WO2014024288A1 - 電動機 - Google Patents

電動機 Download PDF

Info

Publication number
WO2014024288A1
WO2014024288A1 PCT/JP2012/070325 JP2012070325W WO2014024288A1 WO 2014024288 A1 WO2014024288 A1 WO 2014024288A1 JP 2012070325 W JP2012070325 W JP 2012070325W WO 2014024288 A1 WO2014024288 A1 WO 2014024288A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power distribution
stator
distribution plate
electric motor
Prior art date
Application number
PCT/JP2012/070325
Other languages
English (en)
French (fr)
Inventor
弘文 土井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201290001258.8U priority Critical patent/CN204231076U/zh
Priority to JP2014529206A priority patent/JP5885846B2/ja
Priority to PCT/JP2012/070325 priority patent/WO2014024288A1/ja
Publication of WO2014024288A1 publication Critical patent/WO2014024288A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges

Definitions

  • This invention relates to an electric motor having a structure for radiating heat generated by a stator coil and a power distribution board.
  • a general three-phase synchronous AC motor creates a magnetic pole in a rotor by a permanent magnet of a stator, and creates a magnetic pole in a stator tooth by a coil disposed between stator teeth of the stator. .
  • the energization direction of the three-phase coils arranged between the stator teeth is switched by a power distribution plate (bus bar), and is switched between the S pole and the N pole.
  • the temperature of the bearing that rotatably holds the rotor also rises during rotation due to self-heating due to heat transfer and friction, the temperature of the bearing can also be radiated to the housing to lower the temperature. Then it is important.
  • This invention was made in order to solve the above problems, and it aims at providing the electric motor which can suppress the temperature rise of a housing and can suppress degradation of components, such as a bearing by heat damage. .
  • An electric motor holds a coil that generates a magnetic field when energized, forms a magnetic path of the magnetic field generated by the coil, a rotor that rotates by a magnetic attraction repulsive force of the stator, and the center of the stator A bearing that rotatably holds the rotor part on the side, a power distribution plate that distributes power to the coil of the stator part according to the rotational position of the rotor part, and a housing that holds the stator part and the power distribution board side by side in the axial direction, The housing holds the stator portion on one surface, the bracket portion holding the power distribution plate on the opposite surface, the shaft hole formed in the center of the bracket portion to receive the bearing, and the outer peripheral side from the shaft hole of the bracket portion A coil through hole for passing the coil of the stator portion in the axial direction to the power distribution plate side, and the outer periphery of the shaft hole of the bracket portion. Those having an annular groove through.
  • the annular groove on the outer peripheral side from the shaft hole of the bracket portion it is possible to suppress heat transfer to the bearing by cutting the heat with this groove. Further, by forming a groove to partially reduce the thickness of the bracket portion, heat generation due to induction heating of the coil can be reduced, and an unnecessary increase in the temperature of the housing can be suppressed. Therefore, it is possible to provide an electric motor capable of suppressing deterioration of components such as a bearing due to heat damage.
  • FIG. 3 (a) is the top view seen from the power distribution board side
  • FIG.3 (b) is sectional drawing cut
  • FIG. 4A is a plan view seen from the power distribution plate side
  • FIG. 4B is a cross-sectional view cut along the line BB. It is sectional drawing explaining the positional relationship of the thin part in an electric motor which concerns on Embodiment 1, and a power distribution board.
  • FIG. 7A shows a structure of a housing of an electric motor according to Embodiment 2 of the present invention
  • FIG. 7A is a plan view seen from a power distribution board side
  • FIG. 7B is a cross-sectional view cut along a CC line. is there.
  • FIG. 8A is a plan view of the electric motor according to the second embodiment
  • FIG. 8A is a plan view seen from the power distribution plate side
  • FIG. 8B is a cross-sectional view cut along the line EE.
  • It is the top view seen from the power distribution board side which shows the housing modification of the electric motor which concerns on Embodiment 2.
  • FIG. 7A shows a structure of a housing of an electric motor according to Embodiment 2 of the present invention
  • FIG. 7A is a plan view seen from a power distribution board side
  • FIG. 7B is a cross-sectional view cut along a CC line. is there.
  • FIG. 8A is a plan view of the electric motor according to the second embodiment
  • FIG. 1 An electric motor 1 shown in FIG. 1 constitutes a three-phase AC synchronous motor, and mainly includes a cylindrical housing 2, a stator portion 3 fixed inside the housing 2, and a rotor portion 5 that rotates a shaft 4. And a power distribution plate (bus bar) 14 disposed on one end face side of the stator portion 3.
  • FIG. 2 the top view of the stator part 3 and the rotor part 5 seen from the power distribution board 14 side is shown. However, the housing 2 and the coil 12 are not shown.
  • the rotor part 5 is configured by laminating electromagnetic steel plates, and is formed with two protrusions protruding outward in the circumferential direction at intervals of 180 degrees, and the protrusions are shifted by 90 degrees in the axial direction of the shaft 4. (Protrusions 5a, 5b).
  • the shaft 4 is rotatably supported by bearings 7 and 8 fixed to the housing 2.
  • the rotor part 5 is fixed to the shaft 4, and the rotational force generated in the rotor part 5 is externally output by rotating the shaft 4 integrally with the rotor part 5.
  • the stator unit 3 includes two stator cores 9 and 10 and a magnet 11 disposed between the stator cores 9 and 10.
  • the stator cores 9 and 10 are configured by laminating electromagnetic steel plates in the axial direction of the shaft 4.
  • Each of the stator cores 9 and 10 is formed with a plurality of teeth 9a and 10a protruding from the outside toward the central shaft 4 side, and one U-shaped pair of teeth 9a and 10a overlapping in the axial direction of the shaft 4 is formed.
  • the coil 12 is attached.
  • the stator portion 3 is press-fitted from the opening end portion of the housing 2 and is sandwiched between a cover 19 that closes the opening end portion and a bracket portion 20 (details will be described later) protruding from the inner peripheral surface of the housing 2. It is fixed in the state.
  • each coil 12 mounted on each tooth 9a, 10a passes through a coil through hole 22 formed in the bracket portion 20 of the housing 2 and a through hole (not shown) formed in the insulating member 6. It protrudes to the inverter board 13 side, and this protruding portion is connected to the power distribution plate 14 (U phase, V phase, W phase) by welding or the like.
  • the power distribution plate 14 is a conductive member that is integrally formed with the insulating member 6 such as an insulating resin and is insulated from the metal housing 2 such as aluminum, and is arranged in an annular shape along the circumferential direction of the shaft 4 and has one end portion. The other end of the inverter board 13 is connected to the coil 12.
  • the insulating member 6 including the power distribution plate 14 is press-fitted from the opening end portion of the housing 2 (the side opposite to the press-fitting side of the stator portion 3), and is attached to the cover housing 17 and the bracket portion 20 attached to the opening end portion. It is fixed in a clamped state.
  • the inverter board 13 converts an external power source (not shown) into an alternating current, and sequentially switches the U phase, V phase, and W phase of the power distribution plate 14 based on the position signal input from the sensor 15 to the power distribution plate. Current is passed through 14.
  • the inverter board 13 is attached to the inside of the cover housing 17 and is covered with a cover 18.
  • the sensor 15 is installed in the inner circumferential space of the insulating member 6, detects the rotational position of the shaft 4 by detecting the position of the sensor target 16 that rotates integrally with the shaft 4, and sends a position signal to the inverter board 13. Output.
  • the magnetic flux generated by the magnet 11 magnetized in the axial direction flows out from the teeth 9a of the stator core 9 arranged on the N-pole side of the magnet 11 to the protrusion 5a of the rotor portion 5, and advances through the rotor portion 5 in the axial direction. It becomes a field magnetic flux that comes out of the protruding portion 5 b on the pole side and flows into the teeth 10 a of the stator core 10 disposed on the S pole side of the rotor portion 5.
  • the magnetic field magnetomotive force of the magnet 11 acts on the rotor portion 5, so that the protrusion 5 a of the rotor portion 5 facing the N pole side of the magnet 11 is magnetized to the N pole, and the S pole of the magnet 11.
  • the protrusion 5b of the rotor part 5 facing the side is magnetized to the S pole.
  • FIG. 3A is a plan view of the housing 2 viewed from the power distribution plate 14 side, and FIG. It is sectional drawing cut
  • a shaft hole 21 is formed in the center of the bracket portion 20 and the bearing 8 is installed.
  • the coil through-hole 22 which the coil 12 penetrates in the bracket part 20 is formed for the number of terminals of the coil 12, and the coil 12 is penetrated from the stator part 3 side to the power distribution board 14 side.
  • annular groove 23 is formed on the surface of the bracket portion 20 facing the power distribution plate 14 so as to pass through the coil through hole 22.
  • annular groove 24 is formed on the surface of the bracket portion 20 facing the stator portion 3 so as to pass through the coil through hole 22.
  • FIG. 4 shows a housing 102 having a conventional structure in which the thin portion 25 is not formed.
  • 4A is a plan view of the housing 102 viewed from the power distribution plate 14 side
  • FIG. 4B is a cross-sectional view of the housing 102 cut along the line BB.
  • the bracket part 20 of the housings 2 and 102 must be penetrated, and the bracket part 20 has a coil through hole 22. Must be formed and passed through the coil 12. Therefore, heat generated by the coil 12 due to the current flowing is transmitted to the bracket portion 20 and the housings 2 and 102 (arrow H1 in FIGS. 3B and 4B).
  • the distance between the inner wall surface of the coil through hole 22 and the coil 12, and the distribution board 14 and the bracket part 20 must be as close as possible.
  • annular grooves 23 and 24 that pass through the coil through holes 22 are provided on the outer peripheral side of the shaft hole 21 of the bracket portion 20, so that the thin portion 25 is provided. Form and reduce the portion that generates heat by induction heating. As a result, at least heat generation by induction heating of the coil 12 can be reduced, and an unnecessary temperature rise of the bracket portion 20 and the housing 2 can be suppressed. Therefore, heat transfer to the bearing 8 (arrow H2 in FIG. 3B) can be suppressed, and the bearing 8 can be prevented from being unnecessarily heated, and self-heating due to friction of the bearing 8 can be prevented from the bracket portion. 20 and the housing 2 can be radiated to lower the temperature. Further, by forming the grooves 23 and 24, heat transfer from the bracket portion 20 to the bearing 8 can be cut off. Therefore, deterioration of the bearing 8 due to heat damage can be suppressed.
  • FIG. 5 is a cross-sectional view illustrating the positional relationship between the thin portion 25 and the power distribution plate 14 in the electric motor 1 according to the first embodiment.
  • the stator portion 3, the coil 12, etc. are omitted.
  • the power distribution plate 14 is brought into contact with one side of the bracket portion 20 via the insulating member 6, and heat generated by the power distribution plate 14 due to current flowing is transmitted to the bracket portion 20 and the housing 2 to dissipate heat, thereby increasing the temperature. Suppressed.
  • the power distribution plate 14 by disposing the power distribution plate 14 on the outer peripheral side of the annular groove 23 of the bracket portion 20 via the insulating member 6, an air layer is formed by the groove 23 to be heat-cut, Suppresses heat transfer.
  • the heat generated by the power distribution plate 14 is transmitted from the contact surface 26 between the power distribution plate 14 and the bracket portion 20 to the bearing 8 through the thin portion 25, and a heat dissipation path indicated by an arrow H3 is formed. Therefore, it is possible to prevent the bearing 8 from being heated unnecessarily.
  • the annular grooves 23 and 24 are formed on both surfaces of the bracket portion 20, but either one may be used. Since the temperature of the insulating member 6 is higher than that of the stator portion 3, it is desirable to form the groove 23 at least on the power distribution plate 14 side. Furthermore, the groove 23 may be deepened so that heat transfer from the power distribution plate 14 to the bearing 8 can be further suppressed. An example of this configuration is shown in FIG.
  • FIG. 6 is a cross-sectional view for explaining a modification of the bracket portion 20 in the electric motor 1 according to the first embodiment.
  • the stator portion 3, the coil 12, etc. are omitted.
  • a deep groove 23 is formed on the surface of the bracket portion 20 facing the power distribution plate 14 to increase the axial distance from the power distribution plate 14 to the thin portion 25. Therefore, the heat dissipation path indicated by the arrow H3 in FIG. 6 is extended from the heat dissipation path indicated by the arrow H3 in FIG. 5, and heat dissipation from the outer peripheral surface of the bracket portion 20 and the housing 2 increases, and from the power distribution plate 14 to the bearing 8. It is possible to further suppress the heat transfer.
  • a heat radiating member such as a heat sink may be installed on the outer peripheral surface of the housing 2 to enhance the heat radiating effect.
  • the electric motor 1 holds the coil 12 that generates a magnetic field by energization, and forms the magnetic path of the magnetic field generated by the coil 12 and the magnetic attraction of the stator unit 3.
  • the rotor portion 5 that rotates by the repulsive force
  • the bearing 8 that rotatably holds the shaft 4 fixed to the rotor portion 5 on the center side of the stator portion 3, and the rotation of the rotor portion 5 to the coil 12 of the stator portion 3.
  • a power distribution plate 14 that distributes power in accordance with the position; and a housing 2 that holds the stator portion 3 and the power distribution plate 14 side by side in the axial direction.
  • the housing 2 holds the stator portion 3 on one side
  • the bracket portion 20 that holds the power distribution plate 14 on the surface
  • the shaft hole 21 that is formed at the center of the bracket portion 20 and accommodates the bearing 8, and is formed on the outer peripheral side from the shaft hole 21 of the bracket portion 20.
  • a coil through hole 22 that allows the coil 12 of the portion 3 to pass through in the axial direction to the power distribution plate 14 side, and an annular shape that is formed on the outer peripheral side of the shaft hole 21 of the bracket portion 20 over the entire circumference and passes through the coil through hole 22.
  • the grooves 23 and 24 are configured. For this reason, heat transfer to the bearing 8 can be suppressed by cutting the heat with the annular grooves 23 and 24 on the outer peripheral side of the bearing 8 of the bracket portion 20.
  • annular groove 23 is formed on the surface of the bracket portion 20 that holds the power distribution plate 14, the heat generated by the power distribution plate 14 is cut off by the groove 23 and the power distribution is performed. Heat transfer from the plate 14 to the bearing 8 can be suppressed.
  • the power distribution plate 14 is brought into contact with the outer peripheral side of the annular groove 23 of the bracket portion 20 via the insulating member 6.
  • a heat dissipation path is formed from the contact surface 26 to the bearing 8 through the outer peripheral side of the bracket portion 20 and the thin portion 25. For this reason, the heat generated by the power distribution plate 14 can be efficiently radiated by the bracket portion 20 and the housing 2.
  • FIG. FIG. 7 shows the configuration of the housing 2 in the electric motor 1 according to the second embodiment.
  • FIG. 7A is a plan view of the housing 2 viewed from the power distribution board 14 side, and FIG. It is sectional drawing which cut
  • FIG. 1 is used below.
  • a plurality of ribs 30 are installed in the groove 23 to improve the strength of the bracket portion 20. Further, by reducing the thickness of the rib 30, the temperature rise of the rib 30 due to induction heating is suppressed, and the bearing 8 is prevented from being heated unnecessarily. Further, the end surface of the rib 30 is made one step lower than the contact surface 26 with the insulating member 6, and a gap D 3 is opened between the rib 30 and the insulating member 6. Thereby, the heat generated by the power distribution plate 14 is prevented from being transmitted to the bearings 8 via the ribs 30.
  • the ribs 30 can be installed even when the grooves 23 and 24 are formed on both surfaces of the bracket portion 20.
  • FIG. 8A shows a plan view of the housing 2 viewed from the power distribution plate 14 side
  • FIG. 8B shows a cross-sectional view of the housing 2 cut along the line EE.
  • the ribs 30 are formed by forming the grooves 23 on the surface of the bracket portion 20 facing the power distribution plate 14, and the ribs 24 are formed by forming the grooves 24 on the surface of the bracket portion 20 facing the stator portion 3. Install. Thereby, the intensity
  • a gap D3 is formed between the rib 30 and the insulating member 6 to prevent heat transfer from the power distribution plate 14. It is also possible to form a gap between the rib 31 and the stator part 3 to prevent heat transfer from the stator part 3. It is also possible to install only one of the ribs 30 and 31.
  • the ribs 30 and 31 be an integral multiple of the number of coils 12, that is, an integral multiple of the number of poles of the stator portion 3, and be arranged uniformly in a circumferential shape.
  • the ribs 30 and 31 are equally arranged at 6 locations as an integral multiple of the teeth 9a and 10a so ing.
  • the ribs 30 may be installed at twice the number of poles, that is, at 12 locations.
  • the electric motor 1 is configured to install the ribs 30 and 31 in the annular grooves 23 and 24, the bracket portion 20 while maintaining the heat cutting effect of the grooves 23 and 24.
  • the strength of can be improved.
  • the induction heating is not increased by making the ribs 30 and 31 thinner.
  • the end surface of the rib 30 is made lower than the surface of the bracket portion 20 that holds the power distribution plate 14, so that heat transfer from the power distribution plate 14 to the bearing 8 through the rib 30 is performed. Can be prevented.
  • the end surface of the rib 31 is made lower than the surface that holds the stator portion 3 of the bracket portion 20, heat transfer from the stator portion 3 to the bearing 8 through the rib 30 can be prevented.
  • the ribs 30 and 31 since the number of ribs 30 and 31 is set to be an integral multiple of the number of poles of the stator portion 3, the ribs 30 and 31 can be installed so as to have a uniform stress distribution in a circumferential shape.
  • the strength of the bracket part 20 can be improved.
  • the bracket portion of the housing has a shape that can reduce heat generation by induction heating while considering heat cutting and heat dissipation, so that a turbine such as an electric compressor and an electric assist turbo can be operated at high speed. It is suitable for use in an electric motor that is driven by rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

 ブラケット部20の軸受け8を収容する軸穴21より外周側に、ステータ部3のコイル12を配電板14側へ貫通させるコイル貫通穴22を通る環状の溝23,24を形成して熱切りし、軸受け8への伝熱を抑制する。また、ブラケット部20のコイル12周辺を薄肉部25にして、コイル12の誘導加熱による発熱を低減する。

Description

電動機
 この発明は、ステータコイルおよび配電板の発する熱を放熱する構造を備えた電動機に関する。
 一般的な3相シンクロナス交流モータ(例えば、特許文献1参照)は、固定子の永久磁石により回転子に磁極を作り出し、固定子のステータティース間に配置されたコイルによりステータティースに磁極を作り出す。ステータティース間に配置された3相のコイルは配電板(バスバー)により通電方向が切り替えられ、S極とN極に切り替わる。3相のコイルの通電方向を順次切り替えることにより、各ステータティースの磁性が回転移動していき、磁気作用により回転子が回転する。
 本モータを駆動するためには、電流がコイルおよび配電板を流れることとなり、その発熱によってモータ各部の温度が上昇するため、許容温度を超えるような状況では、通電を止めてモータの駆動を停止しなければならず、必要な性能が得られない場合があった。そのような場合、コイルおよび配電板を可能な限り冷却するために、外部冷却により温度が比較的低いハウジングに、絶縁部材を介してコイルおよび配電板を接触させ、放熱する方法が取られていた(例えば、特許文献2参照)。
特開平8-214519号公報 特開2010-104212号公報
 しかしながら、コイルおよび配電板を流れる電流は、前記の通り通電方向が切り替わるため、ハウジングをコイルおよび配電板に近づけすぎると誘導加熱によって金属製のハウジングの温度が上昇してしまう。
 他方、回転子を回転自在に保持する軸受けも、伝熱および摩擦による自己発熱により回転中に温度が上昇するため、軸受けもハウジングに放熱させて温度を下げることが、モータの寿命を確保する上では重要である。
 そこで、コイルおよび配電板の発熱を放熱させるために、コイルおよび配電板とハウジングとの距離を小さくする手段がとられるが、誘導加熱によるハウジングの温度上昇により、コイルおよび配電板の放熱効果が充分に得られないばかりか、軸受けの放熱効果も低下してしまうという課題があった。
 一方、誘導加熱によるハウジングの温度上昇を抑制するために、コイルおよび配電板との距離を離すと、コイルおよび配電板の温度が低下しないばかりか、コイルがハウジングを貫通しているために、ハウジングのコイル貫通部が大きくなることにより、中心側に設置された軸受けの発熱がハウジングに伝わっても充分な放熱効果が得られないという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、ハウジングの温度上昇を抑制し、熱害による軸受け等の構成部品の劣化を抑制可能な電動機を提供することを目的とする。
 この発明の電動機は、通電によって磁界を発生するコイルを保持し、コイルが発生した磁界の磁路を構成するステータ部と、ステータ部の磁気吸引反発力によって回転するロータ部と、ステータ部の中心側でロータ部を回転自在に保持する軸受けと、ステータ部のコイルへ、ロータ部の回転位置に応じて配電する配電板と、ステータ部および配電板を軸方向に並べて保持するハウジングとを備え、ハウジングは、一方の面でステータ部を保持し、反対側の面で配電板を保持するブラケット部と、ブラケット部の中心に形成され軸受けを収容する軸穴と、ブラケット部の軸穴より外周側に形成され、ステータ部のコイルを配電板側へ軸方向に貫通させるコイル貫通穴と、ブラケット部の軸穴より外周側に、全周に亘って形成され、コイル貫通穴を通る環状の溝とを有するものである。
 この発明によれば、ブラケット部の軸穴より外周側に環状の溝を形成することにより、この溝で熱切りして軸受けへの伝熱を抑制することができる。また、溝を形成してブラケット部の厚みを一部薄くすることにより、コイルの誘導加熱による発熱を低減し、不要なハウジングの温度上昇を抑制することができる。よって、熱害による軸受け等の構成部品の劣化を抑制可能な電動機を提供することができる。
この発明の実施の形態1に係る電動機の構成を示す断面図である。 実施の形態1に係る電動機の回転動作を説明する図である。 実施の形態1に係る電動機のハウジングの構造を示し、図3(a)は配電板側から見た平面図、図3(b)はAA線に沿って切断した断面図である。 従来構造のハウジングを示し、図4(a)は配電板側から見た平面図、図4(b)はBB線に沿って切断した断面図である。 実施の形態1に係る電動機における薄肉部と配電板の位置関係を説明する断面図である。 実施の形態1に係る電動機のハウジング変形例であって、薄肉部と配電板の位置関係を説明する断面図である。 この発明の実施の形態2に係る電動機のうちのハウジングの構造を示し、図7(a)は配電板側から見た平面図、図7(b)はCC線に沿って切断した断面図である。 実施の形態2に係る電動機のハウジング変形例であって、図8(a)は配電板側から見た平面図、図8(b)はEE線に沿って切断した断面図である。 実施の形態2に係る電動機のハウジング変形例を示す、配電板側から見た平面図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1に示す電動機1は、3相交流シンクロナスモータを構成し、主に、円筒状のハウジング2と、ハウジング2の内部に固定されたステータ部3と、シャフト4を回転させるロータ部5と、ステータ部3の一方端面側に配置された配電板(バスバー)14とを備える。図2に、配電板14側から見たステータ部3とロータ部5の平面図を示す。ただし、ハウジング2およびコイル12等は図示を省略する。
 ロータ部5は、電磁鋼板を積層して構成され、周方向外側に突出する突部を180度間隔に2箇所形成し、シャフト4の軸方向の途中で突部を90度ずらした状態にする(突部5a,5b)。シャフト4は、ハウジング2に固定された軸受け7,8によって回転自在に支持されている。このシャフト4にロータ部5が固定され、ロータ部5と一体にシャフト4を回転させることにより、ロータ部5に発生した回転力を外部出力する。
 ステータ部3は、2個のステータコア9,10と、このステータコア9,10の間に配置されたマグネット11とから構成される。ステータコア9,10は、それぞれ、電磁鋼板をシャフト4の軸方向に積層して構成する。このステータコア9,10それぞれには、外側から中央のシャフト4側へ突出するティース9a,10aが複数形成され、シャフト4の軸方向に重なる1組のティース9a,10aに1個のU字状のコイル12が装着される。このステータ部3は、ハウジング2の開口端部から圧入され、その開口端部を塞ぐカバー19とハウジング2の内周面に突設されたブラケット部20(詳細は後述する)とに挟持された状態で固定されている。
 各ティース9a,10aに装着された各コイル12の先端部は、ハウジング2のブラケット部20に形成されたコイル貫通穴22、および絶縁部材6に形成された貫通穴(不図示)を貫通してインバータ基板13側へ突出しており、この突出部分が配電板14(U相、V相、W相)に溶接等によって接続されている。配電板14は、絶縁性樹脂等の絶縁部材6と一体成形されてアルミ等の金属製ハウジング2から絶縁された導電部材であり、シャフト4の周方向に沿って環状に配置されて一端部がインバータ基板13に、他端部がコイル12に接続されている。配電板14を内包した絶縁部材6は、ハウジング2の開口端部(ステータ部3の圧入側とは反対側)から圧入され、その開口端部に取り付けられたカバーハウジング17とブラケット部20とに挟持された状態で固定されている。
 インバータ基板13は、外部電源(不図示)を交流電流に変換し、センサ15から入力される位置信号に基づいて配電板14のU相、V相、W相の3相を順次切り替えて配電板14に電流を流す。このインバータ基板13は、カバーハウジング17の内部に取り付けられ、カバー18に被覆されている。
 センサ15は、絶縁部材6の内周側空間に設置され、シャフト4と一体に回転するセンサターゲット16の位置を検出することによりシャフト4の回転位置を検知して、インバータ基板13へ位置信号を出力する。
 ここで、電動機1の動作概略を説明する。
 軸方向に着磁されたマグネット11による磁束は、マグネット11のN極側に配置されたステータコア9のティース9aからロータ部5の突部5aへ流れ出て、ロータ部5を軸方向に進んでS極側にある突部5bから出て、ロータ部5のS極側に配置されたステータコア10のティース10aへ流れ入る界磁磁束となる。このように、マグネット11の界磁起磁力がロータ部5に作用することで、マグネット11のN極側に対面するロータ部5の突部5aをN極に着磁し、マグネット11のS極側に対面するロータ部5の突部5bをS極に着磁する。配電板14を経由してU字のコイル12に電流が流れると、流れた電流の向きに応じてステータコア9,10の各ティース9a,10aが着磁して回転磁界が生じ、トルクが発生する。コイル12に流す電流の向きを順次切り替えることにより、図2(a)~図2(c)のように各ティース9a,10aのNS各極性が回転移動していき、磁気吸引反発力によりロータ部5が回転する。
 次に、ハウジング2のブラケット部20の形状を説明する。
 図3は、本実施の形態1に係る電動機1のハウジング2の構造を示し、図3(a)はハウジング2を配電板14側から見た平面図、図3(b)はハウジング2をAA線に沿って切断した断面図である。
 ブラケット部20の中心に軸穴21を形成して、軸受け8を設置する。また、ブラケット部20に、コイル12が貫通するコイル貫通穴22をコイル12の端子数分形成して、コイル12をステータ部3側から配電板14側へ挿通する。この電動機1では、ステータ部3のティース9a,10aを6極設けたので、U字のコイル12も6本必要になり、コイル貫通穴22も6箇所必要になる。そして、図3(a)に二点鎖線で示すように、隣り合うコイル12の先端部同士を1個のコイル貫通穴22に挿通している。
 また、ブラケット部20の配電板14を向く面に、コイル貫通穴22を通るように環状の溝23を形成する。同様に、ブラケット部20のステータ部3を向く面にも、コイル貫通穴22を通るように環状の溝24を形成する。これにより、ブラケット部20の軸方向の厚みD1に比べ、溝23,24を形成した部分の厚みD2が薄い薄肉部25が形成される。
 以下、薄肉部25を形成した場合と形成しない場合の放熱効果の違いを説明する。
 図4に、薄肉部25を形成しない、従来構造のハウジング102を示す。図4(a)は、ハウジング102を配電板14側から見た平面図、図4(b)はハウジング102をBB線に沿って切断した断面図である。
 ステータ部3に設置されたコイル12は、配電板14と電気的に接合する必要があるため、ハウジング2,102のブラケット部20を貫通させなければならず、ブラケット部20にはコイル貫通穴22を形成してコイル12を通さなければならない。そのため、ブラケット部20およびハウジング2,102には、電流が流れることによるコイル12の発熱が伝わる(図3(b)および図4(b)の矢印H1)。
 一方、電流が流れることによるコイル12および配電板14の発熱をブラケット部20とハウジング2,102に伝えて放熱させるためには、コイル貫通穴22の内壁面とコイル12との距離、および配電板14とブラケット部20との距離を極力近づけなければならない。
 しかし、コイル12とブラケット部20とを近づけすぎると、コイル12に流れる交流電流によって誘導加熱が発生し、ブラケット部20およびハウジング2,102が熱せられてしまうため、コイル12および配電板14が充分に放熱できなくなる。
 また、誘導加熱によるブラケット部20およびハウジング2,102の発熱が伝わり(図3(b)および図4(b)の矢印H2)、軸穴21に設置された軸受け8が不要に温度上昇してしまう。
 そこで、本実施の形態1のハウジング2においては、図3に示すようにブラケット部20の軸穴21の外周側に、コイル貫通穴22を通る環状の溝23,24を設けて薄肉部25を形成し、誘導加熱により発熱する部位を小さくする。これにより、少なくともコイル12の誘導加熱による発熱を低減させて、ブラケット部20およびハウジング2の不要な温度上昇を抑制することを可能とした。そのため、軸受け8への伝熱(図3(b)の矢印H2)を抑制でき、軸受け8が不要に加熱されることを防ぐことが可能になると共に、軸受け8の摩擦による自己発熱をブラケット部20およびハウジング2に放熱させて温度を下げることができる。また、溝23,24を形成することにより、ブラケット部20から軸受け8への伝熱を熱切りできる。よって、熱害による軸受け8の劣化を抑制可能となる。
 図5は、本実施の形態1に係る電動機1における薄肉部25と配電板14の位置関係を説明する断面図である。図中、ステータ部3、コイル12等は省略している。
 ブラケット部20の一方側には、絶縁部材6を介して配電板14を当接させて、電流が流れることによる配電板14の発熱をブラケット部20およびハウジング2に伝えて放熱し、温度上昇を抑制している。このとき、ブラケット部20の環状の溝23よりも外周側に、絶縁部材6を介して配電板14を配置することにより、溝23によって空気の層を形成して熱切りし、軸受け8への伝熱を抑制する。また、配電板14の発熱は、配電板14とブラケット部20の接触面26から薄肉部25を通って軸受け8へ伝わるようになり、矢印H3の放熱経路が構成される。よって、軸受け8が不要に加熱されることを防ぐことが可能になる。
 また、コイル12の発熱によりステータ部3も温度上昇するが、このステータ部3に当接するブラケット部20に溝24を形成することにより、軸受け8への伝熱を抑制することができる。
 図3および図5では、ブラケット部20の両面に環状の溝23,24を形成したが、いずれか一方でもよい。ステータ部3より絶縁部材6の方が温度が上昇するので、少なくとも配電板14側に溝23を形成することが望ましい。
 さらに、溝23を深くして、配電板14から軸受け8への伝熱をより抑制可能な構成にしてもよい。この構成例を図6に示す。
 この図6は、本実施の形態1に係る電動機1におけるブラケット部20の変形例を説明する断面図である。図中、ステータ部3、コイル12等は省略している。
 この変形例では、ブラケット部20の配電板14を向く面に深い溝23を形成して、配電板14から薄肉部25までの軸方向の距離を長くしている。そのため、図6に矢印H3で示した放熱経路が、図5に矢印H3で示した放熱経路より延長され、ブラケット部20とハウジング2の外周面からの放熱が増え、配電板14から軸受け8への伝熱をより抑制することが可能となる。
 さらに、図3、図5および図6において、ハウジング2の外周面にヒートシンク等の放熱部材を設置して、放熱効果を高めてもよい。
 以上より、実施の形態1によれば、電動機1は、通電によって磁界を発生するコイル12を保持し、コイル12が発生した磁界の磁路を構成するステータ部3と、ステータ部3の磁気吸引反発力によって回転するロータ部5と、ステータ部3の中心側で、ロータ部5に固定されたシャフト4を回転自在に保持する軸受け8と、ステータ部3のコイル12へ、ロータ部5の回転位置に応じて配電する配電板14と、ステータ部3および配電板14を軸方向に並べて保持するハウジング2とを備え、このハウジング2は、一方の面でステータ部3を保持し、反対側の面で配電板14を保持するブラケット部20と、ブラケット部20の中心に形成され軸受け8を収容する軸穴21と、ブラケット部20の軸穴21より外周側に形成され、ステータ部3のコイル12を配電板14側へ軸方向に貫通させるコイル貫通穴22と、ブラケット部20の軸穴21より外周側に、全周に亘って形成され、コイル貫通穴22を通る環状の溝23,24とを有するように構成した。このため、ブラケット部20の軸受け8より外周側の環状の溝23,24で熱切りして、軸受け8への伝熱を抑制することができる。また、溝23,24を形成してブラケット部20の厚みを一部薄くすることにより、コイル12の誘導加熱による発熱を低減して、不要なハウジング2の温度上昇を抑制することができ、軸受け8からハウジング2への放熱を阻害しない。よって、熱害による軸受け8等の構成部品の劣化を抑制することができる。
 また、実施の形態1によれば、環状の溝23を、ブラケット部20の配電板14を保持する面に形成するようにしたので、配電板14の発する熱を溝23で熱切りし、配電板14から軸受け8への伝熱を抑制することできる。
 また、実施の形態1によれば、配電板14を、ブラケット部20の環状の溝23より外周側に、絶縁部材6を介して当接させるようにしたので、配電板14とブラケット部20の接触面26からブラケット部20外周側および薄肉部25を通って軸受け8まで、放熱経路が構成される。このため、配電板14の発する熱をブラケット部20およびハウジング2で効率的に放熱できる。
実施の形態2.
 図7は、本実施の形態2に係る電動機1のうちのハウジング2の構成を示し、図7(a)はハウジング2を配電板14側から見た平面図、図7(b)はハウジング2をCC線に沿って切断した断面図である。なお、本実施の形態2の電動機1において、ブラケット部20以外の構成は図1と同様のため、以下では図1を援用する。
 図6に示したようにハウジング2のブラケット部20に環状の溝23を深く形成すると、軸穴21の周辺の強度が低下する。そこで、本実施の形態2では、図7に示すように、溝23に複数のリブ30を設置して、ブラケット部20の強度を向上させる。また、このリブ30の厚みを薄くすることにより、誘導加熱によるリブ30の温度上昇を抑制し、軸受け8が不要に加熱されることを防ぐ。さらに、絶縁部材6との接触面26よりリブ30の端面を一段低くし、リブ30と絶縁部材6との間に隙間D3を開ける。これにより、配電板14の発熱がリブ30を介して軸受け8へ伝わることを防止している。
 また、図5に示したようにブラケット部20の両面に溝23,24を形成した場合にも、リブ30を設置可能である。一例として、図8(a)に、ハウジング2を配電板14側から見た平面図を示し、図8(b)に、ハウジング2をEE線に沿って切断した断面図を示す。図8の例では、ブラケット部20の配電板14を向く面に溝23を形成してリブ30を設置すると共に、ブラケット部20のステータ部3を向く面に溝24を形成してリブ31を設置する。これにより、ブラケット部20の強度を向上させる。この構成の場合にも、リブ30と絶縁部材6との間に隙間D3を形成して、配電板14からの伝熱を防止する。また、リブ31とステータ部3との間にも隙間を形成して、ステータ部3からの伝熱を防止することも可能である。なお、リブ30,31のいずれか一方側だけを設置することも可能である。
 さらに、リブ30,31はコイル12の本数の整数倍、つまりステータ部3の極数の整数倍とし、円周状に均等に配置することが望ましい。図7および図8の場合、ステータ部3のティース9a,10aは6極のため、その整数倍としてリブ30,31を6箇所に均等配置し、円周状に均等な応力分布となるようにしている。また、例えば図9に示すブラケット部20の平面図のように、極数の2倍、つまり12箇所にリブ30を設置してもよい。
 以上より、実施の形態2によれば、電動機1は、環状の溝23,24内にリブ30,31を設置する構成にしたので、溝23,24の熱切り効果を維持しつつブラケット部20の強度を向上させることができる。また、リブ30,31を薄くすることにより誘導加熱の増加を伴うこともない。
 また、実施の形態2によれば、リブ30の端面を、ブラケット部20の配電板14を保持する面より低くするようにしたので、配電板14からリブ30を通した軸受け8への伝熱を防止することができる。同様に、リブ31の端面を、ブラケット部20のステータ部3を保持する面より低くするようにしたので、ステータ部3からリブ30を通した軸受け8への伝熱を防止することができる。
 また、実施の形態2によれば、リブ30,31の設置数を、ステータ部3の極数の整数倍にするようにしたので、円周状に均等な応力分布になるように設置でき、ブラケット部20の強度を向上させることができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 以上のように、この発明に係る電動機は、ハウジングのブラケット部を、熱切りおよび放熱に配慮しつつ誘導加熱による発熱を低減可能な形状にしたので、電動コンプレッサおよび電動アシストターボなどのタービンを高速で回転駆動する電動機などに用いるのに適している。
 1 電動機、2 ハウジング、3 ステータ部、4 シャフト、5 ロータ部、5a,5b 突部、6 絶縁部材、7,8 軸受け、9,10 ステータコア、9a,10a ティース、11 マグネット、12 コイル、13 インバータ基板、14 配電板、15 センサ、16 センサターゲット、17 カバーハウジング、18,19 カバー、20 ブラケット部、21 軸穴、22 コイル貫通穴、23,24 溝、25 薄肉部、26 接触面、30,31 リブ。

Claims (6)

  1.  通電によって磁界を発生するコイルを保持し、前記コイルが発生した磁界の磁路を構成するステータ部と、
     前記ステータ部の磁気吸引反発力によって回転するロータ部と、
     前記ステータ部の中心側で前記ロータ部を回転自在に保持する軸受けと、
     前記ステータ部の前記コイルへ、前記ロータ部の回転位置に応じて配電する配電板と、
     前記ステータ部および前記配電板を軸方向に並べて保持するハウジングとを備え、
     前記ハウジングは、
     一方の面で前記ステータ部を保持し、反対側の面で前記配電板を保持するブラケット部と、
     前記ブラケット部の中心に形成され前記軸受けを収容する軸穴と、
     前記ブラケット部の前記軸穴より外周側に形成され、前記ステータ部の前記コイルを前記配電板側へ前記軸方向に貫通させるコイル貫通穴と、
     前記ブラケット部の前記軸穴より外周側に、全周に亘って形成され、前記コイル貫通穴を通る環状の溝とを有することを特徴とする電動機。
  2.  前記環状の溝は、前記ブラケット部の前記配電板を保持する面に形成したことを特徴とする請求項1記載の電動機。
  3.  前記配電板は、前記ブラケット部の前記環状の溝より外周側に、絶縁部材を介して当接することを特徴とする請求項2記載の電動機。
  4.  前記環状の溝内にリブを設置したことを特徴とする請求項1記載の電動機。
  5.  前記リブの端面は、前記ブラケット部の前記配電板を保持する面または前記ステータ部を保持する面よりも低いことを特徴とする請求項4記載の電動機。
  6.  前記リブの設置数は、前記ステータ部の極数の整数倍であることを特徴とする請求項4記載の電動機。
PCT/JP2012/070325 2012-08-09 2012-08-09 電動機 WO2014024288A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201290001258.8U CN204231076U (zh) 2012-08-09 2012-08-09 电动机
JP2014529206A JP5885846B2 (ja) 2012-08-09 2012-08-09 電動機
PCT/JP2012/070325 WO2014024288A1 (ja) 2012-08-09 2012-08-09 電動機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/070325 WO2014024288A1 (ja) 2012-08-09 2012-08-09 電動機

Publications (1)

Publication Number Publication Date
WO2014024288A1 true WO2014024288A1 (ja) 2014-02-13

Family

ID=50067569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070325 WO2014024288A1 (ja) 2012-08-09 2012-08-09 電動機

Country Status (3)

Country Link
JP (1) JP5885846B2 (ja)
CN (1) CN204231076U (ja)
WO (1) WO2014024288A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195504A (ja) * 2015-03-31 2016-11-17 日本電産株式会社 モータ
EP3168965A1 (en) * 2015-11-16 2017-05-17 Kabushiki Kaisha Toyota Jidoshokki Electric supercharger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6713208B2 (ja) * 2016-05-17 2020-06-24 株式会社ハーモニック・ドライブ・システムズ モータ内蔵型波動歯車装置
DE102020124216A1 (de) * 2020-09-17 2022-03-17 Schaeffler Technologies AG & Co. KG Gehäuse mit einem Hitzeschild für einen Elektromotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113551U (ja) * 1988-01-22 1989-07-31
JP2004096855A (ja) * 2002-08-30 2004-03-25 Yaskawa Electric Corp 回転電機
JP2006060976A (ja) * 2004-08-23 2006-03-02 Nidec Shibaura Corp モータ
JP2008163849A (ja) * 2006-12-28 2008-07-17 Hitachi Ltd スクロール式流体機械

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5375652U (ja) * 1976-11-29 1978-06-23
JP4374507B2 (ja) * 1999-06-15 2009-12-02 アイシン精機株式会社 電動機
EP1994629A1 (en) * 2006-02-22 2008-11-26 Magnetic Applications Inc. Compact high power alternator
JP4931742B2 (ja) * 2007-09-05 2012-05-16 三菱電機株式会社 回転機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113551U (ja) * 1988-01-22 1989-07-31
JP2004096855A (ja) * 2002-08-30 2004-03-25 Yaskawa Electric Corp 回転電機
JP2006060976A (ja) * 2004-08-23 2006-03-02 Nidec Shibaura Corp モータ
JP2008163849A (ja) * 2006-12-28 2008-07-17 Hitachi Ltd スクロール式流体機械

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195504A (ja) * 2015-03-31 2016-11-17 日本電産株式会社 モータ
EP3168965A1 (en) * 2015-11-16 2017-05-17 Kabushiki Kaisha Toyota Jidoshokki Electric supercharger
US10415572B2 (en) 2015-11-16 2019-09-17 Kabushiki Kaisha Toyota Jidoshokki Electric supercharger

Also Published As

Publication number Publication date
JPWO2014024288A1 (ja) 2016-07-21
JP5885846B2 (ja) 2016-03-16
CN204231076U (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5220765B2 (ja) Afpmコアレス型マルチ発電機及びモーター
US10819169B2 (en) Axial gap rotating electrical machine and manufacturing method for the same
US20180337572A1 (en) Rotary electric machine
WO2016103605A1 (ja) モータおよびそれを備えた電動工具
WO2013080361A1 (ja) 回転電機用ロータ、およびこれを備えた回転電機
JP2016506235A (ja) 軸方向モータのシュー冷却用間隙
JP2008131683A (ja) アキシャルエアギャップ型電動機
JP5951131B2 (ja) 回転電機
JP6852575B2 (ja) 電動機用ロータ、電動機用ロータを備える電動機
JP5217619B2 (ja) アウターロータ型永久磁石式電動機
JP5885846B2 (ja) 電動機
JP2017186006A (ja) モータ及び電動車両
JP7395592B2 (ja) 電動機およびそれを用いた空気調和機
WO2021065586A1 (ja) モータ
JP2008236866A (ja) 永久磁石埋め込み型回転電機の回転子及び永久磁石埋め込み型回転電機
JP6072199B1 (ja) 回転電機
US10476330B2 (en) Interior magnet rotary electric machine
JP5724843B2 (ja) 回転電機
US20180248447A1 (en) Rotary electric machine
JP2011254575A (ja) 回転電機用ロータ
JP2010011621A (ja) 回転電機用エンドプレート
KR101012251B1 (ko) 영구자석 회전자 모터
JP2019054632A (ja) 回転電機
JP2013081288A (ja) 電動機
JP2008182863A (ja) モータ及び電動送風機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290001258.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529206

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882725

Country of ref document: EP

Kind code of ref document: A1