WO2014021124A1 - チェックバルブ - Google Patents

チェックバルブ Download PDF

Info

Publication number
WO2014021124A1
WO2014021124A1 PCT/JP2013/069757 JP2013069757W WO2014021124A1 WO 2014021124 A1 WO2014021124 A1 WO 2014021124A1 JP 2013069757 W JP2013069757 W JP 2013069757W WO 2014021124 A1 WO2014021124 A1 WO 2014021124A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
housing
check valve
valve body
fluid
Prior art date
Application number
PCT/JP2013/069757
Other languages
English (en)
French (fr)
Inventor
直樹 赤池
Original Assignee
タカハタプレシジョンジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカハタプレシジョンジャパン株式会社 filed Critical タカハタプレシジョンジャパン株式会社
Priority to AU2013297717A priority Critical patent/AU2013297717B2/en
Priority to SG11201408824UA priority patent/SG11201408824UA/en
Priority to JP2014526323A priority patent/JP5593470B2/ja
Priority to NZ704073A priority patent/NZ704073A/en
Publication of WO2014021124A1 publication Critical patent/WO2014021124A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/06Check valves with guided rigid valve members with guided stems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/06Check valves with guided rigid valve members with guided stems
    • F16K15/063Check valves with guided rigid valve members with guided stems the valve being loaded by a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/06Check valves with guided rigid valve members with guided stems
    • F16K15/063Check valves with guided rigid valve members with guided stems the valve being loaded by a spring
    • F16K15/066Check valves with guided rigid valve members with guided stems the valve being loaded by a spring with a plurality of valve members

Definitions

  • the present invention relates to a check valve that opens and closes by the pressure of the fluid and allows the fluid to flow only in one direction.
  • a housing having a valve hole through which a fluid flows, and a valve seat portion formed on the outer peripheral surface of the valve hole, a valve closing position and a valve disposed in the valve hole and in close contact with the valve seat portion to close the valve hole
  • a valve body that is provided so as to be movable between a valve-opening position that opens away from the seat to the fluid downstream side, and a coil spring that biases the valve body toward the valve-closing position is provided.
  • a check valve is known (Patent Document 1).
  • the check valve is connected to the downstream side of the flow meter, for example, for water supply pipes, especially water supply pipes that distribute water to each household, and prevents the backflow of sewage from the downstream side due to water outage or due to a decrease in water supply pressure. Therefore, it is necessary to urge the valve body quickly and surely to the closed position and close it, and to suppress the pressure loss in order to ensure that the fluid flows downstream, regardless of the fluid pressure and flow rate. There is.
  • An object of the present invention is to provide a small and low-cost check valve that can suppress pressure loss and reliably prevent backflow of fluid.
  • a tubular body that forms part of a flow path through which fluid flows A first housing having a first valve hole through which a fluid flows, and a valve seat portion formed on the downstream side of the inner peripheral surface of the first valve hole;
  • a valve body comprising a valve head having a flat portion on the top and having a diameter increased in a taper shape toward the downstream side, and a support rod connected to the valve head;
  • a spring member for urging the valve body toward the valve seat portion;
  • a second housing made of a body, The cylindrical body of the second housing is reduced in diameter toward the downstream side, and a notch is formed on the upper edge of the valve body facing the downstream surface of the valve head. It is characterized by that.
  • the invention according to claim 2 is the check valve according to claim 1, When the valve body is pressed by a fluid and one surface on the downstream side of the valve head of the valve body comes into contact with the upper edge of the cylindrical body of the second housing, the sliding of the second housing is performed.
  • the downstream end of the support rod of the valve body protruding from the moving hole has a tapered diameter. It is characterized by that.
  • the invention according to claim 3 is the check valve according to claim 1 or 2, A plurality of locking grooves having locking collars are formed at the upstream end of the first valve hole of the first housing, and a plurality of locking recesses are formed on the outer surface of the cylindrical body of the second housing. Ribs were formed, It is characterized by that.
  • the check valve according to claim 4 A plurality of locking grooves formed in the first housing of the check valve according to any one of claims 1 to 3, and a number of other check valves according to any one of claims 1 to 3. A plurality of ribs formed on the housing of 2 and engaged with each other, It is characterized by that.
  • a small and low-cost check valve that can suppress pressure loss and reliably prevent backflow of fluid.
  • a plurality of check valves having the same configuration can be easily connected and can be easily separated.
  • a small and low-cost check valve capable of connecting a plurality of check valves having the same configuration to suppress pressure loss and reliably preventing backflow of fluid. it can.
  • FIG. 1 is a perspective view of the configuration of the check valve body 2 with a viewpoint on the inlet side.
  • 2A is a longitudinal sectional view of the check valve 1 in a closed state
  • FIG. 2B is a longitudinal sectional view of the check valve 1 in an opened state.
  • FIG. 3 a is a longitudinal sectional view of the first housing 10
  • FIG. 3 b is a plan view of the inlet side of the first housing 10.
  • 4a is a bottom view of the second housing 40 on the outlet side
  • FIG. 4b is a longitudinal sectional view of the second housing 40
  • FIG. 4c is a plan view of the second housing 40 on the inlet side.
  • FIG. 5 is a schematic longitudinal sectional view for explaining the flow of fluid and the movement of the valve body in the check valve 1.
  • FIG. 5a is a state in which the valve opening operation is started, and FIG. Indicates valve status.
  • FIG. 6 is a schematic vertical cross-sectional view for explaining the flow of fluid in the check valve 1 in a state where the valve body 20 has made a full stroke with the pressure of the fluid.
  • FIG. 7A is a schematic longitudinal sectional view for explaining a state when the check valve 1 starts a valve closing operation
  • FIG. 7B is a schematic longitudinal sectional view showing a state when the check valve 1 is in a closed state.
  • FIG. 8 is a longitudinal sectional view of the check valve 1A in the closed state.
  • FIG. 9 is a schematic longitudinal sectional view for explaining the fluid flow and the movement of the valve body in the check valve 1A.
  • FIG. 10 is a schematic longitudinal sectional view for explaining a state when the check valve 1A starts the valve closing operation.
  • FIG. 11 is a flow characteristic diagram (pressure loss-flow rate relationship diagram) showing the pressure loss of the check valve 1A according to the example and the check valve 200 of the comparative example at each flow rate by changing the flow rate.
  • FIG. 12 is a longitudinal sectional view of a check valve 200 of a comparative example.
  • FIG. 1 is a perspective view of the configuration of the check valve body 2 viewed from the inlet side
  • FIG. 2a is a longitudinal sectional view of the check valve 1 according to the present embodiment
  • FIG. It is a longitudinal cross-sectional view of a valve opening state.
  • the overall configuration of the check valve 1 and the check valve body 2 will be described with reference to the drawings.
  • the check valve 1 includes a check valve main body 2 and a tubular body 3 into which the check valve main body 2 is inserted.
  • the check valve body 2 includes a first housing 10 having a through-flow passage through which fluid passes from one end side inlet to the other end side outlet, a valve body 20 that moves with the pressure of the fluid, and the valve body 20 on the fluid outflow side.
  • a second housing 40 that supports the valve body 20 and the spring member 30 that biases the valve body 20 to the upstream side.
  • the first housing 10 has an inflow port 12 whose diameter is increased in a tapered shape toward the downstream side, and a valve seat portion 13 in which the valve body 20 contacts and separates from the surface thereof.
  • the valve body 20 includes a valve head 21 that receives fluid pressure and a support rod 22 connected to the valve head 21, and is biased toward the valve seat 13 by a spring member 30.
  • the second housing 40 is fitted with the first housing 10 to form a flow path on the downstream side of the fluid with the inner surface 3a of the tubular body 3.
  • the sliding hole 42a of the second housing 40 supports the valve body 20 so as to be movable in the fluid flow direction.
  • the check valve main body 2 is inserted into the tubular body 3 to act as a fluid check valve.
  • the check valve main body 2 acts as a check valve that prevents the fluid in the pipe from flowing backward by being attached to the downstream side of the flow meter with a water pipe or a water supply pipe as a tubular body 3.
  • FIG. 3 a is a longitudinal sectional view of the first housing 10
  • FIG. 3 b is a plan view of the inlet side of the first housing 10.
  • the first housing 10 has a first valve hole 11 through which fluid flows, and the first valve hole 11 has a fluid inlet 12 formed on the upstream side.
  • the inflow port 12 expands in a tapered shape from the fluid inflow side to the downstream side, and an annular convex portion 12a is formed in a ring shape on the outside.
  • a valve seat 13 is formed on the downstream side of the first valve hole 11 so that the valve body 20 contacts and separates toward the downstream side.
  • the valve seat portion 13 is made of an elastic material, and is formed integrally with the first housing 10 in an annular shape.
  • an ether urethane elastomer having a Shore hardness of Hs 80 to 95 can be used.
  • the valve seat part 13 can be integrally molded by injection molding.
  • the valve seat portion 13 is formed by molding the first housing 10 by injection molding using synthetic resin, and then connecting an elastic member such as fluororubber to the first housing 10 and a second housing 40 described later. It can also be formed by being sandwiched between.
  • a plurality of locking groove portions 14 having a flange portion 14a at the tip are formed on the periphery of the upper edge of the inflow port 12.
  • locking grooves 14, 14,... are formed at equal intervals every 90 degrees on the periphery of the upper edge of the inlet 12 of the first housing 10.
  • a pair of flanges 14a and 14a are formed to face each other.
  • the locking groove portion 14 is locked with a plurality of rib portions 43 having locking recesses 43a formed in a cylindrical body 42 of the second housing 40 to be described later, whereby a plurality of check valve bodies are arranged in the fluid flow direction. 2 can be connected to form a check valve having an articulated structure.
  • the check valve main bodies 2 can be easily connected to each other by releasing the lock between the flange 14a of the lock groove 14 and the lock recess 43a of the rib 43. Disconnected.
  • An O-ring S is mounted on the outer peripheral surface of the inlet 12 of the first housing 10 in an annular shape.
  • the O-ring S is pressed against the inner surface 3 a of the tubular body 3 to prevent fluid leakage in the gap between the check valve body 2 and the tubular body 3.
  • valve body 20 has a valve head 21 that has a flat portion 20a at the top on the top side that receives the pressure of fluid, and has a diameter that tapers toward the downstream side.
  • the valve head 21 and the support rod 22 are integrally formed of, for example, a synthetic resin.
  • a flat flange portion 21a is formed on the support rod 22 side of the valve head 21 in a direction orthogonal to the fluid flow direction, and an annular recess 21b is formed on the outer side where one end of the support rod 22 is formed. (See FIG. 2a).
  • the annular recess 21b is fitted with an end portion of a sliding hole 42a of the cylindrical body 42 of the second housing 40, which will be described later. The left-right movement of 20 is restricted (see FIG. 2b).
  • the downstream end 22a of the support rod 22 is inserted from the sliding hole 42a of the cylindrical body 42 at a position where the valve body 20 is pressed by the fluid and abuts on the upstream end surface of the cylindrical body 42 of the second housing 40 described later.
  • the protruding range is reduced in a taper shape.
  • FIG. 4a is a bottom view of the second housing 40 on the outlet side
  • FIG. 4b is a longitudinal sectional view of the second housing 40
  • FIG. 4c is a flow of the second housing 40. It is a top view of the entrance side.
  • the second housing 40 includes a connecting portion 41 that forms a second valve hole that opens to the upstream side and expands in a tapered shape toward the downstream side, and a receiving surface that opens to the upstream side and is on one end side of the spring member 30.
  • a plurality of rib portions 43 that connect and support the connecting portion 41 and the cylindrical body 42.
  • the cylindrical body 42 is tapered toward the downstream side, and a sliding hole 42a for supporting the support rod 22 of the valve body 20 is formed at the center.
  • the connecting part 41 has a concave part 41 a formed in an annular shape on the inner peripheral surface, and a step part 41 b is formed on the inner peripheral surface of the upstream opening of the connecting part 41.
  • the connecting portion 41 is a ring-shaped annular convex formed on the outer side of the inlet 12 of the first housing 10 while the stepped portion 41 b presses the valve seat portion 13 formed on the first housing 10.
  • the check valve body 2 is configured by being engaged with the portion 12a.
  • the cylindrical body 42 is formed with a plurality of radial ribs 43 on the outer surface that is tapered toward the downstream side.
  • a locking recess 43a is formed in the rib thickness direction.
  • rib portions 43, 43,... Are formed at equal intervals every 90 degrees on the cylindrical body 42 of the second housing 40, and the rib thickness is provided at the downstream end of each rib portion 43.
  • Locking recesses 43a, 43a,... are formed in the direction.
  • the locking recess 43a and the locking groove 14 formed at the top edge of the inlet 12 of the first housing 10 are locked to connect the plurality of check valve bodies 2 in the fluid flow direction. It can be a check valve.
  • a so-called dual check valve can be configured by connecting two identical check valve bodies 2 together.
  • each check valve body 2 exhibits a double check function against the backflow of fluid from the downstream side while allowing fluid flow from the upstream side. Can do.
  • the cylindrical body 42 is opened on the upstream side, and notches 44, 44,... Are formed at equal intervals every 90 degrees on the upper end edge.
  • a full stroke When the valve body 20 is pressed by the fluid and moves to the downstream side and comes into contact with the upper end edge of the cylindrical body 42 (hereinafter referred to as a full stroke), an inner surface 42b of the cylindrical body 42, an outer surface 42c of the sliding hole 42a, A space C is formed with the flange portion 21 a of the valve body 20.
  • the notch part 44 of the cylinder 42 forms the communication hole 44a which connects the space C and the flow path R defined by the cylinder 42 and the inner surface 3a of the tubular body 3 (refer FIG. 2b).
  • the fluid In the space C, the fluid is pushed and filled by the flange portion 21a of the valve body 20 that is pressed by the fluid and moves downstream.
  • the valve body 20 becomes resistant to movement in the downstream direction. In particular, the pressure increases immediately before the full stroke, and the movement of the valve body 20 is inhibited.
  • a plurality of communication holes 44a By forming a plurality of communication holes 44a during such a full stroke, an increase in pressure in the space C is suppressed. Its operation will be described later.
  • the material of the first housing 10, the valve body 20, and the second housing 40 is not particularly limited, but a synthetic resin such as polyacetal (POM) is suitable.
  • POM polyacetal
  • the frictional force between the support rod 22 of the valve body 20 and the sliding hole 42a that supports the support rod 22 is reduced.
  • the locking recess 43a of the second housing 40 and the locking groove 14 of the first housing 10 are connected or disconnected, they are easily elastically deformed, and wear of the flange 14a and the locking recess 43a is also suppressed.
  • FIG. 5 is a schematic vertical sectional view for explaining the fluid flow and the movement of the valve body 20 in the check valve 1 according to this embodiment.
  • FIG. 5a shows a state in which the valve opening operation is started
  • FIG. 5b shows a valve open state in which the valve body 20 has made a full stroke.
  • valve body 20 is separated from the valve seat portion 13 by the pressure of the fluid that has flowed in, as indicated by the white arrow in the figure. Then, the support rod 22 of the valve body 20 is guided to the sliding hole 42a of the cylindrical body 42 of the second housing 40 and moves downstream. Thereafter, the flange portion 21 a of the valve body 20 comes into contact with the upper end edge of the cylindrical body 42 of the second housing 40. At this time, the gap between the outer diameter of the support rod 22 and the sliding hole 42a is maintained at, for example, about 0.05 mm, and the movement of the support rod 22 in the radial direction is restricted. As a result, the movement of the valve body 20 in the radial direction is also restricted, and the center displacement between the valve body 20 and the valve seat portion 13 is suppressed.
  • FIG. 6 is a schematic longitudinal sectional view for explaining the flow of fluid in the check valve 1 in a state where the valve body 20 has made a full stroke with the fluid pressure.
  • a flow path R extending from the valve hole 11 to the downstream side of the cylindrical body 42 of the second housing 40 is a first flow path portion (R1) defined by a gap between the valve head portion 21 and the valve seat portion 13.
  • the cylindrical body 42 and the second flow path portion (R2) defined by the inner surface 3a of the tubular body 3 are formed.
  • the first flow path portion (R1) the flow path is narrowed toward the downstream side.
  • the second flow path portion (R2) has a flow path that expands toward the downstream side because the cylindrical body 42 is tapered toward the downstream side.
  • FIG. 7a is a schematic longitudinal sectional view for explaining a state when the check valve 1 starts the valve closing operation
  • FIG. 7b is a state when the valve is closed. It is a longitudinal cross-sectional schematic diagram which shows.
  • valve head 21 of the valve body 20 is seated on the valve seat 13 by the differential pressure and the biasing force of the spring member 30. At this time, the movement of the valve body 20 in the radial direction is restricted by the support rod 22 being guided by the sliding hole 42a of the second housing 40 and moving upstream.
  • the valve head 21 whose diameter has been increased in a taper shape toward the downstream side is seated on the valve seat portion 13, the distance between the flange portion 21 a and the bottom surface of the cylindrical body 42 becomes longer, and the spring member 30 extends.
  • the fluid flowing backward from the downstream side is blocked by the sealing action between the valve head 21 and the valve seat 13 as indicated by the white arrow in the figure. That is, the first flow path is blocked and the back flow of the fluid is prevented.
  • FIG. 8 is a longitudinal sectional view of the check valve 1A according to the present embodiment in a closed state.
  • the check valve 1A is configured as a so-called dual check valve by connecting two check valve main bodies 2 according to the first embodiment, so that the check valve 1A has the same configuration as the check valve 1 according to the first embodiment.
  • the check valve 1A includes a check valve body 2A and a tubular body 3A into which the check valve body 2A is inserted.
  • the check valve body 2A is configured by connecting two check valve bodies 2 according to the first embodiment in the fluid flow direction.
  • the check valve body 2A is configured by connecting two identical check valve bodies 2 together.
  • a plurality of locking groove portions 14 having a flange portion 14a at the tip are formed (see FIG. 3).
  • the cylindrical body 42 of the second housing 40 of the check valve main body 2 is formed with a plurality of radial rib portions 43 on the outer surface tapered to the downstream side, and the downstream end of each rib portion 43 is formed.
  • a locking recess 43a is formed in the rib thickness direction (see FIG. 4).
  • locking grooves 14, 14,... are formed at equal intervals every 90 degrees on the circumference of the upper edge of the inlet 12 of the first housing 10. Is formed with a pair of flanges 14a, 14a. Ribs 43, 43,... Are formed at equal intervals every 90 degrees on the cylindrical body 42 of the second housing 40, and the downstream end of each rib 43 is locked in the rib thickness direction. Recesses 43a, 43a, ... are formed.
  • the locking groove portions 14, 14,... Are formed on the periphery of the upper edge of the inlet 12 of the first housing 10, and the rib portions 43, 43,. Since the locking recesses 43a, 43a,... Are formed on the downstream end side in the thickness direction of the rib, the space for locking is minimized and the flow of the fluid is hindered by the locking portion. Can be connected without any problem.
  • FIG. 9 is a schematic longitudinal sectional view for explaining the flow of fluid and the movement of the valve body 20 in the check valve 1A according to this embodiment.
  • the valve body 20 of the upstream check valve body 2 is separated from the valve seat portion 13 in response to the pressure of the fluid that has flowed in, as indicated by the white arrow in the figure.
  • the support rod 22 of the valve body 20 is guided to the sliding hole 42a of the second housing 40 and moves downstream.
  • the flange portion 21 a of the valve body 20 comes into contact with the upper end edge of the cylindrical body 42 of the second housing 40.
  • the distance between the flange portion 21a and the bottom surface of the cylindrical body 42 is shortened, and the spring member 30 contracts.
  • the fluid passes through the gap between the valve head portion 21 and the valve seat portion 13 whose diameter is tapered toward the downstream side of the valve body 20, and the cylindrical body 42. And flows out from the downstream side of the second housing 40 through a flow path R defined by the inner surface of the tubular body 3A.
  • the downstream end 22 a of the support rod 22 protrudes from the sliding hole 42 a of the second housing 40 when the upstream valve body 20 is pressed by the fluid and makes a full stroke. Since the downstream end 22a of the protruding support rod 22 is tapered, the resistance of the flow (F4) along the outer peripheral surface of the cylindrical body 42 is reduced.
  • FIG. 9 shows a state in which the fluid flowing out from the downstream side of the upstream check valve body 2 flows into the downstream check valve body 2 and the valve opening operation is started. Then, the valve opening operation similar to that of the upstream check valve body 2 is performed. That is, the valve body 20 of the downstream check valve body 2 pressed by the pressure of the fluid flowing out from the downstream side of the upstream check valve body 2 separates from the valve seat portion 13.
  • the support rod 22 of the valve body 20 is guided by the sliding hole 42a of the second housing 40 and moves downstream, and the flange portion 21a of the valve body 20 is formed at the upper end edge of the cylindrical body 42 of the second housing 40. Abut.
  • the effect that the fluid in the space C in the upstream and downstream check valve bodies 2 is drawn out through the communication hole 44a and flows out by the venturi effect is the first implementation.
  • the form is the same (see F5 in the figure). That is, an increase in pressure in the space C is suppressed, the valve body 20 is reliably fully stroked, pressure loss is suppressed, and stable fluid flow is realized.
  • FIG. 10 is a schematic longitudinal sectional view for explaining a state when the check valve 1A starts the valve closing operation.
  • the check valve 1A is switched from the open state to the closed state by the differential pressure and the biasing force of the spring member 30.
  • the valve head 21 of the valve body 20 of the downstream check valve body 2 is seated on the valve seat portion 13 by the differential pressure and the biasing force of the spring member 30.
  • the movement of the valve body 20 in the radial direction is restricted by the support rod 22 being guided by the sliding hole 42a of the second housing 40 and moving upstream.
  • the valve head 21 whose diameter has been increased in a taper shape toward the downstream side is seated on the valve seat portion 13, the distance between the flange portion 21 a and the bottom surface of the cylindrical body 42 becomes longer, and the spring member 30 extends.
  • the fluid flowing backward from the downstream side is blocked by the sealing action between the valve head 21 and the valve seat 13 as indicated by the white arrow in the figure. That is, the flow path of the downstream check valve body 2 is blocked.
  • the upstream check valve main body 2 constituting the check valve 1 ⁇ / b> A is also switched from the valve open state to the valve closed state by the differential pressure and the biasing force of the spring member 30, similarly to the downstream check valve main body 2.
  • the check valve 1A configured as a so-called dual check valve by connecting two check valve bodies 2 together, when the flow of the fluid is stopped on the downstream side, the check valve body 2 on the downstream side is opened first. Switch from closed to closed. Thereafter, the upstream check valve body 2 is also switched from the valve open state to the valve closed state, and a double valve closed state is established for the fluid that flows backward from the downstream side.
  • the check valve 1A allows the fluid that flows backward from the downstream side when the other check valve body 2 is closed even if any of the check valve bodies 2 constituting the check valve has a problem. It can be surely prevented.
  • a so-called water hammer wave is generated in the pipe.
  • the check valve used as the check valve is closed, the water hammer wave does not escape to the upstream side, and the wave reciprocates between the end device and the check valve.
  • This wave gradually decays and disappears, but results in high pressures being contained between the end device and the check valve. Due to this high sealing pressure, the packing of the end device is damaged to cause fluid leakage, or the close contact portion of the valve seat and valve body of the check valve is damaged to cause back flow of fluid.
  • check valve 1A According to the check valve 1A according to the present embodiment, two check valve main bodies 2 are connected to form a so-called dual check valve, and a water hammer wave is generated between the end device and the check valve 1A so as to be highly sealed. Even if the pressure is applied, the upstream check valve body 2 can be reliably maintained in the closed state without being affected by the water hammer wave.
  • the upstream check valve main body 2 and the downstream check valve main body 2 connected to each other are connected to an upstream rib portion 43 and a locking groove portion 14 formed at the upper edge tip of the downstream inflow port 12. Since the connection can be easily released, any of the check valve bodies 2 constituting the check valve 1A can be easily replaced.
  • the connected check valve main body 2 functions as a check valve for preventing the fluid in the pipe from flowing backward by being attached to the downstream side of the flow meter with a water pipe or a water supply pipe as a tubular body 3A.
  • the examples and comparative examples have the same configuration except for the shape of the housing and the valve body.
  • the flow rate was changed and the examples and comparisons at each flow rate were made.
  • the pressure loss in the example was plotted as a flow characteristic diagram (pressure loss-flow rate relationship diagram) (see FIG. 11).
  • the pressure loss of the check valve 1A according to the second embodiment of the example was 0.023 MPa when the flow rate was the rated flow rate (2520 L / hour).
  • the pressure loss was 0.050 MPa.
  • the pressure loss value was smaller than that of the comparative example.
  • valve body 20 when the flow path of the fluid is opened at the downstream end and the flow of the fluid is started, the valve body 20 is reliably separated after being separated from the valve seat portion 13 by the pressure of the fluid into which the valve body 20 flows. A full stroke reduces pressure loss and realizes stable fluid flow.
  • the valve opening state is switched to the valve closing state.
  • two check valve bodies 2 are connected to form a so-called dual check valve, even if a water hammer wave is generated between the end device and the check valve 1A and a high sealed pressure acts, the upstream side The check valve body 2 can be reliably kept closed without being affected by the water hammer wave.
  • the same check valve body 2 has been described with reference to a specific example of the check valve 1 ⁇ / b> A configured by connecting two bodies, but the check valve body 2 is formed at the downstream end of the rib portion 43. , And the locking grooves 14, 14,... Formed at the tip of the upper edge of the inflow port 12, so that the flow direction of the fluid is the same.
  • the check valve body 2 can be a multiple check valve body in which two or more are connected as required.
  • the check valves 1 and 1A according to the present embodiment are combined with a flow meter or a stop cock attached to a pipe body such as a water pipe or a water supply pipe, and as a check valve for preventing the water in the pipe from flowing back.
  • a pipe body such as a water pipe or a water supply pipe
  • a check valve for preventing the water in the pipe from flowing back can be used.
  • a fluid use as a unit type check valve that reliably prevents backflow of fluid by suppressing pressure loss during circulation in circulation pipes of not only liquid but also gas and gas-liquid mixture gas etc. Can do.
  • Step part (joint part) 42 Cylinder 42a ... Sliding hole 42b ... Inner surface (cylinder) 42c ... Outer surface (sliding hole) 43 ... Rib 43a ... Locking recess 44 ... Notch 44a ... Communication hole R ... Channel C ... Space

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Check Valves (AREA)

Abstract

 圧力損失を抑制し、かつ流体の逆流を確実に防止できる、小型で低コストのチェックバルブを提供する。 流体が流通する流路の一部を形成する管状体と、流体が流通する第1の弁孔を有し、第1の弁孔の内周面の下流側に弁座部が形成された第1のハウジングと、頂上に平坦部を有し、下流側へテーパ状に拡径した弁頭部と弁頭部に連結された支持ロッドからなる弁体と、弁体を弁座部に付勢するバネ部材と、第2の弁孔を有する連接部と上流側に開口し下流側に前記バネ部材の一端側の受け面と中央部に前記弁体の支持ロッドが摺動する摺動孔が形成された筒体からなる第2のハウジングと、を備え、第2のハウジングの筒体が下流側へテーパ状に縮径し、弁体の弁頭部の下流側の一面と対向する上端縁に切欠き部が形成されている。

Description

チェックバルブ
 本発明は、流体の圧力により開閉し流体を一方向にのみ流通させるチェックバルブに関する。
 流体が流通する弁孔を有し、この弁孔の外周面に弁座部が形成されたハウジングと、弁孔内に配置され、弁座部に密着して弁孔を閉じる閉弁位置と弁座部より流体の下流側へ離間して弁孔を開く開弁位置との間を移動自在に設けられた弁体と、この弁体を閉弁位置側に付勢するコイルスプリングとを備えたチェックバルブが知られている(特許文献1)。
 チェックバルブは、例えば水道配管、特に各家庭へ配水する給水管の施設に当たり、流量計の下流側に接続されて、断水時或いは給水圧低下による下流側からの汚水の逆流を防止する。そのために、弁体を迅速にかつ確実に閉弁位置側に付勢して閉栓するとともに、流体の圧力や流量によらず、流体を確実に下流側へ流通させるために圧力損失を抑制する必要がある。
特開平09-72442号公報
 本発明は、圧力損失を抑制し、かつ流体の逆流を確実に防止できる、小型で低コストのチェックバルブを提供することを目的とする。
 前記課題を解決するために、請求項1に記載のチェックバルブは、
 流体が流通する流路の一部を形成する管状体と、
 流体が流通する第1の弁孔を有し、前記第1の弁孔の内周面の下流側に弁座部が形成された第1のハウジングと、
 頂上に平坦部を有し、下流側へテーパ状に拡径した弁頭部と前記弁頭部に連結された支持ロッドからなる弁体と、
 前記弁体を前記弁座部に付勢するバネ部材と、
 第2の弁孔を有する連接部と上流側に開口し下流側に前記バネ部材の一端側の受け面と中央部に前記弁体の前記支持ロッドが摺動する摺動孔が形成された筒体からなる第2のハウジングと、を備え、
 前記第2のハウジングの前記筒体が下流側へテーパ状に縮径し、前記弁体の前記弁頭部の下流側の一面と対向する上端縁に切欠き部が形成されている、
 ことを特徴とする。
 請求項2に記載の発明は、請求項1に記載のチェックバルブにおいて、
 前記弁体が流体で押圧されて前記弁体の前記弁頭部の下流側の一面が前記第2のハウジングの前記筒体の上端縁に当接したときに、前記第2のハウジングの前記摺動孔から突出した前記弁体の前記支持ロッドの下流側端がテーパ状に縮径されている、
 ことを特徴とする。
 請求項3に記載の発明は、請求項1又は2に記載のチェックバルブにおいて、
 前記第1のハウジングの前記第1の弁孔の上流端に係止鉤部を有する複数の係止溝部が形成され、前記第2のハウジングの前記筒体の外面に係止凹部を有する複数のリブ部が形成された、
 ことを特徴とする。
 前記課題を解決するために、請求項4に記載のチェックバルブは、
 請求項1ないし3のいずれか1項に記載のチェックバルブの第1のハウジングに形成された複数の係止溝部と、請求項1ないし3のいずれか1項に記載の他のチェックバルブの第2のハウジングに形成された複数のリブ部と、を係止して連接した、
 ことを特徴とする。
 請求項1及び2に記載の発明によれば、圧力損失を抑制し、かつ流体の逆流を確実に防止できる、小型で低コストのチェックバルブを提供することができる。
 請求項3に記載の発明によれば、同一構成のチェックバルブを複数個、容易に連接し、また、容易に切離することができる。
 請求項4に記載の発明によれば、同一構成のチェックバルブを複数個連接して圧力損失を抑制し、かつ流体の逆流を確実に防止できる、小型で低コストのチェックバルブを提供することができる。
図1はチェックバルブ本体2の流入口側に視点をおいた構成斜視図である。 図2aはチェックバルブ1の閉弁状態の縦断面図、図2bはチェックバルブ1の開弁状態の縦断面図である。 図3aは第1のハウジング10の縦断面図、図3bは第1のハウジング10の流入口側の平面図である。 図4aは第2のハウジング40の流出口側の底面図、図4bは第2のハウジング40の縦断面図、図4cは第2のハウジング40の流入口側の平面図である。 図5はチェックバルブ1における流体の流通と弁体の移動を説明するための縦断面模式図であり、図5aは開弁動作が開始された状態、図5bは弁体20がフルストロークした開弁状態を示す。 図6は弁体20が流体の圧力でフルストロークした状態での、チェックバルブ1内における流体の流れを説明するための縦断面模式図である。 図7aはチェックバルブ1が閉弁動作を開始したときの状態を説明するための縦断面模式図、図7bは閉弁状態になったときの状態を示す縦断面模式図である。 図8はチェックバルブ1Aの閉弁状態の縦断面図である。 図9はチェックバルブ1Aにおける流体の流通と、弁体の移動を説明するための縦断面模式図である。 図10はチェックバルブ1Aが閉弁動作を開始したときの状態を説明するための縦断面模式図である。 図11は流量を変化させて、各流量における実施例に係るチェックバルブ1Aおよび比較例のチェックバルブ200の圧力損失を示した流量特性図(圧力損失-流量の関係図)である。 図12は比較例のチェックバルブ200の縦断面図である。
 次に図面を参照しながら、以下に実施形態及び実施例を挙げ、本発明を更に詳細に説明するが、本発明はこれらの実施形態及び実施例に限定されるものではない。
 尚、以下の図面を使用した説明において、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきであり、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
 「第1実施形態」
 (1)チェックバルブの構成
 図1はチェックバルブ本体2の流入口側に視点をおいた構成斜視図、図2aは本実施形態に係るチェックバルブ1の閉弁状態の縦断面図、図2bは開弁状態の縦断面図である。
 以下、図面を参照しながら、チェックバルブ1及びチェックバルブ本体2の全体構成を説明する。
 (1.1)チェックバルブの全体構成
 チェックバルブ1は、チェックバルブ本体2と、チェックバルブ本体2が嵌挿される管状体3と、からなる。
 チェックバルブ本体2は、流体が一端側入口から他端側出口へ通過する貫通流路を有する第1のハウジング10と、流体の圧力で移動する弁体20と、弁体20を流体の流出側から流入側へ付勢するバネ部材30と、弁体20と弁体20を上流側へ付勢するバネ部材30を支持する第2のハウジング40と、を備えて構成される。
 第1のハウジング10は、下流に向けてテーパ状に拡径された流入口12と、弁体20がその表面に接離する弁座部13を有する。
 弁体20は、流体の圧力を受ける弁頭部21と、弁頭部21に連結された支持ロッド22とから構成され、バネ部材30によって弁座部13へ付勢されている。
 第2のハウジング40は、第1のハウジング10と嵌合されて管状体3の内面3aと流体の下流側の流路を形成する。また、第2のハウジング40の摺動孔42aは、弁体20を流体の流通方向に移動可能に支持している。
 このように構成されたチェックバルブ1は、チェックバルブ本体2が管状体3に嵌挿されて流体の逆止弁として作用する。例えば、チェックバルブ本体2は、水道配管や給水管を管状体3として流量計の下流側に取り付けられることで、配管内の流体が逆流するのを防止する逆止弁として作用する。
 (1.2)第1のハウジングの構成
 図3aは第1のハウジング10の縦断面図、図3bは第1のハウジング10の流入口側の平面図である。
 第1のハウジング10は、流体が流通する第1の弁孔11を有し、第1の弁孔11は上流側に流体の流入口12が形成されている。流入口12は、流体の流入側から下流側に向けてテーパ状に拡径し、外側には環状凸部12aがリング状に形成されている。
 第1の弁孔11の下流側には下流側に向けて弁体20が接離する弁座部13が形成されている。
 弁座部13は、弾性材料からなり、環状に第1のハウジング10と一体として形成されている。弾性材料としては、ショア硬度Hs80ないし95のエーテル系ウレタンエラストマーを用いることができる。そして、弁座部13は第1のハウジング10を合成樹脂で形成する場合には、射出成形により一体として成形することができる。
 尚、弁座部13は、第1のハウジング10を合成樹脂を用いて射出成形により成形した後、フッ素ゴム等の弾性部材を第1のハウジング10と後述する第2のハウジング40の連接部41とで挟み込んで形成することもできる。
 流入口12の上縁の周上には、先端に鉤部14aを有する係止溝部14が複数形成されている。
 具体的には、第1のハウジング10の流入口12の上縁の周上に90度ごとに等間隔に係止溝部14、14、・・・が形成され、それぞれの係止溝部14には、対向して一対の鉤部14a、14aが形成されている。
 係止溝部14は、後述する第2のハウジング40の筒体42に形成された係止凹部43aを有する複数のリブ部43と係止されることで、流体の流通方向に複数のチェックバルブ本体2を連結して連接構造のチェックバルブを構成することができる。
 連接構造とされたチェックバルブは、チェックバルブ本体2同士の係止溝部14の鉤部14aとリブ部43の係止凹部43aとの係止を解除することで、チェックバルブ本体2同士が容易に切離される。
 第1のハウジング10の流入口12の外周面には環状にO-リングSが装着される。O-リングSは、管状体3の内面3aに圧接されて、チェックバルブ本体2と管状体3との間隙における流体の漏洩を防止する。
 (1.3)弁体の構成
 弁体20は、流体の圧力を受ける上面側がその頂上に平坦部20aを有し、下流側へテーパ状に拡径した弁頭部21と、弁頭部21に連結された支持ロッド22とから構成され、弁頭部21と支持ロッド22は、例えば合成樹脂にて一体に形成されている。
 弁頭部21の支持ロッド22側には、流体の流通方向と直交する方向に平坦なフランジ部21aが形成され、支持ロッド22の一端が形成された外側には、環状凹部21bが形成されている(図2a参照)。
 環状凹部21bは、弁体20が流体によって押圧されて開栓状態になったときに、後述する第2のハウジング40の筒体42の摺動孔42aの端部と嵌合して、弁体20の左右の動きを規制する(図2b参照)。
 支持ロッド22の下流側端22aは、弁体20が流体によって押圧されて後述する第2のハウジング40の筒体42の上流側端面に当接した位置において、筒体42の摺動孔42aから突出し、突出した範囲がテーパ状に縮径されている。
 (1.4)第2のハウジングの構成
 図4aは第2のハウジング40の流出口側の底面図、図4bは第2のハウジング40の縦断面図、図4cは第2のハウジング40の流入口側の平面図である。
 第2のハウジング40は、上流側に開口し下流側に向けてテーパ状に拡径した第2の弁孔を形成する連接部41と、上流側に開口しバネ部材30の一端側の受け面が形成された筒体42と、連接部41と筒体42とを連結して支持する複数のリブ部43と、からなる。
 筒体42は、下流側へテーパ状に縮径し、中央部には弁体20の支持ロッド22を支持する摺動孔42aが形成されている。
 連接部41は、内周面に凹部41aが環状に形成され、連接部41の上流側開口部の内周面には、段差部41bが形成されている。連接部41は、段差部41bが第1のハウジング10に形成された弁座部13を押圧しながら、凹部41aが第1のハウジング10の流入口12の外側に形成されたリング状の環状凸部12aと係止されることによって、チェックバルブ本体2が構成される。
 筒体42は、下流側へテーパ状に縮径した外面に放射状に複数のリブ部43が形成されている。それぞれのリブ部43の下流側端には、リブの厚み方向に係止凹部43aが形成されている。
 具体的には、第2のハウジング40の筒体42に90度ごとに等間隔にリブ部43、43、・・・が形成され、それぞれのリブ部43の下流側端には、リブの厚み方向に係止凹部43a、43a、・・・が形成されている。
 係止凹部43aと、第1のハウジング10の流入口12の上縁先端に形成された係止溝部14とが係止されることで、流体の流通方向に複数のチェックバルブ本体2を連接したチェックバルブとすることができる。
 例えば、同一のチェックバルブ本体2を2体連接することで、いわゆるデュアルチェックバルブを構成することができる。デュアルチェックバルブとすることで、それぞれのチェックバルブ本体2は、上流側からの流体の流通を許容しながら、下流側からの流体の逆流に対しては、2重の逆止め機能を発揮することができる。
 筒体42は、上流側に開口し、上端縁には90度ごとに等間隔に切欠き部44、44、・・・が形成されている。弁体20が流体によって押圧されて下流側へ移動し筒体42の上端縁に当接する(以下、フルストロークと記す)と、筒体42の内面42bと、摺動孔42aの外面42cと、弁体20のフランジ部21aとで空間Cが形成される。
 そして、筒体42の切欠き部44は、空間Cと、筒体42と管状体3の内面3aで画成された流路Rとを連通する連通孔44aを形成する(図2b参照)。
 空間C内には、流体に押圧されて下流側へ移動する弁体20のフランジ部21aによって流体が押し込まれ充填される。そして、弁体20の移動に伴って、空間C内の流体圧力が高くなった場合、弁体20の下流方向への移動に対して抵抗となる。
 特に、フルストローク直前で圧力は高まり、弁体20の移動が阻害されることになる。係るフルストローク時に連通孔44aが複数形成されることで、空間C内の圧力上昇が抑制される。その作用については後述する。
 第1のハウジング10、弁体20、及び第2のハウジング40の材料としては、特に限定されないが、ポリアセタール(POM)等の合成樹脂が好適である。
 特に、POMを用いることで、弁体20の支持ロッド22と支持ロッド22を支持する摺動孔42aとの間の摩擦力が低減される。又、第2のハウジング40の係止凹部43aと第1のハウジング10の係止溝部14とが連結或いは切離される際に弾性変形しやすく、鉤部14a及び係止凹部43aの摩耗も抑制される。
 (2)チェックバルブの動作・作用
 図5は本実施形態に係るチェックバルブ1における流体の流通と弁体20の移動を説明するための縦断面模式図である。図5aは開弁動作が開始された状態、図5bは弁体20がフルストロークした開弁状態を示す。
 (2.1)チェックバルブの全体動作
 弁体20は、図中白抜き矢印で示すように、流入した流体の圧力により弁座部13から離座する。そして、弁体20の支持ロッド22は第2のハウジング40の筒体42の摺動孔42aに案内されて下流側へ移動する。
 その後、第2のハウジング40の筒体42の上端縁に弁体20のフランジ部21aが当接する。このとき、支持ロッド22の外径と摺動孔42aとの間隙は、例えば0.05mm程度に保持され、支持ロッド22の径方向への動きは規制される。その結果、弁体20の径方向への動きも規制され、弁体20と弁座部13の中心ズレが抑制される。
 弁体20のフランジ部21aが第2のハウジング40の筒体42の上端縁に当接すると、フランジ部21aと筒体42底面との間隔が短くなりバネ部材30は収縮する。
 流体は、図中矢印(F1、F2、F3)で示すように、弁体20の下流側へテーパ状に拡径した弁頭部21と弁座部13との隙間を通過し、筒体42と管状体3の内面3aで隔成された流路Rを流通し第2のハウジング40の下流側から流出する。
 (2.2)チェックバルブの開動作・作用
 図6は弁体20が流体の圧力でフルストロークした状態でのチェックバルブ1内における流体の流れを説明するための縦断面模式図である。
 下流側末端で流体の流路が開栓されて流体の流通が開始されると、流入口12から流入した流体の圧力により弁体20が弁座部13から離座し弁孔11が開放される。
 弁体20の離座に伴って、支持ロッド22が第2のハウジング40の摺動孔42aに案内されて下流側へ移動すると、第2のハウジング40の空間C内には、流体に押圧されて下流側へ移動する弁体20のフランジ部21aで流体が押し込まれ充填される。
 そして、弁体20の移動に伴って空間C内の流体圧力が上昇し、特にフルストローク直前で空間C内の圧力は高まる。
 しかるに、フルストローク直前で空間C内の圧力が上昇すると、空間Cと流路Rとを連通する連通孔44aを通じて、空間C内に押し込まれ充填された流体が流出する(F5)。
 弁孔11から第2のハウジング40の筒体42の下流側へ至る流路Rは、弁頭部21と弁座部13との隙間で画成される第1の流路部分(R1)と、筒体42と管状体3の内面3aで画成された第2の流路部分(R2)とからなる。
 第1の流路部分(R1)は、下流側に向けて流路が絞られている。一方、第2の流路部分(R2)は、筒体42が下流側へテーパ状に縮径しているために、下流側に向けて流路が拡大している。
 その結果、第1の流路部分(R1)と第2の流路部分(R2)が連接される領域、すなわち、弁体20のフランジ部21aと筒体42の上端縁が当接される領域が、流路として最も絞られた領域となり、この領域における流体の流速が増加する(F2)。
 そのために、いわゆるベンチュリー効果により、空間C内の流体は連通孔44aを通じて引き出され流出する(F5)。
 その結果、空間C内の圧力上昇が抑制され、弁体20は確実にフルストロークして圧力損失が抑制され、安定した流体の流通が実現される。
 (2.3)チェックバルブの閉動作・作用
 図7aはチェックバルブ1が閉弁動作を開始したときの状態を説明するための縦断面模式図、図7bは閉弁状態になったときの状態を示す縦断面模式図である。
 下流側末端で流体の流路が閉栓されて流体の流通が停止されると、下流側圧力が上流側圧力よりも高くなり、この差圧とバネ部材30の付勢力によりチェックバルブ1は、開弁状態から閉弁状態に切り換わる。
 弁体20の弁頭部21は、差圧とバネ部材30の付勢力により弁座部13に着座する。このとき、弁体20は、支持ロッド22が第2のハウジング40の摺動孔42aに案内されて上流側へ移動することにより、径方向への動きが規制される。
 下流側へテーパ状に拡径した弁頭部21が弁座部13に着座すると、フランジ部21aと筒体42底面との間隔が長くなり、バネ部材30は伸長する。
 下流側から逆流する流体は、図中白抜き矢印で示すように、弁頭部21と弁座部13とのシール作用により堰き止められる。すなわち、第1の流路が遮断され流体の逆流が防止される。
 「第2実施形態」
 (1)チェックバルブの構成
 図8は本実施形態に係るチェックバルブ1Aの閉弁状態の縦断面図である。以下、図面を参照しながら、チェックバルブ1Aの全体構成を説明する。
 尚、チェックバルブ1Aは、第1実施形態に係るチェックバルブ本体2を2体連接して、いわゆるデュアルチェックバルブとして構成しているために、第1実施形態に係るチェックバルブ1と同一の構成には同一の符号を付し詳細な説明は省略する。
 (1.1)チェックバルブの全体構成
 チェックバルブ1Aは、チェックバルブ本体2Aと、チェックバルブ本体2Aが嵌挿される管状体3Aと、からなる。
 チェックバルブ本体2Aは、第1実施形態に係る2体のチェックバルブ本体2が流体の流通方向に連接されて構成されている。
 (1.2)チェックバルブ本体の構成
 図8に示すように、チェックバルブ本体2Aは、同一のチェックバルブ本体2を2体連接して構成されている。
 チェックバルブ本体2の第1のハウジング10の流入口12の上縁の周上には、先端に鉤部14aを有する係止溝部14が複数形成されている(図3参照)。
 一方、チェックバルブ本体2の第2のハウジング40の筒体42には、下流側へテーパ状に縮径した外面に放射状に複数のリブ部43が形成され、それぞれのリブ部43の下流側端には、リブの厚み方向に係止凹部43aが形成されている(図4参照)。
 具体的には、第1のハウジング10の流入口12の上縁の周上には90度ごとに等間隔に係止溝部14、14、・・・が形成され、それぞれの係止溝部14には、対向して一対の鉤部14a、14aが形成されている。
 第2のハウジング40の筒体42には90度ごとに等間隔にリブ部43、43、・・・が形成され、それぞれのリブ部43の下流側端には、リブの厚み方向に係止凹部43a、43a、・・・が形成されている。
 係るリブ部43の下流側端に形成された係止凹部43a、43a、・・・と第1のハウジング10の流入口12の上縁先端に形成された鉤部14aを有する係止溝部14、14、・・・とが係止され、流体の流通方向に同一のチェックバルブ本体2を2体連接したチェックバルブ本体2Aが形成される。
 係止溝部14、14、・・・は第1のハウジング10の流入口12の上縁の周上に形成され、係止される第2のハウジング40のリブ部43、43、・・・は、その下流端側にリブの厚み方向に係止凹部43a、43a、・・・が形成されているために、係止のためのスペースを最小にして、係止部で流体の流通を阻害することなく連接することができる。
 (2)チェックバルブの動作・作用
 (2.1)チェックバルブの開動作・作用
 図9は本実施形態に係るチェックバルブ1Aにおける流体の流通と弁体20の移動を説明するための縦断面模式図である。
 上流側のチェックバルブ本体2の弁体20は、図中白抜き矢印で示すように、流入した流体の圧力を受けて弁座部13から離座する。そして、弁体20の支持ロッド22は第2のハウジング40の摺動孔42aに案内されて下流側へ移動する。
 その後、第2のハウジング40の筒体42の上端縁に弁体20のフランジ部21aが当接する。弁体20のフランジ部21aが第2のハウジング40の筒体42の上端縁に当接すると、フランジ部21aと筒体42底面との間隔が短くなり、バネ部材30は収縮する。
 流体は、図中矢印(F1、F2、F3)で示すように、弁体20の下流側へテーパ状に拡径した弁頭部21と弁座部13との隙間を通過し、筒体42の外側と管状体3Aの内面で隔成された流路Rを流通し第2のハウジング40の下流側から流出する。
 支持ロッド22の下流側端22aは、上流側の弁体20が流体によって押圧されてフルストロークしたときに、第2のハウジング40の摺動孔42aから突出する。
 突出した支持ロッド22の下流側端22aはテーパ状に縮径されているために、筒体42の外周面に沿う流れ(F4)の抵抗を減少させる。
 そして、筒体42に沿う流れ(F4)は、下流側のチェックバルブ本体2の弁体20の平坦部20aに向かって導かれる。
 その結果、上流側のチェックバルブ本体2から流出する流体は、下流側のチェックバルブ本体2の弁体20の平坦部20aを押圧し、下流側のチェックバルブ本体2は開弁されやすくなる。すなわち、連接されたいわゆるデュアルチェックバルブとしての圧力損失が抑制される。
 図9は、上流側のチェックバルブ本体2の下流側から流出した流体が下流側のチェックバルブ本体2に流入し、開弁動作が開始された状態を示している。そして、上流側のチェックバルブ本体2と同様の開弁動作を行う。
 すなわち、上流側のチェックバルブ本体2の下流側から流出した流体の圧力により押圧された下流側のチェックバルブ本体2の弁体20は、弁座部13から離座する。そして、弁体20の支持ロッド22は第2のハウジング40の摺動孔42aに案内されて下流側へ移動し、第2のハウジング40の筒体42の上端縁に弁体20のフランジ部21aが当接する。
 弁体20のフランジ部21aが第2のハウジング40の筒体42の上端縁に当接すると、フランジ部21aと筒体42底面との間隔が短くなり、バネ部材30は収縮する。
 流体は、弁体20の下流側へテーパ状に拡径した弁頭部21と弁座部13との隙間を通過し、筒体42と管状体3Aの内面3Aaで隔成された流路Rを流通し第2のハウジング40の下流側から流出する。
 尚、本実施形態に係るチェックバルブ1Aにおいても、ベンチュリー効果によって、上流側及び下流側のそれぞれのチェックバルブ本体2における空間C内の流体が連通孔44aを通じて引き出され流出する作用効果は第1実施形態と同様である(図中F5参照)。
 すなわち、空間C内の圧力上昇が抑制され、弁体20が確実にフルストロークして圧力損失が抑制され、安定した流体の流通が実現される。
 (2.2)チェックバルブの閉動作・作用
 図10はチェックバルブ1Aが閉弁動作を開始したときの状態を説明するための縦断面模式図である。
 下流側で流体の流通が停止され下流側圧力が上流側圧力よりも高くなると、この差圧とバネ部材30の付勢力によりチェックバルブ1Aは、開弁状態から閉弁状態に切り換わる。
 下流側のチェックバルブ本体2の弁体20の弁頭部21は、差圧とバネ部材30の付勢力により弁座部13に着座する。
 このとき、弁体20は、支持ロッド22が第2のハウジング40の摺動孔42aに案内されて上流側へ移動することにより、径方向への動きが規制される。下流側へテーパ状に拡径した弁頭部21が弁座部13に着座すると、フランジ部21aと筒体42底面との間隔が長くなり、バネ部材30は伸長する。
 下流側から逆流する流体は、図中白抜き矢印で示すように、弁頭部21と弁座部13とのシール作用により堰き止められる。すなわち、下流側のチェックバルブ本体2の流路が遮断される。
 次に、チェックバルブ1Aを構成する上流側のチェックバルブ本体2も、下流側のチェックバルブ本体2と同様に、差圧とバネ部材30の付勢力により開弁状態から閉弁状態に切り換わる。
 すなわち、チェックバルブ本体2を2体連接して、いわゆるデュアルチェックバルブとして構成されたチェックバルブ1Aは、下流側で流体の流通が停止されると、先に下流側のチェックバルブ本体2が開弁状態から閉弁状態に切り換わる。
 その後、上流側のチェックバルブ本体2も開弁状態から閉弁状態に切り換わり、下流側から逆流する流体に対して二重の閉弁状態となる。
 その結果、チェックバルブ1Aは、構成するそれぞれのチェックバルブ本体2のいずれかに不具合が発生した場合であっても、他のチェックバルブ本体2が閉弁することにより、下流側から逆流する流体を確実に防止することができる。
 例えば下流側末端で瞬時に閉栓されると、配管内にはいわゆる水撃波が発生する。そして逆止弁として用いられたチェックバルブが閉じることにより水撃波は上流側へは逃げられず、末端機器とチェックバルブとの間を往復する波動となる。
 この波動は徐々に減衰し、消滅するが、末端機器とチェックバルブとの間に高い圧力が封じ込められる結果となる。この高い封入圧力によって、末端機器のパッキン等が損傷して流体漏れの原因となったり、チェックバルブの弁座部と弁体の密着部が損傷して、流体の逆流の原因となる。
 本実施形態に係るチェックバルブ1Aによれば、チェックバルブ本体2を2体連接して、いわゆるデュアルチェックバルブとして構成され、末端機器とチェックバルブ1Aとの間に水撃波が発生して高い封入圧力が作用しても、上流側のチェックバルブ本体2は水撃波の影響を受けることなく確実に閉弁状態を維持することができる。
 また、連接された上流側のチェックバルブ本体2と下流側のチェックバルブ本体2は、上流側のリブ部43と下流側の流入口12の上縁先端に形成された係止溝部14との係合を容易に解除することができるために、チェックバルブ1Aを構成するいずれかのチェックバルブ本体2を容易に交換することができる。
 連接されたチェックバルブ本体2は、水道配管や給水管を管状体3Aとして、流量計の下流側に取り付けられることで、配管内の流体が逆流するのを防止する逆止弁として作用する。
 (3)効果
 「実施例」
 本実施形態に係るチェックバルブ1Aを管状体3Aの一例としての電磁流量計の下流側配管に装着して以下の条件で流体を流通させた場合の圧力損失を比較例との対比において計測した。
 比較例としては、図12に示すように、流体の流入口を形成する弁座部材110と、流体の通過を許容するハウジング120と、付勢手段により弁座部材110に押圧される弁体130と、からなるチェックバルブ100を流体の流動方向に2体配置したチェックバルブ200を用いた。
 (試験条件)
 管体の呼び径:20mm
 流量:160~3000L/hour(定格流量:2520L/hour)
 (試験体)
 実施例:第2実施形態に係るチェックバルブ1A
 比較例:図12に示したチェックバルブ200
 試験体において、実施例と比較例とは、ハウジング及び弁体の形状以外は同一構成のものを使用しており、試験条件に示すように、流量を変化させて、各流量における実施例および比較例の圧力損失を流量特性図(圧力損失-流量の関係図)としてプロットした(図11参照)。
 本試験結果から、実施例の第2実施形態に係るチェックバルブ1Aは流量が定格流量である場合(2520L/hour)において、圧力損失は0.023MPaであった。一方、比較例は同様に流量が定格流量である場合(2520L/hour)において、圧力損失は0.050MPaであった。
 また、流量が定格流量である場合のみならず、流量が略1000~3000L/hourの流量においても、比較例と比べて圧力損失の値が小さいものとなった。
 従って、下流側末端で流体の流路が開栓されて流体の流通が開始されると、弁体20が流入した流体の圧力により弁座部13から離座した後、弁体20は確実にフルストロークして圧力損失が抑制され、安定した流体の流通が実現される。
 下流側末端で流体の流路が閉栓されて流体の流通が停止されると、開弁状態から閉弁状態に切り換わる。
 そして、チェックバルブ本体2を2体連接して、いわゆるデュアルチェックバルブとして構成した場合、末端機器とチェックバルブ1Aとの間に水撃波が発生して高い封入圧が作用しても、上流側のチェックバルブ本体2は水撃波の影響を受けることなく確実に閉弁状態を維持することができる。
 第2実施形態において、同一のチェックバルブ本体2を、2体連接して構成されたチェックバルブ1Aについて具体例を挙げて説明したが、チェックバルブ本体2は、リブ部43の下流側端に形成された係止凹部43a、43a、・・・と流入口12の上縁先端に形成された係止溝部14、14、・・・とが係止されることで、流体の流通方向に同一のチェックバルブ本体2を、必要に応じて2体以上連接した多重のチェックバルブ本体とすることができる。
 本実施形態に係るチェックバルブ1、1Aは、水道配管や給水管などの管体に取り付ける流量計や止水栓等と組み合わせて、その管体内の水が逆流するのを防止する逆止弁として用いることができる。
 また、流体としては、液体のみならず気体及び気体と液体の混合気体等の流通配管内において、流通時の圧力損失を抑制して確実に流体の逆流を防止するユニット型逆止弁として用いることができる。
1、1A、100、200・・・チェックバルブ
2・・・チェックバルブ本体
3、3A・・・管状体
 3a、3Aa・・・内面(管状体)
10・・・第1のハウジング
11・・・弁孔
12・・・流入口
 12a・・・環状凸部(流入口)
13・・・弁座部
14・・・係止溝部
 14a・・・鉤部
20・・・弁体
 20a・・・平坦部
21・・・弁頭部
 21a・・・フランジ部
 21b・・・環状凹部
22・・・支持ロッド
 22a・・・下流側端
30・・・バネ部材
40・・・第2のハウジング
41・・・連接部
 41a・・・凹部(連接部)
 41b・・・段差部(連接部)
42・・・筒体
 42a・・・摺動孔
 42b・・・内面(筒体)
 42c・・・外面(摺動孔)
43・・・リブ部
 43a・・・係止凹部
44・・・切欠き部
 44a・・・連通孔
R・・・流路
C・・・空間

Claims (4)

  1.  流体が流通する流路の一部を形成する管状体と、
     流体が流通する第1の弁孔を有し、前記第1の弁孔の内周面の下流側に弁座部が形成された第1のハウジングと、
     頂上に平坦部を有し、下流側へテーパ状に拡径した弁頭部と前記弁頭部に連結された支持ロッドからなる弁体と、
     前記弁体を前記弁座部に付勢するバネ部材と、
     第2の弁孔を有する連接部と上流側に開口し下流側に前記バネ部材の一端側の受け面と中央部に前記弁体の前記支持ロッドが摺動する摺動孔が形成された筒体からなる第2のハウジングと、を備え、
     前記第2のハウジングの前記筒体が下流側へテーパ状に縮径し、前記弁体の前記弁頭部の下流側の一面と対向する上端縁に切欠き部が形成されている、
    ことを特徴とするチェックバルブ。
  2.  前記弁体が流体で押圧されて前記弁体の前記弁頭部の下流側の一面が前記第2のハウジングの前記筒体の上端縁に当接したときに、前記第2のハウジングの前記摺動孔から突出した前記弁体の前記支持ロッドの下流側端がテーパ状に縮径されている、
     ことを特徴とする請求項1に記載のチェックバルブ。
  3.  前記第1のハウジングの前記第1の弁孔の上流端に係止鉤部を有する複数の係止溝部が形成され、前記第2のハウジングの前記筒体の外面に係止凹部を有する複数のリブ部が形成された、
     ことを特徴とする請求項1又は2に記載のチェックバルブ。
  4.  請求項1ないし3のいずれか1項に記載のチェックバルブの第1のハウジングに形成された複数の係止溝部と、請求項1ないし3のいずれか1項に記載の他のチェックバルブの第2のハウジングに形成された複数のリブ部と、を係止して連接した、
     ことを特徴とするチェックバルブ。
PCT/JP2013/069757 2012-07-29 2013-07-22 チェックバルブ WO2014021124A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2013297717A AU2013297717B2 (en) 2012-07-29 2013-07-22 Check valve
SG11201408824UA SG11201408824UA (en) 2012-07-29 2013-07-22 Check valve
JP2014526323A JP5593470B2 (ja) 2012-07-29 2013-07-22 チェックバルブ
NZ704073A NZ704073A (en) 2012-07-29 2013-07-22 Check valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012167852 2012-07-29
JP2012-167852 2012-07-29

Publications (1)

Publication Number Publication Date
WO2014021124A1 true WO2014021124A1 (ja) 2014-02-06

Family

ID=50027806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069757 WO2014021124A1 (ja) 2012-07-29 2013-07-22 チェックバルブ

Country Status (6)

Country Link
JP (1) JP5593470B2 (ja)
AU (1) AU2013297717B2 (ja)
MY (1) MY180878A (ja)
NZ (1) NZ704073A (ja)
SG (1) SG11201408824UA (ja)
WO (1) WO2014021124A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197050A (zh) * 2014-09-02 2014-12-10 章华 关闭末段带缓闭保护功能的低流阻轴流式止回阀
CN104235441A (zh) * 2014-09-03 2014-12-24 黄健山 返流阻止阀
CN107676512A (zh) * 2017-09-30 2018-02-09 和县科嘉阀门铸造有限公司 一种简易型止回阀
JP2018080767A (ja) * 2016-11-17 2018-05-24 株式会社日邦バルブ 逆止弁
CN108488445A (zh) * 2018-06-26 2018-09-04 盐城市百世达建材有限公司 一种防火止回阀
US10166554B2 (en) 2016-04-18 2019-01-01 Score (Europe) Limited Injector
KR102201975B1 (ko) * 2019-07-25 2021-01-12 우성밸브 주식회사 충격 완충형 체크밸브
FR3103020A1 (fr) 2019-11-12 2021-05-14 Sogefi Air & Cooling Vanne à clapet coulissant et véhicule automobile le comportant
CN114636008A (zh) * 2020-12-16 2022-06-17 丹佛斯有限公司 止回阀
CN114746359A (zh) * 2019-11-29 2022-07-12 伊莱弗莱克斯希贝股份有限公司 具有防泄漏装置的灌装阀
US11999610B2 (en) 2019-11-29 2024-06-04 Elaflex Hiby Gmbh & Co. Kg Filling valve with leakage protection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101592187B1 (ko) * 2014-10-16 2016-02-11 센서나인(주) 유량조절밸브
DE102018111811A1 (de) 2018-05-16 2019-11-21 Otto Egelhof Gmbh & Co. Kg Rückschlagventil, insbesondere für einen Kälte- oder Wärmekreislauf

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937375A (ja) * 1982-08-24 1984-02-29 Tabuchi Seisakusho:Kk カ−トリツジ式逆止弁
JPH0735897U (ja) * 1993-12-06 1995-07-04 株式会社日邦バルブ パッキン一体型逆止弁
JPH07293720A (ja) * 1994-04-26 1995-11-10 Nissin Kogyo Kk チェック弁
JPH09178009A (ja) * 1995-12-21 1997-07-11 Maezawa Kiyuusou Kogyo Kk 逆止弁
JP2001280521A (ja) * 2000-03-29 2001-10-10 Toto Ltd 逆流防止装置
JP2004360820A (ja) * 2003-06-05 2004-12-24 Miura Co Ltd バルブ
JP2007143918A (ja) * 2005-11-29 2007-06-14 Daiichi Jonan Kk 消火設備用逆止弁および消火設備用逆止弁ユニット

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5921276A (en) * 1995-10-17 1999-07-13 Stream-Flo Industries, Ltd. Piston-type check valve with diffuser
JP5189403B2 (ja) * 2008-05-08 2013-04-24 国立大学法人信州大学 逆流防止装置
US8701693B2 (en) * 2010-12-23 2014-04-22 Curtiss-Wright Flow Control Corp Nozzle check valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937375A (ja) * 1982-08-24 1984-02-29 Tabuchi Seisakusho:Kk カ−トリツジ式逆止弁
JPH0735897U (ja) * 1993-12-06 1995-07-04 株式会社日邦バルブ パッキン一体型逆止弁
JPH07293720A (ja) * 1994-04-26 1995-11-10 Nissin Kogyo Kk チェック弁
JPH09178009A (ja) * 1995-12-21 1997-07-11 Maezawa Kiyuusou Kogyo Kk 逆止弁
JP2001280521A (ja) * 2000-03-29 2001-10-10 Toto Ltd 逆流防止装置
JP2004360820A (ja) * 2003-06-05 2004-12-24 Miura Co Ltd バルブ
JP2007143918A (ja) * 2005-11-29 2007-06-14 Daiichi Jonan Kk 消火設備用逆止弁および消火設備用逆止弁ユニット

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197050A (zh) * 2014-09-02 2014-12-10 章华 关闭末段带缓闭保护功能的低流阻轴流式止回阀
CN104235441A (zh) * 2014-09-03 2014-12-24 黄健山 返流阻止阀
CN104235441B (zh) * 2014-09-03 2016-08-24 黄健山 返流阻止阀
US10166554B2 (en) 2016-04-18 2019-01-01 Score (Europe) Limited Injector
JP2018080767A (ja) * 2016-11-17 2018-05-24 株式会社日邦バルブ 逆止弁
CN107676512A (zh) * 2017-09-30 2018-02-09 和县科嘉阀门铸造有限公司 一种简易型止回阀
CN107676512B (zh) * 2017-09-30 2019-08-30 和县科嘉阀门铸造有限公司 一种简易型止回阀
CN108488445B (zh) * 2018-06-26 2023-12-22 盐城市百世达建材有限公司 一种防火止回阀
CN108488445A (zh) * 2018-06-26 2018-09-04 盐城市百世达建材有限公司 一种防火止回阀
KR102201975B1 (ko) * 2019-07-25 2021-01-12 우성밸브 주식회사 충격 완충형 체크밸브
FR3103020A1 (fr) 2019-11-12 2021-05-14 Sogefi Air & Cooling Vanne à clapet coulissant et véhicule automobile le comportant
CN114746359A (zh) * 2019-11-29 2022-07-12 伊莱弗莱克斯希贝股份有限公司 具有防泄漏装置的灌装阀
US11603309B2 (en) 2019-11-29 2023-03-14 Elaflex Hiby Gmbh & Co. Kg Filling valve with leakage protection device
CN114746359B (zh) * 2019-11-29 2023-05-16 伊莱弗莱克斯希贝股份有限公司 具有防泄漏装置的灌装阀
US11999610B2 (en) 2019-11-29 2024-06-04 Elaflex Hiby Gmbh & Co. Kg Filling valve with leakage protection device
CN114636008A (zh) * 2020-12-16 2022-06-17 丹佛斯有限公司 止回阀
EP4015882A1 (en) * 2020-12-16 2022-06-22 Danfoss A/S Check-valve

Also Published As

Publication number Publication date
JPWO2014021124A1 (ja) 2016-07-21
MY180878A (en) 2020-12-11
AU2013297717B2 (en) 2016-10-20
JP5593470B2 (ja) 2014-09-24
SG11201408824UA (en) 2015-02-27
NZ704073A (en) 2016-05-27
AU2013297717A1 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5593470B2 (ja) チェックバルブ
KR102342755B1 (ko) 밸브 장치
US11156304B2 (en) Check valve
CN113518959B (zh) 减压阀
US20100096028A1 (en) Anti-backflow valve
CN111720580B (zh) 流体控制阀
JP5973247B2 (ja) 高圧用逆止め弁とこれを用いた水素ステーション
US6719271B2 (en) Combination face and plug seal
JP2012255471A (ja) 逆止弁
US8794256B2 (en) Self-sealing check valve
JP5939767B2 (ja) 改善されたシール座を有する比例弁
CN111742168B (zh) 可远程操作的卫生转换阀以及所属的卫生结构组件
US20210033208A1 (en) Check valve
JP5295861B2 (ja) 逆止弁
JP6018004B2 (ja) 逆止弁
US10359119B2 (en) High pressure valve
JP5170011B2 (ja) 逆止弁
JP2023077130A (ja) 逆止弁
JP6161356B2 (ja) 減圧弁
KR20170086866A (ko) 감압밸브
JP5643586B2 (ja) 逆止弁
JP6367078B2 (ja) バタフライ弁の止水構造
JP5894746B2 (ja) ガス栓
WO2024024346A1 (ja) 逆止弁
JP6624995B2 (ja) 逆止弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526323

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013297717

Country of ref document: AU

Date of ref document: 20130722

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13826252

Country of ref document: EP

Kind code of ref document: A1