WO2014024957A1 - 光導波路素子 - Google Patents

光導波路素子 Download PDF

Info

Publication number
WO2014024957A1
WO2014024957A1 PCT/JP2013/071469 JP2013071469W WO2014024957A1 WO 2014024957 A1 WO2014024957 A1 WO 2014024957A1 JP 2013071469 W JP2013071469 W JP 2013071469W WO 2014024957 A1 WO2014024957 A1 WO 2014024957A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
branch
optical
waveguide
substrate
Prior art date
Application number
PCT/JP2013/071469
Other languages
English (en)
French (fr)
Inventor
勝利 近藤
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to US14/420,110 priority Critical patent/US9304370B2/en
Priority to CN201380041588.9A priority patent/CN104520758A/zh
Publication of WO2014024957A1 publication Critical patent/WO2014024957A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/20LiNbO3, LiTaO3

Definitions

  • the present invention relates to an optical waveguide device, and more particularly to an optical waveguide device with improved optical characteristics even when the branch angle is large in the Y branch of the optical waveguide.
  • an optical waveguide element in which an optical waveguide is formed on a substrate having an electrooptic effect such as lithium niobate (LN) is used.
  • the LN modulator which is an example of an optical waveguide element, has a Mach-Zehnder (MZ) structure in the waveguide shape.
  • the modulator having the MZ structure controls light on / off by an applied voltage applied to the control electrode arranged along the branch optical waveguide having the MZ structure.
  • the output waveguide of the MZ structure waveguide is a single mode waveguide, and the light can be turned on / off by controlling the fundamental mode and the excitation mode by changing the propagation speed of the light according to the applied voltage. ing.
  • the characteristics of LN modulator include V ⁇ and optical band.
  • V ⁇ is an applied voltage required when turning light off from on, and the optical band is a frequency at which on / off operation is possible.
  • the substrate is thinned, the optical characteristics are likely to be deteriorated (unstable) as compared with the optical modulator having a thick substrate.
  • One of the causes is light leakage propagating in the substrate other than the optical waveguide. For this reason, as shown in Patent Document 2, the thinned LN modulator must have a countermeasure against light leakage.
  • a method of modulating the phase has become mainstream, such as an optical modulator (four-value PSK modulator) of a four-value phase modulation (Phase-Shift Keying, PSK) method.
  • an optical modulator four-value PSK modulator
  • PSK Phase-Shift Keying
  • the quaternary PSK modulator needs to split the input light into four branches.
  • a nested waveguide is used in which two small MZ structures (sub-MZ) are arranged in one large MZ structure (main MZ) branching waveguide.
  • Each of the separated waveguides is subjected to phase modulation at the action portion.
  • the modulation electrode has a coplanar structure applied to each MZ structure.
  • the MZ GND (ground) electrode width of the quaternary PSK modulator corresponding to the closest distance between the sub-MZs in FIG. 1 is at least 200 ⁇ m in consideration of the crosstalk and GND function of the electrical signals of each MZ structure. I need it. For this reason, the separation interval (Y-branch interval) of the incident Y-branch of the light 4-branch portion is 200 ⁇ m or more.
  • Non-Patent Document 1 describes a Y-branch interval in consideration of the crosstalk and GND functions of an electrical signal, despite the fact that it is a four-value PSK modulator using InP that can be made smaller than an LN modulator. 350 ⁇ m is secured.
  • Non-Patent Document 2 or Patent Document 3 the purpose is to reduce the loss at the Y branch portion, and the influence of light leaking from the Y branch portion is not taken into consideration at all.
  • Patent Document 4 a method for processing light leaked from the optical waveguide is disclosed in Patent Document 4 or 5, and in particular, a technique relating to light leakage from a bent portion or a Y-shaped combined portion of the optical waveguide is disclosed.
  • the optical waveguide in which light leakage occurs from the S-shaped portion has wavelength dependency, it cannot normally be used as an optical device in the communication field.
  • the separation interval of the incident Y-branch of the optical four-branch portion is widened, whereas the length of the Y-branch is limited due to the size of the optical waveguide device. Therefore, the Y branch angle is larger than usual. As a result, light leaks from the Y branching portion, causing optical characteristics such as an optical modulator to deteriorate. Further, in the case of a thinned structure in which the substrate is thinned, the optical characteristic deterioration becomes significant as described above.
  • Kelvin Prosyk et al. "Tunable InP-based Optical IQ Modulator for 160 Gb / s", ECOC PostdeadlinePapers, Th.13.A.5 (2011) Tetsuro Tsuji et al., "Low-loss wide-angle Y-branch optical waveguide", IEICE Transactions C, Vol. J87-C, No.
  • the problem to be solved by the present invention is to solve the above-mentioned problems and to provide an optical waveguide device with little deterioration in optical characteristics even when the branch angle at the Y branch portion of the optical waveguide is large.
  • the optical waveguide device of the present invention has the following technical features.
  • (1) In an optical waveguide device in which an optical waveguide is formed on a substrate, the optical waveguide has a first branching portion that splits light into two at a branching angle of 1/35 rad or more, and from the first branching portion.
  • a second branch portion and a third branch portion are connected to each of the two branched waveguides, and are disposed between the two branched waveguides of the first branch portion,
  • optical terminal portion is a conductive member disposed on the substrate.
  • the conductive member is a part of an electrode for modulating light propagating through the optical waveguide.
  • the optical terminal portion is a groove having a width of 80 ⁇ m or more with respect to a main propagation direction of the radiated light.
  • each of the second branch portion and the third branch portion forms a Mach-Zehnder type optical waveguide,
  • the closest distance of the Zehnder type optical waveguide is 200 ⁇ m or more.
  • the substrate is made of lithium niobate or lithium tantalate having a thickness of 20 ⁇ m or less.
  • the optical waveguide in the optical waveguide device in which the optical waveguide is formed on the substrate, the optical waveguide has a first branching portion that splits light into two at a branching angle of 1/35 rad or more, and Each of the two branch waveguides branched from one branch portion is connected to the second branch portion and the third branch portion, and the two branch waveguides branched from the first branch portion are connected to each other.
  • a radiated light guide waveguide that guides radiated light emitted from the crotch portion of the first branch portion to the outside of the optical waveguide, and a terminal portion of the radiated light guide waveguide includes guided radiation.
  • Light termination from the first branch is formed in the branch waveguide because the optical termination that absorbs or emits light to the outside of the substrate is arranged. Therefore, it is possible to reliably reduce the incidence to the incident MZ waveguide (secondary MZ). Such as improved On / Off extinction ratio in the structure, it is possible to suppress the deterioration of the optical properties of the optical waveguide device.
  • the optical waveguide device of the present invention is an optical waveguide device in which an optical waveguide is formed on a substrate.
  • the optical waveguide is a first branch that branches light into two at a branch angle of 1/35 rad or more.
  • Each of the two branching waveguides branched from the first branching section is connected to the second branching section and the third branching section, and the first branching section branches.
  • a radiated light guide waveguide that is disposed between the two branched waveguides and guides the radiated light emitted from the crotch portion of the first branched portion to the outside of the optical waveguide; and a terminal portion of the radiated light guide waveguide Is characterized in that a light terminating portion for absorbing the guided radiation or emitting it to the outside of the substrate is arranged.
  • each branch waveguide has a Y-branch (second and second branches) of the sub-MZ structure.
  • the third branch portion) is connected, but is omitted in FIG.
  • FIG. 2 when a Y branch portion having a large branch angle is employed, light leakage is likely to occur from the crotch portion of the Y branch portion. For this reason, in this invention, it is comprised so that spreading
  • the “branch angle (Y branch angle)” used in the present invention means the maximum angle formed by the tangent line (dotted line) formed by the optical waveguide branched by the Y branch, as shown in FIG. To do.
  • the angle formed by the halves of the upper half of the drawing among the tangents to the curve of each branching waveguide is The largest combination is selected, and the value of the angle becomes the “branch angle”.
  • the “Y branch separation interval” shown in FIG. 3 means the maximum distance between two branch waveguides that are separated from each other by the Y branch.
  • the incident Y branch separation interval needs to be 200 ⁇ m or more.
  • the Y branching angle is about 2/35 rad.
  • FIG. 4 shows the result of trial calculation of the extinction ratio of the sub-MZ with the incident Y branch length of 3500 ⁇ m and the incident Y branch interval as a parameter.
  • the extinction ratio of a commercial modulator (for example, quaternary PSK modulator) needs to be 25 dB or more.
  • the Y branch angle is 1.6 / 35 rad or more, the extinction ratio is 25 dB or less, Y The branching angle is 2.4 / 35 rad or more and the extinction ratio is 20 dB or less.
  • the extinction ratio of the sub-MZ deteriorates when the Y branch interval is widened.
  • a substrate having an electro-optic effect such as lithium niobate or lithium tantalate can be used. It is also possible to configure a substrate including an optical waveguide portion that performs light modulation and a substrate including other optical waveguides, for example, a waveguide such as a Y branching portion or a Y combining portion, with substrates of different materials. is there.
  • the optical waveguide As a method for forming the optical waveguide, for example, it is formed by thermally diffusing a high refractive index substance such as titanium (Ti) on a LiNbO 3 substrate (LN substrate). Moreover, it is also possible to form the substrate with irregularities like a ridge waveguide.
  • a high refractive index substance such as titanium (Ti)
  • LiNbO 3 substrate LiNbO 3 substrate
  • a lithium niobate or lithium tantalate substrate having a substrate thickness of 20 ⁇ m or less.
  • an LN wafer on which a Ti diffusion waveguide is formed is polished to 20 ⁇ m or less and used by being fixed to a holding substrate via an adhesive.
  • a known technique described in Non-Patent Document 3 can be used for the Ti diffusion process, and a known technique described in Non-Patent Document 4 can be used for the thin plate modulator formation method. Note that the substrate can be thinned even after the electrodes are formed.
  • a seed layer is formed to a thickness of about 100 nm by vapor deposition, sputtering, CVD, and the like, and further formed by a semi-additive method by electrolytic plating.
  • the conductive member may be arranged simultaneously with the electrode formation, or the member may be arranged in another manufacturing process. Is possible.
  • a part of the ground electrode constituting the electrode can have its function.
  • the Y branch angle is large at the first branch portion, the wavefront of the light wave does not match the waveguide propagation direction. As a result, light wave components that do not match leak into the center of the Y branch, affecting the sub-MZ structure.
  • the substrate is a thin plate
  • light leakage is confined in a thin plate-shaped substrate, particularly in a direction perpendicular to the substrate. For this reason, light leakage spreads only in the horizontal direction and easily enters the Y branch portion (optical waveguide) of the sub-MZ structure.
  • the branching ratio of the Y branching portion in the sub-MZ is degraded, and the On / Off extinction ratio is degraded.
  • a wide waveguide (radiated light guide waveguide) is formed in the crotch part of the Y branch part to confine light. Since the radiated light guide waveguide is optically coupled to the branching waveguide and excessive light loss may occur, the shortest distance between the radiated light guide waveguide and the branched waveguide is 10 ⁇ m or more as shown in FIG. Is set. This is about the size of the light distribution of the branching waveguide (1 / e binary value).
  • the propagation direction is the leakage direction (in the case of a symmetric Y-branch, the direction of the symmetry axis), and (2) the differentiation of the waveguide width with respect to the propagation direction. Is required to be smaller than the Y branch angle, and (3) the starting width of the emitted light guide waveguide width is as wide as possible.
  • the straight slab waveguide is a radiated light guide waveguide.
  • the emitted light guide waveguide can be formed simultaneously with the optical waveguide including the MZ structure. If necessary, it can be formed in a process different from the formation of a normal optical waveguide.
  • an optical termination is provided on the inner side of the main MZ structure.
  • a ground electrode (GND electrode) is used as an optical terminal, and light leakage is guided to the electrode by a radiated light guide waveguide.
  • the light wave that passes through the thin plate LN below the GND electrode is absorbed and attenuated by the upper metal (GND electrode).
  • the GND electrode also serves as a light termination function.
  • a conventional LN modulator does not absorb light by a buffer layer (BF) formed between a substrate and an electrode, but exhibits a function of absorbing light when the thickness of the buffer layer is 0.2 ⁇ m or less.
  • BF buffer layer
  • a buffer layer of 0.2 ⁇ m or less can be inserted, and the characteristics can be improved only by changing the optical waveguide and the photomask of the electrode.
  • FIG. 5 is a graph comparing the characteristics of an optical waveguide device having the structure shown in FIG. 2 and a conventional optical waveguide device. It can be easily understood that the optical waveguide device of the present invention has an improved On / Off extinction ratio in the sub-MZ structure over the entire measured wavelength range.
  • FIG. 6B is a cross-sectional view taken along one-dot chain line aa in FIG.
  • the groove formation dry etching, excimer laser, or the like can be used.
  • the light terminating function is realized by radiating the light propagating through the radiated light guide waveguide into the space.
  • the width of the groove the length in the propagation direction of the emitted light
  • the emitted light is incident on the thin plate again.
  • the groove width (lateral length in the drawing) is about It is preferable to set it to 80 ⁇ m or more.
  • a 200 ⁇ m long hole was drilled in the middle of the synchrotron radiation guide waveguide using an excimer laser. As a result, an improvement in the On / Off extinction ratio in the sub-MZ structure was confirmed.

Abstract

 光導波路のY分岐部での分岐角度が大きい場合でも、光学特性の劣化が少ない光導波路素子を提供することを目的とする。 基板に光導波路が形成された光導波路素子において、該光導波路は、分岐角度が1/35rad以上で光を2分岐する第1の分岐部を有し、該第1の分岐部から分岐した2つの分岐導波路の各々には、第2の分岐部(不図示)と第3の分岐部(不図示)が接続配置されており、該第1の分岐部の分岐した2つの分岐導波路間に配置され、該第1の分岐部の股部分から該光導波路外に放射される放射光を案内する放射光ガイド導波路と、該放射光ガイド導波路の終端部には、案内された放射光を吸収又は基板外に放出する光終端部(電極)が配置されていることを特徴とする。

Description

光導波路素子
 本発明は、光導波路素子に関し、特に、光導波路のY分岐において分岐角度が大きい場合でも、光学特性を改善した光導波路素子に関する。
 光通信や光情報処理には、ニオブ酸リチウム(LN)などの電気光学効果を有する基板に光導波路を形成した光導波路素子が利用されている。
 光導波路素子の一例であるLN変調器は、導波路形状がマッハツェンダー(MZ)構造をしている。MZ構造の変調器は、MZ構造の分岐光導波路に沿って配置された制御電極に印加する印加電圧によって、光のon/offを制御している。具体的には、MZ構造導波路の出力導波路がシングルモード導波路であること、印加電圧によって光の伝播速度が変化することによる基本モード・励起モード制御によって、光のon/offを可能にしている。
 LN変調器の特性に、Vπ、光帯域がある。Vπとは、光をonからoffにするときに必要な印加電圧であり、光帯域とは、on/off動作可能な周波数である。Vπが小さく、光帯域が大きいほど、LN変調器の特性としては良好である。
 一般的に、コンデンサ並列回路に電圧を印加したとき、誘電率が大きいコンデンサ側に大きな電場が印加される。特許文献1のように、LN変調器の基板厚を光分布程度に薄くすると、マイクロ波電界と光導波路が効率的に重なり合うため、低いVπで駆動することができる。
 しかし、基板を薄くした場合には、厚い基板の光変調器と比較して、光学特性が劣化(不安定)し易い。その原因の一つに、光導波路以外の基板内を伝搬する漏光がある。このため、特許文献2に示すように、薄板化されたLN変調器は、漏光対策が必須になる。
 近年、4値の位相変調(Phase Shift Keying,PSK)方式の光変調器(4値PSK変調器)等のように、位相を変調させる方式が主流になっている。位相を操作するには、MZ構造の光導波路を複数個配置する必要がある。例えば、4値PSK変調器の場合、3個のMZ構造、偏波多重4値PSK変調器の場合には6個のMZ構造が必要になる。
 具体的には、図1に示すように、4値PSK変調器では入力光を4分岐にする必要がある。図1では、一つの大きなMZ構造(主MZ)の分岐導波路に2つの小さなMZ構造(副MZ)を配置したネスト型導波路を利用している。分離された各導波路は、作用部において位相変調が加えられる。変調用電極は、各MZ構造に対し、コプレーナ構造が適用されている。
 図1の副MZ間の最も近接した距離に対応する、4値PSK変調器のMZ間GND(接地)電極幅は、各MZ構造の電気信号のクロストーク及びGND機能を考慮すると、少なくとも200μm以上必要になる。このため、光4分岐部の入射Y分岐の分離間隔(Y分岐間隔)は200μm以上になる。
 非特許文献1には、LN変調器よりも小型化が可能なInPを用いた4値PSK変調器であるにも関わらず、電気信号のクロストーク及びGND機能を考慮して、Y分岐間隔を350μm確保している。
 また、Y分岐の分岐角度が大きい、広角Y分岐は、光回路の集積化においても、検討されている。非特許文献2又は特許文献3では、Y分岐部での損失低減を図ることが目的であり、Y分岐部から漏れた光の影響については全く考慮されていない。
 一方、光導波路から漏れた光の処理方法は、特許文献4又は5に開示されており、特に、光導波路の曲げ部やY字状の合波部からの漏光に関する技術が開示されている。また、S字部から漏光が発生する光導波路は、波長依存性があるため、通信分野での光デバイスとしては通常使用できない。
 上述のように、4値PSK変調器などの光導波路素子では、光4分岐部の入射Y分岐の分離間隔が広くなるのに対し、光導波路素子の大きさの制約からY分岐の長さが制限されるため、Y分岐角度が通常より大きくなる。その結果、Y分岐部から光が漏洩し、光変調器などの光学特性を劣化させる原因となる。さらに、基板を薄くする薄板化構造の場合には、上述したように光学特性劣化が顕著となる。
特開2003-215519号公報 特許第4658658号公報 特開2000-131544号公報 特開2004-46021号公報 特許第3184426号公報
Kelvin Prosyk et al.,"Tunable InP-based Optical IQ Modulator for 160 Gb/s", ECOC PostdeadlinePapers,Th.13.A.5 (2011) 薮哲郎 他,「低損失広角Y分岐光導波路」,電子情報通信学会論文誌 C,Vol.J87-C, No.8, pp609-615, 2004年8月 皆方 誠,「LINbO3光導波路デバイス」,電子情報通信学会論文誌 C-I, Vol.J77-C-I ,No.5 ,pp194-205,1994年5月 Jungo Kondo et al., "High-Speedand Low-Driving-Voltage Thin-Sheet X-Cut LiNbO3 Modulator WithLaminated Low-Dielectric-Constant Adhesive", IEEE Photonics TechnologyLetters, Vol.17, No.10, pp2077-2079, October 2005
 本発明が解決しようとする課題は、上述したような問題を解決し、光導波路のY分岐部での分岐角度が大きい場合でも、光学特性の劣化が少ない光導波路素子を提供することである。
 上記課題を解決するため、本発明の光導波路素子は以下の技術的特徴を有している。
(1)基板に光導波路が形成された光導波路素子において、該光導波路は、分岐角度が1/35rad以上で光を2分岐する第1の分岐部を有し、該第1の分岐部から分岐した2つの分岐導波路の各々には、第2の分岐部と第3の分岐部が接続配置されており、該第1の分岐部の分岐した2つの分岐導波路間に配置され、該第1の分岐部の股部分から該光導波路外に放射される放射光を案内する放射光ガイド導波路と、該放射光ガイド導波路の終端部には、案内された放射光を吸収又は基板外に放出する光終端部が配置されていることを特徴とする。
(2)上記(1)に記載の光導波路素子において、該光終端部は、該基板上に配置された導電性部材であることを特徴とする。
(3)上記(2)に記載の光導波路素子において、該導電性部材は、該光導波路を伝搬する光を変調するための電極の一部であることを特徴とする。
(4)上記(1)に記載の光導波路素子において、該光終端部は、該放射光の主な伝搬方向に対する幅が80μm以上の溝であることを特徴とする。
(5)上記(1)乃至(4)のいずれかに記載の光導波路素子において、前記第2の分岐部と前記第3の分岐部の各々はマッハツェンダー型光導波路を形成し、互いのマッハツェンダー型光導波路の最も近接した距離が200μm以上であることを特徴とする。
(6)上記(1)乃至(5)のいずれかに記載の光導波路素子において、該基板は、厚みが20μm以下のニオブ酸リチウム又はタンタル酸リチウムで構成されていることを特徴とする。
 本発明の光導波路素子では、基板に光導波路が形成された光導波路素子において、該光導波路は、分岐角度が1/35rad以上で光を2分岐する第1の分岐部を有し、該第1の分岐部から分岐した2つの分岐導波路の各々には、第2の分岐部と第3の分岐部が接続配置されており、該第1の分岐部の分岐した2つの分岐導波路間に配置され、該第1の分岐部の股部分から該光導波路外に放射される放射光を案内する放射光ガイド導波路と、該放射光ガイド導波路の終端部には、案内された放射光を吸収又は基板外に放出する光終端部が配置されているため、第1の分岐部(入射Y分岐部,主MZの入射側のY分岐部)からの漏光が、分岐導波路に形成されたMZ導波路(副MZ)に入射することを確実に低減することが可能となり、副MZ構造におけるOn/Off消光比を改善するなど、光導波路素子の光学特性の劣化を抑制することが可能となる。
4値PSK変調器に使用される光導波路素子の例を説明する図である。 本発明の光導波路素子における第1の分岐部の近傍の構造を説明する図である。 「分岐角度」を説明する図である。 本発明の光導波路素子と従来品との光学特性(Y分岐角度と副MZの消光比との関係)を比較したグラフである。 本発明の光導波路素子と従来品との光学特性(使用する光波長と副MZの消光比との関係)を比較したグラフである。 本発明の光導波路素子において、溝を利用した光終端部を使用した例を説明する図である。 溝のみによる効果を確認するため、試験的に作成した光導波路素子の例を説明する図である。
 以下、本発明の光導波路素子について、好適例を用いて詳細に説明する。
 本発明の光導波路素子は、図2に示すように、基板に光導波路が形成された光導波路素子において、該光導波路は、分岐角度が1/35rad以上で光を2分岐する第1の分岐部を有し、該第1の分岐部から分岐した2つの分岐導波路の各々には、第2の分岐部と第3の分岐部が接続配置されており、該第1の分岐部の分岐した2つの分岐導波路間に配置され、該第1の分岐部の股部分から該光導波路外に放射される放射光を案内する放射光ガイド導波路と、該放射光ガイド導波路の終端部には、案内された放射光を吸収又は基板外に放出する光終端部が配置されていることを特徴とする。
 図2は、図1の入射Y分岐を拡大して図示したものであり、第1の分岐部である入射Y分岐の後には、各分岐導波路に副MZ構造のY分岐部(第2及び第3の分岐部)が接続されているが、図2では省略している。図2のように、分岐角度が大きいY分岐部を採用する際には、Y分岐部の股部分から漏光が発生し易くなる。このため、本発明では、放射光ガイド導波路で漏光の拡散を抑制し、漏光を光終端部に導き、放射光を吸収又は基板外に放出するよう構成している。これにより、漏光が副MZ構造の光導波路などに混入し、副MZ構造におけるOn/Off消光比が劣化し、さらには光導波路素子の光学特性が劣化するなどの不具合が発生することが抑制される。
 本発明で使用する「分岐角度(Y分岐角度)」とは、図3に示すように、Y分岐により分岐した光導波路が形成する曲線の接線(点線)が形成する角度で最大のものを意味する。分岐導波路の形状が、図3の上下で異なる場合(線対称でない場合)には、各々の分岐導波路の曲線に対する接線の中で、図面の上半分とした半分で接線が形成する角度が最も大きくなる組み合わせを選定し、その角度の値が「分岐角度」となる。
 また、図3に示す「Y分岐分離間隔」とは、Y分岐により互いに離れる2つの分岐導波路間の最大距離を意味している。本発明の光導波路素子において、副MZ構造を構成する各マッハツェンダー型光導波路が、互いに最も近接する距離が200μm以上となる場合を想定すると、入射Y分岐分離間隔としては200μm以上が必要となる。入射Y分岐部の長さ(分岐してから2つの分岐導波路が互いに平行な状態となるまでの長さ)が7000μmである場合には、Y分岐角度は約2/35radとなる。
 入射Y分岐長が3500μmで、入射Y分岐間隔をパラメータとして、副MZの消光比を試算した結果を図4に示す。商用の変調器(例えば、4値PSK変調器)の消光比は、25dB以上必要であるが、図4から読み取れるように、Y分岐角度が1.6/35rad以上で消光比が25dB以下、Y分岐角度が2.4/35rad以上で消光比が20dB以下になる。このように、Y分岐間隔を広げると、副MZの消光比が劣化することが判る。
 基板には、ニオブ酸リチウムやタンタル酸リチウムなどの電気光学効果を有する基板を利用することが可能である。また、光変調を行う光導波路部分を含む基板と、それ以外の光導波路、例えばY分岐部又はY合波部などの導波路を含む基板とを別々の材料の基板で構成することも可能である。
 光導波路の形成方法としては、例えば、LiNbO基板(LN基板)上にチタン(Ti)などの高屈折率物質を熱拡散することにより形成される。また、リッジ型導波路のように、基板に凹凸を形成して形成することも可能である。
 本発明の光導波路素子は、基板の厚さが20μm以下のニオブ酸リチウムやタンタル酸リチウムの基板を用いることが好ましい。例えば、Ti拡散導波路を形成したLNウェハを20μm以下まで研磨を行い、接着剤を介して保持基板に固定して使用する。Ti拡散工程は、非特許文献3に記載されている既知の技術を、薄板変調器形成方法は、非特許文献4に記載されている既知の技術を用いることが可能である。なお、基板の薄板化は、電極形成後でも可能である。
 変調用電極や位相シフト用電極などの電極形成は、シード層を蒸着・スパッタ・CVD等で約100nmの厚さに形成し、さらに電解メッキにてセミアディティブ法で形成する。本発明の光終端部として導電性部材(膜体)を使用する場合には、電極形成と同時に導電性部材の配置を行っても良いし、別の製造プロセスで当該部材の配置を行うことも可能である。また、光終端部として、電極を構成する接地電極の一部に、その機能を担わせることも可能である。
 本発明の光導波路素子では、第1の分岐部においてY分岐角度が大きいため、光波の波面と導波路伝播方向が一致しない。その結果、一致しなかった光波の成分がY分岐中央部に漏出し、副MZ構造に影響を及ぼす。特に、基板が薄板の場合は、漏光は、薄板構造の基板、特に基板の垂直方向に光が閉込められる。そのため、漏光は水平方向のみに広がり、副MZ構造のY分岐部(光導波路)に容易に混入する。これにより、副MZにおけるY分岐部の分岐比を劣化させ、On/Off消光比が劣化することとなる。
 第1の分岐部からの漏光を拡散しないようにガイドさせる目的で、Y分岐部の股部分に幅が広い導波路(放射光ガイド導波路)を形成し、光を閉じ込めている。放射光ガイド導波路は分岐導波路と光結合し、過剰な光損失が発生する可能性があるため、図2に示すように、放射光ガイド導波路と分岐導波路との最短距離を10μm以上に設定している。これは、分岐導波路の光分布の大きさ(1/e値)程度である。
 放射光ガイド導波路に漏光を導波するには、(1)伝播方向が、漏光方向(対称Y分岐の場合、対称軸の方向)であること、(2)導波路幅の伝播方向に対する微分がY分岐角度よりも小さいこと、(3)放射光ガイド導波路幅の開始幅ができるだけ広いことが必須条件である。図2では、直線スラブ導波路を放射光ガイド導波路としている。放射光ガイド導波路は、MZ構造を含む光導波路と同時に形成することが可能である。また、必要に応じて、通常の光導波路の形成とは別の工程で形成することも可能である。
 本発明では、放射光ガイド導波路を伝搬している光を終端させるために、主MZ構造の中側に光終端部を設けている。図2では、光終端部として、接地電極(GND電極)を利用し、放射光ガイド導波路で当該電極まで漏光を案内している。GND電極下部の薄板LNを通過する光波は、上部の金属(GND電極)によって吸収・減衰される。このように、GND電極が、光の終端機能を兼用している。
 従来のLN変調器は、基板と電極との間に形成されたバッファ層(BF)により光を吸収しないが、バッファ層の厚みが0.2μm以下になると光を吸収する機能を発揮する。その結果、0.2μm以下のバッファ層を挿入することが可能であり、光導波路と電極のフォトマスクの変更のみで、特性を改善することができる。
 図5は、図2に示す構造を有する光導波路素子と、従来の光導波路素子との特性を比較したグラフである。本発明の光導波路素子は、測定した波長域全体に渡って、副MZ構造におけるOn/Off消光比が改善していることが容易に理解される。
 本発明の光導波路素子に使用される光終端部としては、図2に示したもの以外に、図6のように、基板の一部に溝(基板の窪みだけでなく、基板を貫通する穴を含む)を形成することも可能である。図6(b)は、図6(a)の一点鎖線a-aにおける断面図である。
 溝の形成は、ドライエッチング、エキシマレーザ等が利用可能である。このような溝により、放射光ガイド導波路を伝播していた光を空間中に放射させることで、光終端機能を実現する。溝の幅(放射光の伝搬方向の長さ)の大きさにより、放射した光が、再度薄板内部に入射する。放射した光をビーム広がり角(θ~λ/D)を用いて考えると、薄板への再入射が1/5以下にしたい場合には、溝の幅(図面の横方向の長さ)を約80μm以上に設定することが好ましい。実際に、放射光ガイド導波路の途中に、エキシマレーザを用いて200μmの長さの穴加工を実施した。その結果、副MZ構造におけるOn/Off消光比の改善が確認された。
 さらに、図7に示すように、放射光ガイド導波路開始位置に80μmの穴加工を施した。その結果、幾分の光学特性の改善が見られるものの、穴を形成する側面における光波の散乱などの影響で、逆に特性が劣化する場合もあり、図5の構成よりも素子間の特性のバラツキが大きくなった。このことからも、放射光ガイド導波路と光終端部との組み合わせは、光学特性の改善に大きく寄与していることが理解される。
 以上説明したように、本発明によれば、光導波路のY分岐部での分岐角度が大きい場合でも、光学特性の劣化が少ない光導波路素子を提供することが可能となる。

Claims (6)

  1.  基板に光導波路が形成された光導波路素子において、
     該光導波路は、分岐角度が1/35rad以上で光を2分岐する第1の分岐部を有し、
     該第1の分岐部から分岐した2つの分岐導波路の各々には、第2の分岐部と第3の分岐部が接続配置されており、
     該第1の分岐部の分岐した2つの分岐導波路間に配置され、該第1の分岐部の股部分から該光導波路外に放射される放射光を案内する放射光ガイド導波路と、
     該放射光ガイド導波路の終端部には、案内された放射光を吸収又は基板外に放出する光終端部が配置されていることを特徴とする光導波路素子。
  2.  請求項1に記載の光導波路素子において、該光終端部は、該基板上に配置された導電性部材であることを特徴とする光導波路素子。
  3.  請求項2に記載の光導波路素子において、該導電性部材は、該光導波路を伝搬する光を変調するための電極の一部であることを特徴とする光導波路素子。
  4.  請求項1に記載の光導波路素子において、該光終端部は、該放射光の主な伝搬方向に対する幅が80μm以上の溝であることを特徴とする光導波路素子。
  5.  請求項1乃至4のいずれかに記載の光導波路素子において、前記第2の分岐部と前記第3の分岐部の各々はマッハツェンダー型光導波路を形成し、互いのマッハツェンダー型光導波路の最も近接した距離が200μm以上であることを特徴とする光導波路素子。
  6.  請求項1乃至5のいずれかに記載の光導波路素子において、該基板は、厚みが20μm以下のニオブ酸リチウム又はタンタル酸リチウムで構成されていることを特徴とする光導波路素子。
PCT/JP2013/071469 2012-08-09 2013-08-08 光導波路素子 WO2014024957A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/420,110 US9304370B2 (en) 2012-08-09 2013-08-08 Optical waveguide device
CN201380041588.9A CN104520758A (zh) 2012-08-09 2013-08-08 光波导元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-176628 2012-08-09
JP2012176628A JP5716714B2 (ja) 2012-08-09 2012-08-09 光導波路素子

Publications (1)

Publication Number Publication Date
WO2014024957A1 true WO2014024957A1 (ja) 2014-02-13

Family

ID=50068178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071469 WO2014024957A1 (ja) 2012-08-09 2013-08-08 光導波路素子

Country Status (4)

Country Link
US (1) US9304370B2 (ja)
JP (1) JP5716714B2 (ja)
CN (1) CN104520758A (ja)
WO (1) WO2014024957A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015197454A (ja) * 2014-03-31 2015-11-09 住友大阪セメント株式会社 光導波路素子

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108061935A (zh) * 2017-12-13 2018-05-22 武汉电信器件有限公司 一种光波导芯片挡光结构及方法
JP7047469B2 (ja) * 2018-03-05 2022-04-05 住友大阪セメント株式会社 光変調器
EP3874308A1 (en) * 2018-10-31 2021-09-08 KVH Industries, Inc. Method and apparatus for control and suppression of stray light in a photonic integrated circuit
JP7306198B2 (ja) * 2019-09-30 2023-07-11 住友大阪セメント株式会社 光導波路素子
CN112068245B (zh) * 2020-09-21 2021-08-10 珠海奇芯光电科技有限公司 一种杂散光偏转器、光芯片及其制作方法
JP2022182320A (ja) * 2021-05-28 2022-12-08 住友大阪セメント株式会社 光導波路素子、光変調器、光変調モジュール、及び光送信装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05241032A (ja) * 1992-02-26 1993-09-21 Furukawa Electric Co Ltd:The 光導波路部品
JP2004046021A (ja) * 2002-07-15 2004-02-12 Omron Corp 光導波路装置、光合波分波装置及び光波長多重伝送装置
JP2006276518A (ja) * 2005-03-29 2006-10-12 Sumitomo Osaka Cement Co Ltd 光変調器
JP2009053444A (ja) * 2007-08-27 2009-03-12 Sumitomo Osaka Cement Co Ltd 光導波路素子
JP2009244811A (ja) * 2008-03-31 2009-10-22 Sumitomo Osaka Cement Co Ltd マッハツェンダー導波路型光変調器
JP2011075906A (ja) * 2009-09-30 2011-04-14 Sumitomo Osaka Cement Co Ltd 光導波路素子
JP2012078508A (ja) * 2010-09-30 2012-04-19 Sumitomo Osaka Cement Co Ltd 光導波路素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3184426B2 (ja) 1995-06-19 2001-07-09 日本電信電話株式会社 光導波回路
JP2000131544A (ja) 1998-10-23 2000-05-12 Mitsubishi Cable Ind Ltd Y分岐光導波路
JP4375597B2 (ja) 2001-11-16 2009-12-02 日本碍子株式会社 光導波路デバイスおよび進行波形光変調器
JP3827629B2 (ja) * 2002-08-30 2006-09-27 住友大阪セメント株式会社 光変調器
JP3967356B2 (ja) * 2003-04-16 2007-08-29 富士通株式会社 光導波路デバイス
JP2005141156A (ja) * 2003-11-10 2005-06-02 Matsushita Electric Ind Co Ltd 光変調素子及び通信システム
JP2006171173A (ja) * 2004-12-14 2006-06-29 Omron Corp 光モジュール及びその製造方法
JP2007101719A (ja) * 2005-09-30 2007-04-19 Mitsumi Electric Co Ltd 光導波路装置
JP4306678B2 (ja) * 2005-12-28 2009-08-05 ミツミ電機株式会社 光導波路装置の製造方法
JP5270998B2 (ja) * 2008-07-30 2013-08-21 Nttエレクトロニクス株式会社 平面光導波回路
JP6137023B2 (ja) * 2014-03-31 2017-05-31 住友大阪セメント株式会社 光導波路素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05241032A (ja) * 1992-02-26 1993-09-21 Furukawa Electric Co Ltd:The 光導波路部品
JP2004046021A (ja) * 2002-07-15 2004-02-12 Omron Corp 光導波路装置、光合波分波装置及び光波長多重伝送装置
JP2006276518A (ja) * 2005-03-29 2006-10-12 Sumitomo Osaka Cement Co Ltd 光変調器
JP2009053444A (ja) * 2007-08-27 2009-03-12 Sumitomo Osaka Cement Co Ltd 光導波路素子
JP2009244811A (ja) * 2008-03-31 2009-10-22 Sumitomo Osaka Cement Co Ltd マッハツェンダー導波路型光変調器
JP2011075906A (ja) * 2009-09-30 2011-04-14 Sumitomo Osaka Cement Co Ltd 光導波路素子
JP2012078508A (ja) * 2010-09-30 2012-04-19 Sumitomo Osaka Cement Co Ltd 光導波路素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015197454A (ja) * 2014-03-31 2015-11-09 住友大阪セメント株式会社 光導波路素子
US10416526B2 (en) 2014-03-31 2019-09-17 Sumitomo Osaka Cement Co., Ltd. Optical waveguide device

Also Published As

Publication number Publication date
US20150205181A1 (en) 2015-07-23
JP5716714B2 (ja) 2015-05-13
JP2014035451A (ja) 2014-02-24
US9304370B2 (en) 2016-04-05
CN104520758A (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
US10416526B2 (en) Optical waveguide device
JP5716714B2 (ja) 光導波路素子
JP7056236B2 (ja) 光変調器、及びこれを用いた光トランシーバモジュール
US7310453B2 (en) Optical modulator
CN110780468B (zh) 光调制器、光调制器模块和光发送器模块
US7447389B2 (en) Optical modulator
JP4151798B2 (ja) 光変調器
US7394950B2 (en) Optical modulator
US7801400B2 (en) Manufacturing method of optical device and optical device
US20110262071A1 (en) Branched optical waveguide, optical waveguide substrate and optical modulator
US9377666B2 (en) Light modulator
JPWO2004092792A1 (ja) 光導波路デバイス
US20130039612A1 (en) Optical modulator
US20220291447A1 (en) Optical waveguide element
US20090269017A1 (en) Optical waveguide device
JP4587509B2 (ja) 導波路型光変調器
JP2007033894A (ja) 光変調器
US11852878B2 (en) Optical device and optical communication apparatus
JP2010044197A (ja) 光変調器
JP6394243B2 (ja) 光導波路素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827245

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14420110

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827245

Country of ref document: EP

Kind code of ref document: A1