WO2014021663A1 - 광디바이스 제조 방법 및 이에 의해 제조된 광디바이스 - Google Patents

광디바이스 제조 방법 및 이에 의해 제조된 광디바이스 Download PDF

Info

Publication number
WO2014021663A1
WO2014021663A1 PCT/KR2013/006957 KR2013006957W WO2014021663A1 WO 2014021663 A1 WO2014021663 A1 WO 2014021663A1 KR 2013006957 W KR2013006957 W KR 2013006957W WO 2014021663 A1 WO2014021663 A1 WO 2014021663A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical device
layer
disc
forming
insulating layer
Prior art date
Application number
PCT/KR2013/006957
Other languages
English (en)
French (fr)
Inventor
안범모
남기명
전영철
Original Assignee
주식회사 포인트엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120130777A external-priority patent/KR101400271B1/ko
Application filed by 주식회사 포인트엔지니어링 filed Critical 주식회사 포인트엔지니어링
Priority to US14/418,966 priority Critical patent/US20150243864A1/en
Priority to CN201380043437.7A priority patent/CN104584244A/zh
Publication of WO2014021663A1 publication Critical patent/WO2014021663A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0075Processes relating to semiconductor body packages relating to heat extraction or cooling elements

Definitions

  • the present invention relates to a method for manufacturing an optical device and an optical device manufactured by the same, and in particular, a method for manufacturing an optical device that improves heat dissipation performance through a heat sink and insulation between a substrate and a heat sink and improves workability. It relates to a photonic device.
  • a light emitting diode which is a semiconductor light emitting diode
  • LED is attracting attention in various fields as an environment-friendly light source that does not cause pollution.
  • the material or structure of the LED must first be improved, but in addition, the structure of the LED package and the materials used therein need to be improved.
  • 'optical devices' various devices that emit light including LEDs are collectively referred to as 'optical devices', and various products including one or more of them are referred to as 'optical devices'.
  • FIG. 1A and 1B are plan views illustrating a process of manufacturing optical devices having different structures from different optical device discs, respectively.
  • the grooves are formed in the upper and lower narrow shapes reaching the predetermined depth from the upper surface of the disk A having the plurality of vertical insulating layers B.
  • the wire (E) is bonded in the state in which the optical device (D) is mounted inside each cavity (C).
  • the optical device original plate A is cut horizontally and vertically along the cutting line CL to manufacture the unit optical device.
  • each optical device thus cut is bonded to a heat sink for rapid heat dissipation. Done.
  • the disk A for the optical device of FIG. 1A a total of six optical devices each having three optical elements and two vertically mounted optical elements are manufactured.
  • the optical elements arranged horizontally in each optical device are connected in series.
  • vertically arranged optical elements are connected in parallel with each other.
  • FIG. 1B a total of six optical devices are manufactured by one optical device disc A ', and three optical devices are mounted on one optical device horizontally and vertically, but FIG. 1A is the same.
  • not only all (6 total) optical elements D are mounted inside one cavity C ', but also the wires E connecting the adjacent optical elements D in series are mediated through the substrate. Without this, the structure is bonded directly to the electrode of the optical device (D).
  • optical devices having various structures may be manufactured by various optical device discs having various sizes or structures.
  • FIG. 2 is a cross-sectional view illustrating a method of bonding a unit optical device manufactured by FIG. 1A to a heat sink.
  • the substrate 30 is attached to a heat sink 20 made of aluminum or the like to dissipate heat generated by the optical device 40.
  • the substrate 30 is heatsinked.
  • thermal interfacial materials (TIM) 10 such as silicon oil filled with aluminum oxide, zinc oxide, boron nitride, etc., which have good heat transfer characteristics, are mainly used.
  • the electrical insulating layer 22 is formed by anodizing the top surface of the heat sink 20 for electrical insulation between the substrate 30 and the heat sink 20.
  • each unit optical device manufactured by the original disk A for the optical device shown in FIG. 1A for example, the optical device separated at the rightmost side in FIG. 1A, as shown in FIG. That is, a burr is generated on the left side during sawing or dicing to damage the anodizing insulating layer 22 formed of a very thin layer on the top surface of the heat sink 20.
  • the insulation between the heat sink 20 and the heat sink 20 has a problem that a defect such as a short occurs.
  • the present invention has been made to solve the above problems, and provides an optical device manufacturing method and an optical device manufactured by improving heat dissipation performance through heat sink and insulation between substrate and heat sink and improving workability. For the purpose.
  • a method for fabricating an optical device having a vertical insulating layer (a); (B) forming a thickness groove along a cutting line on a lower surface of the disc for the optical device; (C) forming an electrically insulating layer having a flat surface by applying a liquid insulating material to the surface on which the thickness groove is formed, and forming a fixing hole penetrating both the disc for the optical device and the thickness groove up and down ( d) step.
  • the cavity consisting of a groove containing the vertical insulating layer It characterized in that it further comprises the step of forming.
  • (E) further comprising the step of bonding the optical device after mounting the optical device on the upper surface of the optical device disc.
  • a manufacturing method is provided.
  • the step (k) is a step (k-1) of forming a seed layer on the electrical insulating layer by a sputtering process or a palladium (Pd) activation process and an electrolytic or electroless plating process on the seed layer. It characterized by comprising a (k-2) step of forming a plating layer by.
  • the step (k-1) is performed in a state in which a masking layer is formed on the top surface of the optical device disc, and after the step (k-1), reaches a predetermined depth on the top surface of the disc for the optical device, but the vertical insulation After the step of forming a cavity consisting of a groove containing the layer is characterized in that step (k-2) is performed.
  • the heat dissipation characteristics can be improved by bonding the heat dissipation epoxy layer formed on the lower surface of the substrate to a thickness smaller than the conventional TIM adhesive layer.
  • the burr of the metal material is not generated when the substrate is cut, the electrical insulation is improved, thereby reducing the possibility of the short.
  • 1A and 1B are plan views illustrating a process of manufacturing optical devices having different structures from different optical device discs, respectively.
  • FIG. 2 is a cross-sectional view illustrating a method of bonding a conventional unit optical device to a heat sink.
  • Figure 3 is a flow chart for explaining the optical device manufacturing method according to an embodiment of the present invention.
  • 4A to 4E are process perspective views and cross-sectional views taken along line A-A at a major stage of the method for manufacturing the optical device shown in FIG.
  • Fig. 5 is a perspective view of a single optical device manufactured by the manufacturing method shown in Fig. 3 and a cross-sectional view taken along line A-A thereof.
  • FIG. 6 is a cross-sectional view of a state in which the optical device shown in FIG. 5 is coupled to a heat sink;
  • FIG. 7 is a flowchart illustrating a method for manufacturing a substrate for an optical device according to another embodiment of the present invention.
  • 8A to 8G are process perspective views or cross-sectional views taken along line A-A at a major stage of the manufacturing method shown in FIG.
  • FIG. 9 is a perspective view of an optical device disc manufactured by the manufacturing method of FIG.
  • FIG. 10 is a perspective view of the optical device separated along the cutting line in Figure 9 and a cross-sectional view taken along line A-A.
  • FIG. 11 is a cross-sectional view of a state in which the optical device shown in FIG. 10 is coupled to a heat sink;
  • FIG. 12 is a flowchart for explaining a method for manufacturing a substrate for an optical device according to another embodiment of the present invention.
  • FIG. 13 and 14 are cross-sectional views illustrating a state in which an optical device having a horizontal insulating layer is coupled to a heat sink as another embodiment of the present invention.
  • 15 is an exemplary cross-sectional view of a state in which an optical device having a horizontal insulating layer is coupled to a heat sink as another embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of manufacturing an optical device according to an embodiment of the present invention.
  • 4A to 4E are process perspective views and cross-sectional views taken along line A-A at a major stage of the method for manufacturing the optical device shown in FIG.
  • step S10 as shown in Figure 3 the original device for optical device having one or more vertical insulating layer 110 ( 100) (hereinafter simply referred to as a 'plate'), in FIG. 4A and below, 120 represents a substrate for an optical device, and CL represents a cutting line to be used in a future process.
  • a 'plate' vertical insulating layer 110
  • 120 represents a substrate for an optical device
  • CL represents a cutting line to be used in a future process.
  • a thickness groove 130 having a width sufficiently larger than the cutting line CL is formed at the cutting line CL of the lower surface of the prepared disc 100.
  • the groove 130 may be formed by mechanical processing or chemical etching.
  • the depth and width of the thickness groove 130 may be appropriately determined within a range that does not affect the strength of the disc 100 and also sufficiently prevents the occurrence of burrs during cutting.
  • the thickness groove 130 may be formed by crossing the lower surface of the disk 100 horizontally or vertically according to the overall size of the disk 100 or the number of optical devices disposed on the disk 100.
  • step S30 after the thickness groove 130 is filled with all of the thickness grooves 130 with the liquid heat-dissipating epoxy on the lower surface of the disc 100, the thickness groove 130 is formed as shown in Figure 4c
  • the electrical insulation layer 140 is formed by curing with application of heat, and the material of the heat dissipating epoxy may be a thermoplastic or thermosetting epoxy resin.
  • the thickness of the electrical insulation layer 140 (including the thicknesses of the seed layer, the plating layer, and the solder layer described later) is exaggerated compared to the total thickness of the original plate 100.
  • step S40 as shown in Figure 4d by inverting the disc 100, a predetermined depth on the upper surface so that the vertical insulating layer 110 is contained in the state that the upper surface without the insulating layer 140 is facing upwards Form a cavity 150 made up of a groove to the upper and lower narrow light-emitting strait ( ) To form a shape.
  • the cavity 150 may be formed by mechanical processing or chemical etching. Of course, depending on the type of optical device, the optical device may be directly mounted on the upper surface of the original plate 100 without forming the cavity 150.
  • a plurality of fixing holes 160 penetrating both the disc 100 and the electrical insulation layer 140 up and down before or after the cavity 150 is processed, and the position or number of the fixing holes 160 may be It may be appropriately determined according to the number of optical devices to be separated or the wire connection structure.
  • step S50 as shown in FIG. 4E, the wires 175 are bonded while the optical devices 170 are mounted in the respective cavity 150, and in step S60, the optical devices 170 are protected or
  • the manufacturing of the optical device is completed by encapsulating an encapsulant coated with a phosphor to generate a desired color in the cavity 150.
  • step S70 the original plate is separated horizontally or vertically along the cutting line CL shown by the dotted line, and then bonded to the heat sink.
  • FIG. 5 is a perspective view of a single optical device manufactured by the manufacturing method shown in FIG. 3 and a cross-sectional view taken along line A-A
  • FIG. 6 is a cross-sectional view of a state in which the optical device shown in FIG. 5 is coupled to a heat sink.
  • the optical device shown in FIG. 5 may be, for example, an optical device located above or below the center of the optical device disc 100 shown in FIG. 4E based on the cutting line CL.
  • three optical devices are connected in a vertical (parallel connection) and two optical devices in a vertical (parallel connection) structure.
  • the optical devices arranged horizontally are mounted in each cavity 150. Therefore, a total of two cavities 150 are provided.
  • the optical device shown in Fig. 5 also has the leftmost and rightmost columns functioning as positive or negative electrodes, respectively.
  • both the left end and the right end of the substrate are cut surfaces. Since the thickness grooves 130 are located at the bottom of the cut surfaces, the relatively thick electrical insulation layer 140 filled in the thickness grooves 130 is formed. As a result, the occurrence of burrs is suppressed, and as a result, as shown in FIG. 6, even when the bolt 210 is coupled to the heat sink 200 through the fixing hole 160, reliable electrical insulation is provided between the heat sink 200 and the heat sink 200. Can be secured Of course, as shown in FIG. 6, when the substrate functions as an electrode, a fastening member having an electrical insulation performance, for example, a bolt 210 made of synthetic resin may be used.
  • a metal bolt may be employed without employing the bolt 210 of the insulating material because of the problem of cost increase and durability. If the metal bolt is employed as described above, the fixing hole 160 may be formed in the portion of the substrate which does not serve as an electrode to prevent the electrical short circuit from being generated by the metal bolt when the heat sink 200 is coupled to the heat sink 200.
  • FIG. 7 is a flowchart illustrating a method for manufacturing a substrate for an optical device according to another embodiment of the present invention
  • FIGS. 8A to 8G are cross-sectional views of a process or AA line views thereof in the main steps of the manufacturing method shown in FIG. 6. .
  • step S110 an optical device disc having one or more vertical insulating layers 110 as shown in FIG. 8A ( 100 ').
  • a thickness groove 130 having a width sufficiently larger than the cutting line CL is formed at the cutting line CL of the lower surface of the prepared plate 100 ′.
  • the thickness groove 130 may be formed by mechanical processing or chemical etching. The depth and width of the thickness groove 130 may be appropriately determined within a range that does not affect the strength of the disc 100 'and also prevents generation of burrs at the time of cutting.
  • the thickness groove 130 may be formed by crossing the lower surface of the disk 100 'horizontally or vertically according to the overall size of the disk 100' or the number of optical devices disposed on the disk 100 '.
  • step S130 as shown in FIG. 8C, the surface of the disk 100 ′ in which the thickness grooves 130 are formed is coated with a liquid heat-dissipating epoxy so that the surface becomes flat in the state where all the thickness grooves 130 are filled.
  • the heat-resistant epoxy material may be a thermoplastic or thermosetting epoxy resin.
  • a soldering media layer is formed on the electrical insulation layer 140 to ensure soldering between the heat sinks, which are typically made of aluminum, and for this purpose, electrical insulation is first shown in FIG. 8D.
  • the seed layer 180 is formed on the layer 140.
  • the seed layer 180 may be made of copper (Cu), chromium (Cr), nickel (Ni), palladium (Pd), or an alloy of any two or more thereof.
  • the seed layer 180 may be formed by a sputtering process or a palladium activation process, and in this process, masking the top surface of the original plate 100 ′ so that the seed layer 180 is not formed on the top surface of the original plate 100 ′.
  • reference numeral 185 in the figures denotes such a mask layer.
  • the plating layer 190 is again formed on the seed layer 180.
  • the plating layer 190 is electrolytically or electrolessly coated with silver (Ag) or the like. It may be formed by plating. In this manner, after the plating layer 190 is formed, the mask layer 185 is removed.
  • step S150 as shown in FIG. 8F, the vertical insulation layer 110 is enclosed in a state in which the original plate 100 ′ is inverted to face the upper surface where the soldering intermediate layer, that is, the plating layer 190 is not formed, faces upward.
  • a cavity 150 ′ formed of a groove reaching a predetermined depth from an upper surface thereof is formed, but the upper surface is wide and the lower portion is formed in a narrow light beam narrowing shape.
  • the cavity 150 ′ may be formed by mechanical processing or chemical etching. Of course, depending on the type of optical device, the optical device may be directly mounted on the upper surface of the original plate 100 without forming such a cavity 150 '.
  • step S160 as shown in FIG. 8G, the wire 175 'is bonded while the optical device 170 is mounted in each cavity 150', and in step S170, the optical device 170 is protected.
  • the manufacturing of the optical device is completed by encapsulating the phosphor coated encapsulant to generate a desired color in the cavity 150 '.
  • step S180 the original plate is separated horizontally or vertically along the cutting line CL shown by a dotted line, and then used by soldering and heat-sink.
  • FIG. 9 is a perspective view of an optical device disc manufactured by the manufacturing method of FIG. 7,
  • FIG. 10 is a perspective view of an optical device separated along a cutting line in FIG. 9, and a cross-sectional view taken along line AA thereof, and FIG. 11 is shown in FIG. 10. It is sectional drawing of an optical device couple
  • the optical device shown in FIG. 10 may be, for example, an optical device located above or below the center of the optical device disc 100 ′ shown in FIG. 9 based on the cutting line CL.
  • an optical device in which two optical devices are connected in a series (parallel connection) and two optical devices in a vertical (parallel connection) structure is used. All the optical devices arranged horizontally and vertically have a single cavity 150 '. It is mounted in).
  • the optical device shown in Fig. 10 also has the leftmost and rightmost columns functioning as positive or negative electrodes, respectively.
  • both the left end and the right end of the substrate are cut surfaces. Since the thickness grooves 130 are located at the bottom of the cut surfaces, the relatively thick electrical insulation layer 140 filled in the thickness grooves 130 is formed. This suppresses burr generation.
  • each of the optical devices thus separated is soldered 220 to the heat sink 200 to complete the bonding of the optical device and the heat sink, as shown in FIG. 11.
  • the heat generated in the substrate can be transferred to the heatsink more quickly.
  • the optical device manufacturing method of the present invention and the optical device manufactured thereby can be variously modified and carried out within the range allowed by the technical idea of the present invention without being limited to the above-described embodiment.
  • a plating layer for example, a silver plating layer may be further formed on the bottom surface and the main surface of the cavity 140.
  • the mask layer 185 may be removed after the step S150 is performed.
  • the number of optical elements mounted on the optical devices separated from the optical device discs 100 and 100 'and the serial-to-parallel connection structure may be appropriately modified.
  • FIG. 12 is a flowchart illustrating an optical device manufacturing method having a horizontal insulating layer as another embodiment of the present invention.
  • FIG. 13 is a manufacturing method shown in FIG. 12. The cross-sectional view of the state in which the optical device manufactured by the present invention is coupled to a heat sink is illustrated.
  • one metal disc 300 is prepared.
  • the metal disc 300 is formed in a plate shape formed in one direction and has excellent thermal conductivity.
  • the metal disc 300 may be made of aluminum or an aluminum alloy, and the heat transfer coefficient of the aluminum or aluminum alloy may be about 130 to 250 [W / m.K], indicating high thermal conductivity.
  • a horizontal insulating layer 310 is formed on the prepared metal original plate 300 as shown in FIG. 13.
  • the horizontal insulating layer 310 may be formed by anodizing the upper surface of the metal master plate 300.
  • the horizontal insulating layer 310 may be formed of aluminum oxide (Al 2 O 3 ).
  • the insulating layer 310 may be formed by spraying a ceramic of aluminum oxide (Al 2 O 3 ) or yttrium oxide (Y 2 O 3 ) on the upper surface of the metal disc 300 by plasma arc spray method or cold spray method. It may be.
  • the insulating layer 310 may be formed by mixing the anodizing and spraying methods, and then annealing the upper surface of the metal master plate 300, and then spraying the upper portion again. It will be apparent to those skilled in the art that the forming of the horizontal insulating layer 310 is merely an example and may be formed through one of several known methods such as diamond-like carbon (DLC) coating.
  • DLC diamond-like carbon
  • the electrode layer 330 and the soldering media layer 340 are sequentially formed on the horizontal insulating layer 320, but the pair of electrode layers 330 and the soldering media layer ( 340 is formed to be spaced apart from each other.
  • the electrode layer 330 may be formed on the horizontal insulating layer 320 using any one of a plasma arc spray method, a cold spray method, a paste method, and an ink printing method.
  • a method using the ink printing method first prepares a metal component such as silver or copper having a fine size (approximately nano size), and mixes it with a dispersant to provide a constant metal ink.
  • the electrode layer 330 may be formed by spraying the metal ink on the insulating layer 320 and applying a constant heat for a predetermined time.
  • the electrode layer 330 and the heat sink 395 to be described later are coupled by the bolt 390, an insulation such as ceramic or plastic is used to prevent an electrical short between the electrode layer 330 and the heat sink 395.
  • the bolt 390 of the material is used. If the metal bolt is employed without employing the bolt 390 of the insulating material due to the cost increase and the durability deterioration, the electrode layer 330 is formed only up to a point away from the fixing hole 380 by a predetermined distance as shown in FIG. 15. The lower surface of the metal bolt may prevent the electrode layer 330 and the heat sink 395 from being electrically shorted.
  • solder resist 340 is formed to surround the edge of the electrode layer 330.
  • the solder resist 340 serves to insulate the edge of the electrode layer 330 so as not to be exposed to the outside, and solder 360 for coupling the semiconductor chip package 350 only to the exposed upper portion of the electrode layer 330. ) Can be formed.
  • the cut line CL is formed on the bottom surface of the metal disc as shown in FIG. 4B.
  • the thickness groove 130 is formed to have a width sufficiently larger than the cutting line CL.
  • the thickness groove 130 may be formed by mechanical processing or chemical etching. The depth and width of the thickness groove 130 may be appropriately determined within a range that does not affect the strength of the disc 310 and can sufficiently prevent the occurrence of burrs during cutting.
  • the thickness groove 130 may be formed by crossing the lower surface of the disk 310 horizontally or vertically according to the overall size of the disk 310 or the number of optical devices disposed on the disk 310.
  • step S250 after the thickness grooves 130 are formed on the bottom surface of the disc 310, the thickness grooves 130 are formed, as shown in FIG.
  • the electrical insulation layer 370 is formed by curing with heat, and the heat-dissipating epoxy may be made of thermoplastic or thermosetting epoxy resin.
  • step S260 After forming the integrated TIM as the electrical insulation layer 370 on the lower surface of the metal disc 310, in step S260, the metal disc 310, the horizontal insulation layer 320, the electrode layer 330, and the solder resist 340 are all up and down. Forming a plurality of fixing holes 380 penetrating through, the position or number of the fixing holes 380 may be appropriately determined according to the number of optical devices to be separated or the wire connection structure.
  • step S270 the metal discs as shown in FIG. 4C are cut or separated horizontally or vertically along the cutting line CL shown by dotted lines (each of the separated metal discs is referred to as a metal substrate 310 hereinafter).
  • a semiconductor package is formed on the electrode layer 330 formed on each of the metal substrates 310 cut and separated (step S280), and then coupled to the heat sink 395 using the fixing bolt 390 (S290). Step) to use.
  • the fixing bolt 390 may use a bolt of an insulating material, and a metal bolt may be used by allowing the electrode layer 330 to be spaced around the fixing hole 380.
  • FIG. 13 The cross section of the optical device manufactured by the method illustrated in FIG. 12 as described above is illustrated in FIG. 13.
  • a heat-dissipating epoxy layer that can be formed to a relatively smaller thickness than the conventional TIM adhesive layer on the lower surface of the substrate 310
  • the hardened material can be suppressed during the cutting of the substrate 310.
  • even if a burr is generated since the heat radiation epoxy layer surrounds the electric insulation, the electrical insulation is improved, and thus the possibility of a short is generated.
  • the TIM electrical insulation layer on the substrate, not only the bonding between the heat sink and the substrate can be easily performed, but also uniform heat dissipation characteristics can be guaranteed regardless of the skill of the operator.
  • FIG. 14 also illustrates a cross-sectional view of a state in which an optical device manufactured by an optical device manufacturing method having a horizontal insulating layer on a metal substrate is bonded to a heat sink as another embodiment of the present invention. It can be manufactured through a process similar to the step.
  • an optical device manufactured by an optical device manufacturing method having a horizontal insulating layer on a metal substrate is bonded to a heat sink as another embodiment of the present invention. It can be manufactured through a process similar to the step.
  • a metal disc 410 is prepared as shown in FIG. 12.
  • the metal disc 410 may also be made of aluminum or an aluminum alloy.
  • the horizontal insulating layer 420 is formed on the upper metal plate 410 prepared as the second step.
  • the horizontal insulating layer 420 may be formed using at least one selected from a method of anodizing the top surface of the metal master plate 300 or coating ceramics by a plasma arc spray method or a cold spray method.
  • the electrode layer 430 is formed on the horizontal insulating layer 420 by using a plasma arc spray method, a cold spray method, or a paste method, and then a solder resist 440 is formed to surround the edge of the electrode layer 430.
  • the horizontal insulating layer 420, the electrode layer 430, and the solder resist 440 are sequentially formed on the metal original plate 410, and then the cut line CL is formed on the bottom surface of the metal original plate 410 as shown in FIG. 4B.
  • the thickness groove 130 is formed to have a width sufficiently larger than the cutting line CL.
  • the thickness groove 130 may be formed by mechanical processing or chemical etching. The depth and width of the thickness groove 130 may be appropriately determined within a range that does not affect the strength of the disc and can sufficiently prevent the occurrence of burrs during cutting.
  • the entire surface of the thickness groove 130 is filled with a liquid heat-dissipating epoxy on the lower surface of the disc on which the thickness groove 130 is formed, and then the surface is flattened, and then cured while applying heat.
  • An electrical insulation layer 470 for the TIM is formed, and the heat-resistant epoxy material may be thermoplastic or thermosetting epoxy resin.
  • the metal master 410 after forming the integrated TIM as the electrical insulation layer 470 on the lower surface of the metal master 410, the metal master 410, the horizontal insulation layer 420, the electrode layer 430, and the solder resist 440 are formed.
  • Form a plurality of fixing holes 480 that penetrate both up and down, and the position or number of the fixing holes 480 may be appropriately determined according to the number of optical devices or wire connection structures to be separated.
  • a metal pattern 410 on which the horizontal insulation layer 420 and the electrode layer 430 are formed is mechanically processed from the top to perform a substrate pattern forming step of forming the groove 415 in the original plate 410.
  • Mechanical machining can be accomplished via conventional CNC lathes or milling, as is known.
  • the substrate pattern forming step may be performed before the thickness groove processing.
  • the optical device 450 is attached to the substrate 410 by using an adhesive.
  • the electrode layer 430 is electrically connected to the optical device 450 by using a conductive wire 460 which may be formed of gold, copper, or aluminum, and then a paste containing a fluorescent material is applied to the optical device 450.
  • the light generated from the optical device 450 may be converted into white light and protected from external shock.
  • the metal disc 410 as shown in FIG. 4C is cut or separated horizontally or vertically along the cutting line CL shown by a dotted line (each separated metal disc is hereinafter referred to as a metal substrate), and then a fixing bolt ( 490 is used in combination with the heat sink 490.
  • the fixing bolt 490 may use an insulating material bolt, and the metal bolt may be used by allowing the electrode layer 430 to be spaced around the fixing hole 480.
  • the heat dissipation is integrally bonded to the bottom surface of the substrate 410 by integrally bonding a heat dissipation epoxy layer that can be formed with a relatively smaller thickness than the conventional TIM adhesive layer.
  • a heat dissipation epoxy layer that can be formed with a relatively smaller thickness than the conventional TIM adhesive layer.
  • the burr of the metal material can be suppressed when cutting the substrate 410. For example, even if a burr is generated, since the heat radiation epoxy layer surrounds the electric insulation, the electrical insulation is improved, thereby reducing the possibility of a short.
  • the TIM electrical insulation layer on the substrate, not only the bonding between the heat sink and the substrate can be easily performed, but also uniform heat dissipation characteristics can be guaranteed regardless of the skill of the operator.
  • the optical device having the two types of horizontal insulation layers illustrated above has been described as being manufactured according to a predetermined procedure, the procedure may be manufactured to vary as necessary.
  • the horizontal insulating layer, the electrode layer, and the solder resist are formed on the metal disc, and the thickness grooves are formed on the lower surface of the metal disc, and the subsequent steps are performed.
  • a horizontal insulating layer and an electrode layer may be formed.
  • the liquid heat-dissipating epoxy was applied to the bottom surface of the disc on which the thickness grooves were formed such that the surface thereof was flattened while all the thickness grooves were filled.
  • the integrated TIM is made of epoxy
  • the inside of the thickness groove may not be filled due to the expansion of the metal substrate and the volume shrinkage of the epoxy due to the temperature increase during curing.
  • the thickness groove may be filled with epoxy mixed with ceramic powder such as alumina to reduce volume shrinkage during curing, and then the epoxy may be applied to flatten the bottom surface of the disc. In this case, due to the powder of the ceramic component, it is possible to obtain an additional effect of relatively improving the thermal conductivity of the integrated TIM.
  • the TIM itself may be bonded to the heat sink without using bolts. That is, by forming any one of the electric insulation layer (TIM) of the present invention using an adhesive silicone-based resin, acrylic resin, urethane-based resin or a combination of these resins, and then to the lower electrical insulating layer having the adhesive force The heat sink can be joined.
  • 100, 100 ' optical device substrate, 110: vertical insulating layer,

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 히트싱크를 통한 방열 성능 및 기판과 히트싱크 사이의 절연 성능을 향상시키며 작업성을 개선한 광디바이스 제조 방법 및 이에 의해 제조된 광디바이스에 관한 것이다. 본 발명의 제 1 특징에 따르면, 수직 절연층을 갖는 광디바이스용 원판을 준비하는 (a) 단계; 상기 광디바이스용 원판 하면에 절단선을 따라 두께홈을 형성하는 (b) 단계; 상기 두께홈이 형성된 면에 액상 절연재를 도포한 후에 경화시켜서 표면이 평탄한 전기 절연층을 형성하는 (c) 단계 및 상기 광디바이스용 원판과 상기 두께홈 모두를 상하로 관통하는 고정 홀을 형성하는 (d) 단계를 포함하여 이루어진다.

Description

광디바이스 제조 방법 및 이에 의해 제조된 광디바이스
본 발명은 광디바이스 제조 방법 및 이에 의해 제조된 광디바이스에 관한 것으로, 특히 히트싱크를 통한 방열 성능 및 기판과 히트싱크 사이의 절연 성능을 향상시키고 작업성을 개선한 광디바이스 제조 방법 및 이에 의해 제조된 광디바이스에 관한 것이다.
일반적으로, 반도체 발광다이오드인 LED(Light Emitting Diode)는 공해를 유발하지 않는 친환경성 광원으로 다양한 분야에서 주목받고 있다. 최근 들어, LED의 사용범위가 실내외 조명, 자동차 헤드라이트, 디스플레이 장치의 백라이트 유닛(Back-Light Unit:BLU) 등 다양한 분야로 확대됨에 따라 LED의 고효율 및 우수한 열 방출 특성이 필요하게 되었다. 고효율의 LED를 얻기 위해서는 일차적으로 LED의 재료 또는 구조를 개선해야 하지만 이외에도 LED 패키지의 구조 및 그에 사용되는 재료 등도 개선할 필요가 있다.
이와 같은 고효율의 LED에서는 고열이 발생되기 때문에 이를 효과적으로 방출하지 못하면 LED의 온도가 높아져서 그 특성이 열화되고, 이에 따라 수명이 줄어들게 된다. 따라서, 고효율의 LED 패키지에 있어서 LED로부터 발생되는 열을 효과적으로 방출시키고자 하는 노력이 진행되고 있다.
이하 LED를 포함하여 광을 방출하는 각종 소자를 총칭하여 '광소자'라 하고 이를 하나 이상 포함하여 이루어진 각종 제품을 '광디바이스'라 한다.
도 1a 및 도 1b는 각각 서로 다른 광디바이스용 원판에서 서로 다른 구조의 광디바이스를 제조하는 과정을 설명하기 위한 평면도이다. 도 1a에 도시한 바와 같이, 종래 광디바이스를 제조함에 있어서는 작업의 효율성을 높이기 위해 먼저 복수의 수직 절연층(B)을 갖는 원판(A)의 상면에서 소정 깊이에 이르는 상광하협 형상의 요홈으로 이루어지되 수직 절연층(B)이 내포된 캐비티(C)를 원판(A) 단위로 형성한 후에 각각의 캐비티(C) 내부에 광소자(D)를 실장한 상태에서 와이어(E) 본딩한다. 이후 광디바이스용 원판(A)을 커팅 라인(CL)을 따라 가로 및 세로로 절단함으로써 단위 광디바이스의 제조가 완료되는데, 이후 신속한 방열을 위해 이렇게 절단된 각각의 광디바이스를 히트싱크에 접합하여 사용하게 된다.
도 1a의 광디바이스용 원판(A)에서는 각각 가로로 3개 및 세로로 2개의 광소자가 탑재된 총 6개의 광디바이스가 제조되는데, 각 광디바이스에서 가로로 배열된 광소자들은 상호 직렬로 연결되는 반면에 세로로 배열된 광소자들은 상호 병렬로 연결된다.
다음으로 도 1b의 예에서는 1개의 광디바이스용 원판(A')에 의해 총 6개의 광디바이스가 제조되고 1개의 광디바이스에 가로로 3개 및 세로로 2개의 광소자가 탑재되는 것은 동일하나 도 1a의 예에서와는 달리 모든(총 6개) 광소자(D)가 1개의 캐비티(C') 내부에 실장될 뿐만 아니라 인접한 광소자(D)를 직렬로 연결하는 와이어(E)도 기판을 매개로 함이 없이 직접 광소자(D)의 전극에 본딩되는 구조로 이루어진다.
전술한 구조는 단지 하나의 예에 불과할 뿐 다양한 크기나 구조를 갖는 다양한 광디바이스용 원판에 의해 다양한 구조를 갖는 광디바이스가 제조될 수 있을 것이다.
도 2는 종래 도 1a에 의해 제조된 단위 광디바이스를 히트싱크에 접합하는 방법을 설명하기 위한 단면도이다. 도 2에 도시한 바와 같이, 광소자(40)에서 발생된 열을 방출하기 위해 알루미늄 재질 등으로 이루어진 히트싱크(20) 상에 기판(30)을 부착하여 사용하는데, 기판(30)을 히트싱크(20)에 부착하는 재질로 열전달 특성이 양호한, 알루미늄 옥사이드, 아연 옥사이드 또는 보론 나이트라이드 등으로 채워진 실리콘 오일 등의 TIM(Thermal interfacial materials)(10)이 주로 사용된다. 뿐만 아니라 기판(30)과 히트싱크(20) 사이의 전기적인 절연을 위해 히트싱크(20)의 상면을 아노다이징하여 전기 절연층(22)을 형성하게 된다.
그러나 전술한 바와 같은 종래의 광디바이스에 따르면, TIM 접착층(10)의 두께를 줄이는데 한계가 있기 때문에 비록 열전달이 양호한 재질을 사용한다 하더라도 그 두께에 의해 방열 특성이 저하되는 문제점이 있을 뿐만 아니라 광디바이스를 히트싱크 상에 정확하게 정열하는 공정이 수작업으로 이루어지기 때문에 생산성이 떨어질 뿐만 아니라 작업자의 숙련도에 따라 TIM 접착층의 전체적인 도포 두께나 일부 도포 두께가 상이하여 균일한 방열 성능을 보장할 수 없다는 문제점이 있었다.
또한 전기적인 절연을 위해 히트싱크(20)의 상면을 아노다이징하여 전기 절연층을 형성하는 공정이 요구되기 때문에 공수가 증가하는 문제점이 있었다.
무엇보다도 종래 도 1a에 도시한 광디바이스용 원판(A)에 의해 제조된 각각의 단위 광디바이스, 예를 들어 도 1a에서 최우측에서 분리된 광디바이스의 경우에는 도 2에 도시한 바와 같이, 분리, 즉 소잉(sawing) 또는 다이싱(dicing) 과정에서 가장 좌측에 버(burr)가 발생되어 히트싱크(20)의 상면에 매우 얇은 층으로 형성된 아노다이징 절연층(22)을 손상시킴으로써 기판(30)과 히트싱크(20) 사이의 절연이 파괴됨으로써 쇼트와 같은 불량이 발생하는 문제점이 있었다.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 히트싱크를 통한 방열 성능 및 기판과 히트싱크 사이의 절연 성능을 향상시키며 작업성을 개선한 광디바이스 제조 방법 및 이에 의해 제조된 광디바이스를 제공함을 목적으로 한다.
본 발명의 제 1 특징에 따르면, 수직 절연층을 갖는 광디바이스용 원판을 준비하는 (a) 단계; 상기 광디바이스용 원판 하면에 절단선을 따라 두께홈을 형성하는 (b) 단계; 상기 두께홈이 형성된 면에 액상 절연재를 도포한 후에 경화시켜서 표면이 평탄한 전기 절연층을 형성하는 (c) 단계 및 상기 광디바이스용 원판과 상기 두께홈 모두를 상하로 관통하는 고정 홀을 형성하는 (d) 단계를 포함하여 이루어진다.
전술한 구성에서, 상기 (c) 단계 이후 상기 (d) 단계의 전후 또는 상기 (d) 단계와 동시에 상기 광디바이스용 원판의 상면에서 소정 깊이에 이르되 상기 수직 절연층을 내포하는 홈으로 이루어진 캐비티를 형성하는 단계를 더 구비한 것을 특징으로 한다.
상기 광디바이스용 원판의 상면에 광소자를 실장한 후에 와이어 본딩하는 (e) 단계를 더 구비한 것을 특징으로 한다.
상기 (e) 단계를 거쳐서 제조된 광디바이스를 상기 절단선을 따라 분리하는 (f) 단계를 더 구비한 것을 특징으로 한다.
상기 광디바이스용 원판의 상기 캐비티에 광소자를 실장한 후에 와이어 본딩하는 (e-1) 단계를 더 구비한 것을 특징으로 한다.
상기 (e-1) 단계를 거쳐서 제조된 광디바이스를 상기 절단선을 따라 분리하는 (f-1) 단계를 더 구비한 것을 특징으로 한다.
본 발명의 제 2 특징에 따르면, 수직 절연층을 갖는 광디바이스용 원판을 준비하는 (h) 단계; 상기 광디바이스용 원판 하면에 절단선을 따라 두께홈을 형성하는 (i) 단계; 상기 두께홈이 형성된 면에 액상 절연재를 도포한 후에 경화시켜서 표면이 평탄한 전기 절연층을 형성하는 (j) 단계 및 상기 전기 절연층 위에 솔더링 매개층을 형성하는 (k) 단계를 포함하여 이루어진 광디바이스 제조 방법이 제공된다.
전술한 구성에서, 상기 (k) 단계는 상기 전기 절연층 위에 스퍼터링 공정 또는 팔라디움(Pd) 활성화 처리 공정에 의해 시드층을 형성하는 (k-1) 단계 및 상기 시드층 위에 전해 또는 무전해 도금 공정에 의해 도금층을 형성하는 (k-2) 단계를 포함하여 이루어진 것을 특징으로 한다.
상기 (k-1) 단계는 상기 광디바이스용 원판의 상면에 마스킹층을 형성한 상태에서 수행되되, 상기 (k-1) 단계 이후에 상기 광디바이스용 원판의 상면에서 소정 깊이에 이르되 상기 수직 절연층을 내포하는 홈으로 이루어진 캐비티를 형성한 후에 상기 (k-2) 단계를 수행하는 것을 특징으로 한다.
상기 광디바이스용 원판의 상면에 광소자를 실장한 후에 와이어 본딩하는 (l) 단계 및 상기 절단선을 따라 광디바이스를 분리하는 (m) 단계를 더 구비한 것을 특징으로 한다.
상기 광디바이스용 원판의 상기 캐비티에 광소자를 실장한 후에 와이어 본딩하는 (n) 단계 및 상기 절단선을 따라 광디바이스를 분리하는 (o) 단계를 더 구비한 것을 특징으로 한다.
본 발명의 광디바이스 제조 방법 및 이에 의해 제조된 광디바이스에 따르면, 기판의 하면에 종래의 TIM 접착층 보다 상대적으로 작은 두께로 형성할 수 있는 방열 에폭시층을 접합함으로써 방열 특성을 향상시킬 수가 있다. 뿐만 아니라 기판의 절단시에 금속 재질의 버가 발생되지 않기 때문에 전기적인 절연이 향상되어 쇼트가 발생될 가능성이 감소되는 효과가 있다.
또한 전기 절연층을 기판에 일체화시킴으로써 히트싱크와 기판 사이의 접합을 용이하게 수행할 수 있을 뿐만 아니라 작업자의 숙련도에 관계없이 균일한 방열 특성을 보장할 수가 있다.
도 1a 및 도 1b는 각각 서로 다른 광디바이스용 원판에서 서로 다른 구조의 광디바이스를 제조하는 과정을 설명하기 위한 평면도.
도 2는 종래 단위 광디바이스를 히트싱크에 접합하는 방법을 설명하기 위한 단면도.
도 3은 본 발명의 일 실시예에 따른 광디바이스 제조 방법을 설명하기 위한 흐름도.
도 4a 내지 도 4e는 도 2에 도시한 광디바이스 제조 방법의 주요 단계에서의 공정 사시도 및 그 A-A선 단면도.
도 5는 도 3에 도시한 제조 방법에 의해 제조된 단일 광 디바이스 사시도 및 그 A-A선 단면도.
도 6은 도 5에 도시한 광디바이스를 히트싱크에 결합한 상태의 단면도.
도 7은 본 발명의 다른 실시예에 따른 광디바이스용 기판 제조 방법을 설명하기 위한 흐름도.
도 8a 내지 도 8g는 도 7에 도시한 제조 방법의 주요 단계에서의 공정 사시도 또는 그 A-A선 단면도.
도 9는 도 7의 제조 방법에 의해 제조된 광디바이스 원판의 사시도.
도 10은 도 9에서 절단선을 따라 분리된 광디바이스의 사시도 및 그 A-A선 단면도.
도 11은 도 10에 도시한 광디바이스를 히트싱크에 결합한 상태의 단면도.
도 12는 본 발명의 또 다른 실시예에 따른 광 디바이스용 기판 제조 방법을 설명하기 위한 흐름도.
도 13 및 도 14는 본 발명의 또 다른 실시예로서 수평 절연층을 가지는 광디바이스를 히트싱크에 결합한 상태의 단면 예시도.
도 15는 본 발명의 또 다른 실시예로서 수평 절연층을 가지는 광디바이스를 히트싱크에 결합한 상태의 단면 예시도.
이하에는 첨부한 도면을 참조하여 본 발명의 광디바이스 제조 방법 및 이에 의해 제조된 광디바이스의 바람직한 실시예에 대해 상세하게 설명한다.
도 3은 본 발명의 일 실시예에 따른 광디바이스 제조 방법을 설명하기 위한 흐름도이다. 도 4a 내지 도 4e는 도 2에 도시한 광디바이스 제조 방법의 주요 단계에서의 공정 사시도 및 그 A-A선 단면도이다.
도 3에 도시한 바와 같이, 본 발명의 일 실시예에 따른 광디바이스 제조 방법에 따르면, 먼저 단계 S10에서는 도 4a에 도시한 바와 같이 1개 이상의 수직 절연층(110)을 갖는 광디바이스용 원판(100)(이하 간단히 '원판'이라 한다)을 준비하는데, 도 4a 및 이하에서 120은 광디바이스용 기판을 나타내고, CL은 향후 공정에서 사용될 절단선을 나타낸다.
다음으로 단계 S20에서는 도 4b에 도시한 바와 같이 이렇게 준비된 원판(100)의 하면의 절단선(CL) 부위에 절단선(CL)보다 충분히 큰 폭으로 이루어진 두께홈(130)을 형성하는데, 이러한 두께홈(130)은 기계적인 가공이나 화학적인 식각에 의해 형성될 수 있을 것이다. 두께홈(130)의 깊이 및 폭은 원판(100)의 강도에 영향을 주지 않고 또한 절단시 버의 발생을 충분히 방지할 수 있는 범위 내에서 적절하게 결정될 수 있을 것이다. 이러한 두께홈(130)은 원판(100)의 전체적인 크기나 원판(100)에 배치되는 광디바이스의 개수에 따라 원판(100)의 하면을 가로 또는 세로로 횡단하여 형성될 수 있을 것이다.
다음으로 단계 S30에서는 도 4c에 도시한 바와 같이 두께홈(130)이 형성된 원판(100)의 하면에 액상의 방열 에폭시로 두께홈(130)을 모두 메운 상태에서 그 표면이 평탄해지도록 도포한 후에 열을 가하면서 경화시킴으로써 전기 절연층(140)을 형성하는데, 이러한 방열 에폭시의 재질은 열가소성 또는 열경화성 에폭시 수지 등이 될 수 있다. 이하의 도면에서는 확실한 식별을 위해 전기 절연층(140)의 두께(후술하는 시드층, 도금층 및 솔더층의 두께도 포함)가 원판(100)의 전체 두께에 비해 과장되게 도시되어 있음을 밝혀 둔다.
다음으로 단계 S40에서는 도 4d에 도시한 바와 같이 원판(100)을 도치시켜서 절연층(140)이 형성되지 않은 상면이 위를 향하도록 한 상태에서 수직 절연층(110)이 내포되도록 상면에서 소정 깊이에 이르는 홈으로 이루어진 캐비티(150)를 형성하되 상부가 넓고 하부가 좁은 상광하협(
Figure PCTKR2013006957-appb-I000001
) 형상으로 형성한다. 이러한 캐비티(150)는 기계적인 가공이나 화학적인 식각 등에 의해 형성될 수 있다. 물론, 광디바이스의 종류에 따라서는 이러한 캐비티(150)를 형성함이 없이 원판(100)의 상면에 바로 광소자를 실장할 수도 있다. 한편, 캐비티(150) 가공 전후 또는 이와 동시에 원판(100)과 전기 절연층(140)을 모두 상하로 관통하는 복수의 고정 홀(160)을 형성하는데, 이러한 고정 홀(160)의 위치나 개수는 분리될 광디바이스의 개수나 와이어 연결 구조에 따라 적절하게 정해질 수 있을 것이다.
다음으로 단계 S50에서는 도 4e에 도시한 바와 같이 각각의 캐비티(150)에 광소자(170)를 실장한 상태에서 와이어(175)를 본딩하고, 다시 단계 S60에서는 광소자(170)를 보호하거나 이에 더하여 원하는 색상이 발생되도록 하는 형광체가 도포된 봉지재를 캐비티(150) 내부에 봉입함으로써 광디바이스의 제조가 완료된다.
마지막으로 단계 S70에서는 원판을 점선으로 도시된 절단선(CL)을 따라 가로 또는 세로로 분리한 후에 히트싱크와 접합하여 사용하게 된다.
도 5는 도 3에 도시한 제조 방법에 의해 제조된 단일 광 디바이스 사시도 및 그 A-A선 단면도이고, 도 6은 도 5에 도시한 광디바이스를 히트싱크에 결합한 상태의 단면도이다. 먼저, 도 5에 도시한 광디바이스는 예를 들어 도 4e에 도시한 광디바이스용 원판(100)에서 절단선(CL)을 기준으로 가운데의 상측 또는 하측에 위치한 광디바이스일 수 있다. 본 실시예에서는 가로(직렬 연결)로 3개 및 세로(병렬 연결)로 2개의 광소자가 직병렬 구조로 연결된 광디바이스를 보이고 있는데, 가로로 배열된 광소자들은 각각의 캐비티(150) 내에 실장되기 때문에 총 2개의 캐비티(150)를 구비하고 있다. 도 5에 도시한 광디바이스는 또한 가장 좌측 열 및 가장 우측 열이 각각 양의 전극 또는 음의 전극으로 기능하게 된다.
도 5의 실시예에 따르면 기판의 좌측단 및 우측단이 모두 절단면이 되는데, 이러한 절단면의 하단에 두께홈(130)이 자리잡기 때문에 이러한 두께홈(130)에 채워진 상대적으로 두꺼운 전기 절연층(140)으로 인해 버의 발생이 억제되고 이에 따라 도 6에 도시한 바와 같이 고정 홀(160)을 통한 히트싱크(200)와의 볼트(210) 결합 시에도 히트싱크(200)와의 사이에 확실한 전기 절연을 담보할 수 있다. 물론 도 6에 도시한 바와 같이 해당 기판이 전극으로 기능하는 경우에는 전기절연 성능을 갖는 체결 부재, 예를 들어 합성수지 재질의 볼트(210)를 사용할 수 있을 것이다. 참고적으로 비용상승과 내구성 저하 문제 때문에 절연소재의 볼트(210)를 채용하지 않고 금속볼트를 채용할 수도 있다. 이와 같이 금속볼트를 채용한다면, 전극 역할을 하지 않는 기판 부위에 고정 홀(160)을 형성하여 히트싱크(200)와의 결합시 금속볼트에 의해 전기적 단락이 발생되는 것을 막도록 할 수 있다.
도 7은 본 발명의 다른 실시예에 따른 광디바이스용 기판 제조 방법을 설명하기 위한 흐름도이고, 도 8a 내지 도 8g는 도 6에 도시한 제조 방법의 주요 단계에서의 공정 단면도 또는 그 A-A선 단면도이다.
도 7에 도시한 바와 같이, 본 발명의 다른 실시예에 따른 광디바이스 제조 방법에 따르면, 먼저 단계 S110에서는 도 8a에 도시한 바와 같이 1개 이상의 수직 절연층(110)을 갖는 광디바이스용 원판(100')을 준비한다.
다음으로 단계 S120에서는 도 8b에 도시한 바와 같이 이렇게 준비된 원판(100')의 하면의 절단선(CL) 부위에 절단선(CL)보다 충분히 큰 폭으로 이루어진 두께홈(130)을 형성하는데, 이러한 두께홈(130)은 기계적인 가공이나 화학적인 식각에 의해 형성될 수 있을 것이다. 두께홈(130)의 깊이 및 폭은 원판(100')의 강도에 영향을 주지 않고 또한 절단시 버의 발생을 충분히 방지할 수 있는 범위 내에서 적절하게 결정될 수 있을 것이다. 이러한 두께홈(130)은 원판(100')의 전체적인 크기나 원판(100')에 배치되는 광디바이스의 개수에 따라 원판(100')의 하면을 가로 또는 세로로 횡단하여 형성될 수 있을 것이다.
다음으로 단계 S130에서는 도 8c에 도시한 바와 같이 두께홈(130)이 형성된 원판(100')의 하면에 액상의 방열 에폭시를 두께홈(130)을 모두 메운 상태에서 그 표면이 평탄해지도록 도포한 후에 열을 가하면서 경화시킴으로써 전기 절연층(140)을 형성하는데, 이러한 방열 에폭시의 재질은 열가소성 또는 열경화성 에폭시 수지 등이 될 수 있다.
다음으로, 단계 S140에서는 전기 절연층(140) 위에 통상적으로 알루미늄으로 제작되는 히트싱크와의 사이에서 솔더링을 확실하게 하기 위한 솔더링 매개층을 형성하는데, 이를 위해 먼저 도 8d에 도시한 바와 같이 전기 절연층(140) 위에 시드층(180)을 형성한다. 이러한 시드층(180)은 구리(Cu), 크롬(Cr), 니켈(Ni) 또는 팔라디움(Pd) 또는 이들의 어느 둘 이상의 합금으로 이루어질 수 있다. 시드층(180)은 스퍼터링 공정 또는 팔라디움 활성화 처리 공정에 의해 형성될 수 있으며 이 과정에서 원판(100')의 상면에는 시드층(180)이 형성되지 않도록 원판(100')의 상면을 마스킹하는 것이 바람직한바, 도면에서 참조번호 185는 이러한 마스크층을 나타낸다. 이와 같이 하여 시드층(180)이 형성된 이후에 도 8e에 도시한 바와 같이 시드층(180) 위에 다시 도금층(190)을 형성하는데, 이러한 도금층(190)은 은(Ag) 등을 전해 또는 무전해 도금하여 형성될 수 있을 것이다. 이와 같이 하여 도금층(190)을 형성한 이후에 마스크층(185)을 제거한다.
다음으로 단계 S150에서는 도 8f에 도시한 바와 같이 원판(100')을 도치시켜서 솔더링 매개층,즉 도금층(190)이 형성되지 않은 상면이 위를 향하도록 한 상태에서 수직 절연층(110)이 내포되도록 상면에서 소정 깊이에 이르는 홈으로 이루어진 캐비티(150')를 형성하되 상부가 넓고 하부가 좁은 상광하협 형상으로 형성한다. 이러한 캐비티(150')는 기계적인 가공이나 화학적인 식각 등에 의해 형성될 수 있다. 물론, 광디바이스의 종류에 따라서는 이러한 캐비티(150')를 형성함이 없이 원판(100)의 상면에 바로 광소자를 실장할 수도 있다.
다음으로 단계 S160에서는 도 8g에 도시한 바와 같이 각각의 캐비티(150')에 광소자(170)를 실장한 상태에서 와이어(175')를 본딩하고, 다시 단계 S170에서는 광소자(170)를 보호하거나 이에 더하여 원하는 색상이 발생되도록 하는 형광체가 도포된 봉지재를 캐비티(150') 내부에 봉입함으로써 광디바이스의 제조가 완료된다.
마지막으로 단계 S180에서는 원판을 점선으로 도시된 절단선(CL)을 따라 가로 또는 세로로 분리한 후에 히트싱크와 솔더링 접합하여 사용하게 된다.
도 9는 도 7의 제조 방법에 의해 제조된 광디바이스 원판의 사시도이고, 도 10은 도 9에서 절단선을 따라 분리된 광디바이스의 사시도 및 그 A-A선 단면도이며, 도 11은 도 10에 도시한 광디바이스를 히트싱크에 결합한 상태의 단면도이다.
먼저, 도 10에 도시한 광디바이스는 예를 들어 도 9에 도시한 광디바이스용 원판(100')에서 절단선(CL)을 기준으로 가운데의 상측 또는 하측에 위치한 광디바이스일 수 있다. 본 실시예에서는 가로(직렬 연결)로 3개 및 세로(병렬 연결)로 2개의 광소자가 직병렬 구조로 연결된 광디바이스를 보이고 있는데, 가로 및 세로로 배열된 모든 광소자들이 단일의 캐비티(150') 내에 실장되어 있다. 도 10에 도시한 광디바이스는 또한 가장 좌측 열 및 가장 우측 열이 각각 양의 전극 또는 음의 전극으로 기능하게 된다.
도 10의 실시예에 따르면 기판의 좌측단 및 우측단이 모두 절단면이 되는데, 이러한 절단면의 하단에 두께홈(130)이 자리잡기 때문에 이러한 두께홈(130)에 채워진 상대적으로 두꺼운 전기 절연층(140)으로 인해 버의 발생이 억제된다.
이후 이렇게 분리된 각각의 광디바이스는 도 11에 도시한 바와 같이 히트싱크(200)에 솔더링(220) 접합됨으로써 광디바이스와 히트싱크의 접합이 완료되는데, 이러한 솔더링 접합에 의해 광디바이스 기판과 히트싱크가 보다 긴밀하게 결합됨으로써 기판에서 발생된 열이 보다 신속하게 히트싱크로 전달될 수 있다.
한편 본 발명의 광디바이스 제조 방법 및 이에 의해 제조된 광디바이스는 전술한 실시예에 국한되지 않고 본 발명의 기술 사상이 허용하는 범위 내에서 다양하게 변형하여 실시할 수가 있다. 예를 들어, 캐비티(140)의 바닥면과 주면에 도금층, 예를 들어 은 도금층을 더 형성할 수도 있는데, 이 경우에는 단계 S150을 수행한 이후에 마스크층(185)을 제거해도 될 것이다. 광디바이스 원판(100),(100')에서 분리되는 광디바이스에 탑재된 광소자의 개수와 그 직병렬 연결 구조는 적절하게 변형할 수 있을 것이다.
이상의 실시예에서는 수직 절연층을 가지는 광 디바이스 제조방법 및 그에 의해 제조된 광 디바이스에 대해 설명하였으나, 별다른 변형 없이 수평 절연층을 가지는 광 디바이스들 역시 유사한 방법으로 제조될 수 있을 것이다. 이를 하기에서 보다 구체적으로 설명하면, 우선 도 12는 본 발명의 또 다른 실시예로서 수평 절연층을 가지는 광 디바이스 제조방법을 설명하기 위한 흐름도를 도시한 것이며, 도 13은 도 12에 도시된 제조방법에 의해 제조된 광 디바이스를 히트싱크에 결합한 상태의 단면도를 예시한 것이다.
도 12와 도 13을 참조하면, 우선 단계 S210에서는 1개의 금속 원판(300)을 준비한다. 상기 금속 원판(300)은 일 방향으로 형성된 판상으로 이루어지며 우수한 열전도성을 갖는다. 이러한 금속 원판(300)은 알루미늄 또는 알루미늄 합금으로 이루어질 수 있으며, 알루미늄 또는 알루미늄 합금의 열 전달 계수는 대략 130 내지 250[W/m.K]으로서 열전도도가 높음을 확인할 수 있다.
다음으로 단계 S220에서는 도 13에 도시한 바와 같이 준비된 금속 원판(300)의 상부에 수평 절연층(310)을 형성한다. 상기 수평 절연층(310)은 금속 원판(300)의 상면을 애노다이징하여 형성될 수 있다. 참고적으로 금속 원판(300)이 알루미늄 또는 알루미늄 합금으로 이루어진 경우, 상기 수평 절연층(310)은 산화 알루미늄(Al2O3)으로 형성될 수 있다. 또한, 상기 절연층(310)은 금속 원판(300)의 상부에 산화 알루미늄(Al2O3)이나 산화 이트륨(Y2O3)의 세라믹을 플라즈마 아크 스프레이법 또는 콜드 스프레이법으로 용사하여 형성될 수도 있다. 또한, 상기 절연층(310)은 상기 애노다이징과 스프레이법을 혼합하여, 상기 금속 원판(300)의 상면에 애노다이징을 수행한 이후, 그 상부에 다시 용사를 수행함으로써 형성되는 것도 가능하다. 이러한 수평 절연층(310) 형성단계는 예시들에 불과하며 DLC(Diamond-Like Carbon) 코팅과 같이 이미 공지되어 있는 여러 방법들중 하나를 통해 형성될 수 있음은 당업자에게 자명하다 할 것이다.
다음으로 단계 S230에서는 도 13에 도시한 바와 같이 상기 수평 절연층(320) 상부에 전극층(330)과 솔더링 매개층(340)을 순차적으로 형성하되, 한 쌍의 전극층(330)과 솔더링 매개층(340)이 서로 이격되도록 형성한다. 상기 전극층(330)은 플라즈마 아크 스프레이법, 콜드 스프레이법, 페이스트법, 잉크 프린팅법중 어느 하나를 이용하여 상기 수평 절연층(320) 상부에 형성될 수 있다. 참고적으로, 잉크 프린팅법을 이용한 방법은 먼저 미세한 크기(대략 나노 사이즈)의 은 또는 구리와 같은 금속 성분을 준비하고, 이를 분산제 등과 혼합하여 일정한 금속 잉크로 구비한다. 그리고 상기 금속 잉크를 상기 절연층(320) 상부에 분사하고 일정한 시간 동안 일정한 열을 가하여 경화시킴으로써 전극층(330)을 형성할 수 있는 것이다.
참고적으로 상기 전극층(330)과 후술할 히트싱크(395)가 볼트(390)에 의해 결합될 경우 전극층(330)과 히트싱크(395) 사이의 전기적 단락을 방지하기 위해서 세라믹 또는 플라스틱과 같은 절연소재의 볼트(390)를 사용한다. 만약 비용상승과 내구성 저하 문제 때문에 절연소재의 볼트(390)를 채용하지 않고 금속볼트를 채용한다면, 도 15에 도시한 바와 같이 고정 홀(380)과 소정 거리 이격된 지점 까지만 전극층(330)을 형성하면 금속볼트에 의해 전극층(330)과 히트싱크(395)가 전기적으로 단락되는 것을 방지할 수 있을 것이다.
한편 솔더 레지스트(340)는 상기 전극층(330)의 가장자리를 감싸도록 형성된다. 상기 솔더 레지스트(340)는 상기 전극층(330)의 가장자리를 절연하여 외부로 노출되지 않도록 하는 역할을 하며, 상기 전극층(330)의 노출된 상부에만 반도체 칩 패키지(350)를 결합하기 위한 솔더(360)가 형성될 수 있도록 한다.
금속 원판(310)에 수평 절연층(320)과 전극층(330) 및 솔더 레지스트(340)를 순차적으로 형성한 이후 단계 S240에서는 도 4b에 도시한 바와 같은 금속 원판 하면의 절단선(CL) 부위에 절단선(CL)보다 충분히 큰 폭으로 이루어진 두께홈(130)을 형성하는데, 이러한 두께홈(130)은 기계적인 가공이나 화학적인 식각에 의해 형성될 수 있을 것이다. 두께홈(130)의 깊이 및 폭은 원판(310)의 강도에 영향을 주지 않고 또한 절단시 버의 발생을 충분히 방지할 수 있는 범위 내에서 적절하게 결정될 수 있을 것이다. 이러한 두께홈(130)은 원판(310)의 전체적인 크기나 원판(310)에 배치되는 광 디바이스의 개수에 따라 원판(310)의 하면을 가로 또는 세로로 횡단하여 형성될 수 있을 것이다.
다음으로 단계 S250에서는 도 4c에 도시한 바와 같이 두께홈(130)이 형성된 원판(310)의 하면에 액상의 방열 에폭시로 두께홈(360)을 모두 메운 상태에서 그 표면이 평탄해지도록 도포한 후에 열을 가하면서 경화시킴으로써 전기 절연층(370)을 형성하는데, 이러한 방열 에폭시의 재질은 열가소성 또는 열경화성 에폭시 수지 등이 될 수 있다.
금속 원판(310) 하면에 전기 절연층(370)으로써 일체형 TIM을 형성한 이후 S260단계에서는 상기 금속 원판(310), 수평 절연층(320), 전극층(330), 솔더 레지스트(340)를 모두 상하로 관통하는 복수의 고정 홀(380)을 형성하는데, 이러한 고정 홀(380)의 위치나 개수는 분리될 광 디바이스의 개수나 와이어 연결 구조에 따라 적절하게 정해질 수 있을 것이다.
이후 S270단계에서는 도 4c에 도시된 바와 같은 금속 원판에 점선으로 도시된 절단선(CL)을 따라 가로 또는 세로로 절단 분리(분리된 금속 원판 각각을 이하 금속기판(310)이라고 함)하고, 도 13에 도시한 바와 같이 절단 분리된 각각의 금속 기판(310) 상부에 형성된 전극층(330)에 반도체 패키지를 형성(S280단계)하고, 이어서 고정볼트(390)로 히트싱크(395)와 결합(S290단계)하여 사용한다. 앞서 설명하였지만 고정볼트(390)는 절연소재의 볼트를 사용할 수도 있으며, 고정 홀(380) 주변에서 전극층(330)이 이격되도록 함으로써 금속볼트를 사용할 수도 있다.
이상과 같이 도 12에 예시된 방법에 의해 제조되는 광 디바이스의 단면을 도 13에 예시하였다. 도 13에 도시된 광 디바이스를 참조해 볼 때, 본 발명의 광디바이스 제조 방법에 따르면, 기판(310)의 하면에 종래의 TIM 접착층 보다 상대적으로 작은 두께로 형성할 수 있는 방열 에폭시층을 접합함으로써 방열 특성을 향상시킬 수가 있을 뿐만 아니라, 절단 부위에 두께홈을 형성하고 그 두께홈에 방열 에폭시층을 도포후 경화시킴으로써, 기판(310) 절단시에 금속 재질의 버(bur) 발생을 억제할 수 있으며, 설령 버가 발생되더라도 그 주위를 방열 에폭시층이 에워싸기 때문에 전기적인 절연이 향상되어 쇼트가 발생될 가능성이 감소되는 효과가 있다.
또한 TIM용의 전기 절연층을 기판에 일체화시킴으로써 히트싱크와 기판 사이의 접합을 용이하게 수행할 수 있을 뿐만 아니라 작업자의 숙련도에 관계없이 균일한 방열 특성을 보장할 수가 있다.
도 14 역시 본 발명의 또 다른 실시예로서 금속기판상에 수평 절연층을 가지는 광 디바이스 제조방법에 의해 제조된 광 디바이스를 히트싱크에 결합한 상태의 단면도를 예시한 것으로, 이 역시 도 12에 도시한 제조 단계와 유사한 공정을 통해 제조 가능하다. 이에 대해 상세 부연 설명하면,
우선 제1단계로서 도 12에서와 같이 금속 원판(410)을 준비한다. 상기 금속 원판(410) 역시 알루미늄 또는 알루미늄 합금으로 이루어질 수 있다. 제2단계로서 준비된 금속 원판(410)의 상부에 수평 절연층(420)을 형성한다. 상기 수평 절연층(420)은 금속 원판(300)의 상면을 애노다이징하거나, 세라믹을 플라즈마 아크 스프레이법 또는 콜드 스프레이법으로 코팅하는 방법 중에서 선택된 적어도 어느 하나를 이용하여 형성될 수 있다. 이후 수평 절연층(420) 상부에 플라즈마 아크 스프레이법, 콜드 스프레이법 또는 페이스트법을 이용하여 전극층(430)을 형성한후 상기 전극층(430)의 가장자리를 감싸도록 솔더 레지스트(440)를 형성한다.
금속 원판(410)에 수평 절연층(420)과 전극층(430) 및 솔더 레지스트(440)를 순차적으로 형성한 다음 도 4b에 도시한 바와 같은 금속 원판(410) 하면의 절단선(CL) 부위에 절단선(CL)보다 충분히 큰 폭으로 이루어진 두께홈(130)을 형성하는데, 이러한 두께홈(130)은 기계적인 가공이나 화학적인 식각에 의해 형성될 수 있을 것이다. 두께홈(130)의 깊이 및 폭은 원판의 강도에 영향을 주지 않고 또한 절단시 버의 발생을 충분히 방지할 수 있는 범위 내에서 적절하게 결정될 수 있을 것이다.
다음으로 도 4c에 도시한 바와 같이 두께홈(130)이 형성된 원판의 하면에 액상의 방열 에폭시로 두께홈(130)을 모두 메운 상태에서 그 표면이 평탄해지도록 도포한 후에 열을 가하면서 경화시킴으로써 TIM용의 전기 절연층(470)을 형성하는데, 이러한 방열 에폭시의 재질은 열가소성 또는 열경화성 에폭시 수지 등이 될 수 있다.
다시 도 14를 참조하면, 금속 원판(410) 하면에 전기 절연층(470)으로써 일체형 TIM을 형성한 이후 금속 원판(410), 수평 절연층(420), 전극층(430), 솔더 레지스트(440)를 모두 상하로 관통하는 복수의 고정 홀(480)을 형성하는데, 이러한 고정 홀(480)의 위치나 개수는 분리될 광 디바이스의 개수나 와이어 연결 구조에 따라 적절하게 정해질 수 있을 것이다.
한편 수평 절연층(420)과 전극층(430)이 형성된 금속 원판(410)을 상부로부터 기계적으로 가공하여, 상기 원판(410)에 홈(415)을 형성하는 기판 패턴 형성단계를 수행한다. 기계적인 가공은 공지된 바와 같이 통상의 CNC 선반 또는 밀링(milling) 가공을 통해 이루어질 수 있다. 이러한 기판 패턴 형성단계는 두께홈 가공 이전에 수행될 수도 있다. 기판 패턴 형성단계를 수행하여 원판(410) 상부에 홈(415)이 형성되면 그 기판(410) 상부에 접착제를 이용해 광소자(450)를 부착한다. 그리고 금, 구리 또는 알루미늄으로 형성 가능한 도전성 와이어(460)를 이용하여 상기 전극층(430)과 광소자(450)를 전기적으로 연결한후 형광 물질을 포함하는 페이스트를 도포하여 광소자(450) 등을 외부의 충격으로부터 보호하고 광소자(450)에서 생성된 빛을 백색광으로 변환시킬 수 있다. 이후 도 4c에 도시한 바와 같은 금속 원판(410)에 점선으로 도시된 절단선(CL)을 따라 가로 또는 세로로 절단 분리(분리된 금속 원판 각각을 이하 금속기판이라고 함)하고, 이어서 고정볼트(490)로 히트싱크(490)와 결합하여 사용한다. 이러한 실시예에서도 고정볼트(490)는 절연소재의 볼트를 사용할 수 있으며, 고정 홀(480) 주변에서 전극층(430)이 이격되도록 하여 금속볼트를 사용할 수도 있다.
이상과 같은 방법으로 제조되는 광 디바이스를 참조해 볼 때, 앞서 언급한 바와 같이 기판(410)의 하면에 종래의 TIM 접착층 보다 상대적으로 작은 두께로 형성할 수 있는 방열 에폭시층을 일체형으로 접합함으로써 방열 특성을 향상시킬 수가 있을 뿐만 아니라, 절단 부위에 두께홈을 형성하고 그 두께홈에 방열 에폭시층을 도포후 경화시킴으로써, 기판(410) 절단시에 금속 재질의 버(bur) 발생을 억제할 수 있으며, 설령 버가 발생되더라도 그 주위를 방열 에폭시층이 에워싸기 때문에 전기적인 절연이 향상되어 쇼트가 발생될 가능성이 감소되는 효과가 있다.
또한 TIM용의 전기 절연층을 기판에 일체화시킴으로써 히트싱크와 기판 사이의 접합을 용이하게 수행할 수 있을 뿐만 아니라 작업자의 숙련도에 관계없이 균일한 방열 특성을 보장할 수가 있다.
이상에서 예시한 두 가지 형태의 수평 절연층을 가지는 광 디바이스는 정해진 수순에 따라 제조되는 것으로 설명하였지만, 필요에 따라 수순이 가변되어 제조될 수도 있을 것이다. 예를 들면 금속 원판에 수평 절연층과 전극층 및 솔더 레지스트를 형성한후 금속 원판의 하면에 두께홈을 형성하여 추후 공정을 밟는 것으로 설명하였지만, 수평 절연층과 전극층 및 솔더 레지스트 형성 이전에 금속 원판의 하면에 두께홈을 형성하고, 그 두께홈에 방열 에폭시층을 도포 경화한 이후에 수평 절연층, 전극층을 형성할 수도 있을 것이다.
더 나아가 본 발명의 실시예들에서는 두께홈이 형성된 원판의 하면에 액상의 방열 에폭시를 두께홈을 모두 메운 상태에서 그 표면이 평탄해지도록 도포하는 것으로 설명하였다. 그러나 이러한 일체형 TIM은 에폭시 성분으로 되어 있어 경화시 온도증가에 따른 금속기판의 팽창과 에폭시의 부피 수축에 따라 두께홈 내부가 모두 메워지지 않는 경우도 발생할 수 있다. 이를 해결하기 위해 우선 두께홈 내부에는 경화시 부피수축을 줄이기 위해 알루미나와 같은 세라믹 성분의 파우더가 혼합된 에폭시를 이용하여 채우고 난 후 에폭시만으로 원판 하면이 평탄해지도록 도포할 수도 있을 것이다. 이러한 경우 세라믹 성분의 파우더로 인해 일체형 TIM의 열전도도가 상대적으로 좋아지는 부가적인 효과를 얻을 수 있다.
아울러 본 발명의 실시예에서는 볼트를 이용하여 히트싱크와 일체형 TIM이 결합된 기판을 접합하는 것으로 설명하였으나, 볼트를 이용하지 않고 TIM 자체가 점착력을 가지도록 하여 히트싱크와 결합되도록 할 수도 있다. 즉, 본 발명의 일 구성요소인 전기 절연층(TIM)을 점착력이 있는 실리콘계 수지, 아크릴계 수지, 우레탄계 수지 또는 이들의 복합 수지중 어느 하나를 이용하여 형성함으로써, 이후 점착력을 가지는 전기 절연층 하단에 히트싱크를 접합할 수 있다.
이상에서와 같이 본 발명은 도면에 도시된 실시예들을 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진자라면 이로부터 다양한 변형 및 균등한 타실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위에 의해서만 정해져야 할 것이다.
(부호의 설명)
10: TIM 절연층, 20: 히트싱크,
22: 아노다이징 절연층, 30: 기판,
32: 수직 절연층, 34:캐비티,
40: 광소자, 42: 와이어,
100, 100': 광디바이스 기판, 110: 수직 절연층,
120: 광디바이스 기판, 130: 두께홈,
140: 전기 절연층, 150, 150': 캐비티,
160: 고정 홀, 170: 광소자,
175, 175': 와이어, 180: 시드층,
185: 마스크층, 190: 도금층,
200: 히트싱크, 210: 고정 볼트,
220: 솔더층 , CL: 절단선

Claims (19)

  1. 수직 절연층을 갖는 광디바이스용 원판을 준비하는 (a) 단계;
    상기 광디바이스용 원판 하면에 절단선을 따라 두께홈을 형성하는 (b) 단계;
    상기 두께홈이 형성된 면에 액상 절연재를 도포한 후에 경화시켜서 표면이 평탄한 전기 절연층을 형성하는 (c) 단계 및
    상기 광디바이스용 원판과 상기 두께홈 모두를 상하로 관통하는 고정 홀을 형성하는 (d) 단계를 포함하여 이루어진 광디바이스 제조 방법.
  2. 청구항 1에 있어서,
    상기 (c) 단계 이후 상기 (d) 단계의 전후 또는 상기 (d) 단계와 동시에 상기 광디바이스용 원판의 상면에서 소정 깊이에 이르되 상기 수직 절연층을 내포하는 홈으로 이루어진 캐비티를 형성하는 것을 특징으로 하는 광디바이스 제조 방법.
  3. 청구항 1에 있어서,
    상기 광디바이스용 원판의 상면에 광소자를 실장한 후에 와이어 본딩하는 (e) 단계를 더 구비한 것을 특징으로 하는 광디바이스 제조 방법.
  4. 청구항 3에 있어서,
    상기 (e) 단계를 거쳐서 제조된 광디바이스를 상기 절단선을 따라 분리하는 (f) 단계를 더 구비한 것을 특징으로 하는 광디바이스 제조 방법.
  5. 청구항 2에 있어서,
    상기 광디바이스용 원판의 상기 캐비티에 광소자를 실장한 후에 와이어 본딩하는 (e-1) 단계를 포함하여 이루어진 광디바이스 제조 방법.
  6. 청구항 5에 있어서,
    상기 (e-1) 단계를 거쳐서 제조된 광디바이스를 상기 절단선을 따라 분리하는 (f-1) 단계를 더 구비한 것을 특징으로 하는 광디바이스 제조 방법.
  7. 청구항 4 또는 청구항 6의 제조 방법에 의해 제조된 광디바이스.
  8. 수직 절연층을 갖는 광디바이스용 원판을 준비하는 (h) 단계;
    상기 광디바이스용 원판 하면에 절단선을 따라 두께홈을 형성하는 (i) 단계;
    상기 두께홈이 형성된 면에 액상 절연재를 도포한 후에 경화시켜서 표면이 평탄한 전기 절연층을 형성하는 (j) 단계 및
    상기 전기 절연층 위에 솔더링 매개층을 형성하는 (k) 단계를 포함하여 이루어진 광디바이스 제조 방법.
  9. 청구항 8에 있어서,
    상기 (k) 단계는 상기 전기 절연층 위에 스퍼터링 공정 또는 팔라디움(Pd) 활성화 처리 공정에 의해 시드층을 형성하는 (k-1) 단계 및
    상기 시드층 위에 전해 또는 무전해 도금 공정에 의해 도금층을 형성하는 (k-2) 단계를 포함하여 이루어진 것을 특징으로 하는 광디바이스 제조 방법.
  10. 청구항 9에 있어서,
    상기 (k-1) 단계는 상기 광디바이스용 원판의 상면에 마스킹층을 형성한 상태에서 수행되되,
    상기 (k-1) 단계 이후에 상기 광디바이스용 원판의 상면에서 소정 깊이에 이르되 상기 수직 절연층을 내포하는 홈으로 이루어진 캐비티를 형성한 후에 상기 (k-2) 단계를 수행하는 것을 특징으로 하는 광디바이스 제조 방법.
  11. 청구항 9에 있어서,
    상기 광디바이스용 원판의 상면에 광소자를 실장한 후에 와이어 본딩하는 (l) 단계 및
    상기 절단선을 따라 광디바이스를 분리하는 (m) 단계를 더 구비한 것을 특징으로 하는 광디바이스 제조 방법.
  12. 청구항 11에 있어서,
    상기 광디바이스용 원판의 상기 캐비티에 광소자를 실장한 후에 와이어 본딩하는 (n) 단계 및
    상기 절단선을 따라 광디바이스를 분리하는 (o) 단계를 더 구비한 것을 특징으로 하는 광디바이스 제조 방법.
  13. 청구항 8에 있어서, 상기 전기 절연층을 형성하는 단계에서 사용되는 액상 절연재는 제1액상 절연재와 제2액상 절연재로 구분되되, 상기 제1액상 절연재는 세라믹 성분의 파우더가 혼합된 에폭시 수지로 상기 두께홈 내부에 채워지며, 상기 제2액상 절연재는 열가소성 또는 열경화성 에폭시 수지로 상기 원판 하면에 도포되어 경화됨을 특징으로 하는 광디바이스 제조 방법.
  14. 청구항 11 또는 청구항 12의 제조 방법에 의해 제조된 광디바이스.
  15. 금속기판 상부에 수평 절연층과 전극층이 형성되고, 그 전극층과 광소자 혹은 광소자 패키지가 전기적으로 연결되는 광 디바이스를 제조하는 방법에 있어서,
    상기 금속기판 하면에 절단선을 따라 두께홈을 형성하는 단계와;
    상기 두께홈이 형성된 면에 액상 절연재를 도포한 후에 경화시켜서 표면이 평탄한 전기 절연층을 형성하는 단계와;
    히트싱크와의 결합을 위해 상기 두께홈 및 상기 두께홈의 중심축상에 위치하는 금속기판과 그 금속기판 상부면의 적층부재 모두를 상하로 관통하는 고정 홀을 형성하는 단계;를 포함하여 이루어진 광디바이스 제조 방법.
  16. 청구항 15에 있어서, 상기 단계들을 거쳐서 제조된 광디바이스를 상기 절단선을 따라 분리하는 단계를 더 포함함을 특징으로 하는 광디바이스 제조 방법.
  17. 청구항 15 또는 청구항 16에 있어서, 상기 전기 절연층은 열전달 특성이 우수한 알루미늄 옥사이드, 아연 옥사이드 또는 보론 나이트라이드중 어느 하나 이상을 포함하는 액상 절연재임을 특징으로 하는 광디바이스 제조방법.
  18. 청구항 15 또는 청구항 16에 기재된 방법에 의해 제조된 광 디바이스.
  19. 금속기판 상부에 수평 절연층과 전극층이 형성되고, 그 전극층과 광소자 혹은 광소자 패키지가 전기적으로 연결되는 광 디바이스를 제조하는 방법에 있어서,
    상기 금속기판 하면에 절단선을 따라 두께홈을 형성하는 단계와;
    상기 두께홈이 형성된 면에 점착력을 가지는 액상 절연재를 도포한 후에 경화시켜서 표면이 평탄한 전기 절연층을 형성하는 단계와;
    점착력을 가지는 상기 전기 절연층 하단에 히트싱크를 접합하는 단계;를 포함하여 이루어진 광디바이스 제조 방법.
PCT/KR2013/006957 2012-08-03 2013-08-01 광디바이스 제조 방법 및 이에 의해 제조된 광디바이스 WO2014021663A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/418,966 US20150243864A1 (en) 2012-08-03 2013-08-01 Method for Manufacturing Optical Device and Optical Device Manufactured by Same
CN201380043437.7A CN104584244A (zh) 2012-08-03 2013-08-01 用于制造光学装置的方法及由该方法制造的光学装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0085192 2012-08-03
KR20120085192 2012-08-03
KR1020120130777A KR101400271B1 (ko) 2012-08-03 2012-11-19 광디바이스 제조 방법 및 이에 의해 제조된 광디바이스
KR10-2012-0130777 2012-11-19

Publications (1)

Publication Number Publication Date
WO2014021663A1 true WO2014021663A1 (ko) 2014-02-06

Family

ID=50028267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006957 WO2014021663A1 (ko) 2012-08-03 2013-08-01 광디바이스 제조 방법 및 이에 의해 제조된 광디바이스

Country Status (1)

Country Link
WO (1) WO2014021663A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835883A (zh) * 2014-02-08 2015-08-12 一诠精密电子工业(中国)有限公司 发光二极体料带的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288857A (ja) * 2003-03-20 2004-10-14 Fuji Xerox Co Ltd 半導体製造方法
KR20100009094U (ko) * 2009-03-09 2010-09-17 이영옥 파워 엘이디 칩(power led chip)을 실장한 메탈 기판
KR20100106933A (ko) * 2009-03-24 2010-10-04 김강 발광다이오드 패키지
KR20110055401A (ko) * 2009-11-17 2011-05-25 스탄레 덴끼 가부시키가이샤 발광장치 및 그의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288857A (ja) * 2003-03-20 2004-10-14 Fuji Xerox Co Ltd 半導体製造方法
KR20100009094U (ko) * 2009-03-09 2010-09-17 이영옥 파워 엘이디 칩(power led chip)을 실장한 메탈 기판
KR20100106933A (ko) * 2009-03-24 2010-10-04 김강 발광다이오드 패키지
KR20110055401A (ko) * 2009-11-17 2011-05-25 스탄레 덴끼 가부시키가이샤 발광장치 및 그의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835883A (zh) * 2014-02-08 2015-08-12 一诠精密电子工业(中国)有限公司 发光二极体料带的制造方法

Similar Documents

Publication Publication Date Title
US9842973B2 (en) Method of manufacturing ceramic LED packages with higher heat dissipation
US7670872B2 (en) Method of manufacturing ceramic LED packages
KR101400271B1 (ko) 광디바이스 제조 방법 및 이에 의해 제조된 광디바이스
KR100764388B1 (ko) 양극산화 금속기판 모듈
US7772609B2 (en) LED package with structure and materials for high heat dissipation
US20060091416A1 (en) High power LED package with universal bonding pads and interconnect arrangement
WO2010115296A1 (zh) 功率led散热基板、功率led产品及其制造方法
WO2020242255A1 (ko) 반도체용 방열기판 및 그 제조 방법
WO2006132222A1 (ja) 発光素子実装用基板、発光素子モジュール、照明装置、表示装置及び交通信号機
KR101110326B1 (ko) 광소자 기판, 광소자 디바이스 및 그 제조 방법
WO2014092392A1 (ko) 엘이디 금속기판 패키지 및 그 제조방법
TWI690246B (zh) 內建縱向散熱陶瓷塊印刷電路板及具該電路板的電路組件
CN102456634A (zh) 封装板与其制造方法
WO2011060714A1 (zh) Led发光模组及其制造方法
WO2014142396A1 (ko) 방열성능을 향상하고 누설전류를 방지하기 위한 금속회로를 장착한 고광력 led 광원 구조체
WO2009096742A2 (ko) 핀 타입형 파워 엘이디(led) 방열구조
KR20140053203A (ko) 캐리어 장치, 캐리어 장치를 포함하는 전기 장치 및 이들의 제조 방법
WO2006132794A2 (en) A light-emitting device module with flip-chip configuration on a heat-dissipating substrate
KR20130009188A (ko) 광 디바이스용 기판
TW202107742A (zh) 散熱基板及其製作方法
WO2014021663A1 (ko) 광디바이스 제조 방법 및 이에 의해 제조된 광디바이스
KR20130119643A (ko) 전기적으로 절연 고립된 방열 브리지를 가진 방열기판의 구조 및 그 제조 방법
KR101867499B1 (ko) 조명 장치를 제조하기 위한 방법 및 조명 장치
WO2013133473A1 (ko) Led 램프 모듈의 방열기판구조 및 그 제조방법
KR100985917B1 (ko) 대전력 광원 램프를 위한 효과적인 열방출 구조의 리드프레임, 전자 소자 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825050

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14418966

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825050

Country of ref document: EP

Kind code of ref document: A1