WO2014017496A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2014017496A1
WO2014017496A1 PCT/JP2013/069938 JP2013069938W WO2014017496A1 WO 2014017496 A1 WO2014017496 A1 WO 2014017496A1 JP 2013069938 W JP2013069938 W JP 2013069938W WO 2014017496 A1 WO2014017496 A1 WO 2014017496A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
idle stop
output voltage
cell stack
current
Prior art date
Application number
PCT/JP2013/069938
Other languages
English (en)
French (fr)
Inventor
文雄 各務
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP13822685.7A priority Critical patent/EP2879220B1/en
Priority to US14/416,790 priority patent/US9935326B2/en
Priority to JP2014526944A priority patent/JP5804205B2/ja
Priority to CN201380039451.XA priority patent/CN104488123B/zh
Publication of WO2014017496A1 publication Critical patent/WO2014017496A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/04902Current of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • JP 2004-172028A discloses a conventional fuel cell system that maintains the output voltage of the fuel cell stack during idle stop at a high potential.
  • the present invention has been made paying attention to such a problem, and an object thereof is to suppress a decrease in output voltage when returning from an idle stop.
  • a fuel cell system that generates power by supplying an anode gas and a cathode gas to a fuel cell.
  • the fuel cell system includes an idle stop unit that stops taking out current from the fuel cell according to the operating state of the fuel cell system, and an idle stop return unit that restarts taking out current from the fuel cell according to the operating state of the fuel cell system. And comprising.
  • the idle stop return unit limits the current taken out from the fuel cell after returning from the idle stop based on the output voltage of the fuel cell before returning from the idle stop.
  • FIG. 1 is a schematic view of a fuel cell system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the oxygen concentration on the cathode side in the fuel cell stack during idle stop and the cell voltage.
  • FIG. 3 is a diagram comparing the degree of decrease in output voltage when a predetermined power is taken out from the fuel cell stack at the time of return from idle stop according to the output voltage of the fuel cell stack immediately before return.
  • FIG. 4 is a flowchart illustrating the idle stop control according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart for explaining the IS process according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart for explaining the IS return processing according to the first embodiment of the present invention.
  • FIG. 1 is a schematic view of a fuel cell system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the oxygen concentration on the cathode side in the fuel cell stack during idle stop and
  • FIG. 7 is a table for calculating the maximum extractable current based on the output voltage of the fuel cell stack.
  • FIG. 8 is a flowchart for explaining the IS return processing according to the second embodiment of the present invention.
  • FIG. 9 is a diagram showing a current extraction profile at the time of transition after returning from the idle stop.
  • FIG. 10 is a flowchart for explaining the IS process according to the third embodiment of the present invention.
  • FIG. 11 is a flowchart for explaining IS return processing according to the third embodiment of the present invention.
  • FIG. 12 is a table for estimating the output voltage of the fuel cell stack based on the IS time.
  • FIG. 13 is a graph showing the relationship between the temperature of the electrolyte membrane of the fuel cell and the rate of output voltage drop during idle stop.
  • FIG. 14 is a flowchart for explaining IS return processing according to the fourth embodiment of the present invention.
  • FIG. 15 is a diagram showing the relationship between the moisture content of the electrolyte membrane of the fuel cell and the rate of decrease in output voltage during idle stop.
  • FIG. 16 is a flowchart for explaining IS return processing according to the fifth embodiment of the present invention.
  • an electrolyte membrane is sandwiched between an anode electrode (fuel electrode) and a cathode electrode (oxidant electrode), an anode gas containing hydrogen in the anode electrode (fuel gas), and a cathode gas containing oxygen in the cathode electrode (oxidant) Electricity is generated by supplying gas.
  • the electrode reaction that proceeds in both the anode electrode and the cathode electrode is as follows.
  • the fuel cell generates an electromotive force of about 1 volt by the electrode reactions (1) and (2).
  • FIG. 1 is a schematic diagram of a fuel cell system 100 according to the present embodiment.
  • the fuel cell system 100 includes a fuel cell stack 1, an anode gas supply / discharge device 2, a cathode gas supply / discharge device 3, a stack cooling device 4, a power system 5, and a controller 6.
  • the fuel cell stack 1 is formed by stacking several hundred fuel cells, and receives the supply of anode gas and cathode gas to generate electric power necessary for driving the vehicle.
  • the fuel cell stack 1 includes an anode electrode side output terminal 11 and a cathode electrode side output terminal 12 as terminals for taking out electric power.
  • the anode gas supply / discharge device 2 includes a high pressure tank 21, an anode gas supply passage 22, an anode pressure regulating valve 23, an anode gas discharge passage 24, an anode gas recirculation passage 25, a recycle compressor 26, a discharge valve 27, Is provided.
  • the high-pressure tank 21 stores the anode gas supplied to the fuel cell stack 1 while maintaining the high-pressure state.
  • the anode gas supply passage 22 is a passage through which the anode gas supplied to the fuel cell stack 1 flows. One end of the anode gas supply passage 22 is connected to the high-pressure tank 21 and the other end is connected to the anode gas inlet hole of the fuel cell stack 1.
  • the anode pressure regulating valve 23 is provided in the anode gas supply passage 22.
  • the anode pressure regulating valve 23 is controlled to be opened and closed by the controller 6 and adjusts the pressure of the anode gas flowing out from the high-pressure tank 21 to the anode gas supply passage 22 to a desired pressure.
  • the anode gas recirculation passage 25 is a passage for returning the anode off gas discharged to the anode gas discharge passage 24 to the anode gas supply passage 22.
  • One end of the anode gas recirculation passage 25 is connected to the anode gas discharge passage 24 upstream of the discharge valve 27, and the other end is connected to the anode gas supply passage 22 downstream of the anode pressure regulating valve 23.
  • the recycle compressor 26 is provided in the anode gas recirculation passage 25.
  • the recycle compressor 26 returns the anode off gas discharged to the anode gas discharge passage 24 to the anode gas supply passage 22.
  • the exhaust valve 27 is provided in the anode gas discharge passage 24 on the downstream side of the connection portion between the anode gas discharge passage 24 and the anode gas recirculation passage 25.
  • the discharge valve 27 is controlled to be opened and closed by the controller 6, and discharges anode off gas and condensed water to the outside of the fuel cell system 100.
  • the cathode gas supply / discharge device 3 includes a cathode gas supply passage 31, a cathode gas discharge passage 32, a filter 33, a cathode compressor 34, an air flow sensor 35, and a water recovery device (Water ⁇ Recovery Device; hereinafter referred to as “WRD”). ) 36 and a cathode pressure regulating valve 37.
  • the cathode gas supply passage 31 is a passage through which the cathode gas supplied to the fuel cell stack 1 flows.
  • the cathode gas supply passage 31 has one end connected to the filter 33 and the other end connected to the cathode gas inlet hole of the fuel cell stack 1.
  • the cathode gas discharge passage 32 is a passage through which the cathode off gas discharged from the fuel cell stack 1 flows. One end of the cathode gas discharge passage 32 is connected to the cathode gas outlet hole of the fuel cell stack 1, and the other end is an open end.
  • the cathode off gas is a mixed gas of the cathode gas and water vapor generated by the electrode reaction.
  • the filter 33 removes foreign matters in the cathode gas taken into the cathode gas supply passage 31.
  • the cathode compressor 34 is provided in the cathode gas supply passage 31.
  • the cathode compressor 34 takes air (outside air) as cathode gas into the cathode gas supply passage 31 through the filter 33 and supplies the air to the fuel cell stack 1.
  • the air flow sensor 35 is provided in the cathode gas supply passage 31 downstream of the cathode compressor 34.
  • the air flow sensor 35 detects the flow rate of the cathode gas flowing through the cathode gas supply passage 31.
  • the WRD 36 is connected to each of the cathode gas supply passage 31 and the cathode gas discharge passage 32, collects moisture in the cathode off-gas flowing through the cathode gas discharge passage 32, and cathode that flows through the cathode gas supply passage 31 with the collected moisture. Humidify the gas.
  • the cathode pressure regulating valve 37 is provided in the cathode gas discharge passage 32 downstream of the WRD 36.
  • the cathode pressure regulating valve 37 is controlled to be opened and closed by the controller 5 and adjusts the pressure of the cathode gas supplied to the fuel cell stack 1 to a desired pressure.
  • the stack cooling device 4 is a device that cools the fuel cell stack 1 and maintains the fuel cell stack 1 at a temperature suitable for power generation.
  • the stack cooling device 4 includes a cooling water circulation passage 41, a radiator 42, a bypass passage 43, a three-way valve 44, a circulation pump 45, an inlet water temperature sensor 46, and an outlet water temperature sensor 47.
  • the cooling water circulation passage 41 is a passage through which cooling water for cooling the fuel cell stack 1 circulates.
  • the radiator 42 is provided in the cooling water circulation passage 41.
  • the radiator 42 cools the cooling water discharged from the fuel cell stack 1.
  • the bypass passage 43 has one end connected to the cooling water circulation passage 41 and the other end connected to the three-way valve 44 so that the cooling water can be circulated by bypassing the radiator 42.
  • the three-way valve 44 is provided in the cooling water circulation passage 41 on the downstream side of the radiator 42.
  • the three-way valve 44 switches the cooling water circulation path according to the temperature of the cooling water. Specifically, when the temperature of the cooling water is relatively high, the cooling water circulation path is such that the cooling water discharged from the fuel cell stack 1 is supplied again to the fuel cell stack 1 via the radiator 42. Switch. On the contrary, when the temperature of the cooling water is relatively low, the cooling water discharged from the cooling water discharged from the fuel cell stack 1 flows through the bypass passage 43 without passing through the radiator 42 and is again returned to the fuel cell stack 1. The cooling water circulation path is switched so as to be supplied.
  • the circulation pump 45 is provided in the cooling water circulation passage 41 on the downstream side of the three-way valve 44 and circulates the cooling water.
  • the inlet water temperature sensor 46 is provided in the cooling water circulation passage 41 near the cooling water inlet hole of the fuel cell stack 1.
  • the inlet water temperature sensor 47 detects the temperature of cooling water flowing into the fuel cell stack 1 (hereinafter referred to as “inlet water temperature”).
  • the outlet water temperature sensor 47 is provided in the cooling water circulation passage 41 near the cooling water outlet hole of the fuel cell stack 1.
  • the outlet water temperature sensor 47 detects the temperature of the cooling water discharged from the fuel cell stack 1 (hereinafter referred to as “outlet water temperature”).
  • the power system 5 includes a current sensor 51, a voltage sensor 52, a drive motor 53, an inverter 54, a battery 55, a DC / DC converter 56, and a junction box 57.
  • the current sensor 51 detects a current (hereinafter referred to as “output current”) extracted from the fuel cell stack 1.
  • the drive motor 53 is a three-phase AC synchronous motor in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
  • the drive motor 53 functions as an electric motor that is driven to rotate by receiving electric power supplied from the fuel cell stack 1 and the battery 55, and power generation that generates electromotive force at both ends of the stator coil during deceleration of the vehicle in which the rotor is rotated by external force. Function as a machine.
  • the inverter 54 includes a plurality of semiconductor switches such as IGBT (Insulated Gate Bipolar Transistor).
  • the semiconductor switch of the inverter 54 is controlled to be opened / closed by the controller 6, whereby DC power is converted into AC power or AC power is converted into DC power.
  • the drive motor 53 functions as an electric motor
  • the inverter 54 converts the combined DC power of the generated power of the fuel cell stack 1 and the output power of the battery 55 into three-phase AC power and supplies the three-phase AC power to the drive motor 53.
  • the drive motor 53 functions as a generator, the regenerative power (three-phase AC power) of the drive motor 53 is converted into DC power and supplied to the battery 55.
  • the battery 55 charges the surplus power generated by the fuel cell stack 1 (output current ⁇ output voltage) and the regenerative power of the drive motor 53.
  • the electric power charged in the battery 55 is supplied to auxiliary machines such as the recycle compressor 26 and the cathode compressor 34 and the drive motor 53 as necessary.
  • the DC / DC converter 56 is a bidirectional voltage converter that raises and lowers the output voltage of the fuel cell stack 1. By controlling the output voltage of the fuel cell stack 1 by the DC / DC converter 56, the output current of the fuel cell stack 1, and thus the generated power, is controlled.
  • the junction box 57 includes a switch 571 that is controlled to open and close by the controller 6. By connecting this switch 571, the output current of the fuel cell stack 1, and thus the generated power can be taken out.
  • the controller 6 stops the supply of the cathode gas to the fuel cell stack 1 in the low load region where the power generation efficiency of the fuel cell stack 1 decreases, that is, the region where the system required power is a predetermined value or less, and from the fuel cell stack 1 Power extraction is prohibited, and idling stop is performed to drive the drive motor 53 and the auxiliary machinery with the power of the battery 55. Then, for example, when the accelerator pedal is depressed during the idle stop and the system required power becomes larger than a predetermined value, the controller 6 resumes the power extraction from the fuel cell stack 1 and returns from the idle stop.
  • the cell voltage is set to a voltage (about 0.85 [V]) capable of suppressing such dissolution of platinum
  • the cell voltage is set to a predetermined voltage (for example, 0. 7 [V])
  • the electric power extracted from the fuel cell stack 1 is basically based on the stack output voltage immediately before returning from the idle stop without maintaining the output voltage of each fuel cell at a high potential during the idle stop. I decided to limit it.
  • the idle stop control according to this embodiment will be described below.
  • step S1 the controller 6 reads the detection values of the various sensors described above.
  • step S5 the controller 6 determines whether an idle stop return flag (hereinafter referred to as “IS return flag”) is set to 1.
  • the IS return flag is a flag that is set to 1 when returning from idle stop, and the initial value is set to 0.
  • the controller 6 performs the process of step S6 if the IS return flag is set to 0, and performs the process of step S13 if it is set to 1.
  • step S6 the controller 6 determines whether or not an idle stop execution flag (hereinafter referred to as “IS execution flag”) is set to 1.
  • the IS execution flag is a flag that is set to 1 during execution of the idle stop, and the initial value is set to 0.
  • the controller 6 performs the process of step S7 if the IS execution flag is set to 0, and performs the process of step S11 if it is set to 1.
  • step S7 the controller 6 determines whether or not the system required power is equal to or less than the idle stop execution power (hereinafter referred to as “IS execution power”). If the system required power is larger than the IS execution power, the controller 6 performs the process of step S8 without executing the idle stop. On the other hand, when the required output is equal to or lower than the IS execution power, the power generation efficiency of the fuel cell stack 1 is reduced, and therefore the process of step S9 is performed to perform the idle stop.
  • IS execution power the system required power is equal to or less than the IS execution power
  • step S ⁇ b> 8 the controller 6 outputs the output voltage of the fuel cell stack 1 so that the generated power of the fuel cell stack 1 becomes the system required power based on the IV characteristics of the fuel cell stack 1 obtained in advance through experiments or the like. Is controlled by a DC / DC converter.
  • step S9 the controller 6 sets the IS execution flag to 1.
  • step S10 the controller 6 performs an idle stop process (hereinafter referred to as “IS process”). Details of the IS processing will be described with reference to FIG.
  • step S11 the controller 6 determines whether or not the system required power is larger than the IS implementation power. If the system required power is equal to or lower than the IS implementation power, the controller 6 performs the process of step S10 to continue the idle stop. On the other hand, if the system required power is larger than the IS implementation power, the process of step S12 is performed to return from the idle stop.
  • step S13 the controller 6 performs idle stop return processing (hereinafter referred to as “IS return processing”). Details of the IS return processing will be described with reference to FIG.
  • FIG. 5 is a flowchart for explaining the IS process.
  • step S101 the controller 6 opens the switch 571 of the junction box 57 and prohibits the power extraction from the fuel cell stack 1.
  • step S102 the controller 6 determines the degree of opening of the anode pressure regulating valve 23 and the anode pressure adjustment valve 23 so that the same amount of anode gas that is permeated from the anode side to the cathode side during idle stop is supplied to the anode side.
  • the rotational speed of the recycle compressor 26 is controlled to a predetermined opening degree and rotational speed determined in advance through experiments or the like.
  • step S104 the controller 6 drives the drive motor 53 and the auxiliary devices with the power of the battery 55.
  • FIG. 6 is a flowchart for explaining the IS return processing.
  • step S131 the controller 6 determines whether or not the IS return flag is set to 1.
  • the controller 6 performs the process of step S132 if the IS return flag is set to 0, and performs the process of step S138 if it is set to 1.
  • step S132 the controller 6 refers to the table of FIG. 7 and takes out the fuel cell stack 1 from the fuel cell stack 1 when returning from the idle stop based on the output voltage of the fuel cell stack 1 detected immediately before returning from the idle stop.
  • the upper limit of the current that can be generated (hereinafter referred to as “the maximum current that can be taken out”) is calculated.
  • step S133 the controller 6 calculates the upper limit value (hereinafter referred to as “restricted power”) of power that can be extracted from the fuel cell stack 1 when returning from the idle stop based on the maximum current that can be extracted.
  • restricted power the upper limit value of power that can be extracted from the fuel cell stack 1 when returning from the idle stop based on the maximum current that can be extracted.
  • step S134 the controller 6 determines whether or not the system required power is larger than the limit power. If the system required power is equal to or less than the limit power, the controller 6 performs the process of step S135. On the other hand, if the system required power is larger than the limit power, the process of step S136 is performed.
  • step S135 the controller 6 outputs the output voltage of the fuel cell stack 1 so that the generated power of the fuel cell stack 1 becomes the system required power based on the IV characteristics of the fuel cell stack 1 obtained in advance through experiments or the like. Is controlled by a DC / DC converter.
  • step S136 the controller 6 sets the output voltage of the fuel cell stack 1 so that the generated power of the fuel cell stack 1 becomes the limit power based on the IV characteristics of the fuel cell stack 1 obtained in advance through experiments or the like. Control with a DC / DC converter. As a result, the output current of the fuel cell stack 1 is limited to the maximum extractable current.
  • step S137 the controller 6 sets the IS return flag to 1.
  • step S138 the controller 6 calculates an elapsed time since the IS return flag is set to 1, that is, an elapsed time after returning from the idle stop (hereinafter referred to as “elapsed time after IS return”).
  • step S139 the controller 6 determines whether or not the elapsed time after the IS return has reached a predetermined value or more.
  • This predetermined value is the time until the output voltage returns to a steady state after the output voltage has dropped transiently when returning from the idle stop, and is a value determined in advance by experiments or the like. If the elapsed time after IS return is less than the predetermined value, the controller 6 ends the current process. On the other hand, if the elapsed time after IS return is equal to or greater than a predetermined value, the process of step S140 is performed.
  • step S141 the controller 6 resets the elapsed time after returning to IS to zero.
  • step S142 the controller 6 sets the IS return flag to 0.
  • the current extracted from the fuel cell stack 1 after the idle stop return is limited based on the output voltage of the fuel cell stack 1 before the return from the idle stop.
  • the upper limit of the electric power extracted from the fuel cell stack 1 is set to limit the electric current extracted from the fuel cell stack 1.
  • the output voltage of the fuel cell stack 1 can be prevented from transiently falling below the minimum operating voltage of the drive motor 53 at the time of return from the idle stop, it is possible to prevent deterioration of operability and system failure.
  • the oxide voltage of the platinum catalyst is reduced to a low potential that can be removed without maintaining the cell voltage at a high potential during the idle stop, it is possible to suppress the dissolution of the platinum catalyst during the idle stop, and from the idle stop. Even after the recovery of, the temporary decrease in IV performance due to the platinum catalyst being covered with the oxide film can be suppressed. As a result, it is possible to suppress a decrease in output performance after returning from the idle stop.
  • the present embodiment is different from the first embodiment in that the current extraction profile at the time of transition after the return from the idle stop is determined based on the output voltage of the fuel cell stack 1 detected before the return from the idle stop. .
  • the difference will be mainly described.
  • the same reference numerals are used for portions that perform the same functions as those in the first embodiment described above, and repeated descriptions are omitted as appropriate.
  • FIG. 8 is a flowchart for explaining the IS return processing according to the present embodiment.
  • step S231 based on the output voltage of the fuel cell stack 1 detected immediately before the return from the idle stop, the controller 6 determines a current extraction profile at the time of transition after the return from the idle stop as shown in FIG. .
  • the current extraction profile is set such that the higher the output voltage of the fuel cell stack 1 detected immediately before the return from the idle stop, the lower the output current during the transition after the return from the idle stop.
  • the current extraction profile is set in consideration of the change in the moisture content (wetness) of the electrolyte membrane and the cathode gas response delay during the transition after returning from the idle stop.
  • step S232 the controller 6 refers to the determined current extraction profile, and determines the extraction current of the power battery stack based on the elapsed time after the IS recovery.
  • step S233 the controller 6 calculates the target generated power of the fuel cell stack 1 based on the extracted current determined in step S232, and the fuel cell stack so that the generated power of the fuel cell stack 1 becomes the target generated power.
  • the output voltage of 1 is controlled by a DC / DC converter.
  • the current extraction profile is set such that the higher the output voltage of the fuel cell stack 1 detected before returning from the idle stop, the lower the output current during the transition after returning from the idle stop.
  • the current extraction profile is set in consideration of the change in the wet state (moisture content) of the electrolyte membrane and the response delay of the cathode gas during the transition after returning from the idle stop.
  • the present embodiment is different from the first embodiment in that the output voltage of the fuel cell stack 1 during idle stop is estimated based on the duration of idle stop (hereinafter referred to as “IS time”).
  • IS time the duration of idle stop
  • the anode gas permeates through the electrolyte membrane from the anode side to the cathode side, so that the output voltage of the fuel cell stack 1 decreases with time.
  • the relationship between the idle stop time and the output voltage of the fuel cell stack 1 is obtained in advance by experiments or the like, so that the fuel cell stack 1 immediately before returning from the idle stop is determined based on the idle stop time.
  • the output voltage was estimated.
  • FIG. 10 is a flowchart for explaining the IS process according to the present embodiment.
  • step S301 the controller 6 calculates the elapsed time since the IS execution flag is set to 1, that is, the IS time.
  • FIG. 11 is a flowchart for explaining the IS return processing according to the present embodiment.
  • step S331 the controller 6 refers to the table of FIG. 12, and estimates the output voltage of the fuel cell stack 1 when returning from the idle stop based on the IS time.
  • the table of FIG. 12 shows changes in the output voltage during the idle stop in a state where the temperature and moisture content of the electrolyte membrane of the fuel cell are held at a certain reference value.
  • step S332 the controller 6 refers to the table of FIG. 7 described above, and calculates the maximum current that can be extracted based on the estimated output voltage.
  • step S333 the controller 6 resets the IS time to zero.
  • the output voltage of the fuel cell stack 1 before returning from the idle stop is estimated based on the elapsed time (IS time) since the supply of the cathode gas was stopped during the idle stop. I did it. Thereby, even if it does not use the voltage sensor 52, the effect similar to 1st Embodiment can be acquired.
  • the present embodiment is different from the third embodiment in that the estimated output voltage calculated based on the IS time is corrected according to the coolant temperature of the fuel cell stack 1.
  • the difference will be mainly described.
  • the estimated output is based on the cooling water temperature of the fuel cell stack 1 that represents the temperature of the electrolyte membrane, specifically, the average temperature of the inlet water temperature and the outlet water temperature (hereinafter referred to as “inlet / outlet average water temperature”).
  • the voltage was corrected.
  • FIG. 14 is a flowchart for explaining the IS return processing according to the present embodiment.
  • step S431 the controller 6 corrects the estimated output voltage based on the average water temperature at the inlet / outlet of the fuel cell stack 1. Specifically, if the average water temperature of the inlet / outlet of the fuel cell stack 1 is higher than the temperature of the electrolyte membrane used as a reference when creating the table of FIG. If it is lower, the estimated output voltage is corrected so as to increase.
  • step S432 the controller 6 refers to the table of FIG. 7 described above, and calculates the maximum current that can be extracted based on the corrected estimated output voltage.
  • the estimated output voltage is corrected according to the temperature (inlet / outlet average water temperature) of the fuel cell stack 1 based on the IS time.
  • the same effects as those of the third embodiment can be obtained, and the output voltage during the idle stop can be accurately estimated according to the state of the fuel cell stack 1.
  • the amount of anode gas that permeates from the anode side to the cathode side increases as the water content of the electrolyte membrane of each fuel cell increases. Therefore, as shown in FIG. 15, the higher the moisture content of the electrolyte membrane of each fuel cell, the faster the output voltage drop rate during idle stop.
  • step S531 the controller 6 corrects the estimated output voltage based on the internal impedance of the fuel cell stack 1. Specifically, if the internal impedance of the fuel cell stack 1 is lower than the internal impedance corresponding to the moisture content of the electrolyte membrane used as a reference for preparing the table of FIG. 12, the estimated output voltage is corrected to be lowered. If the output impedance is lower than the reference internal impedance, the estimated output voltage is corrected to increase.
  • the maximum current that can be taken out is calculated based on the output voltage of the fuel cell stack 1, but may be calculated as follows.
  • the cathode compressor 34 may be temporarily driven during the idle stop. This is performed to replace the volume of the cathode gas from the cathode compressor 34 to the fuel cell stack 1, such as a cathode gas supply passage and WRD, with the cathode gas.
  • anode gas is supplied during idle stop, but the supply of anode gas may be stopped together with the cathode gas.
  • the circulation type configuration in which the anode off gas is returned to the anode gas supply passage 22 is used.
  • the present invention is not limited to such a system, and a so-called dead end system that does not return the anode off gas to the anode gas supply passage 22 is used. It is also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 アノードガス及びカソードガスを燃料電池に供給して発電させる燃料電池システムは、燃料電池システムの運転状態に応じて燃料電池からの電流取り出しを停止するアイドルストップ部と、燃料電池システムの運転状態に応じて燃料電池からの電流取り出しを再開するアイドルストップ復帰部と、を備える。アイドルストップ復帰部は、アイドルストップからの復帰前の燃料電池の出力電圧に基づいて、アイドルストップ復帰後に燃料電池から取り出す電流を制限する。

Description

燃料電池システム
 本発明は燃料電池システムに関する。
 JP2004-172028Aには、従来の燃料電池システムとして、アイドルストップ中の燃料電池スタックの出力電圧を高電位に維持するものが開示されている。
 しかしながら、アイドルストップ中の燃料電池スタックの出力電圧を高電位に維持すると、アイドルストップからの復帰時に、過渡的に出力電圧が低下するという問題が生じることがわかった。
 本発明はこのような問題点に着目してなされたものであり、アイドルストップからの復帰時における出力電圧の低下を抑制することを目的とする。
 本発明のある態様によれば、アノードガス及びカソードガスを燃料電池に供給して発電させる燃料電池システムが提供される。燃料電池システムは、燃料電池システムの運転状態に応じて燃料電池からの電流取り出しを停止するアイドルストップ部と、燃料電池システムの運転状態に応じて燃料電池からの電流取り出しを再開するアイドルストップ復帰部と、を備える。アイドルストップ復帰部は、アイドルストップからの復帰前の燃料電池の出力電圧に基づいて、アイドルストップ復帰後に燃料電池から取り出す電流を制限する。
図1は、本発明の第1実施形態による燃料電池システムの概略図である。 図2は、アイドルストップ中における燃料電池スタック内のカソード側の酸素濃度と、セル電圧と、の関係を示した図である。 図3は、アイドルストップからの復帰時に燃料電池スタックから所定の電力を取り出したときの出力電圧の降下度合いを、復帰直前の燃料電池スタックの出力電圧に応じて比較した図である。 図4は、本発明の第1実施形態によるアイドルストップ制御について説明するフローチャートである。 図5は、本発明の第1実施形態によるIS処理について説明するフローチャートである。 図6は、本発明の第1実施形態によるIS復帰処理について説明するフローチャートである。 図7は、燃料電池スタックの出力電圧に基づいて、最大取出可能電流を算出するテーブルである。 図8は、本発明の第2実施形態によるIS復帰処理について説明するフローチャートである。 図9は、アイドルストップからの復帰後の過渡時における電流取り出しプロファイルを示す図である。 図10は、本発明の第3実施形態によるIS処理について説明するフローチャートである。 図11は、本発明の第3実施形態によるIS復帰処理について説明するフローチャートである。 図12は、IS時間に基づいて、燃料電池スタックの出力電圧を推定するテーブルである。 図13は、燃料電池の電解質膜の温度と、アイドルストップ中の出力電圧の降下速度と、の関係を示した図である。 図14は、本発明の第4実施形態によるIS復帰処理について説明するフローチャートである。 図15は、燃料電池の電解質膜の含水率と、アイドルストップ中の出力電圧の降下速度と、の関係を示した図である。 図16は、本発明の第5実施形態によるIS復帰処理について説明するフローチャートである。
 以下、図面等を参照して本発明の各実施形態について説明する。
 (第1実施形態)
 燃料電池は電解質膜をアノード電極(燃料極)とカソード電極(酸化剤極)とによって挟み、アノード電極に水素を含有するアノードガス(燃料ガス)、カソード電極に酸素を含有するカソードガス(酸化剤ガス)を供給することによって発電する。アノード電極及びカソード電極の両電極において進行する電極反応は以下の通りである。
   アノード電極 :  2H2 →4H+ +4e-     …(1)
   カソード電極 :  4H+ +4e- +O2 →2H2O   …(2)
 この(1)(2)の電極反応によって燃料電池は1ボルト程度の起電力を生じる。
 このような燃料電池を自動車用動力源として使用する場合には、要求される電力が大きいため、数百枚の燃料電池を積層した燃料電池スタックとして使用する。そして、燃料電池スタックにアノードガス及びカソードガスを供給する燃料電池システムを構成して、車両駆動用の電力を取り出す。
 図1は、本実施形態による燃料電池システム100の概略図である。
 燃料電池システム100は、燃料電池スタック1と、アノードガス給排装置2と、カソードガス給排装置3と、スタック冷却装置4と、電力系5と、コントローラ6と、を備える。
 燃料電池スタック1は、数百枚の燃料電池を積層したものであり、アノードガス及びカソードガスの供給を受けて、車両の駆動に必要な電力を発電する。燃料電池スタック1は、電力を取り出す端子として、アノード電極側出力端子11と、カソード電極側出力端子12と、を備える。
 アノードガス給排装置2は、高圧タンク21と、アノードガス供給通路22と、アノード調圧弁23と、アノードガス排出通路24と、アノードガス還流通路25と、リサイクルコンプレッサ26と、排出弁27と、を備える。
 高圧タンク21は、燃料電池スタック1に供給するアノードガスを高圧状態に保って貯蔵する。
 アノードガス供給通路22は、燃料電池スタック1に供給するアノードガスが流れる通路であって、一端が高圧タンク21に接続され、他端が燃料電池スタック1のアノードガス入口孔に接続される。
 アノード調圧弁23は、アノードガス供給通路22に設けられる。アノード調圧弁23は、コントローラ6によって開閉制御され、高圧タンク21からアノードガス供給通路22に流れ出したアノードガスの圧力を所望の圧力に調節する。
 アノードガス排出通路24は、燃料電池スタック1から排出されたアノードオフガスが流れる通路であって、一端が燃料電池スタック11のアノードガス出口孔に接続され、他端が開口端となっている。アノードオフガスは、電極反応で使用されなかった余剰のアノードガスと、カソード側からリークしてきた窒素などの不活性ガスと、の混合ガスである。
 アノードガス還流通路25は、アノードガス排出通路24に排出されたアノードオフガスを、アノードガス供給通路22に戻すための通路である。アノードガス還流通路25は、一端が排出弁27よりも上流側のアノードガス排出通路24に接続され、他端がアノード調圧弁23よりも下流側のアノードガス供給通路22に接続される。
 リサイクルコンプレッサ26は、アノードガス還流通路25に設けられる。リサイクルコンプレッサ26は、アノードガス排出通路24に排出されたアノードオフガスを、アノードガス供給通路22に戻す。
 排出弁27は、アノードガス排出通路24とアノードガス還流通路25との接続部よりも下流側のアノードガス排出通路24に設けられる。排出弁27は、コントローラ6によって開閉制御され、アノードオフガスや凝縮水を燃料電池システム100の外部へ排出する。
 カソードガス給排装置3は、カソードガス供給通路31と、カソードガス排出通路32と、フィルタ33と、カソードコンプレッサ34と、エアフローセンサ35と、水分回収装置(Water Recovery Device;以下「WRD」という。)36と、カソード調圧弁37と、を備える。
 カソードガス供給通路31は、燃料電池スタック1に供給するカソードガスが流れる通路である。カソードガス供給通路31は、一端がフィルタ33に接続され、他端が燃料電池スタック1のカソードガス入口孔に接続される。
 カソードガス排出通路32は、燃料電池スタック1から排出されるカソードオフガスが流れる通路である。カソードガス排出通路32は、一端が燃料電池スタック1のカソードガス出口孔に接続され、他端が開口端となっている。カソードオフガスは、カソードガスと、電極反応によって生じた水蒸気と、の混合ガスである。
 フィルタ33は、カソードガス供給通路31に取り込むカソードガス中の異物を取り除く。
 カソードコンプレッサ34は、カソードガス供給通路31に設けられる。カソードコンプレッサ34は、フィルタ33を介してカソードガスとしての空気(外気)をカソードガス供給通路31に取り込み、燃料電池スタック1に供給する。
 エアフローセンサ35は、カソードコンプレッサ34よりも下流のカソードガス供給通路31に設けられる。エアフローセンサ35は、カソードガス供給通路31を流れるカソードガスの流量を検出する。
 WRD36は、カソードガス供給通路31及びカソードガス排出通路32のそれぞれに接続されて、カソードガス排出通路32を流れるカソードオフガス中の水分を回収し、その回収した水分でカソードガス供給通路31を流れるカソードガスを加湿する。
 カソード調圧弁37は、WRD36よりも下流のカソードガス排出通路32に設けられる。カソード調圧弁37は、コントローラ5によって開閉制御され、燃料電池スタック1に供給されるカソードガスの圧力を所望の圧力に調節する。
 スタック冷却装置4は、燃料電池スタック1を冷却し、燃料電池スタック1を発電に適した温度に保つ装置である。スタック冷却装置4は、冷却水循環通路41と、ラジエータ42と、バイパス通路43と、三方弁44と、循環ポンプ45と、入口水温センサ46と、出口水温センサ47と、を備える。
 冷却水循環通路41は、燃料電池スタック1を冷却するための冷却水が循環する通路である。
 ラジエータ42は、冷却水循環通路41に設けられる。ラジエータ42は、燃料電池スタック1から排出された冷却水を冷却する。
 バイパス通路43は、ラジエータ42をバイパスさせて冷却水を循環させることができるように、一端が冷却水循環通路41に接続され、他端が三方弁44に接続される。
 三方弁44は、ラジエータ42よりも下流側の冷却水循環通路41に設けられる。三方弁44は、冷却水の温度に応じて冷却水の循環経路を切り替える。具体的には、冷却水の温度が相対的に高いときは、燃料電池スタック1から排出された冷却水が、ラジエータ42を介して再び燃料電池スタック1に供給されるように冷却水の循環経路を切り替える。逆に、冷却水の温度が相対的に低いときは、燃料電池スタック1から排出された冷却水から排出された冷却水が、ラジエータ42を介さずにバイパス通路43を流れて再び燃料電池スタック1に供給されるように冷却水の循環経路を切り替える。
 循環ポンプ45は、三方弁44よりも下流側の冷却水循環通路41に設けられて、冷却水を循環させる。
 入口水温センサ46は、燃料電池スタック1の冷却水入口孔近傍の冷却水循環通路41に設けられる。入口水温センサ47は、燃料電池スタック1に流入する冷却水の温度(以下「入口水温」という。)を検出する。
 出口水温センサ47は、燃料電池スタック1の冷却水出口孔近傍の冷却水循環通路41に設けられる。出口水温センサ47は、燃料電池スタック1から排出された冷却水の温度(以下「出口水温」という。)を検出する。
 電力系5は、電流センサ51と、電圧センサ52と、駆動モータ53と、インバータ54と、バッテリ55と、DC/DCコンバータ56と、ジャンクションボックス57と、を備える。
 電流センサ51は、燃料電池スタック1から取り出される電流(以下「出力電流」という。)を検出する。
 電圧センサ52は、アノード電極側出力端子11とカソード電極側出力端子12の間の端子間電圧(以下「出力電圧」という。)を検出する。
 駆動モータ53は、ロータに永久磁石を埋設し、ステータにステータコイルを巻き付けた三相交流同期モータである。駆動モータ53は、燃料電池スタック1及びバッテリ55から電力の供給を受けて回転駆動する電動機としての機能と、ロータが外力によって回転させられる車両の減速時にステータコイルの両端に起電力を生じさせる発電機としての機能と、を有する。
 インバータ54は、例えばIGBT(Insulated Gate Bipolar Transistor)などの複数の半導体スイッチから構成される。インバータ54の半導体スイッチは、コントローラ6によって開閉制御され、これにより直流電力が交流電力に、又は、交流電力が直流電力に変換される。インバータ54は、駆動モータ53を電動機として機能させるときは、燃料電池スタック1の発電電力とバッテリ55の出力電力との合成直流電力を三相交流電力に変換して駆動モータ53に供給する。一方で、駆動モータ53を発電機として機能させるときは、駆動モータ53の回生電力(三相交流電力)を直流電力に変換してバッテリ55に供給する。
 バッテリ55は、燃料電池スタック1の発電電力(出力電流×出力電圧)の余剰分及び駆動モータ53の回生電力を充電する。バッテリ55に充電された電力は、必要に応じてリサイクルコンプレッサ26やカソードコンプレッサ34などの補機類及び駆動モータ53に供給される。
 DC/DCコンバータ56は、燃料電池スタック1の出力電圧を昇降圧させる双方向性の電圧変換機である。DC/DCコンバータ56によって燃料電池スタック1の出力電圧を制御することで、燃料電池スタック1の出力電流、ひいては発電電力が制御される。
 ジャンクションボックス57は、コントローラ6によって開閉制御されるスイッチ571を内部に備える。このスイッチ571を接続することで、燃料電池スタック1の出力電流、ひいては発電電力の取り出しが可能となる。
 コントローラ6は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ6には、前述したエアフローセンサ35や入口水温センサ46、出口水温センサ47、電流センサ51、電圧センサ52の他にも、アクセルペダルの踏み込み量(以下「アクセル操作量」)を検出するアクセルストロークセンサ61などの燃料電池システム100を制御するために必要な各種センサからの信号が入力される。
 コントローラ6は、これら各種センサの検出信号に基づいて、駆動モータ53及び補機類など、燃料電池システム100を運転するために必要な電力(以下「システム要求電力」という。)を算出する。
 コントローラ6は、燃料電池スタック1の発電効率が低下する低負荷領域、すなわち、システム要求電力が所定値以下の領域において、燃料電池スタック1へのカソードガスの供給を停止すると共に燃料電池スタック1からの電力取り出しを禁止し、バッテリ55の電力によって駆動モータ53及び補機類を駆動するアイドルストップを実施する。そして、コントローラ6は、アイドルストップ中に例えばアクセルペダルが踏み込まれ、システム要求電力が所定値よりも大きくなると、燃料電池スタック1からの電力取り出しを再開し、アイドルストップから復帰させる。
 ここで、アイドルストップからの復帰時において、燃料電池スタック1内の酸素不足に起因する発電遅れ(過渡性能の悪化)を抑制するために、カソードガスの応答遅れ(カソードコンプレッサ34を駆動してから燃料電池スタック1内の酸素濃度が上昇するまでの遅れ)を考慮し、アイドルストップ中において、燃料電池スタック1内のカソード側の酸素濃度を所定濃度以上に維持する方法がある。これは、アイドルストップ中における燃料電池スタック1の出力電圧と、燃料電池スタック1内のカソード側の酸素濃度と、に相関関係があることに着目し、アイドルストップ中における燃料電池スタック1の出力電圧を所定電圧以上に維持するものである。
 図2は、アイドルストップ中における燃料電池スタック1内のカソード側の酸素濃度と、燃料電池スタック1を構成する各燃料電池の電圧(以下「セル電圧」という。)と、の関係を示した図である。
 アイドルストップが実施されると、燃料電池スタック1からの電力取り出しが禁止されるので、セル電圧は一時的に開放端電圧(Open Circuit Voltage)(0.95[V]程度)まで上昇する。そして、アイドルストップ中は、燃料電池スタック1へのカソードガスの供給が停止されると共に、アノード側からカソード側へと電解質膜を介して透過してきたアノードガスが、カソード側に残存するカソードガスと反応する。その結果、カソード側の酸素濃度が徐々に低下し、それに伴ってセル電圧が開放端電圧から徐々に低下していく。
 ここで、図2に示すように、燃料電池スタック1内のカソード側の酸素濃度が1%であっても、セル電圧は0.9[V]を超えている。そのため、燃料電池スタック1内のカソード側の酸素濃度を所定濃度以上に維持しようとすると、アイドルストップ中において、セル電圧を開放端電圧に近い高電位に維持する必要がある。
 しかしながら、セル電圧を開放端電圧に近い高電位に維持すると、各燃料電池の電極中の白金が溶解し、各燃料電池が劣化することが知られている。セル電圧を、このような白金の溶解を抑制可能な電圧(約0.85[V])まで下げようとすると、燃料電池スタック1内のカソード側の酸素濃度が1%未満となって、アイドルストップからの復帰時における発電遅れ抑制の効果はほとんど見込めなくなる。
 そして、発明者らの鋭意研究の結果、セル電圧を、このような白金の溶解を抑制可能な電圧(約0.85[V])にしていたとしても、セル電圧が所定電圧(例えば0.7[V])以上の状態が続くと、各燃料電池の電極中に含まれる白金触媒の表面が酸化被膜に覆われて各燃料電池のIV特性(電流電圧特性)が低下し、アイドルストップからの復帰時において、燃料電池スタック1の出力電圧が過渡的に低下することがさらにわかった。以下、この問題点について図3を参照して説明する。
 図3は、アイドルストップからの復帰時に燃料電池スタック1から所定の電力を取り出したときの出力電圧の降下度合いを、復帰直前の燃料電池スタック1の出力電圧に応じて比較した図である。
 図3に示すように、アイドルストップからの復帰直前の燃料電池スタック1の出力電圧が高いときほど、アイドルストップから復帰時において、過渡的に燃料電池スタック1の出力電圧が低下していることが分かる。
 これは、各燃料電池の出力電圧が所定電圧(例えば0.7[V])以上の状態が続くと、各燃料電池の電極中に含まれる白金触媒の表面が酸化被膜に覆われて各セルのIV特性(電流電圧特性)が低下し、その所定電圧以下の状態が続くと、徐々に酸化被膜が除去されて各燃料電池のIV特性が回復するためと考えられる。
 このように、アイドルストップからの復帰時に燃料電池スタック1から電力を取り出したときの出力電圧の降下度合いが大きくなると、アイドルストップからの復帰時において、過渡的に燃料電池スタック1の出力電圧が駆動モータ53の最低動作電圧を下回るおそれがある。そうすると、駆動モータ53を駆動することができなくなるので、運転性の悪化やシステムフェールにつながる。
 そこで本実施形態では、アイドルストップ中は基本的に各燃料電池の出力電圧を高電位に維持せずに、アイドルストップからの復帰直前のスタック出力電圧に基づいて、燃料電池スタック1から取り出す電力を制限することとした。以下、この本実施形態によるアイドルストップ制御について説明する。
 図4は、本実施形態によるアイドルストップ制御について説明するフローチャートである。コントローラ6は、このルーチンを所定の演算周期(例えば10[ms])で実施する。
 ステップS1において、コントローラ6は、前述した各種センサの検出値を読み込む。
 ステップS2において、コントローラ6は、アクセル操作量に基づいて、駆動モータ53を駆動するために必要な電力(以下「モータ要求電力」という。)を算出する。
 ステップS3において、コントローラ6は、駆動されている補機類の消費電力(以下「補機消費電力」という。)を算出する。
 ステップS4において、コントローラ6は、モータ要求電力に補機消費電力を加算して、システム要求電力を算出する。
 ステップS5において、コントローラ6は、アイドルストップ復帰フラグ(以下「IS復帰フラグ」という。)が1に設定されているか否かを判定する。IS復帰フラグは、アイドルストップからの復帰時に1に設定されるフラグであり、初期値は0に設定される。コントローラ6は、IS復帰フラグが0に設定されていればステップS6の処理を行い、1に設定されていればステップS13の処理を行う。
 ステップS6において、コントローラ6は、アイドルストップ実施フラグ(以下「IS実施フラグ」という。)が1に設定されているか否かを判定する。IS実施フラグは、アイドルストップの実施中に1に設定されるフラグであり、初期値は0に設定される。コントローラ6は、IS実施フラグが0に設定されていればステップS7の処理を行い、1に設定されていればステップS11の処理を行う。
 ステップS7において、コントローラ6は、システム要求電力がアイドルストップ実施電力(以下「IS実施電力」という。)以下か否かを判定する。コントローラ6は、システム要求電力がIS実施電力よりも大きければアイドルストップを実施せずにステップS8の処理を行う。一方で、要求出力がIS実施電力以下のときは、燃料電池スタック1の発電効率が低下するため、アイドルストップを実施すべくステップS9の処理を行う。
 ステップS8において、コントローラ6は、予め実験等で求めておいた燃料電池スタック1のIV特性に基づいて、燃料電池スタック1の発電電力がシステム要求電力となるように、燃料電池スタック1の出力電圧をDC/DCコンバータで制御する。
 ステップS9において、コントローラ6は、IS実施フラグを1に設定する。
 ステップS10において、コントローラ6は、アイドルストップ処理(以下「IS処理」という。)を実施する。IS処理の詳細については、図5を参照して説明する。
 ステップS11において、コントローラ6は、システム要求電力がIS実施電力よりも大きくなったか否かを判定する。コントローラ6は、システム要求電力がIS実施電力以下であれば、アイドルストップを継続すべくステップS10の処理を行う。一方で、システム要求電力がIS実施電力よりも大きければ、アイドルストップから復帰すべくステップS12の処理を行う。
 ステップS12において、コントローラ6は、IS実施フラグを0に設定する。
 ステップS13において、コントローラ6は、アイドルストップ復帰処理(以下「IS復帰処理」という。)を実施する。IS復帰処理の詳細については、図6を参照して説明する。
 図5は、IS処理について説明するフローチャートである。
 ステップS101において、コントローラ6は、ジャンクションボックス57のスイッチ571を開き、燃料電池スタック1からの電力取り出しを禁止する。
 ステップS102において、コントローラ6は、アイドルストップ中にアノード側からカソード側へと透過していくアノードガス量と同量のアノードガスがアノード側に供給されるように、アノード調圧弁23の開度及びリサイクルコンプレッサ26の回転速度を、予め実験等で定められた所定の開度及び回転速度に制御する。
 ステップS103において、コントローラ6は、カソードコンプレッサ34を停止する。
 ステップS104において、コントローラ6は、バッテリ55の電力で駆動モータ53及び補機類を駆動する。
 図6は、IS復帰処理について説明するフローチャートである。
 ステップS131において、コントローラ6は、IS復帰フラグが1に設定されているか否かを判定する。コントローラ6は、IS復帰フラグが0に設定されていればステップS132の処理を行い、1に設定されていればステップS138の処理を行う。
 ステップS132において、コントローラ6は、図7のテーブルを参照し、アイドルストップからの復帰直前に検出した燃料電池スタック1の出力電圧に基づいて、アイドルストップからの復帰時に燃料電池スタック1から取り出すことができる電流の上限値(以下「最大取出可能電流」という。)を算出する。
 ステップS133において、コントローラ6は、最大取出可能電流に基づいて、アイドルストップからの復帰時に燃料電池スタック1から取り出すことができる電力の上限値(以下「制限電力」という。)を算出する。
 ステップS134において、コントローラ6は、システム要求電力が制限電力よりも大きいか否かを判定する。コントローラ6は、システム要求電力が制限電力以下であればステップS135の処理を行う。一方で、システム要求電力が制限電力よりも大きければステップS136の処理を行う。
 ステップS135において、コントローラ6は、予め実験等で求めておいた燃料電池スタック1のIV特性に基づいて、燃料電池スタック1の発電電力がシステム要求電力となるように、燃料電池スタック1の出力電圧をDC/DCコンバータで制御する。
 ステップS136において、コントローラ6は、予め実験等で求めておいた燃料電池スタック1のIV特性に基づいて、燃料電池スタック1の発電電力が制限電力となるように、燃料電池スタック1の出力電圧をDC/DCコンバータで制御する。これにより、燃料電池スタック1の出力電流が最大取出可能電流に制限されることになる。
 ステップS137において、コントローラ6は、IS復帰フラグを1に設定する。
 ステップS138において、コントローラ6は、IS復帰フラグが1に設定されてからの経過時間、すなわちアイドルストップから復帰してからの経過時間(以下「IS復帰後経過時間」という。)を算出する。
 ステップS139において、コントローラ6は、IS復帰後経過時間が所定値以上になったか否かを判定する。この所定値は、アイドルストップからの復帰時において、過渡的に出力電圧が低下した後、その出力電圧が定常状態に戻るまでの時間であり、予め実験等によって定められた値である。コントローラ6は、IS復帰後経過時間が所定値未満であれば、今回の処理を終了する。一方で、IS復帰後経過時間が所定値以上であれば、ステップS140の処理を行う。
 ステップS140において、コントローラ6は、燃料電池スタック1の発電電力の制限を解除する。
 ステップS141において、コントローラ6は、IS復帰後経過時間を0にリセットする。
 ステップS142において、コントローラ6は、IS復帰フラグを0に設定する。
 以上説明した本実施形態によれば、アイドルストップからの復帰前の燃料電池スタック1の出力電圧に基づいて、アイドルストップ復帰後に燃料電池スタック1から取り出す電流を制限することとした。具体的には、燃料電池スタック1から取り出す電力の上限を設定することとで、燃料電池スタック1から取り出す電流を制限することとした。
 これにより、アイドルストップからの復帰時における出力電圧の低下を抑制することができる。
 また、アイドルストップからの復帰時において、過渡的に燃料電池スタック1の出力電圧が駆動モータ53の最低動作電圧を下回るのを防止できるので、運転性の悪化やシステムフェールが起きるのを防止できる。また、アイドルストップ中にセル電圧を高電位に維持することなく白金触媒の酸化被膜が除去される低電位まで低下させるので、アイドルストップ中に白金触媒が溶解するのを抑制できると共に、アイドルストップからの復帰後においても白金触媒が酸化被膜に覆われていることによる一時的なIV性能の低下を抑制できる。その結果、アイドルストップから復帰した後の出力性能の低下を抑制することができる。
 (第2実施形態)
 次に、本発明の第2実施形態について説明する。本実施形態は、アイドルストップからの復帰前に検出した燃料電池スタック1の出力電圧に基づいて、アイドルストップからの復帰後の過渡時における電流取り出しプロファイルを決定する点で第1実施形態と相違する。以下、その相違点を中心に説明する。なお、以下の各実施形態では上述した第1実施形態と同様の機能を果たす部分には、同一の符号を用いて重複する説明を適宜省略する。
 図8は、本実施形態によるIS復帰処理について説明するフローチャートである。
 ステップS231において、コントローラ6は、アイドルストップからの復帰直前に検出した燃料電池スタック1の出力電圧に基づいて、図9に示すようにアイドルストップからの復帰後の過渡時における電流取り出しプロファイルを決定する。
 電流取り出しプロファイルは、アイドルストップからの復帰直前に検出した燃料電池スタック1の出力電圧が高いときほど、アイドルストップからの復帰後の過渡時における出力電流が低くなるように設定される。また、電流取り出しプロファイルは、アイドルストップからの復帰後の過渡時における電解質膜の含水率(湿潤度)の変化やカソードガスの応答遅れを考慮して設定される。
 ステップS232において、コントローラ6は、決定した電流取り出しプロファイルを参照し、IS復帰後経過時間に基づいて、電力電池スタックの取り出し電流を決定する。
 ステップS233において、コントローラ6は、ステップS232で決定した取り出し電流に基づいて燃料電池スタック1の目標発電電力を算出し、燃料電池スタック1の発電電力がその目標発電電力となるように、燃料電池スタック1の出力電圧をDC/DCコンバータで制御する。
 以上説明した本実施形態によれば、アイドルストップからの復帰前に検出した燃料電池スタック1の出力電圧に基づいて、アイドルストップからの復帰後の過渡時における電流取り出しプロファイルを決定することとした。
 この電流取り出しプロファイルは、アイドルストップからの復帰前に検出した燃料電池スタック1の出力電圧が高いときほど、アイドルストップからの復帰後の過渡時における出力電流が低くなるように設定される。また、電流取り出しプロファイルは、アイドルストップからの復帰後の過渡時における電解質膜の湿潤状態(含水率)の変化やカソードガスの応答遅れを考慮して設定される。
 したがって、アイドルストップからの復帰後の過渡時において、燃料電池スタック1の出力電圧が駆動モータ53の最低動作電圧を下回るのを防止できるとともに、過渡時の燃料電池スタック1の状態に応じた最適な電流取り出し量を決定することができる。
 (第3実施形態)
 次に、本発明の第3実施形態について説明する。本実施形態は、アイドルストップの継続時間(以下「IS時間」という。)に基づいて、アイドルストップ中の燃料電池スタック1の出力電圧を推定する点で第1実施形態と相違する。以下、その相違点を中心に説明する。
 アイドルストップ中は、アノード側からカソード側へと電解質膜を介してアノードガスが透過することによって、時間の経過と共に燃料電池スタック1の出力電圧が低下する。
 そこで本実施形態では、予め実験等によってアイドルストップ時間と燃料電池スタック1の出力電圧との関係を求めておくことで、アイドルストップ時間に基づいて、アイドルストップからの復帰直前の燃料電池スタック1の出力電圧を推定することとした。
 図10は、本実施形態によるIS処理について説明するフローチャートである。
 ステップS301において、コントローラ6は、IS実施フラグが1に設定されてからの経過時間、すなわちIS時間を算出する。
 図11は、本実施形態によるIS復帰処理について説明するフローチャートである。
 ステップS331において、コントローラ6は、図12のテーブルを参照し、IS時間に基づいて、アイドルストップからの復帰時における燃料電池スタック1の出力電圧を推定する。なお、図12のテーブルは、燃料電池の電解質膜の温度及び含水率をある一定の基準値に保持した状態でのアイドルストップ中における出力電圧の変化を示したものである。
 ステップS332において、コントローラ6は、前述した図7のテーブルを参照し、推定出力電圧に基づいて、最大取出可能電流を算出する。
 ステップS333において、コントローラ6は、IS時間をゼロにリセットする。
 以上説明した本実施形態によれば、アイドルストップからの復帰前の燃料電池スタック1の出力電圧を、アイドルストップ中にカソードガスの供給を停止してからの経過時間(IS時間)に基づいて推定することした。これにより、電圧センサ52を用いなくても、第1実施形態と同様の効果を得ることができる。
 (第4実施形態)
 次に、本発明の第4実施形態について説明する。本実施形態は、IS時間に基づいて算出した推定出力電圧を、燃料電池スタック1の冷却水温に応じて補正する点で第3実施形態と相違する。以下、その相違点を中心に説明する。
 アノード側からカソード側へと透過するアノードガス量は、各燃料電池の電解質膜の温度が高くなるほど多くなる。そのため、図13に示すように、各燃料電池の電解質膜の温度が高くなるほど、アイドルストップ中の出力電圧の降下速度が速くなる。
 そこで本実施形態では、電解質膜の温度を代表する燃料電池スタック1の冷却水温、具体的には入口水温と出口水温の平均温度(以下「入出口平均水温」という。)に基づいて、推定出力電圧を補正することとした。
 図14は、本実施形態によるIS復帰処理について説明するフローチャートである。
 ステップS431において、コントローラ6は、燃料電池スタック1の入出口平均水温に基づいて、推定出力電圧を補正する。具体的には、燃料電池スタック1の入出口平均水温が、図12のテーブルを作成するにあたって基準とした電解質膜の温度よりも高ければ、推定出力電圧が低くなる方向に補正し、基準温度よりも低ければ推定出力電圧が高くなる方向に補正する。
 ステップS432において、コントローラ6は、前述した図7のテーブルを参照し、補正した推定出力電圧に基づいて、最大取出可能電流を算出する。
 以上説明した本実施形態によれば、IS時間に基づいて推定出力電圧を、燃料電池スタック1の温度(入出口平均水温)に応じて補正することとした。これにより、第3実施形態と同様の効果が得られるほか、燃料電池スタック1の状態に応じて精度良くアイドルストップ中の出力電圧を推定することができる。
 (第5実施形態)
次に、本発明の第5実施形態について説明する。本実施形態は、IS時間に基づいて算出した推定出力電圧を、電解質膜の含水率(湿潤度)に応じて補正する点で第3実施形態と相違する。以下、その相違点を中心に説明する。
 アノード側からカソード側へと透過するアノードガス量は、各燃料電池の電解質膜の含水率が高くなるほど多くなる。そのため、図15に示すように、各燃料電池の電解質膜の含水率が高くなるほど、アイドルストップ中の出力電圧の降下速度が速くなる。
 そこで本実施形態では、電解質膜の含水率を代表する燃料電池スタック1の内部インピーダンスに基づいて、推定出力電圧を補正することとした。なお、燃料電池スタック1の内部インピーダンスは、電解質膜の含水率が高くなるほど低くなる。
 図16は、本実施形態によるIS復帰処理について説明するフローチャートである。
 ステップS531において、コントローラ6は、燃料電池スタック1の内部インピーダンスに基づいて、推定出力電圧を補正する。具体的には、燃料電池スタック1の内部インピーダンスが、図12のテーブルを作成するにあたって基準とした電解質膜の含水率に相当する内部インピーダンスよりも低ければ、推定出力電圧が低くなる方向に補正し、基準内部インピーダンスよりも低ければ推定出力電圧が高くなる方向に補正する。
 なお、燃料電池スタック1の内部インピーダンスの検出方法としては、交流インピーダンス法などの公知のいかなる手段を採用してもよい。
 ステップS532において、コントローラ6は、前述した図7のテーブルを参照し、補正した推定出力電圧に基づいて、最大取出可能電流を算出する。
 以上説明した本実施形態によれば、IS時間に基づいて算出した推定出力電圧を、燃料電池スタック1の湿潤度(燃料電池の電解質膜の湿潤度)に応じて補正することとした。これにより、第3実施形態と同様の効果が得られるほか、燃料電池スタック1の状態に応じて精度良くアイドルストップ中の出力電圧を推定することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば上記の第1実施形態では燃料電池スタック1の出力電圧に基づいて最大取出可能電流を算出していが、以下のようにして算出しても良い。
 アイドルストップ中は、アノード側からカソード側へと電解質膜を介してアノードガスが透過することによって、時間の経過と共に燃料電池スタック1の出力電圧が低下する。
 ここで、アノード側からカソード側へと透過するアノードガス量は、各燃料電池の電解質膜の厚さや温度、含水率に応じて変化するが、各燃料電池の電解質膜の厚さには、ある程度の製造バラつきがある。また、各燃料電池の電解質膜の温度や含水率も、場所に応じてある程度のバラつきが生じる。
 そこで、燃料電池スタック1の各燃料電池の電圧、又は、所定枚数の燃料電池群の電圧を検出し、その中で最も高いセル電圧、又は、セル群電圧に基づいて最大取出可能電流を算出しても良い。これにより、アイドルストップからの復帰時において、過渡的に燃料電池スタック1の出力電圧が駆動モータ53の最低動作電圧を下回るのをより確実に防止できる。
 また、上記の各実施形態において、アイドルストップ中に一時的にカソードコンプレッサ34を駆動しても良い。これは、カソードコンプレッサ34から燃料電池スタック1まではカソードガス供給通路やWRDなどのボリュームが存在するため、そのボリュームをカソードガスで置換するために行うものである。
 このように一時的にカソードコンプレッサ34を駆動すると、燃料電池スタック1の出力電圧は開放端電圧まで上昇するので、アイドルストップ時間に応じて出力電圧を推定する場合は、カソードコンプレッサ34を駆動した時点でアイドルストップ時間を0にリセットすれば良い。
 また、上記の各実施形態では、アイドルストップ中に一定量のアノードガスを供給していたが、カソードガスと共にアノードガスの供給も停止しても良い。
 また、上記の各実施形態では、アノードオフガスをアノードガス供給通路22に戻す循環式の構成としていたが、このようなシステムに限らず、アノードオフガスをアノードガス供給通路22に戻さないいわゆるデッドエンドシステムとしても良い。
 本願は、2012年7月25日に日本国特許庁に出願された特願2012-164626号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (9)

  1.  アノードガス及びカソードガスを燃料電池に供給して発電させる燃料電池システムであって、
     前記燃料電池システムの運転状態に応じて、前記燃料電池からの電流取り出しを停止するアイドルストップ部と、
     前記燃料電池システムの運転状態に応じて、前記燃料電池からの電流取り出しを再開するアイドルストップ復帰部と、
    を備え、
     前記アイドルストップ復帰部は、
      アイドルストップからの復帰前の前記燃料電池の出力電圧に基づいて、アイドルストップ復帰後に前記燃料電池から取り出す電流を制限する、
    燃料電池システム。
  2.   前記アイドルストップ復帰部は、
      アイドルストップからの復帰前の前記燃料電池の出力電圧が高いときほど、前記燃料電池から取り出す電流を小さくする、
    請求項1に記載の燃料電池システム。
  3.  前記アイドルストップ復帰部は、
      アイドルストップからの復帰前の前記燃料電池の出力電圧に基づいて設定された電流取り出しプロファイルに従って、前記燃料電池から取り出す電流を制限する、
    請求項1に記載の燃料電池システム。
  4.  前記電流プロファイルは、アイドルストップからの復帰前の前記燃料電池の出力電圧が高いときほど、前記燃料電池から取り出す電流が小さくなるように設定される、
    請求項3に記載の燃料電池システム。
  5.  前記アイドルストップ復帰部は、
      前記燃料電池の出力電圧が、前記燃料電池の電力によって駆動される車両走行用モータの最低動作電圧を下回らないように、前記燃料電池から取り出す電流を制限する、
    請求項1から請求項4までのいずれか1つに記載の燃料電池システム。
  6.  前記アイドルストップ復帰部は、
      アイドルストップからの復帰前の前記燃料電池の出力電圧を、アイドルストップ中にカソードガスの供給を停止してからの経過時間に基づいて推定する、
    請求項1から請求項5までのいずれか1つに記載の燃料電池システム。
  7.  前記アイドルストップ復帰部は、
      推定した前記燃料電池の出力電圧を、その燃料電池の温度に応じて補正する、
    請求項6に記載の燃料電池システム。
  8.  前記アイドルストップ復帰部は、
      推定した前記燃料電池の出力電圧を、その燃料電池の湿潤度に応じて補正する、
    請求項6に記載の燃料電池システム。
  9.  前記燃料電池システムは、複数枚の燃料電池で構成された燃料電池スタックを備え、
     前記アイドルストップ復帰部は、
      前記燃料電池スタックを構成する燃料電池のうち、最も高い出力電圧を示す燃料電池の電圧に基づいて、前記燃料電池から取り出す電流を制限する、
    請求項1から請求項8までのいずれか1つに記載の燃料電池システム。
PCT/JP2013/069938 2012-07-25 2013-07-23 燃料電池システム WO2014017496A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13822685.7A EP2879220B1 (en) 2012-07-25 2013-07-23 Fuel cell system
US14/416,790 US9935326B2 (en) 2012-07-25 2013-07-23 Fuel cell system
JP2014526944A JP5804205B2 (ja) 2012-07-25 2013-07-23 燃料電池システム
CN201380039451.XA CN104488123B (zh) 2012-07-25 2013-07-23 燃料电池系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012164626 2012-07-25
JP2012-164626 2012-07-25

Publications (1)

Publication Number Publication Date
WO2014017496A1 true WO2014017496A1 (ja) 2014-01-30

Family

ID=49997305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069938 WO2014017496A1 (ja) 2012-07-25 2013-07-23 燃料電池システム

Country Status (5)

Country Link
US (1) US9935326B2 (ja)
EP (1) EP2879220B1 (ja)
JP (1) JP5804205B2 (ja)
CN (1) CN104488123B (ja)
WO (1) WO2014017496A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110621534A (zh) * 2017-05-04 2019-12-27 罗伯特·博世有限公司 用于运行燃料电池系统的方法和系统
CN111509277A (zh) * 2019-01-28 2020-08-07 丰田自动车株式会社 燃料电池系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101846632B1 (ko) 2015-12-10 2018-04-09 현대자동차주식회사 연료전지차량의 스탑모드시 전압 제어방법
JP6508358B2 (ja) 2015-12-10 2019-05-08 日産自動車株式会社 燃料電池システムの制御方法及び燃料電池システム
JP6743774B2 (ja) * 2017-06-29 2020-08-19 トヨタ自動車株式会社 燃料電池システム
CN107512191B (zh) * 2017-09-13 2024-01-23 无锡商业职业技术学院 一种用于氢燃料电池电动汽车的实验装置
JP7010071B2 (ja) * 2018-03-09 2022-02-10 トヨタ自動車株式会社 燃料電池システムおよび酸化被膜除去方法
DE102019200447A1 (de) 2019-01-16 2020-07-16 Audi Ag Brennstoffzellenstapel mit Teilstapeln, Brennstoffzellenvorrichtung und Verfahren zum Betreiben einer Brennstoffzellenvorrichtung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172028A (ja) 2002-11-22 2004-06-17 Toyota Motor Corp 燃料電池システム、およびこれを搭載した移動体、および燃料電池システムの制御方法
JP2005071797A (ja) * 2003-08-25 2005-03-17 Toyota Motor Corp 燃料電池システム及び車両
JP2006280108A (ja) * 2005-03-29 2006-10-12 Nissan Motor Co Ltd 電動機システム及び電動機システムの制御方法
JP2007265653A (ja) * 2006-03-27 2007-10-11 Nissan Motor Co Ltd 燃料電池システム
JP2008048486A (ja) * 2006-08-11 2008-02-28 Nissan Motor Co Ltd 電動機システム
JP2010129245A (ja) * 2008-11-26 2010-06-10 Honda Motor Co Ltd 燃料電池システム
JP2011014322A (ja) * 2009-06-30 2011-01-20 Honda Motor Co Ltd 燃料電池システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894026B2 (ja) * 2001-05-18 2007-03-14 株式会社デンソー 燃料電池内部の水分測定方法
US7579097B2 (en) * 2002-08-16 2009-08-25 Gm Global Technology Operations, Inc. Fuel cell voltage feedback control system
JP3879635B2 (ja) * 2002-09-06 2007-02-14 日産自動車株式会社 移動体用燃料電池パワープラントシステム
US7282286B2 (en) * 2002-11-28 2007-10-16 Honda Motor Co., Ltd. Start-up method for fuel cell
JP3816436B2 (ja) * 2002-11-28 2006-08-30 本田技研工業株式会社 燃料電池車両の制御装置
JP4742501B2 (ja) * 2004-02-17 2011-08-10 日産自動車株式会社 燃料電池システム
US20070256872A1 (en) * 2004-08-18 2007-11-08 Shigeki Yamamuro Electric Wheelchair
US7473480B2 (en) * 2004-10-19 2009-01-06 General Motors Corporation Low voltage compressor operation for a fuel cell power system
DE102005052019B4 (de) * 2004-11-02 2017-03-30 Honda Motor Co., Ltd. Verfahren zum Steuern/Regeln eines Leerlaufstopps eines Brennstoffzellensystems
JP4852917B2 (ja) * 2004-12-16 2012-01-11 日産自動車株式会社 燃料電池システム
JP2006309971A (ja) * 2005-04-26 2006-11-09 Nissan Motor Co Ltd 燃料電池システム
JP5120594B2 (ja) * 2006-10-20 2013-01-16 トヨタ自動車株式会社 燃料電池システム及びその運転方法
JP5126480B2 (ja) * 2007-04-19 2013-01-23 トヨタ自動車株式会社 燃料電池システム
KR101000703B1 (ko) * 2008-07-08 2010-12-10 현대자동차주식회사 연료전지 하이브리드 차량의 아이들 스탑/해제 제어 방법
KR101230900B1 (ko) * 2010-12-01 2013-02-07 현대자동차주식회사 연료전지 하이브리드 시스템의 운전 제어 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172028A (ja) 2002-11-22 2004-06-17 Toyota Motor Corp 燃料電池システム、およびこれを搭載した移動体、および燃料電池システムの制御方法
JP2005071797A (ja) * 2003-08-25 2005-03-17 Toyota Motor Corp 燃料電池システム及び車両
JP2006280108A (ja) * 2005-03-29 2006-10-12 Nissan Motor Co Ltd 電動機システム及び電動機システムの制御方法
JP2007265653A (ja) * 2006-03-27 2007-10-11 Nissan Motor Co Ltd 燃料電池システム
JP2008048486A (ja) * 2006-08-11 2008-02-28 Nissan Motor Co Ltd 電動機システム
JP2010129245A (ja) * 2008-11-26 2010-06-10 Honda Motor Co Ltd 燃料電池システム
JP2011014322A (ja) * 2009-06-30 2011-01-20 Honda Motor Co Ltd 燃料電池システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110621534A (zh) * 2017-05-04 2019-12-27 罗伯特·博世有限公司 用于运行燃料电池系统的方法和系统
JP2020518957A (ja) * 2017-05-04 2020-06-25 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 燃料電池システムを運転するための方法およびシステム
US11254237B2 (en) 2017-05-04 2022-02-22 Robert Bosch Gmbh Method and system for operating a fuel cell system
CN111509277A (zh) * 2019-01-28 2020-08-07 丰田自动车株式会社 燃料电池系统

Also Published As

Publication number Publication date
EP2879220B1 (en) 2017-11-29
JPWO2014017496A1 (ja) 2016-07-11
CN104488123A (zh) 2015-04-01
US20150188170A1 (en) 2015-07-02
EP2879220A1 (en) 2015-06-03
US9935326B2 (en) 2018-04-03
EP2879220A4 (en) 2015-08-26
JP5804205B2 (ja) 2015-11-04
CN104488123B (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5804205B2 (ja) 燃料電池システム
KR101837254B1 (ko) 연료 전지 시스템 및 연료 전지의 운전 제어 방법
EP3057165B1 (en) Fuel cell system and method for controlling fuel cell system
US9853311B2 (en) Fuel cell system and fuel cell powered vehicle
JP6187599B2 (ja) 燃料電池システム
JP2008108668A (ja) 燃料電池システム
US20160351928A1 (en) Fuel cell system and control method for fuel cell system
JP6229731B2 (ja) 燃料電池システム
JP2013140715A (ja) 燃料電池システム
CN113745594A (zh) 燃料电池系统
JP2015125873A (ja) 燃料電池システム
JP2011018461A (ja) 燃料電池システム
WO2013137275A1 (ja) 燃料電池システム
JP2012129081A (ja) 燃料電池システムの運転方法
CN113752864A (zh) 燃料电池系统
JP2015076246A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526944

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14416790

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013822685

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013822685

Country of ref document: EP