WO2014021099A1 - 液体クロマトグラフ分析装置 - Google Patents

液体クロマトグラフ分析装置 Download PDF

Info

Publication number
WO2014021099A1
WO2014021099A1 PCT/JP2013/069334 JP2013069334W WO2014021099A1 WO 2014021099 A1 WO2014021099 A1 WO 2014021099A1 JP 2013069334 W JP2013069334 W JP 2013069334W WO 2014021099 A1 WO2014021099 A1 WO 2014021099A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow cell
sample
light
liquid chromatograph
optical waveguide
Prior art date
Application number
PCT/JP2013/069334
Other languages
English (en)
French (fr)
Inventor
秀之 秋山
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Publication of WO2014021099A1 publication Critical patent/WO2014021099A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Definitions

  • the present invention relates to a detector for liquid chromatograph and a liquid chromatograph analyzer using the same.
  • the present invention relates to a method and apparatus suitable for measuring the content of trace components with good reproducibility such as impurity evaluation.
  • the liquid chromatograph analyzer includes a liquid feeding part for feeding a mobile phase, a sample injection part for injecting a measurement sample into a flow path, a separation part for separating the measurement sample into each component, and a detection part for detecting each separated component. Consists of. As a detection method in the detection unit, an optical detection method is mainly employed, and among them, a method of measuring the absorbance of a sample is the most common.
  • Securing a sufficient dynamic range is required as the performance required for the detection unit in this apparatus. For example, when trying to determine the content of impurities with respect to the main component of a sample, it is not sufficient to realize a low limit of quantification that can quantify trace components, and at the same time, the limit of quantification on the high concentration side that can quantitate the main component together. Required.
  • Patent Documents 1 and 2 describe a technique in which a plurality of flow cells having flow paths having different optical path lengths are used as detectors.
  • Patent Document 3 describes a technique related to the material and structure of a tube in a flow cell for providing different flow paths in a single flow cell.
  • the dynamic range can be expanded by the ratio of the two optical path lengths compared to the single flow path. It is.
  • Patent Document 1 two detectors generate signals, respectively, and the signals are separately processed and then combined, which further increases the cost.
  • Patent Document 3 it is difficult to independently obtain the absorbance obtained from each of the long and short channels in the technique in which the portions having different optical path lengths are integrated into a single channel. Therefore, the total amount of light combined with the transmitted light from each optical path portion must be detected, and when the sample component has a low concentration, the behavior of the long optical path portion having a large change in absorption becomes dominant over the whole. Conversely, in the high concentration region, the transmittance of the long optical path portion is substantially zero and the behavior of the short optical path portion appears, so that the detection sensitivity (the gradient of the signal with respect to the sample concentration) varies depending on the concentration region of the sample. Therefore, in this case, in order to obtain the linearity of the output value, correction using a sensitivity characteristic curve such as a calibration curve is necessary, and here again, it is necessary to add an artificial operation to the measurement data, resulting in reliability. descend.
  • a sensitivity characteristic curve such as a calibration curve
  • the apparatus includes a flow cell that forms a flow path through which a sample flows, a light source that irradiates light to the sample that flows through the flow cell, and a detection unit that detects light transmitted through the sample.
  • the present invention provides a liquid chromatograph apparatus and a liquid chromatograph detector characterized by having two optical waveguides.
  • the flow cell includes a flow cell that forms a flow path through which the sample flows, a light source that irradiates light to the sample that flows through the flow cell, and a detector that detects light transmitted through the sample.
  • the first optical waveguide formed in such a manner that the light irradiated by the light source is incident on the sample from the side surface direction of the flow cell, and the first optical waveguide is different from the first optical waveguide.
  • a reflection surface formed on the outer surface of the flow cell in the longitudinal direction. The reflection surface transmits light incident on the sample through the second optical waveguide.
  • a liquid chromatograph device and a liquid chromatograph detector characterized by multiple reflection.
  • the dynamic range of the detector can be expanded without impairing the reliability of the measurement data.
  • the dynamic range can be expanded at a low cost.
  • Explanatory drawing of analysis principle in liquid chromatograph analyzer Explanatory diagram of absorbance measurement principle in diode array detector for liquid chromatograph Configuration diagram of a flow cell for liquid chromatography in the first embodiment of the present invention
  • Configuration diagram of a flow cell for liquid chromatography in the first embodiment of the present invention 1 is a configuration diagram of a diode array detector for liquid chromatography in a first embodiment of the present invention.
  • 1 is a configuration diagram of a diode array detector for liquid chromatography in a first embodiment of the present invention.
  • the figure which shows the chromatogram obtained from the diode array detector for liquid chromatographs in this invention The block diagram of the flow cell for liquid chromatographs in the 2nd Example of this invention Configuration diagram of a diode array detector for a liquid chromatograph in the second embodiment of the present invention
  • FIG. 1 is an explanatory diagram of the analysis principle in the liquid chromatograph analyzer.
  • the mobile phase 102 in the container is sent to the separation column 105 by the pump 101.
  • the separation column 105 is kept at a temperature optimum for the separation of the sample by the column thermostat 104.
  • the autosampler 103 is located closer to the pump 101 than the separation column 105.
  • a plurality of samples are set in the autosampler 103 and are automatically introduced into the separation column 105 at regular intervals.
  • each component is separated and developed in the separation column 105 and eluted with a time difference.
  • the light is sequentially sent to the diode array detector 106, the absorbance of each component is measured, taken into the data processing unit 107, calculated, and output as a report.
  • FIG. 2 is an explanatory diagram of the principle of measuring the absorbance of a diode array detector for a liquid chromatograph.
  • the light source light emitted from the light source 201 is condensed by the condenser mirror 202 and introduced into and transmitted through the flow cell 203.
  • the flow cell transmitted light is introduced into the slit 205 by the condenser lens 204, the light dispersed at each wavelength by the dispersion element 206 is detected by the photodiode array detector 207, and the transmitted light amount spectrum at each time point is obtained. This is stored in the data processing unit 208.
  • the transmitted light amount spectrum when the sample is introduced into the flow cell is measured with reference to the transmitted light amount spectrum before introducing the sample components, and the absorbance at each wavelength is calculated from the change in the light amount to obtain the absorbance spectrum.
  • the flow cell is provided in the detector for measuring the absorbance of the sample.
  • This usually has a cylindrical flow path, and light is incident in the longitudinal direction from one end face of the flow path, and the light emitted from the other end face is measured by a photodetector.
  • the absorbance of the sample component accommodated in the flow cell channel can be obtained. Since the absorbance of the sample component is proportional to the component concentration, the peak area of the absorbance chromatogram corresponds to the amount of substance contained in the sample of the component.
  • the factors that define the upper and lower limits of the dynamic range in absorbance detection are the lower limit is the detection limit defined by the baseline noise width determined by the brightness of the optical system and the performance of the photodetector, and the upper limit is due to stray light from the optical system. This is the upper limit that guarantees the linearity of the specified absorbance. Therefore, a detector with a small baseline noise width, low stray light, and a wide range of absorbance linearity is desirable, but at present, it is difficult to greatly improve the baseline noise width and stray light.
  • FIG. 3 is a block diagram of the flow cell for liquid chromatography in the first embodiment of the present invention.
  • the flow cell channel 301 is formed in a rectangular parallelepiped shape with a glass plate, and incident light is incident on the channel from the longitudinal direction and the side surface direction of the flow cell by the optical waveguides 302 and 303, respectively.
  • the flow cell transmitted light is introduced into the spectrometer.
  • optical waveguides 303 and 305 for obtaining transmitted light in the side direction of the flow cell channel are installed at the center in the longitudinal direction of the flow cell channel 301, so that the concentration center of the sample component flows. Since the absorbance is maximized for both the longitudinal optical path and the side optical path when it reaches the center of the path, it is possible to eliminate the time lag of the chromatographic peak as seen in the two-channel series system.
  • FIG. 4-A is a block diagram of a diode array detector for liquid chromatography in the first embodiment of the present invention.
  • the light source light emitted from the light source 401 is simultaneously irradiated onto the incident end faces of the optical waveguides 403 and 404 by the condenser mirror 402, and the light path through which the light passes can be selected by the switching shutter 405.
  • the switching shutter 405 is controlled by a control unit (not shown).
  • the switching shutter 405 When the switching shutter 405 is placed at a position where the optical waveguide 404 is shielded as shown in FIG. 4A, the transmitted light that has passed through the longitudinal direction of the flow cell channel 406 is introduced into the condenser lens 407.
  • the switching shutter 405 when the switching shutter 405 is set to a position where the optical waveguide 403 is shielded as shown in FIG. 4-B, transmitted light that has passed through the side surface direction of the flow cell channel 406 is introduced into the condenser lens 14. If the retention time is measured and specified for each component in the measurement sample in advance, when the main component peak, which is a high concentration component in the sample, appears, the switching shutter 405 is connected to the short optical path length side (the side direction of the flow cell channel 406). In FIG. 4-B), when the impurity peak, which is a low concentration component in the sample, appears, the control unit automatically switches the switching shutter 405 to the long optical path length side of the flow cell channel 406 (FIG. 4-A). Can be programmed.
  • FIG. 5 is a diagram showing a chromatogram obtained from the diode array detector for a liquid chromatograph according to the present invention.
  • the absorbance data obtained from each optical path is linked to the optical path switching position by the data processing unit 413 (usually 10 mm). ) Set to convert to absorbance per unit.
  • the actual dimension of the flow cell is equal to the optical path length, for example, when performance with a longer optical path length ratio is required, a necessary space is required in the longitudinal direction of the flow path. It may become large and practically difficult to incorporate into the device.
  • FIG. 6 is a configuration diagram of a liquid chromatograph flow cell in the second embodiment of the present invention.
  • a pair of reflecting surfaces 608 are provided opposite to the flow cell channel 607, and light is incident on the reflecting surface from the vicinity of the upper end of the flow cell channel. At this time, the incident angle is selected so that the flow cell transmitted light can be extracted from the emission part near the lower end of the flow cell channel 607 by multiple reflection between a pair of reflecting surfaces, thereby extending the actual size of the flow cell channel. It is possible to obtain flow cell transmitted light having a long optical path length.
  • the concentration center of the sample component is the same as in the first embodiment.
  • the absorbance of the two optical paths is maximized, so that the time lag of the chromatographic peak as seen in the two-flow path series system can be eliminated.
  • the reflective surface 608 is preferably configured to realize total reflection with no loss of light amount, but may be configured to use specular reflection when it is difficult to achieve it due to the limitation of the critical angle or the like. This is because the absorbance of the sample component can be obtained by using the transmittance in the absence of the sample as a reference.
  • FIG. 7 is a configuration diagram of a diode array detector for liquid chromatography in the second embodiment of the present invention.
  • the light source light emitted from the light source 701 is simultaneously irradiated onto the incident end faces of the optical waveguides 705 and 706 by the condenser mirror 702, and the optical path through which the light passes through the switching shutter 703. It is possible to switch between the long and short optical paths in the same manner.
  • DESCRIPTION OF SYMBOLS 101 Liquid feed pump, 102 ... Mobile phase, 103 ... Autosampler, 104 ... Column thermostat, 105 ... Separation column, 106 ... Diode array detector, 107, 208, 413, 714 ... Data processing unit, 201, 401, 701 ... Light source, 202, 402, 702 ... Condensing mirror, 203 ... Flow cell, 204, 710 ... Condensing lens, 205, 410, 711, 713 ... slit, 206, 412, 712 ... diffraction grating, 207, 411 ... photodiode array detector, 301, 406, 607, 707 ...

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

 本発明は、液体クロマトグラフ用検出器のダイナミックレンジを拡大することを目的とする。 単独のフローセルにおいて形成される試料の流路に対して、異なる複数の方向から光を入射させたのち、試料透過後のそれぞれの光を検出するように光導波路を形成させる。 測定データに人為的な操作を加える必要がなく、測定データの信頼性を損なわずに検出器のダイナミックレンジを拡大できる。また、装置に別途の部材を搭載する必要がないため、上記ダイナミックレンジの拡大を安価に実現することができる。

Description

液体クロマトグラフ分析装置
本発明は、液体クロマトグラフ用検出器、及びこれを用いた液体クロマトグラフ分析装置に関する。特に不純物評価など微量成分の含有率を再現性良く測定するのに好適な方法、及び装置に関する。
液体クロマトグラフ分析装置は、移動相を送液する送液部、測定試料を流路に注入する試料注入部、測定試料を各成分に分離する分離部および分離された成分ごとに検出する検出部より構成される。検出部における検出方法としては主に光学的検出方法が採用され、中でも試料の吸光度を測定する方法が最も一般的である。
 本装置における検出部に要求される性能として、十分なダイナミックレンジ(試料成分の測定濃度範囲)の確保がある。例えば試料の主成分に対する不純物の含有率を求めようとした場合、微量成分を定量できる低い定量限界を実現するだけでは不十分であり、同時に主成分も定量できるだけの高濃度側の定量限界も併せて要求される。
 上記のようなダイナミックレンジを拡張する方法として、特許文献1及び2には、光路長の異なる流路をもつ複数のフローセルを検出器に用いる技術について説明されている。
 特許文献3には、単一のフローセルにおいて長短の異なる流路を設けるための、フローセル内の管の材質及び構造に関する技術が説明されている。
 これらは長短2つの光路長の流路を用いて先述のダイナミックレンジの上下限両方を同時に改善するものであり、単流路の場合より2つの光路長の比率だけダイナミックレンジを拡大することが可能である。
米国特許第5214593号 米国特許第7847944号 米国特許第6342948号
 上述の特許文献1及び2の技術において、複数の流路を用いる場合、液体クロマトグラフのようなフロー計測系を構築するには、これらの流路を直列ないしは並列に接続する必要がある。
 直列接続の場合は同一の試料成分を検出しても上流側の流路と下流側の流路との間に必ず検出時刻のずれが発生するため、各流路より得られた測定結果を統合する際にこの時間ずれを補正する必要がある。また同時に試料成分が各流路を上流より順次通過するにしたがって試料成分の拡散が発生するため、液体クロマトグラフの場合、同一成分にも関わらず検出ピークの形状、特にピーク幅が下流の流路にいくにつれ広がってしまう。よってピーク形状の補正が必要となり、ダイナミックレンジの拡大のために測定データに多くの人為的な操作を要するため、測定結果に対する信頼性を著しく低下させる。
 一方、並列接続の場合は流路の接続を適切に行うことで上述の直列接続の場合のような問題は軽減される。しかしながら、各流路に分配される試料成分の割合を厳密に規定する必要があるため、スプリッタなどの分配装置を流路に追加しなければならず、単流路の場合に比べ測定系が高価になる。さらに、追加部分における試料成分の拡散等、得られる測定結果の質も低下する。
 また特許文献1においては、2つの検出器がそれぞれ信号を発生させ、その信号は別個に処理されたのちに組み合わされるため、コストがより増加する。
 一方特許文献3に開示されるように、光路長が異なる部分を一体として単流路とした技術においては、長短各流路から得られる吸光度を独立して得ることは困難である。そのため、各光路部分からの透過光を合わせた総光量を検出せざるを得ず、試料成分が低濃度の場合は吸収の変化の大きい長光路部分の振る舞いが全体に対して支配的となる。逆に高濃度領域では長光路部分の透過率が実質ゼロとなり短光路部分の振る舞いが表れてくるため、試料の濃度領域によって検出感度(試料濃度に対する信号の勾配)が変化する。したがってこの場合は出力値の線形性を得るためには検量線のような感度特性曲線を用いた補正が必要であり、ここでも測定データに人為的操作を加える必要が生じ、結果として信頼性が低下する。
 上記目的を達成するための一態様として、試料が流れる流路を形成するフローセルと、前記フローセルを流通する試料に光を照射する光源と、前記試料を透過した光を検出する検出部とを備え、当該光源により照射された光が、前記フローセルの長手方向から前記試料に入射するように形成された第1の光導波路と、前記フローセルの側面方向から前記試料に入射するように形成された第2の光導波路を有することを特徴とする液体クロマトグラフ装置、及び液体クロマトグラフ用検出器を提供する。
 また別の態様として、試料が流れる流路を形成するフローセルと、前記フローセルを流通する試料に光を照射する光源と、前記試料を透過した光を検出する検出器とを備え、前記フローセルの長手方向の中心部に位置し、当該光源により照射される光が、前記フローセルの側面方向から前記試料に入射するように形成された第1の光導波路と、前記第1の光導波路とは異なる位置に形成された第2の光導波路と、前記フローセルの長手方向の外面に形成された反射面とを有し、前記反射面は、前記第2の光導波路を通って前記試料に入射した光を多重反射させることを特徴とする液体クロマトグラフ装置、及び液体クロマトグラフ用検出器を提供する。
 本発明によれば、測定データに人為的な操作を加える必要がなく、測定データの信頼性を損なわずに検出器のダイナミックレンジを拡大できる。
 また、装置に別途の部材を搭載する必要がないため、上記ダイナミックレンジの拡大を安価に実現することができる。
液体クロマトグラフ分析装置における分析原理の説明図 液体クロマトグラフ用ダイオードアレイ検出器における吸光度測定原理の説明図 本発明の1つめの実施例における液体クロマトグラフ用フローセルの構成図 本発明の1つめの実施例における液体クロマトグラフ用ダイオードアレイ検出器の構成図 本発明の1つめの実施例における液体クロマトグラフ用ダイオードアレイ検出器の構成図 本発明における液体クロマトグラフ用ダイオードアレイ検出器から得られるクロマトグラムを示す図 本発明の2つめの実施例における液体クロマトグラフ用フローセルの構成図 本発明の2つめの実施例における液体クロマトグラフ用ダイオードアレイ検出器の構成図
 以下、図面を参照して、液体クロマトグラフ分析装置における検出器のダイナミックレンジを拡大する方法、及び装置について詳細に説明する。
 図1は液体クロマトグラフ分析装置における分析原理の説明図である。まず、ポンプ101により容器中の移動相102が分離カラム105に送られる。分離カラム105はカラム恒温装置104により試料の分離に最適な温度に恒温される。オートサンプラ103は分離カラム105よりもポンプ101側に位置している。オートサンプラ103には複数の試料がセットされ、一定時間ごとに自動的に分離カラム105に導入される。そして、分離カラム105においてそれぞれの成分に分離展開され時間差を伴い溶出される。その後、順次にダイオードアレイ検出器106に送られ、成分ごとの吸光度を測定し、データ処理部107に取込まれ、計算処理されてレポート出力される。
 図2は液体クロマトグラフ用ダイオードアレイ検出器の吸光度測定原理の説明図である。
光源201から放射された光源光を集光ミラー202にて集光してフローセル203に導入・透過させる。フローセル透過光を集光レンズ204にてスリット205に導入し、分散素子206にて各波長に分散された光をフォトダイオードアレイ検出器207にて検知し、各時点における透過光量スペクトルを得て、これをデータ処理部208に格納する。試料成分導入前の透過光量スペクトルを基準として試料がフローセルに導入されたときの透過光量スペクトルを測定し、光量変化から各波長における吸光度を計算し、吸光度スペクトルを得る。
 ここで、フローセルは試料の吸光度を測定するために検出器に備えられる。これは通常円筒形の流路を有し、この流路の一端面より長手方向に光を入射し、他端面より出射された光を光検出器にて測定する構成となっている。
 入射光量と出射光量の比の対数を計算することにより、フローセル流路内に収容された試料成分の吸光度を求めることができる。試料成分の吸光度は成分濃度に比例するため、吸光度のクロマトグラムのピーク面積が当該成分の試料中に含まれる物質量に相当する。
 吸光度検出においてダイナミックレンジの上下限を規定する要因としては、下限は光学系の明るさと光検出器の性能にて決まるベースラインノイズ幅によって規定される検出限界であり、上限は光学系の迷光によって規定される吸光度の直線性が担保される上限である。よって、ベースラインノイズ幅が小さく、低迷光で吸光度直線性の範囲が広い検出器が望ましいが、現状ではベースラインノイズ幅及び迷光を大きく改善することは困難である。
 ただし、フローセルの光路長を変更することによってダイナミックレンジの上限あるいは下限のうちの一方を改善することは可能である。吸光度はBeerの法則により試料濃度とセル光路長の積に比例するため、光路長を延長することにより相対的に濃度を増やすことで、光路長の延長倍率に反比例して検出限界を低くすることができる。
また、逆に光路長を縮小することにより、迷光により規定された吸光度の直線性の上限に到達する試料濃度を増大させることも可能である。
しかしながら、フローセルの光路長を変更することによるこれらの効果は上下限の一方を改善すれば当然他方は同じ倍率で悪化するため、結局ダイナミックレンジを拡大することにはならない。
一方、上述の通り、特許文献1~3のように光路長の異なる複数の流路をもつ多流路フローセルを用いる場合には、測定結果に対する信頼性の低下やコスト増加等の問題が存在する。
 図3は、本発明の1つめの実施例における液体クロマトグラフ用フローセルの構成図である。フローセル流路301はガラス板にて直方体状に構成されており、光導波路302、303によってそれぞれフローセルの長手方向および側面方向から流路に入射光を入射し、光導波路304、305によってそれぞれの方向のフローセル透過光を分光器に導入する。
この際、図3に示すようにフローセル流路側面方向の透過光を得るための光導波路303および305をフローセル流路301の長手方向の中央部に設置することにより、試料成分の濃度中心が流路の中央に来た時に長手光路および側面光路ともに吸光度が最大となるため、2流路直列系で見られるようなクロマトピークの時間ずれを無くすことができる。
 図4-Aは、本発明の1つめの実施例における液体クロマトグラフ用ダイオードアレイ検出器の構成図である。光源401から放射された光源光を集光ミラー402にて光導波路403と404の入射端面に同時に照射するようにしておき、切替シャッター405にて光が通る光路を選択できるようにしておく。切替シャッター405は、図示しない制御部によって制御される。
 切替シャッター405を図4-Aに示すように光導波路404を遮光する位置にした場合、フローセル流路406の長手方向を通過した透過光が集光レンズ407に導入される。
 また、切替シャッター405を図4-Bに示すように光導波路403を遮光する位置にした場合、フローセル流路406の側面方向を通過した透過光が集光レンズ14に導入される。予め測定試料中の各成分について保持時間を測定・特定しておけば、試料中の高濃度成分である主成分ピーク出現時には切替シャッター405をフローセル流路406の側面方向である短光路長側(図4-B)に、試料中の低濃度成分である不純物ピーク出現時は切替シャッター405をフローセル流路406の長光路長側(図4-A)に自動的に切り替えるように制御部にてプログラムすることができる。
 図5は、本発明における液体クロマトグラフ用ダイオードアレイ検出器から得られるクロマトグラムを示す図である。図4を用いて上述した切替シャッター405の切り替えをプログラムする際に、それぞれの光路から得られた吸光度データをデータ処理部413にて光路の切替位置に連動して単位光路長(通常は10 mm)当たりの吸光度に換算するよう設定する。各区間の時間ごとに得られたクロマトグラムを組み合わせることで、その試料の各成分の含有率を正しく反映した吸光度クロマトグラムを得ることができる。
 実施例1にて説明した構成では、フローセルの実寸法は光路長と等しくなるため、例えば光路長の長短比がより大きい性能が要求される場合には、流路の長手方向に必要なスペースが大きくなり、装置に組み込むことが実際上困難となる場合がある。
 そこで次に、本発明の別の実施形態について説明する。液体クロマトグラフ分析装置の分析原理および液体クロマトグラフ用ダイオードアレイ検出器の吸光度測定原理は図1、及び図2に示した通りである。
 図6は、本発明の2つめの実施例における液体クロマトグラフ用フローセルの構成図である。フローセル流路607に相対する1組の反射面608を設け、フローセル流路の上端部付近から反射面に対し入射角を持って光を入射する。このとき、1組の反射面間を多重反射してフローセル流路607の下端部付近の出射部からフローセル透過光を取り出せるよう入射角を選択することで、フローセル流路の実寸法より大きく延長された光路長のフローセル透過光を得ることができる。
この際にフローセル流路607の実寸法に相当した光路長を得るための光路の位置をこの流路の中央部に設置しておけば、実施例1の場合と同様に試料成分の濃度中心が流路の中央に来た時に2つの光路ともに吸光度が最大となるため、2流路直列系で見られるようなクロマトピークの時間ずれを無くすことができる。
 反射面608は光量のロスが無い全反射を実現する構成とすることが望ましいが、臨界角の制限等で実現が困難な場合は、鏡面反射を用いる構成とすることもできる。試料が無い状態での透過率を基準とすることにより試料成分の吸光度を求めることが可能だからである。
 図7は、本発明の2つめの実施例における液体クロマトグラフ用ダイオードアレイ検出器の構成図である。
 実施例1の場合と同様に、光源701から放射された光源光を集光ミラー702にて光導波路705と706の入射端面に同時に照射するようにしておき、切替シャッター703にて光が通る光路を選択できるようにしておけば、同様に長短2つの光路を切り替えることが可能である。
 このような構成をとることにより、長短2つの光路長を得るために必要なフローセルの寸法に自由度を持たせることができ、より省スペース化を図ることができる。
101・・・送液ポンプ、102・・・移動相、103・・・オートサンプラ、104・・・カラム恒温装置、105・・・分離カラム、106・・・ダイオードアレイ検出器、107、208、413、714・・・データ処理部、201、401、701・・・光源、202、402,702・・・集光ミラー、203・・・フローセル、204、710・・・集光レンズ、205、410、711、713・・・スリット、206、412、712・・・回折格子、207、411・・・フォトダイオードアレイ検出器、301、406、607、707・・・フローセル流路、302、303、304、305、403、404、408、409、601、602、603、604、705、706、708、709・・・光導波路、306、605・・・インレット流路、307、606・・・アウトレット流路、405、703・・・切替シャッター、414、704・・・切替シャッター駆動部、608・・・反射面

Claims (9)

  1.  試料が流れる流路を形成するフローセルと、
     前記フローセルを流通する試料に光を照射する光源と、
     前記試料を透過した光を検出する検出部と、を備えた液体クロマトグラフ装置において、
     当該光源により照射された光が、前記フローセルの長手方向から前記試料に入射するように形成された第1の光導波路と、前記フローセルの側面方向から前記試料に入射するように形成された第2の光導波路を有することを特徴とする液体クロマトグラフ装置。
  2.  請求項1に記載された液体クロマトグラフ装置において、
     前記第2の光導波路は、
     当該フローセルの側面方向から照射される光が、
     前記フローセルの長手方向の中心部に照射されるように形成されることを特徴とする液体クロマトグラフ装置。
  3.  請求項1に記載された液体クロマトグラフ装置において、
     前記光源により照射された光を、当該形成された第1の光導波路または第2の光導波路のうちいずれか一方を選択的に通過させる切替手段を有することを特徴とする液体クロマトグラフ装置。
  4.  請求項3に記載された液体クロマトグラフ装置において、
     前記光路切替手段を制御する制御装置を有し、
     前記制御装置は、
     前記試料中の高濃度成分が前記フローセルを流通するときには前記第2の光導波路を通過した光が前記試料に入射するように当該制御を行い、
     前記試料中の低濃度成分が前記フローセルを流通するときには前記第1の光導波路を通過した光が前記試料に入射するように当該制御を行うことを特徴とする液体クロマトグラフ装置。
  5.  試料が流れる流路を形成するフローセルと、
     前記フローセルを流通する試料に光を照射する光源と、
     前記試料を透過した光を検出する検出部と、を備えた液体クロマトグラフ用検出器において、
     当該光源により照射された光が、前記フローセルの長手方向及び前記フローセルの側面方向から前記試料に入射するように形成された光導波路を有することを特徴とする液体クロマトグラフ用検出器。
  6.  試料が流れる流路を形成するフローセルと、
     前記フローセルを流通する試料に光を照射する光源と、
     前記試料を透過した光を検出する検出部と、を備えた液体クロマトグラフ装置において、
     前記フローセルの長手方向の中心部に位置し、当該光源により照射される光が、前記フローセルの側面方向から前記試料に入射するように形成された第1の光導波路と、前記第1の光導波路とは異なる位置に形成された第2の光導波路と、
     前記フローセルの長手方向の外面に形成された反射面と、を有し、
     前記反射面は、前記第2の光導波路を経由して前記試料に入射した光を多重反射させることを特徴とする液体クロマトグラフ装置。
  7.  請求項6に記載された液体クロマトグラフ装置において、
     前記光源により照射された光を、当該形成された光導波路のうちいずれか一方を選択的に通過させる切替手段を有することを特徴とする液体クロマトグラフ装置。
  8.  請求項7に記載された液体クロマトグラフ装置において、
     前記光路切替手段を制御する制御装置を有し、
     前記制御装置は、
     前記試料中の高濃度成分が前記フローセルを流通するときには前記フローセルの側面方向から前記光が前記試料に入射するように前記光路切替手段を制御し、
     前記試料中の低濃度成分が前記フローセルを流通するときには前記フローセルの長手方向から前記光が前記試料に入射するように前記光路切替手段を制御することを特徴とする液体クロマトグラフ装置。
  9.  試料が流れる流路を形成するフローセルと、
     前記フローセルを流通する試料に光を照射する光源と、
     前記試料を透過した光を検出する検出部と、を備えた液体クロマトグラフ用検出器において、
     前記フローセルの長手方向の中心部に位置し、当該光源により照射される光が、前記フローセルの側面方向から前記試料に入射するように形成された第1の光導波路と、前記第1の光導波路とは異なる位置に形成された第2の光導波路と、
     前記フローセルの長手方向の外面に形成された反射面と、を有し、
     前記反射面は、前記第2の光導波路を通って前記試料に入射した光を多重反射させることを特徴とする液体クロマトグラフ用検出器。
PCT/JP2013/069334 2012-08-03 2013-07-17 液体クロマトグラフ分析装置 WO2014021099A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012172480A JP2014032098A (ja) 2012-08-03 2012-08-03 液体クロマトグラフ分析装置
JP2012-172480 2012-08-03

Publications (1)

Publication Number Publication Date
WO2014021099A1 true WO2014021099A1 (ja) 2014-02-06

Family

ID=50027781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069334 WO2014021099A1 (ja) 2012-08-03 2013-07-17 液体クロマトグラフ分析装置

Country Status (2)

Country Link
JP (1) JP2014032098A (ja)
WO (1) WO2014021099A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021515239A (ja) * 2017-12-23 2021-06-17 ルマサイト リミティド ライアビリティ カンパニー マイクロ流体チップ構成および動力学を用いた光力測定および細胞画像化のためのマイクロ流体チップデバイス
US11913870B2 (en) 2017-12-23 2024-02-27 Lumacyte, Inc. Microfluidic chip device for optical force measurements and cell imaging using microfluidic chip configuration and dynamics

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6503658B2 (ja) * 2014-08-08 2019-04-24 国立大学法人九州大学 光分析システム、センサ装置及び光分析方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501773A (ja) * 1988-10-03 1991-04-18 ワイアット テクノロジー コーポレイション 示差屈折計
US5214593A (en) * 1990-11-07 1993-05-25 Rainin Instrument Co., Inc. Method and apparatus for extending the linear dynamic range of absorbance detectors including multi-lightpath flow cells
JPH05240774A (ja) * 1992-03-02 1993-09-17 Hitachi Ltd 光学セル及び光学検出装置とこれを用いる試料分離検出装置
JP2002530667A (ja) * 1998-11-20 2002-09-17 ウォーターズ・インヴェストメンツ・リミテッド 光の吸収度検出用の二重パス長さ装置
JP2003014720A (ja) * 2001-07-04 2003-01-15 Shimadzu Corp 高速液体クロマトグラフ用検出器
JP2004340636A (ja) * 2003-05-13 2004-12-02 Gl Sciences Inc キャピラリーチューブフローセル
JP2011075352A (ja) * 2009-09-30 2011-04-14 Hitachi High-Technologies Corp フローセル,検出器、および液体クロマトグラフ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501773A (ja) * 1988-10-03 1991-04-18 ワイアット テクノロジー コーポレイション 示差屈折計
US5214593A (en) * 1990-11-07 1993-05-25 Rainin Instrument Co., Inc. Method and apparatus for extending the linear dynamic range of absorbance detectors including multi-lightpath flow cells
JPH05240774A (ja) * 1992-03-02 1993-09-17 Hitachi Ltd 光学セル及び光学検出装置とこれを用いる試料分離検出装置
JP2002530667A (ja) * 1998-11-20 2002-09-17 ウォーターズ・インヴェストメンツ・リミテッド 光の吸収度検出用の二重パス長さ装置
JP2003014720A (ja) * 2001-07-04 2003-01-15 Shimadzu Corp 高速液体クロマトグラフ用検出器
JP2004340636A (ja) * 2003-05-13 2004-12-02 Gl Sciences Inc キャピラリーチューブフローセル
JP2011075352A (ja) * 2009-09-30 2011-04-14 Hitachi High-Technologies Corp フローセル,検出器、および液体クロマトグラフ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021515239A (ja) * 2017-12-23 2021-06-17 ルマサイト リミティド ライアビリティ カンパニー マイクロ流体チップ構成および動力学を用いた光力測定および細胞画像化のためのマイクロ流体チップデバイス
JP7390305B2 (ja) 2017-12-23 2023-12-01 ルマサイト, インコーポレイティド マイクロ流体チップ構成および動力学を用いた光力測定および細胞画像化のためのマイクロ流体チップデバイス
US11913870B2 (en) 2017-12-23 2024-02-27 Lumacyte, Inc. Microfluidic chip device for optical force measurements and cell imaging using microfluidic chip configuration and dynamics

Also Published As

Publication number Publication date
JP2014032098A (ja) 2014-02-20

Similar Documents

Publication Publication Date Title
US7847944B2 (en) Multi-path flow cell correction
US8649005B2 (en) Optical flow cell detector
EP1564541B1 (en) Dual pathlength system for light absorbance detection
US6406633B1 (en) Fraction collection delay calibration for liquid chromatography
US20150260695A1 (en) Process and system for rapid sample analysis
US6767467B2 (en) Fraction collection delay calibration for liquid chromatography
US4006990A (en) Convergent light illuminated flow cell for liquid chromatography
US20120069340A1 (en) Flow cell exploiting radiation within cell wall
JP5448224B1 (ja) クロマトグラフィーシステム、信号処理装置、クロマトグラフィー・データ処理端末およびプログラム
WO2014021099A1 (ja) 液体クロマトグラフ分析装置
JP2002296178A (ja) フローセル検出器
US20140095082A1 (en) Expanded linear range by use of two flow cell detectors with long and short path
JP2007093492A (ja) 示差屈折率検出器及びその調整方法
US3975104A (en) Convergent light illuminated flow cell for liquid chromatography
CN112005097A (zh) 吸光度检测器及液相色谱仪
JPH04355366A (ja) 成分純度検定方法
JP6477891B2 (ja) 液体クロマトグラフ用検出器
WO2018193666A1 (ja) フローセル及びそのフローセルを備えた検出器
JP3675057B2 (ja) 吸光度検出器
WO2018003045A1 (ja) アパーチャ機能を有するビームスプリッタ及びそのビームスプリッタを備えた検出器
JP2935287B2 (ja) 示差屈折率分光スペクトル測定装置
JP7147952B2 (ja) クロマトグラフ用検出器
Manka et al. Boosting Trace Detection Performance with the Vanquish Diode Array Detector and High-Sensitivity LightPipe Flow Cell
Ren et al. A microchip based Z-cell absorbance detector integrating micro-lenses and slits for portable liquid chromatography
JP2003014720A (ja) 高速液体クロマトグラフ用検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825841

Country of ref document: EP

Kind code of ref document: A1