WO2014021316A1 - ランダムマットおよび繊維強化複合材料成形体 - Google Patents

ランダムマットおよび繊維強化複合材料成形体 Download PDF

Info

Publication number
WO2014021316A1
WO2014021316A1 PCT/JP2013/070604 JP2013070604W WO2014021316A1 WO 2014021316 A1 WO2014021316 A1 WO 2014021316A1 JP 2013070604 W JP2013070604 W JP 2013070604W WO 2014021316 A1 WO2014021316 A1 WO 2014021316A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
reinforcing
random mat
width
reinforcing fibers
Prior art date
Application number
PCT/JP2013/070604
Other languages
English (en)
French (fr)
Inventor
直彬 薗田
誠 大坪
武 大木
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2014506646A priority Critical patent/JP5531170B1/ja
Priority to US14/382,136 priority patent/US20150158984A1/en
Priority to CN201380011812.XA priority patent/CN104136675B/zh
Priority to BR112014021172-8A priority patent/BR112014021172B1/pt
Priority to RU2014135218/12A priority patent/RU2558516C1/ru
Priority to KR1020147022692A priority patent/KR101529850B1/ko
Priority to EP13825586.4A priority patent/EP2808433B1/en
Publication of WO2014021316A1 publication Critical patent/WO2014021316A1/ja
Priority to US15/872,006 priority patent/US10208174B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • D04H1/4342Aromatic polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/18Homopolymers or copolymers of nitriles
    • C08J2433/20Homopolymers or copolymers of acrylonitrile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Definitions

  • the present invention relates to a random mat used as an intermediate material of a fiber-reinforced composite material molded body using a thermoplastic resin as a matrix, and a fiber-reinforced composite material molded body obtained therefrom.
  • an isotropic random mat is used as a fiber-reinforced composite material using carbon fiber, aramid fiber, glass fiber, or the like as a reinforcing fiber.
  • This random mat is used to make paper by adding a cut reinforcing fiber alone or a spray-up method (dry method) in which a thermosetting resin is simultaneously sprayed on a mold, or a pre-cut reinforcing fiber in a slurry containing a binder. It can be obtained by a method (wet method) or the like.
  • Non-Patent Document 1 discloses a composite material from a random mat of carbon fibers using a thermosetting resin as a matrix. The strength expression rate of such a composite material is about 44% of the theoretical value.
  • thermosetting resin in which a reinforcing fiber base material is impregnated with a thermosetting resin is heated and pressurized for 2 hours or more using an autoclave. It was obtained by.
  • an RTM molding method in which a thermosetting resin is poured after a reinforcing fiber base not impregnated with resin is set in a mold has been proposed, and the molding time has been greatly reduced, but the RTM molding method was used. Even in this case, it takes 10 minutes or more to mold one part. For this reason, a composite material using a thermoplastic resin as a matrix in place of the conventional thermosetting resin has attracted attention.
  • thermoplastic stamping molding (TP-SMC) (Patent Document 1) using a thermoplastic resin as a matrix, a chopped fiber impregnated with a thermoplastic resin in advance is heated to a temperature higher than the melting point, and this is part of the mold.
  • TP-SMC thermoplastic stamping molding
  • This is a molding method in which the mold is closed immediately after being put in, the product shape is obtained by flowing fibers and resin in the mold, and then cooled and molded.
  • molding can be performed in a short time of about 1 minute by using a fiber impregnated with a resin in advance.
  • SMC stampable sheet.
  • fibers and resin flow in the mold, so that a thin product cannot be made, and fiber orientation is disturbed. There were problems such as difficulty in control.
  • Patent Document 2 as a means for improving the mechanical properties and isotropy of the fiber-reinforced thermoplastic resin molded body, the carbon fibers to be formed are uniformly dispersed in a single fiber shape, whereby fiber bundles and bundles are obtained. It has been proposed to improve the mechanical properties and the isotropy by preventing the resin-rich portion from occurring in the gaps or preventing the resin from being impregnated in the fiber bundle and becoming an unimpregnated portion.
  • An object of the present invention is to provide a fiber-reinforced composite material molded body that is isotropic and excellent in mechanical strength and a random mat used as an intermediate material thereof.
  • An object is to provide a molded material.
  • the present inventors have obtained a mechanical strength and its isotropy, and strength by using a random mat containing a thermoplastic resin and a discontinuous reinforcing fiber having a specific weight average fiber width, average fiber width dispersion ratio and weight average fiber thickness.
  • the present inventors have found that a fiber-reinforced composite material molded product having excellent expression can be provided. More specifically, by controlling the reinforcing fibers to be small and having the same fiber width, the reinforcing fibers can be densely contained in the random mat, and have uniform, excellent mechanical strength, and It has been found that a fiber-reinforced composite material molded body having a high expression rate of strength can be provided.
  • the present invention includes a random mat containing reinforcing fibers having an average fiber length of 3 to 100 mm and a thermoplastic resin, wherein the reinforcing fibers satisfy the following i) to iii), and molding of a fiber reinforced composite material obtained by molding the random mat Is the body.
  • the weight average fiber width (Ww) of the reinforcing fibers satisfies the following formula (1). 0mm ⁇ Ww ⁇ 2.8mm (1)
  • the average fiber width dispersion ratio (Ww / Wn) in the reinforcing fibers is 1.00 or more and 2.00 or less.
  • the weight average fiber thickness of the reinforcing fiber is smaller than its weight average fiber width (Ww).
  • the reinforcing fiber included has a specific fiber width distribution. That is, in the random mat of the present invention, the reinforcing fibers contained are small in size and have the same fiber width, have excellent fiber strengthening function, and have uniform and excellent mechanical strength. Furthermore, the random mat of the present invention is isotropic because the fibers are not oriented in a specific direction in the in-plane direction, and is extremely excellent in moldability as an intermediate material for molding.
  • the fiber-reinforced composite material molded body obtained from the random mat of the present invention has excellent mechanical strength and is excellent in isotropy, so various components such as an automobile inner plate, outer plate, component member, It can also be used for various electrical products, machine frames, housings, and the like.
  • weight means mass.
  • the present invention relates to a random mat containing reinforcing fibers having an average fiber length of 3 to 100 mm and a thermoplastic resin, the reinforcing fibers satisfying the following i) to iii). i) The weight average fiber width (Ww) of the reinforcing fibers satisfies the following formula (1).
  • the average fiber width dispersion ratio (Ww / Wn) defined as the ratio of the weight average fiber width to the number average fiber width of the reinforcing fibers is 1.00 or more and 2.00 or less.
  • the weight average fiber thickness of the reinforcing fiber is smaller than its weight average fiber width (Ww).
  • the weight average fiber width (Ww) of the reinforcing fibers contained in the random mat of the present invention is a sufficient number taken out from the random mat (preferably 200 to 1000 pieces taken out from the random mat cut into 100 mm ⁇ 100 mm). More is preferably from 300 to 1000, for each of the reinforcing fibers, for example 300 is present), their width (hereinafter, sometimes referred to as fiber width or W i) the weight (hereinafter, fiber weight or w i and is be referred to), further, can be determined from the total weight of the reinforcing fibers taken out (w), the following equation (5).
  • Ww ⁇ (W i ⁇ w i / w) (5)
  • i is a natural number from 1 to the number of reinforcing fibers taken out from the random mat.
  • the weight average fiber width (Ww) of the reinforcing fiber is less than 2.8 mm, preferably less than 2.0 mm, as shown in the above formula (1), and is greater than 0.1 mm. Less than 0 mm, that is, the following formula (2) 0.1 mm ⁇ Ww ⁇ 2.0 mm (2) It is preferable that it is greater than 0.2 mm and smaller than 1.6 mm, more preferably larger than 0.2 mm and smaller than 1.4 mm, particularly preferably larger than 0.3 mm and smaller than 1.2 mm. .
  • the weight average fiber width (Ww) of the reinforcing fibers is 2.8 mm or more, the reinforcing fibers are not small, so it is difficult to contain them in a random mat, and the physical properties (strength) are poorly expressed. There may be a problem that the homogeneity of the mat may be impaired.
  • the lower limit of the weight average fiber width (Ww) of the reinforcing fiber is not particularly limited, but when the reinforcing fiber is widened or divided in order to reduce the Ww, the dispersion of the fiber width is attempted when trying to make it extremely small. The control of the ratio may be difficult.
  • the random mat of the present invention has an average fiber width dispersion ratio (Ww / Wn) defined as a ratio of the weight average fiber width (Ww) to the number average fiber width (Wn) of the reinforcing fibers contained therein is 1.00 or more. 2.00 or less, preferably 1.30 or more and 1.95 or less, and more preferably 1.40 or more and 1.90 or less.
  • Ww / Wn average fiber width dispersion ratio
  • the Ww / Wn of the reinforcing fiber is completely set to 1, and the process of selecting other than the target reinforcing fiber and the fiber width accurately in advance.
  • the average fiber width dispersion ratio (Ww / Wn) is preferably more than 1, and more preferably 1.30 or more.
  • the number average fiber width (Wn) is obtained by extracting a sufficient number (I) of reinforcing fibers from the random mat in the procedure described above for the weight average fiber width (Ww), and for each of them, the fiber width (W i). ) And is calculated by the following equation (4).
  • Wn ⁇ W i / I (4)
  • the reinforcing fibers contained in the random mat of the present invention have a weight average fiber thickness smaller than the weight average fiber width (Ww), and the weight average fiber thickness is 1/5 of the weight average fiber width (Ww). Or less, more preferably 1/10 or less, even more preferably 1/20 or less, and even more preferably 1/50 or less.
  • Ww weight average fiber width
  • the fibers are oriented not only in the in-plane direction but also in the thickness direction, and the reinforcing fiber volume content is increased by entanglement of the fibers. There is a concern that problems will arise.
  • the shorter one of the lengths in two directions excluding the length direction of the reinforcing fiber is defined as “thickness”, and the other is defined as “width”.
  • any one direction is the width of the reinforcing fiber, and the other is the thickness of the reinforcing fiber.
  • the weight average fiber thickness of the reinforcing fibers contained in the random mat of the present invention is preferably 0.01 mm or more and 0.30 mm or less, more preferably 0.02 mm or more and 0.20 mm or less, and 0.03 mm or more and 0. 0.15 mm or less is more preferable, and 0.03 mm or more and 0.10 mm or less is particularly preferable. If the weight average fiber thickness of the reinforcing fibers is 0.01 mm or more, it is not necessary to extremely increase the width of the fibers when the fibers are widened, and the fiber thickness is less likely to vary.
  • the weight average fiber thickness of the reinforcing fibers is preferably 0.30 mm or less from the viewpoint of impregnation with the thermoplastic resin as a matrix.
  • the weight average fiber thickness of the reinforcing fibers (t) the same operation as that shown for the weight average fiber width (Ww), the fiber thickness (t i) for all of the reinforcing fibers taken out After measuring the fiber weight (w i ) and the total weight (w) of the extracted reinforcing fiber, it can be obtained by the following equation (7).
  • t ⁇ (t i ⁇ w i / w) (7)
  • the reinforcing fibers are not oriented in a specific direction but are dispersed in a random direction.
  • the random mat of the present invention is an in-plane isotropic intermediate material.
  • the isotropy of the reinforcing fibers in the random mat is maintained.
  • the random mat of the present invention is configured to include reinforcing fibers having a predetermined weight average fiber width, average fiber width dispersion ratio, and weight average fiber thickness, and a thermoplastic resin.
  • the random mat of the present invention preferably includes a reinforcing fiber mat composed of the reinforcing fibers and a thermoplastic resin.
  • the reinforcing fiber mat referred to in the present invention is a planar body (mat-like material) composed of discontinuous reinforcing fibers that does not contain a thermoplastic resin as a matrix.
  • the reinforcing fiber mat according to the present invention may include a sizing agent or a small amount of a binder when the reinforcing fiber is used as a mat, and the reinforcing fibers are oriented in a random direction in the plane, so that the surface is substantially planar. It is preferable that the mats have substantially the same physical properties in the vertical and horizontal directions. There is no restriction
  • the reinforcing fiber mat may include a thermoplastic resin such as powder, fiber, or lump.
  • the reinforcing fiber mat may be a thermoplastic resin.
  • thermoplastic resin such as a sheet form and a film form
  • the thermoplastic resin in the random mat may be in a molten state. If the weight average fiber width (Ww), fiber width dispersion ratio (Ww / Wn), etc. are determined for the reinforcing fiber mats included in the random mat of the present invention, these values are regarded as those of the random mat. It goes without saying that it can be done.
  • the random mat of the present invention may be used as a preform as it is to obtain a final form of a fiber reinforced material molded body (hereinafter sometimes simply referred to as a molded body), and is impregnated with a thermoplastic resin by heating or the like. It may be used to obtain a molded product of the final form after being made a prepreg.
  • the random mat of the present invention also includes the prepreg impregnated with a thermoplastic resin.
  • the molded product in the final form referred to here is obtained by pressurizing and heating a random mat or its molded plate, and by further heating or pressurizing (by further molding), a thermoplastic resin as a matrix is obtained.
  • a molded body that is melted and does not have any other shape or thickness. Therefore, those obtained by pressurizing and heating random mats, etc., cut into other shapes, thinned by polishing, or thickened by applying resin etc. Since it is not heated / pressurized, it is a molded article of the final form. In addition, when using heat as a means of cutting or processing, it does not correspond to heating here. Further, when molding a random mat supplied with a molten thermoplastic resin, when molding the supplied thermoplastic resin in a molten state, for example, a molded body can be obtained by molding only with pressure. .
  • the random mat of the present invention may be used as a preform as a preform, or may be used as a molded plate and then molded, and various basis weights can be selected according to the desired molding. , preferably 25 ⁇ 10000g / m 2, and more is preferably 50 ⁇ 4000g / m 2, more preferably from 600g / m 2 ⁇ 3000g / m 2, even more preferably 600g / m 2 ⁇ 2200g / a m 2.
  • the reinforcing fibers contained are those having the above-mentioned specific weight average fiber width, average fiber width dispersion ratio, and weight average fiber thickness.
  • the thickness unevenness of the reinforcing fiber mat included in the random mat is extremely small. Therefore, the fiber-reinforced composite material molded body obtained by molding a random mat is homogeneous and excellent in the physical properties of the reinforcing fibers.
  • a variation coefficient CV (%) can be used as an index of this thickness variation.
  • An example of a procedure for obtaining CV (%) of the thickness of the reinforcing fiber mat included in the random mat is shown below.
  • a sample piece of a square plate having an appropriate size, for example, 100 ⁇ 100 mm, is cut out from the random mat, the thermoplastic resin is separated, put in a sealable bag, and decompressed to ⁇ 0.09 MPa or less.
  • the sample pieces are marked in a lattice pattern at intervals of 10 mm from the top of the bag, and the thickness is measured to 1/1000 mm with a micrometer. A total of 25 points of 5 rows ⁇ 5 columns are measured.
  • the bag thickness is subtracted from the measured thickness, the average value and the standard deviation are calculated, and the coefficient of variation CV (%) of the thickness of the reinforcing fiber mat can be calculated by the following formula.
  • the reinforcing fibers contained in the random mat are discontinuous, and the reinforcing function can be expressed by including reinforcing fibers that are somewhat long.
  • the fiber length is expressed by an average fiber length obtained by measuring the fiber length of the reinforcing fiber in the obtained random mat.
  • a method for measuring the average fiber length there is a method of measuring the fiber length of 100 randomly extracted fibers up to 1 mm using a caliper or the like, and obtaining the average.
  • the average fiber length of the reinforcing fibers in the random mat of the present invention is 3 mm or more and 100 mm or less, preferably 5 mm or more and 80 mm or less, more preferably 10 mm or more and 80 mm or less, and still more preferably 10 mm or more and 60 mm or less. More preferably, it is 12 mm or more and 45 mm or less.
  • the fiber length distribution may be single or a mixture of two or more. In a preferable reinforcing fiber cutting method described later, when a random mat is manufactured by cutting reinforcing fibers into a fixed length, the average fiber length is equal to the cut fiber length.
  • the reinforcing fiber is preferably at least one selected from the group consisting of carbon fiber, aramid fiber, and glass fiber.
  • Reinforcing fibers constituting the random mat are preferably carbon fibers in that they can provide a composite material that is lightweight but excellent in strength.
  • the carbon fibers are generally polyacrylonitrile-based carbon fibers (hereinafter sometimes referred to as PAN-based carbon fibers), petroleum pitch-based carbon fibers, coal pitch-based carbon fibers, rayon-based carbon fibers, and cellulose-based carbon fibers.
  • PAN-based carbon fibers polyacrylonitrile-based carbon fibers
  • petroleum pitch-based carbon fibers coal pitch-based carbon fibers
  • rayon-based carbon fibers rayon-based carbon fibers
  • cellulose-based carbon fibers cellulose-based carbon fibers.
  • Lignin-based carbon fiber, phenol-based carbon fiber, vapor-grown carbon fiber, and the like are known, and any of these carbon fibers can be suitably used in the present invention, and in particular, PAN-
  • the reinforcing fiber used in the random mat of the present invention may be a carbon fiber alone or a glass fiber or an aramid fiber for imparting impact resistance.
  • the average fiber diameter is preferably 1 to 50 ⁇ m, more preferably 3 to 12 ⁇ m, even more preferably 5 to 9 ⁇ m, and most preferably 5 to 7 ⁇ m.
  • the sizing agent is preferably more than 0 to 10 parts by weight with respect to 100 parts by weight of the carbon fiber.
  • the reinforcing fiber in the present invention may be in a state of being opened in a single yarn shape, a fiber bundle in which a plurality of single yarns are collected, or a single yarn and a fiber bundle may be mixed.
  • the matrix resin contained in the random mat of the present invention is a thermoplastic resin.
  • the thermoplastic resin include vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, polyvinyl alcohol resin, polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile / butadiene / styrene resin (ABS resin), acrylic resin, Methacrylic resin, polyethylene resin, polypropylene resin, polyamide 6 resin, polyamide 11 resin, polyamide 12 resin, polyamide 46 resin, polyamide 66 resin, polyamide 610 resin, polyacetal resin, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polybutylene Naphthalate resin, boribylene terephthalate resin, polyarylate resin, polyphenylene ether resin, polyphenylene sulfide resin, poly Sulfone resins, polyether sulfone resins, polyether ether ether
  • the amount of the matrix resin is preferably 10 to 800 parts by weight, more preferably 20 to 300 parts by weight, still more preferably 20 to 200 parts by weight, more preferably 30 to The amount is more preferably 150 parts by weight, and particularly preferably 50 to 100 parts by weight.
  • the reinforced fiber volume content rate (it may abbreviate as Vf hereafter) defined by a following formula.
  • Reinforcing fiber volume content (Vol%) 100 ⁇ [volume of reinforcing fiber / (volume of reinforcing fiber + volume of thermoplastic resin)]
  • the reinforcing fiber volume content (Vf) and the abundance of the thermoplastic resin expressed in parts by weight with respect to 100 parts by weight of the reinforcing fibers are converted using the density of the reinforcing fibers and the density of the thermoplastic resin.
  • various fibrous or non-fibrous fillers of organic fibers or inorganic fibers, flame retardants, UV-resistant agents, pigments, mold release agents, softening agents are used as long as the object of the present invention is not impaired. Agents, plasticizers, and surfactant additives may be included.
  • the random mat of the present invention has the advantage that the formability is high because the reinforcing fibers constituting the random mat have the characteristics as described above. Therefore, the random mat of the present invention can be preferably used as an intermediate material for obtaining a fiber-reinforced composite material molded body. That is, the present invention includes the invention of a fiber reinforced composite material molded body obtained from a random mat.
  • the fiber-reinforced composite material molded body of the present invention preferably contains reinforcing fibers having an average fiber length of 3 to 100 mm and a thermoplastic resin, and the reinforcing fibers satisfy the following i) to iii).
  • the weight average fiber width (Ww) of the reinforcing fibers satisfies the following formula (1). 0mm ⁇ Ww ⁇ 2.8mm (1)
  • the dispersion ratio (Ww / Wn) defined as the ratio of the weight average fiber width to the number average fiber width in the reinforcing fibers is 1.00 or more and 2.00 or less.
  • the weight average fiber thickness of the reinforcing fiber is smaller than its weight average fiber width (Ww).
  • the thickness of the fiber-reinforced composite material molded body of the present invention is preferably adjusted to an appropriate range by controlling the basis weight of the reinforcing fibers to be contained and the amount of the thermoplastic resin.
  • the type of reinforcing fibers constituting the fiber-reinforced composite material molded body of the present invention and those described in the section of reinforcing fibers of the random mat are preferred.
  • the type of resin that constitutes the fiber-reinforced composite material molded body of the present invention and those described in the section of the matrix resin of the random mat are preferred.
  • the amount of the thermoplastic resin present in the fiber-reinforced composite material molded body of the present invention is preferably 10 to 800 parts by weight with respect to 100 parts by weight of the reinforcing fibers.
  • the amount is more preferably 300 parts by weight, even more preferably 20 to 200 parts by weight, still more preferably 30 to 150 parts by weight, and particularly preferably 50 to 100 parts by weight.
  • the shape of the fiber-reinforced composite material molded body in the present invention is not particularly limited.
  • the shape may be, for example, a sheet shape or a plate shape, may have a curved surface portion, or may have a sectional surface having a standing surface portion such as a T shape, an L shape, a U shape, or a hat shape. It may be a three-dimensional shape including these.
  • the fiber-reinforced composite material molded body of the present invention can have various wall thicknesses, for example, 0.2 to 100 mm, but the physical properties and appearance are extremely good even with thinner molded bodies. Specifically, the thickness of the molded body can be 0.2 mm to 2.0 mm (thickness at 25 ° C. if it is necessary to determine very strictly).
  • the basis weight of the reinforcing fibers in the fiber-reinforced composite material compact preferably 25 ⁇ 10000g / m 2, and more is preferably 50 ⁇ 4000g / m 2, more preferably from 600g / m 2 ⁇ 3000g / m 2, more preferably from 600g / m 2 ⁇ 2200g / m 2.
  • the present invention also includes a laminate using at least one type of the fiber-reinforced composite material of the present invention as a core material or a skin layer.
  • the laminate of the present invention may further include at least one unidirectional fiber reinforced composite material in which continuous reinforcing fibers are arranged in one direction as a core material or a skin layer.
  • the laminate of the present invention further comprises at least one of a fiber reinforced composite material molded body of the present invention and a fiber reinforced composite material molded body other than the unidirectional fiber reinforced composite material (hereinafter referred to as other fiber reinforced composite material molded body). Seeds may be included as a core material or skin layer.
  • the laminate of the present invention may further contain at least one resin not containing reinforcing fibers as a core material or a skin layer.
  • the unidirectional fiber reinforced composite material and the matrix resin of other fiber reinforced composite material molded bodies and the resin not containing the reinforced fiber may be a thermosetting resin or a thermoplastic resin.
  • the reinforcing fibers contained are of a specific weight average fiber width, average fiber width dispersion ratio, and weight average fiber thickness. Thick spots are extremely small.
  • a variation coefficient CV (%) can be used as an index of this thickness variation. An example of the procedure for obtaining CV (%) of the reinforcing fiber mat contained in the fiber-reinforced composite material molded body is shown below.
  • a sample piece of an appropriate size for example, 100 mm ⁇ 100 mm, is cut out from the flat molded body, and this is heated in a furnace for about 500 ° C. for about 1 hour to remove the resin.
  • the dimension of the sample piece from which the resin has been removed is measured and placed on a smooth flat plate.
  • the flat plate on which the sample piece is placed is put in a sealable bag, and the thickness at 25 locations is measured by the procedure described above for the measurement of the uneven thickness of the reinforcing fiber mat in the random mat.
  • the coefficient of variation of the thickness of the reinforcing fiber in the fiber reinforced composite material molded body according to the above formula (3) using the net thickness value of the sample obtained by subtracting the thickness of the bag and the flat plate from the measured thickness value. Can be requested. It should be noted that the degree of unevenness in the thickness of the reinforcing fiber mat in the fiber-reinforced composite material molded body is maintained as in the random mat.
  • [Random mat manufacturing method] As a method for producing the random mat of the present invention, a method including the following steps 1 to 4 is preferable. 1. A step of cutting the reinforcing fibers (cutting step), 2. The process of introducing cut reinforcing fibers into the pipe, transporting it by air and spraying (spreading process) 3. A process of fixing dispersed fiber and obtaining a reinforcing fiber mat (fixing process) 4). A process to obtain a random mat by adding a thermoplastic resin to a reinforcing fiber mat (thermoplastic resin addition process)
  • the process of cutting the reinforcing fiber will be described.
  • the reinforcing fiber to be cut a so-called strand having a shape in which single filaments of long fibers are bundled is preferable because it is easy to obtain and handle.
  • the cutting method of the reinforcing fiber is preferably a step of cutting the reinforcing fiber using a knife such as a rotary cutter.
  • An example of the cutting process using a rotary cutter is shown in FIG.
  • the knife angle for continuously cutting the reinforcing fiber is not particularly limited, and a general fiber using a 90-degree blade or having an angle is arranged in a spiral shape. It does n’t matter.
  • An example of a rotary cutter having a spiral knife is shown in FIG.
  • the size of the reinforcing fibers used in the cutting process for example, the fiber width and the fiber thickness, are determined by the widening method, It is preferable to control by a fiber method (see also FIG. 3).
  • the widened reinforcing fiber is preferably provided with a target fiber width by providing a regulating roller for regulating the fiber width in the subsequent stage. Furthermore, in order to produce the random mat of the present invention, it is preferable to divide the reinforcing fiber width smaller after widening as described above.
  • the method of fiber separation is not particularly limited, and examples thereof include a method of making a strand into a thin bundle with a slitter.
  • a fiber having the desired fiber width can be suitably obtained by adjusting the slit interval.
  • the slit blade is more preferably a fiber width by separating a fiber by passing a reinforcing fiber having a constant fiber width through a knife-shaped slit blade or by passing a fiber through a comb-shaped slit. Can be controlled.
  • a sizing agent for reinforcing fibers and separating the fibers the average number of fibers in the reinforcing fibers can be easily obtained.
  • the reinforcing fiber can be controlled to be small and have the same fiber width. Therefore, a random mat that is excellent in the expression of the reinforcing function of the reinforcing fibers contained in the random mat, has improved homogeneity, has small thickness unevenness, and has excellent mechanical strength can be obtained.
  • the cut reinforcing fiber is introduced into the tapered tube downstream of the cutter and dispersed.
  • the method for transporting the reinforcing fibers to the taper tube is not particularly limited, but it is preferable to generate a suction wind speed in the taper tube and transport it into the taper tube by air.
  • the spraying step it is also preferable to appropriately widen the distribution of the reinforcing fiber width by blowing compressed air directly onto the reinforcing fiber.
  • the width of the distribution can also be controlled by the pressure of the compressed air being blown.
  • the conveyed reinforcing fiber is spread on a breathable sheet provided at the lower part of the spreading device.
  • the cut reinforcing fibers can be sprinkled on the sheet at the same time with the fibrous or powdered thermoplastic resin, whereby a random mat containing the reinforcing fibers and the thermoplastic resin can be suitably obtained. .
  • the dispersed reinforcing fibers are fixed to obtain a reinforcing fiber mat.
  • a method is preferred in which air is sucked from the lower part of the breathable sheet to spread the dispersed reinforcing fibers to fix the reinforcing fibers to obtain a reinforcing fiber mat.
  • a fibrous or powdery thermoplastic resin is sprayed at the same time as the reinforcing fiber, it is fixed along with the reinforcing fiber.
  • the thermoplastic resin addition step may be performed simultaneously with the above-described steps 1 to 3.
  • the powdery thermoplastic resin may be sprayed in the spraying step.
  • a thermoplastic resin such as a sheet or film is mounted on or laminated on the reinforcing fiber mat.
  • the sheet-like or film-like thermoplastic resin may be in a molten state.
  • a thermoplastic resin such as a sheet, a film, or a powder is mounted on the random mat obtained by spraying a thermal chemical resin such as a powder in the spraying step or You may laminate.
  • a fiber-reinforced composite material molded body By molding the random mat of the present invention, a fiber-reinforced composite material molded body can be obtained.
  • a method for obtaining a fiber-reinforced composite material molded body include a method in which the random mat obtained as described above is heated and pressurized with a press or the like.
  • the molded body can be suitably obtained by molding, for example, by vacuum molding, hydraulic molding, hot pressing, cold pressing or the like.
  • the fiber-reinforced composite material molded body of the present invention is a mold in which a random mat is heated to a temperature equal to or higher than the melting point or glass transition temperature of the thermoplastic resin contained therein, and then maintained at a temperature equal to or lower than the melting point or glass transition temperature of the resin. It is suitably obtained in cold press molding where the shape is obtained by being sandwiched between.
  • the temperature is higher than the melting point if the thermoplastic resin as the matrix is crystalline in advance, or the glass transition point if the thermoplastic resin is amorphous, preferably further decomposition of the thermoplastic resin.
  • the random mat is preferably heated to a temperature below the point.
  • the pressurizing medium may be adjusted to be higher than the melting point or glass transition point of the thermoplastic resin that is the matrix, or may be adjusted to be lower than the melting point or glass transition point.
  • a fiber reinforced composite material molded body having a different thickness can be obtained by adding a thermoplastic resin as appropriate.
  • the thermoplastic resin to be added is not particularly specified, and specific examples thereof are the same as those described in the section of the matrix resin. Further, the resin may be in the form of molten resin, fiber, powder or film.
  • the units of fiber length, fiber width, and fiber thickness are mm and the unit of weight is g for reinforcing fibers and samples thereof.
  • the density of the carbon fiber and thermoplastic resin used in the following examples and comparative examples is as follows.
  • PAN-based carbon fiber “TENAX” (registered trademark) STS40-24K: 1.75 g / cm 3 PAN-based carbon fiber “Tenax” (registered trademark) IMS 60-24K: 1.80 g / cm 3 PAN-based carbon fiber “TENAX” (registered trademark) HTS40-12K: 1.76 g / cm 3 PAN-based carbon fiber “TENAX” (registered trademark) UTS50-24K: 1.79 g / cm 3 PAN-based carbon fiber “Tenax” (registered trademark) HTS40-6K: 1.76 g / cm 3 Polypropylene: 0.91 g / cm 3 Polycarbonate: 1.20 g / cm 3 Polyamide 6: 1.14 g / cm 3
  • a random mat is cut into a size of 100 mm ⁇ 100 mm, and 300 reinforcing fibers are randomly taken out with tweezers. About the taken-out reinforcing fiber, each fiber width (W i ), fiber weight (w i ), and fiber thickness (t i ) are measured and recorded. A caliper that can measure up to 1/100 mm is used to measure the fiber width and fiber thickness, and a balance that can measure up to 1/100 mg is used to measure the weight. About the small reinforced fiber which cannot measure a weight, the thing of the same fiber width was put together and the weight was measured.
  • the number average fiber width (Wn) is determined by the following equation (4).
  • Wn ⁇ W i / I (4)
  • I is the number of reinforcing fibers, and the value is 300 unless the number of fibers is less than 300.
  • the weight average fiber width (Ww) of the reinforcing fibers is obtained from the total weight (w) of the reinforcing fibers according to the following formula (5).
  • the average fiber width of the reinforcing fibers in the fiber reinforced composite material molded body is the same as that of the random mat after the composite material molded body is cut into 100 mm ⁇ 100 mm and heated in a furnace at 500 ° C. for about 1 hour to remove the resin. In this procedure, the fiber is taken out, and the fiber width (W i ), fiber weight (w i ), etc. are measured and determined.
  • the thickness variation coefficient CV of the reinforcing fiber mat in the random mat was calculated by the following procedure, and thickness spots were evaluated from this. It is assumed that the variation in the fiber thickness increases as the coefficient of variation CV (%) increases.
  • the measurement is performed after the thermoplastic resin is removed by heating in the same manner as in the following fiber reinforced composite material molded body. 1) Cut the random mat into 100 mm ⁇ 100 mm, separate the thermoplastic resin, put it in a sealable bag, and reduce the pressure to ⁇ 0.09 MPa or less.
  • the degree of impregnation of the fiber reinforced composite material molded body (molded plate) is evaluated by an ultrasonic flaw detection test. Evaluation was performed by performing a flaw detection test with an ultrasonic flaw detector frequency (scanning pitch 2.0 mm ⁇ 2.0 mm) using an ultrasonic flaw detection imaging apparatus (Nippon Kraut Kramer Co., Ltd., SDS-WIN). In the evaluation, microscopic observation was performed on a cross section of a portion having a reflected wave intensity of 90% or more, and it was confirmed that there were no defects or voids.
  • the larger the area ratio of the portion where the reflected wave intensity is low (50% or less in the present embodiment) the finer voids are in the molded plate, and the molded plate has more unimpregnated portions.
  • Test piece was cut out from the fiber-reinforced composite material molded body (molded plate) using a water jet, and the tensile strength and the tensile modulus were measured using a universal testing machine manufactured by Instron with reference to JIS K 7164.
  • the shape of the test piece was a 1B B-type test piece.
  • the distance between chucks was 115 mm, and the test speed was 10 mm / min.
  • it cut out about the arbitrary directions (0 degree direction) of a molded object, and the direction (90 degree direction) orthogonal to this, respectively, and measured the tensile strength and tensile elasticity modulus of both directions. For the tensile modulus, a ratio (E ⁇ ) obtained by dividing the larger value by the smaller value was calculated.
  • Example 1 As a reinforcing fiber, a PAN-based carbon fiber “TENAX” (registered trademark) STS40-24K strand (fiber diameter 7.0 ⁇ m, fiber width 10 mm, tensile strength 4000 MPa) manufactured by Toho Tenax Co., Ltd. was expanded to a width of 22 mm. Before the widened reinforcing fiber strand was processed in a fiber separation device, the fiber width was adjusted to be precisely 20 mm by passing it through a roller having an inner width of 20 mm.
  • TENAX registered trademark
  • STS40-24K strand fiber diameter 7.0 ⁇ m, fiber width 10 mm, tensile strength 4000 MPa
  • a cemented carbide disk-shaped separating blade is used to slit 20 mm wide reinforcing fiber strands at 0.8 mm intervals, and as a cutting device, blades are formed at 20 mm intervals.
  • a rotary cutter made of hard alloy the fiber length was cut to 20 mm.
  • a taper tube was disposed immediately below the rotary cutter. By feeding compressed air into the taper tube, reinforcing fibers were introduced into the taper tube and conveyed at a suction air speed of 5 m / sec.
  • Polypropylene (J-106G manufactured by Prime Polymer Co., Ltd.) pulverized and classified to an average particle size of 500 ⁇ m was supplied as a matrix resin from the side surface of the tapered tube.
  • a movable conveyor net is installed at the lower part of the taper tube outlet, and reinforcing fibers are supplied from the taper pipe while sucking with a blower at the lower part of the net to obtain a random mat with a fiber basis weight of 1500 g / m 2. It was.
  • the fiber axis of the reinforcing fiber was almost parallel to the surface and was randomly distributed in the surface.
  • the average fiber length of the reinforcing fibers of the obtained random mat was 20 mm, and the weight average fiber thickness was 0.06 mm.
  • the weight average fiber width (Ww) of the reinforcing fibers constituting the random mat was 0.66 mm, the number average fiber width (Wn) was 0.43 mm, and the dispersion ratio (Ww / Wn) was 1.52.
  • the obtained random mat was heated at 4.0 MPa for 10 minutes with a press apparatus heated to 220 ° C. to obtain a molded plate having a thickness of 1.9 mm.
  • the CV of the variation coefficient of the thickness was 6.4%.
  • Example 2 As the reinforcing fiber, a PAN-based carbon fiber “Tenax” (registered trademark) IMS 60-24K strand (fiber diameter 5.0 ⁇ m, fiber width 10 mm, tensile strength 5800 MPa) manufactured by Toho Tenax Co., Ltd. was expanded to a width of 26 mm. Before the widened reinforcing fiber strand was processed by a fiber separation device, the fiber width was adjusted to be precisely 25 mm by passing it through a roller having an inner width of 25 mm.
  • reinforcing fiber strands having a width of 25 mm are slit at intervals of 1.4 mm, and further, as a cutting device, a blade is formed at intervals of 45 mm.
  • a rotary cutter made of hard alloy the fiber length was cut to 45 mm.
  • a taper tube was disposed immediately below the rotary cutter. By feeding compressed air into the taper tube, reinforcing fibers were introduced into the taper tube and conveyed at a suction air speed of 5 m / sec.
  • Polycarbonate (“Panlite” (registered trademark) L-1225Y manufactured by Teijin Kasei Co., Ltd.) crushed and classified to an average particle diameter of 500 ⁇ m was supplied as a matrix resin from the side surface of the taper tube.
  • a movable conveyor net is installed at the bottom of the taper tube outlet, and reinforcing fibers are supplied from the taper tube while sucking with a blower at the bottom of the net to obtain a random mat with a fiber basis weight of 2500 g / m 2. It was.
  • the fiber axis of the reinforcing fiber was almost parallel to the surface and was randomly distributed in the surface.
  • the average fiber length of the reinforcing fibers of the obtained random mat was 45 mm, and the weight average fiber thickness was 0.05 mm.
  • the weight average fiber width (Ww) of the reinforcing fibers constituting the random mat was 1.25 mm, the number average fiber width (Wn) was 0.69 mm, and the dispersion ratio (Ww / Wn) was 1.80. .
  • the obtained random mat was heated at 4.0 MPa for 10 minutes with a press apparatus heated to 300 ° C. to obtain a molded plate having a thickness of 4.0 mm.
  • the CV of the coefficient of variation in thickness was 9.0%.
  • Example 3 As reinforcing fibers, a PAN-based carbon fiber “TENAX” (registered trademark) STS40-24K strand (fiber diameter: 7.0 ⁇ m, fiber width: 10 mm, tensile strength: 4000 MPa) manufactured by Toho Tenax Co., Ltd. was expanded to a width of 16 mm. Before processing the widened reinforcing fiber strand through a fiber separation device, the fiber width was adjusted to be exactly 15 mm by passing it through a roller having an inner width of 15 mm.
  • TENAX registered trademark
  • a cemented carbide disc-shaped splitting blade as a splitting device, 15 mm wide reinforcing fiber strands are slit at 0.5 mm intervals, and as a cutting device, blades are formed at 12 mm intervals.
  • the fiber length was cut to 12 mm.
  • a tube having a small hole was prepared as a spraying device, and compressed air was supplied using a compressor. At this time, the discharge air velocity from the small hole was 50 m / sec. Furthermore, a taper tube was arranged in the lower part.
  • a movable conveyor net is installed at the lower part of the taper tube outlet, and the reinforcing fiber is supplied from the taper pipe while sucking with the blower at the lower part of the net, and a reinforcing fiber mat having a fiber basis weight of 700 g / m 2 is obtained. Obtained.
  • the fiber axis of the reinforcing fiber was almost parallel to the surface and was randomly distributed in the surface.
  • a molten matrix resin was supplied onto the mat. That is, a polyamide 6 resin (A1030 manufactured by Unitika Co., Ltd.) is used as a matrix resin, and this is melted to form a film-like molten resin body having a thickness of 0.6 mm from a T-die having a width of 1 m provided at a position 5 cm above the conveyor net. Was extruded at the same speed as the conveyor line speed, and the molten resin was supplied to the entire surface of the mat. At this time, the portion where the resin on the reinforcing fiber mat surface is supplied is heated by an infrared heater so as to prevent the resin from being cooled and solidified.
  • a polyamide 6 resin A1030 manufactured by Unitika Co., Ltd.
  • the average fiber length of the reinforcing fibers of the obtained random mat was 12 mm, and the weight average fiber thickness was 0.06 mm.
  • the weight average fiber width (Ww) of the reinforcing fibers constituting the random mat was 0.32 mm, the number average fiber width (Wn) was 0.16 mm, and the dispersion ratio (Ww / Wn) was 1.96. .
  • the obtained random mat was heated at 4.0 MPa for 10 minutes with a press apparatus heated to 260 ° C. to obtain a molded plate having a thickness of 1.0 mm. When the thickness variation of the reinforcing fiber mat was evaluated for the obtained molded plate, the CV of the coefficient of variation in thickness was 6.8%.
  • Example 4 As reinforcing fibers, a PAN-based carbon fiber “TENAX” (registered trademark) HTS40-12K strand (fiber diameter 7.0 ⁇ m, fiber width 8 mm, tensile strength 4200 MPa) manufactured by Toho Tenax Co., Ltd. was expanded to a width of 16 mm. Before processing the widened reinforcing fiber strand through a fiber separation device, the fiber width was adjusted to be exactly 15 mm by passing it through a roller having an inner width of 15 mm.
  • TENAX registered trademark
  • a cemented carbide disc-shaped splitting blade as a splitting device, 15 mm wide reinforcing fiber strands were slit at intervals of 0.5 mm, and further, blades were formed at intervals of 15 mm in the cutting device.
  • a cemented carbide rotary cutter was used to cut the fiber length to 15 mm.
  • a taper tube was disposed immediately below the rotary cutter. Compressed air was fed into this tapered tube, and the fiber was introduced into the tapered tube and conveyed at a suction air speed of 5 m / sec.
  • Polycarbonate (“Panlite” (registered trademark) L-1225Y manufactured by Teijin Kasei Co., Ltd.) crushed and classified to an average particle diameter of 500 ⁇ m was supplied as a matrix resin from the side surface of the taper tube.
  • a movable conveyor net is installed at the bottom of the taper tube outlet, and reinforcing fibers are supplied from the taper tube while sucking with a blower at the bottom of the net to obtain a random mat with a fiber basis weight of 2640 g / m 2. It was.
  • the fiber axis of the reinforcing fiber was almost parallel to the surface and was randomly distributed in the surface.
  • the average fiber length of the reinforcing fibers of the obtained random mat was 15 mm, and the weight average fiber thickness was 0.04 mm.
  • the weight average fiber width (Ww) of the reinforcing fibers constituting the random mat was 0.47 mm, the number average fiber width (Wn) was 0.36 mm, and the dispersion ratio (Ww / Wn) was 1.31. .
  • the obtained random mat was heated at 4.0 MPa for 10 minutes with a press apparatus heated to 300 ° C. to obtain a molded plate having a thickness of 3.0 mm.
  • the CV of the coefficient of variation in thickness was 5.6%.
  • the resulting molded plate had a reinforcing fiber volume content of 50 Vol%, and as a result of evaluation of tensile properties based on JIS7164, the tensile strength was 585 MPa, and the physical property expression rate with respect to the theoretical strength was 74%. Further, the tensile elastic modulus ratio between the 0 degree direction and the 90 degree direction was 1.04.
  • a cemented carbide alloy blade is formed at intervals of 15 mm.
  • the fiber length was cut to 15 mm using a rotary cutter.
  • a taper tube was disposed immediately below the rotary cutter. Compressed air was fed into this tapered tube, and the fiber was introduced into the tapered tube and conveyed at a suction air speed of 5 m / sec.
  • Polycarbonate (“Panlite” (registered trademark) L-1225Y manufactured by Teijin Kasei Co., Ltd.) crushed and classified to an average particle diameter of 500 ⁇ m was supplied as a matrix resin from the side surface of the taper tube.
  • a movable conveyor net is installed at the bottom of the taper tube outlet, and reinforcing fibers are supplied from the taper tube while sucking with a blower at the bottom of the net to obtain a random mat with a fiber basis weight of 2640 g / m 2. It was. When the form of the reinforcing fiber in the random mat was observed, the fiber axis of the reinforcing fiber was almost parallel to the surface and was randomly distributed in the surface.
  • the average fiber length of the reinforcing fibers of the obtained random mat was 15 mm, and the weight average fiber thickness was 0.05 mm.
  • the weight average fiber width (Ww) of the reinforcing fibers constituting the random mat was 3.02 mm, the number average fiber width (Wn) was 2.27 mm, and the dispersion ratio (Ww / Wn) was 1.33. .
  • the obtained random mat was heated at 4.0 MPa for 10 minutes with a press apparatus heated to 300 ° C. to obtain a molded plate having a thickness of 3.0 mm.
  • the CV of the coefficient of variation in thickness was 18.4%.
  • the resulting molded plate had a reinforcing fiber volume content of 50 Vol%, and as a result of evaluating tensile properties according to JIS7164, the tensile strength was 420 MPa, and the physical property expression rate with respect to the theoretical strength was 53%. Moreover, the tensile elastic modulus ratio between the 0 degree direction and the 90 degree direction was 1.16.
  • Example 5 As a reinforcing fiber, a PAN-based carbon fiber “TENAX” (registered trademark) UTS50-24K strand (fiber diameter: 6.9 ⁇ m, fiber width: 10 mm, tensile strength: 5000 MPa) manufactured by Toho Tenax Co., Ltd. was expanded to a width of 22 mm. Before the widened reinforcing fiber strand was processed in a fiber separation device, the fiber width was adjusted to be precisely 20 mm by passing it through a roller having an inner width of 20 mm. As a fiber separation device, a disk-shaped fiber separation blade having alternating intervals of 2.6 mm and 2.2 mm was used to slit the reinforcing fiber strands.
  • TENAX registered trademark
  • the blade was formed at intervals of 30 mm. It cut so that fiber length might be set to 30 mm using the rotary cutter made from a hard alloy.
  • a taper tube was disposed immediately below the rotary cutter. Compressed air was fed into this tapered tube, and the fiber was introduced into the tapered tube at a suction air speed of 5 m / sec and conveyed.
  • Polyamide 6 (“A1030” manufactured by Unitika Ltd.) crushed and classified to an average particle size of 500 ⁇ m was supplied as a matrix resin from the side surface of the tapered tube.
  • a movable conveyor net is installed at the bottom of the taper tube outlet, and reinforcing fibers are supplied from the taper tube while suctioning with a blower at the bottom of the net to obtain a random mat with a fiber basis weight of 4000 g / m 2. It was.
  • the fiber axis of the reinforcing fiber was almost parallel to the surface and was randomly distributed in the surface.
  • the average fiber length of the reinforcing fibers of the obtained random mat was 30 mm, and the weight average fiber thickness was 0.07 mm.
  • the weight average fiber width (Ww) of the reinforcing fibers constituting the random mat was 2.20 mm, the number average fiber width (Wn) was 1.39 mm, and the dispersion ratio (Ww / Wn) was 1.58. .
  • the obtained random mat was heated at 4.0 MPa for 10 minutes with a press apparatus heated to 280 ° C. to obtain a molded plate having a thickness of 5.0 mm.
  • the CV of the variation coefficient of the thickness was 13.3%.
  • an ultrasonic flaw detection test was performed, a portion having a reflected wave intensity of 70% or more was observed by 80% or more.
  • the tensile strength was 550 MPa, and the physical property expression rate with respect to the theoretical strength was 65%. Further, the tensile elastic modulus ratio between the 0 degree direction and the 90 degree direction was 1.09.
  • a PAN-based carbon fiber “TENAX” registered trademark
  • UTS50-24K strand fiber diameter: 6.9 ⁇ m, fiber width: 10 mm, tensile strength: 5000 MPa
  • Toho Tenax Co., Ltd. was expanded to a width of 22 mm.
  • the fiber width was adjusted to be precisely 20 mm by passing it through a roller having an inner width of 20 mm.
  • Reinforcing fiber strands having a width of 20 mm were widened and slit at intervals of 4.2 mm and 0.3 mm, respectively, and the same amount was supplied to the cutting device.
  • a rotary cutter made of cemented carbide with blades formed at intervals of 20 mm was used to cut the fiber length to 20 mm.
  • a taper tube was disposed immediately below the rotary cutter. Compressed air was fed into this tapered tube, and the fiber was introduced into the tapered tube at a suction air speed of 5 m / sec and conveyed.
  • Polyamide 6 (“A1030” manufactured by Unitika Ltd.) crushed and classified to an average particle size of 500 ⁇ m was supplied as a matrix resin from the side surface of the tapered tube.
  • a movable conveyor net is installed at the bottom of the taper tube outlet, and carbon fiber is supplied from the taper tube while suctioning with a blower at the bottom of the net to obtain a random mat with a fiber basis weight of 2380 g / m 2. It was.
  • the fiber axis of the reinforcing fiber was almost parallel to the surface and was randomly distributed in the surface.
  • the average fiber length of the reinforcing fibers of the obtained random mat was 20 mm, and the weight average fiber thickness was 0.06 mm.
  • the weight average fiber width (Ww) of the reinforcing fibers constituting the random mat was 2.21 mm, the number average fiber width (Wn) was 0.54 mm, and the dispersion ratio (Ww / Wn) was 4.08. .
  • the obtained random mat was heated at 4.0 MPa for 10 minutes with a press apparatus heated to 280 ° C. to obtain a molded plate having a thickness of 3.0 mm.
  • the CV of the coefficient of variation in thickness was 16.2%.
  • an ultrasonic flaw detection test was performed, a portion having a reflected wave intensity of 70% or more was observed by 80% or more.
  • the resulting molded plate had a reinforcing fiber volume content of 45 Vol%, and the tensile properties were evaluated in accordance with JIS7164. As a result, the tensile strength was 490 MPa, and the physical property expression rate with respect to the theoretical strength was 58%. Further, the tensile elastic modulus ratio between the 0 degree direction and the 90 degree direction was 1.08.
  • a PAN-based carbon fiber “TENAX” (registered trademark) HTS40-6K strand (fiber diameter 7.0 ⁇ m, fiber width 6 mm, tensile strength 4200 MPa) manufactured by Toho Tenax Co., Ltd. was used.
  • the reinforcing fiber strands were cut to a fiber length of 6 mm using a roving cutter in which blades were formed at intervals of 6 mm.
  • the reinforcing fiber cut by this roving cutter was supplied to the conveyor net immediately below, and a reinforcing fiber mat having a fiber basis weight of 2640 g / m 2 was obtained.
  • the fiber axis of the reinforcing fiber was almost parallel to the surface and was randomly distributed in the surface.
  • the average fiber length of the reinforcing fibers of the obtained reinforcing fiber mat was 6.1 mm, and the weight average fiber thickness was 0.05 mm.
  • the weight average fiber width (Ww) of the reinforcing fibers constituting the reinforcing fiber mat was 5.81 mm, the number average fiber width (Wn) was 5.25 mm, and the dispersion ratio (Ww / Wn) was 1.11. It was.
  • the reinforcing fiber mat is a polycarbonate film (“Panlite” (registered trademark) L-1225Y manufactured by Teijin Kasei Co., Ltd.), with a resin film weight of 1815 g / m 2 on the both sides of the mat for a reinforcing fiber basis weight of 2640 g / m 2 And heated and pressurized with a pair of heating rollers having a set temperature of 300 ° C. to obtain a random mat uniformly impregnated with the resin. The obtained random mat was heated at 4.0 MPa for 10 minutes with a press apparatus heated to 300 ° C. to obtain a molded plate having a thickness of 3.1 mm.
  • Panlite registered trademark
  • L-1225Y manufactured by Teijin Kasei Co., Ltd.
  • the CV of the coefficient of variation in thickness was 32.4%. Furthermore, when an ultrasonic flaw detection test was performed, 47% of the portions having a reflected wave intensity of 70% or more were observed, and an unimpregnated portion was confirmed inside the molded plate. As a result of evaluating the tensile properties based on JIS7164, the tensile strength was 380 MPa, and the physical property expression rate with respect to the theoretical strength was 48%. Further, the tensile elastic modulus ratio between the 0 degree direction and the 90 degree direction was 1.32.
  • the random mat and the fiber reinforced composite material molded body obtained by the present invention have excellent mechanical strength and are excellent in isotropy, various constituent members such as automobile inner plates, outer plates, constituent members, and various It can be used for electrical products, machine frames and housings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

 等方性で、かつ機械強度に優れる繊維強化複合材料成形体とその中間材料として用いられるランダムマットを提供する。 平均繊維長3~100mmの強化繊維と熱可塑性樹脂とを含み、その強化繊維が下記i)~iii)を満たすランダムマット。 i)強化繊維の重量平均繊維幅(Ww)が下記式(1)を満たす。 0mm<Ww<2.8mm (1) ii)強化繊維について、重量平均繊維幅(Ww)の数平均繊維幅(Wn)に対する比として定義される平均繊維幅分散比(Ww/Wn)が1.00以上2.00以下である。 iii)強化繊維の重量平均繊維厚みが、その重量平均繊維幅(Ww)よりも小さい。

Description

ランダムマットおよび繊維強化複合材料成形体
 本発明は、熱可塑性樹脂をマトリクスとする繊維強化複合材料成形体の中間材料として用いられるランダムマットと、それより得られる繊維強化複合材料成形体に関するものである。
 炭素繊維やアラミド繊維、ガラス繊維などを強化繊維として用いた繊維強化複合材料として、等方性であるランダムマットが、賦形性や工程の簡便さより用いられている。このランダムマットは、カットした強化繊維単体、あるいは熱硬化性の樹脂を成形型に同時に吹きつけるスプレーアップ方式(乾式)や、バインダーを含有させたスラリーに予めカットした強化繊維を添加し、抄紙する方法(湿式)等により得る事ができる。
 複合材料の機械物性を向上させる手段としては、強化繊維体積含有率(Vf)を高くする事が知られているが、カット繊維を用いたランダムマットの場合、3次元方向の繊維が存在する、繊維の交絡が多いなどの理由により、強化繊維体積含有率を高くすることが困難であった。またランダムマットを用いた場合は連続繊維を用いた場合と比較して繊維が不連続であるため、強化繊維の強度を十分に発現させる事が困難であり、成形体にした後の強化繊維の強度発現率として、理論値に対し50%以下になってしまうという問題があった。非特許文献1には、熱硬化性樹脂をマトリクスとした炭素繊維のランダムマットからの複合材料が挙げられている。かかる複合材料の強度発現率は理論値に対し44%程度である。
 また、従来の熱硬化性樹脂をマトリクスとした複合材料では、予め、強化繊維基材に熱硬化性樹脂を含浸させたプリプレグと呼ばれる中間材料を、オートクレーブを用いて2時間以上加熱・加圧する事により得られていた。近年、樹脂を含浸させていない強化繊維基材を金型内にセットした後、熱硬化性樹脂を流し入れるRTM成形方法が提案され、成形時間は大幅に短縮されたが、RTM成形方法を用いた場合でも、1つの部品を成形するまでに10分以上必要となる。
 そのため、従来の熱硬化性樹脂に代わり、熱可塑性樹脂をマトリクスに用いた複合材料が注目されている。
 熱可塑性樹脂をマトリクスとした、熱可塑スタンピング成形(TP-SMC)(特許文献1)は、予め熱可塑性樹脂を含浸させたチョップドファイバーを融点以上に加熱し、これを金型内の一部に投入した後、直ちに型を閉め、型内にて繊維と樹脂を流動させる事により製品形状を得、冷却・成型するという成型方法である。この手法では、予め樹脂を含浸させた繊維を用いる事により、約1分程度という短い時間で成形が可能である。これらはSMCやスタンパブルシートと呼ばれるような成形材料とする方法であって、かかる熱可塑スタンピング成形では、型内を繊維と樹脂を流動させるために、薄肉なものが作れない、繊維配向が乱れ、制御が困難である等の問題があった。
 さらに特許文献2では、繊維強化熱可塑性樹脂成形体における力学特性、およびその等方性を向上させる手段として、構成する炭素繊維を、単繊維状に均一に分散させることで、繊維の束と束の隙間に樹脂リッチ部が発生したり、繊維束内に樹脂が含浸できず未含浸部分となったりすることを防ぐことで力学特性、およびその等方性を向上させることを提案している。
日本国特許第4161409号公報 国際公開第2007/097436号
Composites PartA 38 (2007) P.755~770
 しかしながら、上記の従来技術では、機械強度が均一で、引張強度に優れ、かつ理論強度に対する強度の発現率が高い繊維強化複合材料成形体については検討されていない。
 本発明の課題は、等方性で、かつ機械強度に優れる繊維強化複合材料成形体とその中間材料として用いられるランダムマットを提供することにある。特に、該ランダムマットから得られる繊維強化複合材料成形体であって、含有する強化繊維マットの厚み斑が小さく、機械強度が均一で、引張強度に優れ、かつ強度の発現率が高い繊維強化複合材料成形体を提供しようとするものである。
 本発明者らは、熱可塑性樹脂と特定の重量平均繊維幅、平均繊維幅分散比および重量平均繊維厚みの不連続な強化繊維とを含むランダムマットにより、機械強度およびその等方性、ならびに強度の発現性に優れる繊維強化複合材料成形体を提供できることを見出し、本発明を完成させた。より詳細には、強化繊維を小型で、かつ同程度の繊維幅に制御することで、ランダムマット中に強化繊維を緻密に含有させることができ、均一で、優れた機械強度を有し、かつ強度の発現率が高い繊維強化複合材料成形体を提供できることを見出した。
 即ち、本発明は平均繊維長3~100mmの強化繊維と熱可塑性樹脂とを含み、前記強化繊維が下記i)~iii)を満たすランダムマットおよび、それを成形して得られる繊維強化複合材料成形体である。
i)強化繊維の重量平均繊維幅(Ww)が下記式(1)を満たす。
 0mm<Ww<2.8mm  (1)
ii)強化繊維における平均繊維幅の分散比(Ww/Wn)が1.00以上2.00以下である。
iii)強化繊維の重量平均繊維厚みが、その重量平均繊維幅(Ww)よりも小さい。
 本発明は、熱可塑性樹脂と強化繊維を含むランダムマットにおいて、含まれる強化繊維が、特定の繊維幅分布を有する。すなわち、本発明のランダムマットは、含有する強化繊維が小型で、かつ同程度の繊維幅を有しており、繊維の強化機能の発現性に優れ、均質で優れた機械強度を有する。さらに、本発明のランダムマットは、面内方向において繊維が特定の方向に配向しておらず等方性であり、更に、成形用中間材料として極めて成形性に優れている。
 したがって、本発明のランダムマットより得られる繊維強化複合材料成形体は優れた機械強度を有し、またその等方性に優れるため、各種構成部材、例えば自動車の内板、外板、構成部材、また各種電気製品、機械のフレームや筐体等に用いることができる。
ロータリーカッターを用いたカット工程の一例の模式図である。 好ましいロータリーカッターの一例について、正面と断面の概略を示す模式図である。 繊維の拡幅・分繊方法の好ましい一例の模式図である。
 以下に、本発明の実施の形態について順次説明する。以下、本発明に関して、重量との語が用いられている箇所があるが、いずれにおいても、重量は質量を意味する。
 本発明は、平均繊維長3~100mmの強化繊維と熱可塑性樹脂とを含み、その強化繊維が下記i)~iii)を満たすランダムマットに関する。
i)強化繊維の重量平均繊維幅(Ww)が下記式(1)を満たす。
 0mm<Ww<2.8mm  (1)
ii)強化繊維について重量平均繊維幅の数平均繊維幅に対する比として定義される平均繊維幅分散比(Ww/Wn)が1.00以上2.00以下である。
iii)強化繊維の重量平均繊維厚みが、その重量平均繊維幅(Ww)よりも小さい。
 本発明のランダムマットに含まれる強化繊維の重量平均繊維幅(Ww)とは、ランダムマットから取り出した充分な数(好ましくは、100mm×100mmに切り出したランダムマットから取り出した200~1000本であり、より好ましくは300~1000本であり、たとえば300本である)の強化繊維の各々について、それらの幅(以下、繊維幅またはWと表記することがある)と重量(以下、繊維重量またはwと表記することがある)、更に、取り出した強化繊維の総重量(w)から、以下の式(5)により求めることができる。
 Ww=Σ(W×w/w)  (5)
 上記式(5)において、iは1から、ランダムマットより取り出した強化繊維の数までの自然数である。
 本発明のランダムマットに関して、強化繊維の重量平均繊維幅(Ww)は、前記式(1)のとおり2.8mm未満であり、2.0mm未満であることが好ましく、0.1mmより大きく2.0mmより小さい、つまり下記式(2)
 0.1mm<Ww<2.0mm  (2)
で示されるものであると好ましく、0.2mmより大きく1.6mmより小さいとより好ましく、0.2mmより大きく1.4mmより小さいと更に好ましく、0.3mmより大きく1.2mmより小さいと特に好ましい。強化繊維の重量平均繊維幅(Ww)が2.8mm以上の場合は、強化繊維が小型ではないため、ランダムマット中に緻密に含有させることが難しく、物性(強度)の発現性に劣り、ランダムマットの均質性を損なう場合があるといった問題が生じることがある。強化繊維の重量平均繊維幅(Ww)の下限について、特に制限は無いが、Wwを小さくするために強化繊維を拡幅や分繊する場合には、あまり極端に小さくしようとすると、繊維幅の分散比の制御が困難になるなどの恐れがある。
 本発明のランダムマットは、含有する強化繊維について、重量平均繊維幅(Ww)の、数平均繊維幅(Wn)に対する比として定義される平均繊維幅分散比(Ww/Wn)が1.00以上2.00以下であり、1.30以上1.95以下であると好ましく、1.40以上1.90以下であるとより好ましい。この平均繊維幅分散比(Ww/Wn、以下、単に分散比と略称することがある)が1.00以上2.00以下であると、同程度の繊維幅の強化繊維となり、得られるランダムマットの均質性が高くなり、強度の発現率が高くなる。なお、このWw/Wnの下限値は、その定義により1である。強化繊維を完全に開繊させ単糸状とする場合などを除き、強化繊維のWw/Wnを完全に1にするには、目的とする強化繊維以外を選別する工程や、事前に繊維幅を正確に調整、固定化するなどの操作が必要になり、作製工程が非常に煩瑣になるが、Ww/Wn=1のランダムマットは均質性の点でより好ましい。強化繊維の加工や選別の操作の行いやすさの観点からは、上記平均繊維幅分散比(Ww/Wn)は1超過が好ましく、1.30以上であるとより好ましい。
 ここで、数平均繊維幅(Wn)は、重量平均繊維幅(Ww)について上述した手順にて、ランダムマットから充分な数(I)の強化繊維を取り出し、それら各々について、繊維幅(W)を測定し、以下式(4)により算出される。
 Wn=ΣW/I  (4)
 本発明のランダムマットに含まれる強化繊維は、その重量平均繊維厚みが、その重量平均繊維幅(Ww)よりも小さいものであり、重量平均繊維厚みが重量平均繊維幅(Ww)の1/5以下であると好ましく、1/10以下であるとより好ましく、1/20以下であるとより一層好ましく、1/50以下であると更に好ましい。強化繊維の重量平均繊維厚みが、その重量平均繊維幅(Ww)と等しい場合、面内方向のみならず厚み方向にも繊維が配向してしまい、繊維の交絡によって強化繊維体積含有率を高くすることが困難になるといった問題が生じることが懸念される。
 本発明においては、強化繊維の長さ方向を除いた2つの方向の長さのうち、短い方を「厚み」とし、もう一方を「幅」とする。強化繊維の長手方向に垂直な断面における直交する二方向の寸法が等しい場合、任意の一方向を強化繊維の幅とし、もう一方を強化繊維の厚みとする。
 本発明のランダムマットに含まれる強化繊維の重量平均繊維厚みとしては、0.01mm以上0.30mm以下であると好ましく、0.02mm以上0.20mm以下であるとより好ましく、0.03mm以上0.15mm以下であると更に好ましく、0.03mm以上0.10mm以下であると特に好ましい。強化繊維の重量平均繊維厚みが0.01mm以上であれば、繊維拡幅する際に、拡幅幅を極端に大きくする必要がなく、繊維厚みにバラツキが生じにくい。マトリクスである熱可塑性樹脂の含浸の点で、強化繊維の重量平均繊維厚みが0.30mm以下であると好ましい。
 なお、強化繊維の重量平均繊維厚み(t)については、前記の重量平均繊維幅(Ww)について示したものと同様の操作を行い、取り出した全ての強化繊維についての繊維厚み(t)と繊維重量(w)、そして取り出した強化繊維の総重量(w)を測定後、以下の式(7)により求めることができる。
 t=Σ(t×w/w)  (7)
 本発明のランダムマットの面内において、強化繊維は特定の方向に配向しておらず、無作為な方向に分散して配置されている。本発明のランダムマットは面内等方性の中間材料である。本発明のランダムマットを加工して得られる成形体では、ランダムマット中の強化繊維の等方性が、維持されている。ランダムマットより成形体を得て、互いに直交する二方向の引張弾性率の比を求めることで、ランダムマットおよびそれからの成形体の等方性を定量的に評価できる。ランダムマットから得られた成形体における2方向の弾性率の値のうち大きいものを小さいもので割った比が2を超えないときに等方性であるとする。比が1.3を超えないときは等方性に優れているとする。
 本発明のランダムマットは、上記のとおり、所定の重量平均繊維幅、平均繊維幅分散比および重量平均繊維厚みの強化繊維と熱可塑性樹脂とを含んで構成される。本発明のランダムマットは、前記強化繊維から構成される強化繊維マットと熱可塑性樹脂とを含んで構成されることが好ましい。本発明でいう強化繊維マットは、マトリクスとしての熱可塑性樹脂を含まず不連続な強化繊維から構成される面状体(マット状物)である。本発明に関する強化繊維マットは、強化繊維がサイジング剤や、マットとする時に少量のバインダーを含んだものでもよく、また、面内において強化繊維がランダムな方向に配向しており、実質的に面内の縦横方向の物性がほぼ等しいマットであると好ましい。
 強化繊維の種類としては特に制限はなく、単一であっても、2種類以上の混合であっても構わない。
 本発明のランダムマットにおける熱可塑性樹脂の形態としては、強化繊維マットに、粉末状、繊維状、または塊状などの熱可塑性樹脂が含まれるものであってもよく、強化繊維マットを熱可塑性樹脂がマトリクスとして保持しているものでもよく、また、強化繊維マットにシート状やフィルム状などの熱可塑性樹脂が搭載または積層されたものであっても良い。ランダムマット中の熱可塑性樹脂は溶融状態であっても良い。
 なお、本発明のランダムマットに含まれる強化繊維マットについて、重量平均繊維幅(Ww)や、繊維幅の分散比(Ww/Wn)などを求めれば、それらの値を該ランダムマットのものと見なすことができることは言うまでもない。
 本発明のランダムマットは、プリフォームとしてそのまま最終形態の繊維強化材料成形体(以下、単に成形体と称することがある)を得るのに用いられてもよく、加熱などにより熱可塑性樹脂を含浸させプリプレグとされてから最終形態の成形体を得るのに用いられてもよい。本発明のランダムマットは、熱可塑性樹脂の含浸された、上記プリプレグも包含する。
 ここでいう最終形態の成形体は、ランダムマットやその成形板を加圧・加熱して得られたものに対して、さらなる加熱や加圧により(さらなる成形により)、マトリクスである熱可塑性樹脂を溶融させて、他の形状や厚みにしない形態の成形体のことをいう。
 従って、ランダムマット等を加圧・加熱して得られたものを、切断して他の形状の形態にしたものや、研磨して薄くしたり、樹脂等を塗布して厚くしたりしたものは、加熱・加圧をしていないため、最終形態の成形体である。なお、切断や加工の手段として熱を利用する場合は、ここでの加熱に該当しない。
 また、溶融状態の熱可塑性樹脂が供給されたランダムマットを成形する際に、供給された熱可塑性樹脂が溶融状態のままで成形する場合は、例えば、加圧だけの成形で成形体が得られる。
 本発明のランダムマットは、プリフォームとしてそのまま成形に用いても良く、成形板としてから成形に用いてもよく、所望の成形に合わせて各種目付けが選択できるが、ランダムマットにおける強化繊維の目付けは、好ましくは25~10000g/mであり、より好ましくは50~4000g/mであり、更に好ましくは600g/m~3000g/mであり、より一層好ましくは600g/m~2200g/mである。
 本発明のランダムマットは、含有する強化繊維が上記の特定の重量平均繊維幅、平均繊維幅分散比および重量平均繊維厚みのものであることにより、小型で同程度の大きさの繊維で面内が占められ、ランダムマットに含まれる強化繊維マットの厚み斑が極めて小さいものとなっている。そのため、ランダムマットを成形して得られる繊維強化複合材料成形体は、均質で強化繊維の物性発現性に優れる。この厚み斑の指標としては、変動係数CV(%)を用いることができる。ランダムマットに含まれる強化繊維マットの厚みのCV(%)を求める手順の一例を以下に示す。
 まず、ランダムマットから適当な大きさ、例えば100×100mmの正方形の板の試料片を切り出し、熱可塑性樹脂を分離し、これを密封可能な袋に入れ、-0.09MPa以下まで減圧する。袋の上から10mm間隔で試料片に格子状に印をつけ、マイクロメーターにて厚さを1/1000mmまで測定する。測定は、5行×5列の合計25点を測定する。測定した厚みより、袋の厚みを引き、平均値と標準偏差を計算し、下記式により強化繊維マットの厚みの変動係数CV(%)を算出できる。
 変動係数CV(%)=標準偏差/平均値 × 100 (3)
 ランダムマットから熱可塑性樹脂を分離できず、強化繊維マットの厚み斑を測定できない場合は、後述する繊維強化複合材料成形体と同様に熱可塑性樹脂を加熱除去した後に測定を行う。
 なお、ランダムマットにおける強化繊維マットの厚み斑の程度は、該ランダムマットを成形して得られる繊維強化複合材料成形体中の強化繊維においても維持される。
[強化繊維]
 ランダムマットに含まれる強化繊維は不連続であり、ある程度長い強化繊維を含んで強化機能が発現できることを特徴とする。繊維長は、得られたランダムマットにおける強化繊維の繊維長を測定して求めた平均繊維長で表現される。平均繊維長の測定方法としては無作為に抽出した100本の繊維の繊維長を、ノギス等を用いて1mm単位まで測定し、その平均を求める方法が挙げられる。
 本発明のランダムマットにおける強化繊維の平均繊維長は、3mm以上100mm以下であり、好ましくは5mm以上80mm以下であり、より好ましくは10mm以上80mm以下であり、より一層好ましくは10mm以上60mm以下であり、さらに好ましくは12mm以上45mm以下である。繊維長の分布としては、単一であっても構わないし、2種類以上の混合であっても構わない。
 後述する好ましい強化繊維のカット方法において、強化繊維を固定長にカットしてランダムマットを製造した場合、平均繊維長はカットした繊維長と等しくなる。
 強化繊維は、炭素繊維、アラミド繊維、およびガラス繊維からなる群から選ばれる少なくとも一種であることが好ましい。ランダムマットを構成する強化繊維は、軽量でありながら強度に優れた複合材料が提供できる点で炭素繊維が好ましい。上記炭素繊維としては、一般的にポリアクリロニトリル系炭素繊維(以下、PAN系炭素繊維と略称することがある)、石油ピッチ系炭素繊維、石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、気相成長系炭素繊維などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができ、特にPAN系炭素繊維が好ましく、これらの炭素繊維は1種類単独で用いられてもよく、複数の種類の混合物として用いられても良い。本発明のランダムマットに用いられる強化繊維としては、炭素繊維単独であっても、耐衝撃性を付与する等のためにガラス繊維やアラミド繊維などを含むものでも構わない。
 炭素繊維の場合、平均繊維径は好ましくは1~50μmであり、より好ましくは3~12μmであり、より一層好ましくは5~9μm、極めて好ましくは5~7μmである。
 炭素繊維はサイジング剤が付着されたものを用いることが好ましく、サイジング剤は炭素繊維100重量部に対し、0超~10重量部であることが好ましい。
 本発明における強化繊維は、単糸状に開繊した状態であってもよいし、複数の単糸が集まった繊維束であってもよいし、単糸と繊維束が混在していてもよい。
[マトリクス樹脂]
 本発明のランダムマットに含まれるマトリクス樹脂は熱可塑性樹脂である。熱可塑性樹脂の種類としては例えば塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、アクリロニトリル-スチレン樹脂(AS樹脂)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS樹脂)、アクリル樹脂、メタクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド6樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド66樹脂、ポリアミド610樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリ乳酸樹脂などからなる群より選ばれる1種類以上のものが挙げられる。本発明においては、上記の熱可塑性樹脂を、単独で使用してもよく、複数種を混合して使用してもよく、共重合体や変性体として使用してもよい。
 マトリクス樹脂の存在量としては、強化繊維100重量部に対し、10~800重量部であると好ましく、20~300重量であるとより好ましく、20~200重量部であるとより一層好ましく、30~150重量部であるとさらに好ましく、50~100重量部であると特に好ましい。
 なお、強化繊維と熱可塑性樹脂との量の関係については、下記式で定義される強化繊維体積含有率(以下Vfと略記することがある)でも定義することができる。
 強化繊維体積含有率(Vol%)=100×[強化繊維の体積/(強化繊維の体積+熱可塑性樹脂の体積)]
 この強化繊維体積含有率(Vf)と、上記の強化繊維100重量部に対する重量部で表した熱可塑性樹脂の存在量とは、強化繊維の密度と熱可塑性樹脂の密度を用いて換算される。
 また、本発明のランダムマット中には、本発明の目的を損なわない範囲で、有機繊維または無機繊維の各種繊維状または非繊維状フィラー、難燃剤、耐UV剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤の添加剤を含んでいてもよい。
[繊維強化複合材料成形体]
 本発明のランダムマットは、構成する強化繊維が、前記のような特徴を有するため、賦型性が高いという利点も併せ持っている。そのため本発明のランダムマットを、繊維強化複合材料成形体を得るための中間材料として好ましく用いることができる。
 すなわち本発明はランダムマットから得られる繊維強化複合材料成形体の発明を包含するものである。
 本発明の繊維強化複合材料成形体としては、 平均繊維長3~100mmの強化繊維と熱可塑性樹脂とを含み、その強化繊維が下記i)~iii)を満たすものであると好ましい。
i)強化繊維の重量平均繊維幅(Ww)が下記式(1)を満たす。
 0mm<Ww<2.8mm (1)
ii)強化繊維における重量平均繊維幅の数平均繊維幅に対する比として定義される分散比(Ww/Wn)が1.00以上2.00以下である。
iii)強化繊維の重量平均繊維厚みが、その重量平均繊維幅(Ww)よりも小さい。
 本発明の繊維強化複合材料成形体の厚みは、含有する強化繊維の目付および熱可塑性樹脂量を制御することで、適正な範囲に好ましく調整される。
 本発明の繊維強化複合材料成形体を構成する強化繊維の種類としてはとくに限定はなく、ランダムマットの強化繊維の項に述べたものが好ましく挙げられる。
 本発明の繊維強化複合材料成形体を構成する樹脂の種類としてはとくに限定はなく、ランダムマットのマトリクス樹脂の項に述べたものが好ましく挙げられる。
 本発明の繊維強化複合材料成形体における熱可塑性樹脂の存在量は、ランダムマットにおける熱可塑性樹脂量について前述したとおり、強化繊維100重量部に対し、10~800重量部であると好ましく、20~300重量部であるとより好ましく、20~200重量部であるとより一層好ましい、30~150重量部であるとさらに好ましく、50~100重量部であると特に好ましい。
 本発明における繊維強化複合材料成形体の形状は特に限定されない。当該形状としては、例えば、シート状、板状でもよく、曲面部を有していてもよく、断面がT字型、L字型、コの字型、ハット型といった立ち面部などを有するものでもよく、これらを含む三次元形状のものであってもよい。
 本発明の繊維強化複合材料成形体は、種々の肉厚、例えば0.2~100mmの肉厚のものとすることができるが、より薄肉の成形体でも物性や外観が極めて良好なものとすることが可能であり、具体的には成形体としての肉厚が0.2mm~2.0mm(極めて厳密に定める必要があるならば25℃での肉厚)とすることができる。
 繊維強化複合材料成形体における強化繊維の目付けは好ましくは25~10000g/m、より好ましくは50~4000g/mであり、更に好ましくは600g/m~3000g/mであり、より一層好ましくは600g/m~2200g/mである。
 本発明は、少なくとも1種の本発明の繊維強化複合材料成形体をコア材やスキン層に用いた積層体も包含する。本発明の積層体は、更に、連続強化繊維が一方向に揃えて配置された、少なくとも1種の一方向繊維強化複合材料をコア材やスキン層として含んでいても良い。本発明の積層体は、更に、本発明の繊維強化複合材料成形体や一方向繊維強化複合材料以外の繊維強化複合材料成形体(以下、他の繊維強化複合材料成形体と称する)の少なくとも1種を、コア材やスキン層として含んでいても良い。本発明の積層体は、更に、強化繊維を含まない樹脂の少なくとも1種をコア材やスキン層として含んでいても良い。
 上記の、一方向繊維強化複合材料や他の繊維強化複合材料成形体のマトリクス樹脂、強化繊維を含まない樹脂は、熱硬化性樹脂でも熱可塑性樹脂であっても良い。
 上記のように、本発明の繊維強化複合材料成形体は、含有する強化繊維が特定の重量平均繊維幅、平均繊維幅分散比および重量平均繊維厚みのものであるため、含有する強化繊維マットの厚み斑が極めて小さいものとなっている。この厚み斑の指標としては、変動係数CV(%)を用いることができる。
 繊維強化複合材料成形体に含まれる強化繊維マットのCV(%)を求める手順の一例を以下に示す。
 まず、平板状の該成形体から、適当な大きさ、例えば100mm×100mmの試料片を切り出し、これを500℃×1時間程度、炉内にて加熱し樹脂を除去する。この樹脂が除去された試料片の寸法を測定し、平滑な平板上に乗せる。その後、該試料片を乗せた平板を密封可能な袋に入れ、ランダムマット中の強化繊維マットの厚み斑の測定について前述した手順にて、25か所の厚みを測定する。それらの厚みの測定値から、袋と平板の厚みを引いた、該試料の正味の厚みの値を用いて、前記式(3)により繊維強化複合材料成形体中の強化繊維の厚みの変動係数を求めることができる。なお、繊維強化複合材料成形体中の強化繊維マットの厚み斑の程度も、ランダムマットにおけるものが維持される。
[ランダムマットの製造方法]
 本発明のランダムマットの製造方法としては、以下の工程1~4を含む方法が好ましい。
1.強化繊維をカットする工程(カット工程)、
2.カットされた強化繊維を管内に導入し、空気により搬送し散布する工程(散布工程)
3.散布された強化繊維を定着させ、強化繊維マットを得る工程(定着工程)
4.強化繊維マットに熱可塑性樹脂を添加して、ランダムマットを得る工程(熱可塑性樹脂添加工程)
<カット工程>
 強化繊維をカットする工程について述べる。カットされる強化繊維としては、長繊維の単糸が束ねられた形状の、いわゆるストランドが入手や扱いがし易く好ましい。強化繊維のカット方法は、好ましくはロータリーカッター等のナイフを用いて強化繊維をカットする工程である。ロータリーカッターを用いたカット工程の一例を図1に示す。強化繊維を連続的にカットするためのナイフ角度は特に限定されるものではなく、一般的な、繊維に対し、90度の刃を用いても、角度を持たせたものでも、螺旋状に並べたものでも構わない。螺旋状ナイフを有するロータリーカッターの例を図2に示す。
 本発明のランダムマットは上述のように強化繊維が小型に制御されていることを特徴とするので、カット工程に供する強化繊維の大きさ、例えば繊維幅や繊維厚みを、後述する拡幅方法、分繊方法で制御することが好ましい(図3も参照)。
 繊維の拡幅の方法についてはとくに限定はなく、拡張スプレッダー、例えば凸型のピンなどを繊維に押し当てる方法や、繊維の進行方向に対し、交差方向に気流を通過させて繊維を風下方向へ弓なりに撓ませる方法、振動を与える方法などが挙げられる。拡幅した強化繊維は、後段に繊維幅を規制するための規制ローラーを設けることで、目的の繊維幅とすることが好ましい。
 さらに本発明のランダムマットを製造するには、上記のように拡幅した後、強化繊維幅をより小さく分繊することが好ましい。
 繊維分繊の方法としては、とくに限定はなく、例えばスリッターでストランドを細い束にする方法などが挙げられる。スリッターを用いて繊維を分繊する場合、スリット間隔を調整することで、目的の繊維幅のものを好適に得られる。さらに、スリット刃には、一定の繊維幅とした強化繊維を、ナイフ状のスリット刃に通すことで繊維を切り分けるか、くし状としたスリットに通して繊維を選り分けることで、より好ましく繊維幅を制御するが出来る。また、強化繊維の収束剤を選択し、分繊することで強化繊維中の平均繊維数が目的の数量のものを得易くすることも出来る。
 このように繊維拡幅に次いで繊維分繊を行うことで、強化繊維を小型で、かつ同程度の繊維幅に制御することができる。そのためランダムマットに含まれる強化繊維の強化機能の発現性に優れ、均質性が向上し、厚み斑が小さく機械強度に優れたランダムマットが得られる。
<散布工程>
 次いでカットされた強化繊維をカッター下流のテーパ管内に導入し、散布する工程を行う。強化繊維をテーパ管へ搬送する方法については特に限定はないが、テーパ管に吸引風速を発生させ、空気によりテーパ管内部へと搬送させることが好ましい。
 また、散布工程において、強化繊維に圧縮空気を直接吹きつけることで、強化繊維幅の分布を適宜広げることも好ましい。分布の広さは吹きつける圧縮空気の圧力によってコントロールする事も出来る。
 搬送した強化繊維は散布装置下部に設けた通気性シート上に散布することが好ましい。また下記の定着工程のためにも、吸引機構を持つ可動式の通気性シート上に散布することが好ましい。
 また散布工程において、カットされた強化繊維を、繊維状又は粉末状の熱可塑性樹脂を同時に、シート上に散布することで、強化繊維と熱可塑樹脂とを含むランダムマットを好適に得ることができる。
<定着工程>
 次いで散布された強化繊維を定着させ、強化繊維マットを得る。具体的には、散布された強化繊維を通気性シート下部よりエアを吸引して、強化繊維を定着させて強化繊維マットを得る方法が好ましい。強化繊維と同時に繊維状または、粉末状の熱可塑性樹脂を散布する場合であっても、強化繊維に伴って定着される。なお、この定着工程の処理は、前記の散布工程において、強化繊維などを散布するのと連続して行っても良い。
<熱可塑性樹脂添加工程>
 熱可塑性樹脂添加工程は前述する1~3の工程と同時に行ってもよく、例えば、上記の散布工程で、粉末状等の熱可塑性樹脂を散布しても良い。そのような前述する1~3の工程における熱可塑性樹脂の添加をせず、強化繊維マットを作成した場合は、強化繊維マットにシート状やフィルム状などの熱可塑性樹脂を搭載または積層し本発明のランダムマットとすることができ、この場合シート状またはフィルム状の熱可塑性樹脂は溶融状態であっても良い。
 なお、上記の散布工程で、粉末状等の熱化成樹脂を散布して得られたランダムマットに対して、上記のように、シート状やフィルム状、または粉末状などの熱可塑性樹脂を搭載または積層しても良い。
[繊維強化複合材料成形体の製造]
 本発明のランダムマットを成形して、繊維強化複合材料成形体を得ることができる。繊維強化複合材料成形体を得る方法としては、上記のようにして得られたランダムマットをプレス等により加熱・加圧して得る方法が挙げられる。本発明の繊維強化複合材料成形体を得る方法に特に限定はないが、例えば真空成形や液圧成形、ホットプレス、コールドプレス等により成形することで好適に該成形体を得ることが出来る。なかでも本発明の繊維強化複合材料成形体は、ランダムマットを、その含有する熱可塑性樹脂の融点あるいはガラス転移温度以上まで加熱した後、該樹脂の融点あるいはガラス転移温度以下の温度に保った型で挟み込んで形状を得る、コールドプレス成形において好適に得られる。
 ランダムマットを成形する場合、予めマトリクスである熱可塑性樹脂が結晶性の場合は融点以上、または熱可塑性樹脂が非晶性の場合はガラス転移点以上の温度、好ましくは、更に熱可塑性樹脂の分解点以下の温度に、ランダムマットが加熱されていることが好ましい。加圧媒体は、マトリクスである熱可塑性樹脂の融点またはガラス転移点以上に調整されていても、融点またはガラス転移点以下に調整されていてもよい。また成形する際に、適宜、熱可塑性樹脂を加えることで目的に応じて厚みの異なる繊維強化複合材料成形体を得ることが出来る。加える熱可塑性樹脂は特に指定は無く、具体例としてはマトリクス樹脂の項で述べたものと同じものが挙げられる。さらに樹脂の形態も、溶融樹脂や繊維状、粉末状やフィルム状などを用いることができる。
 これら本発明のランダムマットは、プリフォームとしてそのまま用いられてもよく、成形板とされてから最終形態の成形体としても良い。
 以下に実施例を示すが、本発明はこれらに制限されるものではない。なお、特に、注記無い限り、強化繊維やその試料について、繊維の長さ、繊維幅および繊維厚みの単位はmm、重量の単位はgである。なお、以下の実施例、比較例で用いた炭素繊維や熱可塑性樹脂の密度は以下のとおりである。
PAN系炭素繊維“テナックス”(登録商標)STS40-24K:1.75g/cm
PAN系炭素繊維“テナックス”(登録商標)IMS60-24K:1.80g/cm
PAN系炭素繊維“テナックス”(登録商標)HTS40-12K:1.76g/cm
PAN系炭素繊維“テナックス”(登録商標)UTS50-24K:1.79g/cm
PAN系炭素繊維“テナックス”(登録商標)HTS40-6K:1.76g/cm
ポリプロピレン:0.91g/cm
ポリカーボネート:1.20g/cm
ポリアミド6:1.14g/cm
[ランダムマットにおける強化繊維の数平均繊維幅および重量平均繊維幅の求め方]
 ランダムマットを100mm×100mmに切り出し、強化繊維をピンセットで無作為に300本取り出す。取り出した強化繊維について、個々の繊維幅(W)と繊維重量(w)、繊維厚み(t)を測定し、記録する。繊維幅と繊維厚みの測定には、1/100mmまで測定可能なノギスを用い、重量の測定には、1/100mgまで測定可能な天秤を用いる。重量が測定できない小型の強化繊維については、同じ繊維幅のものをまとめて重量を測定した。なお、2種類以上の強化繊維が使用されている場合には、繊維の種類毎に分け、各々について測定及び評価を行う。
 取り出した全ての繊維について繊維幅(W)と繊維重量(w)測定後、数平均繊維幅(Wn)を以下の式(4)により求める。
 Wn=ΣW/I  (4)
 Iは強化繊維の本数であり、繊維本数が300本に満たない場合を除き、その値は300である。
 さらに、強化繊維の重量平均繊維幅(Ww)を、強化繊維の総重量(w)から以下の式(5)により求める。
 Ww=Σ(W×w/w)  (5)
 なお、強化繊維と熱可塑性樹脂とを分離できず上記測定に支障がある場合は、例えば500℃で1時間程度加熱する等して、熱可塑性樹脂を除去した後に上記測定を行う。
[強化繊維における分散比(Ww/Wn)の求め方]
 得られた強化繊維の数平均繊維幅(Wn)、および重量平均繊維幅(Ww)より、平均繊維幅分散比(Ww/Wn)を以下の式(6)により求める。
 平均繊維幅分散比(Ww/Wn)=重量平均繊維幅(Ww)/数平均繊維幅(Wn)  (6)
[ランダムマットにおける強化繊維の重量平均繊維厚みの求め方]
 上記により、取り出した全ての強化繊維について繊維厚み(t)と繊維重量(w)測定後、重量平均繊維厚み(t)を以下の式(7)により求める。
 t=Σ(t×w/w)  (7)
[繊維強化複合材料成形体における強化繊維の数平均繊維幅および重量平均繊維幅の求め方]
 繊維強化複合材料成形体中の強化繊維の平均繊維幅は、複合材料成形体を100mm×100mmに切り出し、500℃で1時間程度炉内にて加熱して樹脂を除去した後、ランダムマットと同様の手順で、繊維を取り出して繊維幅(W)と繊維重量(w)等を測定し求める。
 [強化繊維マットまたはランダムマットにおける平均繊維長Lの求め方]
 強化繊維マットまたはランダムマットより、強化繊維を、ピンセットを用いて無作為に100本取り出し、個々の繊維長Lを、ノギスを用いて、1mmまで測定し、記録する。取り出す際の大きさは繊維長に対して、十分大きい範囲について、取り出すことが好ましい。
 得られた個々の繊維長Lより、下記式より平均繊維長Lを求める。
 L=ΣL/100
 なお、強化繊維と熱可塑性樹脂とを分離できず上記測定に支障がある場合は、例えば500℃で1時間程度加熱する等して、熱可塑性樹脂を除去した後に上記の測定を行う。
[ランダムマットにおける強化繊維マットの厚み斑測定方法]
 以下の手順でランダムマット中の強化繊維マットの厚み変動係数CVを算出し、これより厚み斑を評価した。変動係数CV(%)が大きいほど、繊維の厚みのばらつきが大きいとする。
 なお、ランダムマットから熱可塑性樹脂を分離できず、強化繊維マットの厚み斑を測定できない場合は、下記繊維強化複合材料成形体と同様に熱可塑性樹脂を加熱除去した後に測定を行う。
1)ランダムマットを100mm×100mmに切り出し、熱可塑性樹脂を分離し、密封可能な袋に入れ、-0.09MPa以下まで減圧する。
2)袋の上から10mm間隔で格子状に印をつけ、マイクロメーターにて厚さを1/1000mmまで測定する。測定は、5行×5列の合計25点を測定する。
3)測定した厚みより、袋の厚みを引き、平均値と標準偏差を計算し、下記式により繊維の厚みの変動係数CVを算出する。
 変動係数CV(%)=標準偏差/平均値 × 100  (3)
[繊維強化複合材料成形体における強化繊維マットの厚み斑測定方法]
 繊維強化複合材料成形体の強化繊維マットの厚み斑を評価する場合、平板状の繊維強化複合材料成形体を100mm×100mmに切り出し、500℃で1時間程度炉内にて加熱し熱可塑性樹脂を除去する。その後、同様に寸法を測定し、平滑な平板上に乗せる。その後、平板毎、密封可能な袋に入れ、測定した厚みより、袋と平板の厚みを引く以外はランダムマットにおける手順と同様に、厚みを25点測定し、厚みの変動係数CVを求めた。
[繊維強化複合材料成形体(成形板)の熱可塑性樹脂の含浸程度の評価]
 繊維強化複合材料成形体(成形板)の含浸程度は、超音波探傷試験により評価する。超音波探傷映像化装置(日本クラウトクレーマー(株) SDS-WIN)にて探傷機周波数5MHz、走査ピッチ2.0mm×2.0mmで探傷試験を行うことで評価した。評価を行うに当って、反射波強度90%以上の部分の断面において顕微鏡観察を行い、欠陥や空隙が存在しないことを確認した。探傷試験において反射波強度が高い(本実施例では70%以上)部分の面積割合が多いほど、成形板の内部が緻密であり、成形板において熱可塑性樹脂の含浸程度が高いとする。一方反射波強度が低い(本実施例では50%以下)部分の面積割合が多いほど、成形板の内部に微細な空隙部があり、成形板において未含浸部分が多いとする。
[引張試験]
 ウォータージェットを用いて繊維強化複合材料成形体(成形板)から試験片を切出し、JIS K 7164を参考として、インストロン社製の万能試験機を用いて、引張強度および引張弾性率を測定した。試験片の形状は1B系B形試験片とした。チャック間距離は115mm、試験速度は10mm/分とした。なお、試験片については、成形体の任意の方向(0度方向)、およびこれと直交する方向(90度方向)についてそれぞれ切出し、両方向の引張強度および引張弾性率を測定した。また、引張弾性率については、大きい方の値を小さい方の値で割った比(Eδ)を算出した。
[理論強度に対する物性発現率の算出]
 上記手順にて得られた成形板の引張強度と、当該成形板に含まれる強化繊維(炭素繊維)の引張強度から以下の計算によって、理論強度に対する物性発現率(%)を求めた。
  物性発現率(%)=成形体の引張強度/成形体の理論強度×100
  ここで、成形体の理論強度は、成形体に含まれる強化繊維の引張強度(F)、破断時のマトリクス樹脂の応力(σ)、強化繊維体積含有率(Vf)、繊維の配向係数(ηθ)から、複合材料の強さの複合則によって以下の式で求めた。
  成形体の理論強度(MPa)=(ηθ×F×Vf)+σ(1-Vf)
 (ここで配向係数ηθは、面内ランダム配向におけるηθ=3/8を用いた。)
[実施例1]
 強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40-24Kストランド(繊維径7.0μm 繊維幅10mm 引張強度4000MPa)を繊維拡幅して22mm幅とした。拡幅した強化繊維ストランドを分繊装置に処する前に、内幅20mmのローラーに通すことで繊維幅を正確に20mm幅となるように調節を行った。分繊装置として、超硬合金の円盤状の分繊刃を用いて、20mm幅とした強化繊維ストランドを0.8mm間隔にスリットし、更に、カット装置として、20mm間隔に刃が形成された超硬合金製のロータリーカッターを使用して繊維長が20mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置した。このテーパ管に圧縮空気を送りこむことにより、吸引風速5m/secにて強化繊維をテーパ管に導入し、搬送した。テーパ管の側面よりマトリクス樹脂として、平均粒径500μmに粉砕、分級したポリプロピレン(プライムポリマー社製 J-106G)を供給した。次に、テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら、上記テーパ管より強化繊維を供給し、繊維目付1500g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
 得られたランダムマットの強化繊維の平均繊維長は20mmであり、重量平均繊維厚みは0.06mmであった。ランダムマットを構成する強化繊維の重量平均繊維幅(Ww)は0.66mmであり、数平均繊維幅(Wn)は0.43mmであり、分散比(Ww/Wn)は1.52であった。
 得られたランダムマットを220℃に加熱したプレス装置にて、4.0MPaにて10分間加熱し、厚さ1.9mmの成形板を得た。得られた成形板について強化繊維マットの厚み斑の評価を行ったところ、厚みの変動係数のCVは6.4%であった。さらに超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
 得られた成形板の強化繊維体積含有率は45Vol%であり、JIS7164に準拠し引張特性の評価を行った結果、引張強度は490MPaであり、理論強度に対する物性発現率は73%であった。また、0度方向と90度方向の引張弾性率比は1.06であった。
[実施例2]
 強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)IMS60-24Kストランド(繊維径5.0μm 繊維幅10mm 引張強度5800MPa)を繊維拡幅して26mm幅とした。拡幅した強化繊維ストランドを分繊装置に処する前に、内幅25mmのローラーに通すことで繊維幅を正確に25mm幅となるように調節を行った。分繊装置として、超硬合金の円盤状の分繊刃を用いて、25mm幅とした強化繊維ストランドを1.4mm間隔にスリットし、更に、カット装置として、45mm間隔に刃が形成された超硬合金製のロータリーカッターを使用して繊維長が45mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置した。このテーパ管に圧縮空気を送りこむことにより、吸引風速5m/secにて強化繊維をテーパ管に導入し、搬送した。テーパ管の側面よりマトリクス樹脂として、平均粒径500μmに粉砕、分級したポリカーボネート(帝人化成社製“パンライト”(登録商標)L-1225Y)を供給した。次に、テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら、上記テーパ管より強化繊維を供給し、繊維目付2500g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
 得られたランダムマットの強化繊維の平均繊維長は45mmであり、重量平均繊維厚みは0.05mmであった。ランダムマットを構成する強化繊維の重量平均繊維幅(Ww)は1.25mmであり、数平均繊維幅(Wn)は0.69mmであり、分散比(Ww/Wn)は1.80であった。
 得られたランダムマットを300℃に加熱したプレス装置にて、4.0MPaにて10分間加熱し、厚さ4.0mmの成形板を得た。得られた成形板について強化繊維マットの厚み斑の評価を行ったところ、厚みの変動係数のCVは9.0%であった。さらに超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
 得られた成形板の強化繊維体積含有率は35Vol%であり、JIS7164に準拠し引張特性の評価を行った結果、引張強度は540MPaであり、理論強度に対する物性発現率は71%であった。また、0度方向と90度方向の引張弾性率比は1.07であった。
[実施例3]
 強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40-24Kストランド(繊維径7.0μm 繊維幅10mm 引張強度4000MPa)を繊維拡幅して16mm幅とした。拡幅した強化繊維ストランドを分繊装置に処する前に、内幅15mmのローラーに通すことで繊維幅を正確に15mm幅となるように調節を行った。分繊装置として、超硬合金の円盤状の分繊刃を用いて、15mm幅とした強化繊維ストランドを0.5mm間隔にスリットし、更に、カット装置として、12mm間隔に刃が形成された超硬合金製のロータリーカッターを使用して繊維長が12mmになるようにカットした。散布装置として、小孔を有した管を用意し、コンプレッサーを用いて圧縮空気を送気した。この時、小孔からの吐出風速は50m/secであった。さらにその下部にテーパ管を配置した。次に、テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら、上記テーパ管より強化繊維を供給し、繊維目付700g/mの強化繊維マットを得た。強化繊維マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
 次いで、このマット上に、溶融したマトリクス樹脂を供給した。すなわち、マトリクス樹脂としてポリアミド6樹脂(ユニチカ社製 A1030)を使用し、これを溶融して、コンベアネット上方5cmの位置に設けた幅1mのT-ダイから厚み0.6mmの膜状溶融樹脂体をコンベアライン速度と同速度で押し出し、マット全面に溶融樹脂を供給した。この際、強化繊維マット面上の樹脂が供給される箇所を、赤外線ヒータにより加熱して、樹脂の冷却固化を防ぐようにした。
 そして、強化繊維の供給量を1400g/minに対し、マトリクス樹脂の供給量を1360g/minとする条件で装置を稼動したところ、定着ネット上に強化繊維と熱可塑性樹脂からなるランダムマットが形成された。引き続き、これを設定温度280℃の一対の加熱ローラーにより加熱加圧して、樹脂が均一に含浸したランダムマットを得た。
 得られたランダムマットの強化繊維の平均繊維長は12mmであり、重量平均繊維厚みは0.06mmであった。ランダムマットを構成する強化繊維の重量平均繊維幅(Ww)は0.32mmであり、数平均繊維幅(Wn)は0.16mmであり、分散比(Ww/Wn)は1.96であった。
 得られたランダムマットを260℃に加熱したプレス装置にて、4.0MPaにて10分間加熱し、厚さ1.0mmの成形板を得た。
 得られた成形板について、強化繊維マットの厚み斑の評価を行ったところ、厚みの変動係数のCVは6.8%であった。さらに超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
 得られた成形板の強化繊維体積含有率は40Vol%であり、JIS7164に準拠し引張特性の評価を行った結果、引張強度は440MPaであり、理論強度に対する物性発現率は73%であった。また、0度方向と90度方向の引張弾性率比は1.04であった。
[実施例4]
 強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)HTS40-12Kストランド(繊維径7.0μm 繊維幅8mm 引張強度4200MPa)を繊維拡幅して16mm幅とした。拡幅した強化繊維ストランドを分繊装置に処する前に、内幅15mmのローラーに通すことで繊維幅を正確に15mm幅となるように調節を行った。分繊装置として、超硬合金の円盤状の分繊刃を用いて、15mm幅とした強化繊維ストランドを0.5mm間隔にスリットし、更に、カット装置には、15mm間隔に刃が形成された超硬合金製のロータリーカッターを使用して繊維長が15mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置した。このテーパ管に圧縮空気を送りこみ、吸引風速5m/secにて繊維をテーパ管に導入、搬送した。テーパ管の側面よりマトリクス樹脂として、平均粒径500μmに粉砕、分級したポリカーボネート(帝人化成社製“パンライト”(登録商標)L-1225Y)を供給した。次に、テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら、上記テーパ管より強化繊維を供給し、繊維目付2640g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
 得られたランダムマットの強化繊維の平均繊維長は15mmであり、重量平均繊維厚みは0.04mmであった。ランダムマットを構成する強化繊維の重量平均繊維幅(Ww)は0.47mmであり、数平均繊維幅(Wn)は0.36mmであり、分散比(Ww/Wn)は1.31であった。
 得られたランダムマットを300℃に加熱したプレス装置にて、4.0MPaにて10分間加熱し、厚さ3.0mmの成形板を得た。得られた成形板について強化繊維マットの厚み斑の評価を行ったところ、厚みの変動係数のCVは5.6%であった。さらに超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
 得られた成形板の強化繊維体積含有率は50Vol%であり、JIS7164に準拠し引張特性の評価を行った結果、引張強度は585MPaであり、理論強度に対する物性発現率は74%であった。また、0度方向と90度方向の引張弾性率比は1.04であった。
[比較例1]
 強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)HTS40-12Kストランド(繊維径7.0μm 繊維幅8mm 引張強度4200MPa)を繊維拡幅して16mm幅とした。拡幅した強化繊維ストランドを分繊装置に処する前に、内幅15mmのローラーに通すことで繊維幅を正確に15mm幅となるように調節を行った。分繊装置として、超硬合金の円盤状の分繊刃を用いて、強化繊維ストランドを3.2mm間隔にスリットし、更に、カット装置として、15mm間隔に刃が形成された超硬合金製のロータリーカッターを使用して繊維長が15mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置した。このテーパ管に圧縮空気を送りこみ、吸引風速5m/secにて繊維をテーパ管に導入、搬送した。テーパ管の側面よりマトリクス樹脂として、平均粒径500μmに粉砕、分級したポリカーボネート(帝人化成社製“パンライト”(登録商標)L-1225Y)を供給した。次に、テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら、上記テーパ管より強化繊維を供給し、繊維目付2640g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
 得られたランダムマットの強化繊維の平均繊維長は15mmであり、重量平均繊維厚みは0.05mmであった。ランダムマットを構成する強化繊維の重量平均繊維幅(Ww)は3.02mmであり、数平均繊維幅(Wn)は2.27mmであり、分散比(Ww/Wn)は1.33であった。
 得られたランダムマットを300℃に加熱したプレス装置にて、4.0MPaにて10分間加熱し、厚さ3.0mmの成形板を得た。得られた成形板について強化繊維マットの厚み斑の評価を行ったところ、厚みの変動係数のCVは18.4%であった。さらに超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
 得られた成形板の強化繊維体積含有率は50Vol%であり、JIS7164に準拠し引張特性の評価を行った結果、引張強度は420MPaであり、理論強度に対する物性発現率は53%であった。また、0度方向と90度方向の引張弾性率比は1.16であった。
[実施例5]
 強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)UTS50-24Kストランド(繊維径6.9μm 繊維幅10mm 引張強度5000MPa)を繊維拡幅して22mm幅とした。拡幅した強化繊維ストランドを分繊装置に処する前に、内幅20mmのローラーに通すことで繊維幅を正確に20mm幅となるように調節を行った。分繊装置として、2.6mmと2.2mmの間隔を交互に持つ円盤状の分繊刃を用いて、強化繊維ストランドをスリットし、更に、カット装置として、30mm間隔に刃が形成された超硬合金製のロータリーカッターを使用して繊維長が30mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置した。このテーパ管に圧縮空気を送りこみ、吸引風速5m/secにて繊維をテーパ管に導入し、搬送した。テーパ管の側面よりマトリクス樹脂として、平均粒径500μmに粉砕、分級したポリアミド6(ユニチカ社製“A1030”)を供給した。次に、テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら、上記テーパ管より強化繊維を供給し、繊維目付4000g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
 得られたランダムマットの強化繊維の平均繊維長は30mmであり、重量平均繊維厚みは0.07mmであった。ランダムマットを構成する強化繊維の重量平均繊維幅(Ww)は2.20mmであり、数平均繊維幅(Wn)は1.39mmであり、分散比(Ww/Wn)は1.58であった。
 得られたランダムマットを280℃に加熱したプレス装置にて、4.0MPaにて10分間加熱し、厚さ5.0mmの成形板を得た。得られた成形板について強化繊維マットの厚み斑の評価を行ったところ、厚みの変動係数のCVは13.3%であった。さらに超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
 得られた成形板の強化繊維体積含有率は45Vol%であり、JIS7164に準拠し引張特性の評価を行った結果、引張強度は550MPaであり、理論強度に対する物性発現率は65%であった。また、0度方向と90度方向の引張弾性率比は1.09であった。
[比較例2]
 強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)UTS50-24Kストランド(繊維径6.9μm 繊維幅10mm 引張強度5000MPa)を繊維拡幅して22mm幅とした。拡幅した強化繊維ストランドを分繊装置に処する前に、内幅20mmのローラーに通すことで繊維幅を正確に20mm幅となるように調節を行った。拡幅して20mm幅とした強化繊維ストランドをそれぞれ、4.2mm間隔および0.3mm間隔にスリットし、同量をカット装置に供給した。カット装置として、20mm間隔に刃が形成された超硬合金製のロータリーカッターを使用して繊維長が20mmになるようにカットした。
 このロータリーカッターの直下にテーパ管を配置した。このテーパ管に圧縮空気を送りこみ、吸引風速5m/secにて繊維をテーパ管に導入し、搬送した。テーパ管の側面よりマトリクス樹脂として、平均粒径500μmに粉砕、分級したポリアミド6(ユニチカ社製“A1030”)を供給した。次に、テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら、上記テーパ管より炭素繊維を供給し、繊維目付2380g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
 得られたランダムマットの強化繊維の平均繊維長は20mmであり、重量平均繊維厚みは0.06mmであった。ランダムマットを構成する強化繊維の重量平均繊維幅(Ww)は2.21mmであり、数平均繊維幅(Wn)は0.54mmであり、分散比(Ww/Wn)は4.08であった。
 得られたランダムマットを280℃に加熱したプレス装置にて、4.0MPaにて10分間加熱し、厚さ3.0mmの成形板を得た。得られた成形板について強化繊維マットの厚み斑の評価を行ったところ、厚みの変動係数のCVは16.2%であった。さらに超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
 得られた成形板の強化繊維体積含有率は45Vol%であり、JIS7164に準拠し引張特性の評価を行った結果、引張強度490MPaであり、理論強度に対する物性発現率は58%であった。また、0度方向と90度方向の引張弾性率比は1.08であった。
[比較例3]
 強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)HTS40-6Kストランド(繊維径7.0μm 繊維幅6mm 引張強度4200MPa)を用いた。強化繊維ストランドを6mm間隔に刃が形成されたロービングカッターを使用して繊維長が6mmになるようにカットした。このロービングカッターでカットした強化繊維を、直下のコンベアネットへと供給し、繊維目付2640g/mの強化繊維マットを得た。強化繊維マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
 得られた強化繊維マットの強化繊維の平均繊維長は6.1mmであり、重量平均繊維厚みは0.05mmであった。強化繊維マットを構成する強化繊維の重量平均繊維幅(Ww)は5.81mmであり、数平均繊維幅(Wn)は5.25mmであり、分散比(Ww/Wn)は1.11であった。
 強化繊維マットは、ポリカーボネートフィルム(帝人化成社製“パンライト”(登録商標)L-1225Y)を用いて、強化繊維目付2640g/mに対して、樹脂フィルムを1815g/mをマットの両面に積層し、設定温度300℃の一対の加熱ローラーにより加熱加圧して、樹脂が均一に含浸したランダムマットを得た。
 得られたランダムマットを300℃に加熱したプレス装置にて、4.0MPaにて10分間加熱し、厚さ3.1mmの成形板を得た。得られた成形板について強化繊維マットの厚み斑の評価を行ったところ、厚みの変動係数のCVは32.4%であった。さらに超音波探傷試験を行ったところ、反射波強度が70%以上の部分が47%観察され、成形板内部に未含浸部分が確認された。
 得られた成形板の強化繊維体積含有率は49Vol%であり、JIS7164に準拠し引張特性の評価を行った結果、引張強度は380MPaであり、理論強度に対する物性発現率は48%であった。また、0度方向と90度方向の引張弾性率比は1.32であった。
 本発明により得られるランダムマットおよび繊維強化複合材料成形体は優れた機械強度を有し、またその等方性に優れるため、各種構成部材、例えば自動車の内板、外板、構成部材、また各種電気製品、機械のフレームや筐体等に用いることができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年7月31日出願の日本特許出願(特願2012-169936)に基づくものであり、その内容はここに参照として取り込まれる。
1.強化繊維
2.ピンチローラー
3.ゴムローラー
4.ロータリーカッター本体
5.刃
6.カットされた強化繊維
7.刃のピッチ
8.拡幅された強化繊維
9.拡幅装置
10.繊維幅規制ローラー
11.分繊スリッター
12.分繊された強化繊維

Claims (11)

  1.  平均繊維長3~100mmの強化繊維と熱可塑性樹脂とを含み、前記強化繊維が下記i)~iii)を満たすランダムマット。
    i)強化繊維の重量平均繊維幅(Ww)が下記式(1)を満たす。
     0mm<Ww<2.8mm  (1)
    ii)強化繊維について、重量平均繊維幅(Ww)の数平均繊維幅(Wn)に対する比として定義される平均繊維幅分散比(Ww/Wn)が1.00以上2.00以下である。
    iii)強化繊維の重量平均繊維厚みが、その重量平均繊維幅(Ww)よりも小さい。
  2.  強化繊維が炭素繊維、アラミド繊維、およびガラス繊維からなる群から選ばれる少なくとも一種である請求項1に記載のランダムマット。
  3.  強化繊維の重量平均繊維幅(Ww)が下記式(2)を満たす、請求項1または2に記載のランダムマット。
     0.1mm<Ww<2.0mm  (2)
  4.  強化繊維における平均繊維幅分散比(Ww/Wn)が1.30以上1.95以下である請求項1~3のいずれか1項に記載のランダムマット。
  5.  強化繊維の重量平均繊維厚みが0.01mm以上0.30mm以下である請求項1~4のいずれか1項に記載のランダムマット。
  6.  強化繊維目付が25~10000g/mである請求項1~5のいずれか1項に記載のランダムマット。
  7.  熱可塑性樹脂の存在量が、強化繊維100重量部に対し、10~800重量部である請求項1~6のいずれか1項に記載のランダムマット。
  8.  請求項1~7のいずれか1項に記載のランダムマットから得られる繊維強化複合材料成形体。
  9.  平均繊維長3~100mmの強化繊維と熱可塑性樹脂とを含み、その強化繊維が下記i)~iii)を満たす請求項8に記載の繊維強化複合材料成形体。
    i)強化繊維の重量平均繊維幅(Ww)が下記式(1)を満たす。
     0mm<Ww<2.8mm  (1)
    ii)強化繊維における重量平均繊維幅(Ww)の数平均繊維幅(Wn)に対する比として定義される分散比(Ww/Wn)が1.00以上2.00以下である。
    iii)強化繊維の重量平均繊維厚みが、その重量平均繊維幅(Ww)よりも小さい。
  10.  前記繊維強化複合材料成形体が前記強化繊維から構成される強化繊維マットを含み、前記強化繊維マットの厚み斑が、下記式(3)にて定義される変動係数CVで20%以下である請求項8または9に記載の繊維強化複合材料成形体。
     変動係数CV(%)=標準偏差/平均値 × 100  (3)
  11.  肉厚が0.2~100mmである請求項8~10のいずれか1項に記載の繊維強化複合材料成形体。
PCT/JP2013/070604 2012-07-31 2013-07-30 ランダムマットおよび繊維強化複合材料成形体 WO2014021316A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014506646A JP5531170B1 (ja) 2012-07-31 2013-07-30 ランダムマットおよび繊維強化複合材料成形体
US14/382,136 US20150158984A1 (en) 2012-07-31 2013-07-30 Random Mat and Fiber-Reinforced Composite Material Shaped Product
CN201380011812.XA CN104136675B (zh) 2012-07-31 2013-07-30 无序毡和纤维增强复合材料成形制品
BR112014021172-8A BR112014021172B1 (pt) 2012-07-31 2013-07-30 Produto formatado de material composto reforçado com fibra e esteira aleatória
RU2014135218/12A RU2558516C1 (ru) 2012-07-31 2013-07-30 Мат с произвольной ориентацией волокон и формованный продукт из армированного волокном композитного материала
KR1020147022692A KR101529850B1 (ko) 2012-07-31 2013-07-30 랜덤 매트 및 섬유 강화 복합재료 성형체
EP13825586.4A EP2808433B1 (en) 2012-07-31 2013-07-30 Random mat, and compact of fibre-reinforced composite material
US15/872,006 US10208174B2 (en) 2012-07-31 2018-01-16 Random mat and fiber-reinforced composite material shaped product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-169936 2012-07-31
JP2012169936 2012-07-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/382,136 A-371-Of-International US20150158984A1 (en) 2012-07-31 2013-07-30 Random Mat and Fiber-Reinforced Composite Material Shaped Product
US15/872,006 Continuation US10208174B2 (en) 2012-07-31 2018-01-16 Random mat and fiber-reinforced composite material shaped product

Publications (1)

Publication Number Publication Date
WO2014021316A1 true WO2014021316A1 (ja) 2014-02-06

Family

ID=50027989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070604 WO2014021316A1 (ja) 2012-07-31 2013-07-30 ランダムマットおよび繊維強化複合材料成形体

Country Status (8)

Country Link
US (2) US20150158984A1 (ja)
EP (1) EP2808433B1 (ja)
JP (1) JP5531170B1 (ja)
KR (1) KR101529850B1 (ja)
CN (1) CN104136675B (ja)
BR (1) BR112014021172B1 (ja)
RU (1) RU2558516C1 (ja)
WO (1) WO2014021316A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170063703A (ko) 2014-09-25 2017-06-08 도레이 카부시키가이샤 강화 섬유 복합 재료
KR20170107483A (ko) 2015-01-30 2017-09-25 도레이 카부시키가이샤 강화 섬유 복합 재료
WO2019107248A1 (ja) * 2017-11-29 2019-06-06 帝人株式会社 複合材料及びその製造方法
DE112021004165T5 (de) 2020-08-04 2023-08-24 Teijin Limited Verbundmaterial und verfahren zur herstellung von formteilen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850368B2 (en) 2012-02-09 2017-12-26 Toray Industries, Inc. Carbon fiber composite material
WO2016152563A1 (ja) * 2015-03-24 2016-09-29 帝人株式会社 炭素繊維強化樹脂複合材料
CN111394836A (zh) * 2015-10-21 2020-07-10 三菱化学株式会社 碳纤维束用切断刀、以及碳纤维束用旋转刀具
EP3950283A4 (en) * 2019-03-27 2022-12-21 Toray Industries, Inc. FIBER REINFORCED RESIN MOLDING MATERIAL MOLDING PRODUCT AND METHOD OF MANUFACTURE THEREOF
CN114622346B (zh) * 2022-04-20 2023-06-06 巩义市泛锐熠辉复合材料有限公司 一种立式卷绕制备气凝胶毡的装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025285A (en) 1996-03-07 2000-02-15 Board Of Trustees Operating Michigan State University Composite material of aligned discontinuous fibers
WO2007097436A1 (ja) 2006-02-24 2007-08-30 Toray Industries, Inc. 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法
JP4161409B2 (ja) 1997-05-23 2008-10-08 東レ株式会社 チョップド炭素繊維およびその製造方法
JP2008254191A (ja) * 2007-03-30 2008-10-23 Honda Motor Co Ltd 炭素繊維複合材料製造装置、これを用いた炭素繊維複合材料製造方法および炭素繊維複合材料
JP2011178890A (ja) * 2010-03-01 2011-09-15 Teijin Ltd 炭素繊維複合材料
WO2012105080A1 (ja) * 2011-02-01 2012-08-09 帝人株式会社 ランダムマット、および強化繊維複合材料
WO2013035705A1 (ja) * 2011-09-06 2013-03-14 帝人株式会社 繊維強化複合材料から構成される表面意匠性が優れた成形体
WO2013115337A1 (ja) * 2012-01-31 2013-08-08 帝人株式会社 ランダムマットおよび繊維強化複合材料

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128092A (ja) * 1984-07-11 1986-02-07 東京製綱繊維ロ−プ株式会社 複合線条体およびその製造方法
JP2883128B2 (ja) * 1989-11-13 1999-04-19 三菱化学株式会社 導電性熱可塑性樹脂組成物
JP2001192466A (ja) * 1993-07-21 2001-07-17 Toray Ind Inc 繊維強化熱可塑性樹脂構造物
RO114484B1 (ro) * 1994-01-28 1999-04-30 Rockwool Int Placa din fibre minerale netesute, procedeu de obtinere a acesteia, instalatie pentru realizarea procedeului si procedeu pentru obtinerea unui element izolator tubular
US6066395A (en) 1997-05-23 2000-05-23 Toray Industries, Inc. Chopped carbon fibers and a production process there of
CN1115242C (zh) * 1997-11-07 2003-07-23 宇部日东化成株式会社 纤维强化复合中空构造体和制造该构造体的设备和方法
US6828016B2 (en) * 1999-04-08 2004-12-07 Mitsubishi Rayon Co., Ltd. Preform for composite material and composite material
SG105543A1 (en) * 2001-04-25 2004-08-27 Grace W R & Co Highly dispersible reinforcing polymeric fibers
JP4258377B2 (ja) * 2001-12-06 2009-04-30 東レ株式会社 繊維強化複合材料およびその製造方法
CN100369227C (zh) * 2002-08-09 2008-02-13 Jsr株式会社 导电连接器和浆料成分、探针元件及晶片检测仪器和方法
DE10318858A1 (de) * 2003-04-25 2004-11-25 Frenzelit-Werke Gmbh & Co. Kg Faservliesmatte, Verfahren zu dessen Herstellung und Faserverbundwerkstoff
EP1652997B1 (en) * 2003-07-31 2012-04-04 Mitsubishi Rayon Co., Ltd. Carbon fiber bundle, process for producing the same, and thermoplastic resin composition and molded article thereof
US7838165B2 (en) * 2004-07-02 2010-11-23 Kabushiki Kaisha Toshiba Carbon fiber synthesizing catalyst and method of making thereof
US7279059B2 (en) * 2004-12-28 2007-10-09 Owens Corning Intellectual Capital, Llc Polymer/WUCS mat for use in automotive applications
US20090062426A1 (en) * 2005-03-25 2009-03-05 Teijin Techno Products Limited Carbon Fiber Strand for Reinforcing Thermoplastic Resins and Method of Producing the Same
JP4855753B2 (ja) * 2005-10-03 2012-01-18 富士通株式会社 多層配線基板及びその製造方法
ATE486828T1 (de) * 2006-04-11 2010-11-15 Sgl Carbon Se Verfahren zum imprägnieren von kurzfaserbündeln aus carbonfasern
JP2009191116A (ja) * 2008-02-13 2009-08-27 Honda Motor Co Ltd 繊維強化複合材料の製造方法および繊維強化複合材料
US9475929B2 (en) 2010-01-29 2016-10-25 Toray Industries, Inc. Fiber-reinforced thermoplastic resin composition, reinforcing fiber bundle, and process for production of fiber-reinforced thermoplastic resin composition
JP5576147B2 (ja) * 2010-03-01 2014-08-20 帝人株式会社 炭素繊維複合材料
JP2011241338A (ja) * 2010-05-20 2011-12-01 Teijin Ltd 炭素繊維複合材料
US8829103B2 (en) * 2012-09-14 2014-09-09 Teijin Limited Carbon fiber composite material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025285A (en) 1996-03-07 2000-02-15 Board Of Trustees Operating Michigan State University Composite material of aligned discontinuous fibers
JP4161409B2 (ja) 1997-05-23 2008-10-08 東レ株式会社 チョップド炭素繊維およびその製造方法
WO2007097436A1 (ja) 2006-02-24 2007-08-30 Toray Industries, Inc. 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法
JP2008254191A (ja) * 2007-03-30 2008-10-23 Honda Motor Co Ltd 炭素繊維複合材料製造装置、これを用いた炭素繊維複合材料製造方法および炭素繊維複合材料
JP2011178890A (ja) * 2010-03-01 2011-09-15 Teijin Ltd 炭素繊維複合材料
WO2012105080A1 (ja) * 2011-02-01 2012-08-09 帝人株式会社 ランダムマット、および強化繊維複合材料
WO2013035705A1 (ja) * 2011-09-06 2013-03-14 帝人株式会社 繊維強化複合材料から構成される表面意匠性が優れた成形体
WO2013115337A1 (ja) * 2012-01-31 2013-08-08 帝人株式会社 ランダムマットおよび繊維強化複合材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S.T. JESPERSEN ET AL: "CONSOLIDATION OF NET-SHAPE RANDOM FIBER THERMOPLASTIC COMPOSITE PREFORMS", POLYMER COMPOSITES, vol. 31, no. 4, April 2010 (2010-04-01), pages 653 - 665, XP055190822, DOI: 10.1002/PC.20844
See also references of EP2808433A1

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170063703A (ko) 2014-09-25 2017-06-08 도레이 카부시키가이샤 강화 섬유 복합 재료
KR20170107483A (ko) 2015-01-30 2017-09-25 도레이 카부시키가이샤 강화 섬유 복합 재료
WO2019107248A1 (ja) * 2017-11-29 2019-06-06 帝人株式会社 複合材料及びその製造方法
WO2019107247A1 (ja) * 2017-11-29 2019-06-06 帝人株式会社 複合材料、成形体の製造方法、及び複合材料の製造方法
JPWO2019107247A1 (ja) * 2017-11-29 2020-11-19 帝人株式会社 複合材料、成形体の製造方法、及び複合材料の製造方法
JPWO2019107248A1 (ja) * 2017-11-29 2020-11-19 帝人株式会社 複合材料及びその製造方法
US11795279B2 (en) 2017-11-29 2023-10-24 Teijin Limited Composite material, production method for molded object, and production method for composite material
DE112021004165T5 (de) 2020-08-04 2023-08-24 Teijin Limited Verbundmaterial und verfahren zur herstellung von formteilen

Also Published As

Publication number Publication date
KR20140107684A (ko) 2014-09-04
EP2808433A1 (en) 2014-12-03
BR112014021172A2 (ja) 2017-06-20
CN104136675B (zh) 2017-03-08
JPWO2014021316A1 (ja) 2016-07-21
EP2808433B1 (en) 2019-03-06
BR112014021172B1 (pt) 2022-04-05
EP2808433A4 (en) 2015-01-21
JP5531170B1 (ja) 2014-06-25
US10208174B2 (en) 2019-02-19
CN104136675A (zh) 2014-11-05
US20150158984A1 (en) 2015-06-11
RU2558516C1 (ru) 2015-08-10
KR101529850B1 (ko) 2015-06-17
US20180134857A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP5512908B1 (ja) ランダムマットおよび繊維強化複合材料成形体
JP5531170B1 (ja) ランダムマットおよび繊維強化複合材料成形体
JP6379035B2 (ja) ランダムマットおよび繊維強化複合材料成形体
TWI448596B (zh) Random felt and reinforced fiber composites
JP5627803B2 (ja) ランダムマットおよび繊維強化複合材料
JP5702854B2 (ja) 強化繊維複合材料
JP2011178890A (ja) 炭素繊維複合材料
JP2014210991A (ja) 強化繊維マットおよび強化繊維マットの製造方法
JP6092923B2 (ja) 炭素繊維複合材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014506646

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147022692

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014135218

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14382136

Country of ref document: US

Ref document number: 2013825586

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014021172

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112014021172

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140827