WO2014019352A1 - 一种高强度高韧性耐磨钢板及其制造方法 - Google Patents

一种高强度高韧性耐磨钢板及其制造方法 Download PDF

Info

Publication number
WO2014019352A1
WO2014019352A1 PCT/CN2013/071179 CN2013071179W WO2014019352A1 WO 2014019352 A1 WO2014019352 A1 WO 2014019352A1 CN 2013071179 W CN2013071179 W CN 2013071179W WO 2014019352 A1 WO2014019352 A1 WO 2014019352A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
resistant steel
steel plate
plate according
steel
Prior art date
Application number
PCT/CN2013/071179
Other languages
English (en)
French (fr)
Inventor
李红斌
姚连登
苗雨川
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to ES13763172T priority Critical patent/ES2719807T3/es
Priority to NZ614798A priority patent/NZ614798A/en
Priority to US14/418,904 priority patent/US9797033B2/en
Priority to AU2013221988A priority patent/AU2013221988B2/en
Priority to KR1020137025666A priority patent/KR102218050B1/ko
Priority to EP13763172.7A priority patent/EP2881486B1/en
Priority to JP2014527489A priority patent/JP5806404B2/ja
Publication of WO2014019352A1 publication Critical patent/WO2014019352A1/zh
Priority to ZA2015/00615A priority patent/ZA201500615B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to wear resistant steel, and more particularly to a low alloy easily weldable high strength and high toughness wear resistant steel sheet and a method of manufacturing the same. Background technique
  • Wear-resistant steel plates are widely used in engineering products with high working strength, high wear resistance, engineering, antimony, agriculture, cement production, ports, electricity and metallurgy. Such as bulldozers, loaders, excavators, dump trucks and grabs, stackers and reclaimers, and feed bending structures.
  • wear-resistant steel In recent decades, the development and application of wear-resistant steel has developed rapidly. Generally, the carbon content is increased and appropriate trace elements such as chromium, molybdenum, nickel, vanadium, tungsten, cobalt, boron and titanium are added to make full use of precipitation strengthening. Different strengthening methods such as fine grain strengthening, phase transformation strengthening and dislocation strengthening improve the mechanical properties of wear-resistant steel. Most of the wear-resistant steels are medium-carbon, medium-high-carbon and high-carbon steels. The increase in carbon content leads to a decrease in the toughness of the steel, and too high carbon seriously deteriorates the weldability of the steel. In addition, increasing the alloy content leads to cost increase and welding. The performance is degraded, and these shortcomings restrict the further development of wear-resistant steel.
  • trace elements such as chromium, molybdenum, nickel, vanadium, tungsten, cobalt, boron and titanium are added to make full use of precipitation strengthening.
  • Different strengthening methods such as fine grain strengthening
  • the wear resistance of a material depends mainly on its hardness, and toughness also has a very important influence on the wear resistance of the material. Simply increasing the hardness of the material does not guarantee a better wear resistance and a longer service life under complex conditions.
  • the hardness and toughness of the low alloy wear-resistant steel are controlled to be reasonably matched, and excellent comprehensive mechanical properties are obtained to meet the needs of different wear conditions.
  • Welding can solve the connection of various steels. It is a very important processing technology and plays an important role in engineering applications. Cold cracking of welds is the most common defect in the welding process, especially when welding high-strength steels, the tendency of cold cracks to occur is large. In order to prevent the occurrence of cold cracks, it is usually pre-weld preheating and post-weld heat treatment, which causes the complexity of the welding process, the inoperability under special circumstances, and the safety and reliability of the welded structure. For high-strength, high-hardness wear-resistant steel plates, the welding problem is particularly noticeable.
  • CN1140205A discloses a medium carbon medium alloy wear-resistant steel whose carbon and alloying elements (Cr, Mo, etc.) content are much higher than the present invention, which inevitably leads to poor welding performance and mechanical processing performance.
  • CN1865481A discloses a bainite wear-resistant steel, which has carbon and alloy as compared with the present invention.
  • the content of elements Si, Mn, Cr, Mo, etc. is high, and the welding performance and mechanical properties are low. Summary of the invention
  • the object of the present invention is to provide a low-alloy easy-weld high-strength and high-toughness wear-resistant steel plate, which achieves high strength, high hardness and high toughness matching on the basis of adding a small amount of alloying elements, is extremely easy to weld, has good mechanical processing performance, and is very Conducive to a wide range of applications in engineering.
  • the low alloy easily weldable high strength and high toughness wear resistant steel sheet of the present invention has a chemical composition weight percentage of C: 0, 08-0, 21%, Si: 0, 15 0, 45%, Mn: 1.10- 1 .80%, P: ⁇ 0,015%, S: ⁇ 0.010%, Nb: 0.010-0.040%, Al: 0.010-0.080%, B: 0.0006-0.0014%, Ti: 0.005-0.050%, Ca: 0.0010-0.0080 %, V ⁇ 0.080%, Cr ⁇ 0.60%, N ⁇ 0.0080%, 0 ⁇ 0.0060%, H ⁇ 0.0004%, and satisfy: 0.025% ⁇ Nb + Ti ⁇ 0.080%, 0.030% ⁇ A1 + Ti ⁇ 0.12%, The balance is Fe and the inevitable miscellaneous.
  • the microstructure of the wear-resistant steel of the invention is mainly martensite and retained austenite, wherein the retained austenite volume fraction is 5%.
  • Another object of the present invention is to provide a method for producing the low alloy easily weldable high strength and high toughness wear resistant steel sheet, which comprises the steps of smelting, casting, heating, rolling, and direct cooling after rolling.
  • heating step heating to a temperature of 1000-1200 ° C
  • rolling step rolling temperature: 950-1 150 ° C
  • finishing rolling temperature 800-950 ° C
  • direct cooling step after rolling use Water-cooled, cold-stop temperature: room temperature to 300 °C.
  • the chemical composition of the material has an important influence on the weldability.
  • the influence of carbon and alloying elements on steel welding can be expressed by carbon equivalent.
  • carbon equivalent By estimating the carbon equivalent of steel, the cold cracking sensitivity of low alloy high strength steel can be preliminarily measured. The lower the carbon equivalent, the better the weldability. On the contrary, the worse the weldability, which has an important guiding role in the determination of welding process conditions such as preheating, post-weld heat treatment, line energy and the like.
  • the formula for the carbon equivalent confirmed by the International Welding Association is
  • the weld crack sensitivity index Pcm of a low crack-sensitive steel plate can be determined by the following formula:
  • the weld crack sensitivity index Pcm is a judgment index reflecting the tendency of the steel to weld cold cracks.
  • the lower the Pcm the better the weldability, and conversely, the weldability is worse.
  • Good weldability means that it is not easy to weld Welding cracks are generated, and steel with poor weldability is prone to cracks.
  • the steel is preheated before welding. The better the weldability, the lower the preheating temperature required, or even not preheating. A higher preheating temperature is required.
  • the fineness and strengthening effect of the microalloying elements and the refinement and strengthening effect of controlling the cooling process of the rolling control make the steel sheet have excellent mechanical properties (strongness, hardness, elongation, Impact properties, etc.), weldability and wear resistance.
  • the chemical composition of the wear-resistant steel according to the present invention in addition to elements such as C, Si, Mn, etc., is added with a small amount of elements such as Nb, and has the characteristics of simple composition and low cost;
  • the wear-resistant steel plate of the present invention is produced by the TMCP process, and does not require heat treatment processes such as off-line quenching and tempering, and has the characteristics of short production process, high production efficiency, energy saving, and low production cost;
  • the wear-resistant steel sheet according to the present invention has high strength, high hardness, and particularly high low temperature toughness, and the steel sheet produced by the present invention has excellent weldability.
  • the wear-resistant steel of the present invention mainly has fine martensite and retained austenite, wherein the residual austenite volume fraction is 5%, which is beneficial to the hardness and toughness of the wear-resistant steel plate. Good match.
  • the wear-resistant steel plate of the invention has obvious advantages. Controlling the content of carbon and alloying elements, and developing low-cost, wear-resistant steel with good welding and mechanical properties and simple process are inevitable trends in the development of the social economy and the steel industry. DRAWINGS
  • Figure 1 shows the shape and dimensions of the weld crack specimen of the oblique Y groove in the welding test.
  • Fig. 2 shows that the steel sheet of Example 5 is organized into fine martensite and a small amount of retained austenite, which ensures that the steel sheet has better mechanical properties.
  • the content refers to the content by weight.
  • the chemical composition of the low alloy easily weldable high strength and high toughness wear resistant steel sheet according to the present invention is as follows:
  • Carbon is the most basic and important element in wear-resistant steel. It can improve the strength and hardness of steel and improve the wear resistance of steel. However, it is unfavorable to the toughness and weldability of steel. Therefore, it should be controlled in steel.
  • the carbon content is from 0.08 to 0.21%, preferably from 0.11 to 0.19%.
  • Silicon solid solution increases their hardness and strength in ferrite and austenite.
  • too high a silicon content leads to a sharp drop in the toughness of steel.
  • the affinity between silicon and oxygen is stronger than that of iron, it is easy to produce low-melting silicate during welding, increasing the fluidity of molten slag and molten metal, affecting the quality of the weld, so the content is not easy to be excessive, and the control silicon in the present invention is 0.15-0.45%, preferably 0.15-0.40%.
  • Manganese strongly increases the hardenability of steel, lowers the transition temperature of wear-resistant steel and the critical cooling rate of steel. However, when the manganese content is high, there is a tendency to coarsen the crystal grains, and the tempering and brittle sensitivity of the steel is increased, and segregation and cracking in the cast slab are easily caused, and the performance of the steel sheet is lowered, and the controlled manganese content in the present invention is 1.10. -1.80%, preferably 1.20 to 1.70%.
  • Nb The refined grain and precipitation strengthening effect of Nb is extremely significant for enhancing the toughness and toughness of the material. It is a strong, N-forming element that strongly inhibits austenite grain growth. Nb improves the strength and toughness of steel through grain refinement. Nb mainly improves and improves the properties of steel through precipitation strengthening and phase transformation strengthening. Nb has been used as one of the most effective strengthening agents in HSLA steel. The enthalpy is 0.010-0.040%, preferably 0.010-0.035%.
  • Nitrogen in aluminum and steel forms fine, insoluble A1N particles that refine the grain of steel.
  • Aluminum can refine the grain of steel, fix nitrogen and oxygen in steel, reduce the sensitivity of steel to the notch, reduce or eliminate the aging phenomenon of steel, and improve the toughness of steel.
  • the A1 content is controlled at 0.010-0.080. %, preferably from 0.020 to 0.060%.
  • the boron content is controlled to be 0.0006-0.0014%, preferably It is 0.0008-0.0014%.
  • Titanium is one of the strong carbide forming elements and forms fine TiC particles with carbon.
  • the TiC particles are fine and distributed at the grain boundary to achieve the effect of refining the crystal grains, and the hard TiC particles improve the wear resistance of the steel.
  • the controlled titanium is 0.005-0.050%, preferably 0.005-0.045%.
  • the composite addition of niobium and titanium can obtain better grain refining effect and reduce the prior austenite crystal
  • the particle size is beneficial to refining the martensite strip after quenching, improving the strength and wear resistance, and the unsolvability of TiN at high temperatures, preventing coarsening of grains in the heat-affected zone and improving the toughness of the heat-affected zone.
  • the weldability of the steel is improved, so the content of niobium and titanium is as follows: 0.025% ⁇ Nb + Ti ⁇ 0.080%, preferably 0.035% Nb + T 0.070%.
  • Titanium can form fine particles and refine grains. Aluminum can ensure the formation of fine titanium particles and fully exert the grain refinement effect of titanium. Therefore, the contents of aluminum and titanium are as follows: 0.030% A1+Ti 0.12%, preferably 0.040% ⁇ A1+Ti ⁇ 0.11% Struktur
  • Calcium has a significant effect on the deterioration of inclusions in cast steel.
  • the addition of appropriate amount of calcium in the cast steel can transform the long strip of sulfide inclusions in the cast steel into spherical CaS or (Ca, Mn) S inclusions, which are formed by calcium.
  • the oxide and sulfide inclusions have a low density and are easy to remove.
  • Calcium also significantly reduces the segregation of sulfur at the grain boundaries, which are beneficial for improving the quality of the cast steel and thereby improving the properties of the steel.
  • the boron content is controlled in the present invention from 0.0010 to 0.0080%, preferably from 0.0010 to 0.0060%.
  • Vanadium The addition of vanadium is mainly to refine the grains, so that the austenite grains do not grow too coarse during the heating stage, so that the grain of the steel can be obtained in the subsequent multi-pass rolling process. Further refining, to increase the strength and toughness of the steel, the vanadium is controlled in the present invention to be 0.080%, preferably 0.060%.
  • Chromium can reduce the critical cooling rate and increase the hardenability of steel. Chromium can form various carbides such as (Fe,Cr) 3 C, (Fe,Cr) 7 C 3 and (Fe,Cr) 23 C 7 in steel to improve strength and hardness. Chromium can prevent or slow the precipitation and aggregation of carbides during tempering, and can improve the tempering stability of steel.
  • the controlled chromium content is 0.60%, preferably 0.40%.
  • Phosphorus and sulfur In wear-resistant steel, sulfur and phosphorus are harmful elements, and their content should be strictly controlled.
  • the controlled phosphorus content in the steel of the invention is 0.015%, preferably 0.010%; the sulfur content is 0.010%, preferably 0.005%. .
  • Nitrogen, oxygen and hydrogen Excessive oxygen and nitrogen in steel can be very detrimental to the properties of steel, especially weldability and toughness, but excessive control can greatly increase production costs. Therefore, control of steels involved in the present invention
  • the nitrogen content is 0.0080%, preferably 0.0050%; the oxygen content is 0.0060%, preferably 0.0040%; and the hydrogen content is 0.0004%, preferably 0.0003%.
  • the method for manufacturing the above low alloy easily weldable high strength and high toughness wear resistant steel plate comprises the steps of smelting, casting, heating, rolling and direct cooling after rolling.
  • heating to The temperature is 1000-1200 °C; in the rolling step, the rolling temperature is: 950-1150 °C, the finishing temperature is 800-950 °C; in the direct cooling step after rolling, the water is cooled, the cooling temperature is: room temperature to 300 °C.
  • the heating temperature is 1000-1150 ° C, more preferably the heating temperature is 1000-1130 ° C, in order to improve production efficiency and prevent excessive growth of austenite grains and severe oxidation of the surface of the steel slab, Most preferably, the heating temperature is from 1000 to 1110 °C.
  • the rolling temperature is: 950-1100 ° C
  • the finishing temperature is 800-900 ° C
  • the rolling temperature is 950-1080 ° C
  • the finishing temperature is 800-890 ° C, most preferably , rolling temperature: 950-1050 ° C
  • finishing temperature 800-880 ° C.
  • the shutdown temperature is from room temperature to 280 ° C, more preferably the shutdown temperature is from room temperature to 250 ° C, and most preferably the shutdown temperature is from room temperature to 200 ° C.
  • the invention strictly controls the content of carbon and microalloy by rationally designing chemical components (contents and ratios of elements such as C, Si, Mn, Nb).
  • the wear-resistant steel plate designed by such a component has weldability and is suitable for use in the field of construction machinery requiring welding.
  • the production cost of wear-resistant steel can be greatly reduced.
  • the low-alloy easy-weld high-strength and high-toughness wear-resistant steel plate of the invention has high strength, high hardness and excellent impact toughness, and is easy to be mechanically processed by cutting and bending, and has strong applicability.
  • the low alloy easy-weld high-strength and high-toughness wear-resistant steel plate produced by the invention has tensile strength of 1160-1410 MPa, elongation of 14-16%, Brinell hardness of 390-470HBW, and its -40°C Charpy V-type longitudinal impact.
  • the work is 50-110J, and has excellent welding performance, which enhances the applicability of wear-resistant steel.
  • the present invention 1-8 and Comparative Example 1 are (patent CN1865481A).
  • the chemical element mass distribution of the steel sheet is shown in Table 1.
  • the smelting raw materials are produced according to the steps: smelting ⁇ casting ⁇ heating ⁇ rolling ⁇ rolling and directly cooling. See Table 2 for specific process parameters in Examples 1-8.
  • Test Example 1 Mechanical properties test
  • the hardness test of the low alloy easy-weld high-strength and high-strength wear-resistant steel plate of the embodiment 1-8 of the present invention According to the GB/T2974 sampling method, and according to the GB/T231.1 test method, the hardness test of the low alloy easy-weld high-strength and high-strength wear-resistant steel plate of the embodiment 1-8 of the present invention;
  • the tensile strength of the steel sheets of Examples 1-8 of the present invention 1 160-1410 MPa, elongation: 14%-16%, Brinell hardness: 390-470 HBW, -40 °C Charpy V-type Longitudinal impact work: 50-1 10J, It is explained that the steel sheet according to the present invention has high strength, high hardness, high elongation, and the like, and has excellent low temperature impact toughness. The strength, hardness and elongation of the steel sheet according to the invention are obviously superior to those of Comparative Example 1.
  • Fig. 2 shows that the steel sheet of Example 5 is organized into fine martensite and a small amount of retained austenite, which ensures that the steel sheet has better mechanical properties.
  • Test Example 2 Weldability test According to the "Testing Method for Welding Crack of Oblique Y-Bevel" (GB4675.1-84), the welding crack test of the wear-resistant steel plate of the present invention was carried out, and the test was carried out in five groups. The shape and dimensions of the weld crack test piece of the bevel groove are shown in Fig. 1.
  • the welding constrained weld is welded, and the weld is welded with Ar gas-enhanced welding.
  • the JM-58 welding wire of ⁇ 1.2 is used, and the angular deformation of the test piece is strictly controlled during the welding process.
  • the weld of the test weld was carried out after cooling the room temperature after welding.
  • the test welds were welded at room temperature and the weld surface cracks, section cracks and root cracks were examined after 48 hours of test weld completion. After the anatomical test, the surface, section and root of the weld were inspected by the coloring method.
  • the welding specification is 170A x 25V x 160mm/minfact
  • the abrasion resistance test was carried out on an ML-100 abrasive wear tester.
  • the axis of the sample is perpendicular to the surface of the steel sheet, and the wear surface of the sample is the rolling surface of the steel sheet.
  • the sample is processed into a stepped cylinder as required, and the test part has a size of C>4 mm, and the clamping part of the fixture has a size of C>5 mm.
  • the sample was washed with alcohol before the test, then blown dry with a hair dryer, weighed on a balance of one thousandth of a precision, and the weight of the sample was measured as the original weight, and then mounted on a flexible jig.
  • the test was carried out under a load of 42 N using a sandpaper having a particle size of 80 mesh. After the test, due to the wear between the sample and the sandpaper, the sample draws a spiral on the sandpaper, and calculates the length of the spiral according to the starting and ending radius of the spiral.
  • the calculation formula is
  • a rl is the starting radius of the helix
  • r2 is the ending radius of the helix
  • a is the feed of the helix.
  • the low alloy easily weldable high strength and high toughness wear resistant steel sheets of Examples 1 to 8 of the present invention were subjected to abrasion resistance tests.
  • the wear test results of the steel grade of the examples of the present invention and the comparative steel 2 (Comparative Example 2 steel plate hardness: 360HBW) are shown in Table 5.
  • the chemical composition of the wear-resistant steel according to the invention is characterized by addition of a small amount of elements such as Nb, such as C, Si, Mn, etc., and has the characteristics of simple composition and low cost; the wear-resistant steel plate of the invention is produced by the TMCP process, and does not need to be offline. Heat treatment processes such as quenching and tempering, with a short production process, The invention has the advantages of high production efficiency, energy saving, and low production cost.
  • the wear resistant steel sheet of the invention has high strength, high hardness, and particularly high low temperature toughness, and the steel sheet produced by the invention has excellent welding performance.
  • the wear-resistant steel of the invention has a microstructure mainly composed of fine martensite and retained austenite, wherein the retained austenite volume fraction is 5%, the tensile strength is 1 160-1410 MPa, and the elongation is 14-16%;
  • the Brinell hardness is 390-470HBW; its -40 °C Charpy V-type longitudinal impact energy is 50-1 10J, which is good for the good matching of the hardness and toughness of the wear-resistant steel plate. Therefore, the wear resistant steel sheet of the present invention has obvious advantages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明提供一种耐磨钢板,其化学成分(重量%)为:C:0.08-0.21%、Si:0.15-0.45%,Mn:1.10-1.80%,Ρ≤0.015%、S≤0.010%、Nb:0.010-0.040%、Al:0.010-0.080%、B:0.0006-0.0014%,Ti:0.005-0.050%、Ca:0.0010-0.0080%,V≤0.080%,Cr≤0.60%,N≤0.0080%,O≤0.0060%,H:≤0.0004%,且满足:0.025%≤Nb+Ti≤0.080%,0.030%≤Al+Ti≤0.12%,余量为Fe和不可避免的杂质。该耐磨钢板的制造方法,包括冶炼、铸造、轧制及轧后直接冷却等步骤。通过以上成分及工艺得到的耐磨钢板极易焊接,强硬度高,低温韧性佳,机械加工性能优异,适用于工程、矿山机械中易磨损设备,如铲斗、矿用车箱体和刮板运输机等。

Description

一种高强度高韧性耐磨钢板及其制造方法 技术领域
本发明涉及耐磨钢,特别是涉及一种低合金易焊接高强度高韧性耐磨 钢板及其制造方法。 背景技术
耐磨钢板广泛应用于工作条件特别恶劣, 要求高强度, 高耐磨性能的 工程、 釆矿、 农业、 水泥生产、 港口、 电力以及冶金等机械产品上。 如推 土机, 装载机, 挖掘机, 自卸车及抓斗、 堆取料机、 输料弯曲结构等。
近几十年来, 耐磨钢的开发与应用发展很快, 一般增加碳含量并加入 适量的微量元素, 如铬、 钼、 镍、 钒、 钨、 钴、 硼和钛等, 充分利用析出 强化、 细晶强化、 相变强化和位错强化等不同强化方式提高耐磨钢的力学 性能。 大多数耐磨钢为中碳、 中高碳和高碳钢, 碳含量增加会导致钢的韧 性下降, 且过高的碳严重恶化了钢的焊接性能, 另外, 增加合金含量会导 致成本提高和焊接性能下降, 这些缺点制约了耐磨钢的进一步发展。
材料的耐磨性主要取决于其硬度, 而韧性对材料的耐磨性也有着非常 重要的影响。 单单提高材料的硬度并不能保证材料在复杂工况下具有较佳 的耐磨性和较长的使用寿命。 通过调整成分与热处理工艺, 控制低合金耐 磨钢硬度和韧性的合理匹配, 得到优良的综合机械性能, 使其满足不同磨 损工况的需要。
焊接可以解决各种钢材的连接, 是十分重要的加工工艺, 在工程应用 中具有十分重要的作用。 焊接冷裂纹是最常出现的焊接工艺缺陷, 尤其是 当焊接高强度钢时, 冷裂纹出现的倾向很大。 为防止冷裂纹产生, 通常是 焊前预热、 焊后热处理, 造成了焊接工艺的复杂性, 特殊情况下的不可操 作性, 危及焊接结构的安全可靠性。 对于高强度、 高硬度的耐磨钢板, 焊 接问题尤为明显。
CN1140205A公开了一种中碳中合金耐磨钢, 其碳及合金元素 ( Cr、 Mo等)含量均远高于本发明, 这必然导致焊接性能与机械加工性能较差。
CN1865481A公开了一种贝氏体耐磨钢, 与本发明相比, 其碳及合金 元素 (Si、 Mn、 Cr、 Mo等)含量均较高, 焊接性能、 力学性能均较低。 发明内容
本发明的目的是提供一种低合金易焊接高强高韧耐磨钢板,在添加微 量合金元素基础上实现高强度、 高硬度和高韧性的匹配, 极易焊接、 具有 良好的机械加工性能, 十分有益于工程上的广泛应用。
为实现上述目的, 本发明的低合金易焊接高强高韧耐磨钢板的化学成 分重量百分比含量为 C: 0,08-0,21%、 Si: 0, 15 0,45%、 Mn: 1.10-1 .80%, P: < 0,015%, S: < 0.010%, Nb: 0.010-0.040%, Al: 0.010-0.080%, B: 0.0006-0.0014%, Ti: 0.005-0.050%, Ca: 0.0010-0.0080%, V < 0.080%, Cr < 0.60% , N < 0.0080%, 0 < 0.0060% , H < 0.0004%, 且满足: 0.025% < Nb+Ti < 0.080%, 0.030% < A1+Ti < 0.12%, 余量为 Fe 和不可避免的杂 本发明耐磨钢的显微组织主要为马氏体和残余奥氏体, 其中残余奥氏 体体积分数 5%。
本发明的另一个目的在于提供该低合金易焊接高强高韧耐磨钢板的 制造方法, 该方法依次包括冶炼、 铸造、 加热、 轧制和轧后直接冷却等步 骤。 其中加热步骤中, 加热到温度为 1000-1200°C ; 轧制步骤中, 开轧温 度: 950-1 150 °C , 终轧温度: 800-950°C ; 轧后直接冷却步骤中, 釆用水冷, 停冷温度: 室温至 300 °C。
材料的化学成分对焊接性能有着重要的影响。 碳和合金元素对钢的焊 接的影响可用碳当量来表示, 通过对钢的碳当量的估算, 可以初步衡量低 合金高强度钢冷裂敏感性的高低, 碳当量越低, 焊接性越好, 反之, 则焊 接性越差, 这对焊接工艺条件如预热、 焊后热处理、 线能量等的确定具有 重要的指导作用。 国际焊接协会确认的碳当量的公式为
Ceq = C + Mn/6+ ( Cr+Mo+V ) 15+ ( Ni+Cu ) /15
低 接裂纹敏感性钢板的焊接裂纹敏感性指数 Pcm可按下式确定:
Figure imgf000004_0001
焊接裂纹敏感性指数 Pcm是反映钢的焊接冷裂纹倾向的判定指标, Pcm越低, 焊接性越好, 反之, 则焊接性越差。 焊接性好是指焊接时不易 产生焊接裂纹, 而焊接性差的钢容易产生裂纹, 为了避免裂纹的产生, 在 焊接前对钢进行预热, 焊接性越好, 则所需的预热温度越低, 甚至不预热, 反之则需要较高的预热温度。
由于本发明中科学设计了碳及合金元素含量, 通过微合金元素的细化 强化作用及控制轧制控制冷却过程的细化强化效果, 使得钢板具有优异的 力学性能 (强、 硬度、 延伸率、 冲击性能等) 、 焊接性能和耐磨性能。
本发明与现有技术的不同之处主要体现在以下几方面:
从化学成分上看, 本发明涉及的耐磨钢的化学成分除 C、 Si、 Mn等 元素外, 添加了少量 Nb等元素, 具有成分简单、 成本低廉等特点;
从生产工艺上看, 本发明涉及的耐磨钢板釆用 TMCP工艺生产, 无需 离线淬火和回火等热处理工序, 具有生产流程短, 生产效率高, 节约能源, 降低生产成本等特点;
从产品性能上看, 本发明涉及的耐磨钢板具有高强度、 高硬度, 尤其 具有很高的低温韧性, 本发明生产的钢板具有优异的焊接性能。
从显微组织上看, 本发明涉及的耐磨钢, 显微组织主要为细的马氏体 和残余奥氏体,其中残余奥氏体体积分数 5%,有益于耐磨钢板强硬度及 韧性的良好匹配。
本发明涉及的耐磨钢板具有较明显的优势。 控制碳和合金元素含量, 研发低成本、 焊接和力学性能佳、 工艺简单的耐磨钢是社会经济和钢铁工 业发展的必然趋势。 附图说明
图 1是焊接试验中, 斜 Y坡口焊接裂纹试件的形状和尺寸。
图 2为实施例 5钢板显 组织为细的马氏体和少量残余奥氏体, 这保 证了钢板具有较佳的力学性能。 具体实施方式
下面结合一些实施例对本发明作进一步阐述。 这些实施例仅仅是对本 发明的一些实施方式的描述, 并不对本发明的范围构成任何限制。
本发明中, 除非另有指明, 含量均指重量百分比含量。 本发明所涉及的低合金易焊接高强高韧耐磨钢板的化学成分作用如 下:
碳: 碳是耐磨钢中最基本、 最重要的元素, 可以提高钢的强度和硬度, 进而提高钢的耐磨性, 但其对钢的韧性和焊接性能不利, 因此, 应合理控 制钢中的碳含量为 0.08-0.21%, 优选为 0.11-0.19 %。
硅: 硅固溶在铁素体和奥氏体中提高它们的硬度和强度, 然而硅含量 过高会导致钢的韧性急剧下降。 同时考虑到硅与氧的亲和力比铁强, 焊接 时容易产生低熔点的硅酸盐, 增加熔渣和熔化金属的流动性, 影响焊缝质 量,因此含量不易过多,本发明中控制硅为 0.15-0.45 %,优选地为 0.15-0.40 %。
锰: 锰强烈增加钢的淬透性, 降低耐磨钢转变温度和钢的临界冷却速 度。 但锰含量较高时, 有使晶粒粗化的倾向, 并增加钢的回火脆敏感性, 而且容易导致铸坯中出现偏析和裂纹, 降低钢板的性能, 本发明中控制锰 含量为 1.10-1.80%, 优选地 1.20-1.70%。
铌: Nb 的细化晶粒和析出强化作用, 对提高材料强韧性贡献是极为 显著的, 是强烈的 、 N化物的形成元素, 强烈地抑制奥氏体晶粒长大。 Nb通过晶粒细化同时提高钢的强度和韧性, Nb主要通过析出强化和相变 强化来改善和提高钢的性能, Nb 已经被作为 HSLA钢中最有效的强化剂 之一, 本发明中控制铌为 0.010-0.040%, 优选地为 0.010-0.035%。
铝: 铝和钢中氮能形成细小难溶的 A1N颗粒, 细化钢的晶粒。 铝可细 化钢的晶粒, 固定钢中的氮和氧, 减轻钢对缺口的敏感性, 减小或消除钢 的时效现象, 并提高钢的韧性, 本发明中 A1含量控制在 0.010-0.080%, 优选地为 0.020-0.060%。
硼: 硼增加钢的淬透性但含量过高将导致热脆现象, 影响钢的焊接性 能及热加工性能, 因此需要严格控制 B 含量, 本发明中控制硼含量为 0.0006-0.0014%, 优选地为 0.0008-0.0014%。
钛: 钛是强碳化物形成元素之一, 与碳形成细微的 TiC颗粒。 TiC颗 粒细小, 分布在晶界, 达到细化晶粒的效果, 较硬的 TiC颗粒提高钢的耐 磨性, 本发明中控制钛为 0.005-0.050%, 优选地为 0.005-0.045%。
铌和钛的复合加入, 可以获得更好的晶粒细化效果, 减小原奥氏体晶 粒尺寸, 有利于细化淬火后的马氏体条, 提高强度和耐磨性, TiN等在高 温下的未溶解性, 可阻止热影响区晶粒的粗化, 提高热影响区的韧性, 从 而改善钢的焊接性,故铌和钛的含量范围如下: 0.025% < Nb+Ti < 0.080% , 优选地为 0.035% Nb+T 0.070%。
钛均能形成细小颗粒进而细化晶粒, 铝可以保证细小钛颗粒的形成, 充分发挥钛的细化晶粒作用, 故铝和钛的含量范围如下: 0.030% A1+Ti 0.12%, 优选地为 0.040% < A1+Ti < 0.11%„
钙: 钙对铸钢中夹杂物的变质具有显著作用, 铸钢中加入适量钙可将 铸钢中的长条状硫化物夹杂转变为球状的 CaS或 (Ca, Mn ) S 夹杂, 钙 所形成的氧化物及硫化物夹杂密度小, 易于上浮排除。 钙还显著降低硫在 晶界的偏聚, 这些都有益于提高铸钢的质量, 进而提高钢的性能。 本发明 中控制硼含量为 0.0010-0.0080%, 优选地为 0.0010-0.0060%。
钒: 钒的加入主要是为了细化晶粒, 使钢坯在加热阶段奥氏体晶粒不 至于生长的过于粗大, 这样, 在随后的多道次轧制过程中, 可以使钢的晶 粒得到进一步细化, 提高钢的强度和韧性, 本发明中控制钒为 0.080 %, 优选地为 0.060%。
铬: 铬可以降低临界冷却速度、 提高钢的淬透性。 铬在钢中可以形成 (Fe,Cr)3C、 (Fe,Cr)7C3和 (Fe,Cr)23C7等多种碳化物, 提高强度和硬度。 铬在 回火时能阻止或减緩碳化物的析出与聚集, 可以提高钢的回火稳定性, 本 发明中控制铬含量为 0.60% , 优选为 0.40%。
磷与硫: 在耐磨钢中,硫与磷均为有害元素, 它们的含量要严格控制, 本发明所涉及钢种中控制磷含量 0.015% , 优选 0.010% ; 硫含量 0.010%, 优选 0.005%。
氮、 氧与氢: 钢中过多的氧和氮对钢的性能尤其是焊接性和韧性能是 十分不利的, 但控制过严会大幅增加生产成本, 因此, 本发明所涉及钢种 中控制氮含量 0.0080%, 优选 0.0050%; 氧含量 0.0060%, 优选 0.0040%; 氢含量 0.0004%, 优选 0.0003%。 本发明上述低合金易焊接高强高韧耐磨钢板的制造方法, 依次包括冶 炼、 铸造、 加热、 轧制和轧后直接冷却等步骤。 其中加热步骤中, 加热到 温度为 1000-1200 °C ; 轧制步骤中, 开轧温度: 950-1150 °C , 终轧温度: 800-950°C ; 轧后直接冷却步骤中, 釆用水冷, 停冷温度: 室温至 300 °C。
优选地, 在所述加热过程中, 加热温度为 1000-1150°C , 更优选加热 温度为 1000-1130°C , 为提高生产效率并防奥氏体晶粒过分长大及钢坯表 面严重氧化, 最优选加热温度为 1000-1110°C。
优选地, 开轧温度: 950-1100 °C , 终轧温度: 800-900 °C , 更优选地, 开轧温度: 950-1080 °C , 终轧温度: 800-890 °C , 最优选地, 开轧温度: 950-1050°C , 终轧温度: 800-880°C。
优选地, 停冷温度为室温至 280°C , 更优选停冷温度为室温至 250°C , 最优选停冷温度为室温至 200 °C。
本发明通过合理设计化学成分( C、 Si、 Mn、 Nb等元素的含量及配比;), 严格控制了碳和微合金含量。 这样的成分设计得到的耐磨钢板具有易焊接 性, 适合需要焊接的工程机械使用领域。 另外, 由于不含有 Mo和 Ni等 元素, 可大大降低耐磨钢生产成本。
本发明的低合金易焊接高强高韧耐磨钢板具有高强、 高硬及极佳的冲 击韧性等, 易进行切割、 弯曲等机械加工, 具有很强的适用性。
本发明生产的低合金易焊接高强高韧耐磨钢板: 抗拉强度为 1160-1410MPa, 延伸率为 14-16%; 布氏硬度为 390-470HBW; 其 -40°C夏 比 V型纵向冲击功为 50-110J, 并且具有优异的焊接性能, 增强了耐磨钢 的适用性。 实施例
本发明实施例 1-8和对比例 1为 (专利 CN1865481A ) 的钢板化学元 素质量百分配比如表 1所示。
将冶炼原料按照步骤: 冶炼→铸造→加热→轧制→轧后直接冷却进行 制造。 实施例 1-8中的具体工艺参数参见表 2。
由表 1可知, 对比例 1中碳含量和合金含量较高, Ceq和 Pcm值远高 于本发明钢种, 焊接性能必然与本发明钢种相差较大。
Figure imgf000009_0001
表 2 本发明实施例 1-8中的具体工艺参数
Figure imgf000010_0001
试验例 1 : 力学性能试验
按照 GB/T2974取样方法取样, 并按照 GB/T231.1试验方法对本发明 实施例 1-8的低合金易焊接高强高韧耐磨钢板进行硬度测试; 按照
GB/T229试验方法进行冲击试验; 按照 GB/T228试验方法进行拉伸试验; 按照 GB/T232试验方法进行弯曲试验, 其结果见表 3。
表 3 本发明实施例 1-8及对比例 1的力学性能
Figure imgf000011_0001
从表 3可以看出,本发明实施例 1-8的钢板抗拉强度: 1 160-1410MPa, 延伸率: 14%-16%, 布氏硬度: 390-470HBW, -40°C夏比 V型纵向冲击功: 50-1 10J, 以上说明本发明所涉及钢板不但具有高强、 高硬、 高延伸率等特 点, 而且具有优异的低温冲击韧性。 本发明所涉及钢板强、 硬度、 延伸率 明显优于对比例 1。
图 2为实施例 5钢板显 组织为细的马氏体和少量残余奥氏体, 这保 证了钢板具有较佳的力学性能。
其他实施例也能得到类似的显微组织。 试验例 2 : 焊接性试验 按照 《斜 Y坡口焊接裂纹试验方法》 (GB4675.1-84 )对本发明耐磨 钢板进行斜 Υ坡口焊接裂纹试验, 分五组进行试验。 斜 Υ坡口焊接裂纹 试件的形状和尺寸见图 1。
首先焊接拘束焊缝, 拘束焊缝釆用富 Ar气体保护焊焊接, 使用 Φ 1.2 的 JM-58焊丝, 焊接过程中严格控制了试件的角变形。 焊后冷却室温后进 行试验焊缝的焊接。 试验焊缝在室温下进行焊接, 试验焊缝完成 48小时 后, 检测焊缝表面裂纹、 断面裂纹和根部裂纹。 经过解剖试验, 利用着色 法对焊缝的表面、 断面、 根部分别进行检查。 焊接规范为 170A x 25V x 160mm/min„
对本发明实施例 1-8的低合金易焊接高强高韧耐磨钢板进行焊接性能 试验, 试验结果如表 4所示。 表 4 本发明实施例 1-8的焊接性能试验结果 预热 试样编 表面裂 根部裂 断面裂 环境温 相对湿 温度 号 紋率% 紋率% 紋率% 度 度
1 0 0 0
2 0 0 0
不预热 3 0 0 0 8 °C 63% 例
4 0 0 0
1
5 0 0 0
1 0 0 0
2 0 0 0
不预热 3 0 0 0 16 °C 60% 例
4 0 0 0
2
5 0 0 0
1 0 0 0
2 0 0 0
不预热 3 0 0 0 19 °C 61% 例
4 0 0 0
3
5 0 0 0
实 不预热 1 0 0 0 23 °C 63% 施 2 0 0 0 例 3 0 0 0
4 4 0 0 0
5 0 0 0
1 0 0 0
2 0 0 0
不预热 3 0 0 0 26 °C 66% 例
4 0 0 0
5
5 0 0 0
1 0 0 0
2 0 0 0
不预热 3 0 0 0 32 °C 63% 例
4 0 0 0
6
5 0 0 0
1 0 0 0
2 0 0 0
80 °C 3 0 0 0 27 °C 62% 例
4 0 0 0
7
5 0 0 0
1 0 0 0
2 0 0 0
80 °C 3 0 0 0 33 °C 61% 例
4 0 0 0
8
5 0 0 0 由表 4可知, 本发明实施例 1-8的耐磨钢板在不预热 (预热 80 °C ) 、 环境温度 8-33 °C条件下焊接后均未出现裂纹,说明本发明耐磨钢板具有极 佳的焊接性能, 尤其对大尺寸焊件极为适用。 试验例 3 : 耐磨性试验
耐磨性试验在 ML-100磨粒磨损试验机上进行。 截取试样时, 令试样 的轴线垂直于钢板表面, 试样的磨损面即钢板的轧制面。 将试样按要求加 工成台阶状圓柱体,测试部分尺寸为 C>4mm,卡具夹持部分尺寸为 C> 5mm。 试验前用酒精清洗试样, 然后用吹风机吹干, 在万分之一精度的天平上称 重, 测得试样重量作为原始重量, 而后安装在弹性夹具上。 用粒度为 80 目的砂纸 ,在 42N载荷作用下进行试验。试验后由于试样与砂纸间的磨损 , 试样在砂纸上画出一条螺旋线, 根据螺旋线的起始和终止半径来计算螺旋 线的长度, 计算公式为
s = π (τλ 2 - r2 2 )
a rl为螺旋线的起始半径, r2为螺旋线的终止半径, a为螺旋线的进给 量。 每次实验称重三次取平均值, 然后计算失重, 用每米失重来表示试样 的磨损率 (mg/M ) 。
对本发明的实施例 1-8的低合金易焊接高强高韧耐磨钢板进行耐磨性 试验。本发明的实施例钢种与对比例 2钢(对比例 2钢板硬度为 360HBW ) 的磨损试验结果见表 5。
表 5 本发明实施例 1-8与对比例 2的磨损试验结果
Figure imgf000014_0001
从表 5可知, 在此磨损条件下, 本发明的低合金易焊接高强高韧耐磨 钢板的耐磨性能优于对比例 2钢板耐磨性。
本发明涉及的耐磨钢的化学成分除 C、 Si、 Mn等元素外, 添加了少 量 Nb等元素, 具有成分简单、 成本低廉等特点; 本发明的耐磨钢板釆用 TMCP工艺生产, 无需离线淬火和回火等热处理工序, 具有生产流程短, 生产效率高, 节约能源, 降低生产成本等特点; 本发明的耐磨钢板具有高 强度、 高硬度, 尤其具有很高的低温韧性, 本发明生产的钢板具有优异的 焊接性能。 本发明的耐磨钢, 显微组织主要为细的马氏体和残余奥氏体, 其中残余奥氏体体积分数 5% , 抗拉强度为 1 160-1410MPa, 延伸率为 14-16% ; 布氏硬度为 390-470HBW; 其 -40 °C夏比 V 型纵向冲击功为 50-1 10J, 有益于耐磨钢板强硬度及韧性的良好匹配。 因此, 本发明涉及的 耐磨钢板具有较明显的优势。

Claims

权利要求书
1 . 一种耐磨钢板, 其重量百分比组成为: C : 0.08-0.21% , Si : 0.15-0.45%, Mn: 1.10-1.80%、 P < 0.015%, S < 0.010%, Nb: 0.010-0.040%, Al: 0.010-0.080% 、 B: 0.0006-0.0014% 、 Ti: 0.005-0.050% 、 Ca: 0.0010-0.0080%, V < 0.080%, Cr < 0.60%, N < 0.0080%, 0 < 0.0060%, H < 0.0004%,且满足: 0.025% < Nb+Ti < 0.080%, 0.030% < Al+Ti < 0.12%, 余量为 Fe和不可避免的杂质。
2. 如权利要求 1所述的耐磨钢板, 其特征在于, C: 0.11-0.19%。
3. 如权利要求 1或 2所述的耐磨钢板, 其特征在于, Si: 0.15-0.40%。
4.如权利要求 1-3任一所述的耐磨钢板,其特征在于, Mn: 1.20-1.70%。
5. 如权利要求 1-4任一所述的耐磨钢板, 其特征在于, P 0.010%。
6. 如权利要求 1-5任一所述的耐磨钢板, 其特征在于, S 0.005%。
7. 如权利要求 1-6 任一所述的耐磨钢板, 其特征在于, Nb : 0.010-0.035%。
8. 如权利要求 1-7 任一所述的耐磨钢板, 其特征在于, A1 :
0.020-0.060%。
9. 如权利要求 1-8 任一所述的耐磨钢板, 其特征在于, B : 0.0008-0.0014%。
10. 如权利要求 1-9 任一所述的耐磨钢板, 其特征在于, Ti : 0.005-0.045%。
11 . 如权利要求 1-10 任一所述的耐磨钢板, 其特征在于, Ca: 0.0010-0.0060%。
12. 如权利要求 1-11任一所述的耐磨钢板,其特征在于, V 0.060%。
13. 如权利要求 1-12任一所述的耐磨钢板, 其特征在于, Cr 0.40%。
14. 如权利要求 1-13任一所述的耐磨钢板,其特征在于,N 0.0050%。
15. 如权利要求 1-14任一所述的耐磨钢板,其特征在于, 0 0.0040%。
16. 如权利要求 1-15任一所述的耐磨钢板,其特征在于,H 0.0003%。
17. 如权利要求 1-16任一所述的耐磨钢板, 其特征在于, 0.035% Nb+Ti < 0.070%, 0.040% < Al+Ti 0.11%。
18. 如权利要求 1-17任一所述的耐磨钢板, 其特征在于, 抗拉强度 为 1170-1410MPa, 延伸率为 14-16%; 布氏硬度为 390-470HBW; 其 -40 °C夏比 V型纵向冲击功为 50-1 10J。
19.权利要求 1-18任一所述的耐磨钢板的制造方法,依次包括: 冶炼、 铸造、 加热、 轧制和轧后直接冷却等步骤;
在加热步骤中, 加热温度为 1000-1200°C , 保温时间为 1-2小时; 在轧制步骤中, 开轧温度为 950-1150 °C , 终轧温度为 800-950 °C ; 在冷却步骤中, 釆用水冷, 停冷温度为室温至 300 °C。
20. 如权利要求 19所述的耐磨钢板的制造方法, 其特征在于, 保温时 间为 2小时。
21. 如权利要求 20 所述的耐磨钢板的制造方法, 其特征在于, 板坯 加热温度为 1000-1 150°C。
22. 如权利要求 19-21任一所述的耐磨钢板的制造方法, 其特征在于, 开轧温度为 950-1100 °C , 终轧温度为 800-900 °C。
23. 如权利要求 19-22任一所述的耐磨钢板的制造方法,其特征在于, 停冷温度为室温至 280 °C。
PCT/CN2013/071179 2012-07-31 2013-01-31 一种高强度高韧性耐磨钢板及其制造方法 WO2014019352A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES13763172T ES2719807T3 (es) 2012-07-31 2013-01-31 Placa de acero resistente a la abrasión de alta resistencia y alta tenacidad, y proceso para preparar la misma
NZ614798A NZ614798A (en) 2012-07-31 2013-01-31 High-strength, high-toughness, wear-resistant steel plate and manufacturing method thereof
US14/418,904 US9797033B2 (en) 2012-07-31 2013-01-31 High-strength, high-toughness, wear-resistant steel plate and manufacturing method thereof
AU2013221988A AU2013221988B2 (en) 2012-07-31 2013-01-31 Abrasion resistant steel plate with high strength and high toughness, and processing for preparing same
KR1020137025666A KR102218050B1 (ko) 2012-07-31 2013-01-31 고강도 고인성 내마모 강판 및 그의 제조방법
EP13763172.7A EP2881486B1 (en) 2012-07-31 2013-01-31 Abrasion resistant steel plate with high strength and high toughness, and process for preparing same
JP2014527489A JP5806404B2 (ja) 2012-07-31 2013-01-31 高強度・高靭性・耐磨耗鋼板およびその製造方法
ZA2015/00615A ZA201500615B (en) 2012-07-31 2015-01-27 High-strength, high-toughness, wear-resistant steel plate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210269896.4 2012-07-31
CN201210269896.4A CN102747280B (zh) 2012-07-31 2012-07-31 一种高强度高韧性耐磨钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2014019352A1 true WO2014019352A1 (zh) 2014-02-06

Family

ID=47027766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071179 WO2014019352A1 (zh) 2012-07-31 2013-01-31 一种高强度高韧性耐磨钢板及其制造方法

Country Status (10)

Country Link
US (1) US9797033B2 (zh)
EP (1) EP2881486B1 (zh)
JP (1) JP5806404B2 (zh)
KR (1) KR102218050B1 (zh)
CN (1) CN102747280B (zh)
AU (1) AU2013221988B2 (zh)
ES (1) ES2719807T3 (zh)
NZ (1) NZ614798A (zh)
WO (1) WO2014019352A1 (zh)
ZA (1) ZA201500615B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225710A4 (en) * 2014-11-28 2018-05-09 Baoshan Iron & Steel Co., Ltd. Low-alloy high-strength high-tenacity steel panel and method for manufacturing same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747280B (zh) * 2012-07-31 2014-10-01 宝山钢铁股份有限公司 一种高强度高韧性耐磨钢板及其制造方法
CN103146997B (zh) * 2013-03-28 2015-08-26 宝山钢铁股份有限公司 一种低合金高韧性耐磨钢板及其制造方法
CN103205627B (zh) * 2013-03-28 2015-08-26 宝山钢铁股份有限公司 一种低合金高性能耐磨钢板及其制造方法
CN103233112A (zh) * 2013-04-25 2013-08-07 北京机电研究所 4-6mm高强度薄板的调质热处理设备及方法
CN103233127A (zh) * 2013-05-08 2013-08-07 金川集团股份有限公司 一种分离铜阳极泥中贱金属与贵金属的方法
KR101736621B1 (ko) * 2015-12-15 2017-05-30 주식회사 포스코 인성과 절단균열저항성이 우수한 고경도 내마모강 및 그 제조방법
GB2546809B (en) * 2016-02-01 2018-05-09 Rolls Royce Plc Low cobalt hard facing alloy
GB2546808B (en) * 2016-02-01 2018-09-12 Rolls Royce Plc Low cobalt hard facing alloy
KR102142472B1 (ko) * 2016-07-29 2020-08-07 닛폰세이테츠 가부시키가이샤 고강도 강판
KR101899686B1 (ko) * 2016-12-22 2018-10-04 주식회사 포스코 고경도 내마모강 및 이의 제조방법
CN108930002B (zh) * 2017-05-26 2020-08-25 宝山钢铁股份有限公司 硬度500hb浆体疏浚管用耐磨蚀钢板及其生产方法
CN108930001B (zh) * 2017-05-26 2020-08-25 宝山钢铁股份有限公司 一种浆体疏浚用高硬度耐磨蚀钢板及其生产方法
CN110499452B (zh) * 2018-05-16 2021-08-20 中车戚墅堰机车车辆工艺研究所有限公司 合金铸钢、其制作方法及应用
KR102119959B1 (ko) * 2018-09-27 2020-06-05 주식회사 포스코 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
CN111074148B (zh) * 2018-10-19 2022-03-18 宝山钢铁股份有限公司 一种800MPa级热冲压桥壳钢及其制造方法
CN109234633B (zh) * 2018-10-29 2020-09-29 包头钢铁(集团)有限责任公司 一种稀土处理的低预热温度690MPa级高强钢板及其制备方法
CN117468533A (zh) * 2019-03-27 2024-01-30 爱斯科集团有限责任公司 用于挖掘铲斗的唇缘
EP3976838A1 (de) * 2019-05-29 2022-04-06 ThyssenKrupp Steel Europe AG Bauteil, hergestellt durch umformen einer stahlblechplatine und verfahren zu seiner herstellung
CN110499456B (zh) 2019-07-31 2021-06-04 江阴兴澄特种钢铁有限公司 一种表面质量优良的耐磨钢及其制备方法
CN110964985A (zh) * 2019-12-11 2020-04-07 唐山中厚板材有限公司 一种无钼低合金耐磨钢板及其生产方法
CN114734125B (zh) * 2022-03-10 2024-01-23 山东钢铁集团日照有限公司 一种适合500hb级耐磨钢的免预热焊接方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140205A (zh) 1995-03-28 1997-01-15 王宇辉 一种中碳中合金耐磨钢
CN1626695A (zh) * 2003-12-11 2005-06-15 杨军 一种高硬度高韧性易火焰切割的耐磨钢板及其制备方法
CN1680613A (zh) * 2004-04-08 2005-10-12 宝钢集团上海梅山有限公司 一种热轧低碳贝氏体复相材料及其制备工艺
JP2005336548A (ja) * 2004-05-27 2005-12-08 Sumitomo Metal Ind Ltd 熱延鋼材及びその製造方法
CN1865481A (zh) 2005-05-19 2006-11-22 宝钢集团上海梅山有限公司 一种贝氏体耐磨钢板制备工艺
CN102363859A (zh) * 2011-11-14 2012-02-29 湖南华菱湘潭钢铁有限公司 一种耐磨钢板的生产方法
CN102373384A (zh) * 2011-11-25 2012-03-14 宝山钢铁股份有限公司 一种高强度高韧性耐磨钢板及其制造方法
CN102747280A (zh) * 2012-07-31 2012-10-24 宝山钢铁股份有限公司 一种高强度高韧性耐磨钢板及其制造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116137A (ja) * 1990-09-03 1992-04-16 Sumitomo Metal Ind Ltd 高靭性高炭素冷延鋼板とその製造方法
JP3273404B2 (ja) * 1995-10-24 2002-04-08 新日本製鐵株式会社 厚手高硬度高靱性耐摩耗鋼の製造方法
JP3543619B2 (ja) * 1997-06-26 2004-07-14 住友金属工業株式会社 高靱性耐摩耗鋼およびその製造方法
BR9811051A (pt) * 1997-07-28 2000-08-15 Exxonmobil Upstream Res Co Placa de aço, e, processo para preparar a mesma
JP2000256784A (ja) * 1999-03-10 2000-09-19 Nippon Steel Corp 高靱性耐摩耗部材用厚鋼板
JP4443910B2 (ja) * 2003-12-12 2010-03-31 Jfeスチール株式会社 自動車構造部材用鋼材およびその製造方法
JP4816642B2 (ja) * 2005-09-06 2011-11-16 住友金属工業株式会社 低合金鋼
JP5034308B2 (ja) * 2006-05-15 2012-09-26 Jfeスチール株式会社 耐遅れ破壊特性に優れた高強度厚鋼板およびその製造方法
CN100523252C (zh) * 2007-05-10 2009-08-05 武汉科技大学 一种大线能量焊接高强度船板钢及其制造方法
JP5111037B2 (ja) * 2007-09-27 2012-12-26 株式会社神戸製鋼所 切削加工用機械構造用鋼および機械構造用部品
CN101676425B (zh) * 2008-09-18 2011-07-20 宝山钢铁股份有限公司 高强度马氏体耐磨钢
CN101775545B (zh) * 2009-01-14 2011-10-12 宝山钢铁股份有限公司 一种低合金高强度高韧性耐磨钢板及其制造方法
JP5423806B2 (ja) 2009-11-17 2014-02-19 新日鐵住金株式会社 高靱性耐摩耗鋼およびその製造方法
CN102134682B (zh) * 2010-01-22 2013-01-02 宝山钢铁股份有限公司 一种耐磨钢板
JP5866820B2 (ja) 2010-06-30 2016-02-24 Jfeスチール株式会社 溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板
CN102605234A (zh) * 2011-01-25 2012-07-25 宝山钢铁股份有限公司 一种400hb级耐磨钢板及其制造方法
JP5683327B2 (ja) * 2011-03-07 2015-03-11 Jfeスチール株式会社 低温靭性に優れた耐摩耗鋼板
BR112013025002B1 (pt) * 2011-03-29 2023-09-26 Jfe Steel Corporation Chapa grossa de aço resistente à abrasão e método para produção da mesma
CN102953001B (zh) * 2011-08-30 2015-04-22 宝山钢铁股份有限公司 一种抗拉强度900MPa以上冷轧钢板及制造方法
CN102560272B (zh) * 2011-11-25 2014-01-22 宝山钢铁股份有限公司 一种超高强度耐磨钢板及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140205A (zh) 1995-03-28 1997-01-15 王宇辉 一种中碳中合金耐磨钢
CN1626695A (zh) * 2003-12-11 2005-06-15 杨军 一种高硬度高韧性易火焰切割的耐磨钢板及其制备方法
CN1680613A (zh) * 2004-04-08 2005-10-12 宝钢集团上海梅山有限公司 一种热轧低碳贝氏体复相材料及其制备工艺
JP2005336548A (ja) * 2004-05-27 2005-12-08 Sumitomo Metal Ind Ltd 熱延鋼材及びその製造方法
CN1865481A (zh) 2005-05-19 2006-11-22 宝钢集团上海梅山有限公司 一种贝氏体耐磨钢板制备工艺
CN102363859A (zh) * 2011-11-14 2012-02-29 湖南华菱湘潭钢铁有限公司 一种耐磨钢板的生产方法
CN102373384A (zh) * 2011-11-25 2012-03-14 宝山钢铁股份有限公司 一种高强度高韧性耐磨钢板及其制造方法
CN102747280A (zh) * 2012-07-31 2012-10-24 宝山钢铁股份有限公司 一种高强度高韧性耐磨钢板及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225710A4 (en) * 2014-11-28 2018-05-09 Baoshan Iron & Steel Co., Ltd. Low-alloy high-strength high-tenacity steel panel and method for manufacturing same

Also Published As

Publication number Publication date
CN102747280A (zh) 2012-10-24
NZ614798A (en) 2016-07-29
JP2014529686A (ja) 2014-11-13
KR20150034580A (ko) 2015-04-03
ES2719807T3 (es) 2019-07-16
EP2881486A1 (en) 2015-06-10
EP2881486B1 (en) 2019-03-13
JP5806404B2 (ja) 2015-11-10
AU2013221988B2 (en) 2018-02-01
KR102218050B1 (ko) 2021-02-22
EP2881486A4 (en) 2015-09-30
US9797033B2 (en) 2017-10-24
AU2013221988A1 (en) 2014-02-20
US20150211098A1 (en) 2015-07-30
ZA201500615B (en) 2016-01-27
CN102747280B (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
WO2014019352A1 (zh) 一种高强度高韧性耐磨钢板及其制造方法
WO2014019353A1 (zh) 一种超高强度高韧性耐磨钢板及其制造方法
KR102040680B1 (ko) 고인성 저합금 내마모성 강판 및 이의 제조 방법
KR102076053B1 (ko) 고성능 저합금 내마모성 강판 및 이의 제조 방법
JP6214674B2 (ja) 高硬度低合金耐摩耗鋼板およびその製造方法
WO2014019354A1 (zh) 一种高硬度高韧性耐磨钢板及其制造方法
KR101643271B1 (ko) 내마모 용접 강관 및 그의 제조 방법
CN111748728B (zh) 一种易焊接高强高韧耐磨钢板及其制造方法
CN109913750B (zh) 具有高表面质量的高强度薄钢板及其制备方法
WO2023160613A1 (zh) 一种系泊链钢及生产方法以及系泊链及生产方法
JP2006241556A (ja) 音響異方性が小さく溶接性に優れた高張力鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013221988

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20137025666

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2014527489

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763172

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013763172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14418904

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE