WO2014019322A1 - 内转子电机的冷却结构 - Google Patents

内转子电机的冷却结构 Download PDF

Info

Publication number
WO2014019322A1
WO2014019322A1 PCT/CN2012/087394 CN2012087394W WO2014019322A1 WO 2014019322 A1 WO2014019322 A1 WO 2014019322A1 CN 2012087394 W CN2012087394 W CN 2012087394W WO 2014019322 A1 WO2014019322 A1 WO 2014019322A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
heat conducting
heat
cooling
cooling structure
Prior art date
Application number
PCT/CN2012/087394
Other languages
English (en)
French (fr)
Inventor
屈晨竹
陈思远
Original Assignee
联合汽车电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联合汽车电子有限公司 filed Critical 联合汽车电子有限公司
Publication of WO2014019322A1 publication Critical patent/WO2014019322A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/225Heat pipes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets

Definitions

  • the application relates to an inner rotor motor.
  • the motor can be divided into an inner rotor and an outer rotor.
  • the rotor of the inner rotor motor is surrounded by the stator, that is, the rotor.
  • the rotor of the outer rotor motor surrounds the stator, ie the rotor is outside.
  • the stator cooling structure of the existing inner rotor motor is to fix a cooling jacket to the periphery of the stator core in an interference fit or a transition fit.
  • the cooling jacket is typically a metallic material in which a flow path for the cooling medium is designed. The heat generated by the stator core and the windings is carried away by the flow of the cooling medium.
  • the technical problem to be solved by the present application is to provide a cooling structure of the inner rotor motor, which can meet strict space limitation and sealing requirements, and can achieve good heat dissipation effect on the stator and the rotor.
  • the present application relates to a cooling structure of an inner rotor motor including a rotor shaft, a rotor portion, a stator portion, a front end cover, and a cover; the cooling structure includes a front end cover and a cover a third cavity, the third cavity being part of the cooling medium passage;
  • the rotor shaft has a heat conduction cavity, and the opening thereof is disposed on a side of the rotor shaft on the front end cover, and has a heat conductive medium inside;
  • the first end of the heat conducting rod is located in the heat conducting chamber and is in contact with the heat conducting medium, the second end is located in the third cavity and is in contact with the cooling medium, and the second end is sealed with the front end cover by a static sealing manner;
  • the rotor shaft and the heat conducting rod are sealed by a dynamic sealing method
  • the heat of the rotor portion and the rotor shaft is transmitted to the second end of the heat conducting rod through the first end of the heat conducting rod in the heat conducting chamber, and is radiated through the cooling medium in the third cavity.
  • the inner rotor motor includes a rotor shaft, a rotor portion, a stator portion, a front end cover, and a cover; the cooling structure includes a third cavity between the front end cover and the cover The third cavity is a part of the cooling medium passage;
  • a heat conducting cavity is disposed in the rotor shaft, and the opening is disposed on a side of the rotor shaft at the front end cover, and has a heat conductive medium inside;
  • One end of the heat conducting rod is located in the heat conducting cavity and is in contact with the heat conducting medium in the rotor shaft, and the other end is sealed with the front end cover by a static sealing method;
  • the rotor shaft and the heat conducting rod are sealed by a dynamic sealing method
  • the heat conducting rod has a cavity therein, and the opening thereof communicates with the third cavity;
  • the cavity in the heat conducting rod also serves as a part of the cooling medium passage
  • the heat of the rotor portion and the rotor shaft is transferred to the heat conducting rod through the heat conducting medium in the heat conducting chamber, and is radiated through the cooling medium in the cavity in the heat conducting rod.
  • the rotor portion refers to the rotor core 7 surrounding the rotor shaft 5 and the permanent magnet 3 on the rotor core 7.
  • the stator portion refers to the stator core 2 that surrounds the rotor core 7 without contact.
  • Both ends of the rotor shaft 5 have end caps, one end of which does not output torque, the end cap of this end is called the front end cover 9; the other end outputs torque, and the end cap of this end is called the rear end cover 8.
  • the outer side of the front end cover 9 has a cover 13.
  • the dynamic sealing method is any one or more of a packing seal, a contact seal, a non-contact seal, a seal ring, an oil pan, and a seal thread.
  • the static sealing method is any one or more of a flange connection gasket seal, an O-ring seal, a rubber ring seal, and a packing seal.
  • the thermally conductive medium within the thermally conductive cavity 6 is non-conductive.
  • the improvement made by the present application is concentrated inside the rotor shaft, so that the space occupied by the entire inner rotor motor is not increased, and is suitable for a narrow installation space.
  • the application has a heat conducting cavity inside the rotor shaft, wherein the non-conductive heat conducting medium is sealed by a dynamic sealing technique.
  • One end of the heat conducting rod is immersed in the heat conducting medium as a way for the rotor to dissipate heat.
  • the other end of the heat conducting rod is located in the cooling medium flow path, or a cavity is formed in the heat conducting rod as part of the cooling medium flow path. Both of these solutions use a static sealing technique to seal the heat conducting rod and the front end cover.
  • the electrically conductive cooling medium is sealed in the flow channel by means of a reliable static sealing technique, and the non-conductive heat-conducting medium is sealed in the rotor shaft without a pressure difference by means of a dynamic sealing technique. Even if there is a slight exudation of the heat transfer medium during long-term operation, it will not affect the electrical performance of the motor. Therefore, the present application satisfies the strict requirements of insulation and sealing while obtaining good heat dissipation effects of the stator and the rotor. After adopting the application, the temperature rise of the rotor shaft, the rotor core and the permanent magnet of the inner rotor motor is suppressed, which is beneficial to reducing the demagnetization of the magnetic steel and improving the performance of the motor. This makes it possible to use lower cost permanent magnets, thereby reducing the overall cost of the motor.
  • FIG. 1 is a schematic view showing a first embodiment of a cooling structure of an inner rotor motor of the present application.
  • Figure 2a is an overall schematic view of the flow channel 20 of Figure 1.
  • Figure 2b is an overall schematic view of the thermally conductive rod 11 of Figure 1.
  • Figure 2c is a schematic illustration of the first portion 11a of the thermally conductive rod of Figure 2b.
  • Figure 2d is a cross-sectional view taken along line A-A of Figure 1.
  • FIG 3 is a schematic view of a second embodiment of a cooling structure of the inner rotor motor of the present application.
  • FIG. 4 is a schematic overall view of the flow passage 20 of FIG.
  • FIG. 1 is a longitudinal cross-sectional view of the first embodiment of the cooling structure of the inner rotor motor of the present application.
  • the rotor core 7 surrounds the rotor shaft 5 and rotates therewith.
  • a permanent magnet 3 is attached to the surface of the rotor core 7 or embedded in the surface.
  • the stator core 2 surrounds the rotor core 7 with a certain gap therebetween.
  • the stator core 2 is statically connected to the front end cover 9 and the rear end cover 8.
  • the rotor shaft 5 is movably connected to the front end cover 9 and the rear end cover 8 via the rotor bearing 4, respectively, and the rotor core 7 has a certain gap with the front end cover 9 and the rear end cover 8.
  • the rotor shaft 5 outputs torque through an end exposed outside the rear end cover 8.
  • static joints such as bolting, riveting, welding, and the like.
  • the movable connection between the connected members in a certain motion form is called a dynamic connection, such as a bearing connection.
  • the cooling jacket 1 is also statically connected to both the front end cover 9 and the rear end cover 8 on both sides.
  • the cooling jacket 1 has a first cavity 20a having a cylindrical shape and is provided with a coolant inlet 14 and a coolant outlet 15.
  • the first cavity 20a, the second cavity 20b and the third cavity 20c constitute the completed coolant flow path 20.
  • the coolant enters from the inlet 14 and flows out from the outlet 15 in the order of the first cavity 20a - the second cavity 20b - the third cavity 20c - the second cavity 20b - the first cavity 20a Take the heat along the way.
  • thermoly conductive cavity 6 inside the rotor shaft 5 that opens on the first side of the rotor shaft 5.
  • the first end 11a of at least one of the heat conducting rods 11 extends into the heat conducting chamber 6 and is immersed in the heat conducting oil, the second end 11b projects into the third cavity 20c, and the intermediate portion 11c is connected to the first end 11a and Second end 11b.
  • the static sealing technology is adopted between the heat conducting rod 11 and the front end cover 9, for example, a flange connecting gasket seal, an O-ring seal, a rubber ring seal, a packing seal, and the like.
  • a dynamic connection technique such as a thermally conductive rod bearing 12, is employed between the thermally conductive rod 11 and the rotor shaft 5.
  • a dynamic connection technique such as a thermally conductive rod bearing 12
  • Dynamic sealing techniques are employed between the thermally conductive rod 11 and the rotor shaft 5, such as one or more combinations of packing seals, contact seals, non-contact seals, seal rings 10, oil pans, sealing threads, and the like.
  • the periphery of the stator core 2 is surrounded by the cooling jacket 1 of metal material and is in close contact.
  • the heat of the stator core 2 is carried away by the coolant flowing through the first cavity 20a in the cooling jacket 1.
  • the heat conducting cavity 6 is opened inside the rotor shaft 5 and filled with non-conductive heat-conducting oil, wherein the first end 11a of the heat-conducting rod is immersed.
  • the heat conducting rod 11 is usually a metal material, and may be a solid copper rod, an aluminum rod or the like, or a hollow metal heat pipe structure filled with a PCM phase change material inside.
  • the rotor shaft 5 rotating at a high speed drives the heat transfer oil in the heat transfer chamber 6 to move at a high speed.
  • the heat transfer oil is disturbed by the first end 11a of the heat conducting rod, so that the heat of the rotor shaft 5, the rotor core 7 and the permanent magnet 3 is transmitted to the first end 11a of the heat conducting rod, and is quickly transmitted to the second end 11b of the heat conducting rod, and is third.
  • the coolant flowing through the cavity 20c is carried away.
  • Figure 2c shows an embodiment of the first end 11a of the thermally conductive rod, the body 111 of which is cylindrical in shape and has a plurality of projections 112 on the outer side, also referred to as 'fin" structures, thereby greatly increasing the surface area.
  • the projections 112 are oriented in a radially outward direction of the body 111.
  • the portion of the first end 11a of the thermally conductive rod adjacent the intermediate section 11c has a transition section of the same shape as the intermediate section 11c.
  • the rotor shaft 5 rotating at a high speed drives the heat transfer oil in the heat transfer chamber 6 to move at a high speed.
  • the heat transfer oil is disturbed by protrusions (fins) 112 on the first end 11a of the heat conducting rod, these protrusions 112 increase the contact area between the first end 11a of the heat conducting rod and the heat transfer oil, reinforcing the rotor shaft 5 and the heat conducting rod Heat exchange capacity between the first ends 11a.
  • the first end 11a of the heat conducting bar may be entirely cylindrical, and a threaded shallow groove may be formed on the outer side surface to increase the surface area.
  • the shallow grooves are guide grooves designed according to the law of fluid movement when the heat transfer oil moves at a high speed, so that the heat transfer oil can flow sufficiently on the surface of the first end 11a of the heat transfer rod, thereby improving the rotor shaft 5 and the heat transfer rod first.
  • the heat exchange capacity between the ends 11a is not limited to the law of fluid movement when the heat transfer oil moves at a high speed, so that the heat transfer oil can flow sufficiently on the surface of the first end 11a of the heat transfer rod, thereby improving the rotor shaft 5 and the heat transfer rod first.
  • the third cavity 20c of the first embodiment includes a two-end portion 201 and a middle portion 202.
  • the end portions 201 may be tubular to facilitate engagement with the second cavity 20b.
  • the intermediate portion 202 is a circle, a square, or the like that is significantly larger than the end portions 201.
  • the second end 11b of the thermally conductive rod is located in the intermediate portion 202 of the third cavity 20c.
  • the second end 11b of the thermally conductive rod includes a chassis 113 and a plurality of projections 114 thereon that face the coolant to facilitate sufficient contact of the coolant with the second end 11b of the thermally conductive rod.
  • the chassis 113 may have a diameter that is significantly larger than the intermediate portion 11c of the thermally conductive rod.
  • the protrusion 114 further includes a plurality of first protrusions 114a having a rounded surface to reduce flow resistance, a block protrusion 114b between the side wall of the third cavity 20c and the first protrusion group 114a, A shunting projection 114c facing the direction in which the coolant enters the third cavity 20c.
  • the split protrusion 114c is substantially semi-circular, and a slit having a small gap is opened in a direction directly facing the coolant into the third cavity 20c to accommodate less coolant into the first protrusion.
  • the group 114a has a curved outer wall that allows the coolant to be split to both sides, and a cavity having a larger spacing is opened in a direction away from the coolant entering the third cavity 20c, so that the coolant enters the first protrusion as uniformly as possible.
  • Group 114a Due to the certain cavity between the first raised group 114a and the third cavity 20c, the blocking protrusion 114b blocks the cavities, forcing the coolant to flow through the first raised group 114a.
  • the above design can greatly enhance the heat exchange effect between the coolant and the second end 11b of the heat conducting rod.
  • FIG. 3 is a longitudinal cross-sectional view of the second embodiment of the cooling structure of the inner rotor motor of the present application.
  • the structure of the inner rotor motor is the same as that of the first embodiment, and the rotor core 7 surrounds the rotor shaft 5 and rotates therewith.
  • a permanent magnet 3 is attached to the surface of the rotor core 7 or embedded in the surface.
  • the stator core 2 surrounds the rotor core 7 with a certain gap therebetween.
  • a front end cover 9 is provided on the first side of the stator core 2 and the rotor shaft 5, and a rear end cover 8 is provided on the second side.
  • the stator core 2 is statically connected to the front end cover 9 and the rear end cover 8.
  • the rotor shaft 5 is movably connected to the front end cover 9 and the rear end cover 8 via the rotor bearing 4, respectively, and the rotor core 7 has a certain gap with the front end cover 9 and the rear end cover 8.
  • the rotor shaft 5 outputs torque through an end exposed outside the rear end cover 8.
  • the cooling jacket 1 has a first cavity 20a having a cylindrical shape and is provided with a coolant inlet 14 and a coolant outlet 15.
  • the cooling jacket 1 has a tubular second cavity 20b in the front end cover 9 and communicates with the first cavity 20a at the junction of the cooling jacket 1 and the front end cover 9.
  • a heat conducting chamber 6 which opens on the first side of the rotor shaft 5.
  • a non-conductive heat transfer oil in the heat transfer chamber 6.
  • One end of at least one heat conducting rod 11 protrudes into the heat conducting cavity 6 and is immersed in the heat conducting oil, and the other end is fixed to the front end cover 9 by static connection and static sealing, or integral casting molding, or welding technology, etc. .
  • static connection and static sealing or integral casting molding, or welding technology, etc.
  • a dynamic sealing technique is employed between the thermally conductive rod 11 and the rotor shaft 5, such as one or more combinations of a sealing ring 10, an oil pan, a sealing thread, and the like.
  • a sealing ring 10 such as one or more combinations of a sealing ring 10, an oil pan, a sealing thread, and the like.
  • the heat conducting rod 11 has a cavity 17 inside, and the opening of the cavity 17 is in the third cavity 20c.
  • the flow guiding partition 16 divides the cavity 17 into two, forming a fourth cavity 20d and a fifth cavity 20e.
  • the fourth cavity 20d and the fifth cavity 20e are again integrated at the end of the cavity 17.
  • the first cavity 20a, the second cavity 20b, the third cavity 20c, the fourth cavity 20d and the fifth cavity 20e constitute a complete coolant flow path 20.
  • the coolant enters from the inlet 14 in accordance with the first cavity 20a - the second cavity 20b - the third cavity 20c - the fourth cavity 20d - the fifth cavity 20e - the third cavity 20c -
  • the second cavity 20b, the sequence of the first cavity 20a flows out of the outlet 15 and carries away heat along the way.
  • the outer periphery of the stator core 2 is surrounded by the cooling jacket 1 of metal material and is in contact with each other.
  • the heat of the stator core 2 is carried away by the coolant flowing through the first cavity 20a in the cooling jacket 1.
  • the heat conducting cavity 6 is opened inside the rotor shaft 5 and filled with a non-conductive heat-conducting oil, in which the heat-conductive rod 11 is immersed.
  • the heat conducting rod 11 has a cavity 17 inside and is divided by the deflector into two parts which allow the coolant to flow through the longest path - the fourth cavity 20d and the fifth cavity 20e.
  • the rotor shaft 5 rotating at a high speed transmits heat of the rotor shaft 5, the rotor core 7 and the permanent magnet 3 to the heat conducting rod 11 through the heat transfer oil, and after the coolant enters the third cavity 20c, according to the third cavity 20c -
  • the fourth cavity 20d - the fifth cavity 20e - the third cavity 20c sequentially flows through and carries away the heat of the heat conducting rod 11 along the way.
  • the heat conducting rod 11 in the second embodiment can be divided into a first end 11a and a middle portion 11c, as shown in Fig. 2b, which lacks the second end 11b than the first embodiment.
  • a 'fin" or diversion groove structure can be designed on the surface of the first end 11a of the heat conducting bar, as shown in Fig. 2c, to enhance the heat exchange capacity with the heat transfer oil by increasing the surface area.
  • the shape of the third cavity 20c of the second embodiment may be the same as that of the first embodiment, as shown in FIG. 2d; or may be only a simple tubular shape so as to be engaged with the second cavity 20b.
  • the separation design of the cover 13 and the front end cover 9 is mainly for the convenience of assembling the heat conductive rod 11.
  • the cover 13 and the front end cover 9 may also be integrated, in which case both the second cavity and the third cavity are in the integrated front end cover.
  • the sealing effect is good.
  • the entire coolant flow path 20 is most likely to leak into the interior of the motor between the front end cover 9 and the heat conductive rod 11. Since there is no relative movement between the heat conducting rod 11 and the front end cover 9, a mature static sealing technique can be used to ensure a good sealing effect. This completely eliminates the leakage of the coolant in the coolant flow path 20, so that the coolant can still adopt a conventional material which is electrically conductive.
  • the present application achieves direct cooling of the rotor shaft under the premise of ensuring reliable sealing, thereby greatly improving the heat dissipation effect of the rotor, and is beneficial to reducing the rotor temperature and improving the performance of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种内转子电机的冷却结构,其中内转子电机包含转子轴(5)、转子部、定子部、前端盖(9)和封盖(13),该冷却结构包含前端盖(9)和封盖(13)之间的第三空腔(20c),该第三空腔(20c)作为冷却介质通道的一部分,转子轴(5)内具有导热腔(6),导热腔(6)的开口设置转子轴(5)位于前端盖(9)的一侧,内部具有导热介质;导热棒(11)的第一端位于导热腔(6)内且与导热介质接触,第二端位于第三空腔(20c)内与冷却介质接触,该第二端与前端盖(9)之间采用静密封方式密封,转子轴(5)与导热棒(11)之间采用动密封方式密封,转子部及转子轴(5)的热量通过导热腔(6)内的导热棒(11)的第一端传递到导热棒(11)的第二端,并经由第三空腔(20c)中的冷却介质散热。该内转子电机的冷却结构具有良好的定子、转子散热效果,同时满足了对绝缘、密封、体积的要求。

Description

内转子电机的冷却结构 技术领域
本申请涉及一种内转子电机。
背景技术
根据定子与转子之间的相对位置不同,电机可分为内转子和外转子两类。内转子电机的转子被定子包围,即转子在内。外转子电机的转子包围住定子,即转子在外。
目前在新能源汽车中通常采用内转子的永磁同步电机作为驱动电机,由于空间的限制和对高性能的追求,使得这种内转子永磁同步电机的定子和转子的发热成为一个必须关注的问题。
现有的内转子电机的定子冷却结构是将一个冷却套以过盈配合或过渡配合的形式固定在定子铁芯外围。该冷却套通常为金属材料,其中设计有冷却介质的流道。定子铁芯和绕组发出的热量就通过冷却介质的流动而带走。
传统情况下,由于空间和密封技术的限制,对于转子并没有采用额外的散热设计。转子铁芯和永磁体(磁钢)发出的热量通过转子轴传递到两端的转子轴承,再由转子轴承经前、后端盖传递到冷却套。由于该条散热路经较长,热阻较大,转子在高转速和大扭矩输出时热量不能很好地散出,造成转子温升过高、磁钢退磁和很难输出大扭矩,影响电机性能。如果要提高电机性能,就需要选用成本较高、耐高温的磁钢材料,造成整体电机成本较高,产品缺乏市场竞争力。
为此,出于降低电机成本,提高电机性能的考虑,必须降低转子的温度。当前也出现了一些内转子电机的转子冷却结构。其总体思路是给转子轴内部直接通冷却剂,这种设计的确可以很好地降低转子的温度,但对绝缘性、密封性上又带来了新的风险。
仍以新能源汽车上的内转子永磁同步电机为例,考虑到汽车的安全性要求,电机的高压电部分不允许有导电液体的进入。但要使冷却剂在转子轴里流动,一方面需要采用动密封技术形成封闭的流道,另一方面需要对冷却介质提供较大的压力来克服流阻。在新能源汽车的E-Drive冷却系统中,该压力达到2.5Bar,这么高的压力对动密封提出了非常大的挑战。即使对冷却介质所提供的压力没有这么大,能够使其克服流阻的压力也会对冷却介质的动密封效果带来风险。一旦这些导电的冷却介质泄露进入高压电部分,就会对汽车安全带来难以估量的影响。
如果对内转子永磁同步电机的转子冷却结构中采用不导电的导热油脂材料,那么就要在新能源汽车的E-Drive冷却系统(该系统中仅包含定子冷却结构)之外新建转子冷却结构的流道设计。由于新能源汽车中用于安装驱动电机的空间有限,为定子、转子各建立一套包含流道的冷却系统是非常困难的。
因而,如何能在安装空间有限的前提下,为内转子电机的定子和转子设计出一套冷却结构,并且能确保冷却结构与电机之间的绝缘性、密封性,就成为一个亟待解决的问题。
技术问题
本申请所要解决的技术问题是提供一种内转子电机的冷却结构,可以满足严格的空间限制和密封要求,并能实现对定子和转子的良好散热效果。
技术解决方案
为解决上述技术问题,本申请一种内转子电机的冷却结构,所述内转子电机包含转子轴、转子部、定子部、前端盖和封盖;所述冷却结构包含前端盖和封盖之间的第三空腔,该第三空腔为冷却介质通道的一部分;
转子轴内具有导热腔,其开口设在转子轴位于前端盖的一侧,其内部具有导热介质;
导热棒的第一端位于导热腔内且与导热介质接触,第二端位于第三空腔内与冷却介质接触,该第二端与前端盖之间采用静密封方式密封;
所述转子轴与导热棒之间采用动密封方式密封;
转子部及转子轴的热量通过导热腔内的导热棒第一端传递到导热棒第二端,并经由第三空腔中的冷却介质散热。
本申请另一种内转子电机的冷却结构,所述内转子电机包含转子轴、转子部、定子部、前端盖和封盖;所述冷却结构包含前端盖和封盖之间的第三空腔,该第三空腔为冷却介质通道的一部分;
转子轴内设有导热腔,其开口设在转子轴位于前端盖的一侧,其内部具有导热介质;
导热棒的一端位于导热腔内且与转子轴内的导热介质接触,另一端与前端盖采用静密封方式密封;
所述转子轴与导热棒之间采用动密封方式密封;
所述导热棒内具有一个空腔,其开口与第三空腔相通;
所述导热棒内的空腔也作为冷却介质通道的一部分;
转子部及转子轴的热量通过导热腔内的导热介质传递给导热棒,并经由导热棒内的空腔内的冷却介质散热。
请参阅图1、图3,在上述两个方案中:
所述转子部是指包围转子轴5的转子铁芯7、以及转子铁芯7上的永磁体3。
所述定子部是指不接触地包围转子铁芯7的定子铁芯2。
所述转子轴5的两端都具有端盖,其中一端不输出转矩,这一端的端盖称为前端盖9;另一端输出转矩,这一端的端盖称为后端盖8。前端盖9的外侧具有封盖13。
所述动密封方式为填料密封、接触密封、非接触式密封、密封环、甩油盘、密封螺纹中的任意一种或多种。
所述静密封方式为法兰盘连接垫片密封、O形环密封、胶圈密封、填料密封中的任意一种或多种。
优选地,导热腔6内的导热介质不导电。
有益效果
与现有的内转子电机的冷却结构相比,本申请所作的改进集中在转子轴内部,因而整个内转子电机所占用的空间并未增加,适用于狭小的安装空间。本申请在转子轴内部开设导热腔,其中以动密封技术密封着不导电的导热介质。导热棒的一端浸泡于该导热介质中,作为转子热量散发的途径。导热棒的另一端位于冷却介质流道中,或导热棒内开设空腔作为冷却介质流道的一部分,这两套方案都采用静密封技术对导热棒和前端盖进行密封。这样,导电的冷却介质利用可靠的静密封技术密封在流道内,不导电的导热介质利用动密封技术密封在没有压差的转子轴内。即使有导热介质在长期工作中有稍微的渗出,也不会对电机的电气性能造成影响。因而本申请在获得良好的定子、转子散热效果的同时满足了绝缘、密封的严格要求。采用本申请之后,内转子电机的转子轴、转子铁芯和永磁体的温升得到抑制,有利于降低磁钢退磁、提升电机性能。这样便可以采用成本较低的永磁体,从而降低电机的整体成本。
附图说明
下面结合附图及具体实施方式对本发明作进一步详细说明。
图1是本申请内转子电机的冷却结构的实施例一的示意图。
图2a是图1中流道20的整体示意图。
图2b是图1中导热棒11的整体示意图。
图2c是图2b中导热棒第一部分11a的示意图。
图2d是图1中的A-A向剖面示意图。
图3是本申请内转子电机的冷却结构的实施例二的示意图。
图4是图3中流道20的整体示意图。
图中附图标记说明:1为冷却套;2为定子铁芯;3为永磁体;4为转子轴承;5为转子轴;6为导热腔;7为转子铁芯;8为后端盖;9为前端盖;10为密封圈;11为导热棒;11a为导热棒第一端;11b为导热棒第二端;11c为导热棒中间段;111为主体;112为凸起;113为底盘;114为凸起;12为导热棒轴承;13为封盖;14为冷却剂入口;15为冷却剂出口;16为导流隔板;17为导热棒空腔;20为流道;20a为第一空腔;20b为第二空腔;20c为第三空腔;20d为第四空腔;20e为第五空腔;201为两端;202为中间。
本发明的最佳实施方式
请参阅图1,这是本申请内转子电机的冷却结构的实施例一的纵向剖面图。转子铁芯7包围住转子轴5,并随之转动。在转子铁芯7的表面上贴有、或表面处内嵌有永磁体3。定子铁芯2包围住转子铁芯7,且两者之间具有一定间隙。在定子铁芯2和转子轴5的第一侧(该侧不输出转矩)具有前端盖9,第二侧(该侧输出转矩)具有后端盖8。定子铁芯2与前端盖9、后端盖8均为静连接。转子轴5通过转子轴承4分别与前端盖9、后端盖8动连接,转子铁芯7与前端盖9、后端盖8均具有一定间隙。转子轴5通过露出在后端盖8之外的一端输出扭矩。在机械设计领域, 被连接件之间相互固定、不能作相对运动的称为静连接,例如螺栓固定,铆接、焊接等。被连接件之间能按一定运动形式作相对运动的称为动连接,例如轴承连接等。
请同时参阅图1和图2a,在定子铁芯2的外围、且与其紧紧接触的是冷却套1,其两侧也与前端盖9、后端盖8均为静连接。冷却套1中具有圆柱面形状的第一空腔20a,并开设有冷却剂入口14和冷却剂出口15。在前端盖9中具有管状的第二空腔20b,并且在冷却套1与前端盖9的交界处与第一空腔20a相通。在前端盖9的外侧还具有封盖13,前端盖9与封盖13之间具有第三空腔20c,并在前端盖9与封盖13的交界处与第二空腔20b相通。第一空腔20a、第二空腔20b和第三空腔20c构成了完成的冷却剂流道20。冷却剂从入口14进入,按照第一空腔20a--第二空腔20b--第三空腔20c--第二空腔20b--第一空腔20a的顺序,从出口15流出并带走沿途热量。
请同时参阅图1和图2b,在转子轴5内部具有导热腔6,其开口在转子轴5的第一侧。在导热腔6中具有不导电的导热油,例如壳牌导热油S2等。至少一根导热棒11的第一端11a伸入到导热腔6之中并浸泡于导热油内,第二端11b伸入到第三空腔20c之中,中间段11c连接第一端11a和第二端11b。导热棒11与前端盖9之间采用静密封技术,例如:法兰盘连接垫片密封、O形环密封、胶圈密封、填料密封等。导热棒11与转子轴5之间采用动连接技术,例如导热棒轴承12。这样在转子轴5转动时,导热棒11仍保持静止。导热棒11与转子轴5之间采用动密封技术,例如:填料密封、接触密封、非接触式密封、密封环10、甩油盘、密封螺纹等的一种或多种组合。这样在转子轴5转动时,导热腔6的开口处仍能保持密封。
上述实施例一的内转子电机的冷却结构,定子铁芯2的外围被金属材料的冷却套1包围且紧密接触。定子铁芯2的热量就通过冷却套1中第一空腔20a内流经的冷却剂带走。转子轴5内部开设导热腔6并灌充不导电的导热油,其中浸泡着导热棒第一端11a。导热棒11通常是金属材料,可以是实心的铜棒、铝棒等,也可以是空心的金属热管结构,内部密封地填充有PCM相变材料。电机工作时,高速旋转的转子轴5带动导热腔6内的导热油高速运动。导热油被导热棒第一端11a扰动,使得转子轴5、转子铁芯7及永磁体3的热量传递到导热棒第一端11a,又快速传递到导热棒第二端11b,并由第三空腔20c中流经的冷却剂带走。
为了加强导热棒第一端11a与导热腔6中的导热油之间的换热效果,导热棒第一端11a浸泡于导热油中的表面积越大越好。图2c给出了导热棒第一端11a的一个实施例,其主体111呈圆柱形,在外侧面具有多处凸起112,也称为'翅片'结构,从而极大地增大了表面积。优选地,这些凸起112朝着主体111的径向向外方向。可选地,导热棒第一端11a靠近中间段11c的部分具有与中间段11c相同形状的过渡段。电机工作时,高速旋转的转子轴5带动导热腔6内的导热油高速运动。导热油被导热棒第一端11a上的凸起(翅片)112扰动,这些凸起112增大了导热棒第一端11a与导热油之间的接触面积,强化了转子轴5与导热棒第一端11a之间的换热能力。
可替换地,也可以使导热棒第一端11a整体呈圆柱形,在外侧面加工出螺纹状的浅槽,一样可以起到增大表面积的作用。优选地,这些浅槽是根据导热油高速运动时的流体运动规律而设计的导流槽,使得导热油可以在导热棒第一端11a的表面充分流动,从而提高转子轴5与导热棒第一端11a之间的换热能力。
请参阅图2a、图2b和图2d,上述实施例一的第三空腔20c包括两端部分201和中间部分202。两端部分201可以是管状,以便于与第二空腔20b相衔接。中间部分202则为比两端部分201明显加大的圆形、方形等。导热棒第二端11b就位于第三空腔20c的中间部分202之中。导热棒第二端11b包括底盘113以及其上的多个凸起114,这些凸起114面向冷却剂,从而有利于实现冷却剂与导热棒第二端11b的充分接触。底盘113可以具有比导热棒中间段11c明显加大的直径。
优选地,凸起114又包括具有圆润表面以减小流阻的多个第一凸起114a、位于第三空腔20c的侧壁与第一凸起群114a之间的格挡凸起114b、面对冷却剂进入第三空腔20c的方向的分流凸起114c。以图2d为例,分流凸起114c大致呈半圆形,在直接面对冷却剂进入第三空腔20c的方向上开设有间距较小的缝隙以容纳较少的冷却剂进入第一凸起群114a,其弧形外壁使得冷却剂向两边分流,并在越远离冷却剂进入第三空腔20c的方向上开设有间距越大的空腔,从而使得冷却剂尽量均匀地进入第一凸起群114a。由于第一凸起群114a与第三空腔20c之间具有一定空腔,格挡凸起114b就堵塞这些空腔,迫使冷却剂流经第一凸起群114a。以上设计可以极大地增强冷却剂与导热棒第二端11b之间的换热效果。
请参阅图3,这是本申请内转子电机的冷却结构的实施例二的纵向剖面图。其中内转子电机的结构与实施例一相同,转子铁芯7包围住转子轴5,并随之转动。在转子铁芯7的表面上贴有、或表面处内嵌有永磁体3。定子铁芯2包围住转子铁芯7,且两者之间具有一定间隙。在定子铁芯2和转子轴5的第一侧具有前端盖9,第二侧具有后端盖8。定子铁芯2与前端盖9、后端盖8均为静连接。转子轴5通过转子轴承4分别与前端盖9、后端盖8动连接,转子铁芯7与前端盖9、后端盖8均具有一定间隙。转子轴5通过露出在后端盖8之外的一端输出扭矩。
请同时参阅图3和图4,在定子铁芯2的外围、且与其紧紧接触的是冷却套1,其两侧也与前端盖9、后端盖8均为静连接。冷却套1中具有圆柱面形状的第一空腔20a,并开设有冷却剂入口14和冷却剂出口15。在前端盖9中具有管状的第二空腔20b,并且在冷却套1与前端盖9的交界处与第一空腔20a相通。在前端盖9的外侧还具有封盖13,前端盖9与封盖13之间具有第三空腔20c,并在前端盖9与封盖13的交界处与第二空腔20b相通。
请参阅图3,在转子轴5内部具有导热腔6,其开口在转子轴5的第一侧。在导热腔6中具有不导电的导热油。至少一根导热棒11的一端伸入到导热腔6之中并浸泡于导热油内,另一端采用静连接与静密封、或一体铸造成型、或焊接技术等固定于前端盖9并与其保持密封。这些均为成熟工艺,可以确保对冷却剂流道的可靠密封效果。导热棒11与转子轴5之间采用动连接技术,例如导热棒轴承12。这样在转子轴5转动时,导热棒11仍保持静止。导热棒11与转子轴5之间采用动密封技术,例如密封环10、甩油盘、密封螺纹等的一种或多种组合。这样在转子轴5转动时,导热腔6的开口处仍能保持密封。
请同时参阅图3和图4,导热棒11内部具有一个空腔17,该空腔17的开口在第三空腔20c。导流隔板16将该空腔17一分为二,形成了第四空腔20d、第五空腔20e。仅在该空腔17的末端使第四空腔20d和第五空腔20e又合为一体。第一空腔20a、第二空腔20b、第三空腔20c、第四空腔20d和第五空腔20e构成了完整的冷却剂流道20。冷却剂从入口14进入,按照第一空腔20a--第二空腔20b--第三空腔20c--第四空腔20d--第五空腔20e--第三空腔20c--第二空腔20b--第一空腔20a的顺序,从出口15流出并带走沿途热量。
上述实施例二的内转子电机的冷却结构,定子铁芯2的外围被金属材料的冷却套1包围且相互接触。定子铁芯2的热量就通过冷却套1中第一空腔20a内流经的冷却剂带走。转子轴5内部开设导热腔6并灌充不导电的导热油,其中浸泡着导热棒11。导热棒11内部开设空腔17并被导流隔板划分为使冷却剂流经途径最长的两部分--第四空腔20d和第五空腔20e。电机工作时,高速旋转的转子轴5通过导热油把转子轴5、转子铁芯7及永磁体3的热量传递到导热棒11,冷却剂进入第三空腔20c之后,按照第三空腔20c--第四空腔20d--第五空腔20e--第三空腔20c的顺序流过并带走沿途的导热棒11的热量。
与实施例一类似,实施例二中的导热棒11可以划分为第一端11a和中间段11c,如图2b所示,比实施例一缺少了第二端11b。在导热棒第一端11a的表面可以设计'翅片'或导流槽结构,如图2c所示,通过增大表面积来增强与导热油之间的换热能力。
实施例二的第三空腔20c的形状可以与实施例一相同,如图2d所示;也可以仅为简单的管状,以便于与第二空腔20b相衔接即可。
上述两个实施例中,所述封盖13与前端盖9的分离设计主要是为了装配导热棒11的方便考虑。可替换地,封盖13与前端盖9也可以合为一体,此时第二空腔和第三空腔均在一体化的前端盖内。
工业实用性
上述两个实施例所述的内转子电机的冷却结构的技术优势在于:
1 、避免了电机内部的短路隐患。这是由于导热腔6内部灌充不导电的导热油,即便转子轴5与导热棒11之间的动密封有些许失效,少量泄露出的导热油也不会对电机的电气性能产生不利影响,即不会导致电机短路。
2 、密封效果良好。整个冷却剂流道20最容易泄露到电机内部的就是前端盖9与导热棒11之间。由于导热棒11与前端盖9之间没有相对运动,可以采用成熟的静密封技术确保密封效果良好。这样便彻底杜绝了冷却剂流道20中的冷却剂的泄露,使得冷却剂仍能采用可导电的传统材料。
综上所述,本申请在确保可靠密封的前提下,实现对转子轴的直接冷却,从而大大提高了转子的散热效果,有利于降低转子温度并提高电机性能。
以上仅为本申请的优选实施例,并不用于限定本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种内转子电机的冷却结构,所述内转子电机包含转子轴、转子部、定子部、前端盖和封盖;其特征是,所述冷却结构包含前端盖和封盖之间的第三空腔,该第三空腔为冷却介质通道的一部分;
    转子轴内具有导热腔,其开口设在转子轴位于前端盖的一侧,其内部具有导热介质;
    导热棒的第一端位于导热腔内且与导热介质接触,第二端位于第三空腔内与冷却介质接触,该第二端与前端盖之间采用静密封方式密封;
    所述转子轴与导热棒之间采用动密封方式密封;
    转子部及转子轴的热量通过导热腔内的导热棒第一端传递到导热棒第二端,并经由第三空腔中的冷却介质散热。
  2. 根据权利要求1所述的内转子电机的冷却结构,其特征是,所述冷却结构还包含有包围在定子部外侧且与定子部相接触的冷却套,其内部具有第一空腔;所述前端盖内还具有第二空腔,该第二空腔连接第一空腔和第三空腔,并构成了完整的冷却介质通道,定子、转子共用该冷却介质通道散热。
  3. 根据权利要求1所述的内转子电机的冷却结构,其特征是,所述导热棒第一端的表面具有凸起或导流槽,通过增大表面积来增强与导热介质之间的换热能力。
  4. 根据权利要求1或3所述的内转子电机的冷却结构,其特征是,所述导热棒的第二端包含底盘与底盘上的凸起结构,所述凸起结构与第三空腔内的冷却介质接触。
  5. 根据权利要求1所述的内转子电机的冷却结构,其特征是,所述动密封方式为填料密封、接触密封、非接触式密封、密封环、甩油盘、密封螺纹中的任一种;
    所述静密封方式为法兰盘连接垫片密封、O形环密封、胶圈密封、填料密封中的任一种。
  6. 根据权利要求1所述的内转子电机的冷却结构,其特征是,所述导热介质为不导电的导热油。
  7. 根据权利要求1所述的内转子电机的冷却结构,其特征是,所述封盖与前端盖或者是两个分离结构,或者是一个一体化的结构。
  8. 一种内转子电机的冷却结构,所述内转子电机包含转子轴、转子部、定子部、前端盖和封盖;其特征是,所述冷却结构包含前端盖和封盖之间的第三空腔,该第三空腔为冷却介质通道的一部分;
    转子轴内设有导热腔,其开口设在转子轴位于前端盖的一侧,其内部具有导热介质;
    导热棒的一端位于导热腔内且与转子轴内的导热介质接触,另一端与前端盖采用静密封方式密封;
    所述转子轴与导热棒之间采用动密封方式密封;
    所述导热棒内具有一个空腔,其开口与第三空腔相通;
    所述导热棒内的空腔也作为冷却介质通道的一部分;
    转子部及转子轴的热量通过导热腔内的导热介质传递给导热棒,并经由导热棒内的空腔内的冷却介质散热。
  9. 根据权利要求8所述的内转子电机的冷却结构,其特征是,所述导热棒内的空腔内还设置一个导流隔板,将所述导热棒内的空腔划分为使冷却介质流经路径最长的第四空腔和第五空腔。
  10. 根据权利要求9所述的内转子电机的冷却结构,其特征是,所述冷却结构还包含有包围在定子部外侧且与定子部相接触的冷却套,其内部具有第一空腔;所述前端盖内还具有第二空腔,该第二空腔连接第一空腔和第三空腔;第一空腔、第二空腔、第三空腔、第四空腔和第五空腔构成了完整的冷却介质通道,定子、转子共用该冷却介质通道散热。
  11. 根据权利要求8所述的内转子电机的冷却结构,其特征是,所述导热棒位于导热腔内的一端的表面具有凸起或导流槽,通过增大表面积来增强与导热介质之间的换热能力。
  12. 根据权利要求8所述的内转子电机的冷却结构,其特征是,所述动密封方式为填料密封、接触密封、非接触式密封、密封环、甩油盘、密封螺纹中的任一种;
    所述静密封方式为法兰盘连接垫片密封、O形环密封、胶圈密封、填料密封中的任一种。
  13. 根据权利要求8所述的内转子电机的冷却结构,其特征是,所述导热介质为不导电的导热油。
  14. 根据权利要求8所述的内转子电机的冷却结构,其特征是,所述封盖与前端盖或者是两个分离结构,或者是一个一体化的结构。
PCT/CN2012/087394 2012-07-31 2012-12-25 内转子电机的冷却结构 WO2014019322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210270467.9A CN102810943B (zh) 2012-07-31 2012-07-31 内转子电机的冷却结构
CN201210270467.9 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014019322A1 true WO2014019322A1 (zh) 2014-02-06

Family

ID=47234561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087394 WO2014019322A1 (zh) 2012-07-31 2012-12-25 内转子电机的冷却结构

Country Status (2)

Country Link
CN (1) CN102810943B (zh)
WO (1) WO2014019322A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106130258A (zh) * 2016-07-27 2016-11-16 江苏东方康弛机电科技有限公司 带有冷却套的水冷发电机
CN107231049A (zh) * 2017-06-20 2017-10-03 上海蔚来汽车有限公司 电机转子液冷结构
CN109459695A (zh) * 2018-12-04 2019-03-12 宁波菲仕电机技术有限公司 一种自然冷却电机测试机构
CN112236006A (zh) * 2020-10-16 2021-01-15 安擎(天津)计算机有限公司 组合式服务器机架结构及其连接方法
CN112564388A (zh) * 2020-12-22 2021-03-26 上海电气集团上海电机厂有限公司 一种一体化端盖冷却器装置由冷却器
CN112714995A (zh) * 2018-09-13 2021-04-27 马勒国际有限公司 电机、尤其用于车辆的电机
CN112930091A (zh) * 2021-02-09 2021-06-08 联想(北京)有限公司 散热结构及电子设备
JP2021526102A (ja) * 2018-05-31 2021-09-30 ウェーブテイマー エルエルシーWaveTamer LLC ジャイロスコープ式ロールスタビライザ
US11591052B2 (en) 2020-03-02 2023-02-28 Wavetamer Llc Gyroscopic boat roll stabilizer with bearing cooling
CN116155015A (zh) * 2023-04-21 2023-05-23 邢台职业技术学院 一种带余热回收模块的新能源汽车发电机
US11780542B2 (en) 2020-09-30 2023-10-10 Wavetamer Llc Gyroscopic roll stabilizer with flywheel shaft through passage
US11807344B2 (en) 2020-09-30 2023-11-07 Wavetamer Llc Gyroscopic roll stabilizer with flywheel cavity seal arrangement

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102810943B (zh) * 2012-07-31 2016-04-27 联合汽车电子有限公司 内转子电机的冷却结构
CN104167873B (zh) * 2014-07-09 2016-08-24 雷神机电科技(宁波)有限公司 一种电动机冷却板
CN104242555A (zh) * 2014-10-14 2014-12-24 成都育芽科技有限公司 一种散热盖板
CN104963753B (zh) * 2015-06-30 2018-09-14 宁波普泽机电有限公司 一种起动机风冷装置
JP2018528748A (ja) * 2015-08-19 2018-09-27 ティーエム4・インコーポレーテッド 電気機械のための鋳造冷却装置
CN106685143A (zh) * 2015-11-10 2017-05-17 大陆汽车投资(上海)有限公司 电动汽车用电机的冷却流道
CN105422485A (zh) * 2015-12-09 2016-03-23 南京磁谷科技有限公司 鼓风机转子的冷却结构
CN106877558A (zh) * 2017-03-16 2017-06-20 芜湖华炬电动汽车技术有限公司 电动汽车驱动电机轴、电机、电动汽车以及电动汽车驱动电机轴的加工方法
CN109904951A (zh) * 2017-12-11 2019-06-18 北京金风科创风电设备有限公司 超高速永磁盘式电机及其安装方法
JP6594401B2 (ja) * 2017-12-19 2019-10-23 本田技研工業株式会社 回転電機
CN108616178B (zh) * 2018-06-22 2020-11-24 珠海格力电器股份有限公司 转子组件、电机、汽车
CN110504916A (zh) * 2019-08-27 2019-11-26 嘉兴学院 一种高效率光伏发电聚光装置
CN112542920B (zh) * 2021-01-08 2021-07-09 南京凯泉电机制造有限公司 一种防止线圈过载保障正常运行的电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249558A (zh) * 1998-09-28 2000-04-05 斯沃奇集团管理服务股份公司 液体冷却的异步电机
US20040084977A1 (en) * 2002-07-26 2004-05-06 Devine John C. Permanent magnet generator with an integral cooling system
JP2008259326A (ja) * 2007-04-05 2008-10-23 Toyo Electric Mfg Co Ltd モータ
CN102197572A (zh) * 2008-10-27 2011-09-21 丰田自动车株式会社 旋转电机
CN102810943A (zh) * 2012-07-31 2012-12-05 联合汽车电子有限公司 内转子电机的冷却结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3523143B2 (ja) * 1999-08-13 2004-04-26 ミラエ・コーポレーション 改善された冷却構造を有するリニアモーター
JP4811550B2 (ja) * 2001-08-20 2011-11-09 株式会社安川電機 リニアモータ電機子およびリニアモータ
CN2742662Y (zh) * 2004-11-12 2005-11-23 西北工业大学 一种带有螺旋冷却油路的电机转子轴
CN2757414Y (zh) * 2004-11-12 2006-02-08 西北工业大学 一种电机定转子双路并联循环油路冷却装置
JP4787351B2 (ja) * 2009-11-09 2011-10-05 ファナック株式会社 ロータに発生する熱を放熱する放熱円盤を備えた誘導式電動機
CN202818002U (zh) * 2012-07-31 2013-03-20 联合汽车电子有限公司 内转子电机的冷却结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249558A (zh) * 1998-09-28 2000-04-05 斯沃奇集团管理服务股份公司 液体冷却的异步电机
US20040084977A1 (en) * 2002-07-26 2004-05-06 Devine John C. Permanent magnet generator with an integral cooling system
JP2008259326A (ja) * 2007-04-05 2008-10-23 Toyo Electric Mfg Co Ltd モータ
CN102197572A (zh) * 2008-10-27 2011-09-21 丰田自动车株式会社 旋转电机
CN102810943A (zh) * 2012-07-31 2012-12-05 联合汽车电子有限公司 内转子电机的冷却结构

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106130258A (zh) * 2016-07-27 2016-11-16 江苏东方康弛机电科技有限公司 带有冷却套的水冷发电机
CN107231049A (zh) * 2017-06-20 2017-10-03 上海蔚来汽车有限公司 电机转子液冷结构
CN107231049B (zh) * 2017-06-20 2023-07-07 上海蔚来汽车有限公司 电机转子液冷结构
US11427289B2 (en) 2018-05-31 2022-08-30 Wavetamer Llc Gyroscopic boat roll stabilizer
US11891157B2 (en) 2018-05-31 2024-02-06 Wavetamer Llc Gyroscopic boat roll stabilizer
US11873065B2 (en) 2018-05-31 2024-01-16 Wavetamer Llc Gyroscopic boat roll stabilizer
US11649017B2 (en) 2018-05-31 2023-05-16 Wavetamer Llc Gyroscopic boat roll stabilizer
JP2021526102A (ja) * 2018-05-31 2021-09-30 ウェーブテイマー エルエルシーWaveTamer LLC ジャイロスコープ式ロールスタビライザ
JP7165213B2 (ja) 2018-05-31 2022-11-02 ウェーブテイマー エルエルシー ジャイロスコープ式ロールスタビライザ
CN112714995A (zh) * 2018-09-13 2021-04-27 马勒国际有限公司 电机、尤其用于车辆的电机
CN109459695A (zh) * 2018-12-04 2019-03-12 宁波菲仕电机技术有限公司 一种自然冷却电机测试机构
US11591052B2 (en) 2020-03-02 2023-02-28 Wavetamer Llc Gyroscopic boat roll stabilizer with bearing cooling
US11873064B2 (en) 2020-03-02 2024-01-16 Wavetamer Llc Gyroscopic boat roll stabilizer with bearing cooling
US11780542B2 (en) 2020-09-30 2023-10-10 Wavetamer Llc Gyroscopic roll stabilizer with flywheel shaft through passage
US11807344B2 (en) 2020-09-30 2023-11-07 Wavetamer Llc Gyroscopic roll stabilizer with flywheel cavity seal arrangement
CN112236006B (zh) * 2020-10-16 2022-10-04 安擎(天津)计算机有限公司 组合式服务器机架结构及其连接方法
CN112236006A (zh) * 2020-10-16 2021-01-15 安擎(天津)计算机有限公司 组合式服务器机架结构及其连接方法
CN112564388A (zh) * 2020-12-22 2021-03-26 上海电气集团上海电机厂有限公司 一种一体化端盖冷却器装置由冷却器
CN112930091B (zh) * 2021-02-09 2022-05-31 联想(北京)有限公司 散热结构及电子设备
CN112930091A (zh) * 2021-02-09 2021-06-08 联想(北京)有限公司 散热结构及电子设备
CN116155015A (zh) * 2023-04-21 2023-05-23 邢台职业技术学院 一种带余热回收模块的新能源汽车发电机

Also Published As

Publication number Publication date
CN102810943B (zh) 2016-04-27
CN102810943A (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
WO2014019322A1 (zh) 内转子电机的冷却结构
WO2021238762A1 (zh) 一种混合冷却电机
CN108886301A (zh) 具有冷却装置的电机
CN202818002U (zh) 内转子电机的冷却结构
JP6006285B2 (ja) 自動車用電装部品ケース
CA2817064C (en) Axial flux electrical machines
WO2015149659A1 (zh) 一种浅水用多极永磁电机和使用它的浅水式潜水泵
CN102969827A (zh) 一种带散热器的高功率密度永磁同步电机
CN112636501B (zh) 电机转子和电机
CN105471131A (zh) 一种用于油浸式电机中的定子的冷却机构
CN211630683U (zh) 散热装置及电动汽车控制器
CN107947479A (zh) 一种基于固相导热材料的车用电机定子组件及其封装方法
WO2023092805A1 (zh) 一种内循环蒸发冷却电机的冷却方式及冷却结构
CN218181999U (zh) 热传递结构、dcdc转换器、电力分配模块和电力分配单元
CN205141925U (zh) 水冷电机壳双冷却回路结构
CN207117329U (zh) 一种三转子轴向通盘式电机水冷定子
CN207010374U (zh) 一种轴向磁通盘式电机的油冷定子
JP7381734B2 (ja) モータ冷却構造、駆動アセンブリ及び車両
CN211629998U (zh) 新能源电机壳的冷却结构
CN110176825A (zh) 一种电机
CN219554681U (zh) 一种电机定子支架结构
CN218243200U (zh) 一种油冷电机装置及电动车辆
CN109980834A (zh) 用于车用电机的冷却结构
CN217769770U (zh) 一种水冷电机壳体
CN110176824A (zh) 一种电动客车的驱动电机液冷端盖

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882159

Country of ref document: EP

Kind code of ref document: A1