WO2014021259A1 - 窒化物半導体素子構造体とその製造方法 - Google Patents

窒化物半導体素子構造体とその製造方法 Download PDF

Info

Publication number
WO2014021259A1
WO2014021259A1 PCT/JP2013/070466 JP2013070466W WO2014021259A1 WO 2014021259 A1 WO2014021259 A1 WO 2014021259A1 JP 2013070466 W JP2013070466 W JP 2013070466W WO 2014021259 A1 WO2014021259 A1 WO 2014021259A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
substrate
underlayer
forming
semiconductor underlayer
Prior art date
Application number
PCT/JP2013/070466
Other languages
English (en)
French (fr)
Inventor
章紘 浦田
村田 徹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201380003707.1A priority Critical patent/CN104025260B/zh
Priority to JP2014509959A priority patent/JP6218728B2/ja
Publication of WO2014021259A1 publication Critical patent/WO2014021259A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/04Pattern deposit, e.g. by using masks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Definitions

  • the present invention relates to a nitride semiconductor device structure and a manufacturing method thereof.
  • a III-V group compound semiconductor (group III nitride semiconductor) containing nitrogen has a band gap corresponding to the energy of light having a wavelength in the infrared to ultraviolet region. It is useful as a material for a light emitting element that emits light having a wavelength and a light receiving element that receives light having a wavelength in the region.
  • group III nitride semiconductors have strong bonds between atoms constituting group III nitride semiconductors, high dielectric breakdown voltage, and high saturation electron velocity. Therefore, electronic devices such as high temperature resistance, high output, and high frequency transistors It is also useful as a material.
  • group III nitride semiconductors are attracting attention as materials that are hardly harmful to the environment and easy to handle.
  • a group III nitride semiconductor comprising a group III nitride semiconductor thin film on a predetermined substrate
  • the layers need to be stacked to form a predetermined device structure.
  • the substrate it is most preferable to use a substrate made of a group III nitride semiconductor having a lattice constant or a thermal expansion coefficient capable of directly growing a group III nitride semiconductor on the substrate.
  • a substrate made of a nitride semiconductor for example, a gallium nitride (GaN) substrate is preferably used.
  • GaN substrates are not practical because their dimensions are currently as small as 2 inches or less and are very expensive.
  • a sapphire substrate, a silicon carbide (SiC) substrate, or the like having a large lattice constant difference and a large thermal expansion coefficient difference from the group III nitride semiconductor is used as a substrate for manufacturing a nitride semiconductor element.
  • a so-called buffer layer for eliminating a lattice constant difference between the substrate and the group III nitride semiconductor is generally formed between the substrate and the group III nitride semiconductor.
  • Patent Document 1 discloses a method of growing a group III nitride semiconductor made of Al x Ga 1-x N after forming a buffer layer of AlN on a sapphire substrate by metal organic vapor phase epitaxy (MOVPE). Is described.
  • MOVPE metal organic vapor phase epitaxy
  • Patent Document 1 Even in the method described in Japanese Patent No. 3026087 (Patent Document 1), it is difficult to obtain an AlN buffer layer having a flat surface with good reproducibility. This is presumably because when an AlN buffer layer is formed by the MOVPE method, trimethylaluminum (TMA) gas and ammonia (NH 3 ) gas used as source gases are easily reacted in the gas phase.
  • TMA trimethylaluminum
  • NH 3 ammonia
  • Patent Document 2 an Al x Ga 1-x N (0 ⁇ x ⁇ 1) buffer layer is formed on a sapphire substrate by a high frequency sputtering method in which a DC bias is applied. A method is disclosed. However, even on the buffer layer formed by this method, it is difficult to form a group III nitride semiconductor layer having sufficiently excellent crystallinity.
  • Patent Document 3 proposes a method of heat-treating a buffer layer made of a group III nitride semiconductor formed by DC magnetron sputtering in an atmosphere of a mixed gas of hydrogen gas and ammonia gas.
  • Patent Document 4 discloses a group III nitride having a film thickness of 50 ⁇ to 3000 ⁇ on a sapphire substrate heated to 400 ° C. or higher by DC magnetron sputtering.
  • a method for forming a buffer layer made of a semiconductor has been proposed.
  • Patent Document 5 proposes a method of forming a buffer layer made of AlN columnar crystals on a sapphire substrate heated to 750 ° C. by high-frequency sputtering.
  • Patent Document 6 in order to grow a group III nitride semiconductor with few crystal defects, a concavo-convex structure is provided on the substrate surface, and a group III nitride semiconductor is laterally grown thereon. Is described.
  • Patent Document 7 discloses a step of growing a GaN layer on a sapphire substrate provided with a concavo-convex structure so as to have an isosceles triangular cross-sectional shape having inclined facets on the inclined surface. Thereafter, the growth condition is set to a condition in which the lateral growth is dominant, and the growth is continued, and the GaN layer is grown in the lateral direction until the surface becomes a flat surface parallel to the main surface of the sapphire substrate. It is described that a nitride semiconductor is formed by the growth of.
  • the nitride semiconductor underlayer serving as the underlayer is required to have few crystal defects and high crystallinity.
  • a substrate provided with a concavo-convex structure may be used.
  • a base layer having few crystal defects and high crystallinity is manufactured. It is difficult.
  • the nitride semiconductor layer is grown under the growth conditions in which the lateral growth is dominant.
  • the nitride semiconductor layer is grown under the growth conditions in which the lateral growth is dominant.
  • a number of vertical defects are likely to occur in the nitride semiconductor that is initially formed in the recess. This is the starting point of the lateral defect of the nitride semiconductor grown under conditions in which the lateral growth is dominant.
  • Such lateral defects may be associated with longitudinal defects formed on the convex portions, or may cause a large number of longitudinal defects by changing from lateral growth to longitudinal growth on the crystal slip surface. Will do.
  • a vertical defect means a defect that can be made perpendicular to the main surface of the substrate
  • a lateral defect means a defect that can be made parallel to the main surface of the substrate.
  • an object of the present invention is to provide a nitride semiconductor structure having a nitride semiconductor underlayer with high crystallinity and a method for manufacturing the same.
  • the present invention is composed of a trigonal corundum or hexagonal crystal, having a plurality of convex portions on the surface and the surface coated with a nitride semiconductor intermediate layer, and between the convex portions and the convex portions on the substrate, A first nitride semiconductor underlayer provided in order so that at least a part of the surface including the center of the convex portion is exposed, and a second nitride semiconductor covering the entire first nitride semiconductor underlayer A base layer, a third nitride semiconductor base layer covering the entire second nitride semiconductor base layer, and the exposed surface of the convex portion and the third nitride semiconductor base layer covering the entire third nitride semiconductor base layer.
  • the first nitride semiconductor underlayer has a first oblique facet surface
  • the second nitride semiconductor underlayer has a second oblique facet surface and a first oblique facet surface.
  • 2 substrate parallel planes the third nitride semiconductor underlayer Having a fit facets and the third substrate parallel plane, a nitride semiconductor structure.
  • the first nitride semiconductor underlayer may further have a first substrate parallel surface, and in this case, a plane from a direction perpendicular to the main surface of the substrate.
  • the area ratio of the first oblique facet surface is preferably larger than the area ratio of the first substrate parallel surface.
  • the second nitride semiconductor underlayer has an area ratio of the second oblique facet plane in the plan view from a direction perpendicular to the main surface of the substrate. It is preferable that it is smaller than the area ratio of a parallel surface.
  • the third nitride semiconductor underlayer has a third substrate whose surface area ratio of the third oblique facet surface is the third substrate in a plan view from a direction perpendicular to the main surface of the substrate. It is preferable that it is larger than the area ratio of a parallel surface.
  • the angle of the first oblique facet surface with respect to the principal surface of the substrate is ⁇ 1
  • the angle of the second oblique facet surface with respect to the principal surface of the substrate is ⁇ 2
  • the relationship of ⁇ 1 ⁇ 2 is established. It is preferable to satisfy.
  • the angle of the third oblique facet surface with respect to the main surface of the substrate is ⁇ 3, it is more preferable that the relationship ⁇ 1 ⁇ 3 ⁇ 2 is satisfied.
  • the present invention is a nitride semiconductor light emitting device having the nitride semiconductor structure and a laminated structure formed on the nitride semiconductor structure.
  • the present invention is a nitride semiconductor transistor element having the above-described nitride semiconductor structure and a stacked structure formed on the nitride semiconductor structure.
  • the present invention comprises a step of forming a nitride semiconductor intermediate layer on the surface of a substrate composed of a trigonal corundum or hexagonal crystal and having a plurality of convex portions on the surface so as to reflect the shape of the surface;
  • the first nitride semiconductor underlayer having the first oblique facet surface is exposed between at least a part of the surface including the center of the convex part between the convex part on the surface of the substrate and the convex part.
  • Forming, and The second nitride semiconductor underlayer having the second oblique facet surface and the second substrate parallel surface is formed between the protrusions on the surface of the substrate and between the protrusions.
  • a third nitride semiconductor foundation layer having a third oblique facet plane and a third substrate parallel plane is formed between the projections on the surface of the substrate and between the projections. And forming so that at least a part of the surface including the center of the convex portion is exposed, and Forming a fourth nitride semiconductor underlayer covering the surface of the convex portion that is not covered with the third nitride semiconductor underlayer, and covering the entire third nitride semiconductor underlayer; A method for manufacturing a nitride semiconductor structure.
  • the first nitride semiconductor underlayer, the second nitride semiconductor underlayer, the third nitride semiconductor underlayer, and the fourth nitride semiconductor underlayer are organic. It is formed by metal vapor phase epitaxy, and in the metal organic vapor phase epitaxy apparatus, the substrate gas is heated and the substrate is rotated while the substrate is rotated and the group V element source gas and the group III element source gas are formed.
  • the conditions to be formed preferably satisfy at least one of the following relationships among AI, BI, CI, DI, and EI.
  • the heating temperature of the substrate at the time of forming the first nitride semiconductor underlayer is lower than the heating temperature of the substrate at the time of forming the second nitride semiconductor underlayer.
  • the pressure in the metal organic vapor phase growth apparatus at the time of forming the first nitride semiconductor underlayer is higher than the pressure in the metal organic vapor phase growth apparatus at the time of forming the second nitride semiconductor underlayer.
  • the ratio of the molar amount of the Group V element source gas to the molar amount of the Group III element source gas supplied per unit time when the first nitride semiconductor base layer is formed is the same as that of the second nitride semiconductor base layer. Higher than the ratio at the time of formation, DI.
  • the rotation number per unit time of the substrate when forming the first nitride semiconductor underlayer is smaller than the rotation number per unit time of the substrate when forming the second nitride semiconductor underlayer.
  • the volume ratio of hydrogen gas to the total volume of carrier gas at the time of forming the first nitride semiconductor base layer is higher than the volume ratio of hydrogen gas to the total volume of carrier gas at the time of forming the second nitride semiconductor base layer.
  • the first nitride semiconductor underlayer, the second nitride semiconductor underlayer, the third nitride semiconductor underlayer, and the fourth nitride semiconductor underlayer are organic. It is formed by metal vapor phase epitaxy, and in the metal organic vapor phase epitaxy apparatus, the substrate gas is heated and the substrate is rotated while the substrate is rotated and the group V element source gas and the group III element source gas are formed.
  • the conditions to be formed preferably satisfy at least one of the following relationships of AII, BII, CII, DII and EII.
  • AII The heating temperature of the substrate when forming the first nitride semiconductor underlayer is higher than the heating temperature of the substrate when forming the third nitride semiconductor layer.
  • BII The pressure in the metal organic vapor phase growth apparatus at the time of forming the first nitride semiconductor underlayer is lower than the pressure in the metal organic vapor phase growth apparatus at the time of forming the third nitride semiconductor underlayer.
  • CII The ratio of the molar amount of the Group V element source gas to the molar amount of the Group III element source gas supplied per unit time when the first nitride semiconductor base layer is formed is the same as that of the third nitride semiconductor base layer. Lower than the ratio at the time of formation, DII.
  • the rotation number per unit time of the substrate when forming the first nitride semiconductor underlayer is larger than the rotation number per unit time of the substrate when forming the third nitride semiconductor underlayer.
  • the volume ratio of hydrogen gas to the total volume of carrier gas at the time of forming the first nitride semiconductor underlayer is lower than the volume ratio of hydrogen gas to the total volume of carrier gas at the time of forming the third nitride semiconductor underlayer.
  • the first nitride semiconductor underlayer, the second nitride semiconductor underlayer, the third nitride semiconductor underlayer, and the fourth nitride semiconductor underlayer are organic. It is formed by metal vapor phase epitaxy, and in the metal organic vapor phase epitaxy apparatus, the substrate gas is heated and the substrate is rotated while the substrate is rotated and the group V element source gas and the group III element source gas are formed.
  • the conditions to be formed preferably satisfy at least one of the following relationships of AIII, BIII, CIII, DIII and EIII.
  • the heating temperature of the substrate during the formation of the fourth nitride semiconductor underlayer is higher than the heating temperature of the substrate during the formation of the second nitride semiconductor underlayer.
  • the pressure in the metal organic chemical vapor deposition apparatus at the time of forming the fourth nitride semiconductor underlayer is lower than the pressure in the metal organic chemical vapor deposition apparatus at the time of forming the second nitride semiconductor underlayer.
  • the ratio of the molar amount of the Group V element source gas to the molar amount of the Group III element source gas supplied per unit time when the fourth nitride semiconductor base layer is formed is the same as that of the second nitride semiconductor base layer. Lower than the ratio at the time of formation, DIII.
  • the rotation number per unit time of the substrate when forming the fourth nitride semiconductor underlayer is larger than the rotation number per unit time of the substrate when forming the second nitride semiconductor underlayer, EIII.
  • the volume ratio of hydrogen gas to the total volume of carrier gas at the time of forming the fourth nitride semiconductor underlayer is lower than the volume ratio of hydrogen gas to the total volume of carrier gas at the time of forming the second nitride semiconductor underlayer. .
  • nitride semiconductor structure having a nitride semiconductor underlayer with high crystallinity and a method for manufacturing the same.
  • FIG. 1 is a cross-sectional view schematically showing a nitride semiconductor structure according to Embodiment 1.
  • FIG. It is a partial expanded sectional view of a nitride structure. It is sectional drawing which shows typically the board
  • FIG. 6 shows a schematic cross-sectional view along the line BB of FIG. It is sectional drawing which shows typically the formation process of the nitride semiconductor intermediate
  • FIG. 1 is a cross-sectional view schematically showing the nitride semiconductor structure of this embodiment.
  • the nitride semiconductor structure 10 of the present embodiment includes a substrate 1 having a plurality of protrusions 1a on the surface and covered with the nitride semiconductor intermediate layer 2, and the protrusions 1a and 1a on the substrate 1.
  • a nitride semiconductor underlayer 5 A fourth nitride semiconductor foundation layer 6 is further provided on the third nitride semiconductor foundation layer 5.
  • FIG. 2 is a partially enlarged sectional view of the nitride semiconductor structure.
  • the first nitride semiconductor underlayer 3 has a first oblique facet surface 3a and a first substrate parallel surface 3b.
  • the second nitride semiconductor foundation layer 4 is provided so as to cover the entire first nitride semiconductor foundation layer 3, and has a second oblique facet surface 4a and a second substrate parallel surface 4b.
  • the third nitride semiconductor foundation layer 5 is provided so as to cover the entire second nitride semiconductor foundation layer 4, and has a third oblique facet surface 5a and a third substrate parallel surface 5b.
  • Fourth nitride semiconductor underlayer 6 covers the exposed surface of convex portion 1 a that is not covered by third nitride semiconductor underlayer 5 and the entire third nitride semiconductor underlayer 5. And has a fourth substrate parallel surface 6a.
  • the “oblique facet plane” means a crystal plane inclined with respect to the main surface of the substrate
  • the “substrate parallel plane” means a crystal plane parallel to the main surface of the substrate.
  • the nitride semiconductor structure 10 of the present embodiment is configured to include the fourth nitride semiconductor base layer 6 on the first to third nitride semiconductor base layers 3, 4, and 5 as described above.
  • the fourth substrate parallel surface 6a having high crystallinity and few defects is provided.
  • crystal defects in the vertical direction (direction perpendicular to the main surface of the substrate) of third nitride semiconductor underlayer 5 are obtained. It is preferable to reduce V5.
  • the crystal defects V5 are reduced, the lateral crystal defects H6 are reduced in the fourth nitride semiconductor underlayer 6, and as a result, the longitudinal crystal defects V6 can also be reduced.
  • the first nitride semiconductor underlayer 3 has a vertical direction so that crystal defects H4 in the lateral direction (direction parallel to the main surface of the substrate) are easily formed. It is effective to form crystal defects V3.
  • the first nitride semiconductor underlayer 3 has a first oblique facet surface 3a, so that the vertical crystal defects 3 are likely to occur.
  • the first nitride semiconductor underlayer 3 has an area ratio of the first oblique facet surface 3a in a plan view from a direction perpendicular to the main surface of the substrate 1 than an area ratio of the first substrate parallel surface 3b. A large configuration is preferable.
  • the first nitride semiconductor foundation layer 3 may be configured not to have the first substrate parallel surface 3b.
  • the first nitride semiconductor underlayer 3 is preferably formed so as to cover almost the entire surface of the recessed region 1b in order not to cause vertical defects in the second nitride semiconductor underlayer 4.
  • the angle ⁇ 1 As the angle ⁇ 1 between the first oblique facet surface 3a and the main surface of the substrate becomes sharper, the vertical defects V3 are more likely to gather in one horizontal defect H4, and the number of horizontal defects H4 is reduced. It is preferable because of its effect.
  • the second nitride semiconductor underlayer 4 has a configuration including the second oblique facet surface 4a and the second substrate parallel surface 4b, so that defects in the lateral direction (direction parallel to the main surface of the substrate) are present. It can be set as the structure which H4 tends to produce.
  • the second nitride semiconductor base layer 4 is preferably as large as the second substrate parallel surface 4b in order to reduce the vertical and horizontal defects V5 of the third nitride semiconductor base layer 5. That is, in the second nitride semiconductor underlayer 4, the area ratio of the second oblique facet surface 4 a is the area ratio of the second substrate parallel surface 4 b in a plan view from the direction perpendicular to the main surface of the substrate 1.
  • the area of the second oblique facet surface 4a is more preferably 40% or more and less than 100% of the area of the second substrate parallel surface 4b. Further, since the vertical defect V5 of the third nitride semiconductor base layer 5 is generated starting from the lateral defect H4 of the second nitride semiconductor base layer 4, the angle ⁇ 2 ( As the angle ⁇ 2) formed between the second oblique facet surface 4a and the main surface of the substrate is closer to a right angle, the horizontal defects H4 are more likely to gather in one vertical defect V5, and the vertical defect V5 This is preferable because the number can be reduced.
  • the third nitride underlayer 5 has a configuration having the third oblique facet surface 5a and the third substrate parallel surface 5b, so that longitudinal crystal defects can be reduced.
  • the third nitride semiconductor underlayer 5 has a third substrate parallel surface 5b smaller than the second nitride semiconductor underlayer 4 in order to produce the fourth nitride semiconductor underlayer 6 with low dislocations. It is desirable to increase the angled facet surface 5a. That is, the third nitride semiconductor underlayer 5 has an area ratio of the third oblique facet surface 5a in the plan view from a direction perpendicular to the main surface of the substrate 1, and an area ratio of the third substrate parallel surface 5b.
  • the area of the third oblique facet surface 5a is more preferably 750 to 2000% of the area of the third substrate parallel surface 5b. Further, as the angle ⁇ 3 of the third oblique facet surface 5a (the angle ⁇ 3 formed between the third oblique facet surface 5a and the main surface of the substrate) is an acute angle, the flat fourth substrate parallel surface 6a has fewer crystal defects and becomes flat.
  • the 4th nitride semiconductor base layer 6 which has can be formed.
  • the angle ⁇ 1 of the first oblique facet surface 3a with respect to the main surface of the substrate and the second oblique facet surface 4a preferably satisfies the relationship ⁇ 1 ⁇ 2. Furthermore, it is preferable that the angle ⁇ 3 of the third oblique facet surface 5a with respect to the main surface of the substrate, and the angles ⁇ 1 and ⁇ 2 satisfy the relationship of ⁇ 1 ⁇ 3 ⁇ 2.
  • the nitride semiconductor structure 10 includes a step of forming the nitride semiconductor intermediate layer 2 on the surface of the substrate 1 having a plurality of protrusions 1a on the surface so as to reflect the shape of the surface, and a first nitride semiconductor A step of forming an underlayer 3, a step of forming a second nitride semiconductor underlayer 4, a step of forming a third nitride semiconductor underlayer 5, and a fourth nitride semiconductor underlayer 6. It is manufactured by the manufacturing method which has a process to perform in order. Needless to say, the nitride semiconductor structure manufacturing method of the present invention may include other steps in addition to these steps.
  • the substrate 1 is prepared.
  • the substrate 1 is made of trigonal corundum or hexagonal crystal.
  • trigonal corundum for example, a single crystal of sapphire (Al 2 O 3 ) can be used.
  • hexagonal crystal for example, an (AlGaIn) N-based nitride semiconductor crystal such as an AlN single crystal or a GaN single crystal is used. Can be used.
  • the sapphire crystal is a trigonal corundum, but can be expressed in the hexagonal notation.
  • the c-axis direction is [0001]
  • the a1-axis direction is [-2110]
  • the a2-axis direction is [1-210]
  • the a3-axis direction is [11].
  • ⁇ 20] and the three directions of the a1 axis direction, the a2 axis direction, and the a3 axis direction are collectively expressed as an a axis direction or a ⁇ 11-20> direction.
  • three directions that are perpendicular to and equivalent to the c-axis direction and the ⁇ 11-20> direction are referred to as an m-axis direction (most representatively, the ⁇ 1-100> direction).
  • the surface 40 of the substrate 1 may be a c-plane or a surface having an inclination of 5 ° or less with respect to the c-plane, and the direction of the inclination is, for example, only in the m (sub) axis ( ⁇ 1-100>) direction. May be only the a (sub) axis ( ⁇ 11-20>) direction, or may be a direction in which both directions are combined.
  • the surface 40 of the substrate 1 is inclined by 0.15 ° to 0.35 ° from the c-plane (the normal is the c-axis plane) in the m (sub) axis ⁇ 1-100> direction of the substrate. Things can be prepared.
  • the crystal direction of the substrate 1 is different from the crystal direction of the nitride semiconductor layer on the substrate 1, “sub” is added to the crystal direction of the substrate 1 in this specification.
  • “layer” is added to the crystal direction of the nitride semiconductor layer.
  • the a (sub) axis direction of the substrate 1 is m ( layer) and the m (sub) axis direction of the substrate 1 coincides with the a (layer) axis direction of the nitride semiconductor layer.
  • the substrate 1 is an AlN single crystal or a GaN single crystal
  • the a (sub) axis direction of the substrate coincides with the a (layer) axis direction of the nitride semiconductor layer
  • the m (sub) axis of the substrate 1 coincides with the m (layer) axis direction of the nitride semiconductor layer.
  • the diameter of the substrate 1 is not particularly limited, but can be, for example, 150 mm (about 6 inches).
  • a substrate having a diameter of about 50.8 mm (2 inches) has been generally used as the substrate 1, but a large-diameter substrate is preferably used in order to increase productivity.
  • strain accumulates after the nitride semiconductor layer is formed on the substrate 1, so that the substrate 1 is easily cracked or the surface of the nitride semiconductor layer is likely to be cracked.
  • the substrate 1 having a large diameter of 100 mm (about 4 inches) or more is used, cracks in the substrate 1 and cracks generated on the surface of the nitride semiconductor layer can be suppressed. .
  • the surface 40 of the substrate 1 is processed so as to have a plurality of convex portions 1a.
  • a region where the convex portion 1a on the surface is not formed is defined as a concave region 1b.
  • Such processing of the surface 40 of the substrate 1 is performed by using, for example, a patterning process for forming a mask for defining the planar arrangement of the convex portions 1a on the surface 40 of the substrate 1 and a mask formed by the patterning process. And forming the concave region 1b by etching the surface 40 of the substrate.
  • the patterning process can be performed by a general photolithography process.
  • the etching process can be performed by, for example, a dry etching method or a wet etching method.
  • a dry etching method in which the shape of the convex portion 1a is easy to control.
  • the surface 40 of the substrate 1 can be processed using a dielectric such as SiO 2 .
  • the surface shape of the recessed region 1b is not limited, but is preferably a flat surface so that the growth of the first nitride semiconductor underlayer 3 can easily start from the recessed region 1b.
  • FIG. 5 shows a schematic plan view of an example of the surface of the substrate 1 shown in FIG.
  • the convex portion 1a has a circular planar shape, and the convex portion 1a is located at the apex of the virtual triangle 1t, and the three sides of the virtual triangle 1t. Arranged in the direction of each side.
  • the convex portions 1 a are arranged in the a (sub) axis direction ( ⁇ 11-20> direction) of the surface of the substrate 1 and +60 with respect to the a (sub) axis direction of the surface of the substrate 1.
  • a direction that makes an inclination of + 60 ° with respect to the a (sub) axis direction and a direction that makes an inclination of ⁇ 60 ° with respect to the a (sub) axis direction. are called u directions.
  • the center of the circular circle which is the planar shape of the convex portion 1a, does not necessarily need to completely coincide with the vertex of the triangle 1t, and may be substantially coincident.
  • the center of the circle is a deviation equal to or less than the radius of the circle, the growth of the first nitride semiconductor foundation layer 3 is caused in the formation process of the first nitride semiconductor foundation layer 3 described later. The growth tends to start in the concave region 1b more stably than the region where the convex portion 1a on the surface of the substrate 1 is formed.
  • the first nitride semiconductor underlayer 3 having at least six oblique facets surrounding the convex portion 1a around the convex portion 1a with the convex portion 1a as a center is formed. It becomes easier to form.
  • the planar shape on the bottom surface of the convex portion 1a is not limited to a circle, and may be a polygon such as a hexagon or a triangle.
  • the angle of each internal angle of the virtual triangle 1t in which the convex portion 1a is arranged at the apex is preferably 50 ° or more and 70 ° or less.
  • the formation of the first nitride semiconductor base layer 3 tends to start growing in the concave region 1b more stably than the region where the convex portion 1a is formed.
  • the first nitride semiconductor underlayer 3 having at least six oblique facets surrounding the convex portion 1a around the convex portion 1a with the convex portion 1a as a center is formed. It becomes easier to form.
  • the interval between the adjacent convex portions 1a (the distance between the centers of the convex portions 1a) can be set to 2 ⁇ m, for example.
  • the interval between adjacent convex portions 1a is not limited to 2 ⁇ m, but is preferably 0.2 ⁇ m or more and 7 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 2 ⁇ m or less.
  • the interval between the adjacent convex portions 1a is 0.2 ⁇ m or more and 7 ⁇ m or less, there is a tendency that process problems are reduced.
  • the dry etching time for increasing the height of the protrusions 1a becomes longer, and the second nitride semiconductor underlayer 4 described later becomes longer.
  • the growth time required for making the upper surface parallel to the main surface of the substrate becomes long.
  • the interval between the adjacent convex portions 1a is less than 0.2 ⁇ m, the density of the second substrate parallel surface 4b of the second nitride semiconductor underlayer 4 is increased, and defects are increased under the conventional crystal growth conditions. .
  • the circular diameter of the convex portion 1a in the plan view of the surface of the substrate 1 is not less than 1/2 and not more than 3/4 of the interval between the adjacent convex portions 1a.
  • the diameter of the circular circle of the convex portion 1a is preferably 1.0 to 1.5 ⁇ m, for example, 1.2 ⁇ m.
  • the convex portion 1a is formed in the second nitride semiconductor underlayer 4 described later.
  • the second nitride semiconductor base layer 4 having at least six oblique facet surfaces surrounding the convex portion 1a around the convex portion 1a with the convex portion 1a as the center is easily formed.
  • the height of the convex portion 1a is not less than 1/4 and not more than 1 of the diameter of the circular circle of the convex portion 1a.
  • the height of the convex portion 1a is preferably 0.3 to 1.2 ⁇ m, for example, about 0.6 ⁇ m. it can.
  • the third nitride semiconductor underlayer 5 described later tends to start growing in the concave region 1b more stably than the region where the convex portion 1a is formed.
  • the third nitride semiconductor base layer 5 having at least six oblique facets surrounding the center of the convex portion 1a outside the center of the convex portion 1a with the convex portion 1a as the center is easily formed. Become.
  • FIG. 6 shows a schematic cross-sectional view along the line BB passing through the center of the convex portion 1a shown in FIG.
  • the convex part 1a is a shape provided with the front-end
  • the shape in which the convex portion 1a includes the tip portion 1c means a shape in which the upper surface near the center of the convex portion is not flat in the cross-sectional shape of the convex portion 1a.
  • the convex portion 1a has a shape including the tip portion 1c, a first nitride semiconductor underlayer 3, a second nitride semiconductor underlayer 4, and a third nitride semiconductor underlayer 5 described later are In any case, it is easy to grow from the concave region 1b, and it becomes easy to form these layers so as not to cover at least a part of the surface including the tip portion 1c of the convex portion 1a.
  • a later-described fourth nitride semiconductor underlayer 6 that grows later is associated above the tip portion 1c of the convex portion 1a, so that the region where crystal defects are generated is limited, and the defects as a whole It is thought that the number of can be reduced.
  • crystal growth is performed so as to cover the entire convex portion 1a in the growth of the first nitride semiconductor base layer 3 to the third nitride semiconductor base layer 5. This is easy to break and causes defects when the fourth nitride semiconductor underlayer 6 is grown.
  • the surface of the substrate 1 may be pretreated before forming a nitride semiconductor intermediate layer 2 described later.
  • the pretreatment of the surface of the substrate 1 include, for example, RCA cleaning (dilute hydrofluoric acid aqueous solution (HF) treatment, treatment with ammonia (NH 4 OH) and hydrogen peroxide (H 2 O 2 ), hydrochloric acid (HCl) and A treatment for hydrogen-termination of the surface of the substrate 1 by performing a treatment with hydrogen peroxide (H 2 O 2 ) and a cleaning in which ultrapure water cleaning is sequentially performed can be given.
  • RCA cleaning dilute hydrofluoric acid aqueous solution (HF) treatment, treatment with ammonia (NH 4 OH) and hydrogen peroxide (H 2 O 2 ), hydrochloric acid (HCl)
  • the pretreatment of the surface of the substrate 1 there is a treatment in which the surface of the substrate 1 is exposed to a nitrogen gas plasma.
  • a nitrogen gas plasma As a result, foreign substances such as organic substances and oxides attached to the surface of the substrate 1 tend to be removed, and the surface state of the substrate 1 tends to be adjusted.
  • the substrate 1 is a sapphire substrate
  • the surface of the substrate 1 is nitrided by exposing the surface of the substrate 1 to plasma of nitrogen gas, and the nitride semiconductor intermediate layer is laminated on the surface of the substrate 1. 2 tends to be formed uniformly in the plane.
  • FIG. 7 is a cross-sectional view schematically showing a step of forming the nitride semiconductor intermediate layer.
  • nitride semiconductor intermediate layer 2 is formed on the surface of substrate 1 so as to reflect the shape of the surface of substrate 1.
  • the nitride semiconductor intermediate layer 2 can be formed by, for example, a reactive sputtering method in which an Al target is sputtered in a mixed atmosphere of N 2 and Ar.
  • Nitride semiconductor intermediate layer 2 is made of, for example, a nitride semiconductor represented by the formula of Al x0 Ga y0 N (0 ⁇ x0 ⁇ 1, 0 ⁇ y0 ⁇ 1, x0 + y0 ⁇ 0).
  • the nitride semiconductor forming the nitride semiconductor intermediate layer 2 is preferably a nitride semiconductor (aluminum nitride) represented by the formula of AlN or Al x1 Ga 1-x1 N (0.5 ⁇ x1 ⁇ 1). .
  • the nitride semiconductor intermediate layer 2 having a good crystallinity composed of an aggregate of columnar crystals with aligned crystal grains extending in the normal direction of the surface of the substrate 1 tends to be obtained.
  • the nitride semiconductor intermediate layer 2 may contain a trace amount of oxygen.
  • the thickness of the nitride semiconductor intermediate layer 2 is preferably 5 nm or more and 100 nm or less. When the thickness of the nitride semiconductor intermediate layer 2 is less than 5 nm, the nitride semiconductor intermediate layer 2 may not sufficiently function as a buffer layer. When the thickness of the nitride semiconductor intermediate layer 2 exceeds 100 nm, the function as the buffer layer is not improved, and only the formation time of the nitride semiconductor intermediate layer 2 may be increased.
  • the thickness of the nitride semiconductor intermediate layer 2 is more preferably 10 nm or more and 50 nm or less. In this case, the function of the nitride semiconductor intermediate layer 2 as a buffer layer tends to be exhibited uniformly in the plane.
  • an AlN film slightly containing oxygen can be formed with a thickness of about 30 nm.
  • the temperature of the substrate 1 when forming the nitride semiconductor intermediate layer 2 is preferably 300 ° C. or higher and 1000 ° C. or lower.
  • the nitride semiconductor intermediate layer 2 cannot cover the entire surface of the substrate 1, and one surface of the substrate 1 is not covered. The portion may be exposed from the nitride semiconductor intermediate layer 2.
  • the temperature of the substrate 1 when the nitride semiconductor intermediate layer 2 is stacked exceeds 1000 ° C., the migration of the raw material on the surface of the substrate 1 becomes too active, rather than an aggregate of columnar crystals.
  • the nitride semiconductor intermediate layer 2 close to a single crystal film is formed, and the function of the nitride semiconductor intermediate layer 2 as a buffer layer may be reduced.
  • (Formation of nitride semiconductor underlayer) 8 to 11 are cross-sectional views schematically showing the formation process of the nitride semiconductor underlayer.
  • the first nitride semiconductor base layer 3 is formed on the nitride semiconductor intermediate layer 2 in the concave region 1 b of the substrate 1.
  • the first nitride semiconductor underlayer 3 has an oblique facet surface (first oblique facet surface) 3a and a substrate parallel surface (first substrate parallel surface) 3b.
  • the formation range of the first nitride semiconductor underlayer 3 is not limited as long as at least a part of the surface including the center of the convex portion 1a is exposed. In order not to generate a defect, it is preferable to manufacture so as to cover almost the entire surface of the recessed region 1b.
  • Second nitride semiconductor base layer 4 is formed in the concave region 1 b of the substrate 1 so as to cover the entire first nitride semiconductor base layer 3.
  • Second nitride semiconductor underlayer 4 has an oblique facet surface (second oblique facet surface) 4a and a substrate parallel surface (second substrate parallel surface) 4b.
  • the formation range of second nitride semiconductor underlayer 4 is not limited as long as at least a part of the surface including the center of convex portion 1a is exposed.
  • the third nitride semiconductor base layer 5 is formed in the concave region 1 b of the substrate 1 so as to cover the entire second nitride semiconductor base layer 4.
  • the third nitride semiconductor underlayer 5 may be formed so as to be in contact with the surface of the convex portion 1a, but is formed so that at least a part of the surface including the center of the convex portion 1a is exposed. That is, it is formed so as not to cover the entire convex portion 1a.
  • Third nitride semiconductor underlayer 5 has an oblique facet surface (third oblique facet surface) 5a and a substrate parallel surface (third substrate parallel surface) 5b.
  • the fourth nitride semiconductor base layer 6 is formed so as to cover the entire third nitride semiconductor base layer 5 and the exposed surface of the convex portion 1a. To do.
  • the fourth nitride semiconductor underlayer 6 is formed so that its surface (fourth substrate parallel surface) 6 a is parallel to the main surface of the substrate 1.
  • the nitride semiconductor intermediate layer 2, the first nitride semiconductor base layer 3, the second nitride semiconductor base layer 4, the third nitride semiconductor base layer 5, and the fourth nitride are formed on the substrate 1.
  • the nitride semiconductor structure 10 in which the semiconductor semiconductor underlayer 6 is laminated in this order is manufactured.
  • the first nitride semiconductor foundation layer 3, the second nitride semiconductor foundation layer 4, the third nitride semiconductor foundation layer 5, and the fourth nitride semiconductor foundation layer 6 are each formed of, for example, MOCVD ( It can be sequentially formed on the surface of the nitride semiconductor intermediate layer 2 by the Metal Organic Chemical Vapor Deposition method.
  • the thickness of each layer is such that the first nitride semiconductor underlayer 3 is 200 nm thick on the surface of the nitride semiconductor intermediate layer 2 in the recessed region 1b.
  • the second nitride semiconductor underlayer 4 is formed so that the thickness t4 is 300 nm, and the third nitride is covered so as to cover the entire second nitride semiconductor underlayer 4
  • the semiconductor underlayer 5 is formed so that the thickness t5 is 1800 nm, and then the fourth nitride semiconductor underlayer 6 is 6000 nm thick so as to cover the entire third nitride semiconductor underlayer 5. It forms so that it becomes.
  • the thickness of each foundation layer is not limited to these values, but the thickness of each foundation layer is set so that the thickness of the fourth nitride semiconductor foundation layer 6 is in the range of 3000 to 9000 nm. It is preferable to adjust.
  • the first nitride semiconductor foundation layer 3, the second nitride semiconductor foundation layer 4, the third nitride semiconductor foundation layer 5, and the fourth nitride semiconductor foundation layer 6 are each grown appropriately by the MOCVD method. Grow in mode. In this specification, the growth mode is defined for convenience as follows.
  • Two-dimensional growth mode Growth mode in which a parallel plane of the substrate can be easily obtained
  • 3D growth mode Growth mode in which oblique facet surfaces are easily formed
  • 2.5-dimensional growth mode an intermediate growth mode between the two-dimensional growth mode and the three-dimensional growth mode.
  • the substrate 1 whose surface is covered with the nitride semiconductor intermediate layer 2 is set in an MOCVD apparatus, and the substrate 1 is heated to a desired temperature and rotated. Then, NH 3 (ammonia) as a group V element gas and TMGa (trimethylgallium), TMIn (trimethylindium) and TMAl (trimethylaluminum) as group III element gas are appropriately combined and supplied with a carrier gas containing hydrogen. Then, the pressure in the MOCVD apparatus is increased to form each nitride semiconductor underlayer.
  • NH 3 ammonia
  • TMGa trimethylgallium
  • TMIn trimethylindium
  • TMAl trimethylaluminum
  • (A) Substrate heating temperature The higher the substrate heating temperature, the easier it is to enter the two-dimensional growth mode, and the lower the substrate heating temperature, the easier it is to enter the three-dimensional growth mode.
  • V / III ratio The smaller the V / III ratio, the more likely it becomes a two-dimensional growth mode, and the larger the V / III ratio, the easier it becomes a three-dimensional growth mode.
  • the temperature of the substrate 1 during the growth of each nitride semiconductor underlayer is preferably 800 ° C. or higher and 1250 ° C. or lower, and more preferably 900 ° C. or higher and 1150 ° C. or lower.
  • the temperature of the substrate 1 during the growth of the nitride semiconductor underlayer is 800 ° C. or higher and 1250 ° C. or lower, particularly 900 ° C. or higher and 1150 ° C. or lower, the nitride semiconductor having excellent crystallinity with few crystal defects It tends to be able to grow the formation.
  • the pressure in the MOCVD apparatus at the time of forming each nitride semiconductor underlayer can be, for example, 100 to 500 Torr, the V / III ratio can be, for example, 500 to 1400, and the rotation speed of the substrate is, for example,
  • the volume ratio of hydrogen gas to the total volume of the carrier gas can be set to 50 to 90%.
  • FIG. 12 shows a partially enlarged sectional view of the nitride semiconductor structure.
  • the longitudinal crystal defects V5 of the third nitride semiconductor underlayer 5 are reduced.
  • the vertical crystal defects V4 of the second nitride semiconductor underlayer 4 it is necessary to reduce the vertical crystal defects V4 of the second nitride semiconductor underlayer 4.
  • the first nitride semiconductor underlayer 3 is preferably grown in the “three-dimensional growth mode” in which the oblique facet surface 3a can be easily formed.
  • the surface of the 1st nitride semiconductor base layer 3 can be set as the structure which has the 1st diagonal facet surface 3a.
  • the second nitride semiconductor underlayer 4 is preferably grown in the “two-dimensional growth mode” or the “2.5-dimensional growth mode” so that the second substrate parallel surface 4b is formed. Thereby, the second nitride semiconductor underlayer 4 can be formed so as to have the second oblique facet surface 4a and the second substrate parallel surface 4b.
  • the third nitride semiconductor underlayer 5 is preferably grown in the “three-dimensional growth mode” so that the third oblique facet surface 5a is formed. Thereby, the third nitride semiconductor underlayer 5 can be formed so as to have the third oblique facet surface 5a and the third substrate parallel surface 5b.
  • the fourth nitride semiconductor underlayer 6 is formed in the “two-dimensional growth mode” in order to fill the space between the third oblique facet surface 5a and the convex portion 1a to form a flat fourth substrate parallel surface 6a. It is preferable to make it grow. As a result, the fourth nitride semiconductor underlayer 6 having few crystal defects and good crystallinity and having the flat upper surface 6a can be formed.
  • the first oblique facet surface 3a is provided on the surface of the first nitride semiconductor base layer 3, and the second nitride semiconductor base layer 4 is provided to extend in the c (layer) axis direction of the nitride semiconductor layer.
  • the dislocations extending in the c (layer) axis direction of the second nitride semiconductor underlayer 4 are reduced by bending the dislocations to be bent in the direction of the second oblique facet surface 4a.
  • a nitride semiconductor layer having a flat surface is grown on the surface of the third nitride semiconductor underlayer 5 in which the number of dislocations extending in the c (layer) axis direction of the nitride semiconductor layer is reduced.
  • the fourth nitride semiconductor underlayer 6 By growing the fourth nitride semiconductor underlayer 6 in the promoted two-dimensional growth mode, the fourth nitride semiconductor underlayer 6 having few crystal defects and good crystallinity and having the flat substrate parallel surface 6a is formed. Can be formed.
  • the first nitride semiconductor underlayer 3 is in the three-dimensional growth mode, the conditions closer to the two-dimensional growth mode than the third nitride semiconductor underlayer 5 are better, and the second nitride semiconductor underlayer 3 is two-dimensional.
  • the conditions closer to the three-dimensional growth than the fourth nitride semiconductor underlayer 6 are better, and the third nitride semiconductor underlayer 5 has the best conditions for the most three-dimensional growth.
  • the fourth nitride semiconductor The nitride semiconductor underlayer with few crystal defects can be produced by setting the underlayer 6 to the conditions that facilitate the most two-dimensional growth.
  • each underlayer can be formed by adjusting five parameters of the volume ratio of hydrogen gas to the total volume of carrier gas.
  • the growth conditions of the first nitride semiconductor underlayer 3 and the second nitride semiconductor underlayer 4 satisfy at least one relationship of AI, BI, CI, DI, and EI in the following growth condition group (I). Is preferred.
  • the heating temperature of the substrate at the time of forming the first nitride semiconductor underlayer 3 is lower than the heating temperature of the substrate at the time of forming the second nitride semiconductor underlayer 4; BI.
  • the pressure in the MOCVD apparatus when forming the first nitride semiconductor foundation layer 3 is higher than the pressure in the MOCVD apparatus when forming the second nitride semiconductor foundation layer 4; CI.
  • the ratio of the molar amount of the Group V element source gas to the molar amount of the Group III element source gas supplied per unit time when the first nitride semiconductor base layer 3 is formed is the second nitride semiconductor base layer. Higher than the ratio at the time of formation of 4, DI.
  • the number of revolutions per unit time of the substrate when forming the first nitride semiconductor underlayer 3 is smaller than the number of revolutions per unit time of the substrate when forming the second nitride semiconductor underlayer 4.
  • the volume ratio of hydrogen gas to the total volume of carrier gas during the growth of the first nitride semiconductor underlayer 3 is greater than the volume ratio of hydrogen gas to the total volume of carrier gas during the growth of the second nitride semiconductor base layer 4. high.
  • the growth conditions of the first nitride semiconductor underlayer 3 and the third nitride semiconductor underlayer 5 satisfy at least one relationship of AII, BII, CII, DII, and EII in the following growth condition group (II). Is preferred.
  • AII The heating temperature of the substrate when forming the first nitride semiconductor foundation layer 3 is higher than the heating temperature of the substrate when forming the third nitride semiconductor foundation layer 5;
  • BII The pressure in the MOCVD apparatus at the time of forming the first nitride semiconductor underlayer 3 is lower than the pressure in the MOCVD apparatus at the time of forming the third nitride semiconductor underlayer 5;
  • CII The V / III ratio of the gas supplied when forming the first nitride semiconductor underlayer 3 is lower than the V / III ratio of the gas supplied when forming the third nitride semiconductor underlayer 5;
  • DII The rotation number per unit time of the substrate when forming the first nitride semiconductor underlayer 3 is larger than the rotation number per unit time of the substrate when forming the third nitride semiconductor underlayer 5;
  • EII The volume ratio of hydrogen gas to the total volume of carrier gas during growth of the first nitride semiconductor underlayer 3 is the volume of hydrogen gas
  • the growth conditions of the second nitride semiconductor underlayer 4 and the fourth nitride semiconductor underlayer 6 satisfy at least one relationship of AIII, BIII, CIII, DIII, EIII of the following growth condition group (III) Is preferred.
  • AIII The heating temperature of the substrate when forming the fourth nitride semiconductor foundation layer 6 is higher than the heating temperature of the substrate when forming the second nitride semiconductor foundation layer 4; BIII: The pressure in the MOCVD apparatus at the time of forming the fourth nitride semiconductor underlayer 6 is lower than the pressure in the MOCVD apparatus at the time of forming the second nitride semiconductor underlayer 4; CIII: The V / III ratio of the gas supplied when forming the fourth nitride semiconductor foundation layer 6 is lower than the V / III ratio of the gas supplied when forming the second nitride semiconductor foundation layer 4; DIII: The rotation speed per unit time of the substrate when the fourth nitride semiconductor underlayer 6 is formed is larger than the rotation speed per unit time of the substrate 1 when the second nitride semiconductor underlayer 4 is grown.
  • the volume ratio of hydrogen gas to the total volume of carrier gas at the time of forming the fourth nitride semiconductor underlayer 6 is the volume of hydrogen gas relative to the total volume of carrier gas at the time of forming the second nitride semiconductor underlayer 4 Lower than the ratio.
  • Examples of the nitride semiconductor that forms the first nitride semiconductor base layer 3, the second nitride semiconductor base layer 4, the third nitride semiconductor base layer 5, and the fourth nitride semiconductor base layer 6 include: A group III nitride semiconductor represented by the formula of Al x2 Ga y2 In z2 N (0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ z2 ⁇ 1, x2 + y2 + z2 ⁇ 0) can be used.
  • the first nitride semiconductor underlayer 3, the second nitride semiconductor underlayer 4, the third nitride semiconductor underlayer 5, and the fourth nitride semiconductor underlayer 6 have the same composition as materials, It is preferable to form by changing only the growth conditions.
  • the first nitride semiconductor foundation layer 3, the second nitride semiconductor foundation layer 4, the third nitride semiconductor foundation layer 5 and the fourth nitride semiconductor foundation layer 6 are each formed from an aggregate of columnar crystals. In order not to inherit crystal defects such as dislocations in the resulting nitride semiconductor intermediate layer 2, it is preferable to use a nitride semiconductor layer containing Ga as a group III element.
  • the first nitride semiconductor foundation layer 3, the second nitride semiconductor foundation layer 4, the third nitride semiconductor foundation layer 5, and the fourth nitridation made of a group III nitride semiconductor containing Ga are used.
  • dislocations are looped and confined near the interface with the nitride semiconductor intermediate layer 2, and the dislocations are taken over from the nitride semiconductor intermediate layer 2 to the second nitride semiconductor underlayer 4. Can be suppressed.
  • the first nitride semiconductor underlayer 3, the second nitride semiconductor underlayer 4, the third nitride semiconductor underlayer 5, and the fourth nitride semiconductor underlayer 6 are preferably undoped,
  • the first nitride semiconductor foundation layer 3, the second nitride semiconductor foundation layer 4, the third nitride semiconductor foundation layer 5, and the fourth nitride semiconductor foundation layer 6 may each be n-type doped.
  • the n-type dopant may be doped in the range of 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 .
  • n-type dopant for example, at least one selected from the group consisting of silicon, germanium, and tin can be used, and among these, silicon is preferably used.
  • silicon is used for the n-type dopant, it is preferable to use silane gas or disilane gas as the n-type doping gas.
  • the nitride semiconductor structure 10 of the present embodiment can be used as a component of an electronic device such as a nitride semiconductor light emitting element such as a nitride semiconductor light emitting diode element or a nitride semiconductor transistor element.
  • a nitride semiconductor light emitting element such as a nitride semiconductor light emitting diode element or a nitride semiconductor transistor element.
  • Use of the nitride semiconductor structure 10 of the present embodiment makes it possible to produce a nitride semiconductor light emitting device having high crystallinity, and has effects such as improvement of internal quantum efficiency and reduction of leakage defects.
  • a nitride semiconductor transistor element with high crystallinity can be produced, and there are effects such as reduction of leakage defects.
  • the present embodiment is a nitride semiconductor light-emitting diode element having the nitride semiconductor structure of Embodiment 1 and a stacked structure formed on the nitride structure.
  • FIG. 13 is a cross-sectional view schematically showing the nitride semiconductor light-emitting diode element of this embodiment.
  • the nitride semiconductor light-emitting diode device 100 shown in FIG. 13 includes an n-type nitride semiconductor contact layer 7 and an n-type nitride semiconductor on the flat fourth substrate parallel surface 6a of the nitride semiconductor structure 10 of the first embodiment.
  • the cladding layer 9, the nitride semiconductor active layer 11, the p-type nitride semiconductor cladding layer 13, the p-type nitride semiconductor contact layer 15, and the translucent electrode layer 19 are laminated in this order.
  • a p-side electrode 21 is provided on the translucent electrode layer 19.
  • An n-side electrode 20 is provided on a part of the surface of the n-type nitride semiconductor contact layer 7. Exposed surfaces other than the p-side electrode 21 and the n-side electrode 20 are covered with an insulating protective film 23.
  • the n-type nitride semiconductor contact layer 7 is formed on the flat fourth substrate parallel surface 6a of the fourth underlayer 6 of the nitride semiconductor structure 10 by MOCVD, for example.
  • an n-type nitride semiconductor cladding layer 9 is formed on the surface of the n-type nitride semiconductor contact layer 7.
  • the nitride semiconductor active layer 11 is formed on the surface of the n-type nitride semiconductor clad layer 9.
  • a p-type nitride semiconductor cladding layer 13 is formed on the surface of the nitride semiconductor active layer 11.
  • the p-type nitride semiconductor contact layer 15 is formed on the surface of the p-type nitride semiconductor cladding layer 13.
  • a p-side electrode 21 is formed on the surface of the translucent electrode layer 19.
  • a laminated film of a nickel layer, an aluminum layer, a titanium layer, and a gold layer can be formed.
  • a part of the stacked body after the formation of the p-side electrode 21 is removed by etching, so that a part of the surface of the n-type nitride semiconductor contact layer 7 is exposed.
  • the n-side electrode 20 is formed on the exposed surface of the n-type nitride semiconductor contact layer 7.
  • the n-side electrode 20 for example, a laminated film of a nickel layer, an aluminum layer, a titanium layer, and a gold layer can be formed.
  • the nitride semiconductor light-emitting diode device 100 of the first embodiment can be manufactured by dividing the wafer on which the plurality of nitride semiconductor light-emitting diode devices 100 are formed into individual devices.
  • the wafer is divided by, for example, grinding and polishing the back surface of the wafer having the above structure formed on the substrate 1 to form a mirror-like surface, and then forming the wafer into a rectangular chip having a side of 100 ⁇ m to 1000 ⁇ m. This can be done by dividing it into two.
  • the nitride semiconductor light-emitting diode device 100 has an n-type nitride semiconductor contact layer 7 and an n-type nitride semiconductor on the fourth substrate parallel surface 6a having good crystallinity and flatness.
  • the clad layer 9, the nitride semiconductor active layer 11, the p-type nitride semiconductor clad layer 13, and the p-type nitride semiconductor contact layer 15 are laminated in this order.
  • the n-type nitride semiconductor contact layer 7, the n-type nitride semiconductor clad layer 9, the nitride semiconductor active layer 11, the p-type nitride semiconductor clad layer 13 and the p-type nitride semiconductor contact layer 15 have a low dislocation density. Therefore, it can be configured to have excellent crystallinity.
  • the nitride semiconductor light-emitting diode device 100 according to the second embodiment including the nitride semiconductor layer having such excellent crystallinity is a device having a low operating voltage and a high light emission output, and can be manufactured more efficiently. .
  • the present embodiment is a light emitting device having the nitride semiconductor light emitting diode element of the second embodiment as a component.
  • FIG. 14 is a cross-sectional view schematically showing the light emitting device of this embodiment.
  • the light emitting device 110 shown in FIG. 14 includes the nitride semiconductor light emitting diode element 100 of the second embodiment as a constituent element.
  • the nitride semiconductor light emitting diode element 100 is installed on the second lead frame 31, and the p-side electrode 21 of the nitride semiconductor light emitting diode element 100 and the first lead frame 30 are connected to the first wire 33.
  • the n-side electrode 20 of the nitride semiconductor light emitting diode element 100 and the second lead frame 31 are electrically connected by the second wire 34.
  • the bullet-shaped light emitting device 110 can be manufactured by molding the nitride semiconductor light emitting diode element 100 with the transparent mold resin 35.
  • the light emitting device 110 according to the third embodiment having the configuration shown in FIG. 14 uses the nitride semiconductor light emitting diode element 100 according to the second embodiment, the operating voltage is low, the light output is high, and the light emitting device can be efficiently manufactured. A light-emitting device can be obtained.
  • the fourth embodiment is a nitride semiconductor transistor element having the nitride semiconductor structure 10 of the first embodiment and a stacked structure formed on the nitride semiconductor structure 10.
  • FIG. 15 is a cross-sectional view schematically showing the nitride semiconductor transistor element of this embodiment.
  • the nitride semiconductor structure 10 used as a constituent element of the nitride semiconductor transistor element 300 is formed from a sapphire substrate whose principal surface is a c-plane in which convex portions 1a are arranged in three equivalent a (sub) axis directions.
  • a substrate 1 a nitride semiconductor intermediate layer 2 made of AlN, etc., a first nitride semiconductor base layer 3 made of undoped GaN, etc., and an undoped GaN, etc., which are sequentially laminated on the surface of the substrate 1. It consists of a second nitride semiconductor underlayer 4, a third nitride semiconductor underlayer 5 made of undoped GaN, and a fourth nitride semiconductor underlayer 6 made of undoped GaN.
  • a nitride semiconductor electron transit layer 71 made of undoped GaN or the like is stacked on the flat fourth substrate parallel surface 6a of the fourth nitride semiconductor underlayer 6 having good crystallinity with few crystal defects, and nitrided
  • An n-type nitride semiconductor electron supply layer 73 made of n-type AlGaN or the like is stacked on the surface of the metal semiconductor electron transit layer 71.
  • a gate electrode 77 is provided on the surface of the n-type nitride semiconductor electron supply layer 73, and a source contact layer 75S and a drain contact layer 75D made of n-type GaN or the like are provided on both sides of the gate electrode 77. .
  • a source electrode 78S is provided on the source contact layer 75S, and a drain electrode 78D is provided on the drain contact layer 75D.
  • the nitride semiconductor electron transit layer 71 and the n-type nitride are formed on the flat fourth substrate parallel surface 6a of the fourth nitride semiconductor base layer 6 having high crystallinity.
  • a nitride semiconductor layer such as a nitride semiconductor electron supply layer 73 is stacked.

Abstract

 表面に複数の凸部(1a)を有するとともに表面が窒化物半導体中間層(2)で被覆された基板(1)と、基板(1)上の凸部(1a)と凸部(1a)の間に、凸部(1a)の中心を含む少なくとも一部の表面が露出するように順に設けられた、第1の窒化物半導体下地層(3)と、第1の窒化物半導体下地層(3)の全体を被覆する第2の窒化物半導体下地層(4)と、第2の窒化物半導体下地層(4)の全体を被覆する第3の窒化物半導体下地層(5)と、凸部(1a)の露出した表面および第3の窒化物半導体下地層(5)の全体を被覆する第4の窒化物半導体下地層(6)と、を備え、第1の窒化物半導体下地層(3)は、第1の斜めファセット面を有し、第2の窒化物半導体下地層(4)は、第2の斜めファセット面と第2の基板平行面を有し、第3の窒化物半導体下地層(5)は、第3の斜めファセット面と第3の基板平行面を有する、窒化物半導体構造体(10)。

Description

窒化物半導体素子構造体とその製造方法
 本発明は、窒化物半導体素子構造体とその製造方法に関する。
 窒素を含むIII-V族化合物半導体(III族窒化物半導体)は、赤外から紫外領域の波長を有する光のエネルギに相当するバンドギャップを有しているため、赤外から紫外領域の波長を有する光を発光する発光素子やその領域の波長を有する光を受光する受光素子の材料として有用である。
 また、III族窒化物半導体は、III族窒化物半導体を構成する原子間の結合が強く、絶縁破壊電圧が高く、飽和電子速度が大きいことから、耐高温・高出力・高周波トランジスタなどの電子デバイスの材料としても有用である。
 さらに、III族窒化物半導体は、環境を害することがほとんどなく、取り扱いやすい材料としても注目されている。
 上述したような優れた材料であるIII族窒化物半導体を用いて実用的な窒化物半導体素子を作製するためには、所定の基板上にIII族窒化物半導体の薄膜からなるIII族窒化物半導体層を積層して、所定の素子構造を形成する必要がある。
 ここで、基板としては、基板上にIII族窒化物半導体を直接成長させることが可能な格子定数や熱膨張係数を有するIII族窒化物半導体からなる基板を用いることが最も好適であり、III族窒化物半導体からなる基板としては、たとえば窒化ガリウム(GaN)基板などを用いることが好ましい。
 しかしながら、GaN基板は、現状ではその寸法が直径2インチ以下と小さく、また非常に高価であるため、実用的ではない。
 そのため、現状では、窒化物半導体素子の作製用の基板としては、III族窒化物半導体とは格子定数差および熱膨張係数差が大きいサファイア基板や炭化珪素(SiC)基板などが用いられている。
 サファイア基板と代表的なIII族窒化物半導体であるGaNとの間には約16%程度の格子定数差が存在する。また、SiC基板とGaNとの間には約6%程度の格子定数差が存在する。このような大きな格子定数差が基板とその上に成長するIII族窒化物半導体との間に存在する場合には、基板上にIII族窒化物半導体からなる結晶をエピタキシャル成長させることは一般的に困難である。たとえば、サファイア基板上に直接GaN結晶をエピタキシャル成長させた場合には、GaN結晶の3次元的な成長が避けられず、平坦な表面を有するGaN結晶が得られないという問題がある。
 そこで、基板とIII族窒化物半導体との間に、基板とIII族窒化物半導体との間の格子定数差を解消させるための所謂バッファ層と呼ばれる層を形成することが一般的に行なわれている。
 たとえば、特許文献1には、サファイア基板上にAlNのバッファ層を有機金属気相成長法(MOVPE法)によって形成した後に、AlxGa1-xNからなるIII族窒化物半導体を成長させる方法が記載されている。
 しかしながら、特許第3026087号公報(特許文献1)に記載の方法においても、平坦な表面を有するAlNのバッファ層を再現性良く得ることは困難であった。これは、MOVPE法によってAlNのバッファ層を形成する場合には、原料ガスとして用いられるトリメチルアルミニウム(TMA)ガスとアンモニア(NH3)ガスとが気相中で反応しやすいためと考えられる。
 したがって、特許文献1に記載の方法においては、表面が平坦であって、かつ欠陥密度が小さい高品質のAlxGa1-xNからなるIII族窒化物半導体をAlNのバッファ層上に再現性良く成長させることは困難であった。
 また、たとえば特公平5-86646号公報(特許文献2)には、サファイア基板上に直流バイアスを印加した高周波スパッタ法でAlxGa1-xN(0<x<1)バッファ層を形成する方法が開示されている。しかしながら、この方法により形成されたバッファ層上であっても、十分に優れた結晶性を有するIII族窒化物半導体層を形成することは困難であった。
 そこで、特許第3440873号公報(特許文献3)には、DCマグネトロンスパッタ法で形成したIII族窒化物半導体からなるバッファ層を水素ガスとアンモニアガスとの混合ガスの雰囲気下で熱処理する方法が提案されており、また、特許第3700492号公報(特許文献4)には、400℃以上に昇温されたサファイア基板上にDCマグネトロンスパッタ法によって50オングストローム以上3000オングストローム以下の膜厚のIII族窒化物半導体からなるバッファ層を形成する方法が提案されている。
 また、特開2008-34444号公報(特許文献5)には、750℃に加熱されたサファイア基板上に高周波スパッタ法によってAlNの柱状結晶からなるバッファ層を形成する方法が提案されている。
 また、特許第3950471号公報(特許文献6)には、結晶欠陥の少ないIII族窒化物半導体を成長するため、基板表面に凹凸構造を設け、その上にIII族窒化物半導体をラテラル成長させることが記載されている。
 また、特開2006-352084号公報(特許文献7)には、凹凸構造を設けたサファイア基板上に、傾斜したファセットを斜面に有する二等辺三角形の断面形状となるようにGaN層を成長させるステップの後、成長条件を横方向成長が支配的となる条件に設定して成長を続けその表面がサファイア基板の主面と平行な平坦面となるまでGaN層を横方向成長させるステップからなる2段階の成長によって窒化物半導体を形成することが記載されている。
特許第3026087号公報 特公平5-86646号公報 特許第3440873号公報 特許第3700492号公報 特開2008-34444号公報 特許第3950471号公報 特開2006-352084号公報
 高品質なIII族窒化物半導体を歩留まり良く製造するために、結晶欠陥の少ない高品質のIII族窒化物半導体を成長させる必要がある。そのため、下地となる窒化物半導体下地層についても結晶欠陥が少なく、高い結晶性を有するものが要求される。
 また、III族窒化物半導体の発光素子において基板の光取り出し効率を高めるために、凹凸構造を設けた基板が用いられることがあるが、結晶欠陥が少なく、高い結晶性を有する下地層を作製することは困難である。
 たとえば、特許文献7に記載されている方法においては、凹部に窒化物半導体層を成長させた後に、横方向成長が支配的となる成長条件に設定して窒化物半導体層を成長させているが、サファイアなどの窒化物半導体と格子不整合率の高い基板の場合や、凹凸構造を設けた基板等では、凹部に最初に形成する窒化物半導体において、縦方向の欠陥が多数生じやすく、続けて横方向成長が支配的となる条件で成長させる窒化物半導体の横方向の欠陥の起点となる。かかる横方向の欠陥は凸部の上に形成される縦方向の欠陥と会合したり、結晶のすべり面で横方向成長から縦方向成長に変化することにより、縦方向の欠陥を多数生じさせたりすることになる。ここで縦方向の欠陥は基板の主面に対して垂直方向に出来る欠陥、横方向の欠陥は基板の主面に対して平行方向に出来る欠陥を意味する。
 上記の事情に鑑みて、本発明の目的は、結晶性の高い窒化物半導体下地層を有する窒化物半導体構造体と、その製造方法を提供することにある。
 本発明は、三方晶コランダムまたは六方晶の結晶からなり、表面に複数の凸部を有するとともに表面が窒化物半導体中間層で被覆された基板と、基板上の凸部と凸部の間に、凸部の中心を含む少なくとも一部の表面が露出するように順に設けられた、第1の窒化物半導体下地層と、第1の窒化物半導体下地層の全体を被覆する第2の窒化物半導体下地層と、第2の窒化物半導体下地層の全体を被覆する第3の窒化物半導体下地層と、凸部の前記露出した表面および前記第3の窒化物半導体下地層の全体を被覆する第4の窒化物半導体下地層と、を備え、第1の窒化物半導体下地層は、第1の斜めファセット面を有し、第2の窒化物半導体下地層は、第2の斜めファセット面と第2の基板平行面を有し、第3の窒化物半導体下地層は、第3の斜めファセット面と第3の基板平行面を有する、窒化物半導体構造体である。
 上記本発明の窒化物半導体構造体において、第1の窒化物半導体下地層は、さらに第1の基板平行面を有していてもよく、この場合、基板の主面に垂直な方向からの平面視において、第1の斜めファセット面の面積割合が、第1の基板平行面の面積割合よりも大きいことが好ましい。
 上記本発明の窒化物半導体構造体において、第2の窒化物半導体下地層は、基板の主面に垂直な方向からの平面視において、第2の斜めファセット面の面積割合が、第2の基板平行面の面積割合よりも小さいことが好ましい。
 上記本発明の窒化物半導体構造体において、第3の窒化物半導体下地層は、基板の主面に垂直な方向からの平面視において、第3の斜めファセット面の面積割合が、第3の基板平行面の面積割合よりも大きいことが好ましい。
 上記本発明の窒化物半導体構造体において、第1の斜めファセット面の基板の主面に対する角度をθ1、第2の斜めファセット面の基板の主面に対する角度をθ2とすると、θ1<θ2の関係を満たすことが好ましい。また、第3の斜めファセット面の基板の主面に対する角度をθ3とすると、θ1<θ3<θ2の関係を満たすことがさらに好ましい。
 また、本発明は、上記窒化物半導体構造体と、窒化物半導体構造体上に形成された積層構造とを有する、窒化物半導体発光素子である。
 また、本発明は、上記窒化物半導体構造体と、窒化物半導体構造体上に形成された積層構造を有する、窒化物半導体トランジスタ素子である。
 また、本発明は、三方晶コランダムまたは六方晶の結晶からなり、表面に複数の凸部を有する基板の表面上に、表面の形状を反映するように窒化物半導体中間層を形成する工程と、
 第1の斜めファセット面を有する、第1の窒化物半導体下地層を、基板の表面上の凸部と前記凸部の間に、凸部の中心を含む少なくとも一部の表面が露出するように形成する工程と、
 第2の斜めファセット面および第2の基板平行面を有する、第2の窒化物半導体下地層を、基板の表面上の凸部と凸部の間に、第1の窒化物半導体下地層の全体を被覆しかつ凸部の中心を含む少なくとも一部の表面が露出するように形成する工程と、
 第3の斜めファセット面および第3の基板平行面を有する、第3の窒化物半導体下地層を、基板の表面上の凸部と凸部の間に、第2の窒化物半導体下地層の全体を被覆しかつ凸部の中心を含む少なくとも一部の表面が露出するように形成する工程と、
 第4の窒化物半導体下地層を、凸部の第3の窒化物半導体下地層で被覆されていない表面と、第3の窒化物半導体下地層の全体を被覆するように形成する工程と、を備える、窒化物半導体構造体の製造方法である。
 上記本発明の製造方法において、第1の窒化物半導体下地層と、第2の窒化物半導体下地層と、第3の窒化物半導体下地層と、第4の窒化物半導体下地層とは、有機金属気相成長法により形成され、有機金属気相成長法は、有機金属気相成長装置内で、基板を加熱するとともに基板を回転させながら、V族元素用原料ガスとIII族元素用原料ガスとを、水素ガスを含むキャリアガスとともに供給し、有機金属気相成長装置内の圧力を上げて行ない、第1の窒化物半導体下地層を形成する条件と、第2の窒化物半導体下地層を形成する条件とは、以下のAI,BI,CI,DIおよびEIの関係の内、少なくとも1つの関係を満たすことが好ましい。
 AI.第1の窒化物半導体下地層の形成時の基板の加熱温度は、第2の窒化物半導体下地層の形成時の基板の加熱温度より低い、
 BI.第1の窒化物半導体下地層の形成時の有機金属気相成長装置内の圧力は、第2の窒化物半導体下地層の形成時の有機金属気相成長装置内の圧力より高い、
 CI.第1の窒化物半導体下地層の形成時に単位時間当たりに供給されるIII族元素用原料ガスのモル量に対するV族元素用原料ガスのモル量の比率は、第2の窒化物半導体下地層の形成時の前記比率より高い、
 DI.第1の窒化物半導体下地層の形成時の基板の単位時間当たりの回転数は、第2の窒化物半導体下地層の形成時の基板の単位時間当たりの回転数より小さい、
 EI.第1の窒化物半導体下地層の形成時のキャリアガスの全体積に対する水素ガスの体積比は、第2の窒化物半導体下地層の形成時のキャリアガスの全体積に対する水素ガスの体積比より高い。
 上記本発明の製造方法において、第1の窒化物半導体下地層と、第2の窒化物半導体下地層と、第3の窒化物半導体下地層と、第4の窒化物半導体下地層とは、有機金属気相成長法により形成され、有機金属気相成長法は、有機金属気相成長装置内で、基板を加熱するとともに基板を回転させながら、V族元素用原料ガスとIII族元素用原料ガスとを、水素ガスを含むキャリアガスとともに供給し、有機金属気相成長装置内の圧力を上げて行ない、第1の窒化物半導体下地層を形成する条件と、第3の窒化物半導体下地層を形成する条件とは、以下のAII,BII,CII,DIIおよびEIIの関係の内、少なくとも1つの関係を満たすことが好ましい。
 AII.第1の窒化物半導体下地層の形成時の基板の加熱温度は、第3の窒化物半導体層の形成時の基板の加熱温度より高い、
 BII.第1の窒化物半導体下地層の形成時の有機金属気相成長装置内の圧力は、第3の窒化物半導体下地層の形成時の有機金属気相成長装置内の圧力より低い、
 CII.第1の窒化物半導体下地層の形成時に単位時間当たりに供給されるIII族元素用原料ガスのモル量に対するV族元素用原料ガスのモル量の比率は、第3の窒化物半導体下地層の形成時の前記比率より低い、
 DII.第1の窒化物半導体下地層の形成時の基板の単位時間当たりの回転数は、第3の窒化物半導体下地層の形成時の基板の単位時間当たりの回転数より大きい、
 EII.第1の窒化物半導体下地層の形成時のキャリアガスの全体積に対する水素ガスの体積比は、第3の窒化物半導体下地層の形成時のキャリアガスの全体積に対する水素ガスの体積比より低い。
 上記本発明の製造方法において、第1の窒化物半導体下地層と、第2の窒化物半導体下地層と、第3の窒化物半導体下地層と、第4の窒化物半導体下地層とは、有機金属気相成長法により形成され、有機金属気相成長法は、有機金属気相成長装置内で、基板を加熱するとともに基板を回転させながら、V族元素用原料ガスとIII族元素用原料ガスとを、水素ガスを含むキャリアガスとともに供給し、有機金属気相成長装置内の圧力を上げて行ない、第2の窒化物半導体下地層を形成する条件と、第4の窒化物半導体下地層を形成する条件とは、以下のAIII,BIII,CIII,DIIIおよびEIIIの関係の内、少なくとも1つの関係を満たすことが好ましい。
 AIII.第4の窒化物半導体下地層の形成時の基板の加熱温度は、第2の窒化物半導体下地層の形成時の基板の加熱温度より高い、
 BIII.第4の窒化物半導体下地層の形成時の有機金属気相成長装置内の圧力は、第2の窒化物半導体下地層の形成時の有機金属気相成長装置内の圧力より低い、
 CIII.第4の窒化物半導体下地層の形成時に単位時間当たりに供給されるIII族元素用原料ガスのモル量に対するV族元素用原料ガスのモル量の比率は、第2の窒化物半導体下地層の形成時の前記比率より低い、
 DIII.第4の窒化物半導体下地層の形成時の基板の単位時間当たりの回転数は、第2の窒化物半導体下地層の形成時の基板の単位時間当たりの回転数より大きい、
 EIII.第4の窒化物半導体下地層の形成時のキャリアガスの全体積に対する水素ガスの体積比は、第2の窒化物半導体下地層の形成時のキャリアガスの全体積に対する水素ガスの体積比より低い。
 本発明によれば、結晶性の高い窒化物半導体下地層を有する窒化物半導体構造体と、その製造方法を提供することができる。
実施形態1の窒化物半導体構造体を模式的に示す断面図である。 窒化物構造体の部分拡大断面図である。 窒化物半導体構造体の基板準備工程を模式的に示す断面図である。 窒化物半導体構造体の基板加工工程を模式的に示す断面図である。 基板の表面の模式的な平面図である。 図5のB-B線に沿った模式的な断面図を示す。 窒化物半導体構造体の窒化物半導体中間層の形成工程を模式的に示す断面図である。 第1の窒化物半導体下地層の形成工程を模式的に示す断面図である。 第2の窒化物半導体下地層の形成工程を模式的に示す断面図である。 第3の窒化物半導体下地層の形成工程を模式的に示す断面図である。 第4の窒化物半導体下地層の形成工程を模式的に示す断面図である。 窒化物半導体構造体の部分拡大断面図である。 実施形態2の窒化物半導体発光ダイオード素子を模式的に示す断面図である。 実施形態3の発光装置を模式的に示す断面図である。 実施形態4の窒化物半導体トランジスタ素子を模式的に示す断面図である。
 以下、図面を用いて本発明の実施形態について説明する。なお、各図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
 <実施形態1>
 [窒化物半導体構造体の構造]
 本実施形態は、窒化物半導体構造体に関する。図1は、本実施形態の窒化物半導体構造体を模式的に示す断面図である。本実施形態の窒化物半導体構造体10は、表面に複数の凸部1aを有するとともに表面が窒化物半導体中間層2で被覆された基板1と、基板1上の凸部1aと凸部1aの間に、凸部1aの中心を含む少なくとも一部の表面が露出するように順に設けられた、第1の窒化物半導体下地層3と、第2の窒化物半導体下地層4と、第3の窒化物半導体下地層5とを有する。第3の窒化物半導体下地層5の上には、さらに第4の窒化物半導体下地層6を有する。
 図2は、窒化物半導体構造体の部分拡大断面図である。第1の窒化物半導体下地層3は、第1の斜めファセット面3aと第1の基板平行面3bを有する。第2の窒化物半導体下地層4は、第1の窒化物半導体下地層3の全体を被覆するように設けられ、第2の斜めファセット面4aと第2の基板平行面4bを有する。第3の窒化物半導体下地層5は、第2の窒化物半導体下地層4の全体を被覆するように設けられ、第3の斜めファセット面5aと第3の基板平行面5bを有する。第4の窒化物半導体下地層6は、凸部1aの第3の窒化物半導体下地層5により被覆されていない露出した表面と、第3の窒化物半導体下地層5の全体とを被覆するように設けられ、第4の基板平行面6aを有する。ここで、「斜めファセット面」とは基板の主面に対して傾斜を有する結晶面を意味し、「基板平行面」とは基板の主面に対して平行な結晶面を意味する。
 本実施形態の窒化物半導体構造体10は、上記のような第1~第3の窒化物半導体下地層3,4,5の上に第4の窒化物半導体下地層6を備える構成であることにより、結晶性が高く欠陥が少ない第4の基板平行面6aを有する。具体的には、結晶性が高く欠陥が少ない第4の基板平行面6aを得るためには、第3の窒化物半導体下地層5の縦方向(基板の主面に垂直な方向)の結晶欠陥V5を低減することが好ましい。結晶欠陥V5が低減すると、第4の窒化物半導体下地層6において、横方向の結晶欠陥H6が低減され、結果的に縦方向の結晶欠陥V6も低減させることができる。そのためには、第2の窒化物半導体下地層4の第2の基板平行面4bに向かう縦方向の結晶欠陥が少ないことが好ましい。そのためには、第2の窒化物半導体下地層4において、横方向(基板の主面に平行な方向)の結晶欠陥H4ができやすいように、第1の窒化物半導体下地層3に縦方向の結晶欠陥V3を形成することが有効である。
 第1の窒化物半導体下地層3は、第1の斜めファセット面3aを有することにより、縦方向の結晶欠陥3が生じやすい構成とすることができる。第1の窒化物半導体下地層3は、基板1の主面に垂直な方向からの平面視において、第1の斜めファセット面3aの面積割合が、第1の基板平行面3bの面積割合よりも大きい構成であることが好ましい。なお、第1の窒化物半導体下地層3は、第1の基板平行面3bを有さない構成であってもよい。第1の窒化物半導体下地層3は、第2の窒化物半導体下地層4に縦方向の欠陥を発生させないため、凹領域1bのほぼ全面を覆うように作製することが好ましい。また、第1の窒化物半導体下地層3の縦方向の欠陥V3を起点として第2の窒化物半導体下地層4の横方向の欠陥H4が生じるため、第1の斜めファセット面3aの角度θ1(第1の斜めファセット面3aと基板の主面とのなす角度θ1)が鋭角であるほど1つの横方向の欠陥H4に縦方向の欠陥V3が集まりやすくなり、横方向の欠陥H4の数を減らす効果があるので好ましい。
 第2の窒化物半導体下地層4は、第2の斜めファセット面4aと第2の基板平行面4bを有する構成であることにより、横方向(基板の主面に対して平行な方向)の欠陥H4が生じやすい構成とすることができる。第2の窒化物半導体下地層4は、第3の窒化物半導体下地層5の縦横方向の欠陥V5を低減させるために、第2の基板平行面4bが大きいほど好ましい。すなわち、第2の窒化物半導体下地層4は、基板1の主面に垂直な方向からの平面視において、第2の斜めファセット面4aの面積割合が、第2の基板平行面4bの面積割合よりも小さい構成であることが好ましく、第2の斜めファセット面4aの面積が、第2の基板平行面4bの面積の40%以上100%未満であることがさらに好ましい。また、第2の窒化物半導体下地層4の横方向の欠陥H4を起点として第3の窒化物半導体下地層5の縦方向の欠陥V5が生じるため、第2の斜めファセット面4aの角度θ2(第2の斜めファセット面4aと基板の主面とのなす角度θ2)が直角に近い値であるほど1つの縦方向の欠陥V5に横方向の欠陥H4が集まりやすくなり、縦方向の欠陥V5の数を減らすことができるので好ましい。
 第3の窒化物下地層5は、第3の斜めファセット面5aと第3の基板平行面5bとを有する構成であることにより、縦方向の結晶欠陥を低減させることができる。第3の窒化物半導体下地層5は、第4の窒化物半導体下地層6を低転位で作製するために第3の基板平行面5bを小さくし、第2の窒化物半導体下地層4より第3の斜めファセット面5aを大きくすることが望ましい。すなわち、第3の窒化物半導体下地層5は、基板1の主面に垂直な方向からの平面視において、第3の斜めファセット面5aの面積割合が、第3の基板平行面5bの面積割合よりも大きい構成であることが好ましく、第3の斜めファセット面5aの面積が、第3の基板平行面5bの面積の750~2000%であることがさらに好ましい。また、第3の斜めファセット面5aの角度θ3(第3の斜めファセット面5aと基板の主面とのなす角度θ3)が鋭角であるほど、結晶欠陥が少なく平坦な第4の基板平行面6aを有する第4の窒化物半導体下地層6を形成することができる。
 上記で説明した結晶欠陥が少ない少なく平坦な第4の基板平行面6aを形成するためには、第1の斜めファセット面3aの基板の主面に対する角度θ1と、第2の斜めファセット面4aの基板の主面に対する角度θ2とは、θ1<θ2の関係を満たすことが好ましい。さらに、第3の斜めファセット面5aの基板の主面に対する角度θ3と、角度θ1および角度θ2とは、θ1<θ3<θ2の関係を満たすことが好ましい。
 [窒化物半導体構造体の製造方法]
 次に、本実施形態の窒化物半導体構造体の製造方法を説明する。窒化物半導体構造体10は、表面に複数の凸部1aを有する基板1の表面上に、表面の形状を反映するように窒化物半導体中間層2を形成する工程と、第1の窒化物半導体下地層3を形成する工程と、第2の窒化物半導体下地層4を形成する工程と、第3の窒化物半導体下地層5を形成する工程と、第4の窒化物半導体下地層6を形成する工程とを順に有する製造方法により製造される。なお、本発明の窒化物半導体構造の製造方法においては、これら各工程以外に他の工程が含まれていてもよいことは言うまでもない。
 (基板の準備)
 まず、図3の模式断面図に示すように、基板1を準備する。基板1は、三方晶コランダムまたは六方晶の結晶からなる。三方晶コランダムとして、たとえばサファイア(Al23)の単結晶を用いることができ、六方晶の結晶としては、たとえばAlN単結晶、GaN単結晶などの(AlGaIn)N系の窒化物半導体結晶を用いることができる。サファイアの結晶は、三方晶コランダムであるが、六方晶の表記法で表わすことができる。そこで、サファイア基板および窒化物半導体結晶のいずれにおいても、c軸方向を[0001]とし、a1軸方向を[-2110]とし、a2軸方向を[1-210]とし、a3軸方向を[11-20]とし、a1軸方向、a2軸方向およびa3軸方向の3方向を合わせてa軸方向あるいは<11-20>方向と表記する。また、c軸方向および<11-20>方向にそれぞれ垂直で等価な3方向をm軸方向(最も代表的には<1-100>方向)と表記する。
 なお、結晶面および方向を表わす場合に、本来であれば所要の数字の上にバーを付した表現をするべきであるが、本明細書においては、所要の数字の上にバーを付す表現の代わりに、所要の数字の前に「-」を付して表現している。たとえば、結晶学の記法によれば1の逆方向は1の上にバーを記載するところを、便宜上「-1」と表記する。
 基板1の表面40は、c面またはc面に対して5°以内の傾斜を有する表面であってもよく、傾斜の方向は、たとえば、m(sub)軸(<1-100>)方向のみであってもよく、a(sub)軸(<11-20>)方向のみであってもよく、あるいは両方向を合成した方向であってもよい。たとえば、基板1としては、基板1の表面40がc面(法線がc軸の面)から基板のm(sub)軸<1-100>方向に0.15゜~0.35゜傾斜したものなどを準備することができる。
 なお、窒化物半導体構造体10において、基板1の結晶方向と、基板1上の窒化物半導体層の結晶方向とが異なるため、本明細書においては基板1の結晶方向に「sub」を付記し、窒化物半導体層の結晶方向に「layer」を付記するものとする。ここで、基板1の結晶軸と窒化物半導体層の結晶軸との関係について、基板1がサファイア単結晶である場合には、基板1のa(sub)軸方向は窒化物半導体層のm(layer)軸方向と一致し、基板1のm(sub)軸方向は窒化物半導体層のa(layer)軸方向と一致する。一方、基板1がAlN単結晶またはGaN単結晶である場合には、基板のa(sub)軸方向は窒化物半導体層のa(layer)軸方向と一致し、基板1のm(sub)軸方向は窒化物半導体層のm(layer)軸方向と一致する。
 また、基板1の口径は特には限定されないが、たとえば150mm(約6インチ)とすることができる。基板1としては、従来は50.8mm(2インチ)程度の口径の基板を用いることが一般的であったが、生産性を高めるためには大口径の基板を用いることが好ましい。なお、大口径の基板1を用いた場合には、基板1上に窒化物半導体層を形成した後に歪が蓄積するため、基板1の割れや窒化物半導体層の表面にクラックが生じやすくなる。しかしながら、本発明によると、100mm(約4インチ)以上の大口径の基板1を用いた場合であっても、基板1の割れや窒化物半導体層の表面に発生するクラックを抑制することができる。
 次に、図4の模式的断面図に示すように、複数の凸部1aを有するように基板1の表面40を加工する。ここで、表面上の凸部1aが形成されていない領域を凹領域1bとする。基板1の表面40のこのような加工は、たとえば、基板1の表面40上に凸部1aの平面配置を規定するマスクを形成するパターニング工程と、当該パターニング工程によって形成したマスクを用いて基板1の表面40をエッチングして凹領域1bを形成する工程とを含む工程により形成することができる。パターニング工程は、一般的なフォトリソグラフィ工程で行なうことができる。エッチング工程は、たとえば、ドライエッチング法やウエットエッチング法で行なうことができる。凸部1aの形状が後述する先端部を備える形状とするためには、凸部1aの形状を制御しやすいドライエッチング法で行なうことが好ましい。また、基板1の表面40の加工には、SiO等の誘電体を用いて加工することもできる。凹領域1bの表面形状は限定されないが、第1の窒化物半導体下地層3の成長が凹領域1bから開始しやすいように平面であることが好ましい。
 図5は、図4に示す基板1の表面の一例の模式的な平面図を示す。図5に示す基板1の表面の平面視においては、凸部1aは円形の平面形状であり、凸部1aは仮想の三角形1tの頂点にそれぞれ位置しており、仮想の三角形1tの3辺のそれぞれの辺の方向に配列されている。本実施形態において、凸部1aは、基板1の表面のa(sub)軸方向(<11-20>方向)に配列されるとともに、基板1の表面のa(sub)軸方向に対して+60°の傾きを為す方向および基板1の表面のa(sub)軸方向に対して-60°の傾きを為す方向にそれぞれ配列されている。なお、本明細書において、基板1の表面の平面視において、a(sub)軸方向に対して+60°の傾きを為す方向およびa(sub)軸方向に対して-60°の傾きを為す方向をそれぞれu方向という。
 なお、凸部1aの平面形状である円形の円の中心は、三角形1tの頂点と必ずしも完全に一致している必要はなく、実質的に一致していればよい。具体的には、円の中心がその円の半径以下のズレである場合には、後述する第1の窒化物半導体下地層3の形成工程において、第1の窒化物半導体下地層3の成長が、基板1の表面の凸部1aが形成されている領域よりも安定して凹領域1bで成長を開始する傾向にある。そして、成長がさらに進むと、後述するように、凸部1aを中心として凸部1aの外側において凸部1aを取り囲む少なくとも6つの斜めファセット面を有するような第1の窒化物半導体下地層3が形成されやすくなる。
 凸部1aの底面における平面形状は、円形に限られるものではなく、たとえば六角形または三角形などの多角形であってもよい。
 また、基板1の表面の平面視において、頂点に凸部1aが配置される仮想の三角形1tの各内角の角度は50゜以上70゜以下であることが好ましい。この場合には、第1の窒化物半導体下地層3の形成が、凸部1aが形成されている領域よりも安定して凹領域1bで成長を開始する傾向にある。そして、成長がさらに進むと、後述するように、凸部1aを中心として凸部1aの外側において凸部1aを取り囲む少なくとも6つの斜めファセット面を有するような第1の窒化物半導体下地層3が形成されやすくなる。
 また、基板1の表面の平面視において、隣り合う凸部1aの間隔(凸部1aの中心間距離)は、たとえば2μmとすることができる。隣り合う凸部1aの間隔は2μmに限定されることはなく、0.2μm以上7μm以下とすることが好ましく、0.2μm以上2μm以下とすることがさらに好ましい。隣り合う凸部1aの間隔が0.2μm以上7μm以下である場合には、プロセス上の問題が少なくなる傾向にある。プロセス上の問題としては、隣り合う凸部1aの間隔が7μmを超えると、凸部1aの高さを高くするためのドライエッチング時間が長くなり、後述する第2の窒化物半導体下地層4の上面を基板の主面に平行な面とするまでに要する成長時間が長くなるなどの問題がある。また隣り合う凸部1aの間隔が0.2μm未満であると、第2の窒化物半導体下地層4の第2の基板平行面4bの密度が高くなり、従来の結晶成長条件では欠陥が多くなる。
 また、基板1の表面の平面視における、凸部1aの円形の直径は、隣り合う凸部1aの間隔の1/2以上3/4以下とすることが好ましい。たとえば、隣り合う凸部1aの間隔が2μmである場合には、凸部1aの円形の円の直径は1.0~1.5μmとすることが好ましく、たとえば1.2μmとすることができる。凸部1aの円形の円の直径が隣り合う凸部1aの間隔の1/2以上3/4以下である場合に、後述する第2の窒化物半導体下地層4は、凸部1aが形成されている領域よりも安定して凹領域1bで成長を開始する傾向にある。そして、成長がさらに進むと、凸部1aを中心として凸部1aの外側において凸部1aを取り囲む少なくとも6つの斜めファセット面を有する第2の窒化物半導体下地層4が形成されやすくなる。
 また、凸部1aの高さは、凸部1aの円形の円の直径の1/4以上1以下とすることが好ましい。たとえば、凸部1aの円形の円の直径が1.2μmである場合には、凸部1aの高さは0.3~1.2μmとすることが好ましく、たとえば0.6μm程度とすることができる。この場合に、後述する第3の窒化物半導体下地層5は、凸部1aが形成されている領域よりも安定して凹領域1bで成長を開始する傾向にある。そして、成長がさらに進むと、凸部1aを中心として凸部1aの中心より外側において凸部1aの中心を取り囲む少なくとも6つの斜めファセット面を有する第3の窒化物半導体下地層5が形成されやすくなる。
 図6に、図5に示す凸部1aの中心を通るB-B線に沿った模式的な断面図を示す。図6に示すように、凸部1aは中心または中心近傍に先端部1cを備える形状であることが好ましい。本明細書において、凸部1aが先端部1cを備える形状とは、凸部1aの断面形状において、凸部の中心近傍の上面が平坦になっていない形状を意味する。凸部1aの中心近傍の上面が平坦である場合には、ここに第1の窒化物半導体下地層3が成長しやすく、凹領域1bにおいて第1の窒化物半導体下地層3の成長を開始するのが難しくなる場合がある。一方、凸部1aが先端部1cを備える形状である場合には、後述の第1の窒化物半導体下地層3、第2の窒化物半導体下地層4、第3の窒化物半導体下地層5はいずれも、凹領域1bから成長しやすく、これらの層を凸部1aの先端部1cを含む少なくとも一部の表面を被覆しないように形成することが容易となる。
 このように形成することにより、引き続き成長する後述の第4の窒化物半導体下地層6が凸部1aの先端部1cの上方で会合するため、結晶欠陥が生じる領域が限定され、全体としての欠陥の数を減らすことができると考えられる。また凸部1aの中心近傍の上面が平坦の場合、第1の窒化物半導体下地層3から第3の窒化物半導体下地層5の成長において、凸部1aの全体を覆うように結晶成長が行われやすく、第4の窒化物半導体下地層6を成長するときの欠陥の起因となる。
 基板1の表面は、後述する窒化物半導体中間層2の形成前に前処理を行なってもよい。基板1の表面の前処理の一例としては、たとえば、RCA洗浄(希フッ酸水溶液(HF)処理、アンモニア(NH4OH)と過酸化水素(H22)による処理、塩酸(HCl)と過酸化水素(H22)による処理、超純水洗浄を順次行なう洗浄)を行なうことによって、基板1の表面を水素終端化する処理が挙げられる。これにより、基板1の表面上に良好な結晶性の窒化物半導体中間層2を再現性良く積層することができる傾向にある。
 また、基板1の表面の前処理の他の一例としては、基板1の表面を窒素ガスのプラズマに曝す処理が挙げられる。これにより、基板1の表面に付着した有機物や酸化物などの異物を除去し、基板1の表面の状態を整えることができる傾向にある。特に、基板1がサファイア基板である場合には、基板1の表面を窒素ガスのプラズマに曝すことによって、基板1の表面が窒化されて、基板1の表面上に積層される窒化物半導体中間層2が面内で均一に形成されやすくなる傾向にある。
 (窒化物半導体中間層の形成)
 図7は、窒化物半導体中間層の形成工程を模式的に示す断面図である。図7の断面図に示すように、基板1の表面上に、基板1の表面の形状を反映するように窒化物半導体中間層2を形成する。ここで、窒化物半導体中間層2は、たとえば、N2とArとの混合雰囲気においてAlターゲットをスパッタする反応性スパッタ法によって形成することができる。
 窒化物半導体中間層2は、たとえばAlx0Gay0N(0≦x0≦1、0≦y0≦1、x0+y0≠0)の式で表わされる窒化物半導体からなる。なかでも、窒化物半導体中間層2を形成する窒化物半導体としては、AlNまたはAlx1Ga1-x1N(0.5<x1≦1)の式で表わされる窒化物半導体(窒化アルミニウム)が好ましい。この場合には、基板1の表面の法線方向に伸長する結晶粒の揃った柱状結晶の集合体からなる良好な結晶性の窒化物半導体中間層2を得ることができる傾向にある。窒化物半導体中間層2は微量の酸素を含んでいてもよい。
 窒化物半導体中間層2の厚さは、5nm以上100nm以下であることが好ましい。窒化物半導体中間層2の厚さが5nm未満である場合には、窒化物半導体中間層2がバッファ層としての機能を十分に発揮しないおそれがある。窒化物半導体中間層2の厚さが100nmを超える場合にはバッファ層としての機能が向上することなく、窒化物半導体中間層2の形成時間だけが長くなるおそれがある。窒化物半導体中間層2の厚さは、10nm以上50nm以下とすることがより好ましい。この場合には、窒化物半導体中間層2のバッファ層としての機能を面内において均一に発揮させることができる傾向にある。窒化物半導体中間層2の一例として、わずかに酸素を含むAlN膜を約30nmの厚さで形成することができる。
 窒化物半導体中間層2の形成時における基板1の温度は、300℃以上1000℃以下であることが好ましい。窒化物半導体中間層2の形成時における基板1の温度が300℃未満である場合には、窒化物半導体中間層2が基板1の表面の全面を覆うことができず、基板1の表面の一部が窒化物半導体中間層2から露出するおそれがある。また、窒化物半導体中間層2の積層時における基板1の温度が1000℃を超える場合には、基板1の表面での原料のマイグレーションが活発になりすぎて、柱状結晶の集合体というよりはむしろ単結晶の膜に近い窒化物半導体中間層2が形成されて、窒化物半導体中間層2のバッファ層としての機能が低下するおそれがある。
 (窒化物半導体下地層の形成)
 図8~図11は、窒化物半導体下地層の形成工程を模式的に示す断面図である。まず、図8の断面図に示すように、基板1の凹領域1bの窒化物半導体中間層2の上に第1の窒化物半導体下地層3を形成する。第1の窒化物半導体下地層3は、斜めファセット面(第1斜めファセット面)3aと基板平行面(第1の基板平行面)3bを有する。第1の窒化物半導体下地層3は、凸部1aの中心を含む少なくとも一部の表面が露出されていればその形成範囲は限定されないが、第2の窒化物半導体下地層4に縦方向の欠陥を発生させないため、凹領域1bのほぼ全面を覆うように作製することが好ましい。
 次に、図9の断面図に示すように、基板1の凹領域1bに、第1の窒化物半導体下地層3の全体を覆うように第2の窒化物半導体下地層4を形成する。第2の窒化物半導体下地層4は、斜めファセット面(第2の斜めファセット面)4aと基板平行面(第2の基板平行面)4bとを有する。第2の窒化物半導体下地層4は、凸部1aの中心を含む少なくとも一部の表面が露出されていればその形成範囲は限定されない。
 次に、図10の断面図に示すように、基板1の凹領域1bに、第2の窒化物半導体下地層4の全体を覆うように第3の窒化物半導体下地層5を形成する。第3の窒化物半導体下地層5は、凸部1aの表面に接するように形成されてもよいが、凸部1aの中心を含む少なくとも一部の表面は露出するように形成される。すなわち、凸部1aの全体を被覆しないように形成される。第3の窒化物半導体下地層5は、斜めファセット面(第3の斜めファセット面)5aと基板平行面(第3の基板平行面)5bとを有する。
 そして、図11の断面図に示すように、第3の窒化物半導体下地層5の全体と、凸部1aの露出している表面を被覆するように第4の窒化物半導体下地層6を形成する。第4の窒化物半導体下地層6は、その表面(第4の基板平行面)6aが基板1の主面に平行になるように形成される。以上により、基板1上に、窒化物半導体中間層2、第1の窒化物半導体下地層3、第2の窒化物半導体下地層4、第3の窒化物半導体下地層5、および第4の窒化物半導体下地層6がこの順に積層された窒化物半導体構造体10が製造される。
 ここで、第1の窒化物半導体下地層3、第2の窒化物半導体下地層4、第3の窒化物半導体下地層5、および第4の窒化物半導体下地層6は、それぞれ、たとえばMOCVD(Metal Organic Chemical Vapor Deposition)法によって、窒化物半導体中間層2の表面上に順次形成することができる。
 各層の厚さは、例えば、図11の断面図に示すように、凹領域1bにおける窒化物半導体中間層2の表面上に第1の窒化物半導体下地層3を厚さt3が200nmとなるように形成し、次に、第2の窒化物半導体下地層4を厚さt4が300nmとなるように形成し、第2の窒化物半導体下地層4の全体を被覆するように第3の窒化物半導体下地層5を厚さt5が1800nmとなるように形成し、その後、第3の窒化物半導体下地層5の全体を被覆するように第4の窒化物半導体下地層6を厚さt6が6000nmとなるように形成する。各下地層の厚さは、これらの値に限定されることはないが、第4の窒化物半導体下地層6の厚さが、3000~9000nmの範囲となるように各下地層の厚さを調整することが好ましい。
 第1の窒化物半導体下地層3、第2の窒化物半導体下地層4、第3の窒化物半導体下地層5、および第4の窒化物半導体下地層6は、それぞれ、MOCVD法における適切な成長モードで成長させる。本明細書においては、下記のように、成長モードを便宜的に定義する。
 2次元成長モード:基板平行面が得られやすい成長モード、
 3次元成長モード:斜めファセット面が形成されやすい成長モード、
 2.5次元成長モード:2次元成長モードと3次元成長モードとの中間的な成長モード。
 MOCVD法においては、表面が窒化物半導体中間層2で被覆された基板1をMOCVD装置内にセットし、基板1を所望の温度に加熱するとともに回転させる。そして、V族元素用原料ガスのNH3(アンモニア)とIII族元素用原料ガスのTMGa(トリメチルガリウム)、TMIn(トリメチルインジウム)およびTMAl(トリメチルアルミニウム)を適宜組み合わせて水素を含むキャリアガスとともに供給し、MOCVD装置内の圧力を上げて窒化物半導体下地層の各層を形成する。このとき、5つの成長パラメータ、すなわち(A)基板の加熱温度、(B)MOCVD装置内の圧力、(C)単位時間当たりに供給されるIII族元素用原料ガスのモル量に対するV族元素用原料ガスのモル量の比率(以下、「V/III比」とも表わす)、(D)基板の回転数、および(E)キャリアガスの全体積に対する水素ガスの体積比を適切に選択して、各窒化物半導体下地層の成長モードを切り替える。
 ここで、本発明者が鋭意研究に努めた結果、これらの成長パラメータと、各窒化物半導体下地層の成長モードとの間に以下の相関があることを知見した。
 (A)基板の加熱温度
 基板の加熱温度が高いほど2次元成長モードになりやすく、基板の加熱温度が低いほど3次元成長モードになりやすい。
 (B)MOCVD装置内の圧力
 MOCVD装置内の圧力が低いほど2次元成長モードになりやすく、圧力が高いほど3次元成長モードになりやすい。
 (C)V/III比
 V/III比が小さいほど2次元成長モードになりやすく、V/III比が大きいほど3次元成長モードになりやすい。
 (D)基板の回転数
 基板の単位時間当たりの回転数が大きいほど2次元成長モードになりやすく、基板の単位時間当たりの回転数が小さいほど3次元成長モードになりやすい。
 (E)キャリアガスの全体積に対する水素ガスの体積比
 キャリアガスの全体積に対する水素ガスの体積比が小さいほど2次元成長モードになりやすく、キャリアガスの全体積に対する水素ガスの体積比が大きいほど3次元成長モードになりやすい。
 上記の知見に基づき、所望の成長モードとなるように、各窒化物半導体下地層の成長時の各パラメータの値を決定する。各窒化物半導体下地層の成長時における基板1の温度は、800℃以上1250℃以下であることが好ましく、900℃以上1150℃以下であることがより好ましい。窒化物半導体下地層の成長時における基板1の温度が800℃以上1250℃以下である場合、特に900℃以上1150℃以下である場合には、結晶欠陥の少ない結晶性に優れた窒化物半導体下地層を成長させることができる傾向にある。各窒化物半導体下地層の形成時のMOCVD装置内の圧力は、たとえば100~500Torrとすることができ、V/III比は、たとえば500~1400とすることができ、基板の回転数は、たとえば600~1200rpmとすることができ、キャリアガスの全体積に対する水素ガスの体積割合は50~90%とすることができる。
 図12は、窒化物半導体構造体の部分拡大断面図を示す。図12の断面図を参照して、結晶欠陥が少なく結晶性の高い平坦な第4の基板平行面6aを有する第4の窒化物半導体下地層6の製造に適した各窒化物半導体下地層の成長モードについて説明する。
 結晶欠陥が少なく結晶性の高い平坦な基板平行面6aを有する第4の窒化物半導体下地層6を形成するためには、第3の窒化物半導体下地層5の縦方向の結晶欠陥V5を低減する必要がある。そのためには、第2の窒化物半導体下地層4の縦方向の結晶欠陥V4を少なくする必要がある。そのためには第2の窒化物半導体下地層4が横方向の結晶欠陥H4が出来やすいように、第1の窒化物半導体下地層3に縦方向の結晶欠陥V3を作成することが有効である。したがって、まず第1の窒化物半導体下地層3は斜めファセット面3aを作りやすい「3次元成長モード」で成長させることが好ましい。これにより、第1の窒化物半導体下地層3の表面は、第1の斜めファセット面3aを有する構成とすることができる。
 第2の窒化物半導体下地層4は、第2の基板平行面4bが形成されるように「2次元成長モード」もしくは「2.5次元成長モード」で成長させることが好ましい。これにより、第2の斜めファセット面4aと、第2の基板平行面4bとを有するように第2の窒化物半導体下地層4を形成することができる。
 第3の窒化物半導体下地層5は、第3の斜めファセット面5aが形成されるように「3次元成長モード」で成長させることが好ましい。これにより第3の斜めファセット面5aと、第3の基板平行面5bとを有するように第3の窒化物半導体下地層5を形成することができる。
 さらに、第4の窒化物半導体下地層6は、第3の斜めファセット面5aと凸部1aとの空間を埋め込んで平坦な第4の基板平行面6aを形成するために「2次元成長モード」で成長させることが好ましい。これにより、結晶欠陥が少なく結晶性が良く、かつ平坦な上面6aを有する第4の窒化物半導体下地層6を形成することができる。
 すなわち、第1の窒化物半導体下地層3の表面に第1の斜めファセット面3aを設け、第2の窒化物半導体下地層4を設けることによって窒化物半導体層のc(layer)軸方向に伸長する転位を第2の斜めファセット面4aの方向に曲げることにより、第2の窒化物半導体下地層4のc(layer)軸方向に伸長する転位を低減する。
 そして、第3の斜めファセット面5aを設けることによって、窒化物半導体層のc(layer)軸方向に伸長する転位を第3の斜めファセット面5aの方向に曲げて、その数をさらに低減する。
 このように窒化物半導体層のc(layer)軸方向に伸長する転位の数が低減された第3の窒化物半導体下地層5の表面上に、平坦な表面を有する窒化物半導体層の成長を促進する2次元成長モードで第4の窒化物半導体下地層6を成長させることによって、結晶欠陥が少なく結晶性が良く、かつ平坦な基板平行面6aを有する第4の窒化物半導体下地層6を形成することができる。
 第1の窒化物半導体下地層3は3次元成長モードであるものの、第3の窒化物半導体下地層5より2次元成長モード寄りの条件が良く、第2の窒化物半導体下地層3は2次元成長モードであるものの第4の窒化物半導体下地層6より3次元成長寄りの条件が良く、第3の窒化物半導体下地層5は最も3次元成長しやすい条件が良く、第4の窒化物半導体下地層6は最も2次元成長しやすい条件にすることで結晶欠陥の少ない窒化物半導体下地層を作製することが出来る。
 上記した各下地層の好ましい成長条件を考慮して、上記した(A)基板の温度、(B)MOCVD装置内の圧力、(C)V/III比、(D)基板の回転数、および(E)キャリアガスの全体積に対する水素ガスの体積比の5つのパラメータを調整して各下地層を形成することができる。
 第1の窒化物半導体下地層3と第2の窒化物半導体下地層4の成長条件は、以下の成長条件群(I)のAI、BI、CI、DI、EIの少なくとも一つの関係を満たすことが好ましい。
 AI.第1の窒化物半導体下地層3の形成時の基板の加熱温度は、第2の窒化物半導体下地層4の形成時の基板の加熱温度より低い、
 BI.第1の窒化物半導体下地層3の形成時のMOCVD装置内の圧力は、第2の窒化物半導体下地層4の形成時のMOCVD装置内の圧力より高い、
 CI.第1の窒化物半導体下地層3の形成時に単位時間当たりに供給されるIII族元素用原料ガスのモル量に対するV族元素用原料ガスのモル量の比率は、第2の窒化物半導体下地層4の形成時の前記比率より高い、
 DI.第1の窒化物半導体下地層3の形成時の基板の単位時間当たりの回転数は、第2の窒化物半導体下地層4の形成時の基板の単位時間当たりの回転数より小さい、
 EI.第1の窒化物半導体下地層3の成長時のキャリアガスの全体積に対する水素ガスの体積比は第2の窒化物半導体下地層4の成長時のキャリアガスの全体積に対する水素ガスの体積比より高い。
 第1の窒化物半導体下地層3と第3の窒化物半導体下地層5の成長条件は、以下の成長条件群(II)のAII、BII、CII、DII、EIIの少なくとも一つの関係を満たすことが好ましい。
 AII:第1の窒化物半導体下地層3の形成時の基板の加熱温度は、第3の窒化物半導体下地層5の形成時の基板の加熱温度より高い、
 BII:第1の窒化物半導体下地層3の形成時のMOCVD装置内の圧力は、第3の窒化物半導体下地層5の形成時のMOCVD装置内の圧力より低い、
 CII:第1の窒化物半導体下地層3の形成時に供給されるガスのV/III比は第3の窒化物半導体下地層5の形成時に供給されるガスのV/III比より低い、
 DII:第1の窒化物半導体下地層3の形成時の基板の単位時間当たりの回転数は、第3の窒化物半導体下地層5の形成時の基板の単位時間当たりの回転数より大きい、
 EII:第1の窒化物半導体下地層3の成長時のキャリアガスの全体積に対する水素ガスの体積比は第3の窒化物半導体下地層5の成長時のキャリアガスの全体積に対する水素ガスの体積比より低い。
 第2の窒化物半導体下地層4と第4の窒化物半導体下地層6の成長条件は、以下の成長条件群(III)のAIII、BIII、CIII、DIII、EIIIの少なくとも一つの関係を満たすことが好ましい。
 AIII:第4の窒化物半導体下地層6の形成時の基板の加熱温度は、第2の窒化物半導体下地層4の形成時の基板の加熱温度より高い、
 BIII:第4の窒化物半導体下地層6の形成時のMOCVD装置内の圧力は、第2の窒化物半導体下地層4の形成時のMOCVD装置内の圧力より低い、
 CIII:第4の窒化物半導体下地層6の形成時に供給されるガスのV/III比は第2の窒化物半導体下地層4の形成時に供給されるガスのV/III比より低い、
 DIII:第4の窒化物半導体下地層6の形成時の基板の単位時間当たりの回転数は第2の窒化物半導体下地層4の成長時の基板1の単位時間当たりの回転数より大きい。
 EIII:第4の窒化物半導体下地層6の形成時のキャリアガスの全体積に対する水素ガスの体積比は第2の窒化物半導体下地層4の形成時のキャリアガスの全体積に対する水素ガスの体積比より低い。
 第1の窒化物半導体下地層3、第2の窒化物半導体下地層4、第3の窒化物半導体下地層5、第4の窒化物半導体下地層6を形成する窒化物半導体としては、たとえば、Alx2Gay2Inz2N(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2≠0)の式で表わされるIII族窒化物半導体を用いることができる。また、第1の窒化物半導体下地層3、第2の窒化物半導体下地層4、第3の窒化物半導体下地層5、および第4の窒化物半導体下地層6は材料としては同じ組成とし、成長条件のみを変えて形成することが好ましい。
 第1の窒化物半導体下地層3の成長時における成長モードから第2の窒化物半導体下地層4の成長時における成長モードへの切り替え、第2の窒化物半導体下地層4の成長時における成長モードから第3の窒化物半導体下地層5の成長時における成長モードへの切り替え、第3の窒化物半導体下地層5の成長時における成長モードから第4の窒化物半導体下地層6の成長時における成長モードへの切り替え時に、それぞれ、たとえば2秒~60秒程度の成長中断時間を設け、その間に成長条件を変更することが好ましいが、連続的に条件を変化させてもよい。
 第1の窒化物半導体下地層3、第2の窒化物半導体下地層4、第3の窒化物半導体下地層5および第4の窒化物半導体下地層6としては、それぞれ、柱状結晶の集合体からなる窒化物半導体中間層2中の転位などの結晶欠陥を引き継がないようにするために、III族元素としてGaを含む窒化物半導体層を用いることが好ましい。
 ここで、窒化物半導体中間層2中の転位を引き継がないようにするためには窒化物半導体中間層2との界面付近で転位をループさせる必要があるが、第1の窒化物半導体下地層3がGaを含むIII族窒化物半導体からなる場合には転位のループが生じやすい。
 上記したように、Gaを含むIII族窒化物半導体からなる第1の窒化物半導体下地層3、第2の窒化物半導体下地層4、第3の窒化物半導体下地層5、および第4の窒化物半導体下地層6をそれぞれ用いることによって、窒化物半導体中間層2との界面付近で転位をループ化して閉じ込めて、窒化物半導体中間層2から第2の窒化物半導体下地層4に転位が引き継がれるのを抑えることができる。
 第1の窒化物半導体下地層3、第2の窒化物半導体下地層4、第3の窒化物半導体下地層5、および第4の窒化物半導体下地層6をそれぞれアンドープとすることが好ましいが、第1の窒化物半導体下地層3、第2の窒化物半導体下地層4、第3の窒化物半導体下地層5、および第4の窒化物半導体下地層6をそれぞれn型ドープとしてもよい。n型ドープとする場合には、n型ドーパントが1×1017cm-3以上1×1019cm-3以下の範囲でドーピングされていてもよい。
 n型ドーパントとしては、たとえば、シリコン、ゲルマニウムおよび錫からなる群から選択された少なくとも1つなどを用いることができ、なかでもシリコンを用いることが好ましい。n型ドーパントにシリコンを用いる場合には、n型ドーピングガスとしてはシランガスまたはジシランガスを用いることが好ましい。
 本実施形態の窒化物半導体構造体10は、窒化物半導体発光ダイオード素子などの窒化物半導体発光素子、窒化物半導体トランジスタ素子などの電子デバイスの構成要素として用いることができる。本実施形態の窒化物半導体構造体10を用いると、結晶性の高い窒化物半導体発光素子を作成することが可能となり、内部量子効率の向上、リーク不良の低減等の効果がある。本実施形態の窒化物半導体構造体10を用いると、結晶性の高い窒化物半導体トランジスタ素子を作成することが可能となり、リーク不良の低減等の効果がある。
 <実施形態2>
 [窒化物半導体発光ダイオード素子の構造]
 本実施形態は、実施形態1の窒化物半導体構造体と、窒化物構造体上に形成された積層構造を有する窒化物半導体発光ダイオード素子である。図13は、本実施形態の窒化物半導体発光ダイオード素子を模式的に示す断面図である。図13に示す窒化物半導体発光ダイオード素子100は、実施形態1の窒化物半導体構造体10の平坦な第4の基板平行面6a上に、n型窒化物半導体コンタクト層7、n型窒化物半導体クラッド層9、窒化物半導体活性層11、p型窒化物半導体クラッド層13、p型窒化物半導体コンタクト層15、透光性電極層19が順に積層されている。透光性電極層19の上には、p側電極21が設けられている。また、n型窒化物半導体コンタクト層7の表面の一部にn側電極20が設けられている。p側電極21およびn側電極20以外の露出している表面は、絶縁保護膜23で被覆されている。以下、本実施形態の窒化物半導体発光ダイオード素子100の製造方法を説明する。以下において、後述する工程間に他の工程が含まれていてもよいことは言うまでもない。
 [窒化物半導体発光ダイオード素子の製造方法]
 まず、たとえばMOCVD法によって、窒化物半導体構造体10の第4下地層6の平坦な第4の基板平行面6a上にn型窒化物半導体コンタクト層7を形成する。次に、n型窒化物半導体コンタクト層7の表面上にn型窒化物半導体クラッド層9を形成する。次に、n型窒化物半導体クラッド層9の表面上に窒化物半導体活性層11を形成する。次に、窒化物半導体活性層11の表面上にp型窒化物半導体クラッド層13を形成する。次に、p型窒化物半導体クラッド層13の表面上にp型窒化物半導体コンタクト層15を形成する。
 次に、p型窒化物半導体コンタクト層15の表面上にたとえばITO(Indium Tin Oxide)からなる透光性電極層19を形成した後に、透光性電極層19の表面上にp側電極21を形成する。p側電極21としては、たとえば、ニッケル層、アルミニウム層、チタン層および金層の積層膜を形成することができる。
 次に、p側電極21の形成後の積層体の一部をエッチングにより除去することによって、n型窒化物半導体コンタクト層7の表面の一部を露出させる。
 次に、n型窒化物半導体コンタクト層7の露出した表面上にn側電極20を形成する。n側電極20としては、たとえば、ニッケル層、アルミニウム層、チタン層および金層の積層膜を形成することができる。
 その後、n側電極20の形成後の積層体の全面にSiO2などの絶縁保護膜23を形成し、p側電極21およびn側電極20が露出するように絶縁保護膜23に開口部を設け、複数の窒化物半導体発光ダイオード素子100が形成されたウエハを個別の素子に分割することによって、実施形態1の窒化物半導体発光ダイオード素子100を作製することができる。
 ここで、ウエハの分割は、たとえば、基板1上に上記の構造を形成したウエハの裏面を研削および研磨してミラー状の面とした後に、ウエハを1辺が100μm~1000μmの長方形状のチップに分割することによって行なうことができる。
 以上のようにして作製した実施形態1の窒化物半導体発光ダイオード素子100は、結晶性が良好で平坦な第4の基板平行面6a上にn型窒化物半導体コンタクト層7、n型窒化物半導体クラッド層9、窒化物半導体活性層11、p型窒化物半導体クラッド層13およびp型窒化物半導体コンタクト層15がこの順序で積層されている。
 そのため、n型窒化物半導体コンタクト層7、n型窒化物半導体クラッド層9、窒化物半導体活性層11、p型窒化物半導体クラッド層13およびp型窒化物半導体コンタクト層15については転位密度が低くなり、優れた結晶性を有するように構成することができる。
 したがって、このような優れた結晶性を有する窒化物半導体層を備える実施形態2の窒化物半導体発光ダイオード素子100は、動作電圧が低く、発光出力の高い素子となり、さらに効率良く製造することができる。
 <実施形態3>
 [発光装置]
 本実施形態は、実施形態2の窒化物半導体発光ダイオード素子を構成要素として有する発光装置である。図14は、本実施形態の発光装置を模式的に示す断面図である。図14に示す発光装置110は、実施形態2の窒化物半導体発光ダイオード素子100を構成要素とする。発光装置110は、窒化物半導体発光ダイオード素子100を第2のリードフレーム31上に設置し、窒化物半導体発光ダイオード素子100のp側電極21と第1のリードフレーム30とを第1のワイヤ33で電気的に接続するとともに、窒化物半導体発光ダイオード素子100のn側電極20と第2のリードフレーム31とを第2のワイヤ34で電気的に接続する。そして、透明なモールド樹脂35で窒化物半導体発光ダイオード素子100をモールドすることによって、砲弾型の形状の発光装置110を製造することができる。
 図14に示す構成の実施形態3の発光装置110は、実施形態2の窒化物半導体発光ダイオード素子100を用いていることから、動作電圧が低く、発光出力が高く、効率良く製造することができる発光装置とすることができる。
 <実施形態4>
 [窒化物半導体トランジスタ素子]
 実施形態4は、実施形態1の窒化物半導体構造体10と、窒化物半導体構造体10上に形成された積層構造を有する窒化物半導体トランジスタ素子である。図15は、本実施形態の窒化物半導体トランジスタ素子を模式的に示す断面図である。窒化物半導体トランジスタ素子300の構成要素として用いられている窒化物半導体構造体10は、凸部1aが等価な3つのa(sub)軸方向に配されたc面を主面とするサファイア基板からなる基板1と、基板1の表面上に、順次積層された、AlNなどからなる窒化物半導体中間層2と、アンドープGaNなどからなる第1の窒化物半導体下地層3と、アンドープGaNなどからなる第2の窒化物半導体下地層4と、アンドープGaNなどからなる第3の窒化物半導体下地層5と、アンドープGaNなどからなる第4の窒化物半導体下地層6からなる。
 そして、結晶欠陥の少ない良好な結晶性を有する第4の窒化物半導体下地層6の平坦な第4の基板平行面6a上にアンドープGaNなどからなる窒化物半導体電子走行層71が積層され、窒化物半導体電子走行層71の表面上にn型AlGaNなどからなるn型窒化物半導体電子供給層73が積層されている。
 n型窒化物半導体電子供給層73の表面上にはゲート電極77が備えられており、ゲート電極77の両側にn型GaNなどからなるソースコンタクト層75Sとドレインコンタクト層75Dとが備えられている。また、ソースコンタクト層75S上にソース電極78Sが備えられており、ドレインコンタクト層75D上にドレイン電極78Dが備えられている。
 実施形態4の窒化物半導体トランジスタ素子300においても、結晶性が高い第4の窒化物半導体下地層6の平坦な第4の基板平行面6a上に、窒化物半導体電子走行層71およびn型窒化物半導体電子供給層73などの窒化物半導体層を積層している。これにより、特に、窒化物半導体電子走行層71の最上面の2次元電子走行領域における結晶欠陥が低減するため、電子の移動度を向上させることができる。
 1 基板、1a 凸部、1b 凹領域、2 窒化物半導体中間層、3 第1の窒化物半導体下地層、3a 第1の斜めファセット面、3b 第1の基板平行面、4 第2の窒化物半導体下地層、4a 第2の斜めファセット面、4b 第2の基板平行面、5 第3の窒化物半導体下地層、5a 第3の斜めファセット面、5b 第3の基板平行面、6 第4の窒化物半導体下地層、6a 第4の基板平行面、7 n型窒化物半導体コンタクト層、9 n型窒化物半導体クラッド層、10 窒化物半導体構造体、11 窒化物半導体活性層、13 p型窒化物半導体クラッド層、15 p型窒化物半導体コンタクト層、19 透光性電極層、20 n側電極、21 p側電極、23 絶縁保護膜、30 第1のリードフレーム、31 第2のリードフレーム、33 第1のワイヤ、34 第2のワイヤ、71 窒化物半導体電子走行層、73 n型窒化物半導体電子供給層、77 ゲート電極、75S ソースコンタクト層、75D ドレインコンタクト層、78S ソース電極、78D ドレイン電極、100 半導体発光ダイオード素子、110 発光装置、300 窒化物半導体トランジスタ。

Claims (13)

  1.  三方晶コランダムまたは六方晶の結晶からなり、表面に複数の凸部を有するとともに表面が窒化物半導体中間層で被覆された基板と、
     前記基板上の前記凸部と前記凸部の間に、前記凸部の中心を含む少なくとも一部の表面が露出するように順に設けられた、第1の窒化物半導体下地層と、前記第1の窒化物半導体下地層の全体を被覆する第2の窒化物半導体下地層と、前記第2の窒化物半導体下地層の全体を被覆する第3の窒化物半導体下地層と、
     前記凸部の前記露出した表面および前記第3の窒化物半導体下地層の全体を被覆する第4の窒化物半導体下地層と、を備え、
     前記第1の窒化物半導体下地層は、第1の斜めファセット面を有し、
     前記第2の窒化物半導体下地層は、第2の斜めファセット面と第2の基板平行面を有し、
     前記第3の窒化物半導体下地層は、第3の斜めファセット面と第3の基板平行面を有する、窒化物半導体構造体。
  2.  前記第1の窒化物半導体下地層は、さらに第1の基板平行面を有する、請求項1に記載の窒化物半導体構造体。
  3.  前記第1の窒化物半導体下地層は、前記基板の主面に垂直な方向からの平面視において、前記第1の斜めファセット面の面積割合が、前記第1の基板平行面の面積割合よりも大きい、請求項2に記載の窒化物半導体構造体。
  4.  前記第2の窒化物半導体下地層は、前記基板の主面に垂直な方向からの平面視において、前記第2の斜めファセット面の面積割合が、前記第2の基板平行面の面積割合よりも小さい、請求項1~3のいずれかに記載の窒化物半導体構造体。
  5.  前記第3の窒化物半導体下地層は、前記基板の主面に垂直な方向からの平面視において、前記第3の斜めファセット面の面積割合が、前記第3の基板平行面の面積割合よりも大きい、請求項1~4のいずれかに記載の窒化物半導体構造体。
  6.  前記第1の斜めファセット面の前記基板の主面に対する角度をθ1、前記第2の斜めファセット面の前記基板の主面に対する角度をθ2とすると、θ1<θ2の関係を満たす、請求項1~5のいずれかに記載の窒化物半導体構造体。
  7.  前記第3の斜めファセット面の前記基板の主面に対する角度をθ3とすると、θ1<θ3<θ2の関係を満たす、請求項6に記載の窒化物半導体構造体。
  8.  請求項1に記載の窒化物半導体構造体と、前記窒化物半導体構造体上に形成された積層構造とを有する、窒化物半導体発光素子。
  9.  請求項1に記載の窒化物半導体構造体と、前記窒化物半導体構造体上に形成された積層構造を有する、窒化物半導体トランジスタ素子。
  10.  三方晶コランダムまたは六方晶の結晶からなり、表面に複数の凸部を有する基板の前記表面上に、前記表面の形状を反映するように窒化物半導体中間層を形成する工程と、
     第1の斜めファセット面を有する、第1の窒化物半導体下地層を、前記基板の表面上の前記凸部と前記凸部の間に、前記凸部の中心を含む少なくとも一部の表面が露出するように形成する工程と、
     第2の斜めファセット面および第2の基板平行面を有する、第2の窒化物半導体下地層を、前記基板の表面上の前記凸部と前記凸部の間に、前記第1の窒化物半導体下地層の全体を被覆しかつ前記凸部の中心を含む少なくとも一部の表面が露出するように形成する工程と、
     第3の斜めファセット面および第3の基板平行面を有する、第3の窒化物半導体下地層を、前記基板の表面上の前記凸部と前記凸部の間に、前記第2の窒化物半導体下地層の全体を被覆しかつ前記凸部の中心を含む少なくとも一部の表面が露出するように形成する工程と、
     第4の窒化物半導体下地層を、前記凸部の前記第3の窒化物半導体下地層で被覆されていない表面と、前記第3の窒化物半導体下地層の全体を被覆するように形成する工程と、を備える、窒化物半導体構造体の製造方法。
  11.  前記第1の窒化物半導体下地層と、前記第2の窒化物半導体下地層と、前記第3の窒化物半導体下地層と、前記第4の窒化物半導体下地層とは、有機金属気相成長法により形成され、
     前記有機金属気相成長法は、有機金属気相成長装置内で、前記基板を加熱するとともに前記基板を回転させながら、V族元素用原料ガスとIII族元素用原料ガスとを、水素ガスを含むキャリアガスとともに供給し、有機金属気相成長装置内の圧力を上げて行ない、
     第1の窒化物半導体下地層を形成する条件と、第2の窒化物半導体下地層を形成する条件とは、以下のAI,BI,CI,DIおよびEIの関係の内、少なくとも1つの関係を満たす、
     AI.第1の窒化物半導体下地層の形成時の基板の加熱温度は、第2の窒化物半導体層の形成時の基板の加熱温度より低い、
     BI.第1の窒化物半導体下地層の形成時の有機金属気相成長装置内の圧力は、第2の窒化物半導体下地層の形成時の有機金属気相成長装置内の圧力より高い、
     CI.第1の窒化物半導体下地層の形成時に単位時間当たりに供給されるIII族元素用原料ガスのモル量に対するV族元素用原料ガスのモル量の比率は、第2の窒化物半導体下地層の形成時の前記比率より高い、
     DI.第1の窒化物半導体下地層の形成時の基板の単位時間当たりの回転数は、第2の窒化物半導体下地層の形成時の基板の単位時間当たりの回転数より小さい、
     EI.第1の窒化物半導体下地層の形成時のキャリアガスの全体積に対する水素ガスの体積比は、第2の窒化物半導体下地層の形成時のキャリアガスの全体積に対する水素ガスの体積比より高い、
     請求項10に記載の窒化物半導体構造体の製造方法。
  12.  前記第1の窒化物半導体下地層と、前記第2の窒化物半導体下地層と、前記第3の窒化物半導体下地層と、前記第4の窒化物半導体下地層とは、有機金属気相成長法により形成され、
     前記有機金属気相成長法は、有機金属気相成長装置内で、前記基板を加熱するとともに前記基板を回転させながら、V族元素用原料ガスとIII族元素用原料ガスとを、水素ガスを含むキャリアガスとともに供給し、有機金属気相成長装置内の圧力を上げて行ない、
     第1の窒化物半導体下地層を形成する条件と、第3の窒化物半導体下地層を形成する条件とは、以下のAII,BII,CII,DIIおよびEIIの関係の内、少なくとも1つの関係を満たす、
     AII.第1の窒化物半導体下地層の形成時の基板の加熱温度は、第3の窒化物半導体層の形成時の基板の加熱温度より高い、
     BII.第1の窒化物半導体下地層の形成時の有機金属気相成長装置内の圧力は、第3の窒化物半導体下地層の形成時の有機金属気相成長装置内の圧力より低い、
     CII.第1の窒化物半導体下地層の形成時に単位時間当たりに供給されるIII族元素用原料ガスのモル量に対するV族元素用原料ガスのモル量の比率は、第3の窒化物半導体下地層の形成時の前記比率より低い、
     DII.第1の窒化物半導体下地層の形成時の基板の単位時間当たりの回転数は、第3の窒化物半導体下地層の形成時の基板の単位時間当たりの回転数より大きい、
     EII.第1の窒化物半導体下地層の形成時のキャリアガスの全体積に対する水素ガスの体積比は、第3の窒化物半導体下地層の形成時のキャリアガスの全体積に対する水素ガスの体積比より低い、
     請求項10または11に記載の窒化物半導体構造体の製造方法。
  13.  前記第1の窒化物半導体下地層と、前記第2の窒化物半導体下地層と、前記第3の窒化物半導体下地層と、前記第4の窒化物半導体下地層とは、有機金属気相成長法により形成され、
     前記有機金属気相成長法は、有機金属気相成長装置内で、前記基板を加熱するとともに前記基板を回転させながら、V族元素用原料ガスとIII族元素用原料ガスとを、水素ガスを含むキャリアガスとともに供給し、有機金属気相成長装置内の圧力を上げて行ない、
     第2の窒化物半導体下地層を形成する条件と、第4の窒化物半導体下地層を形成する条件とは、以下のAIII,BIII,CIII,DIIIおよびEIIIの関係の内、少なくとも1つの関係を満たす、
     AIII.第4の窒化物半導体下地層の形成時の基板の加熱温度は、第2の窒化物半導体層の形成時の基板の加熱温度より高い、
     BIII.第4の窒化物半導体下地層の形成時の有機金属気相成長装置内の圧力は、第2の窒化物半導体下地層の形成時の有機金属気相成長装置内の圧力より低い、
     CIII.第4の窒化物半導体下地層の形成時に単位時間当たりに供給されるIII族元素用原料ガスのモル量に対するV族元素用原料ガスのモル量の比率は、第2の窒化物半導体下地層の形成時の前記比率より低い、
     DIII.第4の窒化物半導体下地層の形成時の基板の単位時間当たりの回転数は、第2の窒化物半導体下地層の形成時の基板の単位時間当たりの回転数より大きい、
     EIII.第4の窒化物半導体下地層の形成時のキャリアガスの全体積に対する水素ガスの体積比は、第2の窒化物半導体下地層の形成時のキャリアガスの全体積に対する水素ガスの体積比より低い、
     請求項10~12のいずれかに記載の窒化物半導体構造体の製造方法。
PCT/JP2013/070466 2012-08-03 2013-07-29 窒化物半導体素子構造体とその製造方法 WO2014021259A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380003707.1A CN104025260B (zh) 2012-08-03 2013-07-29 氮化物半导体元件结构体及其制造方法
JP2014509959A JP6218728B2 (ja) 2012-08-03 2013-07-29 窒化物半導体素子構造体とその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-172862 2012-08-03
JP2012172862 2012-08-03

Publications (1)

Publication Number Publication Date
WO2014021259A1 true WO2014021259A1 (ja) 2014-02-06

Family

ID=50027934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070466 WO2014021259A1 (ja) 2012-08-03 2013-07-29 窒化物半導体素子構造体とその製造方法

Country Status (3)

Country Link
JP (1) JP6218728B2 (ja)
CN (1) CN104025260B (ja)
WO (1) WO2014021259A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5866044B1 (ja) * 2014-11-13 2016-02-17 エルシード株式会社 発光素子の製造方法及び発光素子
JP2017506434A (ja) * 2014-02-17 2017-03-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス半導体チップの製造方法及びオプトエレクトロニクス半導体チップ
JP2019079994A (ja) * 2017-10-26 2019-05-23 豊田合成株式会社 テンプレート基板およびその製造方法、発光素子
WO2020004250A1 (ja) * 2018-06-26 2020-01-02 株式会社Flosfia 結晶性酸化物膜
DE102015109761B4 (de) 2015-06-18 2022-01-27 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Nitrid-Halbleiterbauelements und Nitrid-Halbleiterbauelement
DE112015001803B4 (de) 2014-04-14 2023-12-28 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Schichtstruktur als Pufferschicht eines Halbleiterbauelements sowie Schichtstruktur als Pufferschicht eines Halbleiterbauelements

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538509B (zh) * 2014-12-09 2017-08-25 圆融光电科技有限公司 一种发光二极管三维结构层的生长方法
CN109473515A (zh) * 2018-10-26 2019-03-15 华灿光电(苏州)有限公司 一种氮化镓基发光二极管外延片的生长方法
CN112366263B (zh) * 2020-07-21 2022-07-08 安徽三安光电有限公司 发光二极管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246698A (ja) * 2001-02-15 2002-08-30 Sharp Corp 窒化物半導体発光素子とその製法
JP2005101566A (ja) * 2003-08-19 2005-04-14 Nichia Chem Ind Ltd 半導体素子、発光素子及びその基板の製造方法
JP2006352084A (ja) * 2005-05-16 2006-12-28 Sony Corp 発光ダイオードおよびその製造方法ならびに集積型発光ダイオードおよびその製造方法ならびに窒化物系iii−v族化合物半導体の成長方法ならびに光源セルユニットならびに発光ダイオードバックライトならびに発光ダイオードディスプレイならびに電子機器
JP2010040867A (ja) * 2008-08-06 2010-02-18 Showa Denko Kk Iii族窒化物半導体積層構造体およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025263A1 (fr) * 2001-09-13 2003-03-27 Japan Science And Technology Agency Substrat semi-conducteur de nitrure, son procede d'obtention et dispositif optique a semi-conducteur utilisant ledit substrat
CN1992359B (zh) * 2005-09-22 2012-12-12 索尼株式会社 发光二极管及其制造方法
JP4462249B2 (ja) * 2005-09-22 2010-05-12 ソニー株式会社 発光ダイオードの製造方法、集積型発光ダイオードの製造方法および窒化物系iii−v族化合物半導体の成長方法
JP5140962B2 (ja) * 2005-10-28 2013-02-13 日亜化学工業株式会社 窒化物半導体基板の製造方法
TW200929602A (en) * 2007-12-28 2009-07-01 Advanced Optoelectronic Tech Light-emitting device of III-nitride based semiconductor and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246698A (ja) * 2001-02-15 2002-08-30 Sharp Corp 窒化物半導体発光素子とその製法
JP2005101566A (ja) * 2003-08-19 2005-04-14 Nichia Chem Ind Ltd 半導体素子、発光素子及びその基板の製造方法
JP2006352084A (ja) * 2005-05-16 2006-12-28 Sony Corp 発光ダイオードおよびその製造方法ならびに集積型発光ダイオードおよびその製造方法ならびに窒化物系iii−v族化合物半導体の成長方法ならびに光源セルユニットならびに発光ダイオードバックライトならびに発光ダイオードディスプレイならびに電子機器
JP2010040867A (ja) * 2008-08-06 2010-02-18 Showa Denko Kk Iii族窒化物半導体積層構造体およびその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017506434A (ja) * 2014-02-17 2017-03-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス半導体チップの製造方法及びオプトエレクトロニクス半導体チップ
US11005003B2 (en) 2014-02-17 2021-05-11 Osram Oled Gmbh Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip
DE112015000824B4 (de) * 2014-02-17 2021-07-08 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines elektronischen Halbleiterchips
US11430907B2 (en) 2014-02-17 2022-08-30 Osram Oled Gmbh Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip
US11888083B2 (en) 2014-02-17 2024-01-30 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip
DE112015001803B4 (de) 2014-04-14 2023-12-28 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Schichtstruktur als Pufferschicht eines Halbleiterbauelements sowie Schichtstruktur als Pufferschicht eines Halbleiterbauelements
JP5866044B1 (ja) * 2014-11-13 2016-02-17 エルシード株式会社 発光素子の製造方法及び発光素子
DE102015109761B4 (de) 2015-06-18 2022-01-27 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Nitrid-Halbleiterbauelements und Nitrid-Halbleiterbauelement
JP2019079994A (ja) * 2017-10-26 2019-05-23 豊田合成株式会社 テンプレート基板およびその製造方法、発光素子
WO2020004250A1 (ja) * 2018-06-26 2020-01-02 株式会社Flosfia 結晶性酸化物膜
CN112334606A (zh) * 2018-06-26 2021-02-05 株式会社Flosfia 结晶性氧化物膜
JPWO2020004250A1 (ja) * 2018-06-26 2021-08-05 株式会社Flosfia 結晶性酸化物膜

Also Published As

Publication number Publication date
CN104025260A (zh) 2014-09-03
JPWO2014021259A1 (ja) 2016-07-21
CN104025260B (zh) 2016-11-23
JP6218728B2 (ja) 2017-10-25

Similar Documents

Publication Publication Date Title
JP6218728B2 (ja) 窒化物半導体素子構造体とその製造方法
JP5955226B2 (ja) 窒化物半導体構造、窒化物半導体発光素子、窒化物半導体トランジスタ素子、窒化物半導体構造の製造方法および窒化物半導体素子の製造方法
US9318559B2 (en) Method for producing group III nitride semiconductor and template substrate
JP5400247B2 (ja) 窒化物半導体層成長用構造、積層構造、窒化物系半導体素子および光源ならびにこれらの製造方法
JP5392855B2 (ja) 半導体基板及びその製造方法
US8344413B2 (en) Nitride semiconductor wafer, nitride semiconductor chip, and method of manufacture of nitride semiconductor chip
WO2002058120A1 (en) Crystal film, crystal substrate, and semiconductor device
JPH10312971A (ja) III−V族化合物半導体膜とその成長方法、GaN系半導体膜とその形成方法、GaN系半導体積層構造とその形成方法、GaN系半導体素子とその製造方法
JPH11135832A (ja) 窒化ガリウム系化合物半導体及びその製造方法
JP5891390B2 (ja) 窒化物半導体構造、積層構造、および窒化物半導体発光素子
JP4734786B2 (ja) 窒化ガリウム系化合物半導体基板、及びその製造方法
JPH11233391A (ja) 結晶基板とそれを用いた半導体装置およびその製法
TWI520325B (zh) Manufacture of nitride semiconductor structures
JP5065625B2 (ja) GaN単結晶基板の製造方法
JP2014234324A (ja) Iii族窒化物半導体の製造方法及びiii族窒化物半導体
JP3934320B2 (ja) GaN系半導体素子とその製造方法
JP2003124576A (ja) 窒化物半導体基板及びその成長方法
JP5557180B2 (ja) 半導体発光素子の製造方法
JP6242238B2 (ja) 窒化物半導体多元混晶の製造方法
WO2021085556A1 (ja) 半導体素子および半導体素子の製造方法
JP2015032730A (ja) 窒化物半導体構造およびそれを製造する方法
JP4363415B2 (ja) 結晶膜、結晶基板および半導体装置
JP2003332244A (ja) 窒化物半導体基板の製造方法
JP4158760B2 (ja) GaN系半導体膜およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014509959

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13824878

Country of ref document: EP

Kind code of ref document: A1