WO2014019438A1 - 直线电机及平台装置 - Google Patents

直线电机及平台装置 Download PDF

Info

Publication number
WO2014019438A1
WO2014019438A1 PCT/CN2013/078671 CN2013078671W WO2014019438A1 WO 2014019438 A1 WO2014019438 A1 WO 2014019438A1 CN 2013078671 W CN2013078671 W CN 2013078671W WO 2014019438 A1 WO2014019438 A1 WO 2014019438A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
type
prism
array
coil
Prior art date
Application number
PCT/CN2013/078671
Other languages
English (en)
French (fr)
Inventor
吴立伟
陈庆生
严兰舟
Original Assignee
上海微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210270584.5A external-priority patent/CN103580444B/zh
Priority claimed from CN201210525941.8A external-priority patent/CN103872876A/zh
Application filed by 上海微电子装备有限公司 filed Critical 上海微电子装备有限公司
Priority to US14/408,130 priority Critical patent/US9755493B2/en
Priority to SG11201407672XA priority patent/SG11201407672XA/en
Priority to EP13826225.8A priority patent/EP2882082A4/en
Publication of WO2014019438A1 publication Critical patent/WO2014019438A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Definitions

  • the present invention relates to the field of lithography, and more particularly to a linear motor and a platform device. Background technique
  • the workpiece table or the masking table In order to improve the uniformity of the line width, the workpiece table or the masking table must improve the horizontal positioning precision positioning; in order to improve the accuracy of the depth of focus error, the workpiece table or the masking table must improve the vertical precision positioning capability; Accuracy, the workpiece table or the mask table must increase its internal modality to improve dynamic positioning characteristics.
  • the lithographic apparatus must increase the yield, so the table must be moved at high speed, quickly starting and stopping.
  • the high-speed, high-acceleration and high-precision positioning capabilities of lithographic equipment are contradictory. Increasing the scanning speed requires a more powerful motor, achieving large strokes and high-speed motion, and having multiple degrees of freedom for lithographic exposure and quasi.
  • the lithographic apparatus is roughly classified into two types, one is a step lithography apparatus, and the mask pattern is imaged at one exposure area of the wafer, and then the wafer is moved relative to the mask to move the next exposure area to the mask pattern. Below the projection objective, the mask pattern is again exposed to another exposed area of the wafer, and the process is repeated until all of the exposed areas on the wafer have an image of the mask pattern.
  • the other type is a step-and-scan lithography apparatus.
  • the mask pattern is not one-time exposure imaging, but is scanned by scanning movement of the projection light field. During the mask pattern imaging process, the mask and the wafer are simultaneously opposed to the projection system and the projection beam. mobile.
  • the carrier loaded with the reticle/silicon wafer produces precise mutual motion to satisfy the lithography needs.
  • the carrier loaded with the reticle is referred to as a platen
  • the carrier loaded with the wafer is referred to as a carrier.
  • FIG. 1 shows the prior art using a conventional NS magnet array and a single layer coil. Schematic diagram of the line motor structure.
  • a linear motor for a lithography workpiece stage or mask table having high driving force, high efficiency, and low ripple force, including two parallel first and second tracks is disclosed in US Pat. No. 2,040, 246, 458 A1.
  • an armature comprising three open loop coil units disposed between the first track and the second track, the first track, the second track and the coil unit being movable respectively, and two opposite tracks and open loops There is no iron core between the coils.
  • This structure can reduce the volume of the motor and increase the force without generating extra heat. Through more efficient electromagnetic materials and higher electromagnetic force, the efficiency of the motor can be increased, the use of the shaft can be reduced, and the quality of the movement can be reduced, which is particularly suitable for use in a vacuum environment.
  • the workpiece table of the lithography machine In order to improve the uniformity of line width, the workpiece table of the lithography machine must improve the horizontal positioning precision positioning; in order to improve the accuracy of the depth of focus error, the workpiece table must improve the vertical precision positioning ability; in order to improve the precision of the lithography machine, the workpiece table must Improve its internal modality to improve dynamic positioning.
  • the lithographic apparatus In addition, the lithographic apparatus must increase the yield, so the table must be moved at high speed, quickly starting and stopping. The high-speed, high-acceleration and high-precision positioning capabilities of lithography equipment are contradictory.
  • the current workpiece table technology uses a coarse and micro-motion structure to achieve high speed and high speed.
  • the coarse motion structure is mainly composed of a linear motor, which can realize large stroke and high speed motion.
  • the micro-motion stage is stacked on the coarse motion stage to dynamically compensate for the positioning deviation.
  • the micro-motion stage realizes nano-precision and has multi-degree of freedom motion for lithographic exposure and alignment.
  • this structure uses air-floating bearing structure drive design technology, which cannot achieve multi-degree of freedom motion and execution.
  • the integrated coupling design of the device leads to an increase in the mass of the motion structure of the system.
  • the residual vibration applied to the system by the driving reaction force also increases, thus affecting the dynamic performance of the system.
  • the additional tilting torque is increased.
  • the air-floating static stiffness of the workpiece table is constrained by a high-rigidity design, and the design requirements for guiding flatness, preload deformation, and air-floating process parameters are very high.
  • the workpiece table system has a complicated structure, large size, low reliability, and difficult maintenance and maintenance.
  • the linear motor can directly drive the load to make linear motion without any mechanical conversion device, and there is no error caused by factors such as deformation and backlash of the conversion device, and the inertia of the system is relatively small.
  • the Halbach array is a new type of permanent magnet arrangement in which the permanent magnets of different magnetization directions are arranged in a certain order, so that the magnetic field on one side of the array is significantly enhanced while the other side is significantly weakened, and it is easy to obtain an ideal space. A sinusoidally distributed magnetic field.
  • a linear motor for a lithography workpiece stage or mask table is disclosed in US Patent No. 20040246458, which has a high driving force, high efficiency and low ripple force, including two parallel counterparts. a first track and a second track, and an armature, the armature comprising three open loop coil units disposed between the first track and the second track, the first track, the second track and the coil unit being movable respectively, There is no iron core between the opposite track and the open loop coil.
  • This structure can reduce the body of the motor. Accumulate, and increase the force without generating extra heat. Through more effective electromagnetic materials and higher electromagnetic force, the efficiency of the motor can be increased, the use of the bearing can be reduced, and the quality of the movement can be reduced, which is particularly suitable for use in a vacuum environment.
  • the technical problem to be solved by the present invention is how to reduce the magnetic leakage and provide more thrust, so that the linear motor generates the required three-degree-of-freedom control force or control torque, and the technical problem to be further solved by the present invention is to provide a magnetic line of force. It is a continuous linear motor to increase the vertical magnetic flux and horizontal magnetic flux in the magnet array.
  • a first aspect of the invention provides a linear motor comprising a magnet unit and a coil unit, the magnet unit comprising two sets of relatively parallel magnet arrays on the yoke: a first magnet array and a second magnet array; the coil unit is disposed at a magnetic gap between the two sets of magnet arrays, in a space rectangular coordinate system composed of an X-axis, a Y-axis, and a Z-axis; the coil unit includes a stack in a Z-direction a first coil array and a second coil array, the first coil array and the second coil array being staggered along a Y direction by a distance ⁇ ⁇ , ⁇ ⁇ satisfying: when a control system supplies a current to the coil unit The coil unit is capable of generating a control force along the Y direction, a control force along the Z direction, and a moment about the X direction.
  • the first coil array and the second coil array each have more than two identical numbers of coils, each coil has a coil pitch of CP, and the first coil array is along the X direction and the The second coil array is staggered by a distance ⁇ ⁇ of 1/4 CP.
  • the first magnet array and the second magnet array are both a first type magnet and a second type
  • the magnet and the third type of magnet between them are periodically alternately distributed along the Y direction according to the Halbach array pattern, and the first type of magnet and the second type of magnet are alternately distributed along the Y direction
  • the third type of magnet is a prismatic magnet or three prismatic magnets, when the third type of magnet is a prismatic magnet, the abutting faces between adjacent different types of magnets are beveled surfaces, and when the third type of magnet includes three prismatic magnets When the adjacent faces of the different prism magnets are inclined, the corresponding first type magnet, the second type magnet and the third type magnet in the symmetrical magnet array form a closed magnetic circuit.
  • the first type of magnets and the second type of magnets are each a rectangular parallelepiped, and the magnetization directions of the first type of magnets and the second type of magnets are parallel and opposite to the Z direction; a prismatic magnet, a second prism magnet, and a third prism magnet, wherein the first prism magnet, the second prism magnet, and the third prism magnet are combined to form a whole body with the first type magnet and the second type magnet a high cuboid, the first prism magnet, the second prism magnet, and the third prism magnet are triangular prisms and/or quadrangular prisms; a magnetization direction of the first prism magnet passes through an abutting surface thereof with the second prism magnet After the second prism magnet is inserted into the third prism magnet through the abutting surface of the second prism magnet and the third prism magnet; or the magnetization direction of the third prism magnet passes through the abutting surface of the second prism magnet After the second prism magnet is connected to the first prismatic magnet
  • the first prism magnet, the second prism magnet, and the third prism magnet have a right triangle, an isosceles triangle, and a right triangle in a plane of the YZ plane; or the first prism magnet and the second prism magnet
  • the sections of the third prism magnet located in the YZ plane are a right-angled trapezoid, an isosceles triangle, and a right-angled trapezoid.
  • the length and width of the first type magnet and the second type magnet are the same, and the heights of the first type magnet, the second type magnet and the third type magnet are equal.
  • the first prism magnet, the second prism magnet, and the third prism magnet are located in the YZ plane.
  • the cross sections are a right triangle, an isosceles trapezoid and a right triangle.
  • the first prism magnet and the third prism magnet have a right-angled trapezoidal shape with a common side in a plane of the YZ plane.
  • the angle between the abutting surface and the Z axis is determined according to the size and shape of the first prism magnet, the second prism magnet, and the third prism magnet.
  • the third type magnet is a prism magnet
  • the first type magnet, the second type magnet, and the third type magnet are in an isosceles trapezoid in a cross section of the YZ plane, and the first type magnet and the first type
  • the magnetization direction of the two types of magnets is parallel and opposite to the Z direction.
  • the magnetization direction of the third type of magnet is parallel to the Y direction and points to the first type of magnet or the third type of magnet, thereby making the corresponding first type in the symmetrical magnet array.
  • the magnet, the second type of magnet and the third type of magnet together form a closed magnetic circuit.
  • the cross section along the YZ plane of the first type magnet, the second type magnet, and the third type magnet is an isosceles trapezoid having the same waist length, the same bottom angle, and the same height.
  • a second aspect of the present invention provides a platform apparatus including a platen table and two bases on opposite sides of the platen table, the platen table providing a Y-direction drive by a motor above the two bases Force and Z-direction levitation force, the motor is a linear motor as described above.
  • At least one of the two bases is provided with a guiding device for providing ⁇ -direction guidance for the movement of the platen, the guiding device comprising an air floating pad connecting the platen table and being fixed at the The air floating rail on the base is disposed on a side of the air floating rail adjacent to the platen.
  • the air floating mat is a flexible block.
  • the coil unit includes a first coil array and a second coil array which are stacked in the Z direction, and the first coil array and the second coil array are staggered along the Y direction A certain distance ⁇ ⁇ , ⁇ ⁇ satisfies: when the control system applies a required current to the coil unit, the coil unit can generate a control force along the Y direction, a control force along the Z direction, and a direction around the X direction.
  • the platform device constructed by the linear motor constructed as described above does not require a vertical air floating mechanism, and can provide a horizontal axial driving force and a vertical floating force only by a linear motor, and has a simple structure and convenient operation.
  • the first magnet array and the second magnet array are both separated by a first type magnet, a second type magnet, and a third type magnet between them.
  • the first type of magnet and the second type of magnet are alternately distributed along the Y direction
  • the third type of magnet is a prismatic magnet or includes three prismatic magnets, when the When the three types of magnets are a prismatic magnet, the abutting faces between adjacent different types of magnets are inclined faces.
  • the abutting faces between adjacent different prismatic magnets are The inclined surface, the corresponding first type magnet, the second type magnet and the third type magnet in the symmetrical magnet array together form a closed magnetic circuit.
  • the first magnet array and the second magnet array in the magnet unit are periodically alternately distributed according to the Halbach array pattern, and the formed Halbach magnet topography array relatively increases the vertical magnetic flux compared to the existing equal-energy product NS array.
  • the horizontal magnetic density and the horizontal thrust are enhanced, and the horizontal magnetic flux is relatively increased, correspondingly increasing the vertical magnetic density and the vertical thrust, thereby generating a larger six-degree-of-freedom thrust.
  • the Halbach magnet array constructed with prismatic magnets such as triangular prism magnets and/or quadrangular prism magnets has smaller magnetic leakage than the existing magnet array, more uniform magnetic-dense spatial distribution, and higher harmonics of planar magnetic density.
  • the amplitude of the wave is smaller and the quality of the magnet array is lighter.
  • FIG. 1 is a schematic view showing the structure of a linear motor using a conventional NS magnet array and a single layer coil in the prior art.
  • Fig. 2 is a schematic view showing the structure of a linear motor according to a first embodiment of the present invention.
  • Figure 3 is a layout view of a double-layer interlaced coil unit in the first embodiment of the present invention.
  • Fig. 4 is a view showing the magnetic density distribution of a magnet unit composed of the conventional NS magnet array of Fig. 1.
  • Fig. 5 is a view showing the magnetic density distribution of the magnet unit according to the first embodiment of the present invention.
  • Fig. 6 is a comparison diagram of the magnitude of the Y-direction output of the linear motor shown in Figs. 1 and 2.
  • Fig. 7 is a view showing the comparison of the Z-direction output forces of the single-layer coil and the double-layer coil in the magnet unit arrangement mode according to the first embodiment of the present invention.
  • Fig. 8 is a schematic view showing the three-dimensional structure of a magnet array in the prior art.
  • Figure 9 is a magnetic flux distribution diagram of the center line of the magnet array of Figure 8.
  • Figure 10 is a schematic view showing the magnitude of the coil output in Figure 8.
  • Figure 11 is a three-dimensional structural view of the magnet array of Figure 2.
  • Figure 12 is a diagram showing the magnetic flux distribution of the center line of the magnet array in the first embodiment of the present invention.
  • Fig. 13 is a view showing the magnitude of the output of the coil in the first embodiment of the present invention.
  • Figure 14 is a schematic view showing the structure of a linear motor according to a second embodiment of the present invention.
  • Figure 15 is a schematic view showing the structure of a linear motor according to a third embodiment of the present invention.
  • Figure 16 is a schematic view showing the structure of a linear motor according to a fourth embodiment of the present invention.
  • Figure 17 is a front elevational view of a platform apparatus to which the linear motor structure of the present invention is applied.
  • Figure 18 is a plan view of Figure 17 (where the linear motor only gives the coil unit and the second magnet array in the lower layer). detailed description
  • a linear motor includes a magnet unit 2 and a coil unit 1, a magnet holder 3, that is, a yoke, and a control system (not shown).
  • the magnet holder 3 is laterally oriented.
  • the XZ plane is U-shaped for supporting the magnet unit 2;
  • the magnet unit 2 comprises two sets of symmetrical symmetrical magnet arrays on the yoke: the first magnet array 21 and the second
  • the magnet array 22, that is, the magnet unit 2 includes a first magnet array 21 and a second magnet array 22 respectively located on two parallel inner walls of the magnet holder 3;
  • the coil unit 1 is disposed in two sets of magnet arrays
  • the control system is for supplying current to the coil unit 1, the first magnet array 21 and the second magnet array 22 are periodically alternately distributed along the Y direction in the Halbach array mode, please refer to FIG.
  • the coil unit 1 includes a first coil array 11 and a second coil array 12 which are stacked in the Z direction.
  • the first coil array 11 and The second coil array 12 is staggered along the Y direction by a distance ⁇ ⁇ , ⁇ ⁇ satisfying: when the control system supplies the coil unit 1 with a required current, the coil unit 1 can generate control along the Y direction Force, control force along the Z direction and a moment around the X direction.
  • the double coil composed of the first coil array 21 and the second coil array 22 can generate a required levitation force in the vertical direction (Z direction in this embodiment); on the other hand, the double layer coil is layered and interleaved
  • the arrangement structure can eliminate the ripple force caused by the tilt interference, provide the required control torque, eliminate the torque, and achieve precise positioning; on the other hand, the first magnet array 21 and the second magnet array 22 in the magnet unit 2 follow the Halbach array mode.
  • the formed Halbach magnet topography array relatively increases the vertical magnetic flux compared to the existing NS array of equal magnetic energy products, thereby being able to generate a larger horizontal thrust.
  • the first coil array 11 and the second coil array 12 each have more than two identical numbers of coils, and the coil pitch of each coil is CP (the coil pitch CP is the width of a single coil in the Y direction).
  • the distance ⁇ P of the first coil array 11 offset from the second coil array 12 along the X direction is 1/8 1/3 1/3 CP.
  • the staggered distance ⁇ ⁇ is preferably 1/4 CP, because the magnet array in this embodiment is a whatsoeverach linear array, and the magnetic field distribution is characterized by a phase difference between the horizontal sinusoidal magnetic field and the vertical sinusoidal magnetic field.
  • the phase that is, 1/4 cycle, shifts the double-layer coil by 1/4CP, which corresponds to the phase of the magnetic field force in these two directions.
  • other coil pitch designs can also be used.
  • Fig. 4 is a magnetic-tightness distribution diagram of a magnet unit composed of a conventional NS magnet array
  • Fig. 5 is a magnetic-tightness distribution diagram of a magnet unit according to Embodiment 1 of the present invention.
  • the conventional NS magnet array has a magnetic density B distribution amplitude of at most 1.0501 tesla (Tesla), and the Halbach array in the first embodiment of the present invention (ie, periodically alternately distributes the first magnet array according to the Halbach array mode).
  • the magnet unit B composed of the second magnet array 22 has a magnetic flux B distribution amplitude of at most 1.8363 tesla, and the magnetic density amplitude is significantly improved.
  • the magnetic density distribution can be made closer to the sinusoid by changing the arrangement size of the magnet array.
  • Fig. 6 is a comparison diagram of the Y-direction output force of the linear motor structure coil shown in Figs. 1 and 2
  • Fig. 7 is a comparison diagram of the Z-direction output force of the single-layer coil and the double-layer coil in the magnet unit arrangement mode according to the first embodiment of the present invention.
  • the magnitude of the output force of the conventional NS magnet array coil is -42.05 ⁇ 44.17N
  • the magnitude of the output of the Halbach magnet array coil shown in the embodiment 1 is -72.54 ⁇ 74.33N.
  • the Halbach array of Embodiment 1 of the present invention has significant advantages in terms of coil output amplitude. As can be seen from FIG.
  • the single-layer coil output peak value is 4.973N, and the double-layer coil output peak value is 27.45N. It can be seen that the coil output force amplitude in the first embodiment of the present invention is higher than that of the prior art single-layer coil. Z direction has obvious advantages.
  • the first magnet array 21 and the second magnet array 22 are both a first type magnet 201, a second type magnet 202, and a third type magnet 203 located therebetween.
  • the first type magnet 201 and the second type magnet 202 are alternately distributed along the Y direction at equal intervals along the Y direction according to the Halbach array pattern.
  • the third type magnet 203 is a prism magnet or includes three pieces.
  • the third type magnet 203 when the third type magnet 203 is a prism magnet, the abutting faces between adjacent different types of magnets are inclined faces, and when the third type magnet 203 includes three prism magnets, adjacent The abutting faces between the different prism magnets are beveled surfaces, and the corresponding first type magnets, the second type magnets and the third type magnets in the symmetrical magnet array together form a closed magnetic circuit.
  • the first type of magnet 201 has a square shape, that is, the first type magnet 201 and the second type magnet 202 are rectangular parallelepipeds, and the magnetization directions of the first type magnet 201 and the second type magnet 202 are parallel to the Z direction.
  • the magnetization direction of the first type magnet 201 is reversed along the positive direction of the Z axis, that is, the Z direction or the Z direction.
  • the magnetization direction of the first type magnet 201 is along the Z direction;
  • the third type magnet 203 includes a first prism magnet 203a, a second prism magnet 203b, and a third prism magnet 203c.
  • the first prism magnet 203a, the second prism magnet 203b, and the third prism magnet 203c are combined to form a whole.
  • the abutting faces between adjacent different prism magnets are inclined faces, that is, the abutting faces between adjacent first and second prismatic magnets 203a, 203b are inclined faces and adjacent second
  • the abutting surface between the triangular prism magnets 203b and 203c is a sloped surface, and the first prism magnet 203a and the second prism
  • the magnet 203b and the third prism magnet 203c are triangular prisms and/or quadrangular prisms; the magnetization direction of the first prism magnet 203a passes through the abutting surface of the first prism magnet 203a and the second prism magnet 203b.
  • the second prism magnet 203b is further inserted into the third prism magnet 203c via the abutting surface of the second prism magnet and the 203b third prism magnet 203c; or the magnetization direction of the third prism magnet 203c passes through the third prism
  • the abutting surface of the magnet 203c) and the second prism magnet 203b enters the second prism magnet 203b, and then enters the first prism magnet 203a via the abutting surface of the second prism magnet 203b and the first prism magnet 203a, thus making the symmetry
  • the corresponding first type magnet 201, second type magnet 203 and third type magnet 203 in the magnet array together form a closed magnetic circuit.
  • the first magnet array 21 and the second magnet array 22 in the magnet unit 2 are periodically alternately distributed according to the Halbach array pattern, and the formed Halbach magnet topography array is compared with the existing equal-energy product NS array.
  • the vertical magnetic flux is increased, correspondingly increasing the horizontal magnetic density and the horizontal thrust, and simultaneously increasing the horizontal magnetic flux, correspondingly enhancing the vertical magnetic density and the vertical thrust, thereby generating a larger six-degree-of-freedom thrust.
  • the first type magnet 201 and the second type magnet 202 are quadrangular prism magnets
  • the third type magnet 203 is composed of a triangular prism magnet and/or a quadrangular prism magnet.
  • HHalbach magnet array constructed with prismatic magnets such as triangular prism magnets and/or quadrangular prism magnets, the magnetic leakage is smaller than the existing magnet array, the magnetic density space distribution is more uniform, and the higher harmonic amplitude of the plane magnetic density is more Small, and, the magnet array is lighter in weight.
  • the first prism magnet 203a, the second prism magnet 203b, and the third prism magnet 203c have a right-angled triangle, an isosceles triangle, and a right-angled triangle in the YZ plane.
  • the angle between the abutting surface and the Z axis is determined according to the size and shape of the first prism magnet 203a, the second prism magnet 203b, and the third prism magnet 203c.
  • the angle between the abutting surface and the Z axis is according to the first prism magnet, the second prism magnet and the third edge
  • the size and shape of the column magnet depend on it. That is, the angle between the abutting surface of the first prism magnet 203a and the second prism magnet 203b and the Z axis and the abutting surface between the second prism magnet 203b and the third prism magnet 203c are the same as the angle of the Z axis.
  • the adjacent surface is approximately 135 positive with respect to the Z axis. That is, the magnetization direction of the first prism magnet 203a is directed to the second prism magnet 203b and is about 135° forward with respect to the Z axis, and the magnetization direction of the second prism magnet 203b is parallel to the Y axis and directed to the first type of magnet 111, third The magnetization direction of the prism magnet 203c faces away from the second prism magnet 203b and is about 45 toward the Z-axis. .
  • FIG. 8 is a schematic diagram of a three-dimensional structure of a magnet array in the prior art
  • FIG. 9 is a magnetic dense distribution diagram of a center line of the magnet array of FIG. 8
  • FIG. 10 is a coil of the magnet array of FIG.
  • FIG. 11 is a schematic diagram of a three-dimensional structure of the magnet array of FIG. 2
  • FIG. 12 is a magnetic flux distribution diagram of a center line of a Halbach magnet array according to Embodiment 1 of the present invention
  • FIG. 13 is a schematic diagram of a coil output force according to Embodiment 1 of the present invention. .
  • the magnetic flux distribution amplitude of the prior art Halbach magnet array is at most 0.00036 Ktesla, and the amplitude of the magnetic density distribution of the Halbach magnet array in the first embodiment of the present invention is 0.00075 Ktesla, which is closer to the sinusoid; 10 and FIG. 13 show that the output amplitude of the prior art Halbach magnet array coil is from -45.83 to 48.27 N, and the output amplitude of the Halbach magnet array coil in the first embodiment of the present invention is from -89.73 to 79.72 N. It can be seen that the Halbach magnet array of the first embodiment of the present invention has obvious advantages in terms of the magnitude of the magnetic density distribution and the amplitude of the coil output compared with the prior art.
  • the cross sections of the first prism magnet 203a, the second prism magnet 203b, and the third prism magnet 203c in the YZ plane are a right triangle, an isosceles trapezoid, and a right triangle.
  • the first magnet array 21 and the second magnet array 22 composed of the third type magnet 203 having the above configuration, the first type magnet 201, and the second type magnet 202 are used.
  • the same vertical levitation force can be generated as well; the tilt can be eliminated
  • the cross sections of the first prism magnet 203a, the second prism magnet 203b and the third prism magnet 203c in the YZ plane are respectively a right-angled trapezoid, an isosceles triangle and a right-angled trapezoid.
  • the first prism magnet 203a and the third prism magnet 203b are located in the YZ plane and have a right-angled trapezoidal shape having a common side.
  • the required vertical levitation force can also be generated; the ripple force caused by the tilt interference can be eliminated, the required control torque can be provided, the torque can be eliminated, and the precise positioning can be realized; the vertical magnetic flux can be increased to generate a larger correspondence. Horizontal thrust and the advantage of having a smaller magnetic leakage.
  • the third type magnet is a prism magnet
  • the first type magnet, the second type magnet and the third type magnet are located on the YZ plane. Is an isosceles trapezoid, the magnetization directions of the first type magnet and the second type magnet are parallel and opposite to the Z direction, and the magnetization direction of the third type magnet is parallel to the Y direction and points to the first type magnet or the third type magnet, This causes the corresponding first type magnet, second type magnet and third type magnet in the symmetrical magnet array to form a closed magnetic circuit.
  • the cross-section along the YZ plane of the first type magnet, the second type magnet, and the third type magnet is an isosceles trapezoid having the same waist length, the same bottom angle, and the same height.
  • the first magnet array 21 and the second magnet array 22, which are composed of the third type magnet 203 of the above structure and the first type magnet 201 and the second type magnet 202, can also generate the required vertical levitation force;
  • the embodiment provides a platform device 5, including a platen table 51 and two bases 52a and 52b on opposite sides of the counter table 51.
  • the platen 51 passes through the two
  • the motors 53a, 53b above the bases 52a, 52b provide a driving force in the Y direction and a levitation force in the Z direction.
  • the motor 53a includes a magnet holder 533a, a magnet unit 531a, and a coil unit 532a.
  • the motor 53b includes a magnet holder 533b and a magnet unit. 531b and coil unit 532b; the motors 53a, 53b are any one of the above-described linear motors (including the linear motor 0 described in the first embodiment or the second embodiment or the third embodiment).
  • the platform device not only has the advantages described in the first embodiment to the embodiment, but also can eliminate the vertical air floating mechanism, and can provide a horizontal axial driving force and a vertical floating force only by a linear motor ( Z direction), simple structure and convenient operation.
  • the guiding device 54 includes an air floating pad 541 connected to the platen 51 and an air floating guide 542 fixed to the base 52a and/or 52b, the air floating pad 541 being disposed on the air floating guide 542 near the One side of the platen 51.
  • the air floating cushion 541 may be a flexible block.
  • the air float rails of the air float cushion 541 and the air float rail 542 are based on the basic principle of the air bearing, achieving smooth movement without friction and vibration. It has the characteristics of high motion precision, clean and pollution-free. At the same time, it also has error homogenization, so that higher guiding precision can be obtained with lower manufacturing precision.
  • the coil unit includes a first coil array and a second coil array which are stacked in the Z direction, and the first coil array and the second coil array Staggered along the Y direction by a distance ⁇ ⁇ , ⁇ ⁇ satisfied: when the control system accesses the coil unit When the current is required, the coil unit is capable of generating a control force along the Y direction, a control force along the yaw direction, and a moment about the X direction, on the one hand, the first coil array and the first
  • the double-layer coil composed of the two coil arrays can generate the required vertical levitation force; on the other hand, the double-layer coil layered and staggered arrangement structure can eliminate the ripple force caused by the tilt interference, etc., to provide the required control torque, and eliminate Torque for precise positioning.
  • the platform device constructed by the linear motor constructed as described above does not require a vertical air floating mechanism, and can provide a horizontal axial driving force and a vertical floating force only by
  • the first magnet array and the second magnet array are both a first type magnet, a second type magnet, and a third type magnet located therebetween.
  • the first type of magnet and the second type of magnet are alternately distributed along the Y direction, the third type of magnet is a prismatic magnet or includes three prismatic magnets, when the When the three types of magnets are a prismatic magnet, the abutting faces between adjacent different types of magnets are inclined faces.
  • the abutting faces between adjacent different prismatic magnets are The inclined surface, the corresponding first type magnet, the second type magnet and the third type magnet in the symmetrical magnet array together form a closed magnetic circuit.
  • the first magnet array and the second magnet array in the magnet unit are periodically alternately distributed according to the Halbach array pattern, and the formed Halbach magnet topography array relatively increases the vertical magnetic flux compared to the existing equal-energy product NS array.
  • the horizontal magnetic density and the horizontal thrust are enhanced, and the horizontal magnetic flux is relatively increased, correspondingly increasing the vertical magnetic density and the vertical thrust, thereby generating a larger six-degree-of-freedom thrust.
  • the Halbach magnet array constructed with prismatic magnets such as triangular prism magnets and/or quadrangular prism magnets has smaller magnetic leakage than the existing magnet array, more uniform magnetic-dense spatial distribution, and higher harmonics of planar magnetic density.
  • the amplitude of the wave is smaller and the quality of the magnet array is lighter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种直线电机,包括磁铁单元(2)和线圈单元(1),所述磁铁单元(2)包括两组相对平行、位于磁轭(3)上的相对称的磁铁阵列:第一磁铁阵列(21)与第二磁铁阵列(22);所述线圈单元(1)设置于两组磁铁整列之间的磁隙(4)处,在X轴、Y轴、Z轴组成的空间直角坐标系内,所述线圈单元(1)包括在Z向层叠设置的第一线圈阵列(11)和第二线圈阵列(12),所述第一线圈阵列(11)和所述第二线圈阵列(12)沿着Y向错开一定距离ΔΡ,ΔΡ满足:当控制系统给线圈单元(1)通入所需电流时,所述线圈单元(1)能够产生沿着Υ向的控制力、沿着Ζ向的控制力以及一个绕X向的力矩。其可减少磁泄露并提供更大推力,使得直线电机产生需要的三自由度的控制力或控制力矩,其还可提高磁铁阵列中的垂向磁通量和水平磁通量。

Description

I:线电机及平台装置 技术领域
本发明涉及光刻领域, 尤其涉及一种直线电机及平台装置。 背景技术
随着光刻技术的进步和半导体工业的快速发展, 对于光刻设备有四项基本 性能指标: 线宽均匀性(CD, Critical Dimension Uniformity ), 焦深( Focus )、 套刻 (Overlay )和产率( Throughput )。 为了提高线宽均匀性, 工件台或掩摸台 必须提高水平向精密定位能力; 为了提高焦深误差精度, 工件台或掩摸台必须 提高垂向精密定位能力; 为了提高光刻机套刻误差精度, 工件台或掩摸台必须 提高其内部模态来提升动态定位特性。 此外, 光刻设备必须增加产率, 因此台 子必须高速运动, 快速启动和停止。 光刻设备的高速、 高加速和高精密的定位 能力是相互矛盾的, 增加扫描速度需要功率更大的电机, 实现大行程和高速度 运动, 并具有多自由度运动来进行光刻曝光和对准。
光刻设备大体上分为两类, 一类是步进光刻设备, 掩模图案一次曝光成像 在晶片的一个曝光区域, 随后晶片相对于掩模移动, 将下一个曝光区域移动到 掩模图案和投影物镜下方, 再一次将掩模图案曝光在晶片的另一曝光区域, 重 复这一过程直到晶片上所有曝光区域都拥有掩模图案的像。 另一类是步进扫描 光刻装置, 掩模图案不是一次曝光成像, 而是通过投影光场的扫描移动成像; 在掩模图案成像过程中, 掩模与晶片同时相对于投影系统和投影光束移动。
在上述的光刻设备中, 需具有相应的装置作为掩模版 /硅片的载体, 装载有 掩模版 /硅片的载体产生精确的相互运动来满足光刻需要。 装载有掩模版的载体 被称之为承版台, 装载有硅片的载体被称之为承片台。
请参阅图 1 , 图 1所示为现有技术中釆用传统 NS磁铁阵列和单层线圈的直 线电机结构示意图。
美国专利 US20040246458A1公开了一种用于光刻机工件台或掩模台的直线 电机, 具有高的驱动力、 高效率和低的纹波力, 包括两个平行相对的第一磁道 和第二磁道, 以及一个电枢, 电枢包括三个开环线圈单元, 置于第一磁道和第 二磁道之间, 第一磁道、 第二磁道与线圈单元可以各自运动, 两个相对的磁道 与开环线圈之间有一个没有铁心, 这种结构可以减小电机的体积, 且增大力的 时候不产生额外的热量。 通过更有效的电磁材料和更高的电磁力可以增加电机 的效率, 减少轴 的使用, 减小移动的质量, 特别适用于真空环境中。 然而考 虑到倾斜干扰等造成的纹波力 (ripple), 无法精确定位设备。 以及考虑到并排对 齐的长方体形的磁铁对磁轭的漏磁影响容易造成控制精度难以及产生的受控力 不足够大的因素, 需要提出一种新型的更加精密的定位电机及提供更大功率的 直线电机。
另外, 随着光刻技术的进步和半导体工业的快速发展, 对于光刻设备有四 项基本性能指标:线宽均匀性( CD, Critical Dimension Uniformity )、焦深( Focus )、 套刻 (Overlay )和产率( Throughput )。 为了提高线宽均匀性, 光刻机工件台必 须提高水平向精密定位能力; 为了提高焦深误差精度, 工件台必须提高垂向精 密定位能力; 为了提高光刻机套刻误差精度, 工件台必须提高其内部模态来提 升动态定位特性。 此外, 光刻设备必须增加产率, 因此台子必须高速运动, 快 速启动和停止。 光刻设备的高速、 高加速和高精密的定位能力是相互矛盾的, 增加扫描速度需要功率更大的电机, 为了克服这个矛盾, 当前工件台技术釆用 了粗微动结构, 实现高速和高精度的技术分离。 粗动结构主要由直线电机组成, 可以实现大行程和高速度运动。 微动台则层叠安装于粗动台上, 可以动态补偿 定位偏差, 微动台实现纳米精度, 并具有多自由度运动来进行光刻曝光和对准。 目前这种结构釆用气浮轴承结构驱动设计技术, 无法实现多自由度运动与执行 器的一体化耦合设计, 导致系统运动结构的质量增大, 驱动力随着增大, 驱动 反力施加给系统的残余振动也增大, 从而影响了系统的动态性能。 此外, 由于 产率要求高加速度导致附加倾翻力矩加大, 工件台的气浮静刚度约束釆用高刚 性设计, 对导向平面度、 预载变形、 气浮工艺参数设计要求非常高。 同时, 考 虑到配套的电、 气、 水、 真空通路与机箱等等, 工件台系统结构复杂、 庞大、 可靠性低、 维修维护难度大。
直线电机无需任何机械转换装置就可直接驱动负载做直线运动, 也就不存 在因转换装置的变形、 齿隙等因素带来的误差, 系统的惯性也相对较小。 海尔 贝克(Halbach ) 阵列是一种新型永磁体排列方式, 它将不同磁化方向的永磁体 按照一定的顺序排列, 使得阵列一边的磁场显著增强而另一边显著减弱, 且很 容易得到在空间较理想正弦分布的磁场。 Halbach磁铁阵列的这些优良特性使其 被广泛应用在直线电机领域中。
1997年, M IT的 Kim WJ. High在他的博士论文" Precision Planar Magnetic Levitation"中设计并制造了一套基于 4 组 Halbach型直线电动机的高精度定位平 台系统, 该系统的 4组直线电动机互相配合以产生光刻平台所需要的六维运动, 该系统的定位噪音为 5 nm,加速度可以达到 lg(g=9.8m/s2)。另夕卜,ΜΙΤ的 Williams 在 他 的 博 士 论文 "Precision six-degree-of-freedom magnetically levitated photolithography stage"中也设计了一套由 Halbach型直线电动机和电磁铁混合驱 动的高精度定位平台。
美国专利 US20040246458于 2004年 12月 09日公开了一种用于光刻机工件 台或掩模台的直线电机, 具有高的驱动力、 高效率和低的纹波力, 包括两个平 行相对的第一磁道和第二磁道, 以及一个电枢, 电枢包括三个开环线圈单元, 置于第一磁道和第二磁道之间, 第一磁道、 第二磁道与线圈单元可以各自运动, 两个相对的磁道与开环线圈之间有一个没有铁心, 这种结构可以减小电机的体 积, 且增大力的时候不产生额外的热量。 通过更有效的电磁材料和更高的电磁 力可以增加电机的效率, 减少轴承的使用, 减小移动的质量, 特别适用于真空 环境中。
但是, 上述两种直线电机中的 Halbach磁铁阵列中, 由于平面磁密方向与磁 铁阵列外形方向不一致, 会限制垂向磁通量和水平磁通量, 从而限制了垂向磁 密和水平慈密, 进而限制了垂向推力和水平推力, 最终限制了六自由度的推力。 发明内容
本发明的所要解决的就技术问题是如何减少磁泄露并提供更大推力, 使得 直线电机产生需要的三自由度的控制力或控制力矩, 本发明进一步要解决的技 术问题是提供一种磁力线更为连续的直线电机, 以提高磁铁阵列中的垂向磁通 量和水平磁通量。
为达到上述目的, 本发明的第一方面提供一种直线电机, 包括磁铁单元和 线圈单元, 所述磁铁单元包括两组相对平行、 位于磁轭上的相对称的磁铁阵列: 第一磁铁阵列与第二磁铁阵列; 所述线圈单元设置于两组磁铁阵列之间的磁隙 处, 在 X轴、 Y轴、 Z轴组成的空间直角坐标系内; 所述线圈单元包括在 Z向 层叠设置的第一线圈阵列和第二线圈阵列, 所述第一线圈阵列和所述第二线圈 阵列沿着 Y向错开一定距离 Δ Ρ, Δ Ρ满足: 当控制系统给所述线圈单元通入所 需电流时, 所述线圈单元能够产生沿着 Y向的控制力、 沿着 Z向的控制力以及 一个绕 X向的力矩。
可选的, 所述第一线圈阵列和所述第二线圈阵列均具有两个以上的相同数 量的线圈, 每个线圈的线圈间距为 CP, 所述第一线圈阵列沿着 X向与所述第二 线圈阵列错开的距离 Δ Ρ为 1/4 CP。
可选的, 所述第一磁铁阵列与所述第二磁铁阵列均由第一类磁铁、 第二类 磁铁以及位于它们之间的第三类磁铁沿着 Y向按照 Halbach阵列模式周期性交 替分布 , 所述第一类磁铁和第二类磁铁沿 Y向等间距交替分布, 所述第三类磁 铁是一块棱柱磁铁或者包括三块棱柱磁铁, 当所述第三类磁铁是一块棱柱磁铁 时, 相邻的不同类磁铁之间的对接面均是斜面, 当所述第三类磁铁包括三块棱 柱磁铁时, 相邻的不同棱柱磁铁之间的对接面是斜面, 相对称的磁铁阵列中对 应的第一类磁铁、 第二类磁铁和第三类磁铁共同形成一个闭合磁路。
可选的, 所述第一类磁铁和所述第二类磁铁均是长方体, 所述第一类磁铁 和第二类磁铁的磁化方向和 Z向平行且相反; 所述第三类磁铁包括第一棱柱磁 铁、 第二棱柱磁铁以及第三棱柱磁铁, 所述第一棱柱磁铁、 第二棱柱磁铁以及 第三棱柱磁铁组合后整体呈一与所述第一类磁铁和所述第二类磁铁等高的长方 体, 所述第一棱柱磁铁、 第二棱柱磁铁以及第三棱柱磁铁为三棱柱和 /或四棱柱; 所述第一棱柱磁铁的磁化方向经过其与第二棱柱磁铁的对接面进入所述第二棱 柱磁铁后, 再经第二棱柱磁铁与第三棱柱磁铁的对接面进入第三棱柱磁铁; 或 者, 所述第三棱柱磁铁的磁化方向经过其与第二棱柱磁铁的对接面进入所述第 二棱柱磁铁后, 再经第二棱柱磁铁与第一棱柱磁铁的对接面进入第一棱柱磁铁, 如此使得相对称的磁铁阵列中对应的第一类磁铁、 第二类磁铁和第三类磁铁共 同形成一个闭合磁路。
可选的, 所述第一棱柱磁铁、第二棱柱磁铁和第三棱柱磁铁位于 YZ平面的 截面分别为直角三角形、 等腰三角形以及直角三角形; 或者, 所述第一棱柱磁 铁、第二棱柱磁铁和第三棱柱磁铁位于 YZ平面的截面分别为直角梯形、等腰三 角形和直角梯形。
可选的, 所述第一类磁铁和第二类磁铁的长和宽均一致, 第一类磁铁、 第 二类磁铁和第三类磁铁的高度均相等。
可选的, 所述第一棱柱磁铁、第二棱柱磁铁和第三棱柱磁铁位于 YZ平面的 截面分别为直角三角形、 等腰梯形和直角三角形。
可选的,所述第一棱柱磁铁和第三棱柱磁铁位于 YZ平面的截面为具有一公 共边的直角梯形。
可选的, 所述对接面与 Z轴的夹角根据所述第一棱柱磁铁、 第二棱柱磁铁 和第三棱柱磁铁的尺寸及形状而定。
可选的, 所述第三类磁铁是一块棱柱磁铁, 所述第一类磁铁、 第二类磁铁 和第三类磁铁位于 YZ平面的截面均是等腰梯形,所述第一类磁铁和第二类磁铁 的磁化方向和 Z向平行且相反, 第三类磁铁的磁化方向与 Y向平行并指向第一 类磁铁或第三类磁铁, 由此使得相对称的磁铁阵列中对应的第一类磁铁、 第二 类磁铁和第三类磁铁共同形成一个闭合磁路。
可选的, 第一类磁铁、第二类磁铁和第三类磁铁的沿 YZ平面的截面为腰长 相等、 底角相同且高度相等的等腰梯形。
本发明的第二方面提供了一种平台装置, 包括承版台及位于所述承版台两 侧的两个底座, 所述承版台通过所述两个底座上方的电机提供 Y向的驱动力及 Z向的悬浮力, 所述电机为如上所述的直线电机。
可选的,所述两个底座中至少一个上方设有用于为所述 版台的运动提供 γ 向导向的导向装置, 所述导向装置包括连接所述承版台的气浮垫和固定于所述 底座上的气浮导轨, 所述气浮垫设置于所述气浮导轨的靠近所述承版台的一侧。
可选的, 所述气浮垫为柔性块。
本发明提供的直线电机及平台装置中, 所述线圈单元包括在 Z向层叠设置 的第一线圈阵列和第二线圈阵列,所述第一线圈阵列和所述第二线圈阵列沿着 Y 向错开一定距离 Δ Ρ, Δ Ρ满足: 当控制系统给所述线圈单元通入所需电流时, 所述线圈单元能够产生沿着 Y向的控制力、 沿着 Z向的控制力以及一个绕 X向 的力矩, 一方面, 由上所述的第一线圈阵列和所述第二线圈阵列组成的双层线 圈可以产生需要的垂向的悬浮力; 另一方面, 双层线圈分层交错式排列结构可 以消除倾斜干扰等造成的纹波力, 以提供需要的控制力矩, 消除扭矩, 实现精 确定位。 此外, 釆用上述结构的直线电机构造的平台装置不需要垂向气浮机构, 仅通过直线电机即可提供水平某个轴向的驱动力及垂向的悬浮力, 结构简单, 操作方便。
此外, 本发明提供的直线电机及平台装置中, 所述第一磁铁阵列与所述第 二磁铁阵列均由第一类磁铁、第二类磁铁以及位于它们之间的第三类磁铁沿着 Y 向按照 Halbach阵列模式周期性交替分布 , 所述第一类磁铁和第二类磁铁沿 Y 向等间距交替分布, 所述第三类磁铁是一块棱柱磁铁或者包括三块棱柱磁铁, 当所述第三类磁铁是一块棱柱磁铁时, 相邻的不同类磁铁之间的对接面均是斜 面, 当所述第三类磁铁包括三块棱柱磁铁时, 相邻的不同棱柱磁铁之间的对接 面是斜面, 相对称的磁铁阵列中对应的第一类磁铁、 第二类磁铁和第三类磁铁 共同形成一个闭合磁路。 一方面, 磁铁单元中的第一磁铁阵列与第二磁铁阵列 按照 Halbach阵列模式周期性交替分布,形成的 Halbach磁铁拓朴阵列相比现有 的等磁能积的 NS阵列,相对增加了垂向磁通量, 对应地增强了水平磁密和水平 推力, 同时相对增加了水平磁通量, 对应地增强了垂向磁密和垂向推力, 从而, 可以产生更大的六自由度推力。 另一方面, 釆用棱柱磁铁例如三棱柱磁铁和 /或 四棱柱磁铁构造的 Halbach磁铁阵列,相比现有的磁铁阵列磁泄露更小、磁密空 间分布更加均匀, 平面磁密的高次谐波幅值更小, 并且, 磁铁阵列的质量更轻。 附图说明
图 1是现有技术中釆用传统 NS磁铁阵列和单层线圈的直线电机结构示意 图。
图 2是本发明实施例 1的直线电机结构示意图。 图 3是本发明实施例 1中双层交错式线圈单元的排布图。
图 4是图 1中传统 NS磁铁阵列组成的磁铁单元的磁密分布图。
图 5是本发明实施例 1的磁铁单元的磁密分布图。
图 6是图 1和图 2所示直线电机的线圈 Y向出力大小对比图。
图 7是本发明实施例 1磁铁单元排列模式下单层线圈和双层线圈 Z向出力 大小对比图。
图 8是现有技术中磁铁阵列的三维结构示意图。
图 9是图 8中磁铁阵列的中心线磁密分布图。
图 10是图 8中线圈出力大小示意图。
图 11是图 2中磁铁阵列的三维结构示意图。
图 12是本发明实施例 1中磁铁阵列的中心线磁密分布图。
图 13是本发明实施例 1中线圈出力大小示意图。
图 14是本发明实施例 2的直线电机结构示意图。
图 15是本发明实施例 3的直线电机结构示意图。
图 16是本发明实施例 4的直线电机结构示意图。
图 17是应用本发明所述直线电机构造的平台装置的主视图。
图 18是图 17的俯视图 (其中直线电机只给出线圈单元和位于下层的第二 磁铁阵列)。 具体实施方式
下面将结合附图对本发明进行更详细的描述, 其中表示了本发明的优选实 施例, 应所述理解本领域技术人员可以修改在此描述的本发明, 而仍然实现本 发明的有利效果。 因此, 下列描述应当被理解为对于本领域技术人员的广泛知 道, 而并不作为对本发明的限制。 为了清楚, 不描述实际实施例的全部特征。 在下列描述中, 不详细描述公 知的功能和结构, 因为它们会使本发明由于不必要的细节而混乱。 应当认为在 任何实际实施例的开发中, 必须做出大量实施细节以实现开发者的特定目标, 例如按照有关系统或有关商业的限制, 由一个实施例改变为另一个实施例。 另 外, 应当认为这种开发工作可能是复杂和耗费时间的, 但是对于本领域技术人 员来说仅仅是常规工作。
在下列段落中参照附图以举例方式更具体地描述本发明。 根据下面说明和 权利要求书, 本发明的优点和特征将更清楚。 需说明的是, 附图均釆用非常简 化的形式且均使用非精准的比例, 仅用以方便、 明晰地辅助说明本发明实施例 的目的。
实施例 1
请参阅图 2,本实施例提供的一种直线电机, 包括磁铁单元 2和线圈单元 1、 磁铁固定座 3即磁轭以及控制系统(未图示), 所述磁铁固定座 3侧向 (本实施 例中为 XZ平面)呈 U形, 用于支撑所述磁铁单元 2; 所述磁铁单元 2包括两组 相对平行、 位于磁轭上的相对称的磁铁阵列: 第一磁铁阵列 21与第二磁铁阵列 22, 也就是说所述磁铁单元 2包括分别位于所述磁铁固定座 3的两平行内壁的 第一磁铁阵列 21与第二磁铁阵列 22;所述线圈单元 1设置于两组磁铁阵列之间 的磁隙 4处, 即设置于第一磁铁阵列 21与第二磁铁阵列 22之间的磁隙 4处, 所述控制系统用于提供电流给所述线圈单元 1 , 所述第一磁铁阵列 21与第二磁 铁阵列 22分别沿着 Y向按照 Halbach阵列模式周期性交替分布, 请结合参阅图 3;所述线圈单元 1包括在 Z向层叠设置的第一线圈阵列 11和第二线圈阵列 12, 所述第一线圈阵列 11和所述第二线圈阵列 12沿着 Y向错开一定距离 Δ Ρ, Δ Ρ 满足: 当控制系统给所述线圈单元 1通入所需电流时, 所述线圈单元 1能够产 生沿着 Y向的控制力、 沿着 Z向的控制力以及一个绕 X向的力矩。 一方面, 由 所述第一线圈阵列 21和所述第二线圈阵列 22组成的双层线圈可以产生需要的 垂向 (本实施例中为 Z向)的悬浮力; 另一方面, 双层线圈分层交错式排列结构可 以消除倾斜干扰等造成的纹波力, 提供需要的控制力矩, 消除扭矩, 实现精确 定位; 再一方面, 磁铁单元 2中的第一磁铁阵列 21与第二磁铁阵列 22按照 Halbach阵列模式周期性交替分布, 形成的 Halbach磁铁拓朴阵列相比现有的等 磁能积的 NS阵列,相对增加了垂向磁通量,从而能够对应产生更大的水平推力。
较佳的, 所述第一线圈阵列 11和所述第二线圈阵列 12均具有两个以上的 相同数量的线圈, 每个线圈的线圈间距为 CP (线圈间距 CP即单个线圈沿 Y向 的宽度),所述第一线圈阵列 11沿着 X向与所述第二线圈阵列 12错开的距离 Δ P为 1/8〜1/3 CP。 本实施例中, 所述错开的距离 Δ Ρ优选为 1/4 CP, 因为本实施 例中磁铁阵列为 halbach线性阵列, 其磁场分布的特点为水平正弦磁场与垂向正 弦磁场之间刚好相差 90度相位, 即 1/4个周期, 将双层线圈错开 1/4CP, 刚好 与这两个方向的磁场发力相位对应上。 当然, 根据磁铁阵列磁场排布的不同及 具体应用需要, 也完全可以釆用其他线圈间距设计。
图 4是传统 NS磁铁阵列组成的磁铁单元的磁密分布图,图 5是本发明实施 例 1的磁铁单元的磁密分布图。 由图 4和图 5对比可知,传统 NS磁铁阵列磁密 B分布幅值最大 1.0501tesla (特斯拉), 本发明实施例 1中 Halbach阵列 (即按 照 Halbach阵列模式周期性交替分布第一磁铁阵列 21与第二磁铁阵列 22组成的 磁铁单元)磁密 B分布幅值最大 1.8363tesla, 磁密幅值有明显改善。 另外通过 改变磁铁阵列的排布尺寸可以使得磁密分布更接近正弦曲线。
图 6是图 1和图 2所示直线电机结构线圈 Y向出力大小对比图, 图 7是本 发明实施例 1磁铁单元排列模式下釆用单层线圈和双层线圈 Z向出力大小对比 图。 由图 6可知传统的 NS磁铁阵列线圈出力大小幅值在 -42.05〜44.17N, 实施例 1所示的 Halbach磁铁阵列线圈出力大小幅值在 -72.54〜74.33N。可见相比现有技 术本发明实施例 1中 Halbach阵列在线圈出力幅值方面有明显的优势。 由图 7 可知,在实施例 1中,单层线圈出力峰值在 4.973N,双层线圈出力峰值在 27.45N, 可见相比现有技术的单层线圈本发明实施例 1中线圈出力幅值在 Z向有明显的 优势。
较佳的, 在上述的直线电机中, 所述第一磁铁阵列 21与所述第二磁铁阵列 22均由第一类磁铁 201、 第二类磁铁 202以及位于它们之间的第三类磁铁 203 沿着 Y向按照 Halbach阵列模式周期性交替分布组成, 所述第一类磁铁 201和 第二类磁铁 202沿 Y向等间距交替分布, 所述第三类磁铁 203是一块棱柱磁铁 或者包括三块棱柱磁铁, 当所述第三类磁铁 203是一块棱柱磁铁时, 相邻的不 同类磁铁之间的对接面均是斜面, 当所述第三类磁铁 203包括三块棱柱磁铁时, 相邻的不同棱柱磁铁之间的对接面是斜面, 相对称的磁铁阵列中对应的第一类 磁铁、 第二类磁铁和第三类磁铁共同形成一个闭合磁路。
所述第一类磁铁 201呈方形,即所述第一类磁铁 201和所述第二类磁铁 202 均为长方体, 所述第一类磁铁 201和第二类磁铁 202的磁化方向和 Z向平行且 相反, 所述第一类磁铁 201磁化方向沿着 Z轴的正方向即 Z向或 Z向的反向, 本实施例中, 所述第一类磁铁 201磁化方向沿着 Z向; 所述第三类磁铁 203包 括第一棱柱磁铁 203a、第二棱柱磁铁 203b以及第三棱柱磁铁 203c,所述第一棱 柱磁铁 203a, 第二棱柱磁铁 203b以及第三棱柱磁铁 203c组合后的整体呈一与 所述第一类磁铁 201和所述第二类磁铁 202等高的长方体, 所述第一类磁铁和 第二类磁铁的长(本实施例中为 X向)和宽 (本实施例中为 X向) 均一致, 第 一类磁铁、 第二类磁铁和第三类磁铁的高度(本实施例中为 Z向高度)均相等。
在所述第三类磁铁 203中, 相邻的不同棱柱磁铁之间的对接面是斜面, 即 相邻的第一、 二棱柱磁铁 203a、 203b之间的对接面是斜面以及相邻的第二、 三 棱柱磁铁 203b、 203c之间的对接面是斜面, 所述第一棱柱磁铁 203a、 第二棱柱 磁铁 203b以及第三棱柱磁铁 203c为三棱柱和 /或四棱柱;所述第一棱柱磁铁 203a 的磁化方向经过其 (即所述第一棱柱磁铁 203a )与第二棱柱磁铁 203b的对接面进 入所述第二棱柱磁铁 203b后, 再经第二棱柱磁铁与 203b第三棱柱磁铁 203c的 对接面进入第三棱柱磁铁 203c; 或者, 所述第三棱柱磁铁 203c的磁化方向经过 其(即第三棱柱磁铁 203c )与第二棱柱磁铁 203b的对接面进入所述第二棱柱磁 铁 203b后, 再经第二棱柱磁铁 203b与第一棱柱磁铁 203a的对接面进入第一棱 柱磁铁 203a, 如此使得相对称的磁铁阵列中对应的第一类磁铁 201、 第二类磁 铁 203和第三类磁铁 203共同形成一个闭合磁路。
本实施例中, 磁铁单元 2中的第一磁铁阵列 21与第二磁铁阵列 22按照 Halbach阵列模式周期性交替分布, 形成的 Halbach磁铁拓朴阵列相比现有的等 磁能积的 NS阵列,相对增加了垂向磁通量,对应地增强了水平磁密和水平推力, 同时相对增加了水平磁通量, 对应地增强了垂向磁密和垂向推力, 从而, 可以 产生更大的六自由度推力。
本实施例中, 上述第一类磁铁 201和第二类磁铁 202均为四棱柱磁铁, 所 述第三类磁铁 203由三棱柱磁铁和(或) 四棱柱磁铁构成。 釆用棱柱磁铁例如 三棱柱磁铁和 /或四棱柱磁铁构造的 Halbach磁铁阵列 , 相比现有的磁铁阵列磁 泄露更小、 磁密空间分布更加均匀, 平面磁密的高次谐波幅值更小, 并且, 磁 铁阵列的质量更轻。
优选的,在上述的直线电机中,所述第一棱柱磁铁 203a、第二棱柱磁铁 203b 和第三棱柱磁铁 203c位于 YZ平面的截面分别为直角三角形、 等腰三角形以及 直角三角形。
优选的, 在上述的直线电机中, 所述对接面与 Z轴的夹角根据所述第一棱 柱磁铁 203a, 第二棱柱磁铁 203b和第三棱柱磁铁 203c的尺寸及形状而定。 其 中, 所述对接面与 Z轴的夹角根据所述第一棱柱磁铁、 第二棱柱磁铁和第三棱 柱磁铁的尺寸及形状而定。 即所述第一棱柱磁铁 203a与第二棱柱磁铁 203b的 对接面与 Z轴的夹角以及所述第二棱柱磁铁 203b和第三棱柱磁铁 203c之间的 对接面与 Z轴的夹角相同且根据所述第一棱柱磁铁、第二棱柱磁铁 203b和第三 棱柱磁铁 203c的尺寸及形状而定。 本实施例中, 所述相邻面与 Z轴正向约成 135。, 也即第一棱柱磁铁 203a的磁化方向指向第二棱柱磁铁 203b且与 Z轴正 向成约 135°,第二棱柱磁铁 203b的磁化方向与 Y轴平行并指向第一类磁铁 111 , 第三棱柱磁铁 203c的磁化方向背离第二棱柱磁铁 203b且与 Z轴正向成约 45。 。
请参阅图 8至图 13 , 其中, 图 8是现有技术中磁铁阵列的三维结构示意图, 图 9为图 8中磁铁阵列的中心线磁密分布图, 图 10为图 1中磁铁阵列的线圈出 力大小示意图, 图 11为图 2中磁铁阵列的三维结构示意图, 图 12为本发明实 施例 1中 Halbach磁铁阵列的中心线磁密分布图, 图 13是本发明实施例 1中线 圈出力大小示意图。
由图 9和图 12对比可知, 现有技术 Halbach磁铁阵列磁密分布幅值最大 0.00036Ktesla , 本发明实施例 1 中 Halbach磁铁阵列磁密分布幅值最大 0.00075Ktesla,且更接近正弦曲线; 由图 10和图 13对比可知,现有技术 Halbach 磁铁阵列线圈出力幅值从 -45.83〜48.27N, 本发明实施例 1中 Halbach磁铁阵列 线圈出力幅值从 -89.73〜79.72N。 可见相比现有技术本发明实施例 1中 Halbach 磁铁阵列在磁密分布幅值从, 线圈出力幅值方面都有明显的优势。
实施例 2
请参阅图 14, 本实施例与实施例 1的区别在于:
所述第一棱柱磁铁 203a,第二棱柱磁铁 203b和第三棱柱磁铁 203c位于 YZ 平面的截面分别为直角三角形、 等腰梯形和直角三角形。 釆用上述结构的第三 类磁铁 203和第一类磁铁 201以及第二类磁铁 202构成的第一磁铁阵列 21与第 二磁铁阵列 22。 本实施例, 同样可以产生需要的垂向的悬浮力; 可以消除倾斜 干扰等造成的纹波力, 以提供需要的控制力矩, 消除扭矩, 实现精确定位; 可 以增加垂向磁通量, 产生更大对应水平推力, 以及具有磁泄露更小的优点。
实施例 3
请参阅图 15 , 本实施例与实施例 1的区别在于:
所述第一棱柱磁铁 203a,第二棱柱磁铁 203b和第三棱柱磁铁 203c位于 YZ 平面的截面分别为直角梯形、 等腰三角形和直角梯形。 所述第一棱柱磁铁 203a 和第三棱柱磁铁 203b位于 YZ平面的截面为具有一公共边的直角梯形。 釆用上 述结构的第三类磁铁 203和第一类磁铁 201以及第二类磁铁 202构成的第一磁 铁阵列 21与第二磁铁阵列 22, 同样具有磁泄露更小的优点。 本实施例, 同样可 以产生需要的垂向的悬浮力; 可以消除倾斜干扰等造成的纹波力, 以提供需要 的控制力矩, 消除扭矩, 实现精确定位; 可以增加垂向磁通量, 产生更大对应 水平推力, 以及具有磁泄露更小的优点。
实施例 4
请参阅图 16, 本实施例与实施例 1的主要区别在于: 所述第三类磁铁是一 块棱柱磁铁, 所述第一类磁铁、第二类磁铁和第三类磁铁位于 YZ平面的截面均 是等腰梯形, 所述第一类磁铁和第二类磁铁的磁化方向和 Z向平行且相反, 第 三类磁铁的磁化方向与 Y向平行并指向第一类磁铁或第三类磁铁, 由此使得相 对称的磁铁阵列中对应的第一类磁铁、 第二类磁铁和第三类磁铁共同形成一个 闭合磁路。 所述第一类磁铁、第二类磁铁和第三类磁铁的沿 YZ平面的截面为腰 长相等、 底角相同且高度相等的等腰梯形。 釆用上述结构的第三类磁铁 203和 第一类磁铁 201以及第二类磁铁 202构成的第一磁铁阵列 21与第二磁铁阵列 22, 同样可以产生需要的垂向的悬浮力; 可以消除倾斜干扰等造成的纹波力, 以提 供需要的控制力矩, 消除扭矩, 实现精确定位; 可以增加垂向磁通量, 产生更 大对应水平推力, 以及具有磁泄露更小的优点。 实施例 5
请参阅图 17和图 18 , 本实施例提供了一种平台装置 5 , 包括承版台 51及 位于所述 反台 51两侧的两个底座 52a、 52b, 所述 版台 51通过所述两个底 座 52a、 52b上方的电机 53a、 53b提供 Y向的驱动力及 Z向的悬浮力, 电机 53a 包括磁铁固定座 533a、磁铁单元 531a和线圈单元 532a, 电机 53b包括磁铁固定 座 533b、 磁铁单元 531b和线圈单元 532b; 所述电机 53a、 53b为如上所述的任 意一种直线电机 (包括实施例 1或实施例 2或实施例 3所述的直线电机 0。 釆用 上述结构的直线电机构造的平台装置, 不但具有实施例 1〜实施例所述的优点, 而且还能够不需要垂向气浮机构, 仅通过直线电机即可提供水平某个轴向的驱 动力及垂向的悬浮力 (Z向), 结构简单, 操作方便。
较佳的, 在本实施例的平台装置中, 所述两个底座 52a、 52b中至少一个上 方设有用于为所述承版台 51的运动提供 Y向导向的导向装置 54 , 所述导向装 置 54包括连接所述承版台 51的气浮垫 541和固定于所述底座 52a和 /或 52b上 的气浮导轨 542 , 所述气浮垫 541设置于所述气浮导轨 542的靠近所述承版台 51的一侧。 较佳的, 在本实施例的平台装置中, 所述气浮垫 541可以为柔性块。 釆用气浮垫 541和气浮导轨 542的气浮导轨是基于空气轴承的基本原理, 实现 无摩擦和无振动的平滑移动。 其具有运动精度高、 清洁无污染等特点。 同时还 具有误差均化作用, 因而可用比较低的制造精度来获得较高的导向精度。
工作时, 给所述线圈单元 532a、 532b通入电流, 使得交互在所述磁铁单元 531a, 531b之间的线圈单元 532a、 532b产生沿着 Y向的驱动力、 垂直于 Y向 的 Z向的悬浮力以及绕 X向的控制力矩。
综上所述, 本发明提供的直线电机及平台装置中, 所述线圈单元包括在 Z 向层叠设置的第一线圈阵列和第二线圈阵列, 所述第一线圈阵列和所述第二线 圈阵列沿着 Y向错开一定距离 Δ Ρ, Δ Ρ满足: 当控制系统给所述线圈单元通入 所需电流时, 所述线圈单元能够产生沿着 Y向的控制力、 沿着 Ζ向的控制力以 及一个绕 X向的力矩, 一方面, 由上所述的第一线圈阵列和所述第二线圈阵列 组成的双层线圈可以产生需要的垂向的悬浮力; 另一方面, 双层线圈分层交错 式排列结构可以消除倾斜干扰等造成的纹波力, 以提供需要的控制力矩, 消除 扭矩, 实现精确定位。 此外, 釆用上述结构的直线电机构造的平台装置不需要 垂向气浮机构, 仅通过直线电机即可提供水平某个轴向的驱动力及垂向的悬浮 力, 结构简单, 操作方便。
此外, 本发明提供的直线电机及平台装置中, 所述第一磁铁阵列与所述第 二磁铁阵列均由第一类磁铁、第二类磁铁以及位于它们之间的第三类磁铁沿着 Υ 向按照 Halbach阵列模式周期性交替分布 , 所述第一类磁铁和第二类磁铁沿 Y 向等间距交替分布, 所述第三类磁铁是一块棱柱磁铁或者包括三块棱柱磁铁, 当所述第三类磁铁是一块棱柱磁铁时, 相邻的不同类磁铁之间的对接面均是斜 面, 当所述第三类磁铁包括三块棱柱磁铁时, 相邻的不同棱柱磁铁之间的对接 面是斜面, 相对称的磁铁阵列中对应的第一类磁铁、 第二类磁铁和第三类磁铁 共同形成一个闭合磁路。 一方面, 磁铁单元中的第一磁铁阵列与第二磁铁阵列 按照 Halbach阵列模式周期性交替分布,形成的 Halbach磁铁拓朴阵列相比现有 的等磁能积的 NS阵列,相对增加了垂向磁通量, 对应地增强了水平磁密和水平 推力, 同时相对增加了水平磁通量, 对应地增强了垂向磁密和垂向推力, 从而, 可以产生更大的六自由度推力。 另一方面, 釆用棱柱磁铁例如三棱柱磁铁和 /或 四棱柱磁铁构造的 Halbach磁铁阵列,相比现有的磁铁阵列磁泄露更小、磁密空 间分布更加均匀, 平面磁密的高次谐波幅值更小, 并且, 磁铁阵列的质量更轻。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发 明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及 其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求
1. 一种直线电机, 包括磁铁单元和线圈单元,所述磁铁单元包括两组相对平行、 位于磁轭上的相对称的磁铁阵列: 第一磁铁阵列与第二磁铁阵列; 所述线圈 单元设置于两组磁铁阵列之间的磁隙处, 其特征在于, 在 X轴、 Y轴、 Z轴 组成的空间直角坐标系内, 所述线圈单元包括在 Z向层叠设置的第一线圈阵 列和第二线圈阵列,所述第一线圈阵列和所述第二线圈阵列沿着 γ向错开一 定距离 Δ Ρ, Δ Ρ满足: 当控制系统给所述线圈单元通入所需电流时, 所述线 圈单元能够产生沿着 Y向的控制力、 沿着 Z向的控制力以及一个绕 X向的 力矩。
2. 根据权利要求 1所述的直线电机, 其特征在于, 所述第一线圈阵列和所述第 二线圈阵列均具有两个以上的相同数量的线圈, 每个线圈的线圈间距为 CP, 所述第一线圈阵列沿着 X向与所述第二线圈阵列错开的距离 Δ P为 1/4 CP。
3. 根据权利要求 1所述的直线电机, 其特征在于, 所述第一磁铁阵列与所述第 二磁铁阵列均由第一类磁铁、 第二类磁铁以及位于它们之间的第三类磁铁沿 着 Y向按照 Halbach阵列模式周期性交替分布组成, 所述第一类磁铁和第二 类磁铁沿 Y向等间距交替分布,所述第三类磁铁是一块棱柱磁铁或者包括三 块棱柱磁铁, 当所述第三类磁铁是一块棱柱磁铁时, 相邻的不同类磁铁之间 的对接面均是斜面, 当所述第三类磁铁包括三块棱柱磁铁时, 相邻的不同棱 柱磁铁之间的对接面是斜面, 相对称的磁铁阵列中对应的第一类磁铁、 第二 类磁铁和第三类磁铁共同形成一个闭合磁路。
4. 根据权利要求 3所述的直线电机, 其特征在于, 所述第一类磁铁和所述第二 类磁铁均是长方体, 所述第一类磁铁和第二类磁铁的磁化方向和 Z向平行且 相反;所述第三类磁铁包括第一棱柱磁铁、第二棱柱磁铁以及第三棱柱磁铁, 所述第一棱柱磁铁、 第二棱柱磁铁以及第三棱柱磁铁组合后整体呈一与所述 第一类磁铁和所述第二类磁铁等高的长方体, 所述第一棱柱磁铁、 第二棱柱 磁铁以及第三棱柱磁铁为三棱柱和 /或四棱柱;所述第一棱柱磁铁的磁化方向 经过其与第二棱柱磁铁的对接面进入所述第二棱柱磁铁后, 再经第二棱柱磁 铁与第三棱柱磁铁的对接面进入第三棱柱磁铁; 或者, 所述第三棱柱磁铁的 磁化方向经过其与第二棱柱磁铁的对接面进入所述第二棱柱磁铁后, 再经第 二棱柱磁铁与第一棱柱磁铁的对接面进入第一棱柱磁铁, 如此使得相对称的 磁铁阵列中对应的第一类磁铁、 第二类磁铁和第三类磁铁共同形成一个闭合 磁路。
5. 如权利要求 4所述的直线电机, 其特征在于: 所述第一棱柱磁铁、 第二棱柱 磁铁和第三棱柱磁铁位于 YZ平面的截面分别为直角三角形、 等腰三角形以 及直角三角形; 或者, 所述第一棱柱磁铁、 第二棱柱磁铁和第三棱柱磁铁位 于 YZ平面的截面分别为直角梯形、 等腰三角形和直角梯形。
6. 如权利要求 5所述的直线电机, 其特征在于: 所述第一类磁铁和第二类磁铁 的长和宽均一致, 第一类磁铁、 第二类磁铁和第三类磁铁的高度均相等。
7. 如权利要求 4所述的直线电机, 其特征在于: 所述第一棱柱磁铁、 第二棱柱 磁铁和第三棱柱磁铁位于 YZ平面的截面分别为直角三角形、 等腰梯形和直 角三角形。
8. 如权利要求 7所述的直线电机, 其特征在于: 所述第一棱柱磁铁和第三棱柱 磁铁位于 YZ平面的截面为具有一公共边的直角梯形。
9. 如权利要求 3所述的直线电机, 其特征在于: 所述对接面与 Z轴的夹角根据 所述第一棱柱磁铁、 第二棱柱磁铁和第三棱柱磁铁的尺寸及形状而定。
10.根据权利要求 3所述的直线电机, 其特征在于, 所述第三类磁铁是一块棱柱 磁铁, 所述第一类磁铁、 第二类磁铁和第三类磁铁位于 YZ平面的截面均是 等腰梯形, 所述第一类磁铁和第二类磁铁的磁化方向和 Z向平行且相反, 第 三类磁铁的磁化方向与 Y向平行并指向第一类磁铁或第三类磁铁,由此使得 相对称的磁铁阵列中对应的第一类磁铁、 第二类磁铁和第三类磁铁共同形成 一个闭合磁路。
根据权利要求 10所述的直线电机, 其特征在于, 第一类磁铁、 第二类磁铁 和第三类磁铁的沿 ΥΖ平面的截面为腰长相等、 底角相同且高度相等的等腰 梯形。
—种平台装置, 包括承版台及位于所述承版台两侧的两个底座,其特征在于: 力, 所述电机为如权利要求 1〜11项中任意一项所述的直线电机。
如权利要求 12所述的平台装置, 其特征在于: 所述两个底座中至少一个上 括连接所述承版台的气浮垫和固定于所述底座上的气浮导轨, 所述气浮垫设 置于所述气浮导轨的靠近所述承版台的一侧。
如权利要求 13所述的平台装置, 其特征在于: 所述气浮垫为柔性块。
PCT/CN2013/078671 2012-07-31 2013-07-02 直线电机及平台装置 WO2014019438A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/408,130 US9755493B2 (en) 2012-07-31 2013-07-02 Linear motor and stage apparatus
SG11201407672XA SG11201407672XA (en) 2012-07-31 2013-07-02 Linear motor and stage apparatus
EP13826225.8A EP2882082A4 (en) 2012-07-31 2013-07-02 LINEAR MOTOR AND PLATFORM DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210270584.5A CN103580444B (zh) 2012-07-31 2012-07-31 直线电机
CN201210270584.5 2012-07-31
CN201210525941.8A CN103872876A (zh) 2012-12-07 2012-12-07 直线电机及平台装置
CN201210525941.8 2012-12-07

Publications (1)

Publication Number Publication Date
WO2014019438A1 true WO2014019438A1 (zh) 2014-02-06

Family

ID=50027216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078671 WO2014019438A1 (zh) 2012-07-31 2013-07-02 直线电机及平台装置

Country Status (4)

Country Link
US (1) US9755493B2 (zh)
EP (1) EP2882082A4 (zh)
SG (1) SG11201407672XA (zh)
WO (1) WO2014019438A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160241120A1 (en) * 2015-02-17 2016-08-18 Sumitomo Heavy Industries, Ltd. Linear motor, magnet unit, and stage device
CN106936337A (zh) * 2015-12-30 2017-07-07 上海微电子装备有限公司 磁浮平面旋转电机及光刻装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059934A1 (en) 2011-10-27 2013-05-02 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
JP6373992B2 (ja) 2013-08-06 2018-08-15 ザ・ユニバーシティ・オブ・ブリティッシュ・コロンビア 変位デバイスおよび方法とそれに関連付けられた運動を検出し推定するための装置
US9786423B2 (en) * 2013-10-28 2017-10-10 Massachusetts Institute Of Technology Method and apparatus for producing an asymmetric magnetic field
WO2015179962A1 (en) * 2014-05-30 2015-12-03 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
WO2015184553A1 (en) 2014-06-07 2015-12-10 The University Of British Columbia Methods and systems for controllably moving multiple moveable stages in a displacement device
EP3155712A4 (en) 2014-06-14 2018-02-21 The University Of British Columbia Displacement devices, moveable stages for displacement devices and methods for fabrication, use and control of same
CN105811730B (zh) * 2014-12-30 2018-06-29 上海微电子装备(集团)股份有限公司 一种六自由度直线电机
CN104660003B (zh) * 2015-02-02 2017-05-10 瑞声光电科技(常州)有限公司 扁平线性振动电机
WO2017004716A1 (en) 2015-07-06 2017-01-12 The University Of British Columbia Methods and systems for controllably moving one or more moveable stages in a displacement device
DE102015115347A1 (de) * 2015-09-11 2017-03-16 Beckhoff Automation Gmbh Magnetanordnung für einen elektrischen Motor
NL2018848A (en) * 2016-06-09 2017-12-13 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US10671166B2 (en) * 2016-08-26 2020-06-02 Apple Inc. Electronic device including Halbach array based haptic actuator and related methods
US11223303B2 (en) * 2017-06-19 2022-01-11 Nikon Research Corporation Of America Motor with force constant modeling and identification for flexible mode control
KR102533589B1 (ko) * 2018-04-17 2023-05-17 자화전자(주) 수평형 리니어 진동발생장치
CN109698600B (zh) * 2018-12-10 2021-01-01 中国科学院电工研究所 一种具有辅助弱磁结构的直线电机
EP3719962A1 (en) 2019-04-01 2020-10-07 LIM-Tech Limited Electromotive machine
DE102019113296A1 (de) * 2019-05-20 2020-11-26 Physik Instrumente (Pi) Gmbh & Co. Kg Zweiachspositioniervorrichtung
CN116961356B (zh) * 2023-09-19 2023-12-12 中国科学院长春光学精密机械与物理研究所 一种可提供动子z向浮力的长行程运动电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433564A (ja) * 1990-05-30 1992-02-04 Hitachi Metals Ltd 3相駆動方式リニアブラシレス直流モータ
US20040246458A1 (en) 2003-03-11 2004-12-09 Asml Netherlands B.V. Lithographic linear motor, lithographic apparatus, and device manufacturing method
CN101783574A (zh) * 2010-04-12 2010-07-21 哈尔滨工业大学 环形绕组分段式永磁同步直线电机
US20100264755A1 (en) * 2009-04-21 2010-10-21 Gary Peter Widdowson Dual-axis planar motor providing force constant and thermal stability
US20100295385A1 (en) * 2009-05-22 2010-11-25 Chieftek Precision Co., Ltd. Unit coil, coil assembly and coreless type linear motor
CN101931307A (zh) * 2009-06-19 2010-12-29 株式会社安川电机 直线电动机的电枢以及直线电动机
CN102185458A (zh) * 2011-05-18 2011-09-14 哈尔滨工业大学 高精度无槽永磁电机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3916048B2 (ja) * 2002-01-10 2007-05-16 株式会社安川電機 リニアモータ
JP2004172557A (ja) * 2002-11-22 2004-06-17 Canon Inc ステージ装置及びその制御方法
US6906789B2 (en) * 2003-06-02 2005-06-14 Asml Holding N.V. Magnetically levitated and driven reticle-masking blade stage mechanism having six degrees freedom of motion
US7368838B2 (en) * 2004-11-02 2008-05-06 Nikon Corporation High efficiency voice coil motor
WO2008130560A1 (en) * 2007-04-19 2008-10-30 Nikon Corporation Three degree of movement mover and method for controlling the same
US20100090545A1 (en) * 2008-10-09 2010-04-15 Binnard Michael B Planar motor with wedge shaped magnets and diagonal magnetization directions
JP5188357B2 (ja) * 2008-10-23 2013-04-24 三菱電機株式会社 リニアモータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433564A (ja) * 1990-05-30 1992-02-04 Hitachi Metals Ltd 3相駆動方式リニアブラシレス直流モータ
US20040246458A1 (en) 2003-03-11 2004-12-09 Asml Netherlands B.V. Lithographic linear motor, lithographic apparatus, and device manufacturing method
US20100264755A1 (en) * 2009-04-21 2010-10-21 Gary Peter Widdowson Dual-axis planar motor providing force constant and thermal stability
US20100295385A1 (en) * 2009-05-22 2010-11-25 Chieftek Precision Co., Ltd. Unit coil, coil assembly and coreless type linear motor
CN101931307A (zh) * 2009-06-19 2010-12-29 株式会社安川电机 直线电动机的电枢以及直线电动机
CN101783574A (zh) * 2010-04-12 2010-07-21 哈尔滨工业大学 环形绕组分段式永磁同步直线电机
CN102185458A (zh) * 2011-05-18 2011-09-14 哈尔滨工业大学 高精度无槽永磁电机

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM W.: "Precision Planar Magnetic Levitation", J. OF THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT) DESCRIBES IN HIS PHD THESIS, 1997
See also references of EP2882082A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160241120A1 (en) * 2015-02-17 2016-08-18 Sumitomo Heavy Industries, Ltd. Linear motor, magnet unit, and stage device
JP2016152668A (ja) * 2015-02-17 2016-08-22 住友重機械工業株式会社 リニアモータ、磁石ユニット、ステージ装置
US10381911B2 (en) * 2015-02-17 2019-08-13 Sumitomo Heavy Industries, Ltd. Linear motor, magnet unit, and stage device
CN106936337A (zh) * 2015-12-30 2017-07-07 上海微电子装备有限公司 磁浮平面旋转电机及光刻装置
CN106936337B (zh) * 2015-12-30 2019-02-01 上海微电子装备(集团)股份有限公司 磁浮平面旋转电机及光刻装置

Also Published As

Publication number Publication date
EP2882082A4 (en) 2015-12-09
US20150137624A1 (en) 2015-05-21
EP2882082A1 (en) 2015-06-10
SG11201407672XA (en) 2015-04-29
US9755493B2 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2014019438A1 (zh) 直线电机及平台装置
CN103872876A (zh) 直线电机及平台装置
CN101807010B (zh) 纳米精度六自由度磁浮微动台及应用
JP4639517B2 (ja) ステージ装置、リソグラフィーシステム、位置決め方法、及びステージ装置の駆動方法
US9030057B2 (en) Method and apparatus to allow a plurality of stages to operate in close proximity
US7075198B2 (en) Alignment apparatus and exposure apparatus using the same
CN103208867B (zh) 磁铁单元、磁铁阵列、磁浮平面电机及应用该磁浮平面电机的光刻装置
WO2000010242A1 (en) Compact planar motor having multiple degrees of freedom
KR102105809B1 (ko) 기판 처리 장치 및 기판 처리 방법, 노광 방법 및 노광 장치 그리고 디바이스 제조 방법 및 플랫 패널 디스플레이의 제조 방법
JP5575802B2 (ja) 一体式ステージ位置決めシステム及び方法
WO2009003348A1 (fr) Table de travail à micro-déplacement à six degrés de liberté
JP2001118773A (ja) ステージ装置及び露光装置
CN101515119A (zh) 采用气浮平面电机的硅片台双台交换系统
WO2000033318A1 (fr) Dispositif d'etagement se son procede de fabrication; dispositif d'alignement et son procede de fabrication
KR20120091160A (ko) 노광 장치, 노광 방법, 및 디바이스 제조 방법
CN103580444B (zh) 直线电机
US20130258307A1 (en) Magnet Array Configuration for Higher Efficiency Planar Motor
JP6452338B2 (ja) ステージ装置、およびその駆動方法
WO2006035835A1 (ja) 磁界発生装置、電磁アクチュエータ、ステージ装置、露光装置、及びデバイスの製造方法
JPWO2004084396A1 (ja) 超音波浮上装置
JP2001008430A (ja) モータ装置、ステージ装置、及び露光装置
JP7189847B2 (ja) 磁気浮上ステージ装置、および、それを用いた荷電粒子線装置または真空装置
Kurisaki et al. A newly developed XY planar nano-motion table system with large travel ranges
JP4122815B2 (ja) リニアモータおよびステージ装置並びにリニアモータの制御方法
US20090290138A1 (en) Pulse motor, positioning apparatus, exposure apparatus, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14408130

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013826225

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013826225

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE