JP2020518957A - 燃料電池システムを運転するための方法およびシステム - Google Patents

燃料電池システムを運転するための方法およびシステム Download PDF

Info

Publication number
JP2020518957A
JP2020518957A JP2019559049A JP2019559049A JP2020518957A JP 2020518957 A JP2020518957 A JP 2020518957A JP 2019559049 A JP2019559049 A JP 2019559049A JP 2019559049 A JP2019559049 A JP 2019559049A JP 2020518957 A JP2020518957 A JP 2020518957A
Authority
JP
Japan
Prior art keywords
fuel cell
vehicle
cell system
operating
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019559049A
Other languages
English (en)
Other versions
JP6986093B2 (ja
Inventor
ブラウン,ヨッヘン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2020518957A publication Critical patent/JP2020518957A/ja
Application granted granted Critical
Publication of JP6986093B2 publication Critical patent/JP6986093B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/31Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/22Standstill, e.g. zero speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/46Control modes by self learning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/58Departure time prediction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】 本発明は、燃料電池システム(22)およびこの燃料電池システム(22)の少なくとも1つのサブシステム(30)を運転するための方法およびシステムに関する。【解決手段】 これらの燃料電池システムおよびそのサブシステムは車両(10)内に配置されており、この場合、前記車両(10)のドライブトレイン(12)のためのエネルギは、前記燃料電池システム(22)からも、また代替的なエネルギアキュムレータ(26)からも引き出すことができる。この方法は、次の方法ステップを有している。まず、前記車両(10)の停止段階および/またはストップ段階の回数および継続時間を、第1の車両状態(86)または第2の車両状態(88)で、車両状態特有の学習機能(90,112)を用いて、所定の時間間隔で算出する。次いで、前記燃料電池システム(22)の運転パラメータおよび前記燃料電池システム(22)の少なくとも1つの前記サブシステム(30)の運転パラメータを、前記車両(10)の停止段階および/またはストップ段階の算出された回数および継続時間に依存して調節する。【選択図】 図1

Description

本発明は、車両内に配置された燃料電池システムを運転するための方法およびシステムに関するものであって、この場合、車両のドライブトレインのためのエネルギを、燃料電池システムからも、また代替的なエネルギアキュムレータからも引き出すことができる。
燃料電池システム(FCSとも呼ばれる、英語:fuel cell system)を備えた駆動システムを有する車両において、車両の停止時に、燃料電池システムのための遮断手順が実行される。
車両内に配置された燃料電池システムを運転するための本発明による方法で、この場合、車両のドライブトレインのためのエネルギを、燃料電池システムからも、また代替的なエネルギアキュムレータからも引き出すことができる方法において、第1の車両状態または第2の車両状態で、状態特有の学習機能を用いて、車両のアイドリングストップ段階の間隔の回数および継続時間の算出が、所定の時間間隔で実行されるように、設計されている。次いで、燃料電池システムの運転パラメータおよび燃料電池システムの少なくとも1つのサブシステムの運転パラメータを、車両の停止および/またはストップ段階の、算出された回数および継続時間に依存して調節し、最後に代替的なエネルギアキュムレータの充電状態(SOC)の選択的な適合を行う。本発明に従って提案された解決策によって、車両の運転形式を、過ぎ去った走行目標に関してもまたこれから先の走行目標にも関して考慮する可能性が存在する。このために、燃料電池システムの遮断およびサブシステム空気供給の遮断を遅らせる、つまりこのシステムの遅延を可能にする学習機能が実行される。サブシステム空気供給の遅延の追加的な引き延ばしは、負荷なしで、つまり完全に開放された圧力制御フラップにおいてほぼ無圧でこのシステムをさらに作動させることによって可能であり、この場合、最小空気質量流量はバイパスフラップの完全な開放によって実現されていて、最小の空気質量流量は、燃料電池スタック自体を通ってガイドされるのではなく、燃料電池スタックに沿ってガイドされる。追加的に、ナビゲーションシステムを介して、実際の走行ルートの特別な独自性、さらに周囲温度および別の運転パラメータが考慮されてよい。
車両はハイブリッドのエネルギ源を有しており、これは、車両の電気駆動装置のためのエネルギに関する。電気駆動装置のためのエネルギは、燃料電池システムからのものでも、また選択的なエネルギアキュムレータからのものでもよい。電気駆動装置は、例えば電気機械、パワーエレクトロニクスおよび伝動装置を備えた電気ドライブトレイン(英語:powertrain「パワートレイン」)を含む。車両は好適には、燃料電池システムを備えた電気自動車(EVとも呼ばれる、英語:electric vehicle)である。選択的に、車両は、燃料電池システムを備えたプラグインハイブリッド車両またはハイブリッド車両であってよい。車軸の駆動装置に追加して、別の駆動装置、例えば全輪のための2車軸駆動装置が組み込まれていてもよい。特に、例えば電気機械、パワーエレクトロニクスおよび伝動装置を備えたそれぞれ1つの電気駆動装置が1つの車軸に設けられていてよい。2つの電気駆動装置が、燃料電池システムおよび選択的なエネルギアキュムレータに接続されていてよい。別の組み合わせも可能であり、例えば電気機械がバッテリから給電され、バッテリに回生することも可能である。この場合も、別の変化例、例えばホイールハブ駆動装置も可能である。
車両の選択的なエネルギアキュムレータは、車両用電池、または例えばエネルギ変換装置を備えた別のエネルギアキュムレータであってもよい。用語「バッテリ」は、この開示において言語慣用で一般的であるように、蓄電池システムとも解釈される。以下では、用語「バッテリ」および「電気的なエネルギアキュムレータ」は、簡略化のために十分に同義語的に使用される。好適には、選択的なエネルギアキュムレータは、車両用電池またはスーパーコンデンサ(SupercapまたはSCとも呼ばれる、英語:supercapacitor)を含んでいる。この場合、選択的なエネルギアキュムレータは、車両の制動エネルギを回収するためにも使用され得る。
燃料電池システムは、エネルギアキュムレータ、例えば電気化学的なエネルギ変換器を備えたHタンクを含む。電気化学的なエネルギ変換器は単独でも(Hタンクなしで)燃料電池システムと呼ばれてよい。燃料電池システムは標準的な形式で、供給された燃料および酸化剤の化学的な反応エネルギを電気エネルギに変換するガルヴァーニ電池を含む。燃料電池システムは、例えば水素−酸素燃料電池システムであってよいが、エタノール、メタノールまたはその他の炭化水素をベースとしていてもよい。特に、この燃料電池システムは、PEMFCメンブラン技術(Proton Exchange Membran「陽子交換膜」)または固体電解質型燃料電池(SOFC、英語:solid oxide fuel cell)を含んでいてよい。
本発明による方法は、例えば、遮断手順が燃料電池システムの陰極回路の乾燥を含む燃料電池システムにおいて使用されてよい。この場合、陰極回路およびセンサ内に残存する水または水蒸気の凍結を避けるために、特にスタックを有する陰極回路は、空気供給ユニットによって乾燥ブローされる。
燃料電池システムの遮断手順は、例えば次のステップを有しており、この場合、後続の列挙されたサブシステムが遮断され、この場合、この方法および形式並びに時間的な連続は、燃料電池システムのそれぞれのトポロジーに依存している。
−空気システム:空気供給ユニットによる陰極回路のオプション的な除湿/乾燥後:空気供給の停止、次いで残りの体積内の酸素が数分および数秒以内に消散される。
−H供給の遮断(例えば弁)、H供給ユニットのポンピング、従って陽極回路が同様に遮断される。
−冷却システムが温度に依存して遮断され、この場合、これは空気およびH制御に接続されていてよいが、必然的な形式ではない。
−電気システムの遮断。
特にこの方法は、高自動化されたまたは完全自動化された車両において、例えば自律走行において使用され得る。相応の監視機能は、十分な精度および信頼性を伴って連続的にアクティブに実行される。この場合、この方法は、ソフトウエアパラメータによってそれぞれのシステムおよび構成要素設計に柔軟に適合される。特に、バッテリの大きさまたはハイブリッド化程度も、この方法の調節/応用の際に考慮されるか、またはこの方法によって自動的に構成要素(例えばバッテリサイズ)に適合される。監視は、好適には車両コントロールユニットのために標準的なタイムスキャンで行われる。この場合、高い走査速度は必ずしも必要ではないので、計算能力に顕著な影響が及ぼされることはないか、または相応のコントロールユニットに特別な要求が課される必要はない。
本発明によれば、さらに、車両内に配置されていて代替的なエネルギアキュムレータに接続されている燃料電池システムを運転するためのシステムが提案されており、この場合、車両のドライブトレインのためのエネルギは、燃料電池システムおよび代替的なエネルギアキュムレータから同時に引き出すことができるか、またはこれらのエネルギ源のうちの一方からのみ引き出すことができる。このシステムは、前記方法のうちの1つを実施するために構成されているかまたは設計されているので、方法に関連して記載された特徴は、相応にシステムのために開示されたものとみなされるべきであり、またその逆でもある。
好適には、このシステムはナビゲーションシステムに接続されており、このナビゲーションシステムを介して、所定の走行目標およびこの走行目標に対する残りの走行距離が確定されている。
これらのモジュールは、コンピュータにより実行される装置として構成されていてよく、好適にはソフトウエア構成要素を含んでいる。必要なコンピュータコードは、任意のデータ媒体で提供され、方法を実行するために本質的に寄与する。
本発明によれば、コンピュータプログラムが提案されており、このコンピュータプログラムにより、このコンピュータプログラムがプログラミング可能なコンピュータ装置で実行されると、ここに記載された方法のうちのいずれか1つが実施される。コンピュータプログラムは複数の命令を含んでおり、これらの命令は、前記システムまたはサブシステムのうちの1つが、前記方法のうちの1つの相応のステップを実行するように働く。このコンピュータプログラムは、例えば車両のバッテリマネジメントシステムを実行するためのおよび/または燃料電池システムのための制御システムを実行するためのモジュールである。本発明は、コンピュータ読み取り可能な媒体も含んでおり、この媒体にコンピュータプログラムが記憶されている。コンピュータプログラムは、例えば永久的なまたは再書き込み可能な記憶媒体、CD−ROM、DVD、ブルーレイディスクまたはUSBスティックに記憶され得る。これに追加してまたは代替的に、コンピュータプログラムはコンピュータ装置、例えばサーバーまたはクラウドコンピューティングシステムに、例えばインターネット等のデータネットワーク、または電話線若しくは無線接続等の通信接続を介してダウンロードするために提供され得る。
本発明によればさらに、燃料電池システムおよび代替的なエネルギアキュムレータを有する車両が提案されており、この場合、車両の駆動装置のためのエネルギが燃料電池システムおよび代替的なエネルギアキュムレータから同時に、またはこれらのエネルギ源のうちの一方からのみ引き出される。車両はさらにオプション的にナビゲーションシステムを有しているか、またはナビゲーションシステムに接続されており、それによって所定の走行目標およびこの走行目標に対する残りの走行距離が確定されている。公知の実施例によれば、代替的なエネルギアキュムレータは、単数または複数の車両用電池および/またはスーパーコンデンサを含む。
本発明により提案された解決策によって、燃料電池システムおよびそのサブシステムを備えた車両のためのアイドリングストップ過程の回数を著しく減少させることができる。それから得られた利点は、特に燃料電池システム内でアクチュエータに設定される負荷パターンにあり、特にサブシステム空気供給内のアクチュエータが最小化される、という点にある。これにより他方では、使用された構成部分の摩耗および劣化並びに整備間隔が改善され得る。構成要素の故障確率が低下され、それによって燃料電池システムおよびそのサブシステム空気供給の安定的な運転が得られる。システム内に取り付けられたアクチュエータの設計時に、負荷パターンの低下を考慮することができるので、構成要素を安価に設計することができる。
特に、サブシステム空気供給は、本発明により提案された解決策において、アイドリングストップ過程の最小化により機械的に明らかに負荷軽減されている。サブシステム空気供給は、発生した高い回転数に基づいてガス軸受を有しており、このガス軸受に対しては、本発明により提案された方法を実行する際に、明らかに低下された要求を設定することができる。このシステムにおいて、アイドリングストップ過程は非常に危険な作動点を示す。何故ならば、空気静力学的な圧力クッションは限界回転数を下回るガス軸受においてもはや、軸を無接触でセンタリングするために十分ではなく、従って、摩耗に重大な影響を及ぼす材料摩擦を生ぜしめるからである。本発明により提案された解決策では、発生したアイドリングストップ過程の最小化によって、このような危険な摩耗に特に良好な影響を及ぼすか、またはガス軸受の使用をそもそも最初から可能にする。別の軸受型式においても、アイドリングストップ過程の減少は利点を提供する。
燃料電池システム内およびサブシステム空気供給内に取り付けられたアクチュエータの制御の減少に基づいて、音響発生の低下が得られるか、または音響発生の均一化、およびひいてはより不快感の少ない感知も得られる。さらに、走行サイクルの予習および復習のために必要なシステムアクションはより少なくて済み、これによって、実行される機能が少ないことによりエラーの可能性の劇的な減少が得られる。
本発明によって提案された方法は、車両によって自律的に制御され、例えば車両対車両インフラストラクチャーまたはクラウド接続等との接続をまったく必要としない。特にナビゲーションシステムとのネットワーク構成によって、本発明により提案された、アイドリングストップ過程を最小化するための方法は最適化され得る。制御のために必要なデータは、車両のコントロールユニット内で、つまり車両内で直接に、または車両の外部のネットワーク化されたシステムにおいても記憶/処理することができる。これは、クラウド接続だけが考えられる。
本発明により提案された解決策によって、要求の減少によって、つまりアイドリングストップ過程の回数の減少によって、ガス軸受の使用がそもそも最初から可能である。何故ならば、高回転する圧縮器または高回転する流体機械のために要求されるアイドリングストップ過程の多すぎる回数は、実現するためのKO基準を示すからである。本発明の解決策はさらに、音響発生の均一化、およびひいてはより不快感の少ない感知を可能にする。
本発明によるシステムを備えた車両の1例を示す図である。 本発明の1実施例による方法の概略図である。
図面を用いて、本発明の方法およびシステムを以下に詳しく説明する。
図1に示した図では、方法を説明するための1例として、少なくとも1つの代替的なエネルギアキュムレータ26を備えた燃料電池システム22の1つの可能なトポロジーだけを示す。ここでは明確に、図1に示した車両トポロジーの他に、少なくとも1つの代替的なエネルギアキュムレータ26を備えた燃料電池システム22のその他の多くの実施可能性が実現され得ることを指摘しておく。
図1は、燃料電池システム22および少なくとも1つの代替的なエネルギアキュムレータ26を搭載した車両10を示す。燃料電池システム22および代替的なエネルギアキュムレータ26はそれぞれ、車両10のドライブトレイン12のために全エネルギまたはエネルギの一部を提供することができる。さらに、代替的なエネルギアキュムレータ26は、標準的な形式でエネルギを回生により戻すこともできる。車軸18のドライブトレイン12に追加して、車両10の別の車軸のためのさらに別のドライブトレイン12が取り付けられていてもよいが、これは図示されていない。
燃料電池システム22はコントロールユニット80に接続されており、この場合、コントロールユニット80は公知の監視および診断機能を備えていて、特に、燃料電池システム22を車両10のドライブトレイン12と接続または遮断するためにも設計されており、この場合、コントロールユニット80は燃料電池システム22の遮断手順を作動させ、かつ実施することもできる。コントロールユニット80には、第1の学習機能90を実施するための第1のモジュール82と、第2の学習機能112を実施するための別の第2のモジュール84とが実装されている(図2参照)。
少なくとも1つの代替的なエネルギアキュムレータ26、車両用電池またはスーパーコンデンサは、別のコントロールユニットに接続されており、この場合、この別のコントロールユニットは、公知の監視機能および診断機能で裏付けられていて、さらに、代替的なエネルギアキュムレータ26を車両10のドライブトレイン12と接続または遮断するように設計されている。別のコントロールユニットはバッテリマネジメントシステムとして構成されていて、バッテリマネジメントシステムと呼ばれてもよい。基本的に、別のコントロールユニットを節約して、コントローユニット80内に、少なくとも1つの代替的なエネルギアキュムレータ26のための制御、監視、および診断機能を配属することも考えられる。
図1から、車両10のドライブトレイン12は、少なくとも1つの電気機械16を備えた伝動装置14を含んでいることがわかる。電気機械16は、駆動される車軸18のための駆動装置である。少なくとも1つの電気機械16にインバータ20が対応配設されており、ポジション62によって双方向性が示されている。つまり少なくとも1つの電気機械16は、発電機モードでもまたモータモードでも作業する。車両10のドライブトレイン12の構成要素は、図1では一点鎖線で示されている。
車両10はさらに、燃料電池システム22を含んでいる。この燃料電池システムは、Hタンクとして構成された少なくとも1つのエネルギアキュムレータ24を含んでいる。さらに、燃料電池システム22は、サブシステム30空気供給を含んでいる。このサブシステム30内に、エアフィルタ38および、このエアフィルタに後置接続された質量流量センサ40が配置されている。サブシステム30空気供給はさらに圧縮器42を含んでおり、この圧縮器42は、電気駆動装置として構成された圧縮器駆動装置44によって駆動される。さらに、サブシステム30空気供給内に中間冷却器46が配置されており、この中間冷却器46によって、加熱された空気は、燃料電池システム22の中間冷却器46の通過後に燃料電池スタック50に流入する前に、圧縮器42の後ろで再び冷却される。燃料電池スタック50自体は冷却循環路52によって温度調節され、この冷却循環路52の構成要素は図1に示した図では概略的に示されているだけである。出力側で、燃料電池スタック50はプラス極54およびマイナス極56を有している。
ドライブトレイン12のインバータ20は、燃料電池コンバータ64に電気的に接続されている。
図1に示した図から、さらに、車両10が少なくとも1つの代替的なエネルギアキュムレータ26を含んでいることが明らかである。代替的なエネルギアキュムレータ26は、少なくとも1つの高電圧バッテリとしてまたは複数のスーパーコンデンサの配置として構成されていてよい。図1に示した図から、さらに、代替的なエネルギアキュムレータ26が、高電圧コンバータ60を介してドライブトレイン12とも、またサブシステム30空気供給とも電気的に接続されていることが明らかである。高電圧コンバータ60は、符号62で示されているように、双方向性で駆動可能である。
さらに、車両10は、通常の12ボルト車両バッテリ28を有しており、この12ボルト車両バッテリ28は、低電圧コンバータ58を介して車両10のドライブトレイン12に接続されている。
燃料電池システム22は図示の変化実施例ではバイパスフラップ32を有しており、このバイパスフラップ32を介して、サブシステム30空気供給によって供給された空気が燃料電池スタック50に沿って案内され得る。さらに、燃料電池システム22内で下流側に、圧力制御フラップ34が配置されている。燃料電池スタック50は入力側で遮断弁36に接続されている。図1に示されたトポロジーで構成された燃料電池システム22がバイパスフラップ32を有しているので、燃料電池システム22を閉ループ制御および開ループ制御するための別の可能性が提供される。しかしながらこれは、本発明によって提案された方法が、バイパスフラップ32なしに構成された燃料電池システム22においても使用可能である、1つの構成可能性を意味するだけである。
図1に示した図では、車両10の構成要素、特にドライブトレイン12の構成要素、燃料電池システム22の構成要素、およびサブシステム30空気供給の構成要素、さらに代替的なエネルギアキュムレータ26等が詳しく図示されているのに対して、図2ではフローチャートの図を用いて、移動式の燃料電池システム22内での、および少なくとも1つのサブシステム30空気供給でのアイドリングストップ動作を減少させるための本発明により提案された方法が、車両状態「オフ」(ポジション86参照)、および車両状態「オン」(ポジション88参照)を用いて詳しく説明されている。
図2に示したフローチャートから明らかなように、経過した走行のための車両10の運転形式の考慮が、場合によっては第1の学習機能90によって別の走行目標を見込むことによっても行われる。第1の学習機能90は、第1のモジュール82内で、結局のところ燃料電池システム22の遮断およびサブシステム30空気供給の遮断を引き延ばす。第1の学習機能90は、車両10の再始動が行われるまでの間の、特に個別走行間の停止時間/休止時間に関する車両10の運転形式を算出する。この場合、第1の学習機能90は、コントロールユニット80内の内部タイマ、またはネットワーク化されたデータ交換92を用いて、このデータ交換92を介して、車両10の外部のデータ、例えばナビゲーションシステムまたはクラウドからのデータが、第1の学習機能90に伝送され、車両10の運転形式の算出に送られる。相応のデータは、局所的にEEPROMまたはネットワーク化された車両において、外部例えばクラウドに記憶されていてよい。第1の学習機能90は、車両10が非常に頻繁に短時間、例えば数分範囲で停止し、次いで再び発進するかどうかを算出する。これは、配達車両、タクシー運転等に一般的な運転形式である。以下では、頻繁な短時間停止の特徴を示すこの運転形式は、運転形式「配達モード」94と呼ばれる。第1の学習機能90は、車両10の運転形式を、より短い時間間隔で、例えば数時間または数日でも、およびより長い時間間隔、例えば数週間および数か月にわたっても評価できる。
次いで、第1の学習機能90内で算出されたデータは、相応のアクションを、燃料電池システム22内若しくはサブシステム30空気供給内で、または追加的な消費器においてアダプションするために、および特に少なくとも1つの代替的なエネルギアキュムレータ26の充電状態(SOC)に適合させるために、使用され得る。車両10が、図2に示した図に応じて、車両状態「オン」88(アイドリング)を占めると、第2のモジュール84内で別の第2の学習機能112が使用される。別の第2の学習機能112は、実際の走行サイクル中の車両10の運転形式を算出する。別の第2の学習機能112内での評価は、1つの走行サイクルの評価も、また複数の走行サイクルの評価も含む。車両10の発生したアイドリングストップ段階が算出されるが、この場合、車両10は停止されない。その結果、例えば市街地走行中に車両10がどのくらい長く頻繁なアイドリングストップ段階にあるか、またはこれが車両10の運転時にむしろ稀に発生するかどうかの情報が得られる。
別の第2の学習機能112の枠内で算出されたデータも、燃料電池システム22内のアクションをサブシステム30空気供給内で、場合によっては代替的なエネルギアキュムレータ26にも関して導入するために、利用される。
車両10が停止されている、車両状態「オフ」(ポジション86参照)から出発して、第1の学習機能90は、場合によっては、ネットワーク化されたデータ交換92を参照して、外部のデータを車両10の運転形式の算出に関して考慮するために作動される。「配達モード」94が存在しないとの算出が得られると、車両10の燃料電池システム22のための標準停止ルーチン98の呼び出しが行われる。
これに対して、車両10の運転形式の算出の枠内で、第1の学習機能90において「配達モード」94の存在が検知されると、複数のオプションが存在する。
第1のアクションとして、燃料電池システム22の運転停止が遅れて行われる。これは、車両10の停止後に所定の時間間隔だけ遅延して行われる。燃料電池システム22、サブシステム30空気供給も、アイドリングでさらに駆動され、この場合、電気的なアイドリング出力を発生する。燃料電池システム22の遅延延長100から充電状態問い合わせ104に分岐され、この充電状態問い合わせ104内で、少なくとも1つの代替的なエネルギアキュムレータ26の充電状態(SOC)が問い合わせられる。SOCの最大値が得られない限り、燃料電池システム22の遅延中に生ぜしめられる電気的なアイドリング出力は、代替的なエネルギアキュムレータ26が満たされるかまたはほぼ満たされるまで、代替的なエネルギアキュムレータ26内に供給される。次いで初めて、可能であれば補助消費器110のスイッチオンが行われるか、または、燃料電池システム22のアイドリング中に生ぜしめられた電気的なアイドリング出力が低下されない場合、”Bleed−Down−Aktion「ブリードダウンアクション」”108が行われ、このブリードダウンアクション108内で、サブシステム30空気供給が遮断され、残留した酸素が燃料電池スタック50の陰極側で消費される。
第1の学習機能90の枠内で、車両10の車両状態の運転形式に関して、運転形式「配達モード」94の存在が検知されると、第2のアクションが開始され、それによってサブシステム30空気供給の遅延延長102が開始される。サブシステム30空気供給は、ここでは最小回転数を有する最小出力でさらに運転される。最小回転数は好適には、使用されたガス軸受のための限界回転数をぎりぎり越えている。使用されたガス軸受の限界回転数は、このガス軸受内の空気静力学的な圧力クッションの構成によって決定され、この限界回転数を下回ると軸はもはや無接触でセンタリングされ得ない、つまり絶対に避けなければならない固体接触が発生する。サブシステム30空気供給の遅延において、図1に示した圧力制御フラップ34も完全に開放されるので、非常に低い圧力でしかも最小負荷で空気供給が得られ、さらに、空気質量流量を完全に燃料電池スタック50に沿ってガイドするために、バイパスフラップ32(図1参照)が完全に開放される。従って、サブシステム30空気供給は、例えば代替的なエネルギアキュムレータ26から得られる最小の損失電力で、しばらくの間、特に数分範囲でさらに運転され、これによって同様に遅延が延長される。最小負荷時、つまり遅延中に存在するアイドリング時に、燃料電池システム22の構成要素またはサブシステム30空気供給の構成要素の騒音発生も最小化されている。
これに関連して、流入側で燃料電池スタック50の前に配置された遮断弁36の開放圧力は、この開放圧力がサブシステム30空気供給の最小空気圧縮によって生ぜしめられる最小圧力をやや上回るように設計されることが重要であることを指摘しておく。いずれの場合も、この運転状態で空気がそれ以上燃料電池スタック50内に達することがないように保証する必要がある。
燃料電池スタック50を取り囲むエアクッション内にバイパスが存在しないシステムのためには、空気流はアイドリング運転中に燃料電池スタック50を通ってガイドされなければならない。これは、最適ではないが、水マネジメント、再始動およびその他の条件に関連した所定の限界内で考慮する必要がある。バイパスの存在は、アイドリングストップ過程を減少させるための本発明に従って提案された方法を実行するために有利であるが、提案された学習方法のための必要不可欠な前提条件ではない。
車両状態「オン」[ポジション88(アイドリング)参照]から出発して、別の第2の学習機能112で、少なくとも1つの走行サイクルまたは複数のサイクル中の車両10の運転形式が、発生したアイドリングストップ段階に関連して算出されるが、この場合、車両10は停止されない。別の第2の学習機能112の枠内で、ストップ段階算出114が実施される。第1の学習機能90と同様に、別の第2の学習機能112は、ネットワーク化されたデータ交換92も介して、ナビゲーションシステムまたは例えばクラウドからのデータを走行中の車両10の運転形式の算出時に考慮することができる。ストップ段階算出114の枠内で頻繁にストップ段階が発生すると、例えば少なくとも1つの代替的なエネルギアキュムレータ26の充電状態SOCのための範囲の適合が実施されることは明らかである。少なくとも1つの代替的なエネルギアキュムレータ26のための充電状態範囲は、走行距離内でやや低下され、これによって、一時的な停止段階のための運転が、つまり燃料電池システム22の遅延が延長され得る。
車両状態88内で頻繁にストップ段階が発生すると、燃料電池システム22はストップ段階発生時に、まずさらに、最小の負荷またはアイドリングで作動する。燃料電池システム22のアイドリングの枠内で発生された電気的なアイドリング出力は、エネルギアキュムレータ26の充電状態(SOC)がまだ最大値に達していない限り、可能であれば、少なくとも1つの代替的なエネルギアキュムレータ26内に供給される。これに対して、少なくとも1つの代替的なエネルギアキュムレータ26の充電状態SOCが最大値に達すると、ブリードダウンアクション108、つまり燃料電池システム22の空気供給の遮断が行われ、陰極内に残存する酸素は散逸される。選択的に、燃料電池システム22の遅延106時に、車両10のストップ段階において生ぜしめられた電気的なアイドリング出力を低下させるために、ここでは補助消費器110をスイッチオンに切換える可能性もある。
サブシステム30空気供給の遅延106が、上述したように第2の操作位置を成しているのに対して、第3の操作位置は、補助消費器110をスイッチオンすることである。これは、例えば、操作位置1の枠内で代替的なエネルギアキュムレータ26の充電状態SOCがその最大値に達したときに、エネルギアキュムレータ26が完全にまたはほぼ完全に充電された場合である。次いで、有利な形式で使用され得る限り、補助消費器110のスイッチオンを行う可能性が存在する。例えば、可能な補助消費器110のスイッチオンの枠内で、通常の12ボルト車両バッテリ28の充電を行うことができ、さらに妥当化機能およびテスト機能のためのアクチュエータ制御を実施することができる。この第3のアクション、補助消費器110のスイッチオンによって、燃料電池システム22の遅延段階がさらに延長され得る。
別の操作位置は、バイパスを介したエアシステムのアイドリング運転であるか、または、バイパスなしの燃料電池システム22のトポロジーにおいてどのバイパスも存在すべきでない場合、燃料電池スタック50によるエアシステムのアイドリング運転である。
ネットワーク化されたデータ交換92の枠内で、前記2つの学習機能90または112で、ナビゲーションシステムのナビゲーションデータまたはネットワーク化された車両のナビゲーションデータ(車両対車両、車両対インフラストラクチャー)が相応に詳細に説明され、かつさらに最適化され得る。例えば、所定のアイドリングストップ段階、例えば明確な渋滞状況は、既に先見的にアイドリングストップ過程を減少させるための運転方式に取り入れられる。同様に、ナビゲーションシステムのナビゲーションデータの枠内に存在する、設定された走行目標が考慮され得る。目標に到達すると、燃料電池システム22またはサブシステム30空気供給は完全に停止されてよい。これに対して、走行目標にまだ到達していない場合、燃料電池システム22および/またはサブシステム30空気供給の遅延段階はやや引き延ばされる。移動式の燃料電池システム22および少なくとも1つの代替的なエネルギアキュムレータ26を備えた車両10のための運転方式の算出の際に、例えば周囲温度、空気湿度等の別の入力パラメータを考慮することができる。さらに、車両10が「配達モード」94で運転される場合のために、低い外気温度において燃料電池システム22またはサブシステム30のアイドリング中に発生したアイドリング出力の一部を、快適機能の枠内で車室空間を加熱するために使用できるということを指摘しておく。
これらの機能は選択的に、車両10の外からでもサーバー上で実施することができ、相応のインターフェース車両対インフラストラクチャーを介して、アクチュエータ制御およびセンサ値だけが交換され得る。
本発明は、ここに記載した実施例および前記態様だけに限定されるものではない。むしろ、請求項に記載された範囲内で、当業者の取り扱いの範囲内にある多くの変化形が可能である。
10 車両
12 ドライブトレイン
14 伝動装置
16 電気機械
18 車軸
20 インバータ
22 燃料電池システム
26 代替的なエネルギアキュムレータ
28 12ボルト車両バッテリ
30 サブシステム
32 バイパスフラップ
34 圧力制御フラップ
36 遮断弁
40 質量流量センサ
42 圧縮器
44 圧縮器駆動装置
46 中間冷却器
50 燃料電池スタック
52 冷却循環路
54 プラス極
56 マイナス極
58 低電圧コンバータ
62 符号
64 燃料電池コンバータ
80 コントロールユニット
82 第1のモジュール
84 第2のモジュール
86 ポジション、車両状態「オフ」
88 ポジション、車両状態「オン」
90 第1の学習機能
92 ネットワーク化されたデータ交換
94 配達モード
98 標準停止ルーチン
100 遅延延長
102 遅延延長
104 充電状態問い合わせ
106 遅延
108 ブリードダウンアクション
110 追加的な消費器、補助消費器
112 第2の学習機能
114 ストップ段階算出
SOC 充電状態

Claims (18)

  1. 車両(10)内に配置された燃料電池システム(22)および該燃料電池システム(22)の少なくとも1つのサブシステム(30)を運転するための方法であって、この場合、前記車両(10)のドライブトレイン(12)のためのエネルギを、前記燃料電池システム(22)からも、また代替的なエネルギアキュムレータ(26)からも引き出すことができる方法において、
    a)前記車両(10)の停止段階および/またはストップ段階の回数および継続時間を、第1の車両状態(86)または第2の車両状態(88)で車両状態特有の学習機能(90,112)を用いて、所定の時間間隔で算出する方法ステップと、
    b)前記燃料電池システム(22)の運転パラメータおよび前記燃料電池システム(22)の少なくとも1つの前記サブシステム(30)の運転パラメータを、前記車両(10)の停止段階および/またはストップ段階の算出された回数および継続時間に依存して調節する方法ステップと、
    を有している、燃料電池システムを運転するための方法。
  2. 前記方法ステップa)およびb)に追加して、前記代替的なエネルギアキュムレータ(26)の充電状態範囲(SOC=充電の状態)の適合(96)を実施することを特徴とする、請求項1記載の方法。
  3. 前記代替的なエネルギアキュムレータ(26)の充電状態範囲の適合が、最小−最大−限界の適合を含み、かつ/または充電状態の開ループ制御/閉ループ制御の適合を含んでいることを特徴とする、請求項2記載の方法。
  4. 前記第1の車両状態(86)に割り当てられた第1の学習機能(90)で、前記車両(10)の運転形式を、再始動までの個別走行間の前記車両の(10)の停止段階および/またはストップ段階に関して実施し、このために、コントロールユニット(80)の内部タイマ、ネットワーク化されたデータ交換(92)、局所的なEEPROMでのデータ記憶、および前記運転形式の評価を、数時間および/または数日および/またはより長い期間にわたって実施することを特徴とする、請求項1記載の方法。
  5. 前記第2の車両状態(88)に割り当てられた第2の学習機能(112)で、発生したアイドリングストップ段階に関する、停止されていない車両(10)における少なくとも1回の走行サイクル中の前記車両(10)の運転形式を算出することを特徴とする、請求項1記載の方法。
  6. 前記第1の学習機能(90)および/または前記第2の学習機能(112)が前記車両(10)の実際の走行ルートを考慮することを特徴とする、請求項1から5までのいずれか1項記載の方法。
  7. 前記第1の学習機能(90)および/または前記第2の学習機能(112)が、周囲温度および別の運転パラメータ、例えば車載電源網の実際の消費、周囲空気の湿気、バッテリの劣化、燃料電池スタック(50)の劣化、車両空調の状態を考慮することを特徴とする、請求項1から6までのいずれか1項記載の方法。
  8. 所定の時間間隔で算出された前記停止段階の回数が第1の閾値を上回り、前記停止段階の平均的な継続時間が第2の閾値を下回った場合のために、前記燃料電池システム(22)の第1または第2の運転状態を設定することを特徴とする、請求項1記載の方法。
  9. 前記燃料電池システム(22)の前記第1の運転状態が、前記燃料電池システム(22)の引き延ばされた遮断を含んでいて、この引き延ばされた遮断内で前記燃料電池システム(22)がアイドリングで運転され、発生したエネルギが前記代替的なエネルギアキュムレータ(26)内に蓄えられ、かつ/または追加的な消費器(110)に伝送されることを特徴とする、請求項8記載の方法。
  10. 所定の時間間隔で算出された前記停止段階の回数が第3の閾値を上回り、前記停止段階の平均的な継続時間が第4の閾値を下回った場合のために、前記燃料電池システム(22)の第2または第3の運転状態を設定することを特徴とする、請求項1記載の方法。
  11. 前記燃料電池システム(22)の前記第2の運転状態が、最小負荷および最小回転数における前記燃料電池システム(22)の前記サブシステム(30)空気供給の運転を含んでいることを特徴とする、請求項8または10記載の方法。
  12. 前記燃料電池システム(22)の前記第2の運転状態が、開放されたバイパスフラップ(32)による、前記燃料電池システム(22)の前記燃料電池スタック(50)に沿った空気質量流量のガイドを含むことを特徴とする、請求項10または11記載の方法。
  13. 前記代替的なエネルギアキュムレータ(26)のSOCがその最大値に達した場合のために、前記燃料電池システム(22)の第3の運転状態で追加的な消費器(110)のスイッチオンを行うことを特徴とする、請求項10記載の方法。
  14. コンピュータプログラムであって、該コンピュータプログラムがプログラミング可能なコンピュータ装置で実行されると、請求項1から11までのいずれか1項記載の方法を実施する、コンピュータプログラム。
  15. 車両(10)内に配置された燃料電池システム(22)を運転するためのシステムであって、前記車両(10)のドライブトレイン(12)のためのエネルギを、前記燃料電池システム(22)から、または前記代替的なエネルギアキュムレータ(26)から引き出すことができる形式のものにおいて、
    第1の学習機能(90)を実行するための第1のモジュール(82)と、第2の学習機能(112)を実行するための第2のモジュール(84)とを有しており、前記第1および第2の学習機能で、再始動するまでの個別走行間の停止時間/休止時間に関する前記車両(10)の運転形式、または発生したアイドリングストップ段階に関する1回の走行サイクル中の前記車両(10)の運転形式が算出され、
    この場合、前記燃料電池システム(22)が少なくとも1つのサブシステム(30)空気供給を含んでいて、前記サブシステム(30)空気供給で、該サブシステム(30)空気供給の最小負荷時に発生する空気質量流量を燃料電池スタック(50)に沿ってガイドするために、最小負荷下の非常に低い圧力による空気供給のために圧力制御フラップ(34)およびバイパスフラップ(32)が完全に開放されていることを特徴とする、燃料電池システム(22)を運転するためのシステム。
  16. 前記燃料電池スタック(50)の前に遮断弁(36)が配置されていて、該遮断弁(36)の開放圧力が、前記サブシステム(30)空気供給による最小の空気圧縮によって生ぜしめられる最小圧力をやや上回っていることを特徴とする、請求項15記載の燃料電池システム(22)を運転するためのシステム。
  17. ナビゲーションシステムに接続されており、該ナビゲーションシステムを介して、所定の走行目標およびこの走行目標に対する残りの走行距離が確定されている、請求項15および16記載のシステム。
  18. 請求項15から17までのいずれか1項記載のシステムを有する車両(10)において、前記代替的なエネルギアキュムレータ(26)が単数または複数の高電圧バッテリおよび/またはスーパーコンデンサを含んでいる、車両(10)。
JP2019559049A 2017-05-04 2018-03-14 燃料電池システムを運転するための方法およびシステム Active JP6986093B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017207477.9A DE102017207477A1 (de) 2017-05-04 2017-05-04 Verfahren und System zum Betrieb eines Brennstoffzellensystems
DE102017207477.9 2017-05-04
PCT/EP2018/056355 WO2018202348A1 (de) 2017-05-04 2018-03-14 Verfahren und system zum betrieb eines brennstoffzellensystems

Publications (2)

Publication Number Publication Date
JP2020518957A true JP2020518957A (ja) 2020-06-25
JP6986093B2 JP6986093B2 (ja) 2021-12-22

Family

ID=61655794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019559049A Active JP6986093B2 (ja) 2017-05-04 2018-03-14 燃料電池システムを運転するための方法およびシステム

Country Status (7)

Country Link
US (1) US11254237B2 (ja)
EP (1) EP3619076B1 (ja)
JP (1) JP6986093B2 (ja)
KR (1) KR102479319B1 (ja)
CN (1) CN110621534B (ja)
DE (1) DE102017207477A1 (ja)
WO (1) WO2018202348A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112757921A (zh) * 2020-12-24 2021-05-07 北京理工大学 一种基于锂电池寿命预测的车用混合储能系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019200949A1 (de) 2019-01-25 2020-07-30 Robert Bosch Gmbh Verfahren und Schaltungsanordnung zum Einstellen einer Betriebsstrategie für ein Brennstoffzellensystem
DE102020200249A1 (de) * 2020-01-10 2021-07-15 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines Brennstoffzellensystems
CN111332157A (zh) * 2020-03-31 2020-06-26 武汉格罗夫新能源汽车研究院有限公司 一种氢燃料电池车辆双动力分配单元动力系统
DE102020215991A1 (de) 2020-12-16 2022-06-23 Robert Bosch Gesellschaft mit beschränkter Haftung Anschlussblock
CN112757916B (zh) * 2020-12-31 2023-07-18 武汉格罗夫氢能汽车有限公司 一种氢燃料电池汽车多能源动力系统能量平衡的控制方法
DE102021205862A1 (de) * 2021-06-10 2022-12-15 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines elektromotorisch angetriebenen, luftgelagerten Luftverdichters sowie Steuergerät
DE102021004308A1 (de) 2021-08-23 2023-02-23 Daimler Truck AG Verfahren zur Planung einer Fahrzeugnutzung eines Fahrzeugs
DE102022200038A1 (de) 2022-01-05 2023-07-06 Robert Bosch Gesellschaft mit beschränkter Haftung Anschlussblock
DE102022202518A1 (de) 2022-03-14 2023-09-14 Psa Automobiles Sa Verfahren zum Betreiben eines Brennstoffzellen-Elektrofahrzeugs und Brennstoffzellen-Elektrofahrzeug
WO2024017463A1 (en) * 2022-07-19 2024-01-25 Volvo Truck Corporation Controlling freeze protection for a fuel cell vehicle
EP4420921A1 (en) * 2023-02-21 2024-08-28 Volvo Truck Corporation A computer-implemented method for controlling a power system of a vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093689B2 (ja) * 2006-11-06 2012-12-12 トヨタ自動車株式会社 燃料電池システム
WO2014017496A1 (ja) * 2012-07-25 2014-01-30 日産自動車株式会社 燃料電池システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095107A (ja) 1999-09-21 2001-04-06 Yamaha Motor Co Ltd ハイブリッド駆動式移動体の電源制御方法
US6794844B2 (en) * 2001-08-31 2004-09-21 Visteon Global Technologies, Inc. Method and system for fuel cell control
DE112010005520B4 (de) * 2010-04-27 2017-03-23 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem mit einer brennstoffzelle, einem betriebs-controller und einem klimatisierungsmechanismus
JP5647079B2 (ja) * 2011-08-03 2014-12-24 本田技研工業株式会社 燃料電池システム
DE102012203219A1 (de) * 2012-03-01 2013-09-05 Robert Bosch Gmbh Verfahren für den Betrieb eines Antriebssystems
KR101371463B1 (ko) * 2012-09-06 2014-03-24 기아자동차주식회사 하이브리드 자동차의 배터리 충전 제어 방법 및 시스템

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093689B2 (ja) * 2006-11-06 2012-12-12 トヨタ自動車株式会社 燃料電池システム
WO2014017496A1 (ja) * 2012-07-25 2014-01-30 日産自動車株式会社 燃料電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112757921A (zh) * 2020-12-24 2021-05-07 北京理工大学 一种基于锂电池寿命预测的车用混合储能系统

Also Published As

Publication number Publication date
CN110621534A (zh) 2019-12-27
DE102017207477A1 (de) 2018-11-08
US11254237B2 (en) 2022-02-22
JP6986093B2 (ja) 2021-12-22
US20210162885A1 (en) 2021-06-03
KR102479319B1 (ko) 2022-12-21
CN110621534B (zh) 2023-05-05
KR20200003850A (ko) 2020-01-10
EP3619076B1 (de) 2023-06-21
WO2018202348A1 (de) 2018-11-08
EP3619076A1 (de) 2020-03-11

Similar Documents

Publication Publication Date Title
JP6986093B2 (ja) 燃料電池システムを運転するための方法およびシステム
CN102640339B (zh) 用于运行车辆中的燃料电池系统的方法
CN110040038B (zh) 一种氢-电混合燃料电池客车能量管理控制方法及系统
CN102487145B (zh) 控制燃料电池混合系统的操作的系统和方法
KR101550976B1 (ko) 연료 전지 차량의 공기 공급 제어 방법
US9768457B2 (en) Driving control method and system of fuel cell system
US9358900B2 (en) Stop method of vehicle electrical power system
KR101033900B1 (ko) 연료전지 수퍼캡 직결형 하이브리드 차량의 동력분배장치 및 방법
KR101812849B1 (ko) 연료 전지 시스템, 연료 전지 탑재 차량, 및 연소 전지 시스템의 제어 방법
JP2022519999A (ja) 燃料電池システムのための動作ストラテジを設定する方法および回路アセンブリ
KR101068921B1 (ko) 이동체
KR20150071046A (ko) 연료 전지 시스템 및 그 운전 제어 방법
US9912025B2 (en) Usage of regenerative brake power for system restart in start-stop operation of fuel cell hybrid vehicles
JP2007149450A (ja) 燃料電池システム、並びに移動体及びその始動方法
US20110053015A1 (en) Control Method for a Fuel Cell System and Fuel Cell System
Wei et al. Design and energy efficiency analysis of a pure fuel cell vehicle for Shell eco racer
JP7352424B2 (ja) 車両の電源システム
JP4478707B2 (ja) 燃料電池車両
KR101261927B1 (ko) 연료전지의 재시동 제어 방법
Montero et al. Fuel cell and power control for a hybrid vehicle. Experimental results
JP2007151346A (ja) 移動体
JP2009044835A (ja) 燃料電池車両
JP4958847B2 (ja) 燃料電池車両
JP6575873B2 (ja) 燃料電池システム
JP2021052478A (ja) 車両の電源システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211126

R150 Certificate of patent or registration of utility model

Ref document number: 6986093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150