WO2014019354A1 - 一种高硬度高韧性耐磨钢板及其制造方法 - Google Patents

一种高硬度高韧性耐磨钢板及其制造方法 Download PDF

Info

Publication number
WO2014019354A1
WO2014019354A1 PCT/CN2013/071188 CN2013071188W WO2014019354A1 WO 2014019354 A1 WO2014019354 A1 WO 2014019354A1 CN 2013071188 W CN2013071188 W CN 2013071188W WO 2014019354 A1 WO2014019354 A1 WO 2014019354A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
resistant steel
steel sheet
sheet according
steel
Prior art date
Application number
PCT/CN2013/071188
Other languages
English (en)
French (fr)
Inventor
李红斌
姚连登
苗雨川
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to ES13763171.9T priority Critical patent/ES2620904T3/es
Priority to NZ614822A priority patent/NZ614822A/en
Priority to KR1020137025667A priority patent/KR102218051B1/ko
Priority to US14/418,423 priority patent/US9994926B2/en
Priority to EP13763171.9A priority patent/EP2881485B1/en
Priority to JP2014527490A priority patent/JP5806405B2/ja
Priority to AU2013222054A priority patent/AU2013222054B2/en
Publication of WO2014019354A1 publication Critical patent/WO2014019354A1/zh
Priority to ZA2015/00616A priority patent/ZA201500616B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to wear resistant steel, and more particularly to a high hardness and high toughness wear resistant steel sheet and a method of manufacturing the same. Background technique
  • Wear-resistant steel plates are widely used in machinery with particularly high working conditions, high strength, high wear resistance, mining, agriculture, cement production, ports, electricity and metallurgy. Such as bulldozers, loaders, excavators, dump trucks and grabs, stackers and reclaimers, and feed bending structures.
  • wear-resistant steel In recent decades, the development and application of wear-resistant steel has developed rapidly. Generally, the carbon content is increased and appropriate trace elements such as chromium, molybdenum, nickel, vanadium, tungsten, cobalt, boron and titanium are added to make full use of precipitation strengthening. Different strengthening methods such as fine grain strengthening, phase transformation strengthening and dislocation strengthening improve the mechanical properties of wear-resistant steel. Most of the wear-resistant steels are medium-carbon, medium-high-carbon and high-carbon alloy steels. Increasing the alloy content leads to increased costs and reduced weldability. These shortcomings constrain the further development of wear-resistant steel.
  • the wear resistance of a material depends mainly on its hardness, and toughness has a very important influence on the wear resistance of the material. Simply increasing the hardness of the material does not guarantee a better wear resistance and a longer service life under complex conditions. By adjusting the composition and heat treatment process, the reasonable matching of the hardness and toughness of the low alloy wear-resistant steel is controlled, and the excellent comprehensive mechanical properties are obtained to meet the needs of different wear conditions.
  • CN 1140205 A discloses a medium carbon medium alloy wear-resistant steel having a carbon and alloying element (Cr, Mo, etc.) content higher than the present invention, which inevitably leads to poor weldability and machinability.
  • CN1865481 A discloses a bainite wear-resistant steel which has a higher content of alloying elements (Si, Mn, Cr, Mo, etc.) and lower mechanical properties than the present invention. Summary of the invention
  • the object of the present invention is to provide a high-hardness and high-toughness wear-resistant steel plate, which achieves high hardness and high toughness matching on the basis of adding a small amount of alloying elements, and has good mechanical processing performance, and is beneficial to a wide range of applications in engineering.
  • the chemical composition weight percentage of the high hardness and high toughness wear-resistant steel sheet of the present invention The specific content is: C: 0.36-0.45%, Si: 0.10-0.30%, Mn: 0.40-1.00%, P ⁇ 0.015%, S ⁇ 0.010%, Nb: 0.010-0.040%, Al: 0.010-0.080%, B : 0.0010-0.0020%, Ti: 0.005-0.050%, Ca: 0.0010-0.0080%, V ⁇ 0.080%, Cr ⁇ 1.00%, RE ⁇ 0.10%, N ⁇ 0.0080%, O ⁇ 0.0060%, H ⁇ 0.0004%, And satisfy: 0.025% ⁇ Nb + Ti ⁇ 0.080%, 0.030% ⁇ A1 + Ti ⁇ 0.12%, the balance is Fe and unavoidable impurities.
  • the microstructure of the steel wear-resistant steel of the present invention is mainly martensite and retained austenite, wherein the retained austenite volume fraction is 5%.
  • Another object of the present invention is to provide a method for producing the high hardness and high toughness wear resistant steel sheet, which in turn comprises the steps of smelting, casting, heating, rolling and cooling.
  • heating step heating to a temperature of 1000-1250 ° C
  • rolling step rolling temperature: 950-1200 ° C
  • finishing temperature 800-950 ° C
  • the fineness and strengthening effect of the microalloying elements and the refinement and strengthening effect of controlling the cooling process of the rolling control make the steel sheet have excellent mechanical properties (strongness, hardness, elongation, Impact properties, etc.) and wear resistance.
  • the invention strictly controls the content of carbon and microalloy by rationally designing chemical components (contents and ratios of elements such as C, Si, Mn and Nb). Since it does not contain elements such as Mo and Ni, the production cost of wear-resistant steel can be greatly reduced.
  • the wear-resistant steel sheet of the invention has high hardness and good impact toughness, and is easy to be mechanically processed by cutting, bending, etc., and has a strong applicability.
  • the high hardness and high toughness wear-resistant steel plate produced by the invention has a Brinell hardness of 570-630HBW; the -40 °C Charpy V-type longitudinal impact energy is 40-60J.
  • the Brinell hardness is 600-630 HBW. It has excellent mechanical properties and has a strong applicability.
  • the chemical composition of the wear-resistant steel according to the present invention has a small amount of Nb and the like in addition to elements such as C, Si, and Mn, and has the characteristics of simple composition and low cost;
  • the wear-resistant steel plate of the present invention is produced by the TMCP process, and does not require heat treatment processes such as off-line quenching and tempering, and has the characteristics of short production process, high production efficiency, energy conservation, and low production cost;
  • the wear-resistant steel plate of the present invention has high hardness and high low temperature toughness; from the viewpoint of microstructure, the wear-resistant steel involved in the patent of the present invention has a microstructure mainly composed of fine Markov The body and retained austenite, of which the residual austenite volume fraction is 5%, is good for the good matching of the hardness and toughness of the wear-resistant steel plate.
  • the wear-resistant steel plate of the invention has obvious advantages. It is an inevitable trend in the development of the social economy and the steel industry to control the content of carbon and alloying elements, and to develop wear-resistant steel with low cost, good mechanical properties and simple production process. DRAWINGS
  • Figure 1 shows the microstructure of the steel sheet of Example 5, which is fine martensite and a small amount of retained austenite, which ensures that the steel sheet has better mechanical properties.
  • the steel species involved in the present invention achieves ultra-high strength, ultra-high hardness and high toughness matching on the basis of the addition of trace alloy elements through the scientific design of the element type and content, and has good welding performance.
  • Carbon is the most basic and important element in wear-resistant steel. It can improve the strength and hardness of steel and improve the wear resistance of steel. However, it is unfavorable to the toughness and weldability of steel. Therefore, it should be controlled in steel.
  • the carbon content is from 0.36 to 0.45%, preferably from 0.37 to 0.44%.
  • Silicon solid solution increases their hardness and strength in ferrite and austenite.
  • excessive silicon content leads to a sharp drop in the toughness of steel.
  • it is easy to produce low-melting silicate during welding increase the fluidity of molten slag and molten metal, affect the quality of weld, and control silicon content in the present invention due to strict control of silicon content. It is from 0.10 to 0.30%, preferably from 0.10 to 0.28%.
  • Manganese strongly increases the hardenability of steel and reduces the transition temperature of wear-resistant steel and the critical cooling rate of steel. However, when the manganese content is high, there is a tendency to coarsen the crystal grains, and the tempering and brittle sensitivity of the steel is increased, and segregation and cracking in the cast slab are easily caused, and the performance of the steel sheet is lowered, and the controlled manganese content in the present invention is 0.40. -1.00%, preferably Mn: 0.40-0.90%.
  • Nb The refined grain and precipitation strengthening effect of Nb is extremely significant for enhancing the toughness and toughness of the material. It is a strong, N-forming element that strongly inhibits austenite grain growth. Nb improves the strength and toughness of steel by grain refinement, and Nb is mainly improved by precipitation strengthening and phase transformation strengthening. And to improve the properties of steel, Nb has been used as one of the most effective strengthening agents in HSLA steel, and the control enthalpy in the present invention is 0.010-0.040%, preferably Nb: 0.010-0.035%.
  • Nitrogen in aluminum and steel forms fine, insoluble A1N particles that refine the grain of steel.
  • Aluminum can refine the grain of steel, fix nitrogen and oxygen in steel, reduce the sensitivity of steel to the notch, reduce or eliminate the aging phenomenon of steel, and improve the toughness of steel.
  • the A1 content is controlled at 0.010-0.080. %, preferably from 0.020 to 0.060%.
  • Boron increases the hardenability of the steel but the excessive content will cause a hot brittle phenomenon, which affects the hot workability of the steel.
  • the boron content is controlled to be 0.0010 to 0.0020%, preferably 0.0010 to 0.0018%.
  • Titanium is one of the strong carbide forming elements and forms fine TiC particles with carbon.
  • the TiC particles are fine, distributed at the grain boundaries to achieve the effect of refining the grains, and the harder TiC particles improve the wear resistance of the steel.
  • the controlled titanium is 0.005-0.050%, preferably 0.010-0.045%.
  • niobium and titanium can obtain better grain refining effect, reduce the original austenite grain size, and facilitate the refinement of the martensite strip after quenching, improve the strength and wear resistance, TiN, etc.
  • the undissolved at high temperature can prevent the coarsening of grains in the heat-affected zone, improve the toughness of the heat-affected zone, and improve the weldability of the steel. Therefore, the content of niobium and titanium is as follows: 0.025% Nb+Ti 0.080%, optimum The ground is 0.035% ⁇ Nb + Ti ⁇ 0.070%.
  • Titanium can form fine particles and refine grains. Aluminum can ensure the formation of fine titanium particles and fully exert the grain refinement effect of titanium. Therefore, the contents of aluminum and titanium are as follows: 0.030% Al+Ti 0.12%, preferably 0.040% ⁇ Al+Ti ⁇ 0.11% paragraph
  • Calcium has a significant effect on the deterioration of inclusions in cast steel.
  • the addition of appropriate amount of calcium in cast steel can transform long strips of cast steel into spherical CaS or (Ca, Mn) S inclusions.
  • the oxide and sulfide formed have a small inclusion density and are easily removed by floating.
  • Calcium also significantly reduces the segregation of sulfur at the grain boundaries, which are beneficial for improving the quality of the cast steel and thereby improving the properties of the steel.
  • Calcium has a significant effect on the addition of many inclusions, which is beneficial to ensure the mechanical properties of the steel, especially toughness.
  • the controlled calcium is from 0.0010 to 0.0080%, preferably from 0.0010 to 0.0060%.
  • Vanadium The addition of vanadium is mainly to refine the grains, so that the austenite grains do not grow too coarse during the heating stage, so that the grain of the steel can be obtained in the subsequent multi-pass rolling process. Further refining, to increase the strength and toughness of the steel, the vanadium is controlled in the present invention to be 0.080%, preferably 0.035 to 0.080%, and more preferably 0.060%.
  • Chromium can reduce the critical cooling rate and increase the hardenability of steel. Chromium can form in steel (Fe,Cr) 3 C, (Fe,Cr) 7 C 3 and (Fe,Cr) 23 C 7 and other carbides, improve strength and hardness. Chromium can prevent or retard the precipitation and aggregation of carbides during tempering, and can improve the tempering stability of steel. In the present invention, the chromium content is controlled to 1.0%, preferably 0.35 to 0.10%, and more preferably 0.80%.
  • Rare earth Adding rare earth to steel can reduce the segregation of elements such as sulfur and phosphorus, improve the shape, size and distribution of non-metallic inclusions, and at the same time refine grains and improve hardness. In addition, rare earth can increase the yield ratio and help to improve the toughness of low alloy high strength steel.
  • the content of the rare earth is not too much, otherwise severe segregation may occur, and the quality and mechanical properties of the slab may be lowered.
  • the rare earth content is controlled to be 0.1%, preferably 0.05 to 0.10%, and more preferably 0.08%.
  • Phosphorus and sulfur In wear-resistant steel, sulfur and phosphorus are harmful elements, and their content should be strictly controlled.
  • the controlled phosphorus content of the steel in the invention is less than 0.015%, preferably 0.010%; the sulfur content is less than 0.010%, preferably 0.005%.
  • Nitrogen, oxygen and hydrogen Excessive oxygen and nitrogen in steel can be very detrimental to the properties of steel, especially weldability and toughness, but excessive control can greatly increase production costs. Therefore, control of steels involved in the present invention
  • the nitrogen content is 0.0080%, preferably 0.0050%; the oxygen content is 0.0060%, preferably 0.0040%; and the hydrogen content is 0.0004%, preferably 0.0003%.
  • the method for producing the above-mentioned high-hardness and high-toughness wear-resistant steel sheet according to the present invention comprises the steps of smelting, casting, heating, rolling, and direct cooling after rolling.
  • heating step heating to a temperature of 1000-1250 ° C
  • rolling step rolling temperature: 950-1200 ° C
  • finishing rolling temperature 800-950 ° C
  • cooling step ⁇ water cooling, stop cooling Temperature: room temperature - 300 ° C.
  • the heating temperature is 1000-1200 ° C, and more preferably the heating temperature is 1050-1200 ° C, in order to ensure sufficient diffusion of carbon and alloy elements, preventing excessive growth of austenite grains and billets
  • the surface is heavily oxidized, and the most preferred heating temperature is 1050-1150 °C.
  • the rolling temperature is: 950-1150 ° C
  • the finishing temperature is 800-900 ° C
  • the rolling temperature is: 950-1120 ° C
  • the finishing temperature is 810-900 ° C, most preferably , rolling temperature: 980-1100 °C, finishing temperature: 810-890 °C.
  • the shutdown temperature is from room temperature to 280 ° C, more preferably the shutdown temperature is from room temperature to 250 ° C, and most preferably the shutdown temperature is from room temperature to 200 ° C.
  • the smelting raw materials are produced according to the steps: smelting ⁇ casting ⁇ heating ⁇ rolling ⁇ direct cooling after rolling.
  • Example 5 619 49 As can be seen from Table 3, the hardness of the steel plate of the embodiment 1-6 of the present invention is 570-630 HBW, and the longitudinal impact energy of the V-type longitudinal stress of -40 ° C is 40-60 J.
  • the steel sheet according to the present invention has excellent mechanical properties.
  • the hardness of the steel sheet according to the present invention is higher than that of the steel sheet of Comparative Steel 1 and the impact toughness is preferred.
  • Figure 1 shows the microstructure of the steel sheet of Example 5, which is fine martensite and a small amount of retained austenite, which ensures that the steel sheet has better mechanical properties.
  • Test Example 2 Abrasion resistance test
  • the abrasion resistance test was carried out on an ML-100 abrasive wear tester. When the sample is taken, the axis of the sample is perpendicular to the surface of the steel plate, and the worn surface of the sample is the rolled surface of the steel plate. The sample is processed into a stepped cylinder as required.
  • the test part has a size of C>4 mm, and the clamping part of the fixture has a size of C>5 mm.
  • the sample was washed with alcohol before the test, then blown dry with a hair dryer, weighed on a balance of one thousandth of a precision, and the weight of the sample was measured as the original weight, and then mounted on a flexible jig.
  • the test was carried out under a load of 42 N using a sandpaper having a particle size of 80 mesh. After the test, due to the abrasion between the sample and the sandpaper, the sample draws a spiral on the sandpaper, and calculates the length of the spiral according to the starting and ending radius of the spiral.
  • the calculation formula is
  • Rl is the starting radius of the helix
  • r2 is the ending radius of the helix
  • a is the feed of the helix.
  • the abrasion resistance test was performed on the high hardness and high toughness wear resistant steel sheets of Examples 1 to 6 of the present invention.
  • the wear test results of the steel of the examples of the present invention and the steel of Comparative Example 2 (the hardness of the steel plate of Comparative Example 2 was 550 HBW) are shown in Table 4.
  • the invention strictly controls the content of carbon and microalloy by rationally designing chemical components (contents and ratios of elements such as C, Si, Mn and Nb). Since it does not contain elements such as Mo and Ni, the production cost of wear-resistant steel can be greatly reduced.
  • the wear-resistant steel sheet of the invention has high hardness and good impact toughness, and is easy to be machined by cutting, bending, etc., and has strong applicability.
  • the high-hardness and high-toughness wear-resistant steel plate produced by the invention has a hardness of 570-630HBW, -40°C Charpy V-type longitudinal impact work: 40-60J, has excellent mechanical properties, and has a strong applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种耐磨钢板,其化学成分(重量%)为:C:0.36-0.45%、Si:0.10-0.30%、Mn:0.40-1.00%、P≤0.015%、S≤0.010%、Nb:0.010-0.040%、Al:0.010-0.080%、B:0.0010-0.0020%、Ti:0.005-0.050%,Ca:0.0010-0.0080%、V≤0.080%、Cr≤1.00%、RE≤0.10%,N≤0.0080%,O≤0.0060%、H≤0.0004%,且满足:0.025%≤Nb+Ti≤0.080%,0.030%≤Al+Ti≤0.12%,余量为Fe和不可避免的杂质。该耐磨钢板的制造方法,包括冶炼、铸造、轧制及轧后直接冷却等步骤。通过以上成分及方法得到的耐磨钢板硬度高,耐磨性能优异,适用于工程机械中极易磨损设备,如破碎机挡板等。

Description

一种高硬度高韧性耐磨钢板及其制造方法 技术领域
本发明涉及耐磨钢, 特别是涉及一种高硬度高韧性耐磨钢板及其制造方 法。 背景技术
耐磨钢板广泛应用于工作条件特别恶劣, 要求高强度, 高耐磨性能的工 程、 釆矿、 农业、 水泥生产、 港口、 电力以及冶金等机械产品上。 如推土机, 装载机, 挖掘机, 自卸车及抓斗、 堆取料机、 输料弯曲结构等。
近几十年来, 耐磨钢的开发与应用发展很快, 一般增加碳含量并加入适 量的微量元素, 如铬、 钼、 镍、 钒、 钨、 钴、 硼和钛等, 充分利用析出强化、 细晶强化、 相变强化和位错强化等不同强化方式提高耐磨钢的力学性能。 大 多数耐磨钢为中碳、 中高碳和高碳合金钢, 增加合金含量会导致成本提高和 焊接性能下降, 这些缺点制约了耐磨钢的进一步发展。
材料的耐磨性主要取决于其硬度, 而韧性对材料的耐磨性也有着非常重 要的影响。 单单提高材料的硬度并不能保证材料在复杂工况下具有较佳的耐 磨性和较长的使用寿命。 通过调整成分与热处理工艺, 控制低合金耐磨钢硬 度和韧性的合理匹配, 得到优良的综合机械性能, 使其满足不同磨损工况的 需要。
CN 1140205 A公开了一种中碳中合金耐磨钢, 其碳及合金元素 ( Cr、 Mo 等)含量均高于本发明, 这必然导致焊接性能与机械加工性能较差。
CN1865481 A公开了一种贝氏体耐磨钢,与本发明相比,其合金元素(Si、 Mn、 Cr、 Mo等)含量较高, 力学性能较低。 发明内容
本发明的目的是提供一种高硬度高韧性耐磨钢板, 在添加微量合金元素 基础上实现高硬度和高韧性的匹配, 并具有良好的机械加工性能, 有益于工 程上的广泛应用。
为实现上述目的, 本发明的高硬度高韧性耐磨钢板的化学成分重量百分 比含量为: C: 0.36-0.45%、 Si: 0.10-0.30%, Mn: 0.40-1.00%、 P < 0.015%, S < 0.010%, Nb: 0.010-0.040%, Al: 0.010-0.080%, B: 0.0010-0.0020%, Ti: 0.005-0.050%, Ca: 0.0010-0.0080%, V < 0.080%, Cr < 1.00%, RE < 0.10%, N < 0.0080%, O < 0.0060%, H < 0.0004%,且满足: 0.025% < Nb+Ti < 0.080%, 0.030% < A1+Ti < 0.12%, 余量为 Fe和不可避免的杂质。
本发明钢耐磨钢的显微组织主要为马氏体和残余奥氏体, 其中残余奥氏 体体积分数 5%。
本发明的另一个目的在于提供该高硬度高韧性耐磨钢板的制造方法, 该 方法依次包括冶炼、 铸造、 加热、 轧制和冷却等步骤。 其中加热步骤中, 加 热到温度为 1000-1250°C ; 轧制步骤中, 开轧温度: 950-1200 °C , 终轧温度: 800-950 °C ; 轧后直接冷却步骤中, 釆用水冷, 停冷温度: 室温至 300°C。
由于本发明中科学设计了碳及合金元素含量, 通过微合金元素的细化强 化作用及控制轧制控制冷却过程的细化强化效果, 使得钢板具有优异的力学 性能(强、 硬度、 延伸率、 冲击性能等)和耐磨性能。
本发明通过合理设计化学成分(C、 Si、 Mn、 Nb等元素的含量及配比), 严格控制了碳和微合金含量。 由于不含有 Mo和 Ni等元素, 可大幅降低耐磨 钢生产成本。
本发明的耐磨钢板具有很高的硬度及较佳的冲击韧性等, 易进行切割、 弯曲等机械加工, 具有 ^[艮强的适用性。
本发明生产的高硬度高韧性耐磨钢板: 布氏硬度为 570-630HBW; -40 °C夏比 V型纵向冲击功为 40-60J。 优选地, 布氏硬度为 600-630HBW。 具有 优异的力学性能, 具有 ^[艮强的适用性。
本发明与现有技术钢的不同之处主要体现在以下几方面:
从化学成分上看, 本发明涉及的耐磨钢的化学成分除 C、 Si、 Mn等元素 外, 添加了少量 Nb等元素, 具有成分简单、 成本低廉等特点;
从生产工艺上看, 本发明涉及的耐磨钢板釆用 TMCP工艺生产, 无需离 线淬火和回火等热处理工序, 具有生产流程短, 生产效率高, 节约能源, 降 低生产成本等特点;
从产品性能上看, 本发明专利涉及的耐磨钢板具有高硬度、 高低温韧性; 从显微组织上看, 本发明专利涉及的耐磨钢, 显微组织主要为细的马氏 体和残余奥氏体, 其中残余奥氏体体积分数 5%, 有益于耐磨钢板强硬度与 韧性的良好匹配。
本发明涉及的耐磨钢板具有较明显的优势。 控制碳和合金元素含量, 研 发低成本、 力学性能佳、 生产工艺简单的耐磨钢是社会经济和钢铁工业发展 的必然趋势。 附图说明
图 1为实施例 5钢板的显 组织, 为细的马氏体和少量残余奥氏体, 这 保证了钢板具有较佳的力学性能。 具体实施方式
以下详述本发明所涉及的高硬度高韧性耐磨钢板的化学成分作用。
本发明中除非另有指明, 含量均为重量百分比含量。
本发明所涉及的钢种通过元素种类及含量的科学设计, 在添加微量合金 元素基础上实现了超高强度、 超高硬度和高韧性的匹配, 且具有较好的焊接 性能。
碳: 碳是耐磨钢中最基本、 最重要的元素, 可以提高钢的强度和硬度, 进而提高钢的耐磨性, 但其对钢的韧性和焊接性能不利, 因此, 应合理控制 钢中的碳含量为 0.36-0.45%, 优选为 0.37-0.44%。
硅: 硅固溶在铁素体和奥氏体中提高它们的硬度和强度, 然而硅含量过 高会导致钢的韧性急剧下降。 同时考虑到硅与氧的亲和力比铁强, 焊接时容 易产生低熔点的硅酸盐, 增加熔渣和熔化金属的流动性, 影响焊缝质量, 因 严格控制硅含量, 本发明中控制硅含量为 0.10-0.30%, 优选地为 0.10-0.28%。
锰: 锰强烈增加钢的淬透性, 降低耐磨钢转变温度和钢的临界冷却速度。 但锰含量较高时, 有使晶粒粗化的倾向, 并增加钢的回火脆敏感性, 而且容 易导致铸坯中出现偏析和裂纹, 降低钢板的性能, 本发明中控制锰含量为 0.40-1.00%, 优选地 Mn: 0.40-0.90%。
铌: Nb的细化晶粒和析出强化作用, 对提高材料强韧性贡献是极为显著 的, 是强烈的 、 N化物的形成元素, 强烈地抑制奥氏体晶粒长大。 Nb通过 晶粒细化同时提高钢的强度和韧性, Nb主要通过析出强化和相变强化来改善 和提高钢的性能, Nb已经被作为 HSLA钢中最有效的强化剂之一, 本发明中 控制铌为 0.010-0.040%, 优选地为 Nb: 0.010-0.035%。
铝: 铝和钢中氮能形成细小难溶的 A1N颗粒, 细化钢的晶粒。 铝可细化 钢的晶粒, 固定钢中的氮和氧, 减轻钢对缺口的敏感性, 减小或消除钢的时 效现象, 并提高钢的韧性, 本发明中 A1含量控制在 0.010-0.080%, 优选地为 0.020-0.060%。
硼: 硼增加钢的淬透性但含量过高将导致热脆现象, 影响钢的热加工性 能, 本发明中控制硼含量为 0.0010-0.0020%, 优选地为 0.0010-0.0018%。
钛: 钛是强碳化物形成元素之一, 与碳形成细微的 TiC颗粒。 TiC颗粒 细小, 分布在晶界, 达到细化晶粒的效果, 较硬的 TiC颗粒提高钢的耐磨性, 本发明中控制钛为 0.005-0.050 %, 优选地为 0.010-0.045%。
铌和钛的复合加入, 可以获得更好的晶粒细化效果, 减小原奥氏体晶粒 尺寸, 有利于细化淬火后的马氏体条, 提高强度和耐磨性, TiN 等在高温下 的未溶解性, 可阻止热影响区晶粒的粗化, 提高热影响区的韧性, 从而改善 钢的焊接性, 故铌和钛的含量范围如下: 0.025% Nb+Ti 0.080%, 优选地 为 0.035% < Nb+Ti < 0.070%。
钛均能形成细小颗粒进而细化晶粒, 铝可以保证细小钛颗粒的形成, 充 分发挥钛的细化晶粒作用, 故铝和钛的含量范围如下: 0.030% Al+Ti 0.12%, 优选地为 0.040% < Al+Ti < 0.11%„
钙: 钙对铸钢中夹杂物的变质具有显著作用, 铸钢中加入适量钙可将铸 钢中的长条状^^化物夹杂转变为球状的 CaS或(Ca, Mn ) S夹杂, 钙所形成 的氧化物及硫化物夹杂密度小, 易于上浮排除。 钙还显著降低硫在晶界的偏 聚, 这些都有益于提高铸钢的质量, 进而提高钢的性能。 钙在夹杂物较多时 添加效果明显, 有利于保证钢的力学性能, 尤其韧性。 本发明中控制钙为 0.0010-0.0080%, 优选地为 0.0010-0.0060%。
钒: 钒的加入主要是为了细化晶粒, 使钢坯在加热阶段奥氏体晶粒不至 于生长的过于粗大, 这样, 在随后的多道次轧制过程中, 可以使钢的晶粒得 到进一步细化, 提高钢的强度和韧性, 本发明中控制钒为 0.080%, 优选地 为 0.035-0.080%, 还优选地为 0.060%。
铬: 铬可以降低临界冷却速度、 提高钢的淬透性。 铬在钢中可以形成 (Fe,Cr)3C、 (Fe,Cr)7C3和 (Fe,Cr)23C7等多种碳化物, 提高强度和硬度。 铬在回 火时能阻止或减緩碳化物的析出与聚集, 可以提高钢的回火稳定性, 本发明 中控制铬含量为 1.0%, 优选地为 0.35-0.10%, 还优选为 0.80%。
稀土: 在钢中添加稀土可以减少硫、 磷等元素的偏析, 改善非金属夹杂 物的形状、 大小和分布, 同时可以细化晶粒, 提高硬度。 此外, 稀土能提高 屈强比, 有利于改善低合金高强度钢的强韧性。 稀土的含量不易过多, 否则 会产生严重偏析, 降低铸坯质量和力学性能, 本发明中控制稀土含量为 0.1 %, 优选地为 0.05-0.10%, 还优选为 0.08%。
磷与硫: 在耐磨钢中, 硫与磷均为有害元素, 它们的含量要严格控制, 本发明所涉及钢种中控制磷含量小于 0.015%, 优选 0.010 %; 硫含量小于 0.010%, 优选 0.005%。
氮、 氧与氢: 钢中过多的氧和氮对钢的性能尤其是焊接性和韧性能是十 分不利的, 但控制过严会大幅增加生产成本, 因此, 本发明所涉及钢种中控 制氮含量 0.0080%, 优选 0.0050%; 氧含量 0.0060%, 优选 0.0040%; 氢含量 0.0004%, 优选 0.0003%。
本发明的上述高硬度高韧性耐磨钢板的制造方法,该方法依次包括冶炼、 铸造、 加热、 轧制和轧后直接冷却等步骤。 其中加热步骤中, 加热到温度为 1000-1250°C; 轧制步骤中, 开轧温度: 950-1200 °C, 终轧温度: 800-950 °C; 冷却步骤中, 釆用水冷, 停冷温度: 室温 -300°C。
优选地, 在所述加热过程中, 加热温度为 1000-1200 °C, 更优选加热温度 为 1050-1200°C, 为保证碳及合金元素充分扩散, 防止奥氏体晶粒过分长大及 钢坯表面严重氧化, 最优选加热温度为 1050-1150°C。
优选地, 开轧温度: 950-1150°C, 终轧温度: 800-900 °C, 更优选地, 开 轧温度: 950-1120 °C, 终轧温度: 810-900°C, 最优选地, 开轧温度: 980-1100 °C, 终轧温度: 810-890°C。
优选地, 停冷温度为室温至 280 °C, 更优选停冷温度为室温至 250°C, 最 优选停冷温度为室温至 200 °C。 表 1 本发明实施例 1-6及对比例 1的化学成分( wt.% )
Figure imgf000008_0001
实施例
本发明实施例 1-6和对比例 1 (专利 CN1140205A )的钢板化学元素质量 百分配比如表 1所示。
将冶炼原料按照步骤: 冶炼→铸造→加热→轧制→轧后直接冷却进行制 造。
本发明实施例 1-6和对比例 1的具体工艺参数参见表 2 表 2 本发明实施例 1-6中的具体工艺参数
Figure imgf000009_0001
试验例 1 : 力学性能试验
按照 GB/T2975取样方法取样, 并按照 GB/T231.1试验方法测定本发明 实施例 1-6的高硬度高韧性耐磨钢板的硬度; 按照 GB/T229试验方法进行冲 击试验, 其结果见表 3
表 3 本发明实施例 1-6及对比例 1的力学性能 硬度, HBW 夏比 V型纵向冲击功 (-40°C ), J 实施例 1 577 55
实施例 2 595 46
实施例 3 602 56
实施例 4 613 59
实施例 5 619 49
Figure imgf000010_0001
从表 3可以看出, 本发明实施例 1-6钢板硬度为 570-630HBW, -40°C夏 比 V型纵向冲击功: 40-60J, 本发明所涉及钢板具有优良的力学性能。 本发 明所涉及钢板硬度高于与对比钢 1钢板的硬度, 冲击韧性较佳。
图 1为实施例 5钢板的显 组织, 为细的马氏体和少量残余奥氏体, 这 保证了钢板具有较佳的力学性能。
其他实施例也能得到类似的显微组织。 试验例 2: 耐磨性试验
耐磨性试验在 ML-100磨粒磨损试验机上进行。 截取试样时, 令试样的 轴线垂直于钢板表面, 试样的磨损面即钢板的轧制面。 将试样按要求加工成 台阶状圓柱体, 测试部分尺寸为 C>4mm, 卡具夹持部分尺寸为 C>5mm。 试验 前用酒精清洗试样, 然后用吹风机吹干, 在万分之一精度的天平上称重, 测 得试样重量作为原始重量, 而后安装在弹性夹具上。 用粒度为 80目的砂纸, 在 42N载荷作用下进行试验。 试验后由于试样与砂纸间的磨损, 试样在砂纸 上画出一条螺旋线, 根据螺旋线的起始和终止半径来计算螺旋线的长度, 计 算公式为
s = « - 2 2 )
a
rl为螺旋线的起始半径, r2为螺旋线的终止半径, a为螺旋线的进给量。 每次实验称重三次取平均值, 然后计算失重, 用每米失重来表示试样的磨损 率(mg/M )。
对本发明的实施例 1-6 的高硬度高韧性耐磨钢板进行耐磨性试验。 本发 明的实施例钢种与对比例 2钢 (对比例 2钢板硬度为 550HBW ) 的磨损试睑 结果见表 4。 表 4 本发明实施例 1-6与对比例的耐磨试验结果 钢种 试验温度 磨损试验条件 磨损率 (mg/M) 实施例 1 至 jm 80目 ^少纸 /42N载荷 6.223
实施例 2 至 /jm 80目 ^少纸 /42N载荷 5.951 实施例 3 至 /jm 80目 ^少纸 /42N载荷 5.693 实施例 4 至 /jm 80目 ^少纸 /42N载荷 5.492 实施例 5 至 /jm 80目 ^少纸 /42N载荷 5.318 实施例 6 至 /jm 80 目 ^少纸 /42N载荷 5.203 对比例 2 至 /jm 80 目 ^少纸 /42N载荷 6.656 从表 4可知, 在此磨损条件下, 本发明的高硬度高韧性耐磨钢板的耐磨 性能优于对比例 2钢板耐磨性。
本发明通过合理设计化学成分(C、 Si、 Mn、 Nb等元素的含量及配比), 严格控制了碳和微合金含量。 由于不含有 Mo和 Ni等元素, 可大幅降低耐磨 钢生产成本。 本发明的耐磨钢板具有很高的硬度及较佳的冲击韧性等, 易进 行切割、 弯曲等机械加工, 具有很强的适用性。 本发明生产的高硬度高韧性 耐磨钢板的硬度为 570-630HBW, -40°C夏比 V型纵向冲击功: 40-60J, 具有 优异的力学性能, 具有 ^[艮强的适用性。

Claims

权利要求书
1. 一种耐磨钢板,其重量百分比组成为: C: 0.36-0.45%、 Si: 0.10-0.30%, Mn: 0.40-1.00%, P < 0.015%, S < 0.010%, Nb: 0.010-0.040%, Al: 0.010-0.080%, B: 0.0010-0.0020%, Ti: 0.005-0.050%, Ca: 0.0010-0.0080%, V < 0.080%, Cr < 1.00%, RE < 0.10%, N < 0.0080%, 0 < 0.0060%, H < 0.0004%, 且满足: 0.025% < Nb+Ti < 0.080%, 0.030% < Al+Ti < 0.12%, 余量为 Fe和不可避免的 杂质。
2. 如权利要求 1所述的耐磨钢板, 其特征在于, C: 0.37-0.44%。
3. 如权利要求 1或 2所述的耐磨钢板, 其特征在于, Si: 0.10-0.28%。
4. 如权利要求 1-3任一所述的耐磨钢板,其特征在于, Mn: 0.40-0.90%。
5. 如权利要求 1-4任一所述的耐磨钢板, 其特征在于, P 0.010%。
6. 如权利要求 1-5任一所述的耐磨钢板, 其特征在于, S 0.005%。
7.如权利要求 1-6任一所述的耐磨钢板,其特征在于, Nb: 0.010-0.035%。
8.如权利要求 1-7任一所述的耐磨钢板,其特征在于, A1: 0.020-0.060%。
9.如权利要求 1-8任一所述的耐磨钢板,其特征在于,Β: 0.0010-0.0018%。
10.如权利要求 1-9任一所述的耐磨钢板,其特征在于, Ti: 0.010-0.045%。
11 . 如权利要求 1-10 任一所述的耐磨钢板, 其特征在于, Ca : 0.001-0.006%。
12. 如权利要求 1-11任- -所述的耐磨钢板, 其特征在于, V 0.060%。
13. 如权利要求 1-12任- -所述的耐磨钢板, 其特征在于, Cr 0.80%。
14. 如权利要求 1-13任- -所述的耐磨钢板, 其特征在于, RE < 0.08%。
15. 如权利要求 1-14任- -所述的耐磨钢板, 其特征在于, N 0.0050%。
16. 如权利要求 1-15任- -所述的耐磨钢板, 其特征在于, C 0.0040%。
17. 如权利要求 1-16任- -所述的耐磨钢板, 其特征在于, H 0.0003%。
18.如权利要求 1-17任- -所述的耐磨钢板,其特征在于, 0.035% < Nb+Ti
< 0.070%, 0.040% < Al+Ti < 0.11%。
19. 如权利要求 1-18 任一所述的耐磨钢板, 其特征在于, 布氏硬度为 570-630HBW; -40°C夏比 V型纵向冲击功为 40-60J。
20. 如权利要求 19 所述的耐磨钢板, 其特征在于, 布氏硬度为 600-630HBW。
21. 权利要求 1-20任一所述的耐磨钢板的制造方法, 依次包括: 冶炼、 铸造、 加热、 轧制和轧后直接冷却;
在加热步骤中, 加热温度为 1000-1250°C , 保温时间为 1-2小时; 在轧制步骤中, 开轧温度为 950-1200 °C , 终轧温度为 800-950°C ;
在轧后直接冷却步骤中, 釆用水冷, 停冷温度为室温至 300 °C。
22. 如权利要求 21所述的耐磨钢板的制造方法, 其特征在于, 在加热步 骤中, 板坯加热温度为 1000- 1200 °C。
23. 如权利要求 21或 22所述的耐磨钢板的制造方法, 其特征在于, 粗 轧开轧温度为 950-1150°C , 终轧温度为 800-900°C。
24. 如权利要求 21-23 任一所述的耐磨钢板的制造方法, 其特征在于, 停冷温度为室温至 280 °C。
25. 如权利要求 21-24任一所述的耐磨钢板的制造方法, 其特征在于,保 温时间为 2小时。
PCT/CN2013/071188 2012-07-31 2013-01-31 一种高硬度高韧性耐磨钢板及其制造方法 WO2014019354A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES13763171.9T ES2620904T3 (es) 2012-07-31 2013-01-31 Placa de acero resistente a la abrasión de alta resistencia y alta tenacidad, y proceso de preparación de la misma
NZ614822A NZ614822A (en) 2012-07-31 2013-01-31 High-hardness, high-toughness, wear-resistant steel plate and manufacturing method thereof
KR1020137025667A KR102218051B1 (ko) 2012-07-31 2013-01-31 고경도 고인성 내마모 강판 및 그의 제조방법
US14/418,423 US9994926B2 (en) 2012-07-31 2013-01-31 High-hardness, high-toughness, wear-resistant steel plate and manufacturing method thereof
EP13763171.9A EP2881485B1 (en) 2012-07-31 2013-01-31 Abrasion resistant steel plate with high strength and high toughness, and process for preparing same
JP2014527490A JP5806405B2 (ja) 2012-07-31 2013-01-31 高硬度・高靭性・耐磨耗鋼板およびその製造方法
AU2013222054A AU2013222054B2 (en) 2012-07-31 2013-01-31 Abrasion resistant steel plate with high strength and high toughness, and processing for preparing the same
ZA2015/00616A ZA201500616B (en) 2012-07-31 2015-01-27 High-hardness,high-toughness, wear-resistant steel plate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210270193.3A CN102747282B (zh) 2012-07-31 2012-07-31 一种高硬度高韧性耐磨钢板及其制造方法
CN201210270193.3 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014019354A1 true WO2014019354A1 (zh) 2014-02-06

Family

ID=47027768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071188 WO2014019354A1 (zh) 2012-07-31 2013-01-31 一种高硬度高韧性耐磨钢板及其制造方法

Country Status (10)

Country Link
US (1) US9994926B2 (zh)
EP (1) EP2881485B1 (zh)
JP (1) JP5806405B2 (zh)
KR (1) KR102218051B1 (zh)
CN (1) CN102747282B (zh)
AU (1) AU2013222054B2 (zh)
ES (1) ES2620904T3 (zh)
NZ (1) NZ614822A (zh)
WO (1) WO2014019354A1 (zh)
ZA (1) ZA201500616B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752861A (zh) * 2018-09-27 2021-05-04 株式会社Posco 具有优异的硬度和冲击韧性的耐磨钢及其制造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747282B (zh) * 2012-07-31 2015-04-22 宝山钢铁股份有限公司 一种高硬度高韧性耐磨钢板及其制造方法
CN103205634B (zh) 2013-03-28 2016-06-01 宝山钢铁股份有限公司 一种低合金高硬度耐磨钢板及其制造方法
JP6007847B2 (ja) 2013-03-28 2016-10-12 Jfeスチール株式会社 低温靭性を有する耐磨耗厚鋼板およびその製造方法
CN104651731B (zh) * 2015-02-12 2016-07-06 北京工业大学 一种大型球磨机衬板及其制备方法
CN104711480B (zh) * 2015-03-20 2017-01-18 苏州劲元油压机械有限公司 一种货架平台专用耐磨抗腐蚀钢板及其制备方法
JP6597450B2 (ja) * 2016-03-29 2019-10-30 日本製鉄株式会社 耐摩耗鋼板及びその製造方法
WO2017183060A1 (ja) 2016-04-19 2017-10-26 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
CN106521361A (zh) * 2016-10-26 2017-03-22 舞阳钢铁有限责任公司 一种高性能耐磨钢板及其生产方法
CN106555109A (zh) * 2016-10-31 2017-04-05 舞阳钢铁有限责任公司 兼具低温冲击性能nm550钢板及其生产方法
JP6607210B2 (ja) * 2017-02-03 2019-11-20 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
KR102175570B1 (ko) * 2018-09-27 2020-11-06 주식회사 포스코 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
CN109706396B (zh) * 2019-01-04 2021-05-28 武汉钢铁有限公司 一种含氮低屈强比高铁用耐候钢及生产方法
CN111910125B (zh) * 2020-08-03 2021-05-28 鞍钢股份有限公司 一种棒磨机用非热处理耐磨钢棒及其制造方法
CN115852262A (zh) * 2021-09-23 2023-03-28 宝山钢铁股份有限公司 一种锯片钢及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176615A (ja) * 1984-09-25 1986-04-19 Nippon Kokan Kk <Nkk> 耐摩耗鋼の製造方法
CN1140205A (zh) 1995-03-28 1997-01-15 王宇辉 一种中碳中合金耐磨钢
CN1865481A (zh) 2005-05-19 2006-11-22 宝钢集团上海梅山有限公司 一种贝氏体耐磨钢板制备工艺
CN102134682A (zh) * 2010-01-22 2011-07-27 宝山钢铁股份有限公司 一种耐磨钢板
JP2012031510A (ja) * 2010-06-30 2012-02-16 Jfe Steel Corp 溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板
CN102747282A (zh) * 2012-07-31 2012-10-24 宝山钢铁股份有限公司 一种高硬度高韧性耐磨钢板及其制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431928A (en) * 1987-07-27 1989-02-02 Kawasaki Steel Co Manufacture of wear-resistant steel stock by direct hardening
JPH04116137A (ja) 1990-09-03 1992-04-16 Sumitomo Metal Ind Ltd 高靭性高炭素冷延鋼板とその製造方法
JPH0849040A (ja) * 1994-08-05 1996-02-20 Nippon Steel Corp 表面に凸凹をつけた高力ボルト摩擦接合用鋼板およびその製造方法
JP3273404B2 (ja) * 1995-10-24 2002-04-08 新日本製鐵株式会社 厚手高硬度高靱性耐摩耗鋼の製造方法
JPH09249935A (ja) * 1996-03-13 1997-09-22 Sumitomo Metal Ind Ltd 耐硫化物応力割れ性に優れる高強度鋼材とその製造方法
JP3543619B2 (ja) * 1997-06-26 2004-07-14 住友金属工業株式会社 高靱性耐摩耗鋼およびその製造方法
JP2000256784A (ja) * 1999-03-10 2000-09-19 Nippon Steel Corp 高靱性耐摩耗部材用厚鋼板
JP4816642B2 (ja) * 2005-09-06 2011-11-16 住友金属工業株式会社 低合金鋼
JP5034308B2 (ja) * 2006-05-15 2012-09-26 Jfeスチール株式会社 耐遅れ破壊特性に優れた高強度厚鋼板およびその製造方法
CN101775545B (zh) * 2009-01-14 2011-10-12 宝山钢铁股份有限公司 一种低合金高强度高韧性耐磨钢板及其制造方法
JP5423806B2 (ja) * 2009-11-17 2014-02-19 新日鐵住金株式会社 高靱性耐摩耗鋼およびその製造方法
CN102605253B (zh) * 2012-04-18 2013-12-25 江苏省沙钢钢铁研究院有限公司 低成本高强度高韧性钢板及其生产工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176615A (ja) * 1984-09-25 1986-04-19 Nippon Kokan Kk <Nkk> 耐摩耗鋼の製造方法
CN1140205A (zh) 1995-03-28 1997-01-15 王宇辉 一种中碳中合金耐磨钢
CN1865481A (zh) 2005-05-19 2006-11-22 宝钢集团上海梅山有限公司 一种贝氏体耐磨钢板制备工艺
CN102134682A (zh) * 2010-01-22 2011-07-27 宝山钢铁股份有限公司 一种耐磨钢板
JP2012031510A (ja) * 2010-06-30 2012-02-16 Jfe Steel Corp 溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板
CN102747282A (zh) * 2012-07-31 2012-10-24 宝山钢铁股份有限公司 一种高硬度高韧性耐磨钢板及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2881485A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752861A (zh) * 2018-09-27 2021-05-04 株式会社Posco 具有优异的硬度和冲击韧性的耐磨钢及其制造方法
CN112752861B (zh) * 2018-09-27 2022-05-10 株式会社Posco 具有优异的硬度和冲击韧性的耐磨钢及其制造方法

Also Published As

Publication number Publication date
AU2013222054A1 (en) 2014-02-20
US20150329945A1 (en) 2015-11-19
KR20150034581A (ko) 2015-04-03
KR102218051B1 (ko) 2021-02-22
ES2620904T3 (es) 2017-06-30
ZA201500616B (en) 2016-01-27
CN102747282A (zh) 2012-10-24
NZ614822A (en) 2016-07-29
EP2881485A4 (en) 2015-12-02
CN102747282B (zh) 2015-04-22
EP2881485A1 (en) 2015-06-10
EP2881485B1 (en) 2017-03-15
AU2013222054B2 (en) 2018-02-01
US9994926B2 (en) 2018-06-12
JP5806405B2 (ja) 2015-11-10
JP2014529355A (ja) 2014-11-06

Similar Documents

Publication Publication Date Title
JP6214674B2 (ja) 高硬度低合金耐摩耗鋼板およびその製造方法
JP6211099B2 (ja) 高性能の低合金耐摩耗鋼板およびその製造方法
WO2014019354A1 (zh) 一种高硬度高韧性耐磨钢板及其制造方法
JP6251291B2 (ja) 高靱性の低合金耐摩耗鋼板およびその製造方法
JP6254160B2 (ja) 超高強度高靭性耐摩耗鋼板及びその製造方法
JP5806404B2 (ja) 高強度・高靭性・耐磨耗鋼板およびその製造方法
CN111748728B (zh) 一种易焊接高强高韧耐磨钢板及其制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013222054

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2013763171

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013763171

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137025667

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2014527490

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763171

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14418423

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE