WO2014017473A1 - 保護膜形成層、保護膜形成用シート及び半導体装置の製造方法 - Google Patents

保護膜形成層、保護膜形成用シート及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2014017473A1
WO2014017473A1 PCT/JP2013/069888 JP2013069888W WO2014017473A1 WO 2014017473 A1 WO2014017473 A1 WO 2014017473A1 JP 2013069888 W JP2013069888 W JP 2013069888W WO 2014017473 A1 WO2014017473 A1 WO 2014017473A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
forming layer
film forming
coupling agent
mass
Prior art date
Application number
PCT/JP2013/069888
Other languages
English (en)
French (fr)
Inventor
高野 健
祐一郎 吾妻
市川 功
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2014526931A priority Critical patent/JP6038919B2/ja
Publication of WO2014017473A1 publication Critical patent/WO2014017473A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/068Copolymers with monomers not covered by C09D133/06 containing glycidyl groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a protective film forming layer capable of forming a protective film on a semiconductor wafer or a semiconductor chip and capable of improving the manufacturing efficiency of the semiconductor chip, and a protective film forming sheet having the protective film forming layer.
  • the present invention relates to a protective film forming sheet used for manufacturing a semiconductor chip mounted by a so-called face-down method.
  • the present invention also relates to a method for manufacturing a semiconductor device using the protective film forming layer or the protective film forming sheet.
  • chip a semiconductor chip having electrodes such as bumps on a circuit surface
  • the electrodes are bonded to a substrate.
  • the surface (chip back surface) opposite to the circuit surface of the chip may be exposed.
  • the exposed chip back surface may be protected by an organic film.
  • a chip having a protective film made of an organic film is obtained by applying a liquid resin to the back surface of a wafer by spin coating, drying and curing, and cutting the protective film together with the wafer.
  • the thickness accuracy of the protective film formed in this way is not sufficient, the product yield may be lowered.
  • a protective film-forming sheet for chips having a support sheet and a protective film-forming layer formed on the support sheet and comprising a heat or energy ray-curable component and a binder polymer component is disclosed.
  • Patent Document 1 a protective film-forming sheet for chips having a support sheet and a protective film-forming layer formed on the support sheet and comprising a heat or energy ray-curable component and a binder polymer component is disclosed.
  • a semiconductor device is required to have high reliability in a severe hot and humid environment.
  • a surface mounting method (reflow) is performed in which the entire semiconductor device is exposed to a high temperature equal to or higher than the solder melting point.
  • the mounting temperature has increased to about 260 ° C. due to the shift to lead-free solder. For this reason, the stress generated inside the semiconductor device is larger than before, and there is an increased possibility of causing problems such as peeling at the interface between the protective film and the chip.
  • a silane coupling agent is used to improve the adhesion between the chip and the protective film, and the peeling at the interface between the protective film and the chip is suppressed.
  • the protective film forming sheet is used after being stored for a certain period of time, especially when the protective film is formed on the chip and then subjected to hot and humid conditions, the protective film and the chip In some cases, the adhesive strength between the films decreases, or a void occurs between the protective film and the chip.
  • An object of the present invention is to provide a protective film-forming layer having excellent adhesive strength with a chip even after being subjected to severe heat and humidity conditions and a reflow process after being stored for a certain period of time, a protective film-forming sheet having the protective film-forming layer, and the A method of manufacturing a semiconductor device using a sheet is provided.
  • the present inventors have intensively studied to solve the above problems. As a result, it was found that the above problems can be solved by using a highly reactive oligomer type silane coupling agent together with a low reactivity monomer type silane coupling agent as a silane coupling agent, and the present invention was completed. It came to do.
  • the gist of the present invention is as follows.
  • Binder polymer component (A), thermosetting component (B), inorganic filler (C), alkoxy group and reactive functional group other than alkoxy group, molecular weight of 300 or more, alkoxy equivalent of 13 mmol / g Protection comprising a larger silane coupling agent (D) and a silane coupling agent (E) having an alkoxy group and a reactive functional group other than an alkoxy group, having a molecular weight of 300 or less and an alkoxy equivalent of 13 mmol / g or less Film forming layer.
  • the binder polymer component (A) is an acrylic polymer, and the monomer constituting the acrylic polymer does not include a monomer having an epoxy group, or the total mass of the monomers constituting the acrylic polymer is epoxy.
  • the content of the inorganic filler (C) is 1 to 80 parts by mass with respect to 100 parts by mass of the total solid content constituting the protective film forming layer.
  • Protective film forming layer is 1 to 80 parts by mass with respect to 100 parts by mass of the total solid content constituting the protective film forming layer.
  • a protective film-forming sheet obtained by forming the protective film-forming layer according to any one of [1] to [5] on a support sheet.
  • a method for manufacturing a semiconductor device comprising a step of attaching a protective film forming layer of the protective film forming sheet according to [6] to a semiconductor wafer to obtain a semiconductor chip having the protective film.
  • a method for manufacturing a semiconductor device further comprising the following steps (1) to (3), wherein steps (1) to (3) are performed in an arbitrary order; Step (1): peeling off the protective film-forming layer or protective film according to any one of [1] to [5] and the support sheet; Step (2): The protective film forming layer according to any one of [1] to [5] is cured to obtain a protective film. Step (3): dicing the semiconductor wafer and the protective film forming layer or protective film according to any one of [1] to [5].
  • the protective film forming layer having excellent adhesion to the chip when subjected to severe heat and humidity conditions and a reflow process even after being stored for a certain period of time, and the protective film forming sheet having the protective film forming layer And the manufacturing method of a semiconductor device using the same can be provided. Moreover, according to the protective film formation layer, a highly reliable semiconductor device can be obtained.
  • the protective film forming layer has a reactive functional group other than the binder polymer component (A), thermosetting component (B), inorganic filler (C), alkoxy group and alkoxy group, has a molecular weight of 300 or more and an alkoxy equivalent.
  • Silane coupling agent (E) having a silane coupling agent (D) greater than 13 mmol / g and an alkoxy group and a reactive functional group other than an alkoxy group, having a molecular weight of 300 or less and an alkoxy equivalent of 13 mmol / g or less including.
  • Binder polymer component The binder polymer component (A) is used for imparting sufficient adhesion and film forming property (sheet forming property) to the protective film forming layer.
  • the binder polymer component (A) conventionally known acrylic polymers, polyester resins, urethane resins, acrylic urethane resins, phenoxy resins, silicone resins, rubber polymers, and the like can be used.
  • the weight average molecular weight (Mw) of the binder polymer component (A) is preferably 10,000 to 2,000,000, more preferably 100,000 to 1,200,000. If the weight average molecular weight of the binder polymer component (A) is too low, the peeling force between the protective film-forming layer and the support sheet described later increases, and transfer failure of the protective film-forming layer may occur. The adhesiveness of the layer may be reduced, and transfer to a chip or the like may not be possible, or the protective film may be peeled off from the chip or the like after transfer.
  • the glass transition temperature (Tg) of the acrylic polymer is preferably in the range of ⁇ 60 to 50 ° C., more preferably ⁇ 50 to 40 ° C., and particularly preferably ⁇ 40 to 30 ° C. If the glass transition temperature of the acrylic polymer is too low, the peeling force between the protective film-forming layer and the support sheet may increase, resulting in transfer failure of the protective film-forming layer, and if it is too high, the adhesion of the protective film-forming layer will be reduced. In some cases, the film cannot be transferred to the chip or the like, or the protective film may be peeled off from the chip after transfer.
  • the monomer constituting the acrylic polymer in the present invention includes at least a (meth) acrylic acid ester or a derivative thereof.
  • (meth) acrylic acid esters or derivatives thereof include (meth) acrylic acid alkyl esters having an alkyl group having 1 to 18 carbon atoms, (meth) acrylic acid esters having a cyclic skeleton, and (meth) acrylic acids having a hydroxyl group.
  • Examples of the (meth) acrylic acid alkyl ester having an alkyl group having 1 to 18 carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, Pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, (meth) acrylic acid Examples include decyl, lauryl (meth) acrylate, tetradecyl (meth) acrylate, octadecyl (meth) acrylate, and the like.
  • Examples of (meth) acrylic acid ester having a cyclic skeleton include (meth) acrylic acid cycloalkyl ester, (meth) acrylic acid benzyl ester, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl ( Examples thereof include (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, and imide (meth) acrylate.
  • Examples of the (meth) acrylic acid ester having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate and the like.
  • Examples of the (meth) acrylic acid ester having an epoxy group include glycidyl (meth) acrylate.
  • Examples of the (meth) acrylic acid ester having an amino group include monoethylamino (meth) acrylate and diethylamino (meth) acrylate.
  • Examples of the (meth) acrylic acid ester having a carboxyl group include 2- (meth) acryloyloxyethyl phthalate and 2- (meth) acryloyloxypropyl phthalate.
  • Acrylic polymers include monomers having a carboxyl group other than (meth) acrylic acid esters such as (meth) acrylic acid and itaconic acid, (meth) acrylic acid such as vinyl alcohol and N-methylol (meth) acrylamide. Monomers having a hydroxyl group other than esters, (meth) acrylamide, (meth) acrylonitrile, vinyl acetate, styrene and the like may be copolymerized. When an acrylic polymer containing a monomer having a hydroxyl group is used, the acrylic polymer can be easily cross-linked by using an organic polyvalent isocyanate compound or the like as a cross-linking agent (K) to be described later. The cohesiveness of the previous protective film forming layer can be controlled.
  • K cross-linking agent
  • the mass ratio of the monomer having an epoxy group in the total mass of the monomers constituting the acrylic polymer is It is preferable to limit it low. This tends to increase the adhesive strength between the protective film and the chip. The reason is presumed as follows. When the mass ratio of the monomer having an epoxy group is low in the total mass of monomers constituting the acrylic polymer, the compatibility between the epoxy resin and the acrylic polymer is lowered, and A phase separation structure having a main component is formed.
  • the structure mainly composed of acrylic polymer plays a role in buffering distortion in the protective film, and local peeling of the adhesive interface due to deformation of the protective film even after the protective film has undergone a thermal history. It is thought that this is difficult to occur.
  • the blending amount of the monomer having an epoxy group in the total mass of the monomer constituting the acrylic polymer the monomer constituting the acrylic polymer does not include the monomer having an epoxy group, or the acrylic polymer It is preferable that the mass ratio of the monomer having an epoxy group is more than 0% by mass and 10% by mass or less in the total mass of the monomers constituting the epoxy group.
  • the mass ratio of the monomer having an epoxy group exceeds 0% by mass and is 7% by mass or less in the total mass of the monomers constituting the acrylic polymer.
  • the norbornene monomer etc. which have an epoxy group other than the glycidyl (meth) acrylate etc. which were mentioned above, for example are mentioned.
  • thermoplastic resin other than the acrylic polymer may be blended as the binder polymer component (A).
  • the thermoplastic resin other than the acrylic polymer preferably has a weight average molecular weight of 1,000 to 100,000, more preferably 3,000 to 80,000.
  • the glass transition temperature of the thermoplastic resin other than the acrylic polymer is preferably -30 to 120 ° C, more preferably -20 to 120 ° C.
  • thermoplastic resins other than acrylic polymers include polyester resins; urethane resins; acrylic urethane resins; phenoxy resins; silicone resins; rubber-based polymers such as polybutene and polybutadiene; Thermoplastic resins other than these acrylic polymers can be used alone or in combination of two or more.
  • thermoplastic resin other than these acrylic polymers it may be used in combination with the acrylic polymer, or the acrylic polymer may not be blended.
  • the protective film forming layer may follow the transfer surface of the protective film forming layer, and an effect that generation of voids or the like can be suppressed may be obtained.
  • An acrylic polymer or a phenoxy resin containing a monomer having an epoxy group as a monomer constituting the polymer is included in the concept of the epoxy resin described later in terms of words.
  • such an acrylic polymer or a phenoxy resin is used. Is not contained in the epoxy resin, but is contained in the binder polymer component (A).
  • thermosetting component (B) a thermosetting resin and a thermosetting agent are used.
  • thermosetting resin for example, an epoxy resin is preferable.
  • epoxy resin a conventionally known epoxy resin can be used.
  • epoxy resins include polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, biphenyl type epoxy resins, and bisphenols.
  • epoxy compounds having two or more functional groups in the molecule such as A-type epoxy resin, bisphenol F-type epoxy resin, and phenylene skeleton-type epoxy resin. These can be used individually by 1 type or in combination of 2 or more types.
  • the thermosetting resin is preferably 1 to 1000 parts by weight, more preferably 10 to 500 parts by weight, and particularly preferably 20 to 200 parts by weight with respect to 100 parts by weight of the binder polymer component (A). included.
  • the content of the thermosetting resin is less than 1 part by mass, sufficient adhesiveness may not be obtained.
  • the content exceeds 1000 parts by mass the peeling force between the protective film forming layer and the support sheet increases, and the protective film is formed. Layer transfer failure may occur.
  • thermosetting agent functions as a curing agent for thermosetting resins, particularly epoxy resins.
  • a preferable thermosetting agent for the thermosetting resin made of an epoxy resin includes a compound having two or more functional groups capable of reacting with an epoxy group in one molecule.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxyl group, and an acid anhydride. Of these, phenolic hydroxyl groups, amino groups, acid anhydrides and the like are preferable, and phenolic hydroxyl groups and amino groups are more preferable.
  • thermosetting agents having phenolic hydroxyl groups include polyfunctional phenolic resins, biphenols, novolac phenolic resins, dicyclopentadiene phenolic resins, zylocic phenolic resins, and aralkylphenolic resins. Is mentioned.
  • a specific example of the thermosetting agent having an amino group is DICY (dicyandiamide). These can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the thermosetting agent is preferably 0.1 to 500 parts by mass and more preferably 1 to 200 parts by mass with respect to 100 parts by mass of the thermosetting resin. If the content of the thermosetting agent is small, the adhesiveness may not be obtained due to insufficient curing, and if it is excessive, the moisture absorption rate of the protective film forming layer may increase and the reliability of the semiconductor device may be reduced.
  • (C) Inorganic filler
  • the inorganic filler (C) is blended in the protective film forming layer, it is possible to adjust the thermal expansion coefficient in the cured protective film, and the heat of the protective film after curing with respect to the semiconductor chip.
  • the reliability of the semiconductor device can be improved by optimizing the expansion coefficient.
  • the inorganic filler (C) is exposed in the portion scraped off by the laser light, and the reflected light diffuses to exhibit a color close to white.
  • the inorganic filler include powders of silica, alumina, talc, calcium carbonate, titanium oxide, iron oxide, silicon carbide, boron nitride, and the like, beads formed by spheroidizing these, single crystal fibers, and glass fibers.
  • silica filler and alumina filler are preferable.
  • the said inorganic filler (C) can be used individually or in mixture of 2 or more types.
  • the range of the content of the inorganic filler (C) for obtaining the above-described effect more reliably is preferably 1 to 80 parts by mass with respect to 100 parts by mass of the total solid content constituting the protective film forming layer.
  • the amount is preferably 20 to 75 parts by mass, particularly preferably 40 to 70 parts by mass.
  • Silane coupling agent (D) Silane coupling agent having an alkoxy group and a reactive functional group other than an alkoxy group, having a molecular weight of 300 or more and an alkoxy equivalent of greater than 13 mmol / g.
  • the protective film forming layer of the present invention includes an alkoxy group and an alkoxy group.
  • Silane coupling agent (D) having a reactive functional group other than that and having a molecular weight of 300 or more and an alkoxy equivalent of greater than 13 mmol / g hereinafter simply referred to as “silane coupling agent (D)”) Is included).
  • the reactive functional group other than the alkoxy group in the silane coupling agent (D) is preferably one that reacts with the functional group of the binder polymer component (A), the thermosetting component (B), or the like.
  • Specific examples of reactive functional groups other than alkoxy groups include epoxy groups, amino groups, (meth) acryloyl groups, vinyl groups other than vinyl groups in (meth) acryloyl groups, and mercapto groups. Among these, an epoxy group is preferable.
  • the alkoxy equivalent represents the absolute number of alkoxy groups contained per unit weight of the compound and is the same in the present invention.
  • the high molecular weight silane coupling agent (D) is susceptible to hydrolysis reaction. Therefore, when the protective film forming layer is heated and cured, the silane coupling agent (D) efficiently and easily causes a chemical reaction with the surface of the adherend (semiconductor wafer, chip, etc.) and binds to the adherend surface. In addition, it is easy to have a dipolar interaction with the adherend surface. Therefore, even when the protective film forming layer is formed and used immediately without leaving a storage period, adhesion at the interface between the protective film forming layer and the adherend surface can be strengthened.
  • adherend state maintaining effect after heat and humidity is high.
  • silane coupling agent (D) examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and ⁇ - (methacrylopropyl).
  • a low molecular silane coupling agent having two or three alkoxy groups such as trimethoxysilane; and the like, which are products obtained by condensation of alkoxy groups by hydrolysis and dehydration condensation.
  • a low molecular silane coupling agent having two or three alkoxy groups and a low molecular silane coupling agent having four alkoxy groups are condensed by dehydration condensation.
  • the oligomer is a compound having a high reactivity of alkoxy groups and a sufficient number of organic functional groups.
  • a copolymer of 3- (2,3-epoxypropoxy) propylmethoxysiloxane and dimethoxysiloxane is preferred.
  • the oligomer which is a polymer is mentioned.
  • the content of the silane coupling agent (D) is usually 0.01 to 7.0 parts by mass with respect to 100 parts by mass of the total solid content constituting the protective film forming layer.
  • the amount is preferably 0.1 to 2.0 parts by mass.
  • the content of the silane coupling agent (D) is preferably 0.01 to 10 parts by mass, more preferably 0 with respect to 100 parts by mass (in terms of solid content) of the components (A) to (E). 1 to 4 parts by mass.
  • the silane coupling agent (D) causes a chemical reaction with the adherend surface during the heat curing of the protective film forming layer,
  • the coupling agent (D) can have a dipolar interaction with the adherend surface.
  • the protective film forming layer can exhibit excellent adhesion to the adherend.
  • the content of the silane coupling agent (D) exceeds the above range, the surface tension of the protective film forming layer is increased, and when the protective film forming layer is formed into a sheet, it causes repelling and is difficult to manufacture.
  • the protective film forming layer remains adhered to the back surface of the chip and cannot be peeled off from the support sheet, which may make processing difficult. That is, manufacturing and processing problems may occur.
  • the protective film-forming layer of the present invention has a silane compound (D ′) (hereinafter referred to simply as “silane compound”) having a molecular weight of 300 or more and an alkoxy equivalent of greater than 13 mmol / g and having no reactive functional group other than an alkoxy group. D ′) ”) may be included. Since the silane compound (D ′) does not have a reactive functional group, it does not react with the functional group of the binder polymer component (A), the thermosetting component (B), etc., but has an alkoxy group. It reacts with the alkoxy group, the surface of the adherend, and the surface of the inorganic filler (C) and participates in the curing of the protective film forming layer. Examples of the silane compound (D ′) include polymethoxysiloxane, polyethoxysiloxane, a copolymer of methoxysiloxane and dimethylsiloxane, and the like.
  • Silane coupling agent (E) Silane coupling agent having an alkoxy group and a reactive functional group other than an alkoxy group, a molecular weight of 300 or less and an alkoxy equivalent of 13 mmol / g or less.
  • the protective film forming layer of the present invention includes an alkoxy group and an alkoxy group.
  • Silane coupling agent (E) having a reactive functional group other than a group, having a molecular weight of 300 or less and an alkoxy equivalent of 13 mmol / g or less hereinafter, simply referred to as “silane coupling agent (E)”) Is included).
  • reactive functional group other than the alkoxy group in the silane coupling agent (E) those reactive with the functional group of the binder polymer component (A), the thermosetting component (B) and the like are preferable.
  • reactive functional groups other than alkoxy groups include epoxy groups, amino groups, (meth) acryloyl groups, vinyl groups other than vinyl groups in (meth) acryloyl groups, and mercapto groups.
  • an epoxy group is preferable.
  • the silane coupling agent (E) Since the silane coupling agent (E) has a molecular weight of 300 or less and an alkoxy equivalent of 13 mmol / g or less, the silane coupling agent (E) is less reactive than the silane coupling agent (D) and hardly undergoes a hydrolysis reaction. Therefore, the alkoxy group derived from the silane coupling agent (E) tends to remain in the protective film forming layer even after storage for a certain period. In addition, when a certain storage period is set after the formation of the protective film forming layer, some alkoxy groups derived from the silane coupling agent (E) are poorly reactive, but some undergo a condensation reaction between molecules, resulting in multimerization. To do.
  • the silane coupling agent (E) is easily bonded to the adherend surface, like the silane coupling agent (D), during the heat curing of the protective film forming layer after storage for a certain period of time. It becomes easier to have a dipolar interaction. Thereby, since the adhesion at the interface between the protective film forming layer and the adherend surface can be strengthened, the effect of maintaining the adhesive state after heat and humidity after storage for a certain period is high.
  • silane coupling agent (E) examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (methacrylopropyl) trimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -ureidopropyltriethoxysilane, N-6- (aminoethyl) - ⁇ -Aminopropylmethyldiethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, vinyltriacetoxysilane and the like.
  • the content of the silane coupling agent (E) is usually 0.01 to 7.0 parts by mass with respect to 100 parts by mass of the total solid content constituting the protective film-forming layer.
  • the amount is preferably 0.1 to 2.0 parts by mass.
  • the content of the silane coupling agent (E) is preferably 0.01 to 10 parts by mass, more preferably 0 with respect to 100 parts by mass (in terms of solid content) of the components (A) to (E). 1 to 4 parts by mass.
  • the content of the silane coupling agent (E) exceeds the above range, the surface tension of the protective film forming layer is increased, and when the protective film forming layer is formed into a sheet shape, it causes repelling and is difficult to manufacture. Sometimes. In addition, the protective film forming layer remains adhered to the back surface of the chip and cannot be peeled off from the support sheet, which may make processing difficult. That is, manufacturing and processing problems may occur.
  • the protective film-forming layer of the present invention has a silane compound (E ′) having a molecular weight of 300 or less and an alkoxy equivalent of 13 mmol / g or less and having no reactive functional group other than an alkoxy group (hereinafter simply referred to as “silane compound”). (E ′) ”may be included.). Since the silane compound (E ′) does not have a reactive functional group, it does not react with the functional group of the binder polymer component (A), the thermosetting component (B), etc., but has an alkoxy group. It reacts with the alkoxy group, the surface of the adherend, and the surface of the inorganic filler (C) and participates in the curing of the protective film forming layer.
  • the silane compound (E ′) for example, phenyltriethoxysilane, decyltriethoxysilane, or the like can be used.
  • silane coupling agent (D) is used without a certain storage period immediately after the production of the protective film forming layer.
  • the alkoxy group of the silane coupling agent (D) is replaced with other alkoxy groups or inorganic fillers (C ) And disappear due to the reaction with the surface of the adherend, and it becomes difficult to have a dipolar interaction with the surface of the adherend.
  • the adhesion at the interface cannot be strengthened, and the effect of maintaining the adhesion state after heat and humidity may be reduced.
  • the silane coupling agent (E) when used after a protective film forming layer is produced after a certain period of storage, the silane coupling agent (E) has a high effect of maintaining the adhesive state after heat and humidity, while the protective film forming layer is produced.
  • the silane coupling agent (E) When used immediately without a storage period, it is inherently inferior in reactivity and is not subject to hydrolysis reaction, so it is difficult to bind to the adherend surface, and it also has a dipolar interaction with the adherend surface. It is hard to have. As a result, the adhesion at the interface between the adhesive layer and the adherend surface cannot be strengthened, and the effect of maintaining the adhesive state after heat and humidity may be reduced.
  • the protective film-forming layer of the present invention contains both the silane coupling agent (D) and the silane coupling agent (E), these compensate for each other's disadvantages of maintaining the adhesive state after heat and humidity before and after the storage period. In both the storage period and the storage period, a high effect of maintaining the adhesive state after hot moisture is obtained. As a result, the protective film forming layer of the present invention is excellent in storage stability.
  • the ratio (d) / (e) between the content (d) of the silane coupling agent (D) and the content (e) of the silane coupling agent (E) is as follows.
  • the amount may be in the range, that is, usually from 0.0014 to 700, preferably from 0.05 to 20.
  • the other component protective film forming layer contains the components (A) to (E) as essential components, and may contain the following components in addition to the components (D ′) and (E ′).
  • silane coupling agent (F) Other silane coupling agent
  • other silanes besides the silane coupling agent (D) and the silane coupling agent (E) are used.
  • a coupling agent (F) may be used.
  • silane coupling agent (F) a compound having a group that reacts with a functional group of the binder polymer component (A), the thermosetting component (B), or the like is preferably used.
  • ⁇ -aminopropyltrimethoxysilane, N-6- (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxy Silane, imidazole silane, etc. are mentioned. These other silane compounds may be used alone or in combination of two or more.
  • a coloring agent protective film formation layer contains a coloring agent (G).
  • a coloring agent (G) By blending a colorant into the protective film forming layer, when a semiconductor device is incorporated in equipment, infrared rays generated from surrounding devices can be shielded, and malfunction of the semiconductor device due to them can be prevented. Visibility of characters when a product number or the like is printed on a protective film obtained by curing the protective film forming layer is improved. That is, in a semiconductor device or semiconductor chip on which a protective film is formed, the product number or the like is usually printed on the surface of the protective film by a laser marking method (a method in which the surface of the protective film is scraped off by laser light and printed).
  • the colorant (G) organic or inorganic pigments and dyes are used.
  • the dye any dye such as an acid dye, a reactive dye, a direct dye, a disperse dye, and a cationic dye can be used.
  • the pigment is not particularly limited, and can be appropriately selected from known pigments. Among these, black pigments are preferable from the viewpoint of electromagnetic wave and infrared shielding properties. Examples of the black pigment include carbon black, iron oxide, manganese dioxide, aniline black, activated carbon, and the like, but are not limited thereto. Carbon black is particularly preferable from the viewpoint of increasing the reliability of the semiconductor device.
  • the blending amount of the colorant (G) is preferably 0.1 to 35 parts by mass, more preferably 0.5 to 25 parts by mass, particularly preferably 100 parts by mass of the total solid content constituting the protective film forming layer. Is 1 to 15 parts by mass.
  • the curing accelerator (H) is used to adjust the curing rate of the protective film forming layer.
  • the curing accelerator (H) is preferably used particularly when the epoxy resin and the thermosetting agent are used in combination in the thermosetting component (B).
  • Preferred curing accelerators include tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole, 2-phenyl- Imidazoles such as 4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole; Organic phosphines such as tributylphosphine, diphenylphosphine and triphenylphosphine; And tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate and triphenylphosphinetetraphenylborate. These can be used individually by 1 type or in mixture of 2 or more types.
  • the curing accelerator (H) is contained in an amount of preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermosetting component (B).
  • the protective film-forming layer has excellent adhesive properties even when exposed to high temperatures and high humidity, and is exposed to severe reflow conditions. Even high reliability can be achieved. Further, if the content of the curing accelerator (H) is excessive, the curing accelerator having a high polarity moves to the adhesion interface side in the protective film forming layer under high temperature and high humidity, and segregates, so that the semiconductor device May reduce reliability.
  • the energy ray polymerizable compound protective film forming layer may contain an energy ray polymerizable compound.
  • the energy ray polymerizable compound (I) contains an energy ray polymerizable group and is polymerized and cured when irradiated with energy rays such as ultraviolet rays and electron beams.
  • Specific examples of the energy ray polymerizable compound (I) include trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, and 1,4.
  • acrylate compounds such as butylene glycol diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate oligomer, epoxy-modified acrylate, polyether acrylate and itaconic acid oligomer.
  • a compound has at least one polymerizable double bond in the molecule, and usually has a weight average molecular weight of about 100 to 30,000, preferably about 300 to 10,000.
  • the amount of the energy beam polymerizable compound (I) is not particularly limited, but it is preferably used in a ratio of about 1 to 50 parts by mass with respect to 100 parts by mass of the total solid content constituting the protective film forming layer.
  • the photopolymerization initiator protective film-forming layer contains the energy beam polymerizable compound (I) described above, in use, the energy beam polymerizable compound is irradiated by irradiating energy rays such as ultraviolet rays. Harden. At this time, by including the photopolymerization initiator (J) in the composition, the polymerization curing time and the amount of light irradiation can be reduced.
  • photopolymerization initiator (J) examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal.
  • a photoinitiator (J) can be used individually by 1 type or in combination of 2 or more types.
  • the blending ratio of the photopolymerization initiator (J) is preferably 0.1 to 10 parts by mass and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the energy beam polymerizable compound (I). . If the amount is less than 0.1 parts by mass, satisfactory transferability may not be obtained due to insufficient photopolymerization. If the amount exceeds 10 parts by mass, a residue that does not contribute to photopolymerization is generated, and the curability of the protective film forming layer is increased. May be insufficient.
  • a crosslinker In order to adjust the initial adhesive force and cohesive force of the crosslinker protective film forming layer, a crosslinker may be added.
  • the crosslinking agent (K) include organic polyvalent isocyanate compounds and organic polyvalent imine compounds.
  • organic polyvalent isocyanate compound examples include aromatic polyvalent isocyanate compounds, aliphatic polyvalent isocyanate compounds, alicyclic polyvalent isocyanate compounds, trimers of these organic polyvalent isocyanate compounds, and these organic polyvalent isocyanate compounds. And a terminal isocyanate urethane prepolymer obtained by reacting a polyol compound with a polyol compound.
  • organic polyvalent isocyanate compounds include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4,4′-diisocyanate, diphenylmethane -2,4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, dicyclohexylmethane-2,4'-diisocyanate, trimethylolpropane adduct tolylene diisocyanate and lysine Isocyanates.
  • organic polyvalent imine compound examples include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, tetramethylolmethane-tri - ⁇ -aziridinylpropionate and N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine can be mentioned.
  • the crosslinking agent (K) is usually 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the binder polymer component (A). Used.
  • additives may be blended in the general-purpose additive protective film forming layer as necessary.
  • additives include leveling agents, plasticizers, antistatic agents, antioxidants, ion scavengers, gettering agents, chain transfer agents, and the like.
  • the protective film forming layer comprising the above components is excellent in storage stability, and has adhesiveness (for example, pressure-sensitive adhesiveness and thermal adhesiveness) and heat curable properties.
  • adhesiveness for example, pressure-sensitive adhesiveness and thermal adhesiveness
  • the uncured protective film-forming layer can be pressed and attached to the adherend.
  • a protective film formation layer has heat adhesiveness, when pressing to a to-be-adhered body, a protective film formation layer can be heated and affixed.
  • the thermal adhesiveness in the present invention means that there is no pressure-sensitive adhesiveness at room temperature, but it is softened by heat and can adhere to an adherend.
  • the protective film forming layer has a function of temporarily holding various adherends (semiconductor wafers, chips, etc.) in an uncured state.
  • the protective film-forming layer of the present invention can provide a protective film with high impact resistance through heat curing, even after storage for a certain period of time, and in addition, balance between shear strength and peel strength. Excellent adhesiveness even under severe heat and humidity conditions.
  • the protective film forming layer may have a single layer structure, or may have a multilayer structure as long as one or more layers including the above components are arranged on the outermost layer in contact with the chip.
  • the protective film-forming layer of the present invention is obtained using a protective film-forming composition obtained by mixing each of the above components at an appropriate ratio.
  • each component may be diluted with a solvent in advance, or a solvent may be added during mixing. Moreover, you may dilute with a solvent at the time of use of the composition for protective film formation.
  • a solvent include ethyl acetate, methyl acetate, diethyl ether, dimethyl ether, acetone, methyl ethyl ketone, acetonitrile, hexane, cyclohexane, toluene, heptane and the like.
  • the thickness of the protective film forming layer is not particularly limited, but is preferably 3 to 300 ⁇ m, more preferably 5 to 250 ⁇ m, and particularly preferably 7 to 200 ⁇ m.
  • the maximum transmittance at a wavelength of 300 to 1200 nm which is a measure showing the transmittance of visible light and / or infrared rays and ultraviolet rays in the protective film forming layer, is preferably 20% or less, more preferably 0 to 15%. Further, it is more preferably more than 0% and not more than 10%, particularly preferably 0.001 to 8%.
  • the maximum transmittance of the protective film forming layer is preferably 20% or less, more preferably 0 to 15%. Further, it is more preferably more than 0% and not more than 10%, particularly preferably 0.001 to 8%.
  • the maximum transmittance of the protective film forming layer at a wavelength of 300 to 1200 nm can be adjusted by the colorant (G).
  • the maximum transmittance of the protective film forming layer was determined by using a UV-vis spectrum inspection apparatus (manufactured by Shimadzu Corporation), and the total light transmittance of the cured protective film forming layer (thickness 25 ⁇ m) at 300 to 1200 nm. The transmittance was measured, and the highest transmittance (maximum transmittance) was obtained.
  • a semiconductor chip made of silicon, gallium arsenide, or the like can be used as an adherend.
  • the protective film forming layer of the present invention can also be used as a protective film for a semiconductor assembly including a resin seal in which a semiconductor wafer or a semiconductor chip is embedded.
  • the protective film-forming sheet according to the present invention is formed by detachably forming the protective film-forming layer on a support sheet.
  • the shape of the protective film-forming sheet according to the present invention may take any shape such as a tape shape or a label shape.
  • the method for producing the protective film-forming sheet is not particularly limited, and the protective film-forming composition obtained by mixing each of the above components in an appropriate solvent in an appropriate solvent is applied and dried on the supporting sheet, and then the supporting sheet is formed.
  • This protective film forming layer There is a method of transferring the material onto a support sheet.
  • the support sheet for example, polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film, Polyurethane film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer film, polystyrene film, polycarbonate film, polyimide film, fluorine A film such as a resin film is used. These crosslinked films are also used. Furthermore, these laminated films may be sufficient. Moreover, the film which colored these can also be used.
  • the protective film-forming sheet of the present invention is affixed to various adherends, and in some cases, the adherend is subjected to required processing such as dicing on the protective film-forming sheet. Thereafter, the support film is peeled off while the protective film forming layer remains fixed to the adherend. That is, it is used in a process including a step of transferring the protective film forming layer from the support sheet to the adherend.
  • the surface tension of the surface in contact with the protective film forming layer of the support sheet is preferably 40 mN / m or less, more preferably 37 mN / m or less, and particularly preferably 35 mN / m or less.
  • the lower limit is usually about 25 mN / m.
  • Such a support sheet having a relatively low surface tension can be obtained by appropriately selecting the material, and can also be obtained by applying a release agent to the surface of the support sheet and performing a release treatment. .
  • alkyd, silicone, fluorine, unsaturated polyester, polyolefin, wax, and the like are used as the release agent used for the release treatment.
  • alkyd, silicone, and fluorine release agents are heat resistant. This is preferable.
  • the release agent is used without any solvent, or diluted or emulsified with a solvent, and then a gravure coater, Mayer bar coater, air knife coater.
  • the support sheet coated with a release agent may be applied at room temperature or under heating, or may be cured with an electron beam to form a release agent layer.
  • the surface tension of the support sheet may be adjusted by laminating films by wet lamination, dry lamination, hot melt lamination, melt extrusion lamination, coextrusion processing, or the like. That is, a film in which the surface tension of at least one surface is within a preferable range as the surface in contact with the protective film forming layer of the support sheet is changed so that the surface is in contact with the protective film forming layer. It is good also as a support sheet by manufacturing the laminated body laminated
  • the adhesive sheet which formed the releasable adhesive layer on the said film may be used as a support sheet.
  • a protective film formation layer is laminated
  • the re-peelable pressure-sensitive adhesive layer may be a weak-adhesive layer having an adhesive strength that can peel off the protective film-forming layer, or an energy-ray curable layer whose adhesive strength is reduced by energy beam irradiation. May be used.
  • the region where the protective film forming layer is laminated is preliminarily irradiated with energy rays to reduce adhesiveness, while other regions are irradiated with energy rays.
  • the adhesive strength may be kept high.
  • an energy beam shielding layer may be provided by printing or the like in a region corresponding to the other region of the support sheet, and the energy beam irradiation may be performed from the support sheet side. .
  • the re-peelable pressure-sensitive adhesive layer is made of various conventionally known pressure-sensitive adhesives (for example, rubber-based, acrylic-based, silicone-based, urethane-based, vinyl ether-based general-purpose pressure-sensitive adhesives, pressure-sensitive adhesives, energy ray curable type) Adhesive, thermal expansion component-containing adhesive, etc.).
  • pressure-sensitive adhesives for example, rubber-based, acrylic-based, silicone-based, urethane-based, vinyl ether-based general-purpose pressure-sensitive adhesives, pressure-sensitive adhesives, energy ray curable type
  • Adhesive, thermal expansion component-containing adhesive, etc. Adhesive, thermal expansion component-containing adhesive, etc.
  • the thickness of the support sheet is usually 10 to 500 ⁇ m, preferably 15 to 300 ⁇ m, particularly preferably 20 to 250 ⁇ m.
  • the thickness of the re-peeling pressure-sensitive adhesive layer is 3 to 50 ⁇ m in the support sheet.
  • a light peelable release film may be laminated on the upper surface of the protective film forming layer separately from the support sheet. Good.
  • an adhesive layer or an adhesive tape may be separately provided on the outer peripheral portion of the surface of the protective film forming layer (the surface in contact with the adherend) in order to fix other jigs such as a ring frame. .
  • the protective film forming layer of such a protective film forming sheet can be a protective film of an adherend.
  • the protective film forming layer is attached to the back surface of the semiconductor wafer for chip or the semiconductor chip of the face-down type, and has a function of protecting the semiconductor chip as an alternative to the sealing resin by being cured by an appropriate means.
  • the protective film has a function of reinforcing the wafer, so that damage to the wafer can be prevented.
  • the protective film forming layer of the present invention since the adhesiveness with the adherend is excellent even after a certain time has elapsed since the production of the protective film forming layer, the reliability of the semiconductor device is excellent.
  • the method for manufacturing a semiconductor device preferably includes a step of attaching a protective film forming layer of the protective film forming sheet to a semiconductor wafer to obtain a semiconductor chip having the protective film.
  • a protective film forming layer of a protective film forming sheet is attached to the back surface of a semiconductor wafer having a circuit formed on the front surface, and then a semiconductor chip having a protective film on the back surface is obtained.
  • the protective film is preferably a protective film for a semiconductor wafer or a semiconductor chip.
  • the method for manufacturing a semiconductor device according to the present invention preferably further includes the following steps (1) to (3), wherein the steps (1) to (3) are performed in an arbitrary order. Step (1): peeling off the protective film forming layer or protective film and the support sheet, Step (2): The protective film forming layer is cured to obtain a protective film. Step (3): dicing the semiconductor wafer and the protective film forming layer or the protective film.
  • the semiconductor wafer may be a silicon wafer or a compound semiconductor wafer such as gallium / arsenic. Formation of a circuit on the wafer surface can be performed by various methods including conventionally used methods such as an etching method and a lift-off method. Next, the opposite surface (back surface) of the circuit surface of the semiconductor wafer is ground.
  • the grinding method is not particularly limited, and grinding may be performed by a known means using a grinder or the like. At the time of back surface grinding, an adhesive sheet called a surface protection sheet is attached to the circuit surface in order to protect the circuit on the surface.
  • the circuit surface side (that is, the surface protection sheet side) of the wafer is fixed by a chuck table or the like, and the back surface side on which no circuit is formed is ground by a grinder.
  • the thickness of the wafer after grinding is not particularly limited, but is usually about 50 to 500 ⁇ m.
  • the crushed layer generated during back grinding is removed.
  • the crushed layer is removed by chemical etching, plasma etching, or the like.
  • steps (1) to (3) are performed in an arbitrary order. As an example, the case where it performs in order of process (1), (2), (3) is demonstrated.
  • the protective film forming layer of the protective film forming sheet is attached to the back surface of the semiconductor wafer having a circuit formed on the front surface.
  • the support sheet is peeled from the protective film forming layer to obtain a laminate of the semiconductor wafer and the protective film forming layer.
  • the protective film forming layer is thermally cured to form a protective film on the entire surface of the wafer.
  • the energy ray polymerizable compound (I) is blended in the protective film forming layer
  • the protective film forming layer can be cured by irradiation with energy rays. Or may be performed sequentially. Examples of the energy rays to be irradiated include ultraviolet rays (UV) and electron beams (EB), and preferably ultraviolet rays are used.
  • a protective film made of a cured resin is formed on the back surface of the wafer, and the strength is improved as compared with the case of the wafer alone, so that damage during handling of the thinned wafer can be reduced.
  • the thickness of the protective film is excellent compared to a coating method in which a coating solution for a resin film is directly applied to the back surface of a wafer or chip.
  • the laminated body of the semiconductor wafer and the protective film is diced for each circuit formed on the wafer surface. Dicing is performed so as to cut both the wafer and the protective film.
  • the wafer is diced by a conventional method using a dicing sheet. As a result, a semiconductor chip having a protective film on the back surface is obtained.
  • the diced chip is picked up by a general-purpose means such as a collet to obtain a semiconductor chip having a protective film on the back surface.
  • a protective film having high thickness uniformity can be easily formed on the back surface of the chip, and cracks after the dicing process and packaging are less likely to occur.
  • a semiconductor device can be manufactured by mounting a semiconductor chip on a predetermined base in a face-down manner. Further, a semiconductor device can be manufactured by adhering a semiconductor chip having a protective film on the back surface to another member (on the chip mounting portion) such as a die pad portion or another semiconductor chip.
  • the protective film forming sheet serves as a dicing sheet. be able to. That is, it can be used as a sheet for supporting the workpiece and the chip during the dicing process.
  • the work piece is attached to the inner peripheral portion of the protective film forming sheet via the protective film forming layer, and the outer peripheral portion of the protective film forming sheet is joined to another jig such as a ring frame.
  • the protective film forming sheet affixed to the workpiece is fixed to the apparatus, and dicing is performed.
  • the protective film-forming layer and protective film-forming sheet of the present invention can be used for protecting semiconductor compounds, glass, ceramics, metals, etc., in addition to the above-described usage methods.
  • the present invention will be described by way of examples, but the present invention is not limited to these examples.
  • seat for protective film formation obtained in the Example or the comparative example the sheet
  • the semiconductor chip with a protective film used for each evaluation was manufactured as follows.
  • the protective film side of the laminate obtained above is affixed to a dicing tape (Adwill D-686H manufactured by Lintec Corporation), and is evaluated by dicing to a size of 3 mm ⁇ 3 mm using a dicing apparatus (DFD651 manufactured by Disco Corporation). A semiconductor chip with a protective film was obtained.
  • the measurement stage of the bond tester (bond tester Series 4000 manufactured by Dage) was set to 25 ° C., and the chip side of the semiconductor chip with protective film was placed on the measurement stage.
  • the protective film is stressed by applying stress to the side of the protective film in a horizontal direction (shear direction) with respect to the interface at a speed of 200 ⁇ m / second.
  • the force (shear strength) (N) when the protective film of the semiconductor chip with film was broken was measured.
  • the semiconductor chip with the protective film taken out from the thermal shock apparatus was peeled off at the junction between the semiconductor chip and the protective film by a scanning ultrasonic flaw detector (Hy-Focus manufactured by Hitachi Construction Machinery Finetech) and cross-sectional observation. The case where a crack in the protective film was observed was judged as “bad”.
  • the above evaluation was performed on 25 semiconductor chips with a protective film, and the number of defects (number of defects) in which peeling of the joints or cracks in the protective film occurred was counted.
  • Binder polymer component (A1) An acrylic polymer obtained by copolymerizing 55 parts by mass of butyl acrylate, 10 parts by mass of methyl methacrylate, 20 parts by mass of glycidyl methacrylate, and 15 parts by mass of 2-hydroxyethyl acrylate (weight average molecular weight: 900,000, (Glass transition temperature: -28 ° C) (A2) Acrylic polymer obtained by copolymerizing 85 parts by mass of methyl methacrylate and 15 parts by mass of 2-hydroxyethyl acrylate (weight average molecular weight: 400,000, glass transition temperature: 6 ° C.) (B) Thermosetting component: (B1) Bisphenol A type epoxy resin (epoxy equivalent 180 to 200 g / eq) (B2) Dicyclopentadiene type epoxy resin (Epicron HP-7200HH, manufactured by Dainippon Ink &
  • Example 1 The above components were blended in the blending amounts shown in Table 1 to obtain a protective film forming composition.
  • the compounding quantity of each component in Table 1 shows the mass part of solid content conversion, and solid content means all components other than a solvent in this invention.
  • components D1 and D ′ were added to the protective film-forming composition by adding these mixtures, MKC silicate MSEP2 manufactured by Mitsubishi Chemical Corporation.
  • a protective film-forming composition having the composition shown in Table 1 was diluted with methyl ethyl ketone so that the solid content was 50% by weight, and a release-treated polyethylene terephthalate film (SP manufactured by Lintec Corporation) was used as a support sheet.
  • SP polyethylene terephthalate film
  • the coating film was dried and dried (drying condition: 100 ° C. in an oven for 3 minutes) to obtain a protective film forming layer formed on the support sheet. Thereafter, a protective film forming layer and a release-treated polyethylene terephthalate film (SP-PET 381031 manufactured by Lintec Co., Ltd.) as a release film were bonded together to obtain a protective film-forming sheet having a release film bonded thereto.
  • a protective film forming layer and a release-treated polyethylene terephthalate film SP-PET 381031 manufactured by Lintec Co., Ltd.
  • the protective film-forming layers (Comparative Examples 2 to 5) that do not contain the silane coupling agent (D) are inferior in shear strength and reliability evaluation before and after the acceleration treatment as compared with the examples. It is inferior to each evaluation before performing an acceleration process.
  • the protective film forming layers of Comparative Examples 2 to 5 cannot obtain excellent chip protection performance when used immediately after their production.
  • the protective film formation layer (comparative example 1) which does not contain a silane coupling agent (E) is inferior in the shear strength after performing an acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Dicing (AREA)

Abstract

 【課題】一定期間保管した後において厳しい熱湿条件及びリフロー工程を経た場合でも、チップとの接着強度に優れる保護膜形成層、該保護膜形成層を有する保護膜形成用シート及び該シートを用いた半導体装置の製造方法を提供すること。 【解決手段】本発明に係る保護膜形成層は、バインダーポリマー成分(A)、熱硬化性成分(B)、無機フィラー(C)、アルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以上でアルコキシ当量が13mmol/gより大きいシランカップリング剤(D)、並びにアルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以下でアルコキシ当量が13mmol/g以下であるシランカップリング剤(E)を含む。 

Description

保護膜形成層、保護膜形成用シート及び半導体装置の製造方法
 本発明は、半導体ウエハや半導体チップに保護膜を形成でき、かつ、半導体チップの製造効率の向上が可能な保護膜形成層、該保護膜形成層を有する保護膜形成用シートに関する。特にいわゆるフェースダウン(face down)方式で実装される半導体チップの製造に用いられる保護膜形成用シートに関する。また、本発明は該保護膜形成層や該保護膜形成用シートを用いた半導体装置の製造方法に関する。
 近年、いわゆるフェースダウン(face down)方式と呼ばれる実装法を用いた半導体装置の製造が行われている。フェースダウン方式においては、回路面上にバンプなどの電極を有する半導体チップ(以下、単に「チップ」ともいう。)が用いられ、該電極が基板と接合される。このため、チップの回路面とは反対側の面(チップ裏面)は剥き出しとなることがある。
 この剥き出しとなったチップ裏面は、有機膜により保護されることがある。従来、この有機膜からなる保護膜を有するチップは、液状の樹脂をスピンコート法によりウエハ裏面に塗布し、乾燥し、硬化してウエハとともに保護膜を切断して得られる。しかしながら、このようにして形成される保護膜の厚み精度は充分でないため、製品の歩留まりが低下することがあった。
 上記問題を解決するため、支持シートと、該支持シート上に形成された、熱またはエネルギー線硬化性成分とバインダーポリマー成分とからなる保護膜形成層を有するチップ用保護膜形成用シートが開示されている(特許文献1)。
 ところで、近年の半導体装置に対する要求物性は非常に厳しいものとなっている。例えば、半導体装置には厳しい熱湿環境下における高い信頼性が求められている。また電子部品の接続においては、半導体装置全体が半田融点以上の高温下にさらされる表面実装法(リフロー)が行われている。近年では鉛を含まない半田への移行により、実装温度は260℃程度まで上昇している。このため、半導体装置内部で発生する応力が従来よりも大きくなり、保護膜とチップとの界面における剥離等の不具合を生じる可能性が高まっている。
 そのため、通常、シランカップリング剤を用いてチップと保護膜との接着性を向上させ、保護膜とチップとの界面における剥離を抑制している。
特開2002-280329号公報
 しかし、シランカップリング剤を用いた場合であっても、保護膜形成用シートを一定期間保管後に使用した場合、特にチップに保護膜を形成した後に熱湿条件を経ると、保護膜とチップとの間の接着強度が低下したり、保護膜とチップとの間にボイドが発生したりするなどの不具合が発生することがあった。
 本発明の課題は、一定期間保管した後において厳しい熱湿条件及びリフロー工程を経た場合でも、チップとの接着強度に優れる保護膜形成層、該保護膜形成層を有する保護膜形成用シート及び該シートを用いた半導体装置の製造方法を提供することである。
 本発明者らは上記課題を解決すべく鋭意検討を行った。その結果、シランカップリング剤として、反応性の低いモノマータイプのシランカップリング剤とともに、反応性の高いオリゴマータイプのシランカップリング剤を併用することにより上記課題を解決できることを見出し、本発明を完成するに至った。
 即ち本発明の要旨は以下の通りである。
〔1〕バインダーポリマー成分(A)、熱硬化性成分(B)、無機フィラー(C)、アルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以上でアルコキシ当量が13mmol/gより大きいシランカップリング剤(D)、並びにアルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以下でアルコキシ当量が13mmol/g以下であるシランカップリング剤(E)を含む保護膜形成層。
〔2〕前記シランカップリング剤(D)および前記シランカップリング剤(E)のいずれか一方または両方におけるアルコキシ基以外の反応性官能基がエポキシ基である〔1〕に記載の保護膜形成層。
〔3〕バインダーポリマー成分(A)がアクリルポリマーであり、アクリルポリマーを構成する単量体にエポキシ基を有する単量体が含まれず、またはアクリルポリマーを構成する単量体の全質量中、エポキシ基を有する単量体の質量割合が0質量%を超え、10質量%以下であり、熱硬化性成分(B)がエポキシ樹脂を含有する〔1〕または〔2〕に記載の保護膜形成層。
〔4〕さらに着色剤(G)を含む〔1〕~〔3〕のいずれかに記載の保護膜形成層。
〔5〕無機フィラー(C)の含有量が、保護膜形成層を構成する全固形分100質量部に対して、1~80質量部である〔1〕~〔4〕のいずれかに記載の保護膜形成層。
〔6〕上記〔1〕~〔5〕のいずれかに記載の保護膜形成層を、支持シート上に形成してなる保護膜形成用シート。
〔7〕上記〔6〕に記載の保護膜形成用シートの保護膜形成層を半導体ウエハに貼付し、保護膜を有する半導体チップを得る工程を含む半導体装置の製造方法。
〔8〕以下の工程(1)~(3)をさらに含み、工程(1)~(3)を任意の順で行う半導体装置の製造方法;
 工程(1):〔1〕~〔5〕のいずれかに記載の保護膜形成層または保護膜と、支持シートとを剥離、
 工程(2):〔1〕~〔5〕のいずれかに記載の保護膜形成層を硬化して保護膜を得る、
 工程(3):半導体ウエハと、〔1〕~〔5〕のいずれかに記載の保護膜形成層または保護膜とをダイシング。
 本発明によれば、一定期間保管した後においても、厳しい熱湿条件およびリフロー工程を経た場合のチップとの接着性に優れた保護膜形成層、該保護膜形成層を有する保護膜形成用シートおよびこれを用いた半導体装置の製造方法を提供することができる。また、該保護膜形成層によれば、信頼性の高い半導体装置を得ることができる。
 以下、本発明の保護膜形成層、保護膜形成用シート及び半導体装置の製造方法の詳細を説明する。
[保護膜形成層]
 保護膜形成層は、バインダーポリマー成分(A)、熱硬化性成分(B)、無機フィラー(C)、アルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以上でアルコキシ当量が13mmol/gより大きいシランカップリング剤(D)、並びにアルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以下でアルコキシ当量が13mmol/g以下であるシランカップリング剤(E)を含む。
(A)バインダーポリマー成分
 保護膜形成層に十分な接着性および造膜性(シート形成性)を付与するためにバインダーポリマー成分(A)が用いられる。バインダーポリマー成分(A)としては、従来公知のアクリルポリマー、ポリエステル樹脂、ウレタン樹脂、アクリルウレタン樹脂、フェノキシ樹脂、シリコーン樹脂、ゴム系ポリマー等を用いることができる。
 バインダーポリマー成分(A)の重量平均分子量(Mw)は、1万~200万であることが好ましく、10万~120万であることがより好ましい。バインダーポリマー成分(A)の重量平均分子量が低過ぎると保護膜形成層と後述する支持シートとの剥離力が高くなり、保護膜形成層の転写不良が起こることがあり、高過ぎると保護膜形成層の接着性が低下し、チップ等に転写できなくなったり、あるいは転写後にチップ等から保護膜が剥離することがある。
 バインダーポリマー成分(A)として、アクリルポリマーが好ましく用いられる。アクリルポリマーのガラス転移温度(Tg)は、好ましくは-60~50℃、さらに好ましくは-50~40℃、特に好ましくは-40~30℃の範囲にある。アクリルポリマーのガラス転移温度が低過ぎると保護膜形成層と支持シートとの剥離力が大きくなって保護膜形成層の転写不良が起こることがあり、高過ぎると保護膜形成層の接着性が低下し、チップ等に転写できなくなったり、あるいは転写後にチップ等から保護膜が剥離したりすることがある。
 本発明におけるアクリルポリマーを構成する単量体には、少なくとも(メタ)アクリル酸エステルあるいはその誘導体が含まれる。
 (メタ)アクリル酸エステルあるいはその誘導体としては、アルキル基の炭素数が1~18である(メタ)アクリル酸アルキルエステル、環状骨格を有する(メタ)アクリル酸エステル、水酸基を有する(メタ)アクリル酸エステル、グリシジル基を有する(メタ)アクリル酸エステル、アミノ基を有する(メタ)アクリル酸エステル、カルボキシル基を有する(メタ)アクリル酸エステルが挙げられる。
 アルキル基の炭素数が1~18である(メタ)アクリル酸アルキルエステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸へプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸オクタデシル等が挙げられる。
 環状骨格を有する(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸シクロアルキルエステル、(メタ)アクリル酸ベンジルエステル、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレート等が挙げられる。
 水酸基を有する(メタ)アクリル酸エステルとしては、例えば2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
 エポキシ基を有する(メタ)アクリル酸エステルとしては、例えばグリシジル(メタ)アクリレート等が挙げられる。
 アミノ基を有する(メタ)アクリル酸エステルとしては、例えばモノエチルアミノ(メタ)アクリレート、ジエチルアミノ(メタ)アクリレート等が挙げられる。
 カルボキシル基を有する(メタ)アクリル酸エステルとしては、例えば2-(メタ)アクリロイロキシエチルフタレート、2-(メタ)アクリロイロキシプロピルフタレート等が挙げられる。
 また、アクリルポリマーには、(メタ)アクリル酸、イタコン酸等の(メタ)アクリル酸エステル以外のカルボキシル基を有する単量体、ビニルアルコール、N-メチロール(メタ)アクリルアミド等の(メタ)アクリル酸エステル以外の水酸基を有する単量体、(メタ)アクリルアミド、(メタ)アクリロニトリル、酢酸ビニル、スチレン等が共重合されていてもよい。
 水酸基を有する単量体を含有しているアクリルポリマーを用いた場合には、後述する架橋剤(K)として有機多価イソシアネート化合物等を用いることによりアクリルポリマーを容易に架橋することができ、硬化前の保護膜形成層の凝集性を制御することができる。
 また、後述する熱硬化性成分(B)における熱硬化樹脂としてエポキシ樹脂を採用した場合には、アクリルポリマーを構成する単量体の全質量中の、エポキシ基を有する単量体の質量割合を低く制限することが好ましい。これにより、保護膜とチップの接着強度が高まる傾向がある。この理由は、以下の通りと推察する。アクリルポリマーを構成する単量体の全質量中の、エポキシ基を有する単量体の質量割合が低い場合には、エポキシ樹脂とアクリルポリマーの相溶性が低下し、保護膜形成層中でそれぞれを主成分とする相分離構造が形成される。その結果、アクリルポリマーを主成分とする構造が保護膜において、歪みを緩衝する役割を果たし、保護膜が熱履歴を経た後であっても保護膜の変形に起因した接着界面の局所的な剥離が生じにくいためと考えられる。アクリルポリマーを構成する単量体の全質量中の、エポキシ基を有する単量体の配合量としては、アクリルポリマーを構成する単量体にエポキシ基を有する単量体が含まれず、またはアクリルポリマーを構成する単量体の全質量中、エポキシ基を有する単量体の質量割合が0質量%を超え、10質量%以下であることが好ましく、アクリルポリマーを構成する単量体にエポキシ基を有する単量体が含まれず、またはアクリルポリマーを構成する単量体の全質量中、エポキシ基を有する単量体の質量割合が0質量%を超え、7質量%以下であることがより好ましい。
 エポキシ基を有する単量体としては、たとえば上述したグリシジル(メタ)アクリレート等の他に、エポキシ基を有するノルボルネン単量体等が挙げられる。
 さらに、バインダーポリマー成分(A)として、アクリルポリマー以外の熱可塑性樹脂を配合してもよい。アクリルポリマー以外の熱可塑性樹脂としては、重量平均分子量が1000~10万のものが好ましく、3000~8万のものがさらに好ましい。アクリルポリマー以外の熱可塑性樹脂のガラス転移温度は、好ましくは-30~120℃、さらに好ましくは-20~120℃のものが好ましい。アクリルポリマー以外の熱可塑性樹脂としては、ポリエステル樹脂;ウレタン樹脂;アクリルウレタン樹脂;フェノキシ樹脂;シリコーン樹脂;ポリブテン、ポリブタジエン等のゴム系ポリマー;ポリスチレンなどが挙げられる。これらのアクリルポリマー以外の熱可塑性樹脂は、1種単独で、または2種以上混合して使用することができる。これらのアクリルポリマー以外の熱可塑性樹脂を使用する場合、アクリルポリマーと併用してもよいし、アクリルポリマーは配合しなくてもよい。アクリルポリマーとアクリルポリマー以外の熱可塑性樹脂を併用した場合、保護膜形成層の転写面に保護膜形成層が追従しボイドなどの発生を抑えることができるという効果が得られることがある。
 ポリマーを構成する単量体としてエポキシ基を有する単量体を含むアクリルポリマーや、フェノキシ樹脂は、文言上後述するエポキシ樹脂の概念に含まれることになるが、本発明ではかかるアクリルポリマーやフェノキシ樹脂は、エポキシ樹脂に含まれず、バインダーポリマー成分(A)に含まれるものとする。
(B)熱硬化性成分
 熱硬化性成分(B)としては、熱硬化樹脂および熱硬化剤が用いられる。熱硬化樹脂としては、たとえば、エポキシ樹脂が好ましい。
 エポキシ樹脂としては、従来公知のエポキシ樹脂を用いることができる。エポキシ樹脂としては、具体的には、多官能系エポキシ樹脂や、ビフェニル化合物、ビスフェノールAジグリシジルエーテルやその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂など、分子中に2官能以上有するエポキシ化合物が挙げられる。これらは1種単独で、または2種以上を組み合わせて用いることができる。
 保護膜形成層には、バインダーポリマー成分(A)100質量部に対して、熱硬化樹脂が、好ましくは1~1000質量部、より好ましくは10~500質量部、特に好ましくは20~200質量部含まれる。熱硬化樹脂の含有量が1質量部未満であると十分な接着性が得られないことがあり、1000質量部を超えると保護膜形成層と支持シートとの剥離力が高くなり、保護膜形成層の転写不良が起こることがある。
 熱硬化剤は、熱硬化樹脂、特にエポキシ樹脂に対する硬化剤として機能する。エポキシ樹脂からなる熱硬化樹脂に好ましい熱硬化剤としては、1分子中にエポキシ基と反応しうる官能基を2個以上有する化合物が挙げられる。その官能基としてはフェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシル基および酸無水物などが挙げられる。これらのうち好ましくはフェノール性水酸基、アミノ基、酸無水物などが挙げられ、さらに好ましくはフェノール性水酸基、アミノ基が挙げられる。
 フェノール性水酸基を有する熱硬化剤(フェノール系硬化剤)の具体的な例としては、多官能系フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、ザイロック型フェノール樹脂、アラルキルフェノール樹脂が挙げられる。
 アミノ基を有する熱硬化剤(アミン系硬化剤)の具体的な例としては、DICY(ジシアンジアミド)が挙げられる。
 これらは、1種単独で、または2種以上混合して使用することができる。
 熱硬化剤の含有量は、熱硬化樹脂100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましい。熱硬化剤の含有量が少ないと硬化不足で接着性が得られないことがあり、過剰であると保護膜形成層の吸湿率が高まり半導体装置の信頼性を低下させることがある。
(C)無機フィラー
 無機フィラー(C)を保護膜形成層に配合することにより、硬化後の保護膜における熱膨張係数を調整することが可能となり、半導体チップに対して硬化後の保護膜の熱膨張係数を最適化することで半導体装置の信頼性を向上させることができる。また、硬化後の保護膜の吸湿率を低減させることも可能となる。さらに、保護膜にレーザーマーキングを施すことにより、レーザー光により削り取られた部分に無機フィラー(C)が露出して、反射光が拡散するために白色に近い色を呈する。これにより、保護膜形成層が後述する着色剤(G)を含有する場合、レーザーマーキング部分と他の部分にコントラスト差が得られ、印字が明瞭となるという効果がある。
 好ましい無機フィラーとしては、シリカ、アルミナ、タルク、炭酸カルシウム、酸化チタン、酸化鉄、炭化珪素、窒化ホウ素等の粉末、これらを球形化したビーズ、単結晶繊維およびガラス繊維等が挙げられる。これらのなかでも、シリカフィラーおよびアルミナフィラーが好ましい。上記無機フィラー(C)は単独でまたは2種以上を混合して使用することができる。上述の効果をより確実に得るための、無機フィラー(C)の含有量の範囲としては、保護膜形成層を構成する全固形分100質量部に対して、好ましくは1~80質量部、より好ましくは20~75質量部、特に好ましくは40~70質量部である。
(D)アルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以上でアルコキシ当量が13mmol/gより大きいシランカップリング剤
 本発明の保護膜形成層には、アルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以上でかつアルコキシ当量が13mmol/gより大きいシランカップリング剤(D)(以下において、単に「シランカップリング剤(D)」と記載することがある。)が含まれる。
 シランカップリング剤(D)におけるアルコキシ基以外の反応性官能基としては、バインダーポリマー成分(A)や熱硬化性成分(B)などが有する官能基と反応するものが好ましい。アルコキシ基以外の反応性官能基は、具体的には、エポキシ基、アミノ基、(メタ)アクリロイル基、(メタ)アクリロイル基中のビニル基を除くビニル基、メルカプト基が挙げられる。これらのうちでも、エポキシ基が好ましい。なお、アルコキシ当量は化合物の単位重量当たりに含まれるアルコキシ基の絶対数を示し、本発明において同様である。
 高分子量体であるシランカップリング剤(D)は、加水分解反応を受けやすい。そのため、保護膜形成層の加熱硬化時に、シランカップリング剤(D)は被着体(半導体ウエハやチップ等)の表面と化学的な反応を効率的かつ容易に起こし、被着体表面に結合しやすく、また、被着体表面と双極子的な相互作用を持ちやすい。したがって、保護膜形成層を形成後、保管期間を置かずにすぐに使用に供した場合でも、保護膜形成層と被着体表面との界面の接着を強固なものとすることができる。その結果、保護膜形成層が高温高湿状態でさらされても、保護膜形成層と被着体との接着界面への水分の侵入を防ぎ、のちに熱刺激を受けても接着状態を維持できる効果(以下において、「熱湿後接着状態維持効果」と記載することがある。)が高い。
 シランカップリング剤(D)として、具体的にはγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-(メタクリロプロピル)トリメトキシシラン等のアルコキシ基を2つまたは3つ有する低分子シランカップリング剤;などをアルコキシ基の加水分解および脱水縮合により縮合した生成物であるオリゴマータイプのものが挙げられる。特に、上記の低分子シランカップリング剤のうち、アルコキシ基を2つまたは3つ有する低分子シランカップリング剤と、アルコキシ基を4つ有する低分子シランカップリング剤とが脱水縮合により縮合した生成物であるオリゴマーが、アルコキシ基の反応性に富み、かつ有機官能基の十分な数を有しているので好ましく、例えば、3-(2,3-エポキシプロポキシ)プロピルメトキシシロキサンとジメトキシシロキサンの共重合体であるオリゴマーが挙げられる。
 本発明の保護膜形成層において、シランカップリング剤(D)の含有量は、保護膜形成層を構成する全固形分100質量部に対して、通常は0.01~7.0質量部、好ましくは0.1~2.0質量部である。また、シランカップリング剤(D)の含有量は、成分(A)~(E)の合計100質量部(固形分換算)に対して、好ましくは0.01~10質量部、より好ましくは0.1~4質量部である。シランカップリング剤(D)の含有量を前記範囲とすることで、保護膜形成層の加熱硬化時に、シランカップリング剤(D)が被着体表面と化学的な反応を起こすことや、シランカップリング剤(D)が被着体表面と双極子的な相互作用を持つことができる。その結果、保護膜形成層が被着体に対して優れた接着性を発現することができる。シランカップリング剤(D)の含有量が前記範囲を上回ると、保護膜形成層の表面張力の上昇を招き、保護膜形成層をシート状にする際、はじきの原因になり製造が困難になることがある。また、チップ裏面に保護膜形成層を固着残存させたまま支持シートから剥離できず、加工が困難になることがある。つまり、製造上および加工上の不具合が発生することがある。
 本発明の保護膜形成層は、分子量が300以上でかつアルコキシ当量が13mmol/gより大きい、アルコキシ基以外の反応性官能基を有しないシラン化合物(D’) (以下において、単に「シラン化合物(D’)」と記載することがある。)を含有していてもよい。シラン化合物(D’)は、反応性官能基を有さないのでバインダーポリマー成分(A)や熱硬化性成分(B)などが有する官能基と反応しないが、アルコキシ基を有するので、他の分子のアルコキシ基や、被着体表面や、無機フィラー(C)の表面と反応して保護膜形成層の硬化に関与する。シラン化合物(D’)としてはポリメトキシシロキサン、ポリエトキシシロキサン、メトキシシロキサンとジメチルシロキサンの共重合体等が挙げられる。
(E)アルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以下でアルコキシ当量が13mmol/g以下であるシランカップリング剤
 本発明の保護膜形成層には、アルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以下でアルコキシ当量が13mmol/g以下であるシランカップリング剤(E)(以下において、単に「シランカップリング剤(E)」と記載することがある。)が含まれる。
 シランカップリング剤(E)におけるアルコキシ基以外の反応性官能基としては、バインダーポリマー成分(A)や熱硬化性成分(B)などが有する官能基と反応するものが好ましい。アルコキシ基以外の反応性官能基は、具体的には、エポキシ基、アミノ基、(メタ)アクリロイル基、(メタ)アクリロイル基中のビニル基を除くビニル基、メルカプト基が挙げられる。これらのうちでも、エポキシ基が好ましい。
 シランカップリング剤(E)は、分子量が300以下であり、アルコキシ当量が13mmol/g以下であるため、シランカップリング剤(D)と比較して反応性が低く加水分解反応を受けにくい。そのため、一定期間の保管後も保護膜形成層中にシランカップリング剤(E)由来のアルコキシ基が残存しやすい。また、保護膜形成層を形成後、一定の保管期間を置くと、シランカップリング剤(E)由来のアルコキシ基は、反応性が乏しいものの一部は分子間で縮合反応を起こし、多量体化する。そのため、一定期間保管後における保護膜形成層の加熱硬化時に、シランカップリング剤(E)はシランカップリング剤(D)と同様、被着体表面に結合しやすくなり、また、被着体表面と双極子的な相互作用を持ちやすくなる。これにより、保護膜形成層と被着体表面との界面の接着を強固なものとすることができるので、一定期間保管後の熱湿後接着状態維持効果が高い。
 シランカップリング剤(E)として、具体的にはγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-(メタクリロプロピル)トリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-6-(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、ビニルトリアセトキシシランなどが挙げられる。
 本発明の保護膜形成層において、シランカップリング剤(E)の含有量は、保護膜形成層を構成する全固形分100質量部に対して、通常は0.01~7.0質量部、好ましくは0.1~2.0質量部である。また、シランカップリング剤(E)の含有量は、成分(A)~(E)の合計100質量部(固形分換算)に対して、好ましくは0.01~10質量部、より好ましくは0.1~4質量部である。シランカップリング剤(E)の含有量を前記範囲とすることで、一定期間室温以上で保管した後に保護膜形成層の加熱硬化時に、被着体に対して優れた接着性を発現することができる。シランカップリング剤(E)の含有量が前記範囲を上回ると、保護膜形成層の表面張力の上昇を招き、保護膜形成層をシート状にする際、はじきの原因になり製造が困難になることがある。また、チップ裏面に保護膜形成層を固着残存させたまま支持シートから剥離できず、加工が困難になることがある。つまり、製造上および加工上の不具合が発生することがある。
 本発明の保護膜形成層は、分子量が300以下でかつアルコキシ当量が13mmol/g以下である、アルコキシ基以外の反応性官能基を有しないシラン化合物(E’)(以下において、単に「シラン化合物(E’)」と記載することがある。)を含有していてもよい。シラン化合物(E’)は、反応性官能基を有さないのでバインダーポリマー成分(A)や熱硬化性成分(B)などが有する官能基と反応しないが、アルコキシ基を有するので、他の分子のアルコキシ基や、被着体表面や、無機フィラー(C)の表面と反応して保護膜形成層の硬化に関与する。シラン化合物(E’)としては、例えばフェニルトリエトキシシラン、デシルトリエトキシシラン等を用いることができる。
 シランカップリング剤(D)とシランカップリング剤(E)の併用により得られる効果
 シランカップリング剤(D)は、保護膜形成層の製造直後から、一定の保管期間を置かずに使用した場合に、熱湿後接着状態維持効果が高い一方で、保護膜形成層の製造後、一定の保管期間を置くと、シランカップリング剤(D)のアルコキシ基が他のアルコキシ基や無機フィラー(C)と反応して消失していくため、被着体表面への結合や、被着体表面と双極子的な相互作用を持つことが困難になり、保護膜形成層と被着体表面との界面の接着を強固にできず、熱湿後接着状態維持効果が低くなることがある。
 他方、シランカップリング剤(E)は、保護膜形成層の製造後、一定の保管期間を置いて使用した場合に、熱湿後接着状態維持効果が高い一方で、保護膜形成層の製造後、保管期間を置かずにすぐに使用した場合、元来反応性に劣り、加水分解反応を受けにくいので、被着体表面に結合しにくく、また、被着体表面と双極子的な相互作用を持ちにくい。その結果、接着剤層と被着体表面との界面の接着を強固にできず、熱湿後接着状態維持効果が低くなることがある。
 本発明の保護膜形成層は、シランカップリング剤(D)とシランカップリング剤(E)のいずれも含有するので、これらが保管期間前後の熱湿後接着状態維持効果の互いの欠点を補い合い、保管期間前後のいずれでも高い熱湿後接着状態維持効果が得られる。その結果、本発明の保護膜形成層は、保存安定性に優れる。
 シランカップリング剤(D)の含有量(d)とシランカップリング剤(E)の含有量(e)との比(d)/(e)は、(d)と(e)がそれぞれ上記含有量の範囲であればよく、すなわち通常は0.0014~700、好ましくは0.05~20である。
その他の成分
 保護膜形成層は、上記成分(A)~(E)を必須成分として含み、上記成分(D’)や(E’)の他に下記成分を含んでもよい。
(F)その他のシランカップリング剤
 本発明において、保護膜形成層の被着体に対する接着力をより向上させるため、シランカップリング剤(D)およびシランカップリング剤(E)以外にその他のシランカップリング剤(F)を用いてもよい。
 シランカップリング剤(F)としては、バインダーポリマー成分(A)や熱硬化性成分(B)などが有する官能基と反応する基を有する化合物が好ましく使用される。
 具体的にはγ-アミノプロピルトリメトキシシラン、N-6-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、イミダゾールシランなどが挙げられる。これら、その他のシラン化合物は1種単独で用いてもよく、2種以上を併用してもよい。
(G)着色剤
 保護膜形成層は、着色剤(G)を含有することが好ましい。保護膜形成層に着色剤を配合することで、半導体装置を機器に組み込んだ際に、周囲の装置から発生する赤外線等を遮蔽し、それらによる半導体装置の誤作動を防止することができ、また保護膜形成層を硬化して得た保護膜に、製品番号等を印字した際の文字の視認性が向上する。すなわち、保護膜を形成された半導体装置や半導体チップでは、保護膜の表面に品番等が通常レーザーマーキング法(レーザー光により保護膜表面を削り取り印字を行う方法)により印字されるが、保護膜が着色剤(G)を含有することで、保護膜のレーザー光により削り取られた部分とそうでない部分のコントラスト差が充分に得られ、視認性が向上する。着色剤(G)としては、有機または無機の顔料および染料が用いられる。
 染料としては、酸性染料、反応染料、直接染料、分散染料、カチオン染料等のいずれの染料であっても用いることが可能である。また、顔料も、特に制限されず、公知の顔料から適宜選択して用いることができる。
 これらの中でも電磁波や赤外線遮蔽性の点から黒色顔料が好ましい。黒色顔料としては、カーボンブラック、酸化鉄、二酸化マンガン、アニリンブラック、活性炭等が用いられるが、これらに限定されることはない。半導体装置の信頼性を高める観点からは、カーボンブラックが特に好ましい。
 着色剤(G)の配合量は、保護膜形成層を構成する全固形分100質量部に対して、好ましくは0.1~35質量部、さらに好ましくは0.5~25質量部、特に好ましくは1~15質量部である。
(H)硬化促進剤
 硬化促進剤(H)は、保護膜形成層の硬化速度を調整するために用いられる。硬化促進剤(H)は、特に、熱硬化性成分(B)において、エポキシ樹脂と熱硬化剤とを併用する場合に好ましく用いられる。
 好ましい硬化促進剤としては、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの3級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどのイミダゾール類;トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィンなどの有機ホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレートなどのテトラフェニルボロン塩などが挙げられる。これらは1種単独で、または2種以上混合して使用することができる。
 硬化促進剤(H)は、熱硬化性成分(B)100質量部に対して、好ましくは0.01~10質量部、さらに好ましくは0.1~5質量部の量で含まれる。硬化促進剤(H)を上記範囲の量で含有することにより、保護膜形成層は高温度高湿度下に曝されても優れた接着特性を有し、厳しいリフロー条件に曝された場合であっても高い信頼性を達成することができる。また、硬化促進剤(H)の含有量が過剰であると高い極性をもつ硬化促進剤は高温度高湿度下で保護膜形成層中を接着界面側に移動し、偏析することにより半導体装置の信頼性を低下させることがある。
(I)エネルギー線重合性化合物
 保護膜形成層には、エネルギー線重合性化合物が配合されていてもよい。エネルギー線重合性化合物(I)は、エネルギー線重合性基を含み、紫外線、電子線等のエネルギー線の照射を受けると重合硬化する。このようなエネルギー線重合性化合物(I)として具体的には、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレートあるいは1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ポリエチレングリコールジアクリレート、オリゴエステルアクリレート、ウレタンアクリレート系オリゴマー、エポキシ変性アクリレート、ポリエーテルアクリレートおよびイタコン酸オリゴマーなどのアクリレート系化合物が挙げられる。このような化合物は、分子内に少なくとも1つの重合性二重結合を有し、通常は、重量平均分子量が100~30000、好ましくは300~10000程度である。エネルギー線重合性化合物(I)の配合量は、特に限定はされないが、保護膜形成層を構成する全固形分100質量部に対して、1~50質量部程度の割合で用いることが好ましい。
(J)光重合開始剤
 保護膜形成層が、前述したエネルギー線重合性化合物(I)を含有する場合には、その使用に際して、紫外線等のエネルギー線を照射して、エネルギー線重合性化合物を硬化させる。この際、該組成物中に光重合開始剤(J)を含有させることで、重合硬化時間ならびに光線照射量を少なくすることができる。
 このような光重合開始剤(J)として具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、α-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、1,2-ジフェニルメタン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドおよびβ-クロールアンスラキノンなどが挙げられる。光重合開始剤(J)は1種類単独で、または2種類以上を組み合わせて用いることができる。
 光重合開始剤(J)の配合割合は、エネルギー線重合性化合物(I)100質量部に対して0.1~10質量部含まれることが好ましく、1~5質量部含まれることがより好ましい。0.1質量部未満であると光重合の不足で満足な転写性が得られないことがあり、10質量部を超えると光重合に寄与しない残留物が生成し、保護膜形成層の硬化性が不十分となることがある。
(K)架橋剤
 保護膜形成層の初期接着力および凝集力を調節するために、架橋剤を添加することもできる。架橋剤(K)としては有機多価イソシアネート化合物、有機多価イミン化合物などが挙げられる。
 上記有機多価イソシアネート化合物としては、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物、脂環族多価イソシアネート化合物およびこれらの有機多価イソシアネート化合物の三量体、ならびにこれら有機多価イソシアネート化合物とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等を挙げることができる。
 有機多価イソシアネート化合物としては、たとえば2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、トリメチロールプロパンアダクトトリレンジイソシアネートおよびリジンイソシアネートが挙げられる。
 上記有機多価イミン化合物としては、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネートおよびN,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等を挙げることができる。
 架橋剤(K)はバインダーポリマー成分(A)100質量部に対して通常0.01~20質量部、好ましくは0.1~10質量部、より好ましくは0.5~5質量部の比率で用いられる。
(L)汎用添加剤
 保護膜形成層には、上記の他に、必要に応じて各種添加剤が配合されてもよい。各種添加剤としては、レベリング剤、可塑剤、帯電防止剤、酸化防止剤、イオン捕捉剤、ゲッタリング剤、連鎖移動剤などが挙げられる。
 上記のような各成分からなる保護膜形成層は、保存安定性に優れ、接着性(例えば感圧接着性や熱接着性)と加熱硬化性とを有する。保護膜形成層が感圧接着性を有する場合には、未硬化状態の保護膜形成層を被着体に押圧して貼付することができる。また、保護膜形成層が熱接着性を有する場合には、被着体に押圧する際に、保護膜形成層を加熱して貼付することができる。本発明における熱接着性とは、常温では感圧接着性がないが、熱により軟化して被着体に接着可能となることをいう。また、保護膜形成層は未硬化状態では各種被着体(半導体ウエハやチップ等)を一時的に保持する機能を有する。そして、本発明の保護膜形成層は、特に一定期間保管後においても、熱硬化を経て最終的には耐衝撃性の高い保護膜を与えることができ、しかもせん断強度と剥離強度とのバランスにも優れ、厳しい熱湿条件下においても十分な接着性を保持しうる。
 なお、保護膜形成層は単層構造であってもよく、また上記成分を含む層をチップと接する最外層に配置されて1層以上含む限りにおいて多層構造であってもよい。
 本発明の保護膜形成層は、上記各成分を適宜の割合で混合して得られる保護膜形成用組成物を用いて得られる。上記各成分の混合に際して、各成分を予め溶媒で希釈しておいてもよく、また混合時に溶媒を加えてもよい。また、保護膜形成用組成物の使用時に、溶媒で希釈してもよい。
 かかる溶媒としては、酢酸エチル、酢酸メチル、ジエチルエーテル、ジメチルエーテル、アセトン、メチルエチルケトン、アセトニトリル、ヘキサン、シクロヘキサン、トルエン、ヘプタンなどが挙げられる。
 保護膜形成層の厚さは特に限定されないが、好ましくは3~300μm、さらに好ましくは5~250μm、特に好ましくは7~200μmである。
 保護膜形成層における可視光線および/または赤外線と紫外線の透過性を示す尺度である、波長300~1200nmにおける最大透過率は20%以下であることが好ましく、0~15%であることがより好ましく、0%を超え10%以下であることがさらに好ましく、0.001~8%であることが特に好ましい。波長300~1200nmにおける保護膜形成層の最大透過率を上記範囲とすることで、可視光波長領域および/または赤外波長領域の透過性の低下が生じ、半導体装置の赤外線起因の誤作動の防止や、印字の視認性向上といった効果が得られる。波長300~1200nmにおける保護膜形成層の最大透過率は、上記着色剤(G)により調整できる。なお、保護膜形成層の最大透過率は、UV-visスペクトル検査装置((株)島津製作所製)を用いて、硬化後の保護膜形成層(厚み25μm)の300~1200nmでの全光線透過率を測定し、透過率の最も高い値(最大透過率)とした。
 本発明の保護膜形成層は、シリコンやガリウム-砒素等を材料とする半導体チップを被着体として使用できる。また、本発明の保護膜形成層は、半導体ウエハや半導体チップが埋包された樹脂封止を含む半導体集合体の保護膜としても使用できる。
[保護膜形成用シート]
 本発明に係る保護膜形成用シートは、上記保護膜形成層を支持シート上に剥離可能に形成してなる。本発明に係る保護膜形成用シートの形状は、テープ状、ラベル状などあらゆる形状をとり得る。
 保護膜形成用シートの製造方法は特に限定されず、上記各成分を適宜の割合で、適当な溶媒中で混合してなる保護膜形成用組成物を、支持シート上に塗布乾燥し、支持シート上に保護膜形成層を形成する方法や、支持シートとは別の工程フィルム上に保護膜形成用組成物を塗布、乾燥して成膜して保護膜形成層を得、この保護膜形成層を支持シート上に転写する方法が挙げられる。
 支持シートとしては、たとえば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、フッ素樹脂フィルムなどのフィルムが用いられる。またこれらの架橋フィルムも用いられる。さらにこれらの積層フィルムであってもよい。また、これらを着色したフィルムをも用いることができる。
 本発明の保護膜形成用シートは、各種の被着体に貼付され、場合によっては、保護膜形成用シート上で被着体にダイシング等の所要の加工が施される。その後、保護膜形成層を被着体に固着残存させて支持シートを剥離する。すなわち、保護膜形成層を、支持シートから被着体に転写する工程を含むプロセスに使用される。このため、支持シートの保護膜形成層に接する面の表面張力は、好ましくは40mN/m以下、さらに好ましくは37mN/m以下、特に好ましくは35mN/m以下である。下限値は通常25mN/m程度である。このような表面張力が比較的低い支持シートは、材質を適宜に選択して得ることが可能であるし、また支持シートの表面に剥離剤を塗布して剥離処理を施すことで得ることもできる。
 剥離処理に用いられる剥離剤としては、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系、ワックス系などが用いられるが、特にアルキッド系、シリコーン系、フッ素系の剥離剤が耐熱性を有するので好ましい。
 上記の剥離剤を用いて支持シートの基体となるフィルム等の表面を剥離処理するためには、剥離剤をそのまま無溶剤で、または溶剤希釈やエマルション化して、グラビアコーター、メイヤーバーコーター、エアナイフコーター、ロールコーターなどにより塗布して、剥離剤が塗布された支持シートを常温下または加熱下に供するか、または電子線により硬化させて剥離剤層を形成させればよい。
 また、ウェットラミネーションやドライラミネーション、熱溶融ラミネーション、溶融押出ラミネーション、共押出加工などによりフィルムの積層を行うことにより支持シートの表面張力を調整してもよい。すなわち、少なくとも一方の面の表面張力が、上述した支持シートの保護膜形成層と接する面のものとして好ましい範囲内にあるフィルムを、当該面が保護膜形成層と接する面となるように、他のフィルムと積層した積層体を製造し、支持シートとしてもよい。
 また、上記フィルム上に再剥離性粘着剤層を形成した粘着シートを支持シートとして用いてもよい。この場合、保護膜形成層は、支持シートに設けられた再剥離性粘着剤層上に積層される。再剥離性粘着剤層は、保護膜形成層を剥離できる程度の粘着力を有する弱粘着性のものを使用してもよいし、エネルギー線照射により粘着力が低下するエネルギー線硬化性のものを使用してもよい。また、エネルギー線硬化性の再剥離性粘着剤層を用いる場合、保護膜形成層が積層される領域に予めエネルギー線照射を行い、粘着性を低減させておく一方、他の領域はエネルギー線照射を行わず、たとえば治具への接着を目的として、粘着力を高いまま維持しておいてもよい。他の領域のみにエネルギー線照射を行わないようにするには、たとえば支持シートの他の領域に対応する領域に印刷等によりエネルギー線遮蔽層を設け、支持シート側からエネルギー線照射を行えばよい。再剥離性粘着剤層は、従来より公知の種々の粘着剤(例えば、ゴム系、アクリル系、シリコーン系、ウレタン系、ビニルエーテル系などの汎用粘着剤、表面凹凸のある粘着剤、エネルギー線硬化型粘着剤、熱膨張成分含有粘着剤等)により形成できる。保護膜形成用シートの構成がかかる構成であると、後述するように保護膜形成用シートが、ダイシング工程において被加工物およびチップを支持するためのダイシングシートとして機能する場合に支持シートと保護膜形成層の間の密着性が保たれ、ダイシング工程において保護膜形成層付チップが支持シートから剥がれることを抑制するという効果が得られる。
 支持シートの厚さは、通常は10~500μm、好ましくは15~300μm、特に好ましくは20~250μmである。再剥離粘着剤層を設ける場合には、支持シート中3~50μmが再剥離粘着剤層の厚さである。
 なお、保護膜形成用シートの使用前に、保護膜形成層を保護するために、保護膜形成層の上面に、前記支持シートとは別に、軽剥離性の剥離フィルムを積層しておいてもよい。
 また、保護膜形成層の表面(被着体と接する面)の外周部には、リングフレーム等の他の治具を固定するために、別途接着剤層や粘着テープが設けられていてもよい。
 このような保護膜形成用シートの保護膜形成層は、被着体の保護膜とすることができる。保護膜形成層はフェースダウン方式のチップ用半導体ウエハまたは半導体チップの裏面に貼付され、適当な手段により硬化されて封止樹脂の代替として半導体チップを保護する機能を有する。半導体ウエハに貼付した場合には、保護膜がウエハを補強する機能を有するためにウエハの破損等を防止しうる。また、本発明の保護膜形成層を用いることで、保護膜形成層の製造から一定時間経過後においても被着体との接着性に優れるため、半導体装置の信頼性に優れる。
[半導体装置の製造方法]
 次に本発明に係る保護膜形成用シートの利用方法について、該シートを半導体装置の製造に適用した場合を例にとって説明する。
 本発明に係る半導体装置の製造方法は、上記保護膜形成用シートの保護膜形成層を半導体ウエハに貼付し、保護膜を有する半導体チップを得る工程を含むことが好ましい。具体的には、表面に回路が形成された半導体ウエハの裏面に、保護膜形成用シートの保護膜形成層を貼付し、その後、裏面に保護膜を有する半導体チップを得る。該保護膜は、半導体ウエハまたは半導体チップの保護膜であることが好ましい。また、本発明に係る半導体装置の製造方法は、好ましくは、以下の工程(1)~(3)をさらに含み、工程(1)~(3)を任意の順で行うことを特徴としている。
 工程(1):保護膜形成層または保護膜と、支持シートとを剥離、
 工程(2):保護膜形成層を硬化して保護膜を得る、
 工程(3):半導体ウエハと、保護膜形成層または保護膜とをダイシング。
 半導体ウエハはシリコンウエハであってもよく、またガリウム・砒素などの化合物半導体ウエハであってもよい。ウエハ表面への回路の形成はエッチング法、リフトオフ法などの従来より汎用されている方法を含む様々な方法により行うことができる。次いで、半導体ウエハの回路面の反対面(裏面)を研削する。研削法は特に限定はされず、グラインダーなどを用いた公知の手段で研削してもよい。裏面研削時には、表面の回路を保護するために回路面に、表面保護シートと呼ばれる粘着シートを貼付する。裏面研削は、ウエハの回路面側(すなわち表面保護シート側)をチャックテーブル等により固定し、回路が形成されていない裏面側をグラインダーにより研削する。ウエハの研削後の厚みは特に限定はされないが、通常は50~500μm程度である。
 その後、必要に応じ、裏面研削時に生じた破砕層を除去する。破砕層の除去は、ケミカルエッチングや、プラズマエッチングなどにより行われる。
 次いで、半導体ウエハの裏面に、上記保護膜形成用シートの保護膜形成層を貼付する。その後、工程(1)~(3)を任意の順で行う。一例として、工程(1)、(2)、(3)の順で行う場合について説明する。
 まず、表面に回路が形成された半導体ウエハの裏面に、上記保護膜形成用シートの保護膜形成層を貼付する。次いで保護膜形成層から支持シートを剥離し、半導体ウエハと保護膜形成層との積層体を得る。次いで保護膜形成層を熱硬化し、ウエハの全面に保護膜を形成する。保護膜形成層にエネルギー線重合性化合物(I)が配合されている場合には、保護膜形成層の硬化をエネルギー線照射により行うこともできるため、加熱およびエネルギー線照射による硬化を同時に行ってもよく、逐次的に行ってもよい。照射されるエネルギー線としては、紫外線(UV)または電子線(EB)等が挙げられ、好ましくは紫外線が用いられる。この結果、ウエハ裏面に硬化樹脂からなる保護膜が形成され、ウエハ単独の場合と比べて強度が向上するので、薄くなったウエハの取扱い時の破損を低減できる。また、ウエハやチップの裏面に直接樹脂膜用の塗布液を塗布・被膜化するコーティング法と比較して、保護膜の厚さの均一性に優れる。
 次いで、半導体ウエハと保護膜との積層体を、ウエハ表面に形成された回路毎にダイシングする。ダイシングは、ウエハと保護膜をともに切断するように行われる。ウエハのダイシングは、ダイシングシートを用いた常法により行われる。この結果、裏面に保護膜を有する半導体チップが得られる。
 その後、ダイシングされたチップをコレット等の汎用手段によりピックアップすることで、裏面に保護膜を有する半導体チップが得られる。このような本発明によれば、厚みの均一性の高い保護膜を、チップ裏面に簡便に形成でき、ダイシング工程やパッケージングの後のクラックが発生しにくくなる。
 最後に、半導体チップをフェースダウン方式で所定の基台上に実装することで半導体装置を製造することができる。また、裏面に保護膜を有する半導体チップを、ダイパッド部または別の半導体チップなどの他の部材上(チップ搭載部上)に接着することで、半導体装置を製造することもできる。
 半導体ウエハの裏面に、上記保護膜形成用シートの保護膜形成層を貼付した後、工程(3)を工程(1)の前に行う場合、保護膜形成用シートがダイシングシートとしての役割を果たすことができる。つまり、ダイシング工程の最中に被加工物およびチップを支持するためのシートとして用いることができる。この場合、保護膜形成用シートの内周部に保護膜形成層を介して被加工物が貼着され、保護膜形成用シートの外周部がリングフレーム等の他の治具と接合することで、被加工物に貼付された保護膜形成用シートが装置に固定され、ダイシングが行われる。
 本発明の保護膜形成層や保護膜形成用シートは、上記のような使用方法の他、半導体化合物、ガラス、セラミックス、金属などの保護に使用することもできる。
 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例または比較例で得られた保護膜形成用シートについては、促進処理(40℃、7日間静置)を行った保護膜形成用シートと、促進処理を行わず、23℃、相対湿度50%の環境下で7日間保管した保護膜形成用シートを用いて、以下の各評価を行った。また、各評価に用いる保護膜付半導体チップは次のようにして製造した。
保護膜付半導体チップの製造
 #2000研磨したシリコンウエハ(200mm径、厚さ350μm)の研磨面に剥離フィルムを除去した実施例または比較例の保護膜形成用シートをテープマウンター(リンテック社製 Adwill RAD-3600 F/12)を用いて70℃に加熱しながら貼付し、次いで支持シートを剥離した。その後、130℃、2時間加熱して保護膜形成層を硬化し、シリコンウエハと保護膜の積層体を得た。
 上記で得られた積層体の保護膜側をダイシングテープ(リンテック社製 Adwill D-686H)に貼付し、ダイシング装置(ディスコ社製 DFD651)を使用して3mm×3mmのサイズにダイシングして評価用の保護膜付半導体チップを得た。
<せん断強度の測定>
 ボンドテスター(Dage社製 ボンドテスターSeries4000)の測定ステージを25℃に設定し、保護膜付半導体チップのチップ側を測定ステージ上に設置した。保護膜と半導体チップの界面(接着界面)より10μm保護膜側の高さの位置において、速度200μm/秒で界面に対して水平方向(せん断方向)に、保護膜の側面に応力をかけ、保護膜付半導体チップの保護膜が破壊するときの力(せん断強度)(N)を測定した。この時、測定装置(ボンドテスター)の誤差により半導体チップにボンドテスターの測定治具が接触した場合には、別の保護膜付半導体チップを用いて測定し直した。
 10個の測定値を得、その平均値をせん断強度(N)とした。
<信頼性評価>
 得られた保護膜付半導体チップを、85℃、相対湿度85%の条件下に168時間放置して吸湿させた後、最高温度260℃、加熱時間1分間のIRリフロー(リフロー炉:相模理工製 WL-15-20DNX型)を3回行った。さらに、この保護膜付半導体チップを冷熱衝撃装置(ESPEC社製 TSE-11A)内に設置し、-40℃で10分間保持し、その後125℃で10分間保持するサイクルを1000サイクル繰り返した。
 その後、冷熱衝撃装置から取り出した保護膜付半導体チップについて、走査型超音波探傷装置(日立建機ファインテック社製 Hye-Focus)および断面観察により、半導体チップと保護膜との接合部における剥離や保護膜におけるクラックを観察した場合を「不良」と判断した。
 25個の保護膜付半導体チップについて上記評価を行い、接合部の剥離または保護膜におけるクラックが発生した個数(不良数)を数えた。
[保護膜形成用組成物]
 保護膜形成用組成物を構成する各成分を下記に示す。
(A)バインダーポリマー成分:
 (A1)アクリル酸ブチル55質量部、メタクリル酸メチル10質量部、メタクリル酸グリシジル20質量部、及びアクリル酸2-ヒドロキシエチル15質量部を共重合してなるアクリルポリマー(重量平均分子量:90万、ガラス転移温度:-28℃)
 (A2)メタクリル酸メチル85質量部、及びアクリル酸2-ヒドロキシエチル15質量部を共重合してなるアクリルポリマー(重量平均分子量:40万、ガラス転移温度:6℃)
(B)熱硬化性成分:
 (B1)ビスフェノールA型エポキシ樹脂(エポキシ当量180~200g/eq)
 (B2)ジシクロペンタジエン型エポキシ樹脂(大日本インキ化学工業(株)製 エピクロンHP-7200HH)
 (B3)ジシアンジアミド(旭電化製 アデカハ-ドナー3636AS)
(C)無機フィラー:シリカフィラー(溶融石英フィラー(平均粒径3μm))
(D)アルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以上でアルコキシ当量が13mmolより大きいシランカップリング剤:
 (D1)3-(2,3-エポキシプロポキシ)プロピルメトキシシロキサンとジメトキシシロキサンの共重合体(メトキシ当量13.7~13.8mmol/g、分子量2000~3000)(三菱化学(株)製 MKCシリケートMSEP2(D’との混合物、D1:D’(質量比)=82:18))
 (D2)オリゴマータイプシランカップリング剤(信越化学工業株式会社製 X-41-1056 メトキシ当量17.1mmol/g、分子量500~1500)
(D’)分子量が300以上でアルコキシ当量が13mmol/gより大きい、アルコキシ基以外の反応性官能基を有しないシラン化合物:ポリメトキシシロキサン(メトキシ当量20.8mmol/g、分子量600)(三菱化学(株)製 MKCシリケートMSEP2(D1との混合物、D1:D’(質量比)=82:18))
(E)アルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以下でアルコキシ当量が13mmol/g以下であるシランカップリング剤:
 (E1)γ-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製 KBM-403 メトキシ当量12.7mmol/g、分子量236.3)
 (E2)γ-グリシドキシプロピルトリエトキシシラン(信越化学工業株式会社製 KBE-403 メトキシ当量8.1mmol/g、分子量278.4)
 (E3)γ-グリシドキシプロピルメチルジエトキシシラン(信越化学工業株式会社製 KBE-402 メトキシ当量10.8mmol/g、分子量248.4)
(G)着色剤:黒色顔料(カーボンブラック、三菱化学社製 #MA650、平均粒径28nm)
(H)硬化促進剤:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業(株)製 キュアゾール2PHZ)
(実施例及び比較例)
 上記各成分を表1に記載の配合量で配合し、保護膜形成用組成物を得た。表1における各成分の配合量は固形分換算の質量部を示し、本発明において固形分とは溶媒以外の全成分をいう。なお、実施例1および比較例1において、成分D1とD’は、これらの混合物、三菱化学(株)製 MKCシリケートMSEP2を添加することにより保護膜形成用組成物に加えた。表1に記載の組成の保護膜形成用組成物を、メチルエチルケトンにて固形分濃度が50重量%となるように希釈し、支持シートとしての、剥離処理されたポリエチレンテレフタレートフィルム(リンテック株式会社製 SP-PET50C)上に乾燥後厚みが約40μmになるように塗布・乾燥(乾燥条件:オーブンにて100℃、3分間)して、支持シート上に形成された保護膜形成層を得た。その後、保護膜形成層と剥離フィルムとしての剥離処理されたポリエチレンテレフタレートフィルム(リンテック株式会社製 SP-PET381031)とを貼り合せて、剥離フィルムの貼り合わされた保護膜形成用シートを得た。各評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例では、促進処理を行った後でも高いせん断強度を維持し、また厳しいリフロー条件に曝された場合であっても、半導体チップの信頼性に優れる。つまり、半導体チップの保護性能に優れていることを示している。そのため、本発明の保護膜形成層を用いて製造された保護膜付半導体チップによれば、信頼性に優れた半導体装置を得ることができる。
 一方、比較例では、シランカップリング剤(D)を含まない保護膜形成層(比較例2~5)は、実施例と比較して促進処理の前後においてせん断強度や信頼性評価に劣り、特に、促進処理を行う前の各評価に劣る。つまり、比較例2~5の保護膜形成層では、その製造直後に使用する場合に、優れたチップ保護性能を得ることはできない。
 また、シランカップリング剤(E)を含まない保護膜形成層(比較例1)は、実施例と比較して促進処理を行った後のせん断強度に劣り、また信頼性評価も低下している。つまり、比較例1の保護膜形成層では、その製造から一定期間保管後に使用する場合に、優れたチップ保護性能を得ることはできない。
 

Claims (8)

  1.  バインダーポリマー成分(A)、熱硬化性成分(B)、無機フィラー(C)、アルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以上でアルコキシ当量が13mmol/gより大きいシランカップリング剤(D)、並びにアルコキシ基及びアルコキシ基以外の反応性官能基を有し、分子量が300以下でアルコキシ当量が13mmol/g以下であるシランカップリング剤(E)を含む保護膜形成層。
  2.  前記シランカップリング剤(D)および前記シランカップリング剤(E)のいずれか一方または両方におけるアルコキシ基以外の反応性官能基がエポキシ基である請求項1に記載の保護膜形成層。
  3.  バインダーポリマー成分(A)がアクリルポリマーであり、アクリルポリマーを構成する単量体にエポキシ基を有する単量体が含まれず、またはアクリルポリマーを構成する単量体の全質量中、エポキシ基を有する単量体の質量割合が0質量%を超え、10質量%以下であり、熱硬化性成分(B)がエポキシ樹脂を含有する請求項1または2に記載の保護膜形成層。
  4.  さらに着色剤(G)を含む請求項1~3のいずれかに記載の保護膜形成層。
  5.  無機フィラー(C)の含有量が、保護膜形成層を構成する全固形分100質量部に対して、1~80質量部である請求項1~4のいずれかに記載の保護膜形成層。
  6.  請求項1~5のいずれかに記載の保護膜形成層を、支持シート上に形成してなる保護膜形成用シート。
  7.  請求項6に記載の保護膜形成用シートの保護膜形成層を半導体ウエハに貼付し、保護膜を有する半導体チップを得る工程を含む半導体装置の製造方法。
  8.  以下の工程(1)~(3)をさらに含み、工程(1)~(3)を任意の順で行う半導体装置の製造方法;
     工程(1):請求項1~5のいずれかに記載の保護膜形成層または保護膜と、支持シートとを剥離、
     工程(2):請求項1~5のいずれかに記載の保護膜形成層を硬化して保護膜を得る、
     工程(3):半導体ウエハと、請求項1~5のいずれかに記載の保護膜形成層または保護膜とをダイシング。
     
PCT/JP2013/069888 2012-07-25 2013-07-23 保護膜形成層、保護膜形成用シート及び半導体装置の製造方法 WO2014017473A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526931A JP6038919B2 (ja) 2012-07-25 2013-07-23 保護膜形成層、保護膜形成用シート及び半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-164858 2012-07-25
JP2012164858 2012-07-25

Publications (1)

Publication Number Publication Date
WO2014017473A1 true WO2014017473A1 (ja) 2014-01-30

Family

ID=49997283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069888 WO2014017473A1 (ja) 2012-07-25 2013-07-23 保護膜形成層、保護膜形成用シート及び半導体装置の製造方法

Country Status (3)

Country Link
JP (1) JP6038919B2 (ja)
TW (1) TWI577778B (ja)
WO (1) WO2014017473A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082963A1 (ja) * 2017-10-27 2019-05-02 リンテック株式会社 保護膜形成用フィルム、保護膜形成用複合シート、及び半導体チップの製造方法
CN111849377A (zh) * 2019-04-26 2020-10-30 琳得科株式会社 保护膜形成用复合片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183382A (ja) * 1998-12-17 2000-06-30 Bridgestone Corp 太陽電池用封止膜及び太陽電池
WO2010026992A1 (ja) * 2008-09-05 2010-03-11 株式会社日本触媒 シリコーン樹脂組成物、酸化金属粒子及びその製造方法
JP2011253907A (ja) * 2010-06-01 2011-12-15 Dainippon Printing Co Ltd 画像表示装置前面用複合フィルタ
JP2012505295A (ja) * 2008-10-10 2012-03-01 スリーエム イノベイティブ プロパティズ カンパニー 親水性を高めるためのシリカコーティング
JP2012124340A (ja) * 2010-12-08 2012-06-28 Dainippon Printing Co Ltd 太陽電池モジュール用封止材組成物及びそれを用いた封止材シート

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544362B2 (ja) * 2001-03-21 2004-07-21 リンテック株式会社 半導体チップの製造方法
JP5552338B2 (ja) * 2010-03-12 2014-07-16 リンテック株式会社 粘着剤組成物、粘着剤および粘着シート
JP5774322B2 (ja) * 2011-01-28 2015-09-09 リンテック株式会社 半導体用接着剤組成物、半導体用接着シートおよび半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183382A (ja) * 1998-12-17 2000-06-30 Bridgestone Corp 太陽電池用封止膜及び太陽電池
WO2010026992A1 (ja) * 2008-09-05 2010-03-11 株式会社日本触媒 シリコーン樹脂組成物、酸化金属粒子及びその製造方法
JP2012505295A (ja) * 2008-10-10 2012-03-01 スリーエム イノベイティブ プロパティズ カンパニー 親水性を高めるためのシリカコーティング
JP2011253907A (ja) * 2010-06-01 2011-12-15 Dainippon Printing Co Ltd 画像表示装置前面用複合フィルタ
JP2012124340A (ja) * 2010-12-08 2012-06-28 Dainippon Printing Co Ltd 太陽電池モジュール用封止材組成物及びそれを用いた封止材シート

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082963A1 (ja) * 2017-10-27 2019-05-02 リンテック株式会社 保護膜形成用フィルム、保護膜形成用複合シート、及び半導体チップの製造方法
CN111279463A (zh) * 2017-10-27 2020-06-12 琳得科株式会社 保护膜形成用膜、保护膜形成用复合片及半导体芯片的制造方法
KR20200074112A (ko) * 2017-10-27 2020-06-24 린텍 가부시키가이샤 보호막 형성용 필름, 보호막 형성용 복합 시트 및 반도체 칩의 제조 방법
JPWO2019082963A1 (ja) * 2017-10-27 2020-11-19 リンテック株式会社 保護膜形成用フィルム、保護膜形成用複合シート、及び半導体チップの製造方法
JP7137575B2 (ja) 2017-10-27 2022-09-14 リンテック株式会社 保護膜形成用フィルム、保護膜形成用複合シート、及び半導体チップの製造方法
KR102575833B1 (ko) * 2017-10-27 2023-09-06 린텍 가부시키가이샤 보호막 형성용 필름, 보호막 형성용 복합 시트 및 반도체 칩의 제조 방법
CN111279463B (zh) * 2017-10-27 2023-09-26 琳得科株式会社 保护膜形成用膜、保护膜形成用复合片及半导体芯片的制造方法
CN111849377A (zh) * 2019-04-26 2020-10-30 琳得科株式会社 保护膜形成用复合片
CN111849377B (zh) * 2019-04-26 2024-03-08 琳得科株式会社 保护膜形成用复合片

Also Published As

Publication number Publication date
TWI577778B (zh) 2017-04-11
JP6038919B2 (ja) 2016-12-07
JPWO2014017473A1 (ja) 2016-07-11
TW201420717A (zh) 2014-06-01

Similar Documents

Publication Publication Date Title
JP6274588B2 (ja) 保護膜形成層付ダイシングシートおよびチップの製造方法
KR101939636B1 (ko) 보호막 형성층을 갖는 다이싱 시트 및 칩의 제조 방법
TWI421319B (zh) 黏接著劑組成物、黏接著片及半導體裝置之製造方法
JP6270736B2 (ja) 保護膜形成用フィルム
WO2015064574A1 (ja) 半導体接合用接着シートおよび半導体装置の製造方法
JP5865044B2 (ja) 保護膜形成層付ダイシングシートおよびチップの製造方法
JP6239498B2 (ja) チップ用樹脂膜形成用シート
KR102224971B1 (ko) 경화성 수지막 형성층이 형성된 시트 및 그 시트를 사용한 반도체 장치의 제조 방법
JP5237647B2 (ja) 粘接着剤組成物、粘接着シートおよび半導体装置の製造方法
JP5785420B2 (ja) 保護膜形成用シートおよび半導体チップの製造方法
JP6262717B2 (ja) 保護膜付チップの製造方法
JP5951106B2 (ja) 保護膜形成用フィルム
WO2019008898A1 (ja) 樹脂膜形成用フィルム及び樹脂膜形成用複合シート
JP5743638B2 (ja) 保護膜形成用フィルム、およびチップ用保護膜形成用シート
JP5814487B1 (ja) 保護膜形成用フィルム
JP6038919B2 (ja) 保護膜形成層、保護膜形成用シート及び半導体装置の製造方法
JP6427791B2 (ja) チップ用樹脂膜形成用シート及び半導体装置の製造方法
JP5973027B2 (ja) 保護膜形成用フィルム、およびチップ用保護膜形成用シート
JP6353868B2 (ja) 保護膜形成用シート
JP6216354B2 (ja) 保護膜形成用フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822861

Country of ref document: EP

Kind code of ref document: A1