WO2014024413A1 - 断熱材及びその製造方法 - Google Patents

断熱材及びその製造方法 Download PDF

Info

Publication number
WO2014024413A1
WO2014024413A1 PCT/JP2013/004571 JP2013004571W WO2014024413A1 WO 2014024413 A1 WO2014024413 A1 WO 2014024413A1 JP 2013004571 W JP2013004571 W JP 2013004571W WO 2014024413 A1 WO2014024413 A1 WO 2014024413A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
airgel particles
airgel
insulating material
heat insulating
Prior art date
Application number
PCT/JP2013/004571
Other languages
English (en)
French (fr)
Inventor
善光 生駒
安藤 秀行
一真 釘宮
柴田 哲司
健太 細井
康博 日高
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/408,232 priority Critical patent/US20150176748A1/en
Priority to JP2014529270A priority patent/JPWO2014024413A1/ja
Priority to CN201380035119.6A priority patent/CN104412024A/zh
Priority to EP13827627.4A priority patent/EP2884148A4/en
Publication of WO2014024413A1 publication Critical patent/WO2014024413A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/12Condensation polymers of aldehydes or ketones
    • C04B26/122Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • B32B2037/1238Heat-activated adhesive in the form of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element

Definitions

  • the present invention relates to a heat insulating material using airgel particles and a method of manufacturing the same.
  • foam materials such as a urethane foam and a phenol foam
  • a heat insulating material such as a heat insulating material.
  • the foam material exhibits heat insulation by bubbles generated by foaming.
  • Such urethane foams and phenol foams generally have a thermal conductivity higher than that of air. Therefore, in order to further improve the thermal insulation, it is advantageous to lower the thermal conductivity than air.
  • a method of achieving a thermal conductivity lower than that of air there is known a method of filling a gas having a low thermal conductivity such as fluorocarbon gas in the voids of a foamed material such as urethane foam or phenol foam.
  • a gas having a low thermal conductivity such as fluorocarbon gas
  • the gas may leak out from the void over time, and the thermal conductivity may increase.
  • an aggregate of fine porous silica is known as a material of a heat insulating material smaller than the thermal conductivity of air even under normal pressure.
  • This material can be obtained, for example, in the manner as disclosed in US Pat. No. 4,402,927, US Pat. No. 4,432,956, US Pat. No. 4,610,863.
  • an airgel can be produced using an alkoxysilane (also referred to as a silicon alkoxide or an alkyl silicate separately) as a raw material.
  • a silica airgel is a gelled compound in a wet state obtained by hydrolyzing an alkoxysilane in the presence of a solvent and condensation polymerization, and drying the gel-like compound in a wet state under supercritical conditions equal to or higher than the critical point of the solvent.
  • a solvent for example, alcohol or liquefied carbon dioxide is used.
  • grains in which the airgel became particulate form have heat conductivity lower than air, and are useful as a raw material of a heat insulating material.
  • the adhesive may rather reduce the heat insulation. That is, when the adhesive is increased, as shown in FIG. 9, the entire surface of the airgel particle A is covered with the adhesive 102, and the space between the adjacent airgel particles A and A is also filled with the adhesive 102. become. Heat may be easily conducted between the front surface and the back surface of the heat insulating material B through the adhesive 102, and the heat insulating performance of the heat insulating material B may be lowered.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a heat insulating material which is high in strength and excellent in heat insulating property, and a method of manufacturing the same.
  • the heat insulating material of the present invention is a heat insulating material formed by bonding a plurality of airgel particles with an adhesive,
  • the airgel particles have an average particle size of 500 ⁇ m or more,
  • the adhesive is formed in a dot shape on the surface of the airgel particles, and the ratio of the average particle diameter of the adhesive to the average particle diameter of the airgel particles (adhesive / aerogel particles) is 1/200 to 1/10. It is characterized by
  • the airgel particles preferably have a peak of 500 ⁇ m or more and a peak of less than 500 ⁇ m in the particle size distribution.
  • the adhesive is preferably contained in an amount of 5 to 30 parts by mass with respect to 100 parts by mass of the airgel particles.
  • the method for producing a heat insulating material according to the present invention is a method for producing a heat insulating material as described above,
  • the adhesive is a powder containing a thermosetting resin, and the difference between the solubility parameter of the powder in the molten state and the solubility parameter of the airgel particles is 4 or more,
  • the plurality of airgel particles are cured by adhering the powdery adhesive to the surfaces of the plurality of airgel particles and melting the powdery adhesive on the surfaces of the airgel particles by heating and then curing the adhesive. It is characterized in that it is bonded with an adhesive.
  • the method for producing a heat insulating material according to the present invention is a method for producing a heat insulating material as described above,
  • the adhesive is a powder containing a thermoplastic resin
  • the powdery adhesive is adhered to the surfaces of a plurality of airgel particles, and the powdery adhesive is heated by heating the powdery adhesive at a temperature higher than the softening point of the thermoplastic resin and lower than the melting point.
  • the plurality of airgel particles are solidified by bonding them with a point adhesive which is solidified by softening the surface of the airgel particles and then cooling to a temperature lower than the softening point of the thermoplastic resin. It is a thing.
  • the heat transfer generated through the adhesive is The strength is high and the heat insulation is excellent.
  • the adhesive when the powder adhesive attached to the airgel particles is heated, the adhesive hardly spreads on the surface of the airgel particles and becomes point-like, and a plurality of air gel particles are point-like It becomes easy to bond with an adhesive.
  • FIG. 1 It is a schematic diagram which shows an example of embodiment of the heat insulating material of this invention.
  • (A) to (c) are schematic views of an example of an airgel particle. It is an electron micrograph of airgel particle. In Example 1, it is an electron micrograph which shows the state which the adhesive agent adhered to the surface of airgel particle
  • (A) to (d) are cross-sectional views showing an example of the process for producing the heat insulating material of the present invention. It is a X-ray CT (computed tomography) image of the heat insulating material of Example 1.
  • FIG. It is a X-ray CT image of the heat insulating material of the comparative example 3.
  • the heat insulating material of the present invention is a heat insulating material B formed by bonding a plurality of airgel particles A with an adhesive 2.
  • the airgel particles A have an average particle size of 500 ⁇ m or more.
  • the adhesive 2 is formed on the surface of the airgel particle A in a dot shape.
  • the ratio of the average particle diameter of the adhesive 2 to the average particle diameter of the airgel particles A (adhesive / airgel particles) is 1/200 to 1/10.
  • a schematic view of an example of the heat insulating material B is shown in FIG.
  • the aerogel is a porous substance (porous body) in which the solvent contained in the gel is replaced with a gas by drying. Particulate airgel is called airgel particles.
  • aerogels silica aerogels, carbon aerogels, alumina aerogels and the like are known, among which silica aerogels can be preferably used.
  • Silica aerogels are excellent in thermal insulation, easy to manufacture, inexpensive and can be obtained more easily than other aerogels.
  • the solvent in the gel is lost due to evaporation or the like to form a network structure having voids, it may be called xerogel, but the airgel in the present specification may contain xerogel.
  • FIG. 2 shows a schematic view of an example of airgel particles.
  • the airgel particle A is a silica airgel particle, and is a silica (SiO 2 ) structure having pores of several tens of nano-order (eg, 20 to 40 nm).
  • Such airgel particles A can be obtained by supercritical drying or the like.
  • the airgel particle A is formed by connecting the fine particles P (silica fine particles) constituting the airgel particle A in a three-dimensional network.
  • the size of one silica fine particle is, for example, about 1 to 2 nm.
  • gas G can enter pores of several tens of nano-order of airgel particle A.
  • the heat conductivity can be lowered to a level lower than that of air by inhibiting the movement of nitrogen and oxygen, which are components of air, by the pores.
  • the thermal conductivity of the airgel particle A decreases to a level of a thermal conductivity WLF ⁇ 9 to 12 mW / m ⁇ K It can be done.
  • the airgel particles A generally have hydrophobic properties.
  • the alkyl group methyl group: CH 3
  • Si silicon
  • OH hydroxyl groups
  • FIG. 3 is an electron micrograph of silica airgel particles.
  • the silica airgel particles are obtained by supercritical drying. It is also understood from this photograph that the silica airgel particles have a three-dimensional three-dimensional network structure.
  • airgel particles A generally have silica fine particles with a size of less than 10 nm connected in a linear manner to form a network structure, the boundaries of the fine particles may be unclear, or the silica structure (-O The network structure may be formed by linearly extending -Si-O-).
  • the airgel particles are not particularly limited, and those obtained by a general production method can be used. As representative ones, there are airgel particles obtained by supercritical drying and airgel particles obtained using water glass.
  • the silica airgel particles obtained by the supercritical drying method can be obtained by producing silica particles by polymerizing by the sol-gel method which is a liquid phase reaction, and removing the solvent by supercritical drying.
  • a raw material for example, an alkoxysilane (also referred to as a silicon alkoxide or an alkyl silicate) is used.
  • the wet gel-like compound having a silica skeleton obtained by hydrolyzing the alkoxysilane in the presence of a solvent and condensation polymerization is dried under supercritical conditions equal to or higher than the critical point of the solvent.
  • the solvent for example, alcohol or liquefied carbon dioxide can be used.
  • the airgel particles in which the airgel is in the form of particles can be obtained by pulverizing the solvent-containing gel into particles and subjecting the solvent-containing particles of gel to supercritical drying. Alternatively, airgel particles can be obtained by crushing the bulk of airgel obtained by supercritical drying.
  • the bifunctional, trifunctional or tetrafunctional alkoxysilane can be used individually or in mixture of multiple types.
  • Examples of the bifunctional alkoxysilane include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, methylphenyldiethoxysilane, methylphenyldimethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane and the like.
  • Examples of the trifunctional alkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane.
  • Examples of tetrafunctional alkoxysilanes include tetramethoxysilane and tetraethoxysilane.
  • alkoxysilane bistrimethylsilylmethane, bistrimethylsilylethane, bistrimethylsilylhexane, vinyltrimethoxysilane and the like can also be used.
  • a partial hydrolyzate of alkoxysilane may be used as a raw material.
  • the hydrolysis and condensation polymerization of the alkoxysilane are preferably carried out in the presence of water, and further carried out using a mixed solution of water and an organic solvent which has compatibility with the water and dissolves the alkoxysilane. Is preferred.
  • a mixed solution is used as a solvent
  • the hydrolysis step and the condensation polymerization step can be performed continuously, and a gel can be efficiently obtained.
  • the resulting polymer is obtained as a gelled product (wet gel) using the above-mentioned solvent as a dispersion medium.
  • the solvent having compatibility with water and dissolving the alkoxysilane is not particularly limited, and examples thereof include alcohols such as methanol, ethanol, propanol, isopropanol and butanol, acetone, and N, N-dimethylformamide. It can be mentioned. These may use only 1 type and may use 2 or more types together.
  • hydrolysis and condensation polymerization of the alkoxysilane are preferably performed in the presence of a catalyst capable of causing a condensation reaction by eliminating the alkoxy group of the alkoxysilane.
  • a catalyst capable of causing a condensation reaction by eliminating the alkoxy group of the alkoxysilane.
  • an acidic catalyst examples include hydrochloric acid, citric acid, nitric acid, sulfuric acid, ammonium fluoride and the like.
  • a basic catalyst ammonia, a piperidine etc. are mentioned, for example.
  • appropriate components may be added to the reaction liquid of alkoxysilane.
  • surfactants, functional group introducing agents, etc. may be mentioned.
  • Such additives can impart appropriate functionality to the airgel particles.
  • the airgel can be obtained by supercritically drying the obtained wet gel.
  • the wet gel is previously granulated by cutting, grinding or the like to prepare a particulate gel containing a solvent, and the particulate gel is supercritically dried.
  • the size of the airgel particles can be adjusted by aligning the size of the particulate gel.
  • airgel particles may be obtained by crushing the bulk of the airgel with a grinder.
  • the particle size of the obtained airgel particles can be further made uniform by sieving, classification, and the like. When the size of the airgel particles is adjusted, the handleability can be enhanced and stable molded products can be easily obtained.
  • the airgel particles obtained by using water glass are produced, for example, by an atmospheric pressure drying method in which the steps of preparation of silica sol, gelation of silica sol, aging, grinding of gel, crushing of solvent, solvent substitution, hydrophobization treatment, and drying are sequentially performed.
  • Water glass is generally an aqueous solution of a high concentration of a metal salt of a silicate such as sodium silicate. For example, it can be obtained by dissolving metal silicate in water and heating.
  • Silicate alkoxides, alkali metal silicates and the like can be used as raw materials for producing silica sol.
  • the silicic acid alkoxide include tetramethoxysilane and tetraethoxysilane.
  • potassium silicate, sodium silicate etc. are mentioned as an alkali metal silicate.
  • an alkali metal silicate can be suitably used at a low cost point, and sodium silicate which is easily available can be more suitably used.
  • a silica sol can be prepared by a method of neutralization with an inorganic acid such as hydrochloric acid or sulfuric acid, or a method of using a cation exchange resin in which the counter ion is H +. it can. Among these methods, it is preferable to use a cation exchange resin.
  • the preparation of the silica sol using an acid type cation exchange resin can be carried out by passing a solution of an alkali metal silicate of an appropriate concentration through a packed bed filled with the cation exchange resin.
  • preparation of the silica sol may be carried out by separating the cation exchange resin by adding a cation exchange resin to a solution of an alkali metal silicate, mixing, removing the alkali metal and then filtering off, etc. it can.
  • the amount of the cation exchange resin is preferably equal to or more than the amount capable of exchanging the alkali metal contained in the solution.
  • the cation exchange resin causes dealkalization (demetallization) of the solution.
  • the acid type cation exchange resin for example, a styrene type, an acrylic type, a methacrylic type or the like in which a sulfonic acid group or a carboxyl group is substituted as an ion exchange group can be used.
  • a so-called strong acid type cation exchange resin having a sulfonic acid group can be suitably used.
  • regeneration process can be performed by letting sulfuric acid and hydrochloric acid pass.
  • the silica sol is gelled and then aged. In gelation and aging, it is preferable to adjust the pH. That is, in general, the pH of the silica sol ion-exchanged with a cation exchange resin is low, for example, 3 or less.
  • the silica sol is gelled by neutralizing such silica sol to a weakly acidic to neutral pH range. For example, gelation can be achieved by adjusting the pH of the silica sol to 5.0 to 5.8, preferably 5.3 to 5.7. Adjustment of the pH can be performed by the addition of a base and an acid. As the base, ammonia water, sodium hydroxide, potassium hydroxide, alkali metal silicates and the like can be used.
  • hydrochloric acid As the acid, hydrochloric acid, citric acid, nitric acid, sulfuric acid and the like can be used. After pH adjustment, the gel is allowed to stand and aged. Aging may be, for example, about 4 to 24 hours at a temperature of 40 to 80 ° C.
  • the gel Pulverization of this gel makes it possible to easily obtain the desired airgel particles.
  • the grinding of the gel can be carried out, for example, by putting the gel in a Henshall-type mixer or gelation in the mixer and operating the mixer at an appropriate rotation number and time.
  • solvent displacement is performed.
  • This solvent substitution is to replace the solvent such as water used in preparation of the gel with a solvent having a small surface tension so as not to cause drying shrinkage when the gel is dried. Since it is difficult to directly replace water with a solvent having a small surface tension, usually this solvent substitution is carried out in a plurality of stages, preferably in two stages.
  • selection criteria for the solvent used in the first stage it can be mentioned that it is compatible with water and the solvent used for the solvent replacement in the second stage.
  • methanol, ethanol, isopropyl alcohol, acetone or the like can be used, and preferably ethanol can be used.
  • the selection criteria for the solvent used in the second stage include that the solvent does not react with the treatment agent used for the subsequent hydrophobization treatment and that the surface tension is small because it does not cause drying shrinkage.
  • Hexane, dichloromethane, methyl ethyl ketone or the like can be used as the solvent used in the second stage, and hexane can be preferably used.
  • further solvent substitution may be performed between the first stage solvent substitution and the second stage solvent substitution.
  • hydrophobization treatment it is preferable to carry out a hydrophobization treatment after the solvent substitution.
  • the treatment agent used for the hydrophobization treatment alkylalkoxysilane, halogenated alkylsilane or the like can be used.
  • dialkyldichlorosilane and monoalkyltrichlorosilane can be preferably used, and dimethyldichlorosilane can be particularly preferably used in consideration of the raw material cost and reactivity.
  • the hydrophobization treatment may be performed before solvent substitution.
  • the hydrophobization treatment it is separated by filtration to separate the solvent and the gel.
  • the gel is then washed with solvent to remove unreacted treatment agent.
  • the gel is then dried. Drying may be at normal pressure. Moreover, you may warm or blow in a warm air. Drying is preferably carried out under an atmosphere of inert gas (eg nitrogen). By this, the solvent in the gel can be removed from the gel to obtain airgel particles.
  • inert gas eg nitrogen
  • the airgel particles obtained by the critical drying method and the airgel particles obtained by using water glass basically have the same structure. That is, the silica fine particles are linked to form a three-dimensional network structure.
  • the shape of the airgel particles is not particularly limited, and may be various shapes.
  • the airgel particles When airgel particles are obtained by the above-described method, the airgel particles usually have an irregular shape because pulverization or the like is performed to form the airgel particles. So to speak, it becomes rocky particles with a rough surface. Of course, particles such as spheres and rugby balls may be used. In addition, it may be in the form of panel, flake or fiber.
  • the airgel particles may be a mixture of particles of various sizes as raw materials used for molding. In the molded product, since the airgel particles are adhered and integrated, the size of the particles may not be uniform.
  • the longest length of the particles may be in the range of 50 nm to 10 mm.
  • the number of particles that are too large or too small is small.
  • the average particle size of the airgel particles is less than 500 ⁇ m, it becomes difficult to solidify with a generally commercially available powder adhesive (average particle size of 30 ⁇ m).
  • a powder adhesive average particle size of 30 ⁇ m.
  • it is sufficient to increase the addition amount of the powder adhesive but when the amount of the adhesive is increased, the heat insulation performance of the molded body (the heat insulating material B) is significantly reduced. Therefore, it is preferable that a large number of particles having a maximum length of airgel particles in the range of 100 ⁇ m to less than 2 mm be present.
  • the airgel particles those having an average particle diameter of 500 ⁇ m or more are used. Thereby, the heat insulation of the formed heat insulating material can be improved. Furthermore, the average particle size of the airgel particles is preferably in the range of 500 ⁇ m to 5 mm, and more preferably in the range of 500 ⁇ m to 1.5 mm.
  • the ratio of the average particle diameter of the adhesive to the average particle diameter of the airgel particles becomes 1/200 to 1/10 as described later. It becomes easy to manufacture.
  • the heat conductivity can not be sufficiently lowered, which may lead to a decrease in the heat insulating property.
  • the pores may be formed as gaps between airgel particles. In order to prevent the generation of the pores, it is effective that the average particle size of the airgel particles is 500 ⁇ m or more.
  • the airgel particles preferably have a peak of 500 ⁇ m or more and a peak of less than 500 ⁇ m in the particle size distribution. As a result, the airgel particles can be easily packed at a high density, and the heat insulation can be further improved.
  • the number of peaks may be plural (two or more) as a whole, and may be three or more, even two. It is also good. From the ease of design and manufacture of the heat insulating material, in the particle size distribution of the airgel particles, it is a preferred embodiment that the number of peaks is two.
  • the particle size of the peak of 500 ⁇ m or more is at least 5 times the value of the particle size of the peak of less than 500 ⁇ m. More preferable. As a result, the airgel particles can be more easily filled, and the heat insulation can be further improved.
  • Airgel particles also referred to as airgel beads, have amorphous and rubbery properties.
  • airgel particles are low in rigidity and deform in shape due to compression, so that simulations for particles with high rigidity can not be used, and it is difficult to estimate a suitable particle size distribution. Therefore, when using airgel particles having a plurality of peaks in the particle size distribution, a molded body is actually made of airgel particles having a large particle size, and the size of the pores is measured by X-ray CT etc. for this molded body. It is preferred to add airgel particles of the size that was in the pores. For example, by adding airgel particles having an average particle diameter of 100 ⁇ m to airgel particles having an average particle diameter of 1 mm, pores are reduced by about 50%, and heat insulation can be improved.
  • the heat insulating material of the present invention is formed by bonding airgel particles as described above with an adhesive.
  • the heat insulating material B is composed of a molded article of the airgel particles A (airgel layer 3) and the surface sheet 4.
  • the heat insulating material B is formed as a plate-like heat insulating material B (heat insulating board).
  • the heat insulating material B has a configuration in which the surface sheet 4 is laminated on both sides of the airgel layer 3 formed by bonding the airgel particles A. By covering the airgel layer 3 with the surface sheet 4, the strength of the heat insulating material B can be enhanced.
  • the surface sheet 4 may be laminated
  • the shape of the heat insulating material B is preferably formed into a plate shape that is easy to use as a building material, but is not limited thereto, and can be formed into any shape according to the purpose of use. Further, the thickness of the heat insulating material B (the dimension in the stacking direction of the airgel layer 3 and the surface sheet 4) can be appropriately set according to the desired heat insulating performance and the purpose of use, for example, 0.1 to 100 mm Can.
  • the airgel layer 3 is formed by bonding and bonding a large number of airgel particles A with an adhesive 2.
  • the adhesive 2 it is preferable to use one having a smaller thermal conductivity from the viewpoint of reducing the thermal conductivity. Further, from the viewpoint of increasing the reinforcing effect, it is preferable to use an adhesive 2 having a larger adhesive strength. Furthermore, it is preferable that the adhesive 2 does not intrude into the pores of the airgel particle A. When the adhesive 2 intrudes into the pores of the airgel particle A, the thermal conductivity of the airgel particle A may be increased to lower the heat insulation.
  • FIG. 1 shows that adjacent airgel particles A are bonded via a point adhesive 2.
  • FIG. 1 shows that the airgel particles A and the adhesive 2 are regularly arranged, this is only schematically shown, and in the case of the actual heat insulating material B, the airgel particles A and the adhesion are shown.
  • Agent 2 may be randomly bonded.
  • the adhesive 2 is not connected and linearly arranged between the plurality of airgel particles A, as long as the adhesive 2 is divided into dots.
  • the dotted adhesive 2 may be arranged, for example, in the form of dots.
  • the dotted adhesive 2 may be arranged, for example, in an island shape.
  • the point-like adhesive 2 may be dotted in the heat insulating material B.
  • the adhesive 2 is disposed between adjacent airgel particles A.
  • the heat insulating material B may be formed by densely forming a plurality of airgel particles A, in which case a gap is formed between the plurality of airgel particles A.
  • the adhesive 2 may be disposed in the gap between the plurality of airgel particles A.
  • FIG. 4 is an electron micrograph showing an example of a state in which the adhesive adheres to the surface of the airgel particle A in the form of dots.
  • the photograph in the silica airgel particle A prepared in the below-mentioned Example 1 is shown.
  • the point-like adhesive 2 adheres to the surface of the airgel particle A in a substantially spherical or semispherical state.
  • the shape of the dotted adhesive 2 may be any suitable shape.
  • the cross-sectional shape of the point-like adhesive 2 may be, for example, a circle, an ellipse, a polygon, or the like. Of course, the cross-sectional shape of the dotted adhesive 2 may be irregular.
  • the ratio of the average particle diameter of the adhesive 2 to the average particle diameter of the airgel particles A is 1/200 to 1/10.
  • the average particle diameter in this case is defined as the diameter converted from the cross-sectional area to a perfect circle.
  • the ratio of the average particle size (adhesive 2 / aerogel particles A) is more preferably 1/150 to 1/20.
  • the average particle size of the adhesive 2 and the average particle size of the airgel particles A can be determined from the cross-sectional area of the adhesive 2 and the airgel particles A obtained by X-ray CT. For example, an average value of 100 point adhesive 2 and an average value of 100 airgel particles A can be used.
  • the ratio of the average particle diameter of adhesive 2 to the average particle diameter of airgel particles A is 1/200 to 1/10, adjacent airgel particles A have point adhesive Bonding with 2 makes it easy to bond.
  • the ratio of the average particle diameter of the adhesive 2 to the average particle diameter of the airgel particles A is more preferably 1/150 to 1/20.
  • the ratio of the average particle diameter of the adhesive 2 to the average particle diameter of the airgel particles A is more preferably the ratio of the average particle diameter of the adhesive 2 to the average particle diameter of the airgel particles A (adhesive 2 / aerogel particles A), 1/100 to 1/50.
  • the average particle diameter can also be measured by an appropriate particle size distribution meter.
  • a particle size distribution analyzer a laser diffraction particle size distribution measuring apparatus etc. are illustrated.
  • an average particle diameter can also be measured with a suitable particle size distribution analyzer.
  • a laser diffraction particle size distribution measuring apparatus etc. are illustrated.
  • powder adhesive 2 in the case where one adhesive 2 is formed from one powder without combining a plurality of powders at the time of molding, the average particle diameter of adhesive 2 in the molded body is It can be approximated to be equal to the average particle size of the adhesive 2.
  • the average particle sizes of the airgel particles A and the adhesive 2 can be adjusted before forming so that the ratio of the above-described average particle sizes is obtained after forming.
  • the ratio of the average particle diameter of the airgel particles A to the average particle diameter of the adhesive 2 is in the range of the ratio shown above.
  • one adhesive 2 (cured product or solidified product) may be formed from a plurality of powders.
  • the average particle diameter of the airgel particles A after molding is prepared by dissolving the adhesive 2 with a solvent or the like, extracting the individual airgel particles A as separated particles, dispersing the airgel particles A, and using a particle size distribution analyzer. It can also be determined by measurement. This method can be an effective measurement method when there is a large variation in the particle size of airgel particles A. As the average particle diameter of the airgel particles A, a value obtained by this method may be adopted. However, as for the average particle diameter, the value measured by X-ray CT has priority.
  • the plurality of point adhesives 2 are preferably spaced apart so as not to touch each other. At this time, the adjacent point-like adhesives 2 are adjacent to each other via a space. When the adhesive 2 is not in contact, a heat conduction path is less likely to occur, so that the heat insulation can be enhanced.
  • the surface of the airgel particles A is preferably not covered with the adhesive 2.
  • the pores of the airgel particle A may be blocked, so the heat insulation may be reduced.
  • the surface of the airgel particle A is covered with the adhesive 2, there is a possibility that the heat conduction path may be easily made.
  • the heat insulating material B a plurality of airgel particles A are bonded by a point-like adhesive 2, and adjacent airgel particles A are bonded by point contact (point connection). Therefore, the heat transfer between the airgel particles A and A through the adhesive 2 can be reduced. As a result, it is possible to reduce the decrease in heat insulation while enhancing the bonding between the airgel particles A and A by the adhesive 2.
  • the adhesive 2 one containing either a thermosetting resin or a thermoplastic resin can be used.
  • the adhesive 2 may be made of only a thermosetting resin.
  • the adhesive 2 may be made of only a thermoplastic resin.
  • the adhesive 2 may contain appropriate additives in addition to either of the thermosetting resin and the thermoplastic resin.
  • the thermosetting resin contained in the adhesive 2 has a repelling property with respect to the surface of the airgel particle A in a molten state.
  • the thermosetting resin of the adhesive 2 is melted by heating, and then cured and adhered. Therefore, it is easier to form the point-like adhesive 2 if the thermosetting resin of the adhesive 2 is repelled and hardly spread on the surface of the airgel particle A at the time of melting. Therefore, in order to make it difficult for the adhesive 2 melted on the surface of the airgel particle A to spread, it is preferable to make the adhesive 2 contain a thermosetting resin having a repelling property with respect to the surface of the airgel particle A.
  • the difference between the solubility parameter (SP value) of the adhesive 2 in the molten state and the solubility parameter of the airgel particle A Is preferably 4 or more.
  • the repelling property of the adhesive 2 with respect to the surface of the airgel particle A is determined by the type and structure of the thermosetting resin contained in the adhesive 2 (type of functional group, degree of polymerization, etc.).
  • the thermosetting resin of the adhesive 2 is preferably one having hydrophilicity in the molten state.
  • the adhesive 2 in a molten state is easily repelled by the surface of the hydrophobic airgel particle A, and the adhesive 2 is easily attached to the surface of the airgel particle A in the form of dots.
  • the adhesive 2 contain one or more thermosetting resins selected from phenol resins, melamine resins, urea resins, epoxy resins and the like.
  • the SP value in the molten state of the powdery adhesive 2 can be calculated from the molecular structure of the adhesive 2 obtained by the group contribution method.
  • the SP value of the airgel particle A can be calculated by the group contribution method from the molecular structure of the surface-modified surface-treating agent.
  • an adhesive 2 containing a highly flexible thermosetting resin for example, in the case of a phenolic resin, if one modified with rubber, cashew or epoxy is used, the strength can be improved without reducing the heat insulation.
  • “high flexibility” means that tan ⁇ in dynamic viscoelasticity measurement is largely reduced in crosslink density.
  • a hot melt adhesive can be used as the adhesive 2 containing a thermoplastic resin.
  • the thermoplastic resin of the adhesive 2 is only softened by heating, and may not be in a molten state. Then, the thermoplastic resin of the adhesive 2 hardly spreads on the surface of the airgel particle A, and the point-like adhesive 2 is easily formed. Therefore, a common thermoplastic resin for a hot melt adhesive can be used as the adhesive 2.
  • one or more thermoplastic resins selected from ethylene-acrylate copolymer, polyethylene resin, polypropylene resin, polystyrene resin, ethylene-vinyl acetate copolymer, polyamide resin, polyester resin, etc. are used as the adhesive 2 It is preferred to use.
  • the adhesive 2 is preferably contained in an amount of 5 to 30 parts by mass with respect to 100 parts by mass of the airgel particles A.
  • the content ratio of the airgel particle A and the adhesive 2 is appropriately set in consideration of the type of the adhesive 2 and the heat insulating performance and strength of the heat insulating material B, but from the viewpoint of adhesiveness and heat insulating property, A suitable ratio may be set. Therefore, for example, 5 to 30 parts by mass, preferably 10 to 25 parts by mass of the adhesive 2 can be mixed with 100 parts by mass of the airgel particles A.
  • the mixing amount of the adhesive 2 is more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the airgel particle A.
  • the density of the heat insulating material B can greatly affect the heat insulating performance. This density is appropriately set in consideration of the preparation amount of the airgel particles A and the adhesive 2 and the thickness of the heat insulating material B. If the density of the heat insulating material B is low, the air layer intervenes and the heat insulating performance is likely to be degraded. On the other hand, if the density is high, the adhesive 2 is likely to be a thermal bridge, and the thermal conductivity is likely to be reduced.
  • the density of the heat insulating material B may be, for example, in the range of 0.1 to 0.5 g / cm 3 . Thereby, the handling is enhanced. For example, when 17 parts by mass of the adhesive 2 is used with respect to 100 parts by mass of the airgel particles A, the density of the board (the insulation B) is 0.13 to 0.21 g / cm 3 be able to.
  • the volume ratio of the adhesive 2 to the airgel particles A is preferably 0.003 to 0.05.
  • the strength of the heat insulating material B can be increased while suppressing the heat transfer path from being created by the adhesive 2.
  • This volume ratio can be determined from image analysis by X-ray CT.
  • the volume ratio of the adhesive 2 to the airgel particle A (adhesive 2 / airgel particle A) is more preferably in the range of 0.006 to 0.04, and still more preferably in the range of 0.006 to 0.03.
  • the ratio of the area occupied by the adhesive 2 to the area occupied by the airgel particles A (adhesion 2 / airgel particles A) in the cross section when the heat insulating material B is cut is preferably 0.004 to 0.04. . Thereby, the strength of the heat insulating material B can be increased while suppressing the heat transfer path from being created by the adhesive 2.
  • This area ratio can be determined from image analysis by X-ray CT.
  • the ratio of the area occupied by the adhesive 2 to the area occupied by the airgel particles A in the cut surface (adhesive 2 / airgel particles A) is more preferably in the range of 0.006 to 0.04, 0.006 to 0.03. Is more preferable.
  • the manufacturing method of the heat insulating material B is demonstrated below.
  • the adhesive 2 is attached to the surface of the airgel particle A.
  • the adhesive 2 is preferably a powder at normal temperature.
  • the adhesive 2 is easily attached to the airgel particles A in the form of dots.
  • a method of adhering the adhesive 2 to the airgel particles A for example, a method of stirring with a powder mixer can be adopted.
  • the adhesive 2 does not solidify with the adhesive 2 itself, and has adhesiveness such that it adheres to the airgel particle A.
  • mixing may be performed while drying while adding a small amount of liquid such as water.
  • the average value of the particle size (size) of the powdery adhesive 2 is preferably smaller than the average value of the particle size (size) of the airgel particles A. As a result, the adhesive 2 is easily attached to the airgel particles A in a dot-like manner.
  • the average particle diameter of the powdery adhesive 2 at normal temperature is the adhesive 2 obtained by X-ray CT, as in the case of the average particle diameter of the adhesive 2 adhered in the form of dots or the average particle diameter of the airgel particles A described above. It can be determined from the cross-sectional area of For example, the average value of adhesive 2 of 100 powders can be used. Alternatively, the average particle size may be determined by a particle size distribution measuring device.
  • the ratio of the average particle diameter of the adhesive 2 of the powder used as the raw material to the average particle diameter of the airgel particles A is preferably 1/200 to 1/10. As a result, even after being formed, the airgel particles A can be easily bonded with the point-like adhesive 2 within the range of the ratio of the average particle diameter.
  • the airgel particles A those having an average particle diameter of 500 ⁇ m or more can be used. Further, as the airgel particle A, one having a peak of 500 ⁇ m or more and a peak of less than 500 ⁇ m in the particle size distribution may be used as long as the average particle size satisfies 500 ⁇ m or more. Also, large-diameter airgel particles A having a peak of 500 ⁇ m or more in the particle size distribution and small-diameter airgel particles A having a peak of less than 500 ⁇ m in the particle size distribution may be used in combination. When airgel particles A having different particle sizes are used in combination, the average particle size of airgel particles A after mixing may be 500 ⁇ m or more.
  • the amount of the large particle size airgel particle A is preferably larger than the amount of the small particle size airgel particle A. Furthermore, the amount of the large particle size airgel particles A is preferably three or more times the amount of the small particle diameter airgel particles A. Since the amount of the large-sized airgel particles A is increased, the small sized airgel particles A can be inserted into the gaps of the large-sized airgel particles A, so that higher packing can be achieved.
  • the amount of large-sized airgel particles A may be 20 times or less or 10 times or less the amount of small-sized airgel particles A.
  • the preferred range of the average particle size of the large-diameter airgel particles A may be the range described for the airgel particles A described above.
  • the average particle diameter of the airgel particles A having a small particle diameter is preferably 1/3 or less of the average particle diameter of the large particle diameter, and more preferably 1/5 or less.
  • the average particle size of the airgel particles A having a small particle size may be, for example, 50 ⁇ m or more, and may be 100 ⁇ m or more.
  • the average particle size of the airgel particles A having a small particle size may be, for example, 400 ⁇ m or less, and may be 300 ⁇ m or less.
  • FIG. 5 shows an example of a method of adhering the adhesive 2 to the airgel particle A.
  • the adhesive 2 is attached to the airgel particle A
  • the airgel particle A and the powdery adhesive 2 are placed in the container 5.
  • the container 5 is sealed by closing the lid or the like, and the container 5 is shaken.
  • the airgel particle A and the adhesive 2 are mixed by powder, and the airgel particle A to which the adhesive 2 is attached can be obtained.
  • powder mixing can be performed using an appropriate powder mixer such as a mill or a mixer.
  • the particles may be broken when a strong stirring force works, it is preferable to mix with such a stirring force that the particles are not broken.
  • the airgel particle A to which the adhesive 2 has been adhered is heat and pressure molded. By this molding, the airgel particles A can be bonded with the adhesive 2 to obtain the heat insulating material B molded.
  • FIG. 6 shows an example of a method of manufacturing the heat insulating material B by molding the airgel particle A to which the adhesive 2 is attached.
  • a press machine 30 is used for forming.
  • the press 30 is configured to include a press lower die 31 and a press upper die 32.
  • the side wall mold 31b is attached to the press lower mold 31 to form a recess 31a, and then the release sheet 34 is laid on the bottom of the recess 31a, and the surface sheet is thereon.
  • Stack 4 Next, airgel particles A are charged from the container 5 into the recess 31 a on the press lower die 31.
  • the airgel particles A used are those to which the adhesive 2 described above is attached.
  • the surface is smoothed with a smoothing tool 33 such as a spoon and a spatula.
  • a smoothing tool 33 such as a spoon and a spatula.
  • the surface sheet 4 is stacked on the airgel particles A having a flat surface, and the release sheet 34 is further stacked thereon.
  • the press upper die 32 is pushed into the recess 31a from above, inserted, and heated and pressed to press (press).
  • press it is preferable that the airgel particles A be pressed with such a pressing pressure that they are crushed and not broken.
  • the adhesive 2 exhibits adhesiveness by this press, and the airgel particles A are adhered and united.
  • the surface sheet 4 and the airgel particles A are bonded by the adhesive action of the adhesive 2 and the surface sheet 4 is integrated with the molded article of the airgel particles A.
  • the molded product is taken out and dried by a dryer. Thereby, as shown in FIG. 6D, the heat insulating material B constituted by the molded article of the airgel particle A (airgel layer 3) and the surface sheet 4 is formed.
  • the conditions of the heat treatment can be made different between the case where the adhesive 2 contains a thermosetting resin and the case where the adhesive 2 contains a thermoplastic resin. By optimizing the heat treatment conditions, it becomes easy to bond the airgel particles A with the point-like adhesive 2.
  • the adhesive 2 is a powder containing a thermosetting resin
  • the difference between the solubility parameter of the powder adhesive 2 in the molten state and the solubility parameter of the airgel particle A is set to 4 or more. Then, the powdery adhesive 2 is attached to the surfaces of the plurality of airgel particles A, and the powdery adhesive 2 is melted on the surface of the airgel particles A by heating and then cured. Thereby, it is possible to bond the plurality of airgel particles A with the hardened point adhesive 2.
  • the adhesive 2 is a powder containing a thermoplastic resin
  • the powder adhesive 2 adheres to the surfaces of the plurality of airgel particles A, and the powder is at a temperature higher than the softening point of the thermoplastic resin and lower than the melting point. Heat the adhesive 2.
  • the powdery adhesive 2 is softened on the surface of the airgel particle A. Thereafter, it is cooled to a temperature lower than the softening point of the thermoplastic resin. Thereby, it is possible to bond the plurality of airgel particles A by the solidified adhesive 2 in the form of dots.
  • the heating history differs depending on whether the adhesive 2 contains a thermosetting resin or a thermoplastic resin. That is, in the case where the thermosetting resin is contained as the adhesive 2, the powder is heated to a state in which the thermosetting resin of the adhesive 2 is heated and melted at normal temperature, and then the airgel particles A are further heated. The adhesive 2 is cured in the adhered state. On the other hand, when a thermoplastic resin is contained as the adhesive 2, heating is performed at a temperature higher than the softening point of the thermoplastic resin of the powdery adhesive 2 at room temperature and lower than the melting point to soften the adhesive 2. .
  • the adhesive 2 is solidified in a state in which the airgel particles A are adhered by cooling to a temperature lower than the softening point of the thermoplastic resin of the adhesive 2. In this manner, adjacent airgel particles A can be bonded by point contact regardless of which of the thermosetting resin and the thermoplastic resin is contained as the adhesive 2.
  • the molding conditions can be suitably optimized.
  • the molding temperature may be, for example, in the range of 80 to 200 ° C., preferably in the range of 100 to 190 ° C.
  • the molding time may be, for example, in the range of 1 to 60 minutes, preferably in the range of 5 to 30 minutes.
  • the pressure at the time of molding may be in the range of 0.1 to 10 MPa, preferably in the range of 0.5 to 5 MPa.
  • the packing density ie the packing volume per volume
  • the packing density is also important. If the packing density is too low, adhesion may be weakened or heat insulation may be reduced. On the other hand, if the filling density is too high, the adhesive 2 may spread and it may become difficult to become point-like.
  • mold by the filling density which the total amount of the airgel particle A and the adhesive agent 2 makes the ratio of 15 g or more in this volume.
  • the total amount of the airgel particle A and the adhesive 2 be molded with a filling density of 0.1 to 0.5 g / cm 3 , in which case, 0.13 to 0.21 g / cm 3 More preferably, it is molded at a packing density.
  • the density is not limited to this as long as it can be adhered in a dot shape.
  • Example 1 ⁇ Method of synthesizing silica airgel particles> Oligomer of tetramethoxysilane as alkoxysilane (Colcoat Co., Ltd .: methyl silicate 51, average molecular weight 470), ethanol as solvent (recommended reagent of Nacalai Tesque, Inc.), water, and ammonia water of 0.01 mol / L as catalyst was used. A sol-like reaction liquid was obtained in which 1 mole of the tetramethoxysilane oligomer, 120 moles of ethanol, 20 moles of water, and 2.16 moles of aqueous ammonia were blended. After this, the sol-like reaction solution was allowed to stand at room temperature for gelation to obtain a gel-like compound.
  • Hexamethyldisilazane as a hydrophobizing agent is added to this supercritical state atmosphere at a rate of 0.3 mol / l, and the hydrophobizing agent is diffused into the supercritical fluid over 2 hours, and this supercritical
  • the gel compound was allowed to stand in the fluid for hydrophobization. Then, after circulating carbon dioxide in a supercritical state, the pressure was reduced to remove ethanol and a hydrophobizing agent contained in the gel-like compound. It took 15 hours from the addition of the hydrophobizing agent to the pressure reduction. Thereafter, it was taken out from the pressure container to obtain silica airgel particles.
  • the silica airgel particles had a bulk density of 0.086 g / cm 3 and an average particle diameter of 1100 ⁇ m. In addition, the average particle diameter used the diameter circularly converted from the cross-sectional area of 100 silica airgel particle
  • ⁇ Method of forming heat insulating material 18 g of the synthesized silica airgel particles (average particle diameter 1.1 mm) and a powder (average particle diameter 20 ⁇ m) of a phenol resin (K f 6004, Asahi Organic Chemical Industry, SP value ⁇ 11) 3 g as an adhesive containing a thermosetting resin
  • the mixture was stirred for 3 minutes with a disperser, and both were uniformly mixed.
  • the mixture of the obtained silica airgel particles and the adhesive was placed in a mold having a length of 120 mm, a width of 120 mm, and a thickness of 10 mm, and press molding was performed to cure the adhesive and molded into a desired size.
  • the press molding conditions were a mold temperature of 180 ° C., a pressure of 0.98 MPa (10 kgf / cm 2 ), and a pressure time of 15 minutes.
  • a heat insulating material was obtained.
  • the ratio of the average particle diameter of the point adhesive and the average particle diameter of the silica airgel particles was 1/30.
  • Example 2 18 g of silica airgel particles (average particle diameter 1.1 mm) synthesized in Example 1 and 4 g of PE powder (softening point 95 ° C., melting point 130 ° C.) of powder (average particle diameter 20 ⁇ m) as an adhesive containing a thermoplastic resin The mixture was stirred for 3 minutes with a disperser, and both were uniformly mixed.
  • PE is an abbreviation of polyethylene.
  • the obtained mixture of silica airgel particles and adhesive was placed in a mold of 120 mm long, 120 mm wide, and 10 mm thick, and press-formed to soften the adhesive, and was molded into a desired size.
  • the press molding conditions were a mold temperature of 110 ° C., a pressure of 0.98 MPa (10 kgf / cm 2 ), and a pressure time of 10 minutes. Thereafter, the adhesive was cooled by cooling to room temperature to obtain a heat insulating material.
  • the ratio of the average particle size of the point adhesive and the average particle size of the silica airgel particles was 1/10.
  • Example 3 18 g of silica airgel particles (average particle diameter 1.1 mm) synthesized in Example 1 and a powder (average particle diameter 20 ⁇ m) of a phenol resin (K f 6004 manufactured by Asahi Organic Chemical Industry, SP value) as an adhesive containing a thermosetting resin ⁇ 11) 6 g was stirred for 3 minutes with a disperser, and both were uniformly mixed.
  • the mixture of the obtained silica airgel particles and the adhesive was placed in a mold having a length of 120 mm, a width of 120 mm, and a thickness of 10 mm, and press molding was performed to cure the adhesive and molded into a desired size.
  • the press molding conditions were a mold temperature of 180 ° C., a pressure of 0.98 MPa (10 kgf / cm 2 ), and a pressure time of 15 minutes. Thus, a heat insulating material was obtained.
  • the ratio of the average particle diameter of the point adhesive and the average particle diameter of the silica airgel particles was 1/30.
  • Example 4 18 g of silica airgel particles (average particle diameter 1.1 mm) synthesized in Example 1 and a powder (average particle diameter 20 ⁇ m) of a phenol resin (TD-696A, manufactured by DIC, SP value) as an adhesive containing a thermosetting resin ⁇ 11) 3 g was stirred with a disperser for 3 minutes, and both were uniformly mixed.
  • the mixture of the obtained silica airgel particles and the adhesive was placed in a mold having a length of 120 mm, a width of 120 mm, and a thickness of 10 mm, and press molding was performed to cure the adhesive and molded into a desired size.
  • the press molding conditions were a mold temperature of 180 ° C., a pressure of 0.98 MPa (10 kgf / cm 2 ), and a pressure time of 15 minutes. Thus, a heat insulating material was obtained.
  • the ratio of the average particle diameter of the point adhesive and the average particle diameter of the silica airgel particles was 1/30.
  • Example 5 18 g of silica airgel particles (average particle diameter 1.1 mm) synthesized in Example 1 and a powder (average particle diameter 20 ⁇ m) of phenol resin (TD-697A, manufactured by DIC, SP value) as an adhesive containing a thermosetting resin ⁇ 11) 3 g was stirred with a disperser for 3 minutes, and both were uniformly mixed.
  • the mixture of the obtained silica airgel particles and the adhesive was placed in a mold having a length of 120 mm, a width of 120 mm, and a thickness of 10 mm, and press molding was performed to cure the adhesive and molded into a desired size.
  • the press molding conditions were a mold temperature of 180 ° C., a pressure of 0.98 MPa (10 kgf / cm 2 ), and a pressure time of 15 minutes. Thus, a heat insulating material was obtained.
  • the ratio of the average particle diameter of the point adhesive and the average particle diameter of the silica airgel particles was 1/30.
  • Example 6 21.6 g of silica airgel particles (average particle diameter: 1.1 mm) synthesized in Example 1 and a powder (average particle diameter: 20 ⁇ m) of a phenol resin (Kf 6004, manufactured by Asahi Organic Chemical Industry Co., Ltd.) as an adhesive containing a thermosetting resin
  • the SP value 11 11) and 3.6 g were stirred with a disperser for 3 minutes, and both were uniformly mixed.
  • the mixture of the obtained silica airgel particles and the adhesive was placed in a mold having a length of 120 mm, a width of 120 mm, and a thickness of 10 mm, and press molding was performed to cure the adhesive and molded into a desired size.
  • the press molding conditions were a mold temperature of 180 ° C., a pressure of 0.98 MPa (10 kgf / cm 2 ), and a pressure time of 15 minutes.
  • a heat insulating material was obtained.
  • the ratio of the average particle diameter of the point adhesive and the average particle diameter of the silica airgel particles was 1/30.
  • Example 7 The synthesis was carried out in the same manner as in the synthesis method of the silica airgel particles of Example 1, changing the conditions as appropriate, to synthesize silica airgel particles having an average particle diameter of 0.15 mm.
  • the SP value of this silica airgel particle is 6.
  • the mixture of the obtained silica airgel particles and the adhesive was placed in a mold having a length of 120 mm, a width of 120 mm, and a thickness of 10 mm, and press molding was performed to cure the adhesive and molded into a desired size.
  • the press molding conditions were a mold temperature of 180 ° C., a pressure of 0.98 MPa (10 kgf / cm 2 ), and a pressure time of 15 minutes. Thus, a heat insulating material was obtained.
  • the ratio of the average particle diameter of the point adhesive and the average particle diameter of the silica airgel particles was 1/25.
  • Example 2 18 g of silica airgel particles (average particle diameter 1.1 mm) synthesized in Example 1 and 3 g of unsaturated polyester resin (SP value ⁇ 9) as powder (average particle diameter 20 ⁇ m) as an adhesive containing a thermosetting resin The mixture was stirred for 3 minutes with a disperser, and both were uniformly mixed. The obtained mixture of silica airgel and adhesive was placed in a mold having a length of 120 mm, a width of 120 mm, and a thickness of 10 mm, and press molding was performed to cure the adhesive, and was molded into a desired size. The press molding conditions were a mold temperature of 150 ° C., a pressure of 0.98 MPa (10 kgf / cm 2 ), and a pressure time of 15 minutes. Thus, a heat insulating material was obtained.
  • SP value ⁇ 9 unsaturated polyester resin
  • the adhesive entered the pores of the silica airgel particles and did not adhere in the form of dots, so the ratio of the average particle diameter of the adhesive to the average particle diameter of the silica airgel particles could not be measured. The reason may be attributed to the SP value.
  • the adhesive adhered in layers to the surface of the silica airgel particles and did not adhere in a point-like manner, so the ratio of the average particle diameter of the adhesive to the average particle diameter of the silica airgel particles could not be measured .
  • the reason is considered to be due to the amount of adhesive.
  • Example 4 18 g of silica airgel (average particle diameter: 1.1 mm) synthesized in Example 1 and 18 g of PE powder of the same powder as the adhesive containing a thermoplastic resin (softening point 95 ° C., melting point 130 ° C.) Stirring was performed for 3 minutes, and both were uniformly mixed.
  • the obtained mixture of silica airgel and adhesive was placed in a mold having a length of 120 mm, a width of 120 mm, and a thickness of 10 mm, and press molding was performed to soften the adhesive and was molded into a desired size.
  • the press molding conditions were a mold temperature of 200 ° C., a pressure of 0.98 MPa (10 kgf / cm 2 ), and a pressure time of 10 minutes. Thereafter, the adhesive was cooled by cooling to room temperature to obtain a heat insulating material.
  • the adhesive entered the pores of the silica airgel particles and did not adhere in the form of dots, so the ratio of the average particle diameter of the adhesive to the average particle diameter of the silica airgel particles could not be measured. The reason is considered to be due to the adhesive amount and the molding temperature.
  • the adhesive adhered in layers to the surface of the silica airgel particles and did not adhere in a point-like manner, so the ratio of the average particle diameter of the adhesive to the average particle diameter of the silica airgel particles could not be measured .
  • the reason is considered to be due to the packing density.
  • the ratio of the average particle size of the point adhesive and the average particle size of the silica airgel particles was 1/5.
  • Example 1 the adhesion state of the adhesive agent was observed using X-ray CT.
  • the measurement conditions were: X-ray tube voltage was 60 kV, tube current was 100 ⁇ A, the sample was rotated by 0.5 degrees, a total of 720 images were taken, and those images were reconstructed.
  • the results of Example 1 are shown in FIG. 7 and the results of Comparative Example 3 are shown in FIG.
  • Example 4 an adhesive having a flexible structure on the skeleton (rubber-modified in Example 4 and cashew-modified in Example 5) is used. Thereby, heat insulation can be maintained and strength can be improved.
  • Example 6 even if the density of the heat insulating material is increased, there is a range in which the thermal conductivity does not increase so much, and it was confirmed that the strength can be improved while maintaining the thermal conductivity as much as possible.
  • Example 7 airgel particles having a small particle size and airgel particles having a large particle size are mixed, and the particle size of the airgel particles is controlled to reduce the porosity of the molded body, and the airgel particles are highly filled as much as possible. I am doing it. Therefore, the heat insulation is improved.
  • Example 1 of the electron micrograph shown in FIG. 4 it is confirmed that the adhesive 2 adheres to the surface of the airgel particle A in the form of dots. It is considered that the plurality of airgel particles A are adhered in the form of dots when the adhesive 2 adheres in the form of dots in this manner.
  • Example 1 From the X-ray CT image shown in FIG. 7, in Example 1, it is confirmed that adjacent airgel particles A are bonded via the point-like adhesive 2. Further, in FIG. 7, it is confirmed that a plurality of voids S exist in the heat insulating material B. On the other hand, according to the X-ray CT image shown in FIG. 8, in Comparative Example 3, it is confirmed that adjacent airgel particles A are bonded via the planar or mesh adhesive 2. Moreover, in FIG. 8, it is confirmed that the void S hardly exists. For this reason, in Example 1, it is thought that both heat insulation and intensity are improved rather than comparative example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Silicon Compounds (AREA)
  • Thermal Insulation (AREA)

Abstract

 複数のエアロゲル粒子Aを接着剤2で結合して形成される断熱材B及びその製造方法に関する。エアロゲル粒子Aは、平均粒径が500μm以上である。接着剤2はエアロゲル粒子Aの表面に点状に形成されている。接着剤2の平均粒径とエアロゲル粒子Aの平均粒径の比率(接着剤/エアロゲル粒子)は1/200~1/10である。断熱材Bの製造にあたっては、接着剤2として熱硬化性樹脂又は熱可塑性樹脂を含む粉末を用いる。強度が高く断熱性に優れた断熱材Bを得ることができる。

Description

断熱材及びその製造方法
 本発明は、エアロゲル粒子を用いた断熱材及びその製造方法に関する。
 従来、断熱材として、ウレタンフォームやフェノールフォームなどのフォーム材(発泡性の断熱材)が知られている。フォーム材は、発泡により生じた気泡によって断熱性を発揮するものである。このようなウレタンフォームやフェノールフォームは、一般的に、熱伝導率が空気の熱伝導率よりも高い。したがって、断熱性をより高めるためには、熱伝導率を空気よりも低くすることが有利である。空気よりも低い熱伝導率を達成させる方法として、ウレタンフォームやフェノールフォームなどの発泡させた材料の空隙内にフロンガスなどの熱伝導率の低いガスを充填させる方法などが知られている。しかしながら、空隙内にガスを充填する方法では、経時的に空隙内からガスが漏れ出ていき、熱伝導率が上昇してしまう可能性がある。
 近年、ケイ酸カルシウムの多孔体やガラス繊維を10Pa程度の真空状態にしたものなど、真空を利用して断熱性を高める手法が提案されている。しかし、真空による断熱は、真空状態を保つ必要があり、経時的な劣化や製造コストにおいて問題がある。さらに真空を利用して断熱材を形成するにしても、真空を維持するために形状の制約を受け、用途が著しく限定されてしまい、充分に実用化がなされていない。
 ところで、常圧でも空気の熱伝導率より小さい断熱材の材料として、微細多孔質シリカの集合体(いわゆるエアロゲル)が知られている。この材料は、例えば、米国特許第4402927号、米国特許第4432956号、米国特許第4610863号に開示されているような方法で得ることができる。これらの方法によれば、原料としてアルコキシシラン(別にシリコンアルコキシド又はアルキルシリケートとも称する)を用い、エアロゲルを作製することができる。具体的には、シリカエアロゲルは、アルコキシシランを溶媒の存在下で加水分解させて縮重合して得られるシリカ骨格からなる湿潤状態のゲル状化合物を、溶媒の臨界点以上の超臨界条件で乾燥することによって得ることができる。溶媒としては、例えば、アルコールまたは液化二酸化炭素等が用いられる。そして、エアロゲルが粒子状になったエアロゲル粒子は、熱伝導率が空気よりも低く、断熱材の原料として有用である。
米国特許第4402927号 米国特許第4432956号 米国特許第4610863号
 しかしながら、エアロゲル粒子を成形して断熱材を作製したとしても、粒子自体が脆いものであるため、成形物の強度は低くなり、割れたり壊れたりしやすいものとなってしまう。強度を高めるために、接着剤を増加することが考えられるが、その場合、接着剤によってかえって断熱性が低下するおそれがある。すなわち、接着剤を増加すると、図9に示すように、エアロゲル粒子Aの表面全体が接着剤102で覆われると共に隣り合うエアロゲル粒子A、Aの間の空間にも接着剤102が充填されることになる。この接着剤102を通じて断熱材Bの表面と裏面との間で熱が伝導しやすくなり、断熱材Bの断熱性能が低下する場合があった。
 そのため、断熱性が低下することを抑制しつつ、断熱材の強度を高めて、強度と断熱性能とを両立させることが求められている。
 本発明は上記の事情に鑑みてなされたものであり、強度が高く断熱性に優れた断熱材及びその製造方法を提供することを目的とするものである。
 本発明の断熱材は、複数のエアロゲル粒子を接着剤で結合して形成される断熱材であって、
 前記エアロゲル粒子は、平均粒径が500μm以上であり、
 前記接着剤は前記エアロゲル粒子の表面に点状に形成され、前記接着剤の平均粒径と前記エアロゲル粒子の平均粒径の比率(接着剤/エアロゲル粒子)は1/200~1/10であることを特徴とするものである。
 本発明にあっては、前記エアロゲル粒子は、粒度分布において、500μm以上のピークと、500μm未満のピークとを有することが好ましい。
 本発明にあっては、前記エアロゲル粒子100質量部に対して、前記接着剤が5~30質量部含有されていることが好ましい。
 本発明の断熱材の製造方法は、上記の断熱材の製造方法であって、
 前記接着剤は熱硬化性樹脂を含む粉末であり、前記粉末の接着剤の溶融状態での溶解度パラメータと前記エアロゲル粒子の溶解度パラメータとの差は4以上であり、
 前記粉末の接着剤を複数の前記エアロゲル粒子の表面に付着し、加熱により前記粉末の接着剤を前記エアロゲル粒子の表面で溶融させた後に硬化させることによって、前記複数のエアロゲル粒子を前記硬化した点状の接着剤で結合することを特徴とするものである。
 本発明の断熱材の製造方法は、上記の断熱材の製造方法であって、
 前記接着剤は熱可塑性樹脂を含む粉末であり、
 前記粉末の接着剤を複数のエアロゲル粒子の表面に付着し、前記熱可塑性樹脂の軟化点よりも高くて融点よりも低い温度で前記粉末の接着剤を加熱することにより、前記粉末の接着剤を前記エアロゲル粒子の表面で軟化させ、この後、前記熱可塑性樹脂の軟化点よりも低い温度まで冷却することによって、前記複数のエアロゲル粒子を固化した点状の接着剤で結合することを特徴とするものである。
 本発明の断熱材は、エアロゲル粒子が点状の接着剤で結合され、平均粒径の比率(接着剤/エアロゲル粒子)が1/200~1/10であるため、接着剤を通じて生じる熱の移動を少なくすることができ、強度が高く断熱性に優れるものである。
 本発明の断熱材の製造方法は、エアロゲル粒子に付着した粉末の接着剤を加熱した際に、接着剤がエアロゲル粒子の表面で広がりにくくなって点状になり、複数のエアロゲル粒子を点状の接着剤で結合しやすくなるものである。
本発明の断熱材の実施形態の一例を示す模式図である。 (a)~(c)は、エアロゲル粒子の一例の模式図である。 エアロゲル粒子の電子顕微鏡写真である。 実施例1において、エアロゲル粒子の表面に接着剤が点状に付着した状態を示す電子顕微鏡写真である。 本発明の断熱材の製造工程の一例を示す概略図である。 (a)~(d)は本発明の断熱材の製造工程の一例を示す断面図である。 実施例1の断熱材のX線CT(コンピュータ断層撮影)画像である。 比較例3の断熱材のX線CT画像である。 従来例を示す断面図である。
 本発明の断熱材は、複数のエアロゲル粒子Aを接着剤2で結合して形成される断熱材Bである。エアロゲル粒子Aは、平均粒径が500μm以上である。接着剤2はエアロゲル粒子Aの表面に点状に形成されている。接着剤2の平均粒径とエアロゲル粒子Aの平均粒径の比率(接着剤/エアロゲル粒子)は1/200~1/10である。図1に、断熱材Bの一例の模式図が示されている。
 エアロゲル(aerogel)は、ゲル中に含まれる溶媒を乾燥により気体に置換した多孔性の物質(多孔質体)である。粒子状のエアロゲルをエアロゲル粒子という。エアロゲルとしては、シリカエアロゲル、カーボンエアロゲル、アルミナエアロゲルなどが知られているが、このうちシリカエアロゲルを好ましく用いることができる。シリカエアロゲルは、断熱性に優れ、製造が容易であり、コストも安く、他のエアロゲルよりも容易に得ることができる。なお、ゲル中の溶媒が蒸発などにより失われ、空隙を持つ網目構造となったものをキセロゲル(xerogel)ということもあるが、本明細書におけるエアロゲルは、キセロゲルを含むものであってよい。
 図2に、エアロゲル粒子の一例の模式図を示す。図2(a)及び(b)に示すように、このエアロゲル粒子Aはシリカエアロゲル粒子であり、数10ナノオーダー(例えば20~40nm)の気孔を有するシリカ(SiO)構造体である。このようなエアロゲル粒子Aは超臨界乾燥などによって得ることができる。エアロゲル粒子Aは、エアロゲル粒子Aを構成する微粒子P(シリカ微粒子)が三次元の網目状に連結することにより形成されている。シリカ微粒子1個の大きさは例えば1~2nm程度である。図2(c)に示すように、エアロゲル粒子Aの数10ナノオーダーの気孔には気体Gが入り込むことができる。そして、この気孔が空気の成分である窒素や酸素の移動を阻害することにより、熱伝導率を空気よりも低いレベルに低下させることができる。例えば、従来の断熱材における空気が熱伝導率WLF λ 35~45mW/m・Kであったところ、エアロゲル粒子Aにより熱伝導率WLF λ 9~12mW/m・Kのレベルまで熱伝導率を低下させることができる。なお、エアロゲル粒子Aは、一般的に、疎水性の性質を有する。例えば、図2(b)に示すシリカエアロゲル粒子では、アルキル基(メチル基:CH)がケイ素(Si)に結合しており、ケイ素に結合した水酸基(OH)は少ない。したがって、表面の極性は低い。
 図3は、シリカエアロゲル粒子の電子顕微鏡写真である。このシリカエアロゲル粒子は超臨界乾燥法によって得たものである。シリカエアロゲル粒子が三次元の立体網目構造をとることはこの写真からも理解される。なお、エアロゲル粒子Aは、一般的に10nm未満の大きさのシリカ微粒子が線状に連結して網目構造が形成されるものであるが、微粒子の境目が曖昧になったり、シリカ構造(-O-Si-O-)が線状に延びたりして網目構造が形成されていてもよい。
 エアロゲル粒子としては、特に限定されるものではなく、一般的な製造方法によって得られたものを用いることができる。代表的なものとして、超臨界乾燥法によって得られるエアロゲル粒子と、水ガラスを利用して得られるエアロゲル粒子とがある。
 超臨界乾燥法によって得られるシリカエアロゲル粒子は、液相反応であるゾル-ゲル法によって重合させてシリカ粒子を作製し、溶媒を超臨界乾燥によって除去することにより得ることができる。原料としては、例えば、アルコキシシラン(シリコンアルコキシド又はアルキルシリケートともいう)を用いる。そして、このアルコキシシランを溶媒の存在下で加水分解させて縮重合して得られるシリカ骨格からなる湿潤状態のゲル状化合物を、溶媒の臨界点以上の超臨界条件で乾燥する。溶媒としては、例えば、アルコールまたは液化二酸化炭素などを用いることができる。このように超臨界条件によって乾燥されることにより、ゲルの網目構造を保持したまま溶媒が除去されて、エアロゲルを得ることができる。エアロゲルが粒子状となったエアロゲル粒子は、溶媒を含むゲルを粉砕して粒子化し、この溶媒を含んだ粒子状のゲルを超臨界乾燥することにより得ることができる。あるいは、エアロゲル粒子は、超臨界乾燥によって得られたエアロゲルのバルク体を粉砕することにより得ることができる。
 エアロゲル粒子の原料となるアルコキシシランとしては、特に限定されるものではないが、2官能、3官能又は4官能のアルコキシシランを単独で又は複数種を混合して用いることができる。2官能アルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジエトキシシラン、ジフェニルジメトキシシラン、メチルフェニルジエトキシシラン、メチルフェニルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン等が挙げられる。3官能アルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等が挙げられる。4官能アルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン等が挙げられる。また、アルコキシシランとして、ビストリメチルシリルメタン、ビストリメチルシリルエタン、ビストリメチルシリルヘキサン、ビニルトリメトキシシランなどを用いることもできる。また、アルコキシシランの部分加水分解物を原料に用いてもよい。
 アルコキシシランの加水分解と縮重合は、水の存在下で行うことが好ましく、さらに水との相溶性を有し、且つアルコキシシランを溶解する有機溶媒と、水との混合液を用いて行うことが好ましい。このような混合液を溶媒として用いた場合、加水分解工程と縮重合工程を連続して行うことができ、効率よくゲルを得ることができる。その際、生成するポリマーは、上記溶媒を分散媒とするゲル化物(湿潤ゲル) として得られる。水との相溶性を有し、且つアルコキシシランを溶解する溶媒としては、特に限定はされないが、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール等のアルコールや、アセトン、N,N-ジメチルホルムアミド等が挙げられる。これらは一種のみを用いても良いし、二種以上を併用してもよい。
 また、アルコキシシランの加水分解と縮重合は、アルコキシシランのアルコキシ基を脱離させて縮合反応を起こさせることが可能な触媒の存在下で行うことが好ましい。このような触媒としては、酸性触媒、塩基性触媒等が挙げられる。具体的には、酸性触媒としては、例えば、塩酸、クエン酸、硝酸、硫酸、フッ化アンモニウム等が挙げられる。また、塩基性触媒としては、例えば、アンモニア、ピペリジン等が挙げられる。
 また、アルコキシシランの反応液中には、適宜の成分を添加してもよい。例えば、界面活性剤、官能基導入剤、などが挙げられる。このような添加成分により、エアロゲル粒子に適宜の機能性を付与することができる。
 そして、得られた湿潤ゲルを超臨界乾燥することにより、エアロゲルを得ることができる。その際、湿潤ゲルを切断や粉砕などによってあらかじめ粒子化して、溶媒を含んだ粒子状のゲルを作製し、この粒子状のゲルを超臨界乾燥することが好ましい。それにより、エアロゲル構造を破壊することなく粒子化及び乾燥を行うことができ、エアロゲル粒子を容易に得ることができる。この場合、粒子状のゲルの大きさを揃えておくことにより、エアロゲル粒子の大きさを整えることができる。また、エアロゲルをバルクで得た後に、エアロゲルのバルク体を粉砕機により粉砕することにより、エアロゲル粒子を得るようにしてもよい。なお、得られたエアロゲル粒子はふるいや分級などによって、粒子の大きさをさらに揃えることができる。エアロゲル粒子の大きさが整うと、取扱い性を高めることができるとともに、安定な成形物を得やすくすることができる。
 水ガラスを利用して得られるエアロゲル粒子は、例えば、シリカゾルの作製、シリカゾルのゲル化、熟成、ゲルの粉砕、溶媒置換、疎水化処理、乾燥という工程を順番に行う常圧乾燥法により製造することができる。水ガラスは、一般的にケイ酸ナトリウムなどのケイ酸金属塩の高濃度の水溶液である。例えば、ケイ酸金属塩を水に溶かして加熱することで得られる。
 シリカゾル作製の原料としては、ケイ酸アルコキシド、ケイ酸アルカリ金属塩等を使用することができる。ケイ酸アルコキシドとしては、例えば、テトラメトキシシラン、テトラエトキシシラン等が挙げられる。また、ケイ酸アルコキシドとして、上記超臨界乾燥法で説明した各種のアルコキシシランを用いてもよい。また、ケイ酸アルカリ金属塩としては、ケイ酸カリウム、ケイ酸ナトリウム等が挙げられる。このうち、安価な点でケイ酸アルカリ金属塩を好適に用いることができ、更には入手が容易であるケイ酸ナトリウムをより好適に用いることができる。
 ケイ酸アルカリ金属塩を用いる場合には、塩酸、硫酸等の無機酸により中和する方法か、あるいは対イオンがHとされている陽イオン交換樹脂を用いる方法により、シリカゾルを作製することができる。これらの方法のうちでも、陽イオン交換樹脂を用いることが好ましい。
 酸型の陽イオン交換樹脂を用いてシリカゾルを作製するには、陽イオン交換樹脂を充填した充填層に適切な濃度のケイ酸アルカリ金属塩の溶液を通過させることにより行うことができる。あるいは、シリカゾルの作製は、ケイ酸アルカリ金属塩の溶液に、陽イオン交換樹脂を添加、混合し、アルカリ金属を除去した後に濾別するなどして陽イオン交換樹脂を分離することにより行うことができる。その際、陽イオン交換樹脂の量は、溶液に含まれるアルカリ金属を交換可能な量以上であることが好ましい。陽イオン交換樹脂により溶液の脱アルカリ(脱金属)が行われる。
 酸型の陽イオン交換樹脂としては、例えば、スチレン系、アクリル系、メタクリル系等で、イオン交換性基としてスルフォン酸基やカルボキシル基が置換されたものを用いることができる。このうち、スルフォン酸基を有する、いわゆる強酸型の陽イオン交換樹脂を好適に用いることができる。なお、陽イオン交換樹脂は、アルカリ金属の交換に使用した後に、硫酸や塩酸を通過させることで、再生処理を行うことができる。
 シリカゾルの作製後、シリカゾルをゲル化させ、次いでその熟成を行う。ゲル化及び熟成においては、pHを調整することが好ましい。すなわち、通常、陽イオン交換樹脂によりイオン交換されたシリカゾルのpHは低く、例えば3以下である。このようなシリカゾルを中和して弱酸性から中性のpH領域とすることによりシリカゾルがゲル化する。例えば、シリカゾルのpHを5.0~5.8、好ましくは5.3~5.7とすることによってゲル化させることができる。pHの調整は塩基及び酸の添加により行うことができる。塩基としては、アンモニア水、水酸化ナトリウム、水酸化カリウム、ケイ酸アルカリ金属塩などを用いることができる。酸としては、塩酸、クエン酸、硝酸、硫酸などを用いることができる。pH調整後、ゲルを静置して熟成を行う。熟成は、例えば、40~80℃の温度条件で、4~24時間程度であってもよい。
 熟成工程に引き続き、ゲルを粉砕することが好ましい。このゲルの粉砕により、目的とするエアロゲル粒子を容易に得ることが可能になる。ゲルの粉砕は、例えばヘンシャル型のミキサーにゲルを入れるか、あるいはミキサー内でゲル化させ、ミキサーを適度な回転数と時間で運転することにより行うことができる。
 粉砕工程に引き続き、好ましくは、溶媒置換が行われる。この溶媒置換はゲルを乾燥するに際し、乾燥収縮を起こさないよう、ゲルの作製に用いた水などの溶媒を、表面張力の小さな溶媒に置き換えるものである。直接水を表面張力の小さな溶媒に置き換えることは困難なため、通常はこの溶媒置換は、複数の段階、好ましくは2段階で行なわれる。1段目に用いる溶媒の選定基準としては、水、及び2段目の溶媒置換に用いられる溶媒に対して馴染みが良いことが挙げられる。1段目は、メタノール、エタノール、イソプロピルアルコール、アセトン等を用いることができ、好適には、エタノールを用いることができる。また2段目に用いる溶媒の選定基準としては、引き続き行われる疎水化処理に用いられる処理剤と反応しないこと、乾燥収縮を起こさないために表面張力が小さいことが挙げられる。2段目に用いる溶媒としては、ヘキサン、ジクロロメタン、メチルエチルケトン等を用いることができ、好適にはヘキサンを用いることができる。もちろん、必要に応じて、上記1段目の溶媒置換と2段目の溶媒置換との間に、更なる溶媒置換を行っても構わない。
 溶媒置換の後に、疎水化処理を行うことが好ましい。疎水化処理に用いる処理剤としては、アルキルアルコキシシランやハロゲン化アルキルシランなどを用いることができる。例えば、ジアルキルジクロロシラン、モノアルキルトリクロロシランを好ましく用いることができ、原料コストや反応性を考慮するとジメチルジクロロシランを特に好適に用いることができる。なお、疎水化処理は、溶媒置換の前に行ってもよい。
 そして、疎水化処理の後に、濾別して溶媒とゲルとを分離する。次いで、未反応の処理剤を取り除くためにゲルを溶媒で洗浄する。その後、ゲルを乾燥する。乾燥は常圧であってよい。また、加温したり温風を吹き込んだりしてもよい。乾燥は、不活性ガス(例えば窒素)の雰囲気下で行うことが好ましい。これにより、ゲル中の溶媒がゲルからとり除かれ、エアロゲル粒子を得ることできる。
 臨界乾燥法によって得たエアロゲル粒子と、水ガラスを利用して得たエアロゲル粒子とは、基本的に同じ構造を有するものである。すなわち、シリカ微粒子が連結し、三次元の網目状となった粒子構造となる。
 エアロゲル粒子の形状は、特に限定されるものではなく、種々の形状であってよい。上記で説明した方法でエアロゲル粒子を得た場合、粒子化するために粉砕等を行っているため、通常、エアロゲル粒子の形状は不定形の形状となる。いわば表面がごつごつした岩状の粒子となる。もちろん、球状やラグビーボール状などの粒子でもよい。また、パネル状、フレーク状、繊維状であってもよい。また、エアロゲル粒子は、成形に用いる原料としては、粒子の大きさが種々のものが混合したものであってよい。成形物においては、エアロゲル微粒子が接着して一体化されるため、粒子の大きさが揃っていなくてもよい。
 エアロゲル粒子の大きさは、例えば、粒子の最長の長さが50nm以上10mm以下の範囲であってよい。ただし、強度、取扱い性や成形容易性の観点からは、大きすぎる粒子や小さすぎる粒子が少ない方が好ましい。特に小さすぎる粒子が多くなり、エアロゲル粒子の平均粒径が500μmを下回ると、一般的に市販されている粉末接着剤(平均粒径30μm)で固めることが困難になる。固めるためには、粉末接着剤の添加量を増やせばよいが、接着剤の量が増えると、成形体(断熱材B)の断熱性能が大幅に低下してしまう。したがって、エアロゲル粒子の最長の長さが100μm以上2mm未満の範囲の粒子が多く存在する方が好ましい。
 エアロゲル粒子としては、平均粒径が500μm以上であるものを用いる。それにより、成形された断熱材の断熱性を向上することができる。さらに、エアロゲル粒子の平均粒径は500μm以上5mm以下の範囲であることが好ましく、より好ましくは、500μm以上1.5mm以下の範囲である。上記のような範囲の平均粒径のエアロゲル粒子を用いることにより、後述のような、接着剤の平均粒径とエアロゲル粒子の平均粒径との比率が1/200~1/10となる断熱材を製造しやすくなる。また、断熱材の構成においては、断熱材内部に多くの空孔ができると熱伝導率を十分に低くすることができなくなって、断熱性の低下に繋がるおそれがある。空孔は、エアロゲル粒子間の隙間として形成され得る。この空孔の発生を防止するためにはエアロゲル粒子の平均粒径が500μm以上であることが有効である。
 エアロゲル粒子は、粒度分布において、500μm以上のピークと、500μm未満のピークとを有することが好ましい。それにより、エアロゲル粒子を高密度に充填しやすくなるため、断熱性をさらに向上することができる。
 エアロゲル粒子の粒度分布が500μm以上のピークと500μm未満のピークとを有する場合、ピークの数は、全体として複数(2以上)であればよく、二つであっても、三つ以上であってもよい。断熱材の設計や製造の容易性からは、エアロゲル粒子の粒度分布においては、ピークの数が二つであることが好ましい一態様である。
 エアロゲル粒子では、粒度分布が500μm以上のピークと、500μm未満のピークとを有する場合、500μm以上のピークの粒径の値が、500μm未満のピークの粒径の値の5倍以上であることがより好ましい。それにより、エアロゲル粒子をさらに充填しやすくなるため、断熱性をより向上することができる。
 エアロゲル粒子は、エアロゲルビーズとも呼ばれ、不定形かつゴム性を有する。一般的に剛性の高い粒子を高密度充填する場合、粒度分布において粒径の異なる複数のピークを有する粒子を用いることがよいとされ、その際の好適な粒径はシミュレーションにより算出され得る。しかしながら、エアロゲル粒子は、剛性が低く圧縮によって形が変形するため、剛性の高い粒子の場合のシミュレーションを利用することができず、好適な粒度分布を見積もることは難しい。そのため、粒度分布においてピークを複数有するエアロゲル粒子を用いる場合は、実際に粒径の大きいエアロゲル粒子で成形体を作製し、この成形体についてX線CT等で空孔のサイズを測定し、その空孔にあったサイズのエアロゲル粒子を添加することが好ましい。例えば、平均粒径1mmのエアロゲル粒子に、平均粒径100μmのエアロゲル粒子を添加することで、空孔が約50%減少し断熱性を向上することができる。
 本発明の断熱材は、以上で説明したようなエアロゲル粒子を接着剤で結合して形成されている。
 図6(d)に、断熱材の実施形態の一例を示す。断熱材Bは、エアロゲル粒子Aの成型物(エアロゲル層3)と表面シート4とにより構成されている。この形態では、断熱材Bは板状の断熱材B(断熱ボード)として形成されている。もちろん、適宜の成形型を用いるなどして成形することにより、ボード以外の形状の成形も可能である。この断熱材Bはエアロゲル粒子Aが接着して形成されたエアロゲル層3の両面に表面シート4が積層された構成を有している。エアロゲル層3を表面シート4で覆うことにより、断熱材Bの強度を高めることができる。なお、表面シート4はエアロゲル層3の一方の面のみに積層されていてもよいが、強度を高めるためには両面に積層されていることが好ましい。また、表面シート4は必要に応じて用いることができ、なくてもよい。断熱材Bの形状は、建材として使用しやすい板状に形成されるのが好ましいが、これに限らず、使用目的に応じた任意の形状に形成することができる。また、断熱材Bの厚み(エアロゲル層3と表面シート4の積層方向の寸法)は、所望の断熱性能や使用目的に応じて適宜設定可能であるが、例えば、0.1~100mmとすることができる。
 エアロゲル層3は、多数個のエアロゲル粒子Aを接着剤2で接着して結合することにより形成されている。接着剤2としては、熱伝導を少なくするという観点から、熱伝導率がより小さいものを用いるのが好ましい。また、接着剤2は補強効果を高くするという観点から、接着強度がより大きいものを用いるのが好ましい。さらに、接着剤2は、エアロゲル粒子Aの細孔の中に侵入していないことが好ましい。接着剤2がエアロゲル粒子Aの細孔に侵入すると、エアロゲル粒子Aの熱伝導率が大きくなって断熱性が低下するおそれがある。
 図1に示すように、隣接するエアロゲル粒子Aは点状の接着剤2を介して結合されている。図1では、エアロゲル粒子A及び接着剤2が規則正しく配置された様子が示されているが、これは単に模式的に示しているだけであり、実際の断熱材Bにおいては、エアロゲル粒子A及び接着剤2は不規則に接着されていてよい。このとき、接着剤2は、連結して複数のエアロゲル粒子Aの間を線状に配置するようなことがなく、接着剤2が分断されて点状になっていればよい。点状の接着剤2は、例えば、ドット状に配置されていてもよい。点状の接着剤2は、例えば、島状に配置されていてもよい。
 点状の接着剤2は、断熱材B内において、点在していてよい。接着剤2は、隣り合うエアロゲル粒子Aの間に配置される。断熱材Bは、複数のエアロゲル粒子Aが密集されて形成され得るが、その際、複数のエアロゲル粒子Aの間に隙間が形成される。接着剤2は、複数のエアロゲル粒子Aの間の隙間に配置されていてもよい。
 図4は、エアロゲル粒子Aの表面に接着剤が点状に付着した状態の一例を示す電子顕微鏡写真である。図4では、後述の実施例1において調製したシリカエアロゲル粒子Aにおける写真が示されている。図4においては、点状の接着剤2は、略球形あるいは略半球形の状態でエアロゲル粒子Aの表面に付着している。点状の接着剤2の形状は適宜の形状であってよい。点状の接着剤2の断面形状は、例えば、円形、楕円形、多角形、などであってよい。もちろん、点状の接着剤2の断面形状は、不定形であってもよい。
 接着剤2の平均粒径とエアロゲル粒子Aの平均粒径の比率(接着剤2/エアロゲル粒子A)は、1/200~1/10である。この場合の平均粒径は、断面積から真円換算した径で定義される。平均粒径の比率(接着剤2/エアロゲル粒子A)は、より好ましくは、1/150~1/20である。接着剤2の平均粒径とエアロゲル粒子Aの平均粒径は、X線CTによって得られる接着剤2とエアロゲル粒子Aの断面積から求めることができる。例えば100個の点状の接着剤2の平均値と、100個のエアロゲル粒子Aの平均値を用いることができる。接着剤2の平均粒径とエアロゲル粒子Aの平均粒径の比率(接着剤2/エアロゲル粒子A)は、1/200~1/10であれば、隣接するエアロゲル粒子Aを点状の接着剤2で接着して結合しやすくなる。接着剤2の平均粒径とエアロゲル粒子Aの平均粒径の比率(接着剤2/エアロゲル粒子A)は、より好ましくは、1/150~1/20である。接着剤2の平均粒径とエアロゲル粒子Aの平均粒径の比率は接着剤2の平均粒径とエアロゲル粒子Aの平均粒径の比率(接着剤2/エアロゲル粒子A)は、さらに好ましくは、1/100~1/50である。
 成形前のエアロゲル粒子Aにおいては、平均粒径を適宜の粒度分布計で測ることもできる。粒度分布計としては、レーザー回折粒度分布測定装置などが例示される。また、成形前の接着剤2においては、粉末の接着剤2を用いる場合には、平均粒径を適宜の粒度分布計で測ることもできる。粒度分布計としては、レーザー回折粒度分布測定装置などが例示される。粉末の接着剤2においては、成形時に複数の粉末が結合せずに、一つの粉末から一つの接着剤2が形成される場合には、成形体における接着剤2の平均粒径は、粉末の接着剤2の平均粒径と等しいと近似することができる。そのため、成形後において、上記の平均粒径の比率に入るように、成形前にエアロゲル粒子A及び接着剤2の平均粒径を調整することができる。好ましくは、成形前において、エアロゲル粒子Aの平均粒径と接着剤2の平均粒径との比率が、上記に示した比率の範囲に入るようにする。もちろん、成形体中の接着剤2においては、複数の粉末から一つの接着剤2(硬化物又は固化物)が形成されてもよい。
 成形後のエアロゲル粒子Aの平均粒径は、溶剤などで接着剤2を溶解させて、個々のエアロゲル粒子Aを、分離した粒子として抽出し、このエアロゲル粒子Aを分散させて、粒度分布計で測定することにより求めることもできる。この方法は、エアロゲル粒子Aの粒子径にバラつきが大きい際には有効な測定方法となり得る。エアロゲル粒子Aの平均粒径として、この方法で求めた値を採用してもよい。ただし、平均粒径はX線CTによって測定した値が優先される。
 複数個の点状の接着剤2は、互いに接触しないように、間隔を置いて配置されていることが好ましい。このとき、隣り合う点状の接着剤2は、間隔を介して隣り合っていることになる。接着剤2が接触しないことにより、熱伝導のパスが生じにくくなるため、断熱性を高めることができる。
 エアロゲル粒子Aの表面は、接着剤2で覆われないことが好ましい。エアロゲル粒子Aの表面が接着剤2で覆われると、エアロゲル粒子Aの細孔が塞がれるおそれがあるため、断熱性が低下するおそれがある。また、エアロゲル粒子Aの表面が接着剤2で覆われると、熱伝導のパスができやすくなるおそれがある。
 断熱材Bにおいては、複数のエアロゲル粒子Aが点状の接着剤2で結合しており、隣接するエアロゲル粒子Aが点接触(点接続)により結合されている。そのため、接着剤2を通じてのエアロゲル粒子A、A間の熱の移動を少なくすることができる。それにより、接着剤2によるエアロゲル粒子A、A間の結合を高めながら断熱性の低下を少なくすることができる。
 接着剤2としては熱硬化性樹脂と熱可塑性樹脂のいずれかを含有するものを用いることができる。接着剤2は、熱硬化性樹脂のみからなるものであってもよい。あるいは、接着剤2は、熱可塑性樹脂のみからなるものであってもよい。もちろん、接着剤2には、熱硬化性樹脂と熱可塑性樹脂とのいずれかの他に、適宜の添加物が含まれていてもよい。
 接着剤2に含まれる熱硬化性樹脂としては、溶融状態でエアロゲル粒子Aの表面に対して弾く性質を有するものであることが好ましい。後述のように、断熱材Bの製造工程において、接着剤2の熱硬化性樹脂は加熱によって溶融した後、硬化して接着するものである。したがって、接着剤2の熱硬化性樹脂は溶融時にエアロゲル粒子Aの表面で弾かれて広がりにくい方が点状の接着剤2を形成しやすくなる。そこで、エアロゲル粒子Aの表面で溶融した接着剤2が広がりにくくするために、エアロゲル粒子Aの表面に対して弾く性質を有する熱硬化性樹脂を接着剤2に含有させるのが好ましい。ここで、「エアロゲル粒子Aの表面に対して弾く性質を有する」とは定量的に規定すると、溶融状態での接着剤2の溶解度パラメータ(SP値)と、エアロゲル粒子Aの溶解度パラメータとの差が4以上であることが好ましい。接着剤2のエアロゲル粒子Aの表面に対して弾く性質は、接着剤2に含まれる熱硬化性樹脂の種類や構造(官能基の種類や重合度など)などによって決まるものである。接着剤2の熱硬化性樹脂は溶融状態で親水性を有するものであることが好ましい。この場合、疎水性のエアロゲル粒子Aの表面で溶融状態の接着剤2が弾かれやすくなって、接着剤2をエアロゲル粒子Aの表面に点状に付着させやすくなる。具体的には、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂などから選ばれる1種以上の熱硬化性樹脂が接着剤2に含有されていることが好ましい。
 粉末の接着剤2の溶融状態でのSP値は、原子団寄与法によって得られる接着剤2の分子構造から算出することができる。エアロゲル粒子AのSP値は、表面を修飾した表面処理剤の分子構造から原子団寄与法によって算出することができる。尚、溶融状態での接着剤2のSP値とエアロゲル粒子AのSP値との差は大きいほど好ましいので、上限は特に設定されない。例えば、この差は、20以下であってもよい。
 さらに、高い断熱性を維持したまま強度を向上させるためには、柔軟性の高い熱硬化性樹脂を含む接着剤2を使用することが好ましい。例えば、フェノール樹脂の場合、ゴム変性、カシュー変性、エポキシ変性したものを使用すれば、断熱性を低下させること無く強度を向上させることができる。ここで、本実施の形態において「柔軟性の高い」とは、動的粘弾性測定におけるtanδが大きく架橋密度をさげたことを意味する。
 一方、熱可塑性樹脂を含む接着剤2としては、ホットメルト接着剤を用いることができる。後述のように、断熱材Bの製造工程において、接着剤2の熱可塑性樹脂は加熱により軟化させるだけであり、溶融状態にはしなくてよい。すると、接着剤2の熱可塑性樹脂はエアロゲル粒子Aの表面で広がりにくくなり、点状の接着剤2を形成しやすくなる。そのため、接着剤2には通常のホットメルト接着剤用の熱可塑性樹脂を用いることができる。具体的には、エチレン-アクリレート共重合体、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、エチレン-酢酸ビニル共重合体、ポリアミド樹脂、ポリエステル樹脂などから選ばれる1種以上の熱可塑性樹脂を接着剤2として用いることが好ましい。
 断熱材Bにおいては、エアロゲル粒子A100質量部に対して、接着剤2が5~30質量部含有されていることが好ましい。エアロゲル粒子Aと接着剤2の含有割合は、接着剤2の種類や断熱材Bの断熱性能と強度などを勘案して適宜設定されるものであるが、接着性及び断熱性の観点から、より好適な比率が設定され得る。そこで、例えば、100質量部のエアロゲル粒子Aに対して、5~30質量部、好ましくは10~25質量部の接着剤2を混合することができる。接着剤2が少なくなるほど断熱材Bの熱伝導率が低くなるが強度が低下する傾向にあり、接着剤2が多くなるほど断熱材Bの強度が高くなるが熱伝導率が増加する傾向にある。そのため、接着剤2の混合量は100質量部のエアロゲル粒子Aに対して、10~20質量部であることがより好ましい。
 断熱材Bの密度は、断熱性能に大きな影響を与え得る。この密度はエアロゲル粒子Aと接着剤2の仕込み量、断熱材Bの厚さを勘案して適宜設定されるものである。断熱材Bの密度が低くなれば、空気層が介入して断熱性能が低下しやすくなる。一方、密度が高くなれば、接着剤2が熱橋となりやすく、熱伝導率が低下しやすくなる。断熱材Bの密度は、例えば、0.1~0.5g/cmの範囲であってもよい。それにより、取り扱い性が高まる。例えば、エアロゲル粒子Aの100質量部に対して接着剤2を17質量部用いて断熱材Bを作製した場合、ボード(断熱材B)の密度は0.13~0.21g/cmにすることができる。
 断熱材Bにおいて、接着剤2とエアロゲル粒子Aとの体積比率(接着剤2/エアロゲル粒子A)は、0.003~0.05であることが好ましい。それにより、接着剤2によって熱の伝達経路が作られるのを抑制しつつ、断熱材Bの強度を高めることができる。この体積比率は、X線CTによる画像解析から求めることができる。接着剤2とエアロゲル粒子Aとの体積比率(接着剤2/エアロゲル粒子A)は、0.006~0.04の範囲がより好ましく、0.006~0.03の範囲がさらに好ましい。
 断熱材Bを切断したときの断面において、接着剤2が占める面積とエアロゲル粒子Aが占める面積との比率(接着剤2/エアロゲル粒子A)は、0.004~0.04であることが好ましい。それにより、接着剤2によって熱の伝達経路が作られるのを抑制しつつ、断熱材Bの強度を高めることができる。この面積比率は、X線CTによる画像解析から求めることができる。切断面における接着剤2が占める面積とエアロゲル粒子Aが占める面積との比率(接着剤2/エアロゲル粒子A)は、0.006~0.04の範囲がより好ましく、0.006~0.03の範囲がさらに好ましい。
 断熱材Bの製造方法について、以下に説明する。
 まず、エアロゲル粒子Aの表面に接着剤2を付着させる。この場合、接着剤2は常温で粉末であることが好ましい。これにより、エアロゲル粒子Aに接着剤2を点状に付着させやすくなる。エアロゲル粒子Aに接着剤2を付着させる方法としては、例えば、粉体混合機で撹拌する方法を採用することができる。付着のためには、接着剤2は、接着剤2自体で固まらないとともに、エアロゲル粒子Aに付着する程度の粘着性を有することが好ましい。このとき、接着剤2の粘着性を高めるために、水などの液体を少量加えつつ、乾燥を行いながら混合を行ってもよい。
 粉末の接着剤2の粒径(大きさ)の平均値は、エアロゲル粒子Aの粒径(大きさ)の平均値よりも小さい方が好ましい。それにより、エアロゲル粒子Aに接着剤2を点状に付着させやすくなるものである。常温で粉末の接着剤2の平均粒径は、上記の点状に付着した接着剤2の平均粒径やエアロゲル粒子Aの平均粒径の場合と同様に、X線CTによって得られる接着剤2の断面積から求めることができる。例えば100個の粉末の接着剤2の平均値を用いることができる。あるいは、粒度分布測定装置によって平均粒径を求めてもよい。
 原料として使用する粉末の接着剤2の平均粒径と、エアロゲル粒子Aの平均粒径の比率(接着剤2/エアロゲル粒子A)は、1/200~1/10であることが好ましい。それにより、成形された後においても、この平均粒径の比率の範囲内で点状の接着剤2でエアロゲル粒子Aを結合しやすくなる。
 エアロゲル粒子Aとしては、平均粒径が500μm以上のものを用いることができる。また、エアロゲル粒子Aとして、平均粒径が500μm以上を満たすのであれば、粒度分布において、500μm以上のピークと、500μm未満のピークとを有するものを用いてもよい。また、粒度分布において500μm以上のピークを有する大粒径のエアロゲル粒子Aと、粒度分布において500μm未満のピークを有する小粒径のエアロゲル粒子Aとを併用してもよい。粒径の異なるエアロゲル粒子Aを併用する場合には、混合後のエアロゲル粒子Aにおいて、平均粒径が500μm以上を満たせばよい。
 大粒径のエアロゲル粒子Aと小粒径のエアロゲル粒子Aとを混合する場合、大粒径のエアロゲル粒子Aの量は、小粒径のエアロゲル粒子Aの量よりも多いことが好ましい。さらに、大粒径のエアロゲル粒子Aの量は、小粒径のエアロゲル粒子Aの量の3倍以上であることが好ましい。大粒径のエアロゲル粒子Aの量が多くなることで、大粒径のエアロゲル粒子Aの隙間に小粒径のエアロゲル粒子Aを入れることができるため、より高充填化が可能になる。大粒径のエアロゲル粒子Aの量は、小粒径のエアロゲル粒子Aの量の20倍以下であってよく、10倍以下であってもよい。
 大粒径のエアロゲル粒子Aの平均粒径の好ましい範囲は、上記のエアロゲル粒子Aで説明した範囲であってよい。一方、小粒径のエアロゲル粒子Aの平均粒径は、大粒径の平均粒径の3分の1以下であることが好ましく、5分の1以下であることがより好ましい。小粒径のエアロゲル粒子Aの平均粒径は、例えば、50μm以上であってよく、さらには100μm以上であってもよい。小粒径のエアロゲル粒子Aの平均粒径は、例えば、400μm以下であってよく、さらには300μm以下であってもよい。
 図5は、エアロゲル粒子Aに接着剤2を付着させる方法の一例を示している。図5に示すように、例えば、エアロゲル粒子Aに接着剤2を付着させるにあたっては、エアロゲル粒子Aと粉末の接着剤2とを容器5に入れる。そして、蓋を閉めるなどして容器5を密封し、容器5を振る。これにより、エアロゲル粒子Aと接着剤2とが粉体混合されて、接着剤2が付着したエアロゲル粒子Aを得ることができる。尚、生産レベルにおいては、ミルやミキサーなどの適宜の粉体混合機を使用して粉体混合を行うことができる。ただし、強力な撹拌力が働くと粒子が壊れるおそれがあるので、粒子が破壊されない程度の撹拌力で混合することが好ましい。
 次に、接着剤2が付着したエアロゲル粒子Aを加熱加圧成形する。この成形により、エアロゲル粒子Aが接着剤2により接着して成形された断熱材Bを得ることができる。
 図6は、接着剤2が付着したエアロゲル粒子Aを成形して断熱材Bを製造する方法の一例を示している。
 図6に示すように、成形にあたっては、プレス機30を用いる。このプレス機30はプレス下型31とプレス上型32とを備えて構成されている。そして、まず、図6(a)に示すように、プレス下型31に側壁型31bを取り付けて凹部31aを形成した後、この凹部31aの底面に離型シート34を敷き、その上に表面シート4を重ねる。次に、容器5からエアロゲル粒子Aをプレス下型31上の凹部31aに投入する。尚、図6では、接着剤2の図示を省略して記載しているが、エアロゲル粒子Aは上記で説明した接着剤2が付着しているものを用いる。次いで、図6(b)に示すように、薬さじ、ヘラなどの平滑具33により表面を平らにならす。次に、表面が平坦になったエアロゲル粒子Aの上に表面シート4を重ね、さらにその上に、離型シート34を重ねる。そして、図6(c)で示すように、プレス上型32を凹部31aに上方から押し込んで挿入し、加熱加圧して押圧(プレス)する。このとき、エアロゲル粒子Aが押し潰されて壊れない程度のプレス圧力で押圧することが好ましい。このプレスにより接着剤2が接着性を発揮して、エアロゲル粒子Aが接着されて結合一体化する。また、表面シート4とエアロゲル粒子Aとが接着剤2の接着作用により接着されて表面シート4がエアロゲル粒子Aの成形物と一体化する。そして、プレス終了後に成形物を取り出し、乾燥機で乾燥する。これにより、図6(d)に示すように、エアロゲル粒子Aの成型物(エアロゲル層3)と表面シート4とにより構成される断熱材Bが形成される。
 ここで、接着剤2が、熱硬化性樹脂を含む場合と、熱可塑性樹脂を含む場合とでは、加熱処理の条件を異ならせることができる。加熱処理条件を好適化することにより、点状の接着剤2でエアロゲル粒子Aを結合しやすくなる。
 接着剤2が熱硬化性樹脂を含む粉末である場合、粉末の接着剤2の溶融状態での溶解度パラメータとエアロゲル粒子Aの溶解度パラメータとの差が4以上であるようにする。そして、粉末の接着剤2を複数のエアロゲル粒子Aの表面に付着し、加熱により粉末の接着剤2をエアロゲル粒子Aの表面で溶融させた後に硬化させる。これにより、複数のエアロゲル粒子Aを硬化した点状の接着剤2で結合することができる。
 一方、接着剤2が熱可塑性樹脂を含む粉末である場合、粉末の接着剤2を複数のエアロゲル粒子Aの表面に付着し、熱可塑性樹脂の軟化点よりも高くて融点よりも低い温度で粉末の接着剤2を加熱する。このとき、粉末の接着剤2をエアロゲル粒子Aの表面で軟化させる。この後、熱可塑性樹脂の軟化点よりも低い温度まで冷却する。これにより、複数のエアロゲル粒子Aを固化した点状の接着剤2で結合することができる。
 つまり、加熱加圧成形時においては、接着剤2として熱硬化性樹脂を含有しているか、熱可塑性樹脂を含有しているかかによって、その加熱履歴が異なる。すなわち、接着剤2として熱硬化性樹脂を含有している場合は、常温で粉末の接着剤2の熱硬化性樹脂が加熱溶融する状態にまで加熱し、この後さらに加熱してエアロゲル粒子Aを接着した状態で接着剤2を硬化させている。一方、接着剤2として熱可塑性樹脂を含有している場合は、常温で粉末の接着剤2の熱可塑性樹脂の軟化点よりも高くて融点よりも低い温度で加熱し、接着剤2を軟化させる。この後、接着剤2の熱可塑性樹脂の軟化点よりも低い温度にまで冷却することによりエアロゲル粒子Aを接着した状態で接着剤2を固化させている。このようにして接着剤2として熱硬化性樹脂と熱可塑性樹脂のいずれを含有していても隣接するエアロゲル粒子Aを点接触で結合することができる。
 成形条件は適宜に好適化することができる。成形温度は、例えば、80~200℃の範囲であってよく、好ましくは、100~190℃の範囲であってよい。成形時間は、例えば、1~60分の範囲であってよく、好ましくは、5~30分の範囲であってよい。成形時の圧力は、0.1~10MPaの範囲であってよく、好ましくは、0.5~5MPaの範囲であってよい。
 成形の際には、充填密度、すなわち体積当たりの充填量も重要である。充填密度が低すぎると、接着性が弱くなったり、断熱性が低下したりするおそれがある。一方、充填密度が高すぎると、接着剤2が広がってしまって点状になりにくくなるおそれがある。例えば、縦120mm、横120mm、厚み10mmの容積内(144×10mm)に、エアロゲル粒子Aと接着剤2との合計量が、30g以下の割合となる充填密度で成形することが好ましい。また、この容積内に、エアロゲル粒子Aと接着剤2との合計量が、15g以上の割合となる充填密度で成形することが好ましい。また、エアロゲル粒子Aと接着剤2との合計量が、0.1~0.5g/cmの充填密度で成形されることも好ましく、この場合、0.13~0.21g/cmの充填密度で成形されることがより好ましい。もちろん、点状に接着できるのであれば、密度はこれに限定されるものではない。
 (実施例1)
 <シリカエアロゲル粒子の合成方法>
 アルコキシシランとしてテトラメトキシシランのオリゴマー(コルコート株式会社製:メチルシリケート51、平均分子量470)、溶媒としてエタノール(ナカライテスク株式会社製特級試薬)、水、及び触媒として0.01モル/リットルのアンモニア水を用いた。上記テトラメトキシシランのオリゴマーを1モル、エタノールを120モル、水を20モル、アンモニア水を2.16モルの比率で配合したゾル状反応液を得た。この後、ゾル状反応液を室温で静置し、ゲル化させ、ゲル状化合物を得た。
 次に、耐圧容器を用い、このゲル状反応液を18℃、圧力5.4MPa(55kgf/cm)の液化二酸化炭素中に入れ、ゲル状化合物内のエタノールを二酸化炭素に置換する操作を3時間行った。その後耐圧容器内を二酸化炭素の超臨界条件である温度80℃、圧力15.7MPa(160kg/cm)とし、溶媒除去を48時間行った。この超臨界状態の雰囲気に、疎水化処理剤としてヘキサメチルジシラザンを0.3モル/リットルの割合で添加し、2時間かけて疎水化処理剤を超臨界流体中に拡散させ、この超臨界流体中にゲル状化合物を放置し疎水化を施した。その後、超臨界状態の二酸化炭素を流通した後に減圧し、ゲル状化合物に含まれるエタノールと疎水化処理剤を除去した。疎水化処理剤投入から減圧までの時間は15時間を要した。その後、耐圧容器から取り出し、シリカエアロゲル粒子を得た。このシリカエアロゲル粒子は、かさ密度が0.086g/cm、平均粒径1100μmであった。尚、平均粒径は、X線CTによって得られる100個のシリカエアロゲル粒子の断面積から真円換算した径を用いた。このシリカエアロゲル粒子のSP値は6である。
 <断熱材の成形方法>
 合成したシリカエアロゲル粒子(平均粒径1.1mm)18gと、熱硬化性樹脂を含む接着剤として粉末(平均粒径20μm)のフェノール樹脂(Kf6004、旭有機化学工業製、SP値≧11)3gとをデイスパーで3分間撹拌を行い、両者を均一に混合した。得られたシリカエアロゲル粒子と接着剤の混合物を縦120mm、横120mm、厚み10mmの金型に入れ、プレス成形を行い接着剤を硬化させ、所望の大きさに成形した。プレス成形条件は、金型温度が180℃、加圧圧力が0.98MPa(10kgf/cm)、加圧時間が15分とした。このようにして断熱材を得た。
 この断熱材では、点状の接着剤の平均粒径とシリカエアロゲル粒子の平均粒径の比率(接着剤/シリカエアロゲル粒子)が1/30であった。
 (実施例2)
 実施例1で合成したシリカエアロゲル粒子(平均粒径1.1mm)18gと、熱可塑性樹脂を含む接着剤として粉末(平均粒径20μm)のPEパウダー(軟化点95℃、融点130℃)4gをデイスパーで3分間撹拌を行い、両者を均一に混合した。なお、PEはポリエチレンの略である。得られたシリカエアロゲル粒子と接着剤の混合物を縦120mm、横120mm、厚み10mmの金型に入れ、プレス成形を行い接着剤を軟化させを、所望の大きさに成型した。プレス成形条件は、金型温度が110℃、加圧圧力が0.98MPa(10kgf/cm)、加圧時間が10分とした。この後、常温にまで冷却して接着剤を固化させて断熱材を得た。
 この断熱材では、点状の接着剤の平均粒径とシリカエアロゲル粒子の平均粒径の比率(接着剤/シリカエアロゲル粒子)が1/10であった。
 (実施例3)
 実施例1で合成したシリカエアロゲル粒子(平均粒径1.1mm)18gと、熱硬化性樹脂を含む接着剤として粉末(平均粒径20μm)のフェノール樹脂(Kf6004、旭有機化学工業製、SP値≧11)6gとをデイスパーで3分間撹拌を行い、両者を均一に混合した。得られたシリカエアロゲル粒子と接着剤の混合物を縦120mm、横120mm、厚み10mmの金型に入れ、プレス成形を行い接着剤を硬化させ、所望の大きさに成形した。プレス成形条件は、金型温度が180℃、加圧圧力が0.98MPa(10kgf/cm)、加圧時間が15分とした。このようにして断熱材を得た。
 この断熱材では、点状の接着剤の平均粒径とシリカエアロゲル粒子の平均粒径の比率(接着剤/シリカエアロゲル粒子)が1/30であった。
 (実施例4)
 実施例1で合成したシリカエアロゲル粒子(平均粒径1.1mm)18gと、熱硬化性樹脂を含む接着剤として粉末(平均粒径20μm)のフェノール樹脂(TD-696A、DIC社製、SP値≧11)3gとをデイスパーで3分間撹拌を行い、両者を均一に混合した。得られたシリカエアロゲル粒子と接着剤の混合物を縦120mm、横120mm、厚み10mmの金型に入れ、プレス成形を行い接着剤を硬化させ、所望の大きさに成形した。プレス成形条件は、金型温度が180℃、加圧圧力が0.98MPa(10kgf/cm)、加圧時間が15分とした。このようにして断熱材を得た。
 この断熱材では、点状の接着剤の平均粒径とシリカエアロゲル粒子の平均粒径の比率(接着剤/シリカエアロゲル粒子)が1/30であった。
 (実施例5)
 実施例1で合成したシリカエアロゲル粒子(平均粒径1.1mm)18gと、熱硬化性樹脂を含む接着剤として粉末(平均粒径20μm)のフェノール樹脂(TD-697A、DIC社製、SP値≧11)3gとをデイスパーで3分間撹拌を行い、両者を均一に混合した。得られたシリカエアロゲル粒子と接着剤の混合物を縦120mm、横120mm、厚み10mmの金型に入れ、プレス成形を行い接着剤を硬化させ、所望の大きさに成形した。プレス成形条件は、金型温度が180℃、加圧圧力が0.98MPa(10kgf/cm)、加圧時間が15分とした。このようにして断熱材を得た。
 この断熱材では、点状の接着剤の平均粒径とシリカエアロゲル粒子の平均粒径の比率(接着剤/エアロゲル粒子)が1/30であった。
 (実施例6)
 実施例1で合成したシリカエアロゲル粒子(平均粒径1.1mm)21.6gと、熱硬化性樹脂を含む接着剤として粉末(平均粒径20μm)のフェノール樹脂(Kf6004、旭有機化学工業製、SP値≧11)3.6gとをデイスパーで3分間撹拌を行い、両者を均一に混合した。得られたシリカエアロゲル粒子と接着剤の混合物を縦120mm、横120mm、厚み10mmの金型に入れ、プレス成形を行い接着剤を硬化させ、所望の大きさに成形した。プレス成形条件は、金型温度が180℃、加圧圧力が0.98MPa(10kgf/cm)、加圧時間が15分とした。このようにして断熱材を得た。
 この断熱材では、点状の接着剤の平均粒径とシリカエアロゲル粒子の平均粒径の比率(接着剤/シリカエアロゲル粒子)が1/30であった。
 (実施例7)
 実施例1のシリカエアロゲル粒子の合成方法と同様の合成方法で、適宜条件を変えて合成を行い、平均粒径0.15mmのシリカエアロゲル粒子を合成した。このシリカエアロゲル粒子のSP値は6である。
 実施例1で合成したシリカエアロゲル粒子(平均粒径1.1mm)15gと、上記で合成したシリカエアロゲル粒子(平均粒径0.15mm)3gと、熱硬化性樹脂を含む接着剤として粉末(平均粒径20μm)のフェノール樹脂(Kf6004、旭有機化学工業製、SP値≧11)3gとをデイスパーで3分間撹拌を行い、これらを均一に混合した。得られたシリカエアロゲル粒子と接着剤の混合物を縦120mm、横120mm、厚み10mmの金型に入れ、プレス成形を行い接着剤を硬化させ、所望の大きさに成形した。プレス成形条件は、金型温度が180℃、加圧圧力が0.98MPa(10kgf/cm)、加圧時間が15分とした。このようにして断熱材を得た。
 この断熱材では、点状の接着剤の平均粒径とシリカエアロゲル粒子の平均粒径の比率(接着剤/シリカエアロゲル粒子)が1/25であった。
 (比較例1)
 実施例1で合成されたシリカエアロゲル粒子を用い、接着剤を使用せずに、断熱材(シリカエアロゲルモノリス体)を得た。
 (比較例2)
 実施例1で合成したシリカエアロゲル粒子(平均粒径1.1mm)18gと、熱硬化性樹脂を含む接着剤として粉末(平均粒径20μm)の不飽和ポリエステル樹脂(SP値<9)3gとをデイスパーで3分間撹拌を行い、両者を均一に混合した。得られたシリカエアロゲルと接着剤の混合物を縦120mm、横120mm、厚み10mmの金型に入れ、プレス成型を行い接着剤を硬化させ、所望の大きさに成形した。プレス成形条件は、金型温度が150℃、加圧圧力が0.98MPa(10kgf/cm)、加圧時間が15分とした。このようにして断熱材を得た。
 この断熱材では、接着剤がシリカエアロゲル粒子の孔に入り、点状に付着しなかったので、接着剤の平均粒径とシリカエアロゲル粒子の平均粒径の比率は測定できなかった。その理由は、SP値に起因するもの考えられる。
 (比較例3)
 実施例1で合成したシリカエアロゲル(平均粒径1.1mm)18gと、接着剤として上記と同様の粉末のフェノール樹脂(Kf6004、旭有機化学工業製、SP値≧11)18gとをデイスパーで3分間撹拌を行い、両者を均一に混合した。得られたシリカエアロゲル粒子と接着剤の混合物を縦120mm、横120mm、厚み10mmの金型に入れ、プレス成形を行い接着剤を硬化させ、所望の大きさに成形した。プレス成形条件は、金型温度が180℃、加圧圧力が0.98MPa(10kgf/cm)、加圧時間が15分とした。このようにして断熱材を得た。
 この断熱材では、接着剤がシリカエアロゲル粒子の表面に層状に付着して、点状に付着しなかったので、接着剤の平均粒径とシリカエアロゲル粒子の平均粒径の比率は測定できなかった。その理由は、接着剤量に起因するもの考えられる。
 (比較例4)
 実施例1で合成したシリカエアロゲル(平均粒径1.1mm)18gと、熱可塑性樹脂を含む接着剤として上記と同様の粉末のPEパウダー18g(軟化点95℃、融点130℃)とをデイスパーで3分間撹拌を行い、両者を均一に混合した。得られたシリカエアロゲルと接着剤の混合物を縦120mm、横120mm、厚み10mmの金型に入れ、プレス成形を行い接着剤を軟化させ、所望の大きさに成形した。プレス成形条件は、金型温度が200℃、加圧圧力が0.98MPa(10kgf/cm)、加圧時間が10分とした。この後、常温にまで冷却して接着剤を固化させて断熱材を得た。
 この断熱材では、接着剤がシリカエアロゲル粒子の孔に入り、点状に付着しなかったので、接着剤の平均粒径とシリカエアロゲル粒子の平均粒径の比率は測定できなかった。その理由は、接着剤量、成形温度に起因するものと考えられる。
 (比較例5)
 実施例1で合成したシリカエアロゲル粒子(平均粒径1.1mm)27gと、熱硬化性樹脂を含む接着剤として粉末(平均粒径30μm)のフェノール樹脂(TD-696A、DIC社製、SP値≧11)4.5gとをデイスパーで3分間撹拌を行い、両者を均一に混合した。得られたシリカエアロゲル粒子と接着剤の混合物を縦120mm、横120mm、厚み10mmの金型に入れ、プレス成形を行い接着剤を硬化させ、所望の大きさに成形した。プレス成形条件は、金型温度が180℃、加圧圧力が0.98MPa(10kgf/cm)、加圧時間が15分とした。このようにして断熱材を得た。
 この断熱材では、接着剤がシリカエアロゲル粒子の表面に層状に付着して、点状に付着しなかったので、接着剤の平均粒径とシリカエアロゲル粒子の平均粒径の比率は測定できなかった。その理由は、充填密度に起因するもの考えられる。
 (比較例6)
 実施例7で合成したシリカエアロゲル粒子(平均粒径0.15mm)18gと、熱硬化性樹脂を含む接着剤として粉末(平均粒径20μm)のフェノール樹脂(Kf6004、旭有機化学工業製、SP値≧11)3gとをデイスパーで3分間撹拌を行い、両者を均一に混合した。得られたシリカエアロゲルと接着剤の混合物を縦120mm、横120mm、厚み10mmの金型に上記のサンプルを入れ、プレス成型を行い接着剤を硬化させ、所望の大きさに成形した。プレス成形条件は、金型温度が150℃、加圧圧力が0.98MPa(10kgf/cm)、加圧時間が15分とした。このようにして断熱材を得た。
 この断熱材では、点状の接着剤の平均粒径とシリカエアロゲル粒子の平均粒径の比率(接着剤/シリカエアロゲル粒子)が1/5であった。
 (評価)
 実施例及び比較例の断熱材について、強度と熱伝導率を測定した。強度はJIS K7221に準拠して測定し、熱伝導率はJIS A1412に準拠して測定した。表1に結果を示す。
 また、実施例1で調製した接着剤が付着したシリカエアロゲル粒子について、電子顕微鏡写真を撮影し、接着剤の接着状態を確認した。図4に結果を示す。
 また、実施例1と比較例3の断熱材について、X線CTを用いて接着剤の接着状態を観察した。測定条件はX線の管電圧は60kV、管電流は100μAで行い、サンプルを0.5度ずつ回転させ、合計720枚の像を撮影し、それらの像を再構築した。図7に実施例1の結果を示し、図8に比較例3の結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、比較例1では接着剤を用いていないため、強度が低くなった。
 比較例2では、熱硬化性樹脂を含む接着剤として不飽和ポリエステル樹脂を用いており、接着剤の溶融状態での溶解度パラメータとシリカエアロゲル粒子の溶解度パラメータとの差が4より小さくなっている。そのため、シリカエアロゲル粒子の表面に対して溶融した接着剤が弾かず、接着剤がシリカエアロゲル粒子の細孔に入り込んだものと考えられる。その結果、得られた断熱材は十分に固まらずに、成形体として断熱材を得ることができず、強度及び熱伝導率は測定できなかった。
 比較例3では、樹脂が孔には入らなかったが、接着剤がシリカエアロゲル粒子の表面に層状に付着し、接着剤が線状に連結され、熱を伝えるパスが形成された。そのため、断熱性能が低下した。
 比較例4では、成形時に熱可塑性樹脂の接着剤の溶融温度にまで加熱したため、接着剤がシリカエアロゲル粒子の細孔に入り込んだものと考えられる。その結果、得られた断熱材は十分に固まらずに、成形体として断熱材を得ることができず、強度及び熱伝導率は測定できなかった。
 比較例5では、成形時に充填密度を増やしたために、接着剤がシリカエアロゲル粒子の表面に層状に付着し、熱を伝えるパスが形成されたものと考えられる。そのため、断熱性能が低下した。
 比較例6では、シリカエアロゲル粒子の平均粒径が小さく、シリカエアロゲル粒子の表面に対して、十分な量の接着剤が存在していなかったため、接着点が少なくなり、固まらなくなった。その結果、得られた断熱材は十分に固まらずに、成形体として断熱材を得ることができず、強度及び熱伝導率は測定できなかった。
 それに対して、実施例1~7の断熱材においては、断熱性と強度とを両立している。
 実施例4、5では、柔軟性の構造を骨格(実施例4ではゴム変性、実施例5ではカシュー変性)に持つ接着剤を用いている。これにより、断熱性を保ち強度を向上させることができる。
 実施例6では、断熱材の密度を増やしても、熱伝導率があまり増えない範囲があり、熱伝導率をできるだけ維持したまま強度を向上できることが確認された。
 実施例7では、小粒径のエアロゲル粒子と大粒径のエアロゲル粒子とを混合し、エアロゲル粒子の粒径を制御することで、成形体の空孔を減少させて、エアロゲル粒子をできるだけ高充填させている。そのため、断熱性が向上している。
 図4に示す電子顕微鏡写真より、実施例1では、エアロゲル粒子Aの表面に接着剤2が点状に付着していることが確認される。このように接着剤2が点状に付着することにより、複数のエアロゲル粒子Aが点状に接着されるものと考えられる。
 図7に示すX線CT像より、実施例1では、隣接するエアロゲル粒子Aは点状の接着剤2を介して結合されていることが確認される。また、図7では、断熱材B中には複数の空隙Sが存在していることが確認される。それに対して、図8に示すX線CT像より、比較例3では、隣接するエアロゲル粒子Aは面状又は網目状の接着剤2を介して結合されていることが確認される。また、図8では、空隙Sがほとんど存在していないことが確認される。このため、実施例1では、比較例3よりも断熱性と強度とをともに向上していると考えられる。
 A エアロゲル粒子
 B 断熱材
 2 接着剤

Claims (5)

  1.  複数のエアロゲル粒子を接着剤で結合して形成される断熱材であって、
     前記エアロゲル粒子は、平均粒径が500μm以上であり、
     前記接着剤は前記エアロゲル粒子の表面に点状に形成され、前記接着剤の平均粒径と前記エアロゲル粒子の平均粒径の比率(接着剤/エアロゲル粒子)は1/200~1/10であることを特徴とする断熱材。
  2.  前記エアロゲル粒子は、粒度分布において、500μm以上のピークと、500μm未満のピークとを有することを特徴とする請求項1に記載の断熱材。
  3.  前記エアロゲル粒子100質量部に対して、前記接着剤が5~30質量部含有されていることを特徴とする請求項1又は2に記載の断熱材。
  4.  請求項1~3のいずれか1項に記載の断熱材の製造方法であって、
     前記接着剤は熱硬化性樹脂を含む粉末であり、前記粉末の接着剤の溶融状態での溶解度パラメータと前記エアロゲル粒子の溶解度パラメータとの差は4以上であり、
     前記粉末の接着剤を複数の前記エアロゲル粒子の表面に付着し、加熱により前記粉末の接着剤を前記エアロゲル粒子の表面で溶融させた後に硬化させることによって、前記複数のエアロゲル粒子を前記硬化した点状の接着剤で結合することを特徴とする断熱材の製造方法。
  5.  請求項1~3のいずれか1項に記載の断熱材の製造方法であって、
     前記接着剤は熱可塑性樹脂を含む粉末であり、
     前記粉末の接着剤を複数のエアロゲル粒子の表面に付着し、前記熱可塑性樹脂の軟化点よりも高くて融点よりも低い温度で前記粉末の接着剤を加熱することにより、前記粉末の接着剤を前記エアロゲル粒子の表面で軟化させ、この後、前記熱可塑性樹脂の軟化点よりも低い温度まで冷却することによって、前記複数のエアロゲル粒子を固化した点状の接着剤で結合することを特徴とする断熱材の製造方法。
PCT/JP2013/004571 2012-08-09 2013-07-29 断熱材及びその製造方法 WO2014024413A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/408,232 US20150176748A1 (en) 2012-08-09 2013-07-29 Thermal insulator and method for producing same
JP2014529270A JPWO2014024413A1 (ja) 2012-08-09 2013-07-29 断熱材及びその製造方法
CN201380035119.6A CN104412024A (zh) 2012-08-09 2013-07-29 绝热体及其制造方法
EP13827627.4A EP2884148A4 (en) 2012-08-09 2013-07-29 INSULATING MATERIAL AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-177526 2012-08-09
JP2012177526 2012-08-09
JP2013040050 2013-02-28
JP2013-040050 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014024413A1 true WO2014024413A1 (ja) 2014-02-13

Family

ID=50067673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004571 WO2014024413A1 (ja) 2012-08-09 2013-07-29 断熱材及びその製造方法

Country Status (5)

Country Link
US (1) US20150176748A1 (ja)
EP (1) EP2884148A4 (ja)
JP (1) JPWO2014024413A1 (ja)
CN (1) CN104412024A (ja)
WO (1) WO2014024413A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963327A4 (en) * 2013-03-01 2016-03-02 Panasonic Ip Man Co Ltd THERMALLY INSULATING MOLDING COMPOUND, MOLDED THERMAL INSULATION MOLDING, AND PROCESS FOR PRODUCING THERMAL INSULATION MOLDING
EP2963326A4 (en) * 2013-03-01 2016-03-02 Panasonic Ip Man Co Ltd HEAT-INSULATING FORM BODY AND MANUFACTURING METHOD THEREFOR
CN114364162A (zh) * 2022-01-05 2022-04-15 业成科技(成都)有限公司 电极接合方法和接合组件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061211A1 (ja) * 2016-09-30 2018-04-05 日立化成株式会社 エアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体
US10189969B2 (en) 2017-04-07 2019-01-29 International Business Machines Corporation Silica-based organogels via hexahydrotriazine-based reactions
RU2730951C1 (ru) * 2019-12-13 2020-08-26 Сергей Витальевич Перетятков Способ изготовления теплоизолирующего изделия
CN114684811B (zh) * 2020-12-29 2024-04-12 中国科学院苏州纳米技术与纳米仿生研究所 石墨烯气凝胶薄膜、其制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402927A (en) 1980-04-22 1983-09-06 Dardel Guy Von Silica aerogel
US4432956A (en) 1981-06-04 1984-02-21 Corning France Preparation of monolithic silica aerogels, the aerogels thus obtained and their use for the preparation of silica glass articles and of heat-insulating materials
US4610863A (en) 1985-09-04 1986-09-09 The United States Of America As Represented By The United States Department Of Energy Process for forming transparent aerogel insulating arrays
JP2003042387A (ja) * 2001-08-01 2003-02-13 Matsushita Electric Ind Co Ltd 断熱材とその固形化方法およびそれを用いた機器
JP2004010423A (ja) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd 固形断熱材およびその製造方法
WO2008051029A1 (en) * 2006-10-25 2008-05-02 Korea Institute Of Industrial Technology Aerogel sheet and method for preparing thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4038784A1 (de) * 1990-12-05 1992-06-11 Basf Ag Verbundschaumstoffe mit niedriger waermeleitfaehigkeit
WO1997010187A1 (de) * 1995-09-11 1997-03-20 Hoechst Research & Technology Aerogel- und klebstoffhaltiges verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
JP2003042386A (ja) * 2001-08-01 2003-02-13 Matsushita Electric Ind Co Ltd 断熱材とその固形化方法およびそれを用いた機器
RU2004126237A (ru) * 2002-01-29 2005-05-27 Кабот Корпорейшн (US) Термостойкий аэрогельный изолирующий композиционный материал и способ его получения: аэрогельная связующая композиция и способ ее получения
EP1515796B1 (en) * 2002-05-15 2007-06-20 Cabot Corporation Aerogel and hollow particle binder composition, insulation composite therewith, and method of preparation
DE102011119029B4 (de) * 2011-11-22 2013-08-22 Sto Ag Verfahren zur Herstellung eines Dämmstoffformteils, Dämmstoffformteil, dessen Verwendung und Dämmelement, hergestellt unter Verwendung des Dämmstoffformteils

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402927A (en) 1980-04-22 1983-09-06 Dardel Guy Von Silica aerogel
US4432956A (en) 1981-06-04 1984-02-21 Corning France Preparation of monolithic silica aerogels, the aerogels thus obtained and their use for the preparation of silica glass articles and of heat-insulating materials
US4610863A (en) 1985-09-04 1986-09-09 The United States Of America As Represented By The United States Department Of Energy Process for forming transparent aerogel insulating arrays
JP2003042387A (ja) * 2001-08-01 2003-02-13 Matsushita Electric Ind Co Ltd 断熱材とその固形化方法およびそれを用いた機器
JP2004010423A (ja) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd 固形断熱材およびその製造方法
WO2008051029A1 (en) * 2006-10-25 2008-05-02 Korea Institute Of Industrial Technology Aerogel sheet and method for preparing thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2884148A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963327A4 (en) * 2013-03-01 2016-03-02 Panasonic Ip Man Co Ltd THERMALLY INSULATING MOLDING COMPOUND, MOLDED THERMAL INSULATION MOLDING, AND PROCESS FOR PRODUCING THERMAL INSULATION MOLDING
EP2963326A4 (en) * 2013-03-01 2016-03-02 Panasonic Ip Man Co Ltd HEAT-INSULATING FORM BODY AND MANUFACTURING METHOD THEREFOR
CN114364162A (zh) * 2022-01-05 2022-04-15 业成科技(成都)有限公司 电极接合方法和接合组件
CN114364162B (zh) * 2022-01-05 2023-11-21 业成科技(成都)有限公司 电极接合方法和接合组件

Also Published As

Publication number Publication date
EP2884148A1 (en) 2015-06-17
EP2884148A4 (en) 2015-11-18
JPWO2014024413A1 (ja) 2016-07-25
US20150176748A1 (en) 2015-06-25
CN104412024A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5906425B2 (ja) エアロゲル成形体、エアロゲル含有粒子、及び、エアロゲル成形体の製造方法
WO2014024413A1 (ja) 断熱材及びその製造方法
WO2014132656A1 (ja) 断熱成形体及びその製造方法
JP6145948B2 (ja) エアロゲルを用いた断熱構造体
JP2014035042A (ja) 断熱材
JP7375841B2 (ja) エアロゲル複合体パウダーの製造方法
WO2014132605A1 (ja) 断熱材及びその製造方法
JP2014035044A (ja) 断熱材及びその製造方法
KR20180034631A (ko) 열 전도율이 낮은 실리카 성형체
JP2014035041A (ja) エアロゲル粒子を用いた断熱材
CN111183113A (zh) 疏水性二氧化硅气凝胶颗粒的制造方法
WO2014132655A1 (ja) 断熱成形材料、断熱成形体及びその製造方法
WO2019069492A1 (ja) 塗液、塗膜の製造方法及び塗膜
JP2014167078A (ja) 断熱材成形用組成物、成形体及び成形体の製造方法
WO2018163354A1 (ja) エアロゲル複合体の製造方法及びエアロゲル複合体
JP2014040750A (ja) エアロゲルを用いた断熱材
JP2014173626A (ja) 断熱材の製造方法及び断熱材
JP2014035045A (ja) 断熱材
JP2009149713A (ja) 樹脂成形体
WO2020084670A1 (ja) エアロゲル粒子、分散体及び塗膜
JP2008247950A (ja) 複合材料
JP2008024858A (ja) 複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529270

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14408232

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013827627

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE