, 本发明的天线单元还可以有其他结构, 只要该天线单元的最大增益方向沿 着介质基板板面方向延伸, 即属于本发明保护范围之内。 这里的天线单元的最大增益 方向与介质基板板面延伸方向一致, 包括该最大增益方向与介质基板板面成较小的一 定角度的情况,例如当二者之间成小于 45度的角, 也为该最大增益方向与介质基板板 面延伸方向一致。 当天线单元包括多层介质基板,天线导体可以设置在其中一层或多层介质基板上。 本发明第一实施例还涉及一种无线互连设备, 包括具有内部空腔的壳体、 容置于 该空腔中的上述天线单元或上述多天线组件, 还包括与天线单元或多天线组件的天线 单元对应连接的馈线。 该无线互连设备可以是 wifi吸顶天线、 无线路由器、 电视机顶 盒等各种无线设备。 本发明第一实施例的天线单元及其多天线组件, 由于最大增益方向与介质基板板 面延伸方向一致, 具有很好的方向性和远距离传输性能, 采用该多天线组件的无线互 连设备也能获得很好的数据传输性能。 第二实施例 现在详细参考附图 8至 17中描述的第二实施例。 如图 8所示,本发明第二实施例的天线单元 4包括介质基板 40和附着在介质基板 40上的主振子和引向器。介质基板 40采用 FR4、 F4b材料制成, 或者其他现有天线所 采用的基板材料。 主振子用来与馈线连接, 包括两条导体线, 分别为第一导体线 48 和第二导体线 49, 其中第一导体线 48与同轴线馈线的外导体电连接, 第二导体线 49与同轴线馈线 的芯线电连接。 显然, 第一导体线 48、 第二导体线 49的位置可互换。 如图 8所示, 第一导体线 48和第二导体线 49在同一条直线上, 二者之间隔有一 定间距。 引向器可以只有一个, 也可有多个, 均为附着在介质基板 40表面上的导体线。 当 引向器有多个时, 每个构成引向器的导体线相互平行, 且均位于主振子的同一侧, 用 来增强所处的主振子一侧的电磁波强度, 具体结构如图 8所示。 图 8中的第三导体线 45、 第四导体线 46、 第五导体线 47分别构成三个引向器, 三个引向器相互平行地排 布, 并与构成主振子的第一导体线 48、 第二导体线 49平行。 三个引向器的长度可以 相同, 也可以不同, 为了电磁波引向效果更好, 优选长度相等。 另外, 引向器的数量 可以为三个, 也可以为两个甚至一个, 或者多于三个。 通常, 引向器多于五个后对电 磁场的影响就变化不大了, 为了节省空间和材料, 优选引向器为三个。 优选地, 第三、 第四、 第五导体线 45、 46、 47的中心点三点在一条直线线上, 且 该直线垂直三者中任意一条导体线。 同时, 主振子所在的直线与上述任一条导体线平 行且总长度大于上述任一条导体线, 优选主振子的中心与上述第一、 第二、 第三导体 线的三个中心点在同一直线上。 上述第一至第五导体线均采用导电材料制成, 优选金属线, 例如铜、 铝等。 具有这种结构的天线单元, 在主振子的另一侧装上反射器后, 即可构成类似八木 天线的结构。 八木天线, 又称八木 -宇田天线, 通常成 "王"字形。 主振子 (又称有源振 子)居"王"字中间, 与馈线相连。 反射器位于主振子一侧, 起削弱该侧电磁波的作用, 长度稍长于主振子; 引向器位于主振子另一侧, 稍短于主振子, 用于增强所在的这一 侧的电磁波。 八木天线的优点是具有很好的方向性, 测向、 远距离通信的效果非常好。 但是现 有的八木天线都是用金属棒做成的, 体积大, 占用空间, 主要用于室外。 如何将八木 天线的优势应用在无线覆盖的小型天线如吸顶天线、 无线路由器等天线上, 是本发明 所要解决的问题。 因此, 本发明第二实施例还保护一种天线组件, 如图 9所示, 包括介质反射面 1 和装在介质反射面 1上的上述天线单元 4。 当天线单元 4有多个, 且这些天线单元 4 的工作频率在同一频率或同一频段时, 它们构成一个天线组。 介质反射面 1用于反射任一天线单元 4所使用的无线电波, 使用的无线电波是指 每个天线单元产生的电磁波或者每个天线单元接收的电磁波。 在一些实施例中, 反射 介质面 1可以采用铜或其它导电材料制成, 且可以一个非平面的表面。可以理解地是, 反射介质面 1可以具有不连续的点, 如加工成网状结构或者开设有孔等方式实现反射 电波功能的介质表面, 其中网状结构或者孔的尺寸大小小于所述多天线组件使用的无 线电波波长的十分之一。 介质反射面 1和每个天线单元 4上的引向器分别位于该天线单元 4的主振子两侧, 整体构成了一个小型化的八木天线, 其中介质反射面 1即为上述反射器, 主振子的第 一导体线 48和第二导体线 49构成上述有源振子, 而第三、 第四、 第五导体线构成了 三个引向器。 而由于本发明的主振子、 引向器都采用了导体线而非金属管的形式, 因 此体积大大减小, 结构更加紧凑, 而天线也延续八木天线的良好方向性。 同时, 多个 天线单元 4共用一个介质反射面 1, 也能大大节省空间, 减小天线的体积。 当天线单元 4有多个时, 优选按照一定地规律来排布。 图 9所示的天线单元 4有 三个, 且三个天线单元 4完全相同, 即具有相同的基板材料和基板尺寸, 且主振子和 引向器的材料、 尺寸、 所在位置等也完全相同。 那么这三个天线单元 4的工作频率也 基本相同, 构成一个天线组, 用于收发该工作频率的无线电波。 图 9中有三个相同的天线单元 4, 每个天线单元 4的介质基板 40垂直地安装在所 质反射面 1上, 三个天线单元互成 60度, 且三个天线单元 4的介质基板 40沿各自表 面方向延长后相交构成正三角形。 三个天线单元 4还可以按照另一种方式来排布, 即每个天线单元 4的介质基板 40 同样垂直地安装在介质反射面 1上, 且三个天线单元 4互成 120度、 以同一直线为任 意两个介质基板表面的延长相交线,且三个天线单元 4到该延长相交线的距离均相等。 当然, 本发明的天线组件不必然只有三个天线单元, 可以只有一个、 两个或者多 于三个。 天线单元也不必然按照上述等分角度的方式来排布, 也可按照阵列或随机方 式来排布。 当介质反射面 1上的天线单元 4有多个 (本文的多个, 都是指两个及两个以上), 且多个天线单元 4的工作频率不完全相同、 或者说天线单元 4不完全相同使得各自的 工作频率不同时, 将按照不同的工作频率来划分成不同的天线组。 介质反射面 1上具 有多个天线组而构成的整体, 称作多天线组件。 如图 10、 图 11所示, 本实施例中的多天线组件具有两个天线组, 每个天线组包 括三个相同的天线单元, 下文中将尺寸大的天线单元称为第一天线单元 2, 三个相同 的第一天线单元 2构成的天线组称之为第一天线组。 尺寸小的天线单元称之为第二天 线单元 3, 三个相同的第二天线单元 3构成的天线组称之为第二天线组。 由于第一天 线单元 2的尺寸大于第二天线单元 3, 因此, 第一天线单元 2与介质反射面 1构成的 天线的工作频率要低于第二天线单元与介质反射面 1构成的天线。 因此, 本实施例的 多天线组件属于双频天线。 当然, 这里影响工作频率的主要因素是主振子的尺寸, 因 此, 即使第一天线单元 2和第二天线单元 3的介质基板的尺寸都相同, 只要第一天线 单元 2的主振子尺寸大于第二天线单元 3的主振子, 那么前者的工作频率通常都会低 于后者。 每个天线单元的介质基板都垂直于介质反射面 1, 且其安装使得该天线单元的引 向器和所述介质反射面 1位于该天线单元主振子的两侧。 如图 11所示,三个第一天线单元 2互成 120度, 并以同一直线为三个介质基板表 面的延长相交线, 且三个第一天线单元 2到所述延长相交线的距离均相等。 也可以理 解为, 以图 11所示的俯视图来看, 三个第一天线单元 2以同一点为旋转中心, 任一第 一天线单元 2以该旋转中心旋转 120度后与另一第一天线单元 2重合。 三个第二天线单元 3按图 9所示的方式排布, 即两两互成 60度、且三个第二天线 单元 3的介质基板沿表面方向延长后相交构成正三角形。且如图 11所示, 每两个第一 天线单元 2之间设置有一个第二天线单元 3, 且该两个第一天线单元 2对称地位于此 第二天线单元 3两侧, 使得三个第一天线单元 2依次位于三个第二天线单元 3的三个 相邻间隔中。 为了验证本发明第二实施例的天线组件及多天线组件的效果,例举一具体实施例, 第一天线单元 2、 第二天线单元 3 的尺寸如图 12、 图 13所示, 其中第一天线单元 2 的介质基板 20长 95.2mm, 宽 52.6mm, 第一导体线 28、 第二导体线 29均长 22.8mm, 宽 1.5mm, 第三导体线 25、 第四导体线 26、 第五导体线 27均长 40mm, 宽 1.5mm。 第一天线单元 2、第二天线单元 3的介质基板 20长 55mm, 宽 25mm, 第一导体线 38、 第二导体线 39均长 9mm, 宽 0.7mm, 第三导体线 35、 第四导体线 36、 第五导体线 37均长 17mm, 宽 0.7mm。 介质反射面 1为铜箔, 直径为 200mm。 用具有上述尺寸、 且如图 10、 图 11所示排布的多天线组件进行仿真如图 14至图 17所示。 其中, 图 14所示为低频段驻波比仿真图。 图 14中标注的三个点 ml、 m2、 m3在 仿真图中的坐标参数为: 名称 X(GHz) Y
ml 2.4400 1.1582
m2 2.4000 1.2463
m3 2.4800 1.2319 上表说明, 该多天线组件在 2.4000~2.4800GHz频段范围内, 具有非常良好的阻抗 匹配。 图 15为上述多天线组件在频率为 2.45GHz的电磁场中的方向图。 由图可知, 该 频率下的辐射方向性很好, 能够满足无线信号收发的需求。 其中, 图 16所示为高频段驻波比仿真图。 图 16中标注的两个点 ml、 m2在仿真 图中的坐标参数为:
Figure imgf000021_0001
上表说明, 该多天线组件在 5.7250~5.8500GHz频段范围内, 具有非常良好的阻抗 匹配。 图 17为上述多天线组件在频率为 5.725GHz的电磁场中的方向图。 由图可知, 该 频率下的辐射方向性很好, 能够满足无线信号收发的需求。 综上所述, 依据八木天线原理设计的天线单元、 天线组件、 多天线组件具有良好 的方向性,且工作频段为 2.4GHz和 5.8GHz两个频段,属于双频天线,且具有频带宽、 增益高、 易调试的优点。 显然, 当本发明的多天线组件具有三个或更多的天线组时, 即可得到多频天线, 也属于本发明的保护范围。 另外, 需要说明的是, 本实施例的天线组是直接安装在介质反射面上的, 因此介 质反射面相当于安装底板。 显然, 天线组可以先通过其他安装结构相对固定后再与介 质反射面连接, 甚至不连接。 介质反射面只用来反射天线组的天线单元发出和接收的 电磁波, 并不必然起安装作用。 因此, 本发明的天线组件和多天线组件, 只要介质反 射面位于天线单元的一侧即可, 即属于本发明的保护范围之内。 第三实施例 现在详细参考附图 18至 25中描述本发明的第三实施例。 如图 18所示为本发明第三实施例天线单元的一种实施方式的结构示意图,该天线 单元 2包括介质基板 21和附着在介质基板 21上的引向器 22和振子 23 (与主振子对 应)。 介质基板 21采用 FR4、 F4b材料制成, 或者其他现有天线所采用的基板材料, 该介质基板 21包括两个表面,引向器 22和振子 23均设置在介质基板 21的同一表面。 引向器 22和振子 23均是导体条,引向器 22可以为三个,也可以为两个甚至一个, 或者多于三个, 在本实施方式中只设置了一个。 在其他实施方式中, 引向器可以设置 多个, 组成引向器的导体条平行的排布在介质基板上, 这些导体条间隔的分布, 为了 电磁波引向效果更好, 优选长度相等, 引向器多于五个后对电磁场的影响就变化不大 了, 优选引向器为三个, 为了节省空间和材料, 本实施例使用了一个引向器。 本实施 方式中, 引向器 22采用了直的导体条, 也可以采用曲的导体条, 优选的使用弧度较大 的曲线形导体条或者波浪形的导体条。 振子 23呈开口的菱形环状, 开口设置在菱形的背向引向器 22的角处, 该开口处 的部分导体条有一部分上下分布的重叠, 重叠的部分相间隔, 形成了一开口, 重叠的 部分导体条形成了两个 L型的结构, 这两个 L型结构的两较长边相对, 两较短边分别 在较长边的两侧, 在 L型的两个较长边上分别设置了馈电点 231和接地点 232, 优选 地,馈电点 231设置在上方的 L型较长边上,接地点 232设置在下方的 L型较长边上, 可以方便的实现天线的竖直馈电。 振子 23可以是开口曲线环或者开口折线环, 开口曲线环可以是开口椭圆环、开口 的拼接双曲线或抛物线构成的环、 开口的波浪线形成的环等, 开口的折线环包括开口 的各种边长相等的多边形环和开口的不规则多边形环等。 在本实施方式中, 导向器 22和振子 23设置在介质基板 21的同一表面上, 导向器 22还可以设置在与振子 23所在的介质基板 21表面不同的表面上, 当导向器 22有多 个时,可以至少使一个导向器设置在与振子 23所在的介质基板 21表面不同的表面上。 构成导向器 22和振子 23的导体条的材料可以是金属、 导电的非金属以及金属与 非金属的混合物, 金属可以使用铝、 铜、 银等, 也可以是几种金属的合金, 非金属优 选使用导电油墨。 如图 19所示为本发明第三实施例多天线组件一种实施方式的结构示意图,在该实 施方式中, 多天线组件包括天线组和一介质反射板 1, 其中, 天线组只包括了一个天 线单元 2, 因此, 不做详细叙述。 该介质反射板 1一般使用覆铜板, 有些实施方式使 用带金属网格的介质基板。 如图 20和图 21所示为多天线组件的另外的实施方式的俯视图, 这两种实施方式 中多天线组件均包含了两天线组, 每一天线组均包括了三个天线单元 2和天线单元 3, 其中天线单元 2和天线单元 3可以是结构相同的天线单元, 只是在尺寸上有区别, 因 而产生辐射不同频段的电磁波的效果。 在图 20和图 21中两天线组的天线单元 2和天 线单元 3呈角度阵列的均布在介质反射板上, 每个天线单元 2均在两个天线单元 3之 间, 只是在图 21中天线单元 2和天线单元 3放置的方式不同。 当然, 本发明的多天线组件包括的天线单元可以是一个, 也可以是多个。 天线单 元也不必然按照上述等分角度的方式来排布, 也可以呈直线状或者按照阵列或随机方 式来排布。 如图 22所示为图 19中天线单元 2的尺寸图, 其中, 导向器 22为 50mmx2mm, 开口菱形环外边长 34mm, 边长宽度 3.6mm, 并依照图 19所示排布后仿真。 其中, 图 23所示为 S11参数图。 图 23中标注的三个点 ml、 m2、 m3在仿真图中 的坐标参数为:
Figure imgf000023_0001
上表说明, 本发明第三实施例的该多天线组件在 2.3994~2.4955GHz频段范围内, 具有非常良好的阻抗匹配。 图 24和图 25为上述多天线组件在频率为 2.4GHz的电磁场中的方向图。 由图可 知, 该频率下的辐射方向性很好, 能够满足无线信号收发的需求。 另外, 需要说明的是, 第三实施例的天线组是直接安装在介质反射板上的, 因此 介质反射板相当于安装底板。 显然, 天线组可以先通过其他安装结构相对固定后再与 介质反射板连接, 甚至不连接。 介质反射板只用来反射天线组的天线单元发出和接收 的电磁波, 并不必然起安装作用。 因此, 本发明的天线组件和多天线组件, 只要介质 反射板位于天线单元的一侧即可, 即属于本发明的保护范围之内。 第四实施例 下面结合附图 26至 29对本发明的第四实施例进行描述。 参见图 26-图 27示出的本发明第四实施例的一个实施例, 本发明第四实施例的天 线 (与多天线组件对应) 包括: 反射器 4、 和至少一个天线单元阵列 (本实施例中为 一个天线单元阵列)。所有天线单元阵列均设置在反射器 4的反射面侧。如果反射器的 两个相反面均为反射面, 以天线单元阵列为最小单元, 其可以设置在两侧反射面的任
在图 26 中可看出, 天线单元阵列包括多个具有第一工作频段的第一天线单元 2 和至少一个具有第二工作频段的第二天线单元 6, 所述多个第一天线单元 2围成一周, 所述第二天线单元 6位于所述一周第一天线单元 2之中。 本实施例中, 每个天线单元 阵列由三个具有第一工作频段的第一天线单元 2、 和一个具有第二工作频段的第二天 线单元 6构成。 其中, 第二工作频段小于第一工作频段。 第一工作频段或第二工作频 段可以为 4.9GHz~6GH。 第一工作频段或第二工作频段可以为 5GHz~5.9GHz。 第一工 作频段或第二工作频段可以为 2GHz~2.6GHz。 第一工作频段或第二工作频段可以为 2.4GHz~2.5GHz。 结合图 26和图 27, 可看出, 每个第一天线单元 2由垂直地固定在反射器 4的反 射面侧上的介质基板 21、 及形成于介质基板 21上的主振子 22和引向器 29 (在图 28 中示出) 构成。 同样地, 第二天线单元 6由垂直地固定在反射器 4的反射面侧上的介 质基板 61、及形成于介质基板 61上的主振子 62和引向器 69 (在图 29中示出)构成。 进一步, 图 27中示出了这三个第一天线单元的介质基板 21彼此之间位置: 这三 个介质基板 21各自具有一个与反射面垂直的中垂面, 则三个介质基板 21的三个中垂 面汇交于一条线, 此时, 每相邻两所述中垂面之间的夹角为 120°; 第二天线单元 6的 介质基板 61布置成: 垂直于这三个第一天线单元的介质基板 21之一。 作为一种优选方式, 还可以如图 27所示, 将这三个第一天线单元 2的介质基板 21中的另两个介质基板 (除了与第二天线单元 6的介质基板 61垂直的那个介质基板 之外), 相对于第二天线单元 6的介质基板 61镜像布置。 继续参见图 27, 如上所述彼此 120°间隔布置的这三个介质基板 21、 以及垂直于 其中一个介质基板 21的介质基板 61彼此是间隔开的。 例如, 继续参见图 27, 这三个 第一天线单元 2的介质基板 21和第二天线单元 6的介质基板 61在反射器 4的反射面 上的投影彼此间隔开。 进一步, 为了从正三棱柱的角度, 来描述本发明第四实施例的天线中天线单元阵 列的最优选方式, 先进行如下定义。 即, 第一天线单元 2和第二天线单元 6每个介质 基板具有: 用以布置主振子和引向器的外侧面、 与该外侧面相反的内侧面、 以与该外 侧面和内侧面均平行且等距的中间平面。 基于上述的内侧面、 外侧面、 以及夹在内外 侧面之间的中间平面的定义, 继续参见图 28, 可以将本发明第四实施例的天线的一个 天线单元阵列设置为:所述三个第一天线单元的介质基板 21的各自中间平面的相反两 侧延长面相交构成正三棱柱,第二天线单元的介质基板 61的中间平面位于该正三棱柱 内的一个角平分面上。 继续参见图 27, 当三个第一天线单元的介质基板 21、 以及第二天线单元的介质基 板 61彼此间隔开, 三个第一天线单元的介质基板 21各自内侧面中每两个内侧面的中 心点之间的直线距离在 30-40mm的范围内时,本发明第四实施例的天线具有良好的隔 离度。 参见图 28和图 29, 本发明第四实施例中所有的主振子 22、 62、 以及引向器 29、 69均为导线, 而非现有技术的八木天线的金属管。 这些导线可以是铜导线、 铝导线或 银导线等中任一种。 进一步, 主振子 22、 62、 以及引向器 29、 69可以是相同导体材 料。 具体地, 参见图 28示出的一个第一天线单元 2, 反射器 4和引向器 29沿着反射 面的外法线方向分别位于主振子 22的相反两侧。主振子 22和引向器 29之间的位置关 系设置为: 沿着垂直于反射器 4的反射面的外法线方向远离反射器 4的反射面依次布 置。 每个主振子 22 由间隔布置的、 并且在同一直线上的第一导线 23和第二导线 25 构成, 第一天线单元 2的引向器 29由至少一条一字型导线 27构成。 实际上, 对于一 个第一天线单元而言, 一字型导线 27可以有 2-16条, 其中 5条是优选。 每条一字型 导线 27均平行于同一天线单元中的第一导线 23和第二导线 25, 并且均位于该同一天 线单元中主振子 22的同一侧。 具体地, 参见图 29示出的第二天线单元 6, 主振子 62和引向器 69之间的位置关 系设置为: 沿着远离反射器 4的反射面依次布置。每个主振子 62由间隔布置的、并且 在同一直线上的第一导线 62和第二导线 65构成,第二天线单元 6的引向器 69由至少 一条一字型导线 67构成。 实际上, 对于一个第二天线单元而言, 一字型导线 67可以 有 2-16条, 其中, 当第一天线单元 2中一字型导线是 5条时, 第二天线单元中一字型 导线优选为 3条。 每条一字型导线 67均平行于同一天线单元中的第一导线 63和第二 导线 65, 并且均位于该同一天线单元中主振子 62的同一侧。 从图 28和图 29可看出, 在同一天线单元中, 所有的一字型导线沿着垂直于在该 同一天线单元中第一导线和第二导线的方向, 远离第一导线和第二导线并且依次间隔 地布置。 作为一种优选方式,为了与 "第一天线单元的工作频段大于第二天线单元的工作频 率"相对应,第一天线单元 2中的构成引向器 29的一字型导线 27的数量可以大于第二 天线单元 6中的构成引向器 69的一字型导线 67的数量。 在一种优选方式中, 如图 28所示,第一天线单元 2中每条一字型导线 27的材料、 长度、 宽度、 厚度均相同; 并且第一天线单元 2中主振子 22的总长度, 大于第一天线 单元 2中每条一字型导线 27的长度。 如图 29示出的, 第二天线单元 6中每条一字型 导线 67的材料、 长度、 宽度、 厚度均相同, 第二天线单元 6中主振子 62的总长度, 大于第二天线单元 6中每条所述一字型导线 67的长度。 从图 28中还可以看出, 第一天线单元 2中每条一字型导线 27的垂直于其长度方 向的中垂线均在同一直线上, 并且该中垂线均穿过第一天线单元 2中主振子的总长度 的中心位置。 从图 29同样也可以看出, 第二天线单元 6中每条一字型导线 67的垂直 于其长度方向的中垂线, 均在同一直线上, 并且该中垂线也均穿过第二天线单元 6中 主振子 62的总长度的中心位置。 结合图 26-图 29,这三个第一天线单元 2的介质基板 21和第二天线单元 6的介质 基板 61可以垂直于反射器 4的反射面。例如,介质基板 21和介质基板 61均为长方形, 其长度方向垂直于反射器 4的反射面。 另外, 本发明第四实施例中第一天线单元中的介质基板 21、 和第二天线单元中的 介质基板 61均为印刷电路板。 例如, 介质基板 21和 61可以由 FR4材料制成, 或者 其他现有天线所采用的基板材料制成。至于在相应介质基板 21、 61上形成相应的引向 器和主振子, 可以采用现有技术的多种方法。 例如, 对于在介质基板 21、 61的表面上 镀有导体层, 然后选择性地蚀刻该导体层以获得相应的一字型导线、 以及第一导线和 第二导线。 当然, 采用其他工艺例如丝印、 激光雕刻也制得是可以的。 至于本发明第四实施例天线的反射器 4, 如在图 27示出的, 该反射器 4可以为反 射板, 反射板的反射面为导体反射面, 即反射面的材料是导体。 导体反射面为铜反射 面、 铝反射面、 合金反射面或银反射面等中任一个。 显然可以理解天线中的所有天线 单元阵列共用一个所述导体反射面。 例如, 对于一个天线单元阵列而言, 构成这一个 天线单元阵列的每个天线单元的介质基板均固定在同一个反射器的反射面侧上。 在图 27中还示出, 天线的反射板优选为圆形反射板, 当然形状也可以是圆形之外的其他形 状, 例如多边形等。 本发明第四实施例中, 第一天线单元可以独立于第二天线单元独立工作, 并且可 以仅有单个第一天线单元独立工作,例如在参见图 26所示的天线中,可以仅有一个第 一天线单元在 2.4GHZ工作, 其他天线单元不工作; 同样地, 第二天线单元也可以独 立于所有第一天线单元独立工作,例如在参见图 26所述的天线中,可以仅有第二天线 单元在 5.8GHZ下工作, 其他天线单元不工作。 本发明中, 天线单元阵列个数不局限于上述的一个, 可以是任意数量, 除天线单 元阵列的个数不同之外, 其余均与本发明第四实施例前述的具有一个天线单元阵列的 情形相同。 对于两个以上的天线单元阵列, 每两个天线单元阵列之间位置关系可以视 具体情况而定, 没有特殊要求。 另外优选的是, 所有天线单元阵列均可以布置在反射 器的同一反射面侧。 在实际应用中, 本发明前述任一天线用于固定线路的交通系统, 例如, 地铁交通 系统、 轻轨交通系统、 空运交通系统、 海运交通系统、 高速公路交通系统、 海底隧道 交通系统或公交车交通系统等中任一个。 显然, 本发明的天线可以是地铁无线覆盖车 对地系统的网桥天线。 本发明天线可以是用于列车信号与外部网络信号之间的桥连以 及数据的传输。 第五实施例 现在详细参考附图 30至 38中描述的第五实施例。 如图 30所示, 本发明第五实施例的天线包括上壳 4、 下壳 42、 多天线组件、 以及 安装板 41。 其中, 上壳 4为帽状壳体, 与板状的下壳 42相扣合形成一个封闭腔体, 多天线组件和安装板 41即位于该腔体内。 这些部件安装起来后的整体结构如图 31所 示, 该天线具有小巧轻便、 外形美观的优点。 多天线组件如图 30、 图 32所示, 包括介质反射面 1和位于介质反射面 1同一侧 上的至少一个天线组。 这里的天线组定义为工作频率 (所使用的电磁波频率) 在同一 个频段范围内的一个或多个天线单元的集合。 因此, 当天线组有多个(包括两个)时, 多个天线组所使用的电磁波频率互不相同。 这里的不同频段, 是指适用在一个频道内 的频率范围, 例如相隔不小于 50MHz。 如图 30、 图 32所示, 本实施例中的多天线组件具有两个天线组, 每个天线组包 括三个相同的天线单元, 下文中将尺寸大的天线单元称为第一天线单元 2, 三个相同 的第一天线单元 2构成的天线组称之为第一天线组。 尺寸小的天线单元称之为第二天 线单元 3, 三个相同的第二天线单元 3构成的天线组称之为第二天线组。 由于第一天 线单元 2的尺寸大于第二天线单元 3, 因此, 第一天线单元 2与介质反射面 1构成的 天线的工作频率要低于第二天线单元与介质反射面 1构成的天线。 因此, 本实施例的 多天线组件属于双频天线。 以第一天线单元 2为例, 如图 33所示, 第一天线单元 2包括介质基板 20和附着 在介质基板 20上的主振子和引向器。 介质基板 20采用 FR4、 F4b材料制成, 或者其 他现有天线所采用的基板材料。 需要说明的是, 这里影响工作频率的主要因素是主振子的尺寸, 因此, 即使第一 天线单元 2和第二天线单元 3的介质基板的尺寸都相同, 只要第一天线单元 2的主振 子尺寸大于第二天线单元 3的主振子, 那么前者的工作频率通常都会低于后者。 每个第一天线单元 2的介质基板 20都垂直于介质反射面 1, 并通过插接方式先固 定安装在安装板 41上, 然后每个天线单元的引脚穿过安装板 41并穿过介质反射面 1 以及下壳 42从而与外部电路连接。每个天线单元的安装使得该天线单元的引向器和所 述介质反射面 1位于该天线单元主振子的两侧。 主振子用来与馈线连接, 包括两条导体线, 分别为第一导体线 28 和第二导体线 29, 其中第一导体线 28与同轴线馈线的外导体电连接, 第二导体线 29与同轴线馈线 的芯线电连接。 显然, 第一导体线 28、 第二导体线 29的位置可互换。 如图 33所示,第一导体线 28和第二导体线 29在同一条直线上, 二者之间隔有一 定间距。 引向器可以只有一个, 也可有多个, 均为附着在介质基板 20表面上的导体线。 当 引向器有多个时, 每个构成引向器的导体线相互平行, 且均位于主振子的同一侧, 用 来增强所处的主振子一侧的电磁波强度, 具体结构如图 33所示。 图 33中的第三导体 线 25、 第四导体线 26、 第五导体线 27分别构成三个引向器, 三个引向器相互平行地 排布, 并与构成主振子的第一导体线 28、 第二导体线 29平行。 三个引向器的长度可 以相同, 也可以不同, 为了电磁波引向效果更好, 优选长度相等。 另外, 引向器的数 量可以为三个, 也可以为两个甚至一个, 或者多于三个。 通常, 引向器多于五个后对 电磁场的影响就变化不大了, 为了节省空间和材料, 优选引向器为三个。 优选地, 第三、 第四、 第五导体线 25、 26、 27的中心点三点在一条直线线上, 且 该直线垂直三者中任意一条导体线。 同时, 主振子所在的直线与上述任一条导体线平 行且总长度大于上述任一条导体线, 优选主振子的中心与上述第一、 第二、 第三导体 线的三个中心点在同一直线上。 上述第一至第五导体线均采用导电材料制成, 优选金属线, 例如铜、 铝等。 同样,第二天线单元 3也具有完全类似的结构, 也包括介质基板 30和附着在介质 基板 30上作为主振子的第一导体线 38和第二导体线 39, 以及作为引向器的第三导体 线 35、 第四导体线 36和第五导体线 37。 上述对各个导体线以及介质基板的描述都适 用于第二天线单元 3的相应部分。 具有这种结构的天线单元, 在主振子的另一侧装上反射器后, 即可构成类似八木 天线的结构。 八木天线, 又称八木 -宇田天线, 通常成 "王"字形。 主振子 (又称有源振 子)居"王"字中间, 与馈线相连。 反射器位于主振子一侧, 起削弱该侧电磁波的作用, 长度稍长于主振子; 引向器位于主振子另一侧, 稍短于主振子, 用于增强所在的这一 侧的电磁波。 介质反射面 1和每个天线单元上的引向器分别位于该天线单元的主振子两侧, 整 体构成了一个小型化的八木天线, 其中介质反射面 1即为上述反射器, 以第一天线单 元 2为例, 主振子的第一导体线 28和第二导体线 29构成上述有源振子, 而第三、 第 四、 第五导体 25、 26、 27线构成了三个引向器。 而由于本发明的主振子、 引向器都采 用了导体线而非金属管的形式, 因此体积大大减小, 结构更加紧凑, 而天线也延续八 木天线的良好方向性。 同时, 多个天线单元 2、 3共用一个介质反射面 1, 也能大大节 省空间, 减小天线的体积。 这里的介质反射面 1, 用于反射任一天线单元 4所使用的无线电波, 使用的无线 电波是指每个天线单元产生的电磁波或者每个天线单元接收的电磁波。 在一些实施例 中, 反射介质面 1可以采用铜或其它导电材料制成, 且可以一个非平面的表面。 可以 理解地是, 反射介质面 1可以具有不连续的点, 如加工成网状结构或者开设有孔等方 式实现反射电波功能的介质表面, 其中网状结构或者孔的尺寸大小小于所述多天线组 件使用的无线电波波长的十分之一。 如图 32所示,三个第一天线单元 2互成 120度, 并以同一直线为三个介质基板表 面的延长相交线, 且三个第一天线单元 2到所述延长相交线的距离均相等。 也可以理 解为, 以图 32所示的俯视图来看, 三个第一天线单元 2以同一点为旋转中心, 任一第 一天线单元 2以该旋转中心旋转 120度后与另一第一天线单元 2重合。 三个第二天线单元 3按图 32所示的方式排布, 即两两互成 60度、 且三个第二天 线单元 3的介质基板沿表面方向延长后相交构成正三角形。且如图 32所示,每两个第 一天线单元 2之间设置有一个第二天线单元 3, 且该两个第一天线单元 2对称地位于 此第二天线单元 3两侧, 使得三个第一天线单元 2依次位于三个第二天线单元 3的三 个相邻间隔中。 为了验证本发明的天线组件及多天线组件的效果, 举一具体实施例, 第一天线单 元 2、 第二天线单元 3的尺寸如图 33、 图 34所示, 其中第一天线单元 2的介质基板 20长 95.2mm, ¾ 52.6mm, 第一导体线 28、 第二导体线 29均长 22.8mm, 宽 1.5mm, 第三导体线 25、 第四导体线 26、 第五导体线 27均长 40mm, 宽 1.5mm。 第一天线单 元 2、 第二天线单元 3的介质基板 20长 55mm, 宽 25mm, 第一导体线 38、 第二导体 线 39均长 9mm,宽 0.7mm,第三导体线 35、第四导体线 36、第五导体线 37均长 17mm, 宽 0.7mm。 介质反射面 1为铜箔, 直径为 80mm。 用具有上述尺寸、 且如图 30、 图 32 所示排布的多天线组件进行仿真如图 35至图 38所示。 其中, 图 35所示为低频段驻波比仿真图。 图 35中标注的三个点 ml、 m2、 m3在 仿真图中的坐标参数为:
Figure imgf000030_0001
上表说明, 该多天线组件在 2.4000~2.4800GHz频段范围内, 具有非常良好的阻抗 匹配。 图 36为上述多天线组件在频率为 2.45GHz的电磁场中的方向图。 由图可知, 该 频率下的辐射方向性很好, 能够满足无线信号收发的需求。 其中, 图 37所示为高频段驻波比仿真图。 图 37中标注的两个点 ml、 m2在仿真 图中的坐标参数为:
Figure imgf000030_0002
上表说明, 该多天线组件在 5.7250~5.8500GHz频段范围内, 具有非常良好的阻抗 匹配。 图 38为上述多天线组件在频率为 5.725GHz的电磁场中的方向图。 由图可知, 该 频率下的辐射方向性很好, 能够满足无线信号收发的需求。 综上所述, 依据八木天线原理设计的天线具有良好的方向性, 且工作频段为 2.4GHz禾 B 5.8GHz两个频段, 属于双频天线, 且具有频带宽、增益高、 易调试的优点。 显然, 当本发明的多天线组件具有三个或更多的天线组时, 即可得到多频天线, 也属 于本发明的保护范围。 同样, 本发明的每个天线组不必然为包括三个天线单元, 也可 以只有一个天线单元, 或者两个或者多于三个。 天线单元的排布方式也不必然均勾分 割介质反射面一侧空间, 可以按照相互平行地排布等其他方式设置。 上面结合附图对本发明的各实施例进行了描述, 但是本发明并不局限于上述的具 体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本领域的普通 技术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。

Claims

权 利 要 求 书 、 一种天线单元, 其特征在于, 包括介质基板和附着在所述介质基板上的天线导 体, 所述天线单元的最大增益方向与所述介质基板板面延伸方向一致。 、 根据权利要求 1所述的天线单元, 其特征在于, 所述介质基板由介电常数小于 10、 损耗角正切值小于 0.04的材料制成。 、 根据权利要求 1所述的天线单元, 其特征在于, 所述介质基板由介电常数小于 6.5、 损耗角正切值小于 0.009的材料制成。 、 根据权利要求 1所述的天线单元, 其特征在于, 所述介质基板由一种或两种或 两种以上材料制成。 、 根据权利要求 1所述的天线单元, 其特征在于, 所述介质基板为环氧树脂板、 聚四氟乙烯板、 铁氟龙板、 无卤素板、 罗杰斯高频板或陶瓷板。 、 根据权利要求 1所述的天线单元,其特征在于,所述介质基板由超材料板制成, 所述超材料板包括基板和附着在基板上的微结构。 、 根据权利要求 6所述的天线单元, 其特征在于, 所述微结构的尺寸小于所述天 线单元的工作频率所对应的电磁波波长的二分之一。 、 根据权利要求 7所述的天线单元, 其特征在于, 所述微结构的尺寸小于所述天 线单元的工作频率所对应的电磁波波长的四分之一。 、 根据权利要求 7所述的天线单元, 其特征在于, 所述微结构的尺寸小于所述天 线单元的工作频率所对应的电磁波波长的六分之一。 、 根据权利要求 1所述的天线单元, 其特征在于, 所述天线导体包括用来与馈线 连接的主振子、 用来增强无线所在侧的无线电波的引向器, 所述主振子和引向 器均为附着在所述介质基板上的导体线。 1、 根据权利要求 10所述的天线单元,其特征在于,所述引向器为沿电磁波传播方 向设置的由导体材料组成的散射结构。 、 根据权利要求 10所述的天线单元, 其特征在于, 所述主振子为直线或曲线。 、 根据权利要求 10所述的天线单元,其特征在于,所述主振子的导体线的线宽处 处相等或不完全相等。 、 根据权利要求 10所述的天线单元,其特征在于,所述主振子为开口曲线环或开 口折线环。 、 根据权利要求 14所述的天线单元,其特征在于,所述主振子为在任一角开口的 菱形环、 圆形环、 矩形环或三角形环或多边形环。 、 根据权利要求 11所述的天线单元, 其特征在于, 所述介质基板包括两表面, 至 少一所述引向器设置在与所述主振子所在表面不同的另一表面。 、 根据权利要求 1所述的天线单元, 其特征在于, 所述天线导体包括设置在所述 介质基板其中一表面上的第一天线导体和设置在另一表面上的第二天线导体。 、 根据权利要求 1所述的天线单元, 其特征在于, 所述天线单元包括多层介质基 板, 天线导体设置在其中一层或多层介质基板上。 、 根据权利要求 10所述的天线单元, 其特征在于, 所述导体线为金属线。 、 根据权利要求 10所述的天线单元, 其特征在于, 所述引向器有多个, 构成一组 相互平行的导体线。 、 根据权利要求 20所述的天线单元,其特征在于, 多个所述引向器的中心在同一 直线上且所述直线垂直于所述引向器。 、 根据权利要求 10所述的天线单元,其特征在于,所述主振子包括共线的两条导 体线, 且分别与所述引向器的导体线平行。 、 根据权利要求 10所述的天线单元,其特征在于,所述主振子的总长度大于每个 所述引向器的长度。 根据权利要求 1所述的天线单元, 其特征在于, 所述天线导体包括间隔地设置 在所述介质基板表面的主振子和至少一引向器, 所述主振子和所述引向器均为 导体条, 所述主振子的两端分别为馈电点和接地点。 根据权利要求 24所述的天线单元,其特征在于,所述主振子为开口曲线环或开 口折线环, 所述馈电点和所述接地点分别位于所述开口的端部。 、 根据权利要求 25所述的天线单元,其特征在于,所述开口处的所述导体条部分 重叠, 所述重叠部分间隔地形成所述开口。 、 根据权利要求 26所述的天线单元,其特征在于,所述重叠部分的导体条呈两相 对的 L型。 、 根据权利要求 24至 27中任一项所述的天线单元, 其特征在于, 所述导体条为 金属线、 非金属导电物质构成的线或金属与非金属组成的导电线。 、 根据权利要求 24所述的天线单元, 其特征在于, 所述引向器有多个, 构成一组 相互平行的导体条。 、 根据权利要求 24至 27中任一项所述的天线单元, 其特征在于, 所述主振子为 开口在任一角的菱形环。 、 根据权利要求 24所述的天线单元, 其特征在于, 所述介质基板包括两表面, 至 少一所述引向器设置在与所述主振子所在表面不同的另一表面。 、 一种天线组件, 其特征在于, 包括用于反射所述天线组件所使用的无线电波的 介质反射面和位于所述介质反射面一侧的天线组, 所述天线组包括至少一个如 权利要求 10至 31中任一项所述的天线单元, 且所述介质反射面、 每个所述天 线单元的引向器分别位于相应的天线单元的主振子两侧。 、 根据权利要求 32所述的天线组件,其特征在于,所述天线组包括三个相同的天 线单元, 每个所述天线单元的介质基板垂直于所述介质反射面, 且三个所述天 线单元互成 120度、 以同一直线为延长相交线、 且到所述延长相交线的距离均 相等地设置。 、 根据权利要求 32所述的天线组件,其特征在于,所述天线组包括三个相同的天 线单元, 每个所述天线单元的介质基板垂直于所述介质反射面, 三个天线单元 互成 60度、且三个天线单元的介质基板沿各自表面方向延长后相交构成正三角 形地设置。 、 一种多天线组件, 其特征在于, 包括介质反射面和安装在所述介质反射面上的 至少一个天线组, 不同天线组所使用的无线电波频率不相同, 每个天线组包括 至少一个如权利要求 1至 31中任一项所述的天线单元。 、 根据权利要求 35所述的多天线组件,其特征在于,所述介质反射面为具有几何 图案的导电微结构。 、 根据权利要求 36所述的多天线组件,其特征在于,所述导电微结构的尺寸小于 所述天线组所使用的无线电波频率所对应的波长的二分之一。 、 根据权利要求 36所述的多天线组件,其特征在于,所述导电微结构的尺寸小于 所述天线组所使用的无线电波频率所对应的波长的四分之一。 、 根据权利要求 36所述的多天线组件,其特征在于,所述导电微结构的尺寸小于 所述天线组所使用的无线电波频率所对应的波长的六分之一。 、 根据权利要求 35所述的多天线组件,其特征在于,所述多天线组件包括两个天 线组, 分别为第一天线组和第二天线组, 且两个天线组的天线单元的主振子尺 寸不同。 、 根据权利要求 35所述的多天线组件,其特征在于,所述多天线组件包括两个天 线组, 分别为第一天线组和第二天线组, 所述第一天线组和第二天线组包括相 同数目的天线单元, 所述第一天线组的所述天线单元被所述第二天线组的所述 天线单元间隔地设置。 、 根据权利要求 35所述的多天线组件,其特征在于,所述多天线组件包括两个天 线组, 分别为第一天线组和第二天线组, 所述第一天线组和所述第二天线组分 别包括各自相同的天线单元, 且各自的所述天线单元呈角度阵列的均布在所述 介质反射面上。 、 根据权利要求 35所述的多天线组件,其特征在于,每个所述天线单元外部设置 有一反射器。 、 根据权利要求 43所述的多天线组件,其特征在于,所述反射器呈一端小一端大 的开口结构, 且所述开口朝向所述天线单元的最大增益方向。 、 根据权利要求 35所述的多天线组件, 其特征在于, 包括至少两个天线组, 每个 所述天线组的所述天线单元为根据权利要求 10至 31中任一项所述的天线单元, 其中所述介质反射面、 每个所述天线单元的引向器分别位于相应的天线单元的 主振子两侧。 、 根据权利要求 45所述的多天线组件,其特征在于,所述多天线组件包括两个天 线组, 分别为第一天线组和第二天线组, 且前者的天线单元的主振子尺寸大于 后者的天线单元的主振子尺寸。 、 根据权利要求 46所述的多天线组件,其特征在于,所述第一天线组和第二天线 组分别包括三个相同的天线单元, 每个所述天线单元的介质基板垂直于所述介 质反射面, 且所述第一天线组的三个天线单元互成 120度、 以同一直线为延长 相交线、 且到所述延长相交线的距离均相等地设置, 所述第二天线组的三个天 线单元互成 60度、且三个天线单元的介质基板沿表面方向延长后相交构成正三 角形地设置。 、 根据权利要求 47所述的多天线组件,其特征在于,所述第二天线组的三个天线 单元依次位于所述第一天线组的三个天线单元的三个相邻间隔中。 、 一种多天线组件, 其特征在于, 包括用于反射所述多天线组件所使用的无线电 波的介质反射板和位于所述介质反射板一侧的至少一天线组, 所述天线组包括 至少一个如权利要求 10至 31中任一项所述的天线单元, 且所述介质反射板、 每个所述天线单元的引向器分别位于相应的天线单元的主振子两侧。 、 根据权利要求 49所述的多天线组件,其特征在于,所述多天线组件包括具有相 同数目天线单元的第一天线组和第二天线组, 所述第一天线组的所述天线单元 被所述第二天线组的所述天线单元间隔地设置。 、 根据权利要求 50所述的多天线组件,其特征在于,所述第一天线组和所述第二 天线组分别包括各自相同的天线单元, 且各自的所述天线单元呈角度阵列的均 布在所述介质反射板上。 、 根据权利要求 51所述的多天线组件,其特征在于,所述第一天线组和所述第二 天线组分别包括三个天线单元。 、 根据权利要求 50至 52中任一项所述的多天线组件, 其特征在于, 所述第一天 线组的所述天线单元和所述第二天线组的所述天线单元具有尺寸不同的相似的 结构。 、 根据权利要求 35所述的多天线组件,其特征在于,所述多天线组件包括具有所 述介质反射面的反射器以及设于所述介质反射面上的至少一个天线单元阵列, 所述天线单元阵列包括两个所述天线组, 分别为第一天线组和第二天线组, 所 述第一天线组包括多个具有第一工作频段的第一天线单元, 所述第二天线组包 括至少一个具有第二工作频段的第二天线单元, 所述多个第一天线单元围成一 周, 所述第二天线单元位于所述一周第一天线单元之中。 、 根据权利要求 54所述的多天线组件,其特征在于,所述第一天线单元和第二天 线单元均分别具有垂直地固定在同一所述反射面侧上的介质基板、 及形成于所 述介质基板上的主振子和引向器。 、 根据权利要求 55所述的多天线组件, 其特征在于, 所述第一天线单元有三个, 三个第一天线单元的介质基板各自具有的与所述反射面垂直的中垂面汇交于一 条线, 每相邻两中垂面之间夹角为 120°; 所述第二天线单元的介质基板垂直于 其中一个所述第一天线单元的介质基板。 、 根据权利要求 55所述的多天线组件,其特征在于,所述三个第一天线单元的介 质基板各自内侧面中,每两个内侧面的中心点之间的直线距离在 30-40mm的范 围内。 、 根据权利要求 55所述的多天线组件,其特征在于,所述三个第一天线单元的介 质基板中的另两个介质基板, 相对于所述第二天线单元的介质基板镜像布置。 、 根据权利要求 55所述的多天线组件,其特征在于,在每个所述第一天线单元和 第二天线单元中, 所述主振子和引向器之间的位置关系设置为: 沿着所述介质 反射面的外法线方向远离所述反射器的所述介质反射面依次布置。 、 根据权利要求 59所述的多天线组件, 其特征在于, 所述主振子、 以及引向器均 为导线。 、 根据权利要求 60所述的多天线组件,其特征在于,所述导线为铜导线、铝导线、 银导线或合金导线中任一种。 、 根据权利要求 60所述的多天线组件,其特征在于,所述主振子与所述引向器由 相同材料的导线构成。 、 根据权利要求 59所述的多天线组件,其特征在于,每个所述主振子由间隔布置 的、 并且在同一直线上的第一导线和第二导线构成, 所述第一天线单元的引向 器和第二天线单元的引向器均由至少一条一字型导线构成,在同一天线单元中, 每条一字型导线均平行于该同一天线单元中的第一导线和第二导线, 并且均位 于该同一天线单元中主振子的同一侧。 64、 根据权利要求 63所述的多天线组件,其特征在于,所述第一天线单元的引向器 和第二天线单元的引向器, 分别均由 2-16条所述导线构成, 其中, 在同一天线 单元中, 所有的一字型导线沿着垂直于在该同一天线单元中第一导线和第二导 线的方向依次间隔地布置。
65、 根据权利要求 63所述的多天线组件,其特征在于,所述第一天线单元中的构成 引向器的一字型导线的数量、 大于所述第二天线单元中的构成引向器的一字型 导线的数量。
66、 根据权利要求 63至 65中任一项所述的多天线组件, 其特征在于, 所述第一天 线单元中每条一字型导线均相同,其中,所述第一天线单元中主振子的总长度, 大于所述第一天线单元中每条所述一字型导线的长度。
67、 根据权利要求 66所述的多天线组件,其特征在于,所述第一天线单元中每条一 字型导线的垂直于其长度方向的中垂线均在同一直线上, 并且均穿过所述第一 天线单元中主振子的总长度的中心位置。
68、 根据权利要求 63至 65中任一项所述的多天线组件, 其特征在于, 所述第二天 线单元中每条一字型导线均相同,其中,所述第二天线单元中主振子的总长度, 大于所述第二天线单元中每条所述一字型导线的长度。
69、 根据权利要求 68所述的多天线组件,其特征在于,所述第二天线单元中每条一 字型导线的垂直于其长度方向的中垂线均在同一直线上, 并且均穿过所述第二 天线单元中主振子的总长度的中心位置。
70、 根据权利要求 54至 65中任一项所述的多天线组件, 其特征在于, 所述反射器 为反射平板, 所述反射板的所述介质反射面为导体反射面, 所有天线单元阵列 共用一个所述导体反射面。
71、 根据权利要求 54至 65中任一项所述的多天线组件, 其特征在于, 所述天线用 于交通系统。
72、 根据权利要求 71所述的多天线组件,其特征在于,所述交通系统为固定线路的 地铁交通系统、 轻轨交通系统、 空运交通系统、 海运交通系统、 高速公路交通 系统、 海底隧道交通系统或公交车交通系统中任一个。 、 根据权利要求 54至 65中任一项所述的多天线组件, 其特征在于, 所述第一天 线单元的所述第一工作频段、 和所述第二天线单元的所述第二工作频段为选自 1.8-12G的彼此各异的频段。 、 根据权利要求 73所述的多天线组件,其特征在于,所述第一工作频段或第二工 作频段为 4.9GHz~6GH。 、 根据权利要求 74所述的多天线组件,其特征在于,所述第一工作频段或第二工 作频段为 5GHz~5.9GHz。 、 根据权利要求 73所述的多天线组件,其特征在于,所述第一工作频段或第二工 作频段为 2GHz~2.6GHz。 、 根据权利要求 76所述的多天线组件,其特征在于,所述第一工作频段或第二工 作频段为 2.4GHz~2.5GHzo 、 一种无线互连设备, 其特征在于, 包括: 权利要求 1至 31任一项所述的天线单 元或权利要求 32至 34中任一项所述的天线组件或权利要求 35-78任一项所述 的多天线组件, 与所述天线单元对应的馈线以及容置所述天线单元或所述天线 组件或所述多天线组件的壳体。 、 根据权利要求 78所述的无线互连设备,其特征在于,还包括一控制所述天线单 元或所述天线组工作的开关单元。 、 根据权利要求 78所述的无线互连设备,其特征在于,所述壳体包括相扣合形成 封闭腔体的上壳与下壳, 还包括位于所述腔体中的所述多天线组件。 、 根据权利要求 80 所述的无线互连设备, 每个天线组包括至少一个所述天线单 元, 所述天线单元包括介质基板、 用来与馈线连接的主振子、 用来增强所在侧 的无线电波的引向器, 所述主振子和引向器均为附着在所述介质基板上的导体 线, 且所述介质反射面、 每个所述天线单元的引向器分别位于相应的天线单元 的主振子两侧。
PCT/CN2013/081239 2012-08-13 2013-08-09 天线单元、天线组件、多天线组件及无线互连设备 WO2014026573A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13829171.1A EP2887456B1 (en) 2012-08-13 2013-08-09 Antenna unit, antenna assembly, multi-antenna assembly, and wireless connection device
US14/621,404 US20150171522A1 (en) 2012-08-13 2015-02-13 Antenna unit, antenna assembly, multi-antenna assembly, and wireless connection device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201210286511.5A CN103594780B (zh) 2012-08-13 2012-08-13 一种天线
CN201210286555.8 2012-08-13
CN201210286555.8A CN102800954B (zh) 2012-08-13 2012-08-13 天线单元、天线组件及多天线组件
CN201210286511.5 2012-08-13
CN201210385136.XA CN103682604B (zh) 2012-09-24 2012-09-24 天线单元、多天线组件及无线互连设备
CN201210385136.X 2012-09-24
CN201210554682.1A CN103887599A (zh) 2012-12-19 2012-12-19 天线单元、多天线组件及无线互连设备
CN201210554682.1 2012-12-19
CN201310105507.9 2013-03-28
CN201310105507.9A CN103794882B (zh) 2013-03-28 2013-03-28 天线

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/621,404 Continuation US20150171522A1 (en) 2012-08-13 2015-02-13 Antenna unit, antenna assembly, multi-antenna assembly, and wireless connection device

Publications (1)

Publication Number Publication Date
WO2014026573A1 true WO2014026573A1 (zh) 2014-02-20

Family

ID=50101242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081239 WO2014026573A1 (zh) 2012-08-13 2013-08-09 天线单元、天线组件、多天线组件及无线互连设备

Country Status (3)

Country Link
US (1) US20150171522A1 (zh)
EP (1) EP2887456B1 (zh)
WO (1) WO2014026573A1 (zh)

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
JP6309831B2 (ja) * 2014-06-10 2018-04-11 株式会社東芝 無線装置
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
JP6834284B2 (ja) * 2016-09-20 2021-02-24 カシオ計算機株式会社 方向推定装置、方向推定方法、及び、プログラム
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN110612088B (zh) * 2017-03-15 2022-07-29 香港物流及供应链管理应用技术研发中心 用于辅助视力障碍用户的无线电通信设备和rfid设备
WO2018198981A1 (ja) * 2017-04-27 2018-11-01 Agc株式会社 アンテナ及びmimoアンテナ
US11005167B2 (en) * 2017-11-03 2021-05-11 Antenum Llc Low profile antenna-conformal one dimensional
CN108232422B (zh) * 2017-12-29 2019-12-06 维沃移动通信有限公司 一种天线及无线移动终端
USD863268S1 (en) 2018-05-04 2019-10-15 Scott R. Archer Yagi-uda antenna with triangle loop
RU2691593C1 (ru) 2018-09-20 2019-06-14 Самсунг Электроникс Ко., Лтд. Высокочастотные коммутаторы с уменьшенным числом коммутирующих элементов
KR20210117536A (ko) * 2020-03-19 2021-09-29 삼성전자주식회사 복수의 안테나를 포함하는 전자 장치
US20220349989A1 (en) * 2021-04-28 2022-11-03 Raytheon Company Low swap aperture for direction finding across extreme wide band
WO2023128711A1 (ko) * 2021-12-31 2023-07-06 삼성전자 주식회사 편파를 갖는 신호를 통과시키는 홀을 포함하는 전자 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008773A (en) * 1996-11-18 1999-12-28 Nihon Dengyo Kosaku Co., Ltd. Reflector-provided dipole antenna
CN1742407A (zh) * 2003-01-30 2006-03-01 松下电器产业株式会社 天线装置
CN1835286A (zh) * 2005-03-15 2006-09-20 智易科技股份有限公司 具有反射板的天线装置
CN101005153A (zh) * 2005-11-02 2007-07-25 欧力天工股份有限公司 天线装置
CN102157780A (zh) * 2011-01-30 2011-08-17 广东通宇通讯股份有限公司 一种多制式天线
CN202363573U (zh) * 2011-10-31 2012-08-01 深圳光启高等理工研究院 一种介质基板及具有该介质基板的天线
CN102800954A (zh) 2012-08-13 2012-11-28 深圳光启创新技术有限公司 天线单元、天线组件及多天线组件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69838926T2 (de) * 1997-05-09 2009-01-02 Nippon Telegraph And Telephone Corp. Antenne und Verfahren zu ihrer Herstellung
US6046703A (en) * 1998-11-10 2000-04-04 Nutex Communication Corp. Compact wireless transceiver board with directional printed circuit antenna
JP5510450B2 (ja) * 2009-04-14 2014-06-04 株式会社村田製作所 無線icデバイス
CN101895017A (zh) * 2009-05-20 2010-11-24 旭丽电子(广州)有限公司 内藏式多天线模块
FR2946805B1 (fr) * 2009-06-11 2012-03-30 Alcatel Lucent Element rayonnant d'antenne
US20130300624A1 (en) * 2012-05-08 2013-11-14 Peraso Technologies Inc. Broadband end-fire multi-layer antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008773A (en) * 1996-11-18 1999-12-28 Nihon Dengyo Kosaku Co., Ltd. Reflector-provided dipole antenna
CN1742407A (zh) * 2003-01-30 2006-03-01 松下电器产业株式会社 天线装置
CN1835286A (zh) * 2005-03-15 2006-09-20 智易科技股份有限公司 具有反射板的天线装置
CN101005153A (zh) * 2005-11-02 2007-07-25 欧力天工股份有限公司 天线装置
CN102157780A (zh) * 2011-01-30 2011-08-17 广东通宇通讯股份有限公司 一种多制式天线
CN202363573U (zh) * 2011-10-31 2012-08-01 深圳光启高等理工研究院 一种介质基板及具有该介质基板的天线
CN102800954A (zh) 2012-08-13 2012-11-28 深圳光启创新技术有限公司 天线单元、天线组件及多天线组件

Also Published As

Publication number Publication date
EP2887456B1 (en) 2019-10-16
EP2887456A1 (en) 2015-06-24
EP2887456A4 (en) 2016-08-10
US20150171522A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
WO2014026573A1 (zh) 天线单元、天线组件、多天线组件及无线互连设备
CN102299418B (zh) 多层宽频微带天线
TWI389390B (zh) 陣列天線以及使用其之電子裝置
WO2019165915A1 (zh) 毫米波天线阵列及移动终端
WO2020187207A1 (zh) 一种天线单元及一种滤波天线阵列
WO2021022941A1 (zh) 天线阵列及终端
WO2022179324A1 (zh) 天线装置、壳体及电子设备
WO2021013010A1 (zh) 天线单元和电子设备
WO2019062445A1 (zh) 多极化辐射振子及天线
WO2021213182A1 (zh) 一种电子设备及天线装置
WO2024066393A1 (zh) 低频滤波辐射单元及基站天线
WO2023035874A1 (zh) 天线装置、壳体以及电子设备
CN101888017A (zh) Gsm850/dcs/pcs三频段的并馈式全向天线阵列
WO2022083276A1 (zh) 天线阵列组件及电子设备
WO2022242069A1 (zh) 双极化滤波天线单元和双极化滤波天线阵列
CN114976583A (zh) 毫米波天线、装置及电子设备
WO2020134448A1 (zh) 一种天线单元、天线阵列和基站
WO2021244158A1 (zh) 双极化天线及客户前置设备
WO2020233518A1 (zh) 天线单元和电子设备
WO2022134786A1 (zh) 一种天线和通信设备
CN109560387B (zh) 一种用于移动终端的毫米波双极化天线
WO2022148130A1 (zh) 天线组件及电子设备
WO2023066217A1 (zh) 天线装置与电子设备
WO2023109868A1 (zh) 天线模组及电子设备
WO2022012546A1 (zh) 双频天线及天线阵列

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013829171

Country of ref document: EP