WO2014019383A1 - 滤波器 - Google Patents

滤波器 Download PDF

Info

Publication number
WO2014019383A1
WO2014019383A1 PCT/CN2013/073886 CN2013073886W WO2014019383A1 WO 2014019383 A1 WO2014019383 A1 WO 2014019383A1 CN 2013073886 W CN2013073886 W CN 2013073886W WO 2014019383 A1 WO2014019383 A1 WO 2014019383A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layers
common
internal electrode
electrode layer
layer
Prior art date
Application number
PCT/CN2013/073886
Other languages
English (en)
French (fr)
Inventor
谭斌
谢荣华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13825458.6A priority Critical patent/EP2779448B1/en
Publication of WO2014019383A1 publication Critical patent/WO2014019383A1/zh
Priority to US14/313,696 priority patent/US9397632B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0138Electrical filters or coupling circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • H03H7/425Balance-balance networks
    • H03H7/427Common-mode filters

Definitions

  • Embodiments of the present invention relate to a filter structure, and more particularly to a filter of a stacked structure. Background technique
  • Filters are the main components in electronic equipment that filter various power supplies, signals, etc. to ensure the stability and reliability of circuit operation.
  • a combination of discrete X capacitors and Y capacitors is usually used as a filter to eliminate noise such as noise in the power supply circuit.
  • a discrete capacitive component is usually used. Specifically, an X capacitor is connected between the power line and the return line or between the positive and negative two-pole power lines for removing the circuit. For differential mode noise, the X capacitor usually uses a micro-level film capacitor or a chip ceramic capacitor. Meanwhile, a Y capacitor is connected between the power line and the ground. The Y capacitor is connected in series with the two capacitors and connected to the power line. Between the ground lines, it is used to remove the common mode noise in the circuit.
  • the connection symmetry of the Y type circuit is quite high, the ground leakage current is small, the withstand voltage is relatively high, and the nanometer level is usually used.
  • Ceramic capacitors According to the function of the capacitor, the X capacitor that eliminates the differential mode noise can also be called the differential mode capacitor, and the Y capacitor that eliminates the common mode noise is called the common mode capacitor.
  • a multi-layered filter which integrates a differential mode capacitor and a common mode capacitor, and includes: two external common electrode layers, and is sandwiched between two common electrode layers. At least two internal electrode layers are interposed, and a common electrode layer is disposed between each internal electrode layer; each electrode layer is connected to an external electrode provided at the filter end, and an external circuit can enter the internal electrode layer through the external electrode.
  • the capacity of the differential mode capacitor formed is small, and the differential mode filtering capability is poor, and can only be used in a high frequency filter circuit, and the relatively low frequency noise filtering of the DC power source cannot be applied.
  • Embodiments of the present invention provide a filter that can improve a capacitance capacity of a differential mode capacitor, so that the filter can be applied to a filtering process of a low frequency noise such as a DC power supply.
  • An embodiment of the present invention provides a filter, including: two common electrode layers and two internal electrode layers, wherein the two internal electrode layers are located between the two common electrode layers, and the two common electrode layers and the two internal electrode layers An electrically insulating layer is disposed between any two adjacent electrode layers; the two common electrode layers are respectively connected to at least one ground electrode, and the two inner electrode layers are respectively connected to at least one signal electrode.
  • the present invention also provides a filter, comprising: a three common electrode layer and two pairs of internal electrode layers, each pair of internal electrode layers including two internal electrode layers;
  • the three common electrode layers include a first common electrode layer, a second common electrode layer, and a third common electrode layer, wherein a pair of internal electrode layers are located in the first common electrode layer and Between the second common electrode layers, another pair of internal electrode layers are located between the second common electrode layer and the third common electrode layer, and an electrically insulating layer is disposed between each electrode layer;
  • the three common electrode layers are respectively connected with at least one ground electrode, and each of the two internal electrode layers is respectively connected with at least one signal electrode.
  • the filter provided by the embodiment of the invention can integrate the differential mode capacitor and the common mode capacitor characteristic by providing two internal electrode layers between the two common electrodes, and has the characteristics of small volume and convenient manufacture, and can be effectively The filter manufacturing cost is reduced.
  • the formed differential mode capacitor has a large capacitance capacity, and can have a better filtering effect on the filtering process of low frequency noise such as a DC circuit.
  • FIG. 1A is a schematic structural diagram of a filter according to Embodiment 1 of the present invention.
  • FIG. 1B is a schematic view showing the assembled structure of each electrode layer in FIG. 1A;
  • 1C is a schematic structural diagram of a filter according to an embodiment of the present invention.
  • FIG. 1D is a schematic diagram of an equivalent circuit of a filter according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view showing the assembly structure of each electrode layer in Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of a filter according to Embodiment 3 of the present invention.
  • FIG. 4A is a schematic structural diagram of a filter according to Embodiment 4 of the present invention.
  • FIG. 4B is a schematic view showing the assembled structure of each electrode layer in FIG. 4A;
  • FIG. 5 is a schematic diagram of an assembly structure of each electrode layer in a filter according to Embodiment 5 of the present invention.
  • the technical solutions in the embodiments of the present invention will be clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. Examples are some embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1A is a schematic structural diagram of a filter according to a first embodiment of the present invention
  • FIG. 1B is a schematic structural view of an electrode layer of FIG. 1A
  • FIG. 1C is a schematic structural diagram of a filter according to an embodiment of the present invention
  • the filter provided in this embodiment includes two common electrode layers and two internal electrode layers, and the two internal electrode layers are located between the two common electrode layers, between the two common electrode layers and any two adjacent electrode layers of the two internal electrode layers.
  • An electrically insulating layer is disposed; the second common electrode layer is respectively connected with at least one ground electrode, and the two inner electrode layers are respectively connected to at least one signal electrode.
  • the two common electrode layers are a first common electrode layer 21 and a second common electrode layer 24, respectively, and the two internal electrode layers are a first internal electrode layer 22 and a second internal electrode layer, respectively.
  • the first common electrode layer 21, the first internal electrode layer 22, the second internal electrode layer 23, and the second common electrode layer 24 are sequentially stacked, and an electrically insulating layer 25 is disposed between the electrode layers.
  • the outer surface of the filter is provided with a first ground electrode 11, a second ground electrode 12, a first signal electrode 13, and a second signal electrode 14, wherein the first ground
  • the electrode 11 and the second ground electrode 12 are electrically connected to the first common electrode layer 21 and the second common electrode layer 24, the first signal electrode 13 is electrically connected to the first internal electrode layer 22, and the second signal electrode 14 and the second inner electrode 12 are electrically connected.
  • the electrode layer 23 is electrically connected.
  • the above four electrode layers may be disposed in an insulative housing, or the upper and lower surfaces of the stacked four electrode layers may be respectively provided with an insulating protective layer to form a A filter structure having external protection; each of the ground electrode and the signal electrode are respectively disposed on the surface of the filter and electrically connected to the common electrode layer and the internal electrode layer for connection with other electronic components or circuits.
  • a first electrically insulating protective layer 1 and a second electrically insulating layer 2 are respectively disposed on upper and lower surfaces of the four electrode layers, and are directly disposed on the outer surface of the filter composed of the six layers. Signal electrode and common ground electrode.
  • first ground electrode 11 described above may be connected only to the first common electrode layer 21, and the second ground electrode 12 may be connected only to the second common electrode layer 24, or the first ground electrode 11 and The second ground electrode 12 can also be electrically connected in one body.
  • two or more ground electrodes may be connected to each common electrode layer, and the number of ground electrodes and the connection manner with the common electrode layers may be set according to actual needs, and are not particularly limit.
  • the first signal electrode 13 and the second signal electrode 14 can be respectively connected with the DC positive DC+ and the DC negative DC- in the DC power supply circuit, that is, the filter.
  • Parallel in the DC circuit, the first ground electrode 11 and the second ground electrode 12 are grounded, such that in the DC power supply circuit, the differential mode between the first internal electrode layer 22 and the second internal electrode layer 23 in the filter.
  • the capacitance characteristic is equivalent to the differential mode capacitance on the circuit, that is, the X capacitance as shown in FIG.
  • the filter has the functions of differential mode filtering and common mode filtering, and can be regarded as a differential mode capacitor. Integration with common mode capacitors.
  • the filter of the embodiment When the filter of the embodiment is connected in parallel to the DC power supply circuit, the path of noise to the ground such as clutter can be effectively shortened, and the parasitic component of the capacitor to which the discrete capacitive component is attached can be reduced, which has better filtering effect, and the filtering in this embodiment
  • the device has a smaller volume while achieving the same filtering function.
  • the distance between the first internal electrode layer 22 and the second internal electrode layer 23 is small, and the capacity of the differential mode capacitor formed between them is large, so that the filtering process of the DC power source such as low frequency noise can be compared. Good filtering effect.
  • the two internal electrode layers may be respectively provided with a connection electrically connected to the signal electrode.
  • for introducing current into the inner electrode layer, or deriving current from the inner electrode layer; and the connection ports on the two inner electrode layers may be staggered from each other, so that the flow direction on the inner electrode layer, ie, two inner The direction of introduction or derivation of the electrode layer is different.
  • a first connection ⁇ A1 is disposed on the first internal electrode layer 22
  • a second connection ⁇ A2 is disposed on the second internal electrode layer 23
  • the first signal electrode 13 and the first connection ⁇ A1 are disposed.
  • the second signal electrode 14 is electrically connected to the second port A2, and the first port A1 and the second port A2 are oppositely disposed, that is, the first port A1 and the second port A2 are located opposite to the filter.
  • Both ends, and the first connection port A1 and the second connection port A2 are extension portions of the inner electrode layer such that the current guiding directions of the first inner electrode layer 13 and the second inner electrode layer 14 are opposite, such that the inner electrode layers are respectively
  • the generated magnetic fields can be canceled by each other to improve the filtering effect of the filter.
  • the first common electrode layer 11 and the second common electrode layer 14 may have a common body region C1 and a common extension region C2, respectively, and the area of the common extension region C2 is smaller than that of the common body region C1.
  • the area, the common body area C1 can be electrically connected to the first ground electrode 11 or the second ground electrode 12 through the common extension area C2, so that the fabrication of the common electrode layer can be facilitated while avoiding electrical connection with other electrode layers.
  • an electrical connection is made between the signal electrodes.
  • the common extension region C2 may constitute a connection port on the common electrode layer for connection with the ground electrode.
  • the common extension regions on the two common electrode layers overlap each other in the direction of the plane in which the vertical common body regions are located.
  • two extension regions may be respectively disposed on the two common electrode layers.
  • the first common ground electrode 21 and the second common ground electrode 24 are respectively symmetrically disposed with two extension regions C2, and two common The extension regions C2 on the electrode layers are arranged one above the other, so that the arrangement of the ground electrodes on the outer surface of the filter can be facilitated.
  • the first inner electrode layer 22 and the second inner electrode layer 23 are oppositely disposed, that is, the first inner electrode layer 22 and the second inner electrode layer 23 have the same area and shape, and An inner electrode layer 22 is disposed adjacent to one end of the filter, so that a connection ⁇ A1 can be formed at one end of the filter, and the second inner electrode layer 22 is disposed adjacent to the opposite end of the filter so as to be formed at the other end of the filter.
  • the connection ⁇ A2 is such that the externally fabricated signal electrode can be directly electrically connected to the internal electrode layer, facilitating the fabrication of the internal electrode layer and the signal electrode.
  • the filter has a rectangular structure as a whole, and the filter is opposite.
  • the two end faces are respectively provided with a conductive layer, and the first signal electrode 13 and the second signal electrode 14 are respectively formed at both ends of the filter, and those skilled in the art can understand that the first signal electrode 13 and the second signal electrode 14 are in the filter.
  • the position may not be limited to the opposite ends, but may be other positions as long as the two are not in direct contact.
  • the first ground electrode 11 and the second ground electrode 12 are respectively disposed on the side of the middle portion of the filter, and the two ground electrodes are not directly connected, so as to be disposed opposite to the filter.
  • the signal electrodes at both ends can have a good safety distance, so that the filter can have better high voltage resistance and can meet the high voltage safety requirements.
  • the first ground electrode 11 and the second ground electrode 12 described above can also be an integral structure electrically connected together, and the position of the outer surface of the filter can also be flexibly set as needed.
  • the first common electrode layer 21, the first internal electrode layer 22, the second internal electrode layer 23, and the second common electrode layer 24 are all disposed on the dielectric insulating substrate, and each electrode layer is electrically insulated by the dielectric insulating substrate.
  • the dielectric insulating substrate is the electrically insulating layer 25 described above.
  • the dielectric insulating substrate is a ceramic sheet, and the insulating shell or insulating layer for protecting each electrode layer may also be a ceramic sheet.
  • the first common electrode layer 21, the first internal electrode layer 22, the second internal electrode layer 23, and the second common electrode layer 24 may be separately fabricated on the dielectric insulating substrate;
  • the first common electrode layer 21, the first internal electrode layer 22, the second internal electrode layer 23, and the second common electrode layer 24 are sequentially stacked, and are disposed on the outer surfaces of the first common electrode layer 21 and the second common electrode layer 24.
  • each of the electrode layers may be an electrode of the same material, or an electrode of a different material, for example, a nickel metal material or a nickel alloy material may be used; the ground electrode and the signal electrode may also be the same. Or electrodes of different materials, and the ground electrode and the signal electrode may be the same or different materials as the respective electrode layers.
  • the filter can be fabricated by a chip package process to obtain a patch filter.
  • the size of the patch filter is small, the space occupied on the circuit board is small, and the assembly is easy.
  • two internal electrode layers are disposed between the two common electrode layers, so that two inner A differential mode capacitance characteristic can be formed between the electrode layers, and the distance between the two internal electrode layers can be made close, which can effectively increase the capacity of the formed differential mode capacitor, and each internal electrode layer has a common electrode.
  • the layers correspond so that each of the differential mode capacitors is in a semi-shielded state, which is advantageous for the internal electrode layer to be free from external noise.
  • the two internal electrode layers respectively form a common mode capacitance characteristic with the adjacent common electrode layers, and the common electrode layer area size can be equal to the size of the internal electrode layer, the contact surface is large, and the filtering effect is good.
  • the filter when the filter is used, only the filter needs to be connected in parallel in the circuit, the distance from the noise to the ground is shorter, and the Equival Serves Resistance (ESR) and the equivalent series inductance are lower.
  • Equival Series Inductance, ESL) Equival Series Inductance
  • the X capacitor part is realized by two internal electrode layers, which can have higher capacitance capacity and good differential mode filtering effect. It is very suitable for DC power supply filtering processing, and can be applied to frequency up to 100MHz. In the filtering.
  • the filter of the embodiment has a laminated structure, is convenient to manufacture, has low cost, integrates a conventional differential mode capacitor and a common mode capacitor, has a small volume, can reduce the volume of the filter circuit, and has a good filtering effect.
  • the filter provided by the embodiment of the present invention can integrate the differential mode capacitor and the common mode capacitor characteristic by providing two internal electrode layers between two common electrodes, and has the characteristics of small volume and convenient manufacture. , can effectively reduce the production cost of the filter.
  • the formed differential mode capacitor has a large capacitance capacity, and can have a better filtering effect on the filtering process of low frequency noise such as a DC circuit.
  • the two internal electrode layers each include a body region and an extension region extending outward along an edge of the body region, and the extension region constitutes an inner electrode layer.
  • the ports are connected, and the extension regions on the two inner electrode layers do not overlap each other in the direction of the plane in which the vertical inner electrode layers are located. Specifically, as shown in FIG.
  • the first inner electrode layer 22 and the second inner electrode layer 23 are respectively composed of a body region D1 and an extension region D2, and the body region D1 is a rectangle having the same shape and area, and is arranged in an overlapping manner;
  • the connection ⁇ of the inner electrode layer 22 and the second inner electrode layer 23 electrically connected to the signal electrode is the extension region D2, and the extension regions D2 of the first inner electrode layer 22 and the second inner electrode layer 23 are located at opposite ends, that is, The extension regions D2 on the two inner electrode layers do not overlap each other in the up and down direction as shown in FIG.
  • extension processing on the two inner electrode layers may be disposed outside the middle of the edge of the main body region, or may be disposed at the corner of the main body region, as long as the inner electrodes are The two extensions on the layer do not overlap in the up and down direction.
  • the extension region electrically connected to the signal electrode by providing the extension region electrically connected to the signal electrode, the two internal electrode layers and the main body region of the common electrode layer are overlapped with each other, so that the filter can have better capacitance characteristics and the filter is improved.
  • the extension region by setting the extension region as the connection port of each electrode layer, the electrical connection between the main body region and the external electrode of each electrode layer has a transition, and the processing of the filter is more convenient.
  • FIG. 3 is a schematic structural diagram of a filter according to Embodiment 3 of the present invention.
  • the filter in this embodiment includes a plurality of filtering units 10, each of which includes a first common electrode layer arranged in a stack as shown in FIG. 1B.
  • the first inner electrode layer, the second inner electrode layer and the second common electrode layer, the plurality of filter units 10 are stacked and interposed between the first electrically insulating layer and the second electrically insulating layer.
  • the first common electrode in each filtering unit 10 is electrically connected to the first ground electrode
  • the first inner electrode layer is electrically connected to the first signal electrode
  • the second inner electrode layer is electrically connected to the second signal electrode.
  • the second common electrode layer is electrically connected to the second ground electrode, thereby forming a plurality of filtering units connected in parallel on the circuit.
  • each of the inner electrode layers may be respectively provided with two connection ports, wherein one of the inner electrode layers of the two inner electrode layers A connecting port is disposed on each of the diagonal corners; and the other inner electrode layer of the two inner electrode layers is respectively disposed at a diagonally opposite corner of the inner electrode layer, and respectively, a connecting port is disposed, specifically, as shown in FIG. 4A As shown in FIG.
  • the outer surfaces of the filter may be respectively provided with four signal electrodes R1, R2, R3, and R4, and the signal electrodes R1 and the corresponding positions on the first inner electrode layer 22 are Connected to the Al l connection, the signal electrode R2 is connected to the other port ⁇ Al l , and likewise, the signal electrodes R3 and R4 are respectively connected to the two ports 12A12 on the second internal electrode layer 23, so that the filter can Form a six-terminal structure to meet the application of six-terminal filter circuit For example, two different voltage signals can be filtered.
  • connection ports lAl1 are disposed diagonally between the two connection ports A12, the current guiding directions of the first inner electrode layer 22 and the second inner electrode layer 23 can be crossed each other. Reduce common mode impedance and improve filtering.
  • connection defects in the two internal electrode layers may also be formed by extension regions.
  • the two internal electrode layers each include a body region and two extension regions extending outward along the edge of the body region.
  • the extension region constitutes a connection ⁇ on the inner electrode layer; the extension regions on the two inner electrode layers do not overlap each other in the direction of the plane of the vertical inner electrode layer, wherein the main body regions of the two inner electrode layers are rectangular, and each inner portion
  • the two extension regions on the electrode layer are symmetrically disposed on the opposite sides of the body region with respect to the center of the body region (as shown in FIG. 4B).
  • the two extension regions may be symmetrically disposed on opposite sides of the main body region, and the embodiment of the present invention is not particularly limited.
  • a plurality of filtering units may be disposed between the first insulating layer and the second insulating layer, and the filtering unit may specifically be the structure shown in FIG. 4B.
  • the specific implementation is similar to the embodiment shown in FIG. 3, and details are not described herein again.
  • FIG. 5 is a schematic diagram of an assembly structure of each electrode layer in a filter according to Embodiment 5 of the present invention.
  • the filter of the embodiment of the present invention includes three common electrode layers and two pairs of internal electrode layers, and each pair of internal electrode layers includes two internal electrode layers, wherein three
  • the common electrode layer includes a first common electrode layer, a second common electrode layer and a third common electrode layer, wherein the pair of inner electrode layers are located between the first common electrode layer and the second common electrode layer
  • the other pair of internal electrode layers are disposed between the second common electrode layer and the third common electrode layer, and an electrically insulating layer is disposed between the electrode layers; and the third common electrode layer is further connected with at least one ground electrode.
  • Each of the inner electrode layers of the two inner electrode layers is further connected with at least one signal electrode.
  • the three common electrode layers are respectively a first common electrode layer 101, a second common electrode layer 102, and a third common electrode layer 103, and two pairs of internal electrode layers are respectively
  • the inner electrode layers each include two inner electrode layers, wherein a pair of inner electrode layers 201 are located between the first common electrode layer 101 and the second common electrode layer 102, and another pair of inner electrode layers 202 are located at the second common electrode layer 102.
  • An electrically insulating layer is disposed between each of the electrode layers and the third common electrode layer 103.
  • connection port electrically connected to the signal electrode is disposed on each of the two internal electrode layers for introducing or discharging current.
  • each The connection ports on the two internal electrode layers in the inner electrode layer are arranged to be shifted from each other such that the direction of the flow of the two inner electrode layers in each pair of the inner electrode layers is different.
  • two of the pair of internal electrode layers disposed between the two common electrode layers may have the same or similar structure as that shown in FIG. 1A to FIG. 1C or FIG. 4A to FIG.
  • the common electrode layer may also have the same or similar structure as that shown in FIG. 1A to FIG. 1C or FIG. 4A to FIG. 4B, and details are not described herein again.
  • the outer surface of the filter of this embodiment may be provided with one or more ground electrodes for electrically connecting with the common electrodes therein, and at the same time, at least four signal electrodes may be disposed for
  • the inner electrode layer is electrically connected, the number of the ground electrode and the signal electrode are set, and the set position can be referred to the above-mentioned FIG. 1A to FIG. 1C or the filter shown in FIG. 4A to FIG. 5B, which will not be described in detail herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Filters And Equalizers (AREA)

Abstract

本发明提供一种滤波器。该滤波器包括:二公共电极层以及二内电极层,所述二内电极层位于所述二公共电极层之间,所述二公共电极层和二内电极层中任意相邻的两个电极层之间设置有电绝缘层;所述二公共电极层分别连接至少一接地电极,所述二内电极层分别连接至少一信号电极。本发明实施例提供的滤波器可对直流电源等低频电路进行滤波处理,具有较好的滤波处理效果。

Description

滤波器
技术领域
本发明实施例涉及滤波器结构, 尤其涉及一种层叠结构的滤波器。 背景技术
滤波器是电子设备中的主要元器件, 其可对各种电源、 信号等进行滤 波, 以确保电路运行的稳定性和可靠性。 其中, 在直流电源的滤波电路中, 通常釆用分立的 X电容和 Y电容的组合电路作为滤波器, 来消除电源电 路中的杂波等噪声。
现有技术中,对直流电源进行滤波处理时,通常釆用分立的电容元件, 具体地, 在电源线与回线之间或者正负两极电源线之间连接 X电容, 用于 去除电路中的差模噪声, X电容通常釆用微法级的薄膜电容或贴片陶瓷电 容; 同时, 在电源线与地线之间连接 Y电容, Y电容是将两个电容串联后 跨接在电源线与地线之间, 用于去除电路中的共模噪声, 由于共模噪声传 导的相位相同, Y型电路连接对称性相当高, 对地漏电流小, 耐压相对较 高, 通常釆用纳法级的陶瓷电容。 根据电容的功能, 也可将消除差模噪声 的 X电容称为差模电容, 将消除共模噪声的 Y电容称为共模电容。 这种 釆用分立电容元件连接到电路时, 电容元件使用数量多, 占用空间大, 且 元件设置位置、 精度要求高, 滤波效果较差。
为此, 现有技术中也有提出一种多层结构的滤波器, 其是将差模电容 和共模电容集成在一起, 包括: 两个外部公共电极层, 以及夹在两个公共 电极层之间的至少两个内电极层, 且各内电极层之间均设置有公共电极 层; 各电极层与滤波器端部设置的外部电极连接, 外部电路可通过外部电 极进入内电极层。 这种滤波器结构中, 形成的差模电容的容量偏小, 差模 滤波能力较差, 仅能用于高频滤波电路中, 对于直流电源这种相对低频的 噪声滤波无法适用。
综上, 现有多层结构的滤波器中, 差模电容的容量较小, 无法适用于 低频噪声等直流电源的滤波处理中。 发明内容 本发明实施例提供一种滤波器, 可提高差模电容的电容容量, 使得滤 波器可应用于直流电源等低频噪声的滤波处理中。
本发明实施例提供一种滤波器, 包括:二公共电极层以及二内电极层, 所述二内电极层位于所述二公共电极层之间, 所述二公共电极层和二内电 极层中任意相邻的两个电极层之间设置有电绝缘层; 所述二公共电极层分 别连接至少一接地电极, 所述二内电极层分别连接至少一信号电极。
本发明还提供一种滤波器, 包括: 三公共电极层以及二对内电极层, 每对内电极层均包括二内电极层;
所述三公共电极层包括第一公共电极层、 第二公共电极层和第三共公 共电极层, 所述二对内电极层中, 其中一对内电极层位于所述第一公共电 极层和第二公共电极层之间, 另一对内电极层位于所述第二公共电极层与 第三公共电极层之间, 且各电极层之间均设置有电绝缘层;
所述三公共电极层分别连接有至少一接地电极, 所述二内电极层中的 各内电极层分别连接有至少一信号电极。
本发明实施例提供的滤波器, 通过在两个公共电极之间设置两个内电 极层, 可将差模电容和共模电容特性集成在一起, 其具有体积小、 制作方 便的特点, 可有效减少滤波器的制作成本; 同时, 形成的差模电容具有较 大的电容容量, 可对直流电路等低频噪声的滤波处理中, 具有较好的滤波 效果。 附图说明
实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1A为本发明实施例一提供的滤波器的结构示意图;
图 1B为图 1A中各电极层的组装结构示意图; 图 1C为本发明实施例提供的滤波器的结构原理示意图;
图 1D为本发明实施例一提供的滤波器的等效电路示意图;
图 2为本发明实施例二中各电极层的组装结构示意图;
图 3为本发明实施例三提供的滤波器的原理结构示意图;
图 4A为本发明实施例四提供的滤波器的结构示意图;
图 4B为图 4A中各电极层的组装结构示意图;
图 5为本发明实施例五提供的滤波器中各电极层的组装结构示意图。 具体实施方式 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合本发明实 施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显 然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动的前提下 所获得的所有其他实施例, 都属于本发明保护的范围。
图 1A为本发明实施例一提供的滤波器的结构示意图; 图 1B为图 1A 中各电极层的组装结构示意图; 图 1C为本发明实施例提供的滤波器的结 构原理示意图;图 1D为本发明实施例一提供的滤波器的等效电路示意图。 本实施例提供的滤波器包括二公共电极层以及二内电极层, 二内电极层位 于二公共电极层之间, 二公共电极层和二内电极层中任意相邻的两个电极 层之间设置有电绝缘层; 二公共电极层分别连接有至少一接地电极, 二内 电极层分别连接至少一信号电极。 具体地, 如图 1A和图 1B所示, 二公 共电极层分别为第一公共电极层 21和第二公共电极层 24 , 二内电极层分 别为第一内电极层 22和第二内电极层 23 , 该第一公共电极层 21、 第一内 电极层 22、 第二内电极层 23和第二公共电极层 24依次层叠设置, 且各电 极层之间设置有电绝缘层 25。
本实施例中, 如图 1A-图 1C所示, 滤波器的外表面设置有第一接地 电极 11、 第二接地电极 12、 第一信号电极 13和第二信号电极 14 , 其中, 第一接地电极 11和第二地电极 12均与第一公共电极层 21和第二公共电 极层 24电连接, 第一信号电极 13与第一内电极层 22电连接, 第二信号 电极 14与第二内电极层 23电连接。 本领域技术人员可以理解, 实际应用中, 上述的 4层电极层可置于一 绝缘外壳内, 或者, 在层叠设置的该四个电极层的上下表面分别设置有绝 缘保护层上, 从而形成一个具有外部保护的滤波器结构; 各接地电极和信 号电极分别设置在滤波器的表面, 并与公共电极层和内电极层电连接, 用 于与其他电子元件或电路进行连接。 如图 1A所示, 本实施例中在四个电 极层的上下表面分别设置第一电绝缘保护层 1和第二电绝缘层 2 , 并在该 6层结构组成的滤波器的外表面直接设置信号电极和公共接地电极。
本领域技术人员可以理解, 上述的第一接地电极 11可仅与第一公共 电极层 21连接, 第二接地电极 12可仅与第二公共电极层 24连接, 或者, 该第一接地电极 11和第二接地电极 12也可电连接为一体。 此外, 每个公 共电极层可连接有 2个或 2个以上的接地电极, 其接地电极的设置数量, 以及与各公共电极层的连接方式可根据实际需要而设定, 在此并作不特别 限制。
本实施例滤波器使用时, 如图 1C和图 1D所示, 可将第一信号电极 13和第二信号电极 14分别与直流电源电路中的直流正极 DC+和直流负极 DC-连接, 即将滤波器并联在直流电路中, 第一接地电极 11和第二接地电 极 12接地, 这样在直流电源电路中, 该滤波器中的第一内电极层 22和第 二内电极层 23之间就呈差模电容特性, 在电路上等同于差模电容, 即如 图 1D所示 X电容, 而第一内电极层 22与第一公共电极层 21和第二内电 极层 22与第二公共电极层 24可共同呈共模电容特性, 在电路上等同于共 模电容, 即如图 1D所示的 Y电容, 因此, 该滤波器兼具差模滤波和共模 滤波的功能, 可以看作是差模电容和共模电容的集成。
本实施例滤波器并联连接在直流电源电路时, 可有效缩短杂波等噪声 到地的路径, 减少传统利用分立电容元件所依附的电容寄生成分, 具有更 好的滤波效果, 且本实施例滤波器在实现相同滤波功能的同时, 具有更小 的体积。
本实施例中, 第一内电极层 22和第二内电极层 23之间距离小, 他们 之间形成的差模电容的容量大, 因此可对低频噪声等直流电源的滤波处理 中, 具有较好的滤波效果。
本实施例中, 二内电极层上可分别设置有与信号电极电连接的连接 埠, 以用于向内电极层导入电流, 或从内电极层导出电流; 且该二内电极 层上的连接埠可相互错开设置, 以使二内电极层上的导流方向, 即二内电 极层的导入或导出电流方向不同。 具体地, 如图 1B所示, 第一内电极层 22上设置有第一连接埠 A1 , 第二内电极层 23上设置有第二连接埠 A2, 第一信号电极 13与第一连接埠 A1电连接, 第二信号电极 14与第二连接 埠 A2电连接, 且第一连接埠 A1与第二连接埠 A2相对设置, 即第一连接 埠 A1和第二连接埠 A2位于滤波器的相对的两端,且第一连接埠 A1和第 二连接埠 A2是内电极层的延伸部分,以使得第一内电极层 13和第二内电 极层 14的电流导向方向相反, 这样各内电极层上产生的磁场可相互 4氏消, 以提高滤波器的滤波效果。
本实施例中, 如图 1B所示, 第一公共电极层 11和第二公共电极层 14可分别具有公共主体区 C1和公共延伸区 C2 , 且公共延伸区 C2的面积 小于公共主体区 C1的面积, 公共主体区 C1可通过公共延伸区 C2电连接 到第一接地电极 11或第二接地电极 12上, 这样, 可便于公共电极层的制 作, 同时避免与其他电极层之间产生电连接, 特别是与信号电极之间产生 电连接。 其中, 所述的公共延伸区 C2可构成公共电极层上的连接埠, 用 于与接地电极连接。 具体可均为矩形形状; 此外, 二公共电极层上的公共延伸区在垂直公共主 体区所在平面的方向相互重叠。 具体地, 二公共电极层上可分别设置有二 延伸区, 如图 1 B所示, 第一公共接地电极 21和第二公共接地电极 24上 分别对称设置有两个延伸区 C2 ,且二公共电极层上的延伸区 C2上下重叠 设置, 这样, 可便于滤波器外表面接地电极的设置。
本实施例中, 如图 1B所示, 第一内电极层 22和第二内电极层 23为 反对称设置, 即第一内电极层 22和第二内电极层 23面积、 形状相同, 而 第一内电极层 22靠近滤波器的一端设置, 从而可在该滤波器的一端形成 连接埠 A1 , 第二内电极层 22靠近滤波器相对的另一端设置, 从而可在该 滤波器的另一端形成连接埠 A2, 这样, 在外部制作的信号电极可直接与 内电极层电连接, 便于内电极层和信号电极的制作。
本实施例中, 如图 1A所示, 滤波器整体为矩形结构, 滤波器相对的 两端面分别设置有导电层, 分别在滤波器的两端形成第一信号电极 13和 第二信号电极 14 , 本领域技术人员可以理解, 第一信号电极 13和第二信 号电极 14在滤波器的位置可不局限于相对的两端, 也可为其他位置, 只 要二者不直接接触。
本实施例中, 如图 1A所示, 第一接地电极 11和第二接地电极 12分 别设置在滤波器的中部的侧面上, 且两个接地电极不直接连接, 这样, 与 设置在滤波器相对两端的信号电极之间可具有较好的安全距离, 使得滤波 器可具有较好的耐高压能力, 可满足高压安规要求。 本领域技术人员可以 理解, 上述的第一接地电极 11和第二接地电极 12也可为电连接在一起的 一体结构, 且在滤波器外表面的位置也可根据需要灵活设置。
本实施例中, 上述的第一公共电极层 21、 第一内电极层 22、 第二内 电极层 23和第二公共电极层 24均设置在电介质绝缘基板上, 各电极层通 过电介质绝缘基板电隔离设置, 该电介质绝缘基板就是上述的电绝缘层 25。 优选地, 本实施例中电介质绝缘基板为陶瓷片, 且对各电极层进行保 护的绝缘外壳或绝缘层也可为陶瓷片。
本实施例中, 滤波器制作时, 可首先在电介质绝缘基板上分别制作第 一公共电极层 21、 第一内电极层 22、 第二内电极层 23和第二公共电极层 24; 然后, 将第一公共电极层 21、 第一内电极层 22、 第二内电极层 23和 第二公共电极层 24依次层叠设置, 并在第一公共电极层 21和第二公共电 极层 24外表面设置第一电绝缘层 1和第二电绝缘层 2, 从而得到陶瓷体; 其次, 在陶瓷体的外表面设置第一接地电极 1 1、 第二接地电极 12、 第一 信号电极 13和第二信号电极 14 , 从而形成滤波器。
本实施例中, 上述的各电极层可釆用同样材料的电极, 或者釆用不同 材料的电极, 例如均可釆用镍金属材料或镍合金材料等; 接地电极和信号 电极也可釆用相同或不同的材料的电极, 且接地电极和信号电极可釆用与 各电极层相同或不同的材料。
本实施例中, 如图 1A所示, 滤波器可釆用贴片封装工艺制作, 从而 得到贴片滤波器, 贴片滤波器的体积小, 在电路板上的占用空间少, 且便 于组装。
本实施例中, 在两个公共电极层之间设置两个内电极层, 使得两个内 电极层之间可形成差模电容特性, 两个内电极层之间的距离可以做的 ^艮 近, 可有效提高形成的差模电容的容量, 同时, 每个内电极层均有一个公 共电极层相对应, 这样每个差模电容均处于一个半屏蔽的状态中, 有利于 内电极层不受外围的噪声干扰。 此外, 两个内电极层分别与相邻的公共电 极层之间共同形成共模电容特性, 由于公共电极层面积大小可以等同于内 电极层的大小, 接触面大, 滤波效果好。
本实施例中, 滤波器使用时, 只需要将滤波器并联连接在电路中, 噪 声到地的距离更短,具有更低的等效串联电阻( Equival Servies Resistance , ESR )和等效串联电感 ( Equival Series Inductance, ESL ) ; 同时, X电容 部分由两个内电极层来实现, 可具有更高的电容容量, 差模滤波效果好, 非常适于直流电源的滤波处理,可应用频率 ΙΟΟΚΗζ至 100MHz的滤波中。
本实施例滤波器釆用层叠结构, 制作方便, 成本低, 集成了传统的差 模电容和共模电容, 体积小, 可减少滤波电路的体积, 同时具有较好的滤 波效果。
综上, 本发明实施例提供的滤波器, 通过在两个公共电极之间设置两 个内电极层, 可将差模电容和共模电容特性集成在一起, 其具有体积小、 制作方便的特点, 可有效减少滤波器的制作成本。 同时, 形成的差模电容 具有较大的电容容量, 可对直流电路等低频噪声的滤波处理中, 具有较好 的滤波效果。
图 2为本发明实施例二中各电极层的组装结构示意图。 与上述图 1A- 图 1C所示技术方案不同的是, 本实施例中, 二内电极层均包括主体区和 沿主体区的边缘向外延伸的延伸区, 该延伸区构成内电极层上的连接埠, 且二内电极层上的延伸区在垂直内电极层所在平面的方向上互不重叠。 具 体地, 如图 2所示, 第一内电极层 22和第二内电极层 23均由主体区 D1 和延伸区 D2组成, 且主体区 D1为形状、 面积相同的矩形, 并重叠设置; 第一内电极层 22和第二内电极层 23与信号电极电连接的连接埠为延伸区 D2 ,且第一内电极层 22和第二内电极层 23的延伸区 D2位于相对的两端, 即二内电极层上的延伸区 D2在如图 2所示的上下方向上互不重叠。
本领域技术人员可以理解, 上述的二内电极层上的延伸区处理可以设 置在主体区的边缘的中部外, 也可设置在主体区的拐角处, 只要二内电极 层上的两个延伸区在上下方向上不重叠即可。
本实施例中, 通过设置延伸区与信号电极电连接, 可使得两个内电极 层之间, 以及与公共电极层的主体区相互重叠, 使得滤波器可具有更好的 电容特性, 提高滤波器的滤波效果; 同时, 通过设置延伸区作为各电极层 的连接埠, 使得各电极层的主体区与外部电极的电连接有一个过渡, 滤波 器的加工制作更加方便。
图 3为本发明实施例三提供的滤波器的原理结构示意图。 与上述图 1A-图 1C所示技术方案不同的是, 本实施例中滤波器包括多个滤波单元 10, 每个滤波单元 10均包括如图 1B所示的层叠设置的第一公共电极层、 第一内电极层、 第二内电极层和第二公共电极层, 多个滤波单元 10层叠 设置, 并夹设在第一电绝缘层和第二电绝缘层之间。
本实施例中, 各滤波单元 10中的第一公共电极均与第一接地电极电 连接, 第一内电极层均与第一信号电极电连接, 第二内电极层均与第二信 号电极电连接, 第二公共电极层均与第二接地电极电连接, 从而在电路上 形成多个滤波单元并联的方式。
本领域技术人员可也理解, 实际应用中可根据滤波需要, 可在滤波器 中设置合适数量的滤波单元, 以满足实际的滤波需要。
图 4A为本发明实施例四提供的滤波器的结构示意图; 图 4B为图 4A 中各电极层的组装结构示意图。 与上述图 1A-图 1C所示实施例技术方案 不同的是, 本实施例中, 每个内电极层中可分别设置有二连接埠, 其中, 二内电极层中的一内电极层的一对角上分别设置有连接埠; 二内电极层中 的另一内电极层与该一内电极层的一对角错开的另一对角上分别设置有 连接埠, 具体地, 如图 4A-图 4B所示, 第一内电极层 22上沿第一对角线 的方向上, 分别设置有两个连接埠 Al l , 相应地, 第二内电极层 23上沿 与第一对角线交叉的第二对角线的方向上, 分别设置有两个连接埠 A12。
本实施例中, 如图 4A和图 4B所示, 滤波器的外表面可分别设置有 4 个信号电极 Rl、 R2、 R3、 R4, 且信号电极 R1与第一内电极层 22上相应 位置的连接埠 Al l连接,信号电极 R2与另一个连接埠 Al l连接,同样地, 信号电极 R3、 R4分别与第二内电极层 23上的二个连接埠 A12连接, 这 样, 该滤波器就可以形成六端子结构, 可满足六端子滤波电路的应用场合 中, 例如可对两路不同的电压信号进行滤波处理。
本实施例中, 由于两个连接埠 Al l与两个连接埠 A12之间呈对角设 置, 从而可使第一内电极层 22和第二内电极层 23的电流导向方向相互交 叉, 这样可减少共模阻抗, 提高滤波效果。
本领域技术人员可以理解, 实际应用中二内电极层中的连接埠也可由 延伸区构成, 具体地, 二内电极层均包括主体区和沿主体区的边缘向外延 伸的二延伸区, 各延伸区构成内电极层上的连接埠; 二内电极层上的延伸 区在垂直内电极层所在平面的方向上互不重叠, 其中, 二内电极层的主体 区均为矩形, 且每个内电极层上的二延伸区关于主体区的中心对称设置于 主体区的两对角上 (如图 4B所示) 。 此外, 二延伸区也可关于主体区的 中心对称设置于主体区的相对两侧, 对此本发明实施例并不做特别限制。
本领域技术人员可以理解, 上述图 4A所示技术方案中, 第一绝缘层 和第二绝缘层之间也可设置有多个滤波单元, 且滤波单元具体可为图 4B 所示的结构, 其具体实现与图 3所示实施例类似, 在此不再赘述。
图 5为本发明实施例五提供的滤波器中各电极层的组装结构示意图。 与上述图 1A-图 1C所示实施例技术方案不同的是, 本发明实施例滤波器 包括三公共电极层以及二对内电极层, 每对内电极层均包括二内电极层, 其中, 三公共电极层包括第一公共电极层、 第二公共电极层和第三共公共 电极层, 二对内电极层中, 其中一对内电极层位于第一公共电极层和第二 公共电极层之间, 另一对内电极层位于第二公共电极层与第三公共电极层 之间, 且各电极层之间均设置有电绝缘层; 此外, 三公共电极层还分别连 接有至少一接地电极, 二内电极层中的各内电极层还分别连接有至少一信 号电极。 具体地, 如图 5所示, 本实施例中, 三公共电极层分别为第一公 共电极层 101、 第二公共电极层 102和第三共公共电极层 103 , 二对内电 极层中, 每对内电极层均包括两个内电极层, 其中一对内电极层 201位于 第一公共电极层 101和第二公共电极层 102之间, 另一对内电极层 202位 于第二公共电极层 102与第三公共电极层 103之间, 各电极层之间均设置 有电绝缘层。
本实施例中, 二对内电极层中, 每对内电极层中的二内电极层上均设 置有与信号电极电连接的连接埠, 用于导入或导出电流。 实际应用中, 每 对内电极层中的二内电极层上的连接埠相互错开设置, 以使每对内电极层 中的二内电极层的导流方向不同。
本实施例中, 设置两个公共电极层之间的一对内电极层中的两个内电 极层可具有与上述图 1A-图 1C ,或者图 4A-图 4B所示相同或类似的结构, 且公共电极层也可具有与上述图 1A-图 1C , 或者图 4A-图 4B所示相同或 类似的结构, 本发明实施例在此不再赘述。
本领域技术人员可以理解, 本实施例滤波器的外表面可设置一个或多 个接地电极, 用于与其中的各公共电极电连接, 同时可设置至少四个信号 电极, 用于与其中的各内电极层电连接, 接地电极、 信号电极的设置个数 以及设置位置可参照上述图 1A-图 1C , 或者图 4A-图 5B所示滤波器, 在 此不再详细说明。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种滤波器, 其特征在于, 包括: 二公共电极层以及二内电极层, 所述二内电极层位于所述二公共电极层之间, 所述二公共电极层和二内电 极层中任意相邻的两个电极层之间设置有电绝缘层; 所述二公共电极层分 别连接至少一接地电极, 所述二内电极层分别连接至少一信号电极。
2、 根据权利要求 1所述的滤波器, 其特征在于, 所述二内电极层上 分别设置有与信号电极电连接的连接埠, 用于导入或导出电流。
3、 根据权利要求 2所述的滤波器, 其特征在于, 所述二内电极层上 的连接埠相互错开设置, 以使所述二内电极层的导入或导出电流方向不 同。
4、 根据权利要求 2所述的滤波器, 其特征在于, 所述二内电极层中 的一内电极层的一对角上分别设置有连接埠;
所述二内电极层中的另一内电极层与所述一内电极层的一对角错开 的另一对角上分别设置有连接埠。
5、 根据权利要求 2所述的滤波器, 其特征在于, 所述二内电极层均 包括主体区和沿所述主体区的边缘向外延伸的延伸区, 所述延伸区构成内 电极层上的连接埠;
所述二内电极层上的延伸区在垂直所述内电极层所在平面的方向上 互不重叠。
6、 根据权利要求 5所述的滤波器, 其特征在于, 所述二内电极层的 主体区均为矩形, 所述二内电极层上分别设置有二延伸区, 且每个内电极 层上的二延伸区关于主体区的中心对称设置于主体区的相对两侧或两对 角上。
7、 根据权利要求 1-6任一所述的滤波器, 其特征在于, 所述二公共电 伸区, 所述公共延伸区构成公共电极层上与接地电极电连接的连接埠。
8、 根据权利要求 7所述的滤波器, 其特征在于, 所述二公共电极层 的公共延伸区在垂直公共主体区所在平面的方向相互重叠。
9、 根据权利要求 8所述的滤波器, 其特征在于, 所述二公共电极层 的公共主体区均为矩形, 所述二公共电极层上分别设置有二公共延伸区。
10、 一种滤波器, 其特征在于, 包括: 三公共电极层以及二对内电极 层, 每对内电极层均包括二内电极层;
所述三公共电极层包括第一公共电极层、 第二公共电极层和第三共公 共电极层, 所述二对内电极层中, 其中一对内电极层位于所述第一公共电 极层和第二公共电极层之间, 另一对内电极层位于所述第二公共电极层与 第三公共电极层之间, 且各电极层之间均设置有电绝缘层;
所述三公共电极层分别连接有至少一接地电极, 所述二内电极层中的 各内电极层分别连接有至少一信号电极。
11、 根据权利要求 10所述的滤波器, 其特征在于, 所述二对内电极 层中, 每对内电极层中的二内电极层上均设置有与信号电极电连接的连接 埠, 用于导入或导出电流。
12、 根据权利要求 11所述的滤波器, 其特征在于, 每对内电极层中 的二内电极层上的连接埠相互错开设置, 以使每对内电极层中的二内电极 层的导入或导出电流方向不同。
PCT/CN2013/073886 2012-07-30 2013-04-08 滤波器 WO2014019383A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13825458.6A EP2779448B1 (en) 2012-07-30 2013-04-08 Filter
US14/313,696 US9397632B2 (en) 2012-07-30 2014-06-24 Filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210268285.8A CN102790599B (zh) 2012-07-30 2012-07-30 滤波器
CN201210268285.8 2012-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/313,696 Continuation US9397632B2 (en) 2012-07-30 2014-06-24 Filter

Publications (1)

Publication Number Publication Date
WO2014019383A1 true WO2014019383A1 (zh) 2014-02-06

Family

ID=47155913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073886 WO2014019383A1 (zh) 2012-07-30 2013-04-08 滤波器

Country Status (4)

Country Link
US (1) US9397632B2 (zh)
EP (1) EP2779448B1 (zh)
CN (1) CN102790599B (zh)
WO (1) WO2014019383A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790599B (zh) * 2012-07-30 2015-09-09 华为技术有限公司 滤波器
KR20140071724A (ko) * 2012-12-04 2014-06-12 삼성전기주식회사 적층 세라믹 전자부품
US9906203B2 (en) * 2013-11-26 2018-02-27 Samsung Electro-Mechanics Co., Ltd. Common mode filter and electronic device including the same
JP6358074B2 (ja) * 2014-01-31 2018-07-18 株式会社村田製作所 電子部品の製造方法及び電子部品の製造装置
KR102183424B1 (ko) * 2015-07-06 2020-11-26 삼성전기주식회사 적층 전자부품 및 적층 전자부품의 실장 기판
US10431388B2 (en) * 2015-12-08 2019-10-01 Avx Corporation Voltage tunable multilayer capacitor
US10607777B2 (en) 2017-02-06 2020-03-31 Avx Corporation Integrated capacitor filter and integrated capacitor filter with varistor function
EP3679592A4 (en) 2017-09-08 2021-05-19 AVX Corporation ADJUSTABLE MULTILAYER HIGH VOLTAGE CAPACITOR
US10943741B2 (en) 2017-10-02 2021-03-09 Avx Corporation High capacitance tunable multilayer capacitor and array
CN107888162A (zh) * 2017-11-06 2018-04-06 佛山鑫进科技有限公司 一种集成esd保护的共模滤波器
CN113196428B (zh) 2018-12-26 2022-12-13 京瓷Avx元器件公司 用于控制电压可调多层电容器的系统和方法
CN112689453B (zh) * 2020-12-11 2022-06-24 深圳市韬略科技有限公司 一种新型双线平衡emi滤波器
CN113410054B (zh) * 2021-06-11 2022-03-04 西安电子科技大学 一种用于抑制emi的低电感差共模集成的卷绕式电容器
CN115473013A (zh) * 2022-09-26 2022-12-13 梅赛德斯-奔驰集团股份公司 用于动力电池包的汇流排组件和动力电池包

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050030126A1 (en) * 2003-08-04 2005-02-10 Tdk Corporation Filter device and branching filter using same
US20100207710A1 (en) * 2007-12-05 2010-08-19 Rohde & Schwarz Gmbh & Co. Kg Electrical Circuit Arrangement with Concentrated Elements in Multi-Layer Substrates
CN102291100A (zh) * 2010-06-16 2011-12-21 三星电机株式会社 多层滤波器
CN102790599A (zh) * 2012-07-30 2012-11-21 华为技术有限公司 滤波器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603646B2 (en) 1997-04-08 2003-08-05 X2Y Attenuators, Llc Multi-functional energy conditioner
CA2375135A1 (en) * 1999-05-28 2000-12-07 X2Y Attenuators, L.L.C. A multi-functional energy conditioner
JP2001167969A (ja) * 1999-12-06 2001-06-22 Tdk Corp 三次元搭載用多端子積層セラミックコンデンサ
TWI266342B (en) * 2001-12-03 2006-11-11 Tdk Corp Multilayer capacitor
JP4370838B2 (ja) * 2002-08-21 2009-11-25 株式会社村田製作所 ノイズフィルタ
JP2004266784A (ja) * 2003-01-10 2004-09-24 Murata Mfg Co Ltd ノイズフィルタ
KR100568305B1 (ko) * 2004-07-21 2006-04-05 삼성전기주식회사 적층형 세라믹 캐패시터
KR101069989B1 (ko) 2009-09-10 2011-10-04 삼성전기주식회사 적층형 칩 커패시터 및 회로 기판 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050030126A1 (en) * 2003-08-04 2005-02-10 Tdk Corporation Filter device and branching filter using same
US20100207710A1 (en) * 2007-12-05 2010-08-19 Rohde & Schwarz Gmbh & Co. Kg Electrical Circuit Arrangement with Concentrated Elements in Multi-Layer Substrates
CN102291100A (zh) * 2010-06-16 2011-12-21 三星电机株式会社 多层滤波器
CN102790599A (zh) * 2012-07-30 2012-11-21 华为技术有限公司 滤波器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2779448A4 *

Also Published As

Publication number Publication date
EP2779448B1 (en) 2017-06-07
EP2779448A1 (en) 2014-09-17
US9397632B2 (en) 2016-07-19
EP2779448A4 (en) 2015-02-18
US20140312991A1 (en) 2014-10-23
CN102790599A (zh) 2012-11-21
CN102790599B (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
WO2014019383A1 (zh) 滤波器
TWI404091B (zh) 積層電容器
TWI405227B (zh) Laminated capacitors
US7907386B2 (en) Multilayer capacitor and mounted structure thereof
JP6124893B2 (ja) コンデンサデバイス
KR101813380B1 (ko) 커패시터 부품
JP5870674B2 (ja) 積層コンデンサアレイ
JP4539715B2 (ja) 積層コンデンサアレイ
TW200923990A (en) Multilayer capacitor
KR101051620B1 (ko) 적층 콘덴서
US6906907B2 (en) Monolithic multi-layer capacitor with improved lead-out structure
JP6273672B2 (ja) 積層貫通コンデンサ
JP2012248571A (ja) 貫通型積層コンデンサ
KR20170122579A (ko) 커패시터 부품
JP4539713B2 (ja) 積層コンデンサアレイ
JP5093044B2 (ja) 積層コンデンサ
KR100916480B1 (ko) 적층 세라믹 캐패시터
CN114005677A (zh) 一种多层陶瓷电容器
CN213242268U (zh) 一种贴片陶瓷电容器
JP4952779B2 (ja) 積層コンデンサアレイ
JPH0438810A (ja) 4端子型コンデンサ
JP2009038333A (ja) 貫通型積層コンデンサ
CN113571500A (zh) 一种硅基电容元件的结构
JP2023078368A (ja) 複合コンデンサ
JP5857871B2 (ja) 積層コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825458

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013825458

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013825458

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE