WO2014017189A1 - 内燃機関の制御装置及び制御方法 - Google Patents

内燃機関の制御装置及び制御方法 Download PDF

Info

Publication number
WO2014017189A1
WO2014017189A1 PCT/JP2013/065992 JP2013065992W WO2014017189A1 WO 2014017189 A1 WO2014017189 A1 WO 2014017189A1 JP 2013065992 W JP2013065992 W JP 2013065992W WO 2014017189 A1 WO2014017189 A1 WO 2014017189A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
egr
timing
egr rate
control device
Prior art date
Application number
PCT/JP2013/065992
Other languages
English (en)
French (fr)
Inventor
三泰 赤木
土田 博文
亜友美 古宮
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014526809A priority Critical patent/JP5733478B2/ja
Priority to EP13822609.7A priority patent/EP2878792B1/en
Priority to CN201380038006.1A priority patent/CN104471216B/zh
Priority to US14/414,980 priority patent/US9964055B2/en
Publication of WO2014017189A1 publication Critical patent/WO2014017189A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • F02D41/0062Estimating, calculating or determining the internal EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device and a control method for an internal combustion engine that recirculates part of exhaust gas upstream of a supercharger.
  • Patent Document 1 when the operation state in which the amount of EGR gas introduced from the upstream side of the compressor of the turbocharger arranged in the intake passage is switched to an operation state in which the amount is increased more than the present state, the valve timing is changed by the variable valve timing mechanism. To increase the internal EGR and compensate for the shortage of the external EGR by the internal EGR at the time of switching transition.
  • this Patent Document 1 does not specifically disclose at what timing the valve timing for increasing the internal EGR is terminated when the internal EGR is increased by the variable valve timing mechanism. For this reason, for example, if the valve timing is reached such that the internal EGR that compensates for the excess or deficiency of the external EGR rate in the cylinder after the EGR rate in the cylinder reaches the target value, the operation delay of the variable valve mechanism is caused. There is a possibility that the EGR rate in the cylinder may overshoot or undershoot the target value.
  • an internal combustion engine control apparatus includes an EGR rate predicting means for predicting a change in the EGR rate in a cylinder of the internal combustion engine caused by a change in the opening of the EGR control valve, and a valve timing of the engine valve.
  • a valve timing control device that can be changed, and controls the valve timing control device based on the prediction by the EGR rate prediction means so that the EGR rate in the cylinder becomes the target EGR rate. It is characterized by adjusting the amount.
  • the EGR rate in the cylinder of the internal combustion engine can be accurately followed to the target EGR rate, and deterioration of drivability can be avoided.
  • FIG. 1 is a system diagram showing the overall configuration of a control device for an internal combustion engine according to the present invention.
  • the timing chart which shows the condition at the time of stopping external EGR.
  • the timing chart which shows the condition at the time of starting external EGR.
  • the block diagram which showed the control content of the variable valve mechanism.
  • FIG. 1 is a system diagram showing the overall configuration of a control device for an internal combustion engine according to the present invention.
  • the internal combustion engine 1 is mounted on a vehicle such as an automobile as a drive source, and an intake passage 2 and an exhaust passage 3 are connected to a cylinder 1 a of the internal combustion engine 1.
  • An intake passage 2 connected to the internal combustion engine 1 via an intake collector 4a and an intake manifold 4b is provided with an electrically controlled throttle valve 5 driven by an electric motor, and an intake air amount is provided upstream thereof.
  • An air flow meter 6 and an air cleaner 7 are provided.
  • An exhaust catalyst 9 such as a three-way catalyst is provided for exhaust purification in the exhaust passage 3 connected to the internal combustion engine 1 via the exhaust manifold 8.
  • the internal combustion engine 1 has a turbocharger 10 that is coaxially provided with a compressor 11 disposed in the intake passage 2 and a turbine 12 disposed in the exhaust passage 3.
  • the compressor 11 is located upstream of the throttle valve 5 and is located downstream of the air flow meter 6.
  • the turbine 12 is located on the upstream side of the exhaust catalyst 9.
  • reference numeral 13 in FIG. 1 denotes an intercooler provided on the upstream side of the throttle valve 5.
  • a recirculation passage 14 that bypasses the compressor 11 and connects the upstream side and the downstream side of the compressor 11 is connected to the intake passage 2.
  • the recirculation passage 14 is provided with an electrically controlled recirculation valve 15 that controls the intake flow rate in the recirculation passage 14.
  • the recirculation valve 15 is driven by an electric motor.
  • a so-called check valve that opens only when the pressure on the downstream side of the compressor 11 exceeds a predetermined pressure can be used.
  • the exhaust passage 3 is connected to an exhaust bypass passage 16 that bypasses the turbine 12 and connects the upstream side and the downstream side of the turbine 12.
  • the exhaust bypass passage 16 is provided with an electrically controlled wastegate valve 17 that controls the exhaust flow rate in the exhaust bypass passage 16.
  • the wastegate valve 17 is driven by an electric motor. Therefore, in the supercharging region, the supercharging pressure can be controlled by adjusting the opening degree of the wastegate valve 17, and the intake air amount can be controlled according to the opening degree of the wastegate valve 17. ing.
  • the internal combustion engine 1 can perform exhaust gas recirculation (EGR), and an EGR passage 20 is provided between the exhaust passage 3 and the intake passage 2.
  • EGR exhaust gas recirculation
  • One end of the EGR passage 20 is connected to the exhaust passage 3 at a position downstream of the exhaust catalyst 9, and the other end is connected to the intake passage 2 at a position downstream of the air cleaner 7 and upstream of the compressor 11.
  • an electrically controlled EGR control valve 21 and an EGR cooler 22 are interposed in the EGR passage 20, an electrically controlled EGR control valve 21 and an EGR cooler 22 are interposed.
  • the EGR control valve 21 is driven by an electric motor.
  • the opening degree of the EGR control valve 21 is controlled by the control unit 25 so that a target EGR rate corresponding to the operating condition is obtained.
  • control unit 25 includes a crank angle sensor 26 that detects a crank angle of a crankshaft (not shown), and an accelerator opening that detects a depression amount of an accelerator pedal (not shown). Detection signals of sensors such as the sensor 27 are input.
  • the control unit 25 controls the ignition timing and air-fuel ratio of the internal combustion engine 1 and controls the opening degree of the EGR control valve 21 to exhaust the exhaust gas from the exhaust passage 3 to the intake passage 2.
  • Exhaust gas recirculation control (EGR control) is performed to recirculate part of the exhaust gas.
  • the control unit 25 also controls the opening degree of the throttle valve 5, the recirculation valve 15, and the wastegate valve 17 according to the operating conditions.
  • the opening degree of the throttle valve 5 is fully opened, and the opening degree of the wastegate valve 17 is controlled, so that fresh air necessary for realizing the engine required torque is supplied into the cylinder.
  • Control as follows.
  • the opening degree of the waste gate valve 17 is set to a predetermined constant opening degree, and the opening degree of the throttle valve 5 is set so that fresh air necessary for realizing the engine required torque is supplied into the cylinder.
  • the wastegate valve 17 controls the intake air amount in the supercharging region
  • the throttle valve 5 controls the intake air amount in the non-supercharging region.
  • the valve operating mechanism for driving the intake valve (not shown) of the internal combustion engine 1 is a variable valve operating mechanism 28 as a valve timing control device capable of changing the valve timing of the intake valve.
  • a variable valve operating mechanism 28 as a valve timing control device capable of changing the valve timing of the intake valve.
  • the opening timing of the intake valve is controlled by continuously delaying the central angle of the operating angle (opening / closing period) of the intake valve. It can be changed.
  • the variable valve mechanism 28 is controlled by the control unit 25, and the valve opening period of the intake valve overlaps the valve opening period of the exhaust valve (not shown) by changing the opening timing of the intake valve. It is possible to change the overlap amount.
  • the EGR rate in the cylinder is determined by the external EGR introduced by opening the EGR control valve 21 and the internal EGR (residual gas amount in the cylinder) due to the valve overlap of the intake valve and the exhaust valve. It is determined.
  • the ratio of the external EGR to all the gases at any position in the intake system is the external EGR rate
  • the ratio of the internal EGR to all the gases in the cylinder is the internal EGR ratio
  • the external EGR ratio in the cylinder is The sum of the in-cylinder internal EGR rate is defined as the in-cylinder total EGR rate (in-cylinder total EGR rate).
  • EGR when performing EGR, external EGR is mainly introduced in a high load state, and internal EGR is mainly introduced in a low load state. That is, when performing EGR in a high load state, the opening degree of the EGR control valve 21 is relatively increased, and the valve overlap amount of the intake valve and the exhaust valve is relatively decreased. Further, when EGR is performed in a low load state, the opening degree of the EGR control valve 21 is made relatively small, and the valve overlap amount between the intake valve and the exhaust valve is made relatively large.
  • the EGR control valve 21 that adjusts the external EGR is closed and the internal EGR is adjusted.
  • the valve overlap between the intake valve and the exhaust valve is controlled to be relatively large.
  • the target value (command value) of the variable valve mechanism 28 is set to the valve overlap amount of the intake valve and the exhaust valve at the timing T01 when the opening degree of the EGR control valve 21 is changed. It is changed to a provisional value at the time of low load transient that is smaller than the current valve overlap amount, and the provisional value at the time of low load transient is changed at a timing T31 at which the change in the external EGR rate in the cylinder appears after changing the opening of the EGR control valve 21. If the value is changed to the target value at the time of low load, it is possible to suppress the in-cylinder total EGR rate from significantly exceeding the target EGR rate after the change of the opening degree of the EGR control valve 21.
  • variable valve mechanism 28 has a response delay after the target value is changed until the intake valve opening timing actually starts to change (the timing at which the intake valve opening timing starts to change).
  • the change (increase) in the internal EGR rate in the cylinder does not follow the change (increase) in the external EGR rate in the cylinder, and the total EGR in the cylinder The rate will be significantly lower than the target EGR rate transiently.
  • the provisional value at the time of low load transient is set so that the in-cylinder total EGR rate does not become larger than the target EGR rate when the EGR control valve 21 is closed, and the EGR control valve 21 is closed. The value is smaller than the valve overlap amount.
  • the opening of the throttle valve 5 becomes small and the EGR control valve 21 is Instead of changing the valve overlap amount between the intake valve and the exhaust valve to the target value at the time of low load at the timing T01 when the valve is closed, the valve overlap between the intake valve and the exhaust valve is temporarily set as the provisional value at the time of low load transient.
  • the in-cylinder total EGR rate is prevented from transiently exceeding the target EGR rate after changing the opening degree of the EGR control valve 21.
  • the response time ⁇ t of the variable valve mechanism 28 (the target value of the variable valve mechanism 28 is actually changed).
  • the EGR rate at a predetermined position of the intake system in which the EGR rate changes at the timing T21 that precedes by the time until the valve overlap amount of the intake valve and the exhaust valve starts to change after the opening timing of the intake valve changes. This is reflected in the control of the valve mechanism 28.
  • the target value of the valve overlap amount of the intake valve and the exhaust valve is changed from the provisional value at the time of low load to the value at the time of low load. Change to the target value.
  • the change (increase) in the internal EGR rate in the cylinder can follow the change (increase) in the external EGR rate in the cylinder, and the in-cylinder total EGR rate increases the target EGR rate transiently. It can suppress that it falls below, and it can avoid that drivability deteriorates.
  • the EGR rate at the predetermined position is based on, for example, the amount of intake air, the EGR rate at the junction 31 between the EGR passage 20 and the intake passage 2, and the volume of the flow path from the EGR control valve 21 to the predetermined position. Presumed.
  • the EGR rate at the predetermined position may be directly detected by a sensor.
  • the predetermined position is a position defined according to the specifications of the intake system. Further, in FIG. 2, a characteristic line Ef indicates a change in the estimated EGR rate at the predetermined position. In FIG. 2, a characteristic line Et indicates a target value of the in-cylinder total EGR rate.
  • a delay time Td from when the opening degree of the EGR control valve 21 is changed to when the EGR rate starts to change at the predetermined position is predicted, and the valve overlap amount between the intake valve and the exhaust valve after the delay time Td has elapsed. Even if the target value is changed from the provisional value at the time of low load transient to the target value at the time of low load, a change (increase) in the internal EGR rate in the cylinder changes to a change (increase) in the external EGR rate in the cylinder. Can be made to follow.
  • the delay time Td can be estimated based on, for example, the intake air amount and the volume of the flow path from the EGR control valve 21 to the predetermined position.
  • an EGR control valve that adjusts the external EGR The valve 21 is opened, and the valve overlap between the intake valve and the exhaust valve for adjusting the internal EGR is controlled to be relatively small.
  • the target value (command value) of the variable valve mechanism 28 is reduced to the valve overlap of the intake valve and the exhaust valve (high (The target valve overlap amount at the time of load) is changed so that the internal EGR rate in the cylinder changes (decreases) before the external EGR rate in the cylinder changes (increases).
  • the EGR rate is transiently below the target EGR rate.
  • a characteristic line Ef shows a change in the estimated EGR rate at the predetermined position.
  • a characteristic line Et indicates a target value of the in-cylinder total EGR rate.
  • the target value (command value) of the variable valve mechanism 28 is set to the valve overlap amount between the intake valve and the exhaust valve at the timing T02 when the opening degree of the EGR control valve 21 is changed. It is changed to a provisional value at the time of high load transient that is larger than the current valve overlap amount, and after changing the opening degree of the EGR control valve 21, the provisional value at the time of high load transient at the timing T32 when the change in the external EGR rate in the cylinder appears. If the value is changed to the target value at the time of high load, it is possible to suppress the in-cylinder total EGR rate from being significantly lower than the target EGR rate after the opening degree of the EGR control valve 21 is changed.
  • variable valve mechanism 28 the opening timing of the intake valve starts to change at timing T12
  • T32 after timing T32 when the change in the external EGR rate in the cylinder appears.
  • the change (decrease) in the internal EGR rate in the cylinder does not follow the change (increase) in the external EGR rate in the cylinder, and the total EGR rate in the cylinder transiently exceeds the target EGR rate. It will be.
  • the provisional value at the time of high load transient is set so that the in-cylinder total EGR rate does not become smaller than the target EGR rate when the EGR control valve 21 is opened, and the EGR control valve 21 is opened. This value is larger than the valve overlap amount.
  • the opening degree of the throttle valve 5 is increased and the EGR control valve 21 is set.
  • the valve overlap between the intake valve and the exhaust valve is temporarily set as the provisional value at the time of high load transient.
  • the EGR rate changes from the timing T32 at which the external EGR rate in the cylinder changes due to the change in the opening of the EGR control valve 21 to the timing T22 that precedes the response time ⁇ t of the variable valve mechanism 28 described above.
  • the position EGR rate is reflected in the control of the variable valve mechanism 28. That is, the target value of the valve overlap amount of the intake valve and the exhaust valve is changed from the provisional value at the time of high load to the value at the time of high load at the timing T22 when the external EGR rate at the predetermined position changes due to the opening of the EGR control valve 21. Change to the target value.
  • the change (increase) in the internal EGR rate in the cylinder can follow the change (increase) in the external EGR rate in the cylinder, and the in-cylinder total EGR rate increases the target EGR rate transiently. It can suppress that it exceeds, and it can avoid that drivability deteriorates.
  • a delay time Td from when the opening degree of the EGR control valve 21 is changed to when the EGR rate starts to change at the predetermined position is predicted, and the valve overlap amount between the intake valve and the exhaust valve after the delay time Td has elapsed. Even if the target value is changed from the provisional value at the time of high load transient to the target value at the time of high load, the change in the internal EGR rate in the cylinder can follow the change in the external EGR rate in the cylinder. .
  • the predetermined position may be changed according to the response time ⁇ t.
  • the response speed of the variable valve mechanism 28 becomes relatively slower as the oil temperature or the cooling water temperature becomes lower. What is necessary is just to change so that it may become an upstream in an intake system.
  • the adjustment of the internal EGR gas amount by the variable valve mechanism 28 is performed within the operable range of the variable valve mechanism 28, and the target value of the variable valve mechanism 28 moves beyond the operable range. Is required, the internal EGR gas amount is adjusted within the operating limit of the operable range. That is, when the calculated target value of the variable valve mechanism 28 advances the intake valve opening timing further than the most advanced angle position, the control unit 25 sets the intake valve opening timing as the most advanced angle position. Thus, the variable valve mechanism 28 is controlled. Further, when the calculated target value of the variable valve mechanism 28 causes the opening timing of the intake valve to be delayed more than the most retarded position, the control unit 25 sets the opening timing of the intake valve as the most retarded position. Thus, the variable valve mechanism 28 is controlled.
  • FIG. 4 is a block diagram showing the control contents of the variable valve mechanism 28 in the embodiment described above.
  • a basic target value (valve timing) of the variable valve mechanism 28 in a steady state is calculated from the engine speed and the intake air amount.
  • the EGR rate at the predetermined position of the intake system is determined using the target EGR rate determined by the operating conditions, the intake air amount, and the volume of the flow path from the EGR control valve 21 to the predetermined position in the intake system. calculate.
  • the difference (deviation amount) between the EGR rate calculated in S2 and the target EGR rate determined by operating conditions is calculated.
  • the steady state of the variable valve mechanism 28 is set so that the EGR rate at the predetermined position in the intake system becomes the EGR rate calculated in S2 using the deviation amount calculated in S3 and the engine speed.
  • the valve timing correction amount for the target value at is calculated.
  • the basic target value calculated in S1 is corrected with the valve timing correction amount calculated in S4, and set as the target value of the variable valve mechanism 28.
  • valve operating mechanism on the intake valve side is a variable valve operating mechanism.
  • the valve operating mechanism for driving the exhaust valve also includes the phase of the lift central angle of the exhaust valve (a crankshaft (not shown)).
  • the intake valve is opened by the variable valve mechanism on the intake valve side.
  • the timing may be advanced and the exhaust valve closing timing may be retarded by the variable valve mechanism on the exhaust valve side to increase the valve overlap between the intake valve and the exhaust valve.
  • the valve mechanism on the intake valve side and the valve mechanism on the exhaust valve side are variable valve mechanisms that can simultaneously and continuously expand and reduce the lift amount and operating angle of the intake valve or exhaust valve. May be.
  • valve timing control device in the case of non-supercharging is described.
  • the opening degree of the EGR control valve 21 is changed even in the case of supercharging, the non-supercharging is performed.
  • the variable valve mechanism 28, which is a valve timing control device is controlled in the same manner as during supply, the change in the internal EGR rate in the cylinder can follow the change in the external EGR rate in the cylinder, and the total EGR in the cylinder It can be suppressed that the rate greatly deviates from the target value.

Abstract

非過給域で運転状態が高負荷から低負荷に切り替わり外部EGRを停止する場合には、EGR制御弁(21)を閉弁するタイミングT01で、吸気弁と排気弁のバルブオーバーラップ量を低負荷過渡時暫定値として吸気弁と排気弁のバルブオーバーラップを一旦縮小する方向に制御する。そして、EGR制御弁(21)の開度の変更により筒内の外部EGR率が変化するタイミングT31から、可変動弁機構(28)の応答時間Δt分だけ先行したタイミングT21で吸気弁と排気弁のバルブオーバーラップ量の目標値を、上記低負荷過渡時暫定値から低負荷時の目標値に変更する。

Description

内燃機関の制御装置及び制御方法
 本発明は、過給機の上流側に排気の一部を還流する内燃機関の制御装置及び制御方法に関する。
 運転状態に応じて排気ガスを吸気系に導入するいわゆるEGRを行うことで、内燃機関の排気性能向上や燃費改善を図る技術が従来から知られている。また、EGRを行うにあたって、吸気通路に配置された過給機のコンプレッサ上流側に排気の一部を還流させる構成も従来から知られている。
 例えば、特許文献1には、吸気通路に配置された過給機のコンプレッサ上流側から導入されるEGRガス量が現在よりも増量される運転状態に切り替わった際に、可変バルブタイミング機構によりバルブタイミングを変更して内部EGRを増加させ、切り替え過渡時に外部EGRの不足分を内部EGRにより補う技術が開示されている。
 しかしながら、この特許文献1においては、可変バルブタイミング機構により内部EGRを増加させた際に、どのようなタイミングで内部EGRを増加させるバルブタイミングを終了するのか具体的に開示されていない。そのため、例えば、筒内のEGR率が目標値に達してから、筒内の外部EGR率の過不足分を補う内部EGRとなるようなバルブタイミングを終了させると、可変動弁機構の動作遅れにより筒内のEGR率が、目標値に対してオーバシュートまたはアンダーシュートしてしまう可能性がある。
特開2008-150957号公報
 そこで、本発明の内燃機関の制御装置は、EGR制御弁の開度の変更によって生じる内燃機関のシリンダ内のEGR率の変化を先取りして予測するEGR率予測手段と、機関弁のバルブタイミングを変更可能なバルブタイミングコントロールデバイスと、を有し、上記EGR率予測手段での予測に基づいて上記バルブタイミングコントロールデバイスを制御し、上記シリンダ内のEGR率が目標EGR率となるように内部EGRガス量を調整することを特徴としている。
 本発明によれば、EGR制御弁の開度を変更する場合に、目標EGR率に内燃機関の筒内のEGR率を精度良く追従させることができ、運転性が悪化してしまうことを回避できる
本発明に係る内燃機関の制御装置の全体構成を示すシステム図。 外部EGRを停止する際の状況を示すタイミングチャート。 外部EGRを開始する際の状況を示すタイミングチャート。 可変動弁機構の制御内容を示したブロック図。
 以下、本発明の一実施例を図面に基づいて詳細に説明する。図1は、本発明に係る内燃機関の制御装置の全体構成を示すシステム図である。
 内燃機関1は、駆動源として自動車等の車両に搭載されるものであって、内燃機関1のシリンダ1aには、吸気通路2と排気通路3とが接続されている。吸気コレクタ4a及び吸気マニホールド4bを介して内燃機関1に接続された吸気通路2には、電動モータによって駆動される電制のスロットル弁5が設けられていると共に、その上流側には吸入空気量を検出するエアフローメータ6、エアクリーナ7が設けられている。排気マニホールド8を介して内燃機関1に接続された排気通路3には、排気浄化用として、三元触媒等の排気触媒9が設けられている。
 また、この内燃機関1は、吸気通路2に配置されたコンプレッサ11と排気通路3に配置されたタービン12とを同軸上に備えたターボ過給機10を有している。コンプレッサ11は、スロットル弁5よりも上流側に位置していると共に、エアフローメータ6よりも下流側に位置している。タービン12は、排気触媒9よりも上流側に位置している。なお、図1中の13は、スロットル弁5の上流側に設けられたインタークーラである。
 吸気通路2には、コンプレッサ11を迂回してコンプレッサ11の上流側と下流側とを接続するリサーキュレーション通路14が接続されている。リサーキュレーション通路14には、リサーキュレーション通路14内の吸気流量を制御する電制のリサーキュレーション弁15が介装されている。リサーキュレーション弁15は、電動モータによって駆動される。なお、リサーキュレーション弁15としては、コンプレッサ11下流側の圧力が所定圧力以上となったときのみ開弁するようないわゆる逆止弁を用いることも可能である。
 排気通路3には、タービン12を迂回してタービン12の上流側と下流側とを接続する排気バイパス通路16が接続されている。排気バイパス通路16には、排気バイパス通路16内の排気流量を制御する電制のウエストゲート弁17が介装されている。ウエストゲート弁17は、電気モータによって駆動される。そのため、過給域においては、ウエストゲート弁17の開度を調整することで、過給圧が制御可能となり、ウエストゲート弁17の開度に応じて吸入空気量を制御することが可能となっている。
 また、内燃機関1は、排気還流(EGR)が実施可能なものであって、排気通路3と吸気通路2との間には、EGR通路20が設けられている。EGR通路20は、その一端が排気触媒9の下流側の位置で排気通路3に接続され、その他端がエアクリーナ7の下流側となりコンプレッサ11の上流側となる位置で吸気通路2に接続されている。このEGR通路20には、電制のEGR制御弁21とEGRクーラ22が介装されている。EGR制御弁21は電動モータによって駆動される。また、EGR制御弁21の開度は、運転条件に応じた目標EGR率が得られるように、コントロールユニット25によって制御される。
 コントロールユニット25は、上述したエアフローメータ6の検出信号のほか、クランクシャフト(図示せず)のクランク角を検出するクランク角センサ26、アクセルペダル(図示せず)の踏込量を検出するアクセル開度センサ27等のセンサ類の検出信号が入力されている。
 コントロールユニット25は、これらの検出信号に基づいて、内燃機関1の点火時期や空燃比等の制御を実施すると共に、EGR制御弁21の開度を制御して排気通路3から吸気通路2に排気の一部を還流する排気還流制御(EGR制御)を実施している。
 また、コントロールユニット25は、スロットル弁5、リサーキュレーション弁15、ウエストゲート弁17の開度も運転条件に応じて制御している。
 そして、過給域においては、スロットル弁5の開度を全開とし、ウエストゲート弁17の開度を制御することで、機関要求トルクを実現するために必要な新気が筒内に供給されるよう制御する。非過給域においては、ウエストゲート弁17の開度を所定の一定開度とし、スロットル弁5の開度を、機関要求トルクを実現するために必要な新気が筒内に供給されるよう制御する。つまり、過給域では、ウエストゲート弁17が吸入空気量を制御し、非過給域では、スロットル弁5が吸入空気量を制御する。
 また、本実施例においては、内燃機関1の吸気弁(図示せず)を駆動する動弁機構が、吸気弁のバルブタイミングを変更可能なバルブタイミングコントロールデバイスとしての可変動弁機構28となっている。可変動弁機構28は、種々の形式のものが公知であるが、本実施例では、吸気弁の作動角(開閉期間)の中心角を連続的に遅進させることで吸気弁の開時期を変更可能な形式のものとなっている。この可変動弁機構28は、コントロールユニット25により制御されており、吸気弁の開時期を変更することで、吸気弁の開弁期間と排気弁(図示せず)の開弁期間とが重なり合うバルブオーバーラップ量を変化させることが可能となっている。
 ここで、筒内のEGR率は、EGR制御弁21に開弁することで導入される外部EGRと、吸気弁と排気弁のバルブオーバーラップによる内部EGR(筒内の残留ガス量)と、によって決定される。本実施例では、便宜上、吸気系の任意の位置における全てのガスに対する外部EGRの割合を外部EGR率、筒内の全てのガスに対する内部EGRの割合を内部EGR率、筒内の外部EGR率と筒内の内部EGR率の和を筒内のトータルEGR率(筒内トータルEGR率)とする。
 本実施例では、EGRを実施する場合には、高負荷状態では主として外部EGRを導入し、低負荷状態では主として内部EGRを導入している。つまり、高負荷状態でEGRを実施する場合には、EGR制御弁21の開度を相対的に大きくし、吸気弁と排気弁のバルブオーバーラップ量を相対的に小さくしている。また、低負荷状態でEGRを実施する場合には、EGR制御弁21の開度を相対的に小さくし、吸気弁と排気弁のバルブオーバーラップ量を相対的に大きくしている。
 このような内燃機関1において、例えば非過給域で運転状態が高負荷から低負荷に切り替わり外部EGRを停止する場合、外部EGRを調整するEGR制御弁21は閉弁され、内部EGRを調整する吸気弁と排気弁のバルブオーバーラップは相対的に大きくなるよう制御されることになる。
 しかしながら、図2中に特性線Ecで示すように、EGR制御弁21の開度を変更してから実際に筒内の外部EGR率に変化が現れるまでに応答遅れが生じる。そのため、図2中に破線で示すように、EGR制御弁21を閉弁するタイミングT01で、可変動弁機構28の目標値(指令値)を吸気弁と排気弁のバルブオーバーラップを拡大する(低負荷時の目標バルブオーバーラップ量とする)ように変更すると、筒内の外部EGR率が変化(減少)する前に、筒内の内部EGR率が変化(増加)することになり、筒内トータルEGR率が過渡的に目標とするEGR率を大きく上回ってしまうことになる。
 また、図2中に一点鎖線で示すように、EGR制御弁21の開度を変更するタイミングT01で可変動弁機構28の目標値(指令値)を吸気弁と排気弁のバルブオーバーラップ量を現在のバルブオーバーラップ量よりも小さい低負荷過渡時暫定値に変更し、EGR制御弁21の開度を変更してから筒内の外部EGR率に変化が現れるタイミングT31で上記低負荷過渡時暫定値から低負荷時の目標値に変更すれば、EGR制御弁21の開度の変更後に筒内トータルEGR率が過渡的に目標とするEGR率を大きく上回ってしまうことは抑制できる。しかしながら、可変動弁機構28には、目標値を変更してから実際に吸気弁の開時期が変化し始めるまでに応答遅れがあるため(吸気弁の開時期が変化し始めるのはタイミングT11)、筒内の外部EGR率に変化が現れるタイミングT31以降に、筒内の外部EGR率の変化(減少)に対して筒内の内部EGR率の変化(増加)が追従せず、筒内トータルEGR率が過渡的に目標とするEGR率を大きく下回ってしまうことになる。なお、低負荷過渡時暫定値は、EGR制御弁21を閉じる場合に、筒内トータルEGR率が目標EGR率よりも大きくならないように設定されるものであり、EGR制御弁21を閉弁する際のバルブオーバーラップ量よりも小さい値となる。
 そこで、例えば非過給域で運転状態が高負荷から低負荷に切り替わり外部EGRを停止する場合には、図2に実線で示すように、スロットル弁5の開度が小さくなりEGR制御弁21を閉弁するタイミングT01で、吸気弁と排気弁のバルブオーバーラップ量を低負荷時の目標値に変更するのではなく、上記低負荷過渡時暫定値として吸気弁と排気弁のバルブオーバーラップを一旦縮小する方向に制御することで、EGR制御弁21の開度の変更後に筒内トータルEGR率が過渡的に目標とするEGR率を大きく上回ってしまうことを抑制する。
 そして、EGR制御弁21の開度の変更により筒内の外部EGR率が変化するタイミングT31から、可変動弁機構28の応答時間Δt(可変動弁機構28の目標値を変更してから実際に吸気弁の開時期が変化して吸気弁と排気弁のバルブオーバーラップ量が変化し始めるまでの時間)分だけ先行したタイミングT21にEGR率が変化する吸気系の所定位置のEGR率を可変動弁機構28の制御に反映させる。つまり、EGR制御弁21の閉弁により上記所定位置における外部EGR率が変化するタイミングT21で、吸気弁と排気弁のバルブオーバーラップ量の目標値を、上記低負荷過渡時暫定値から低負荷時の目標値に変更する。
 これによって、筒内の外部EGR率の変化(減少)に、筒内の内部EGR率の変化(増加)を追従させることができ、筒内トータルEGR率が過渡的に目標とするEGR率を大きく下回ってしまうことを抑制して、運転性が悪化してしまうことを回避できる。
 上記所定位置におけるEGR率は、例えば、吸入空気量と、EGR通路20と吸気通路2との合流部31におけるEGR率と、EGR制御弁21から上記所定位置に至る流路の体積とに基づいて推定される。また、上記所定位置のEGR率は、センサで直接検知するようにしてもよい。
 なお、上記所定位置は吸気系の仕様に応じて規定される位置となる。また、図2中において特性線Efは、上記所定位置における推定EGR率の変化を示すものである。図2中において特性線Etは、筒内トータルEGR率の目標値を示すものである。
 また、EGR制御弁21の開度が変更されてから上記所定位置でEGR率が変化し始めるまでのディレイ時間Tdを予測して、このディレイ時間Td経過後に吸気弁と排気弁のバルブオーバーラップ量の目標値を上記低負荷過渡時暫定値から低負荷時の目標値へ変更するようにしても、筒内の外部EGR率の変化(減少)に、筒内の内部EGR率の変化(増加)を追従させることができる。ディレイ時間Tdは、例えば、吸入空気量と、EGR制御弁21から上記所定位置に至る流路の体積とに基づいて推定可能である。
 一方、このような内燃機関1において、例えば非過給域で運転状態が低負荷から高負荷に切り替わり外部EGRを停止した状態から外部EGRを開始するような場合、外部EGRを調整するEGR制御弁21は開弁され、内部EGRを調整する吸気弁と排気弁のバルブオーバーラップは相対的に小さくなるよう制御されることになる。
 しかしながら、図3中に特性線Ecで示すように、EGR制御弁21の開度を変更してから実際に筒内の外部EGR率に変化が現れるまでに応答遅れが生じる。そのため、図3に破線で示すように、EGR制御弁21を開弁するタイミングT02で、可変動弁機構28の目標値(指令値)を吸気弁と排気弁のバルブオーバーラップを縮小する(高負荷時の目標バルブオーバーラップ量とする)ように変更すると、筒内の外部EGR率が変化(増加)する前に、筒内の内部EGR率が変化(減少)することになり、筒内トータルEGR率が過渡的に目標とするEGR率を大きく下回ってしまうことになる。なお、図3中において特性線Efは、上記所定位置における推定EGR率の変化を示すものである。図3中において特性線Etは、筒内トータルEGR率の目標値を示すものである。
 また、図3中に一点鎖線で示すように、EGR制御弁21の開度を変更するタイミングT02で可変動弁機構28の目標値(指令値)を吸気弁と排気弁のバルブオーバーラップ量を現在のバルブオーバーラップ量よりも大きい高負荷過渡時暫定値に変更し、EGR制御弁21の開度を変更してから筒内の外部EGR率に変化が現れるタイミングT32で上記高負荷過渡時暫定値から高負荷時の目標値に変更すれば、EGR制御弁21の開度の変更後に筒内トータルEGR率が過渡的に目標とするEGR率を大きく下回ってしまうことは抑制できる。しかしながら、上述したように可変動弁機構28の動作には応答遅れがあるため(吸気弁の開時期が変化し始めるのはタイミングT12)、筒内の外部EGR率に変化が現れるタイミングT32以降に、筒内の外部EGR率の変化(増加)に対して筒内の内部EGR率の変化(減少)が追従せず、筒内トータルEGR率が過渡的に目標とするEGR率を大きく上回ってしまうことになる。なお、高負荷過渡時暫定値は、EGR制御弁21を開く場合に、筒内トータルEGR率が目標EGR率よりも小さくならないように設定されるものであり、EGR制御弁21を開弁する際のバルブオーバーラップ量よりも大きい値となる。
 そこで、例えば非過給域で運転状態が低負荷から高負荷に切り替わり外部EGRを開始する場合には、図3に実線で示すように、スロットル弁5の開度が大きくなりEGR制御弁21を開弁するタイミングT02で、吸気弁と排気弁のバルブオーバーラップ量を高負荷時の目標値に変更するのではなく、上記高負荷過渡時暫定値として吸気弁と排気弁のバルブオーバーラップを一旦拡大する方向に制御することで、EGR制御弁21の開度の変更後に筒内トータルEGR率が過渡的に目標とするEGR率を大きく下回ってしまうことを抑制する。
 そして、EGR制御弁21の開度の変更により筒内の外部EGR率が変化するタイミングT32から、上述した可変動弁機構28の応答時間Δt分だけ先行したタイミングT22にEGR率が変化する上記所定位置のEGR率を可変動弁機構28の制御に反映させる。つまり、EGR制御弁21の開弁により上記所定位置における外部EGR率が変化するタイミングT22で吸気弁と排気弁のバルブオーバーラップ量の目標値を、上記高負荷過渡時暫定値から高負荷時の目標値に変更する。
 これによって、筒内の外部EGR率の変化(増加)に、筒内の内部EGR率の変化(減少)を追従させることができ、筒内トータルEGR率が過渡的に目標とするEGR率を大きく上回ってしまうことを抑制して、運転性が悪化してしまうことを回避できる。
 なお、EGR制御弁21の開度が変更されてから上記所定位置でEGR率が変化し始めるまでのディレイ時間Tdを予測して、このディレイ時間Td経過後に吸気弁と排気弁のバルブオーバーラップ量の目標値を上記高負荷過渡時暫定値から高負荷時の目標値へ変更するようにしても、筒内の外部EGR率の変化に、筒内の内部EGR率の変化を追従させることができる。
 また、可変動弁機構28の上記応答時間Δtが変化するような場合には、この応答時間Δtに応じて上記所定位置を変更するようにしてもよい。例えば、可変動弁機構28が油圧駆動するものである場合には、油温や冷却水温が低くなるほど、可変動弁機構28の応答速度が相対的に遅くなるので、上記所定位置を相対的に吸気系内の上流側となるように変更すればよい。
 そして、可変動弁機構28による内部EGRガス量の調整は、可変動弁機構28の動作可能範囲内で実施されるものであり、可変動弁機構28の目標値が上記動作可能範囲を越える動きを要求する場合には、上記動作可能範囲の動作限界を限度に内部EGRガス量の調整が行われる。つまり、コントロールユニット25は、算出された可変動弁機構28の目標値が吸気弁の開時期を最進角位置よりもさらに進角させるような場合、吸気弁の開時期を最進角位置とするように可変動弁機構28を制御する。また、コントロールユニット25は、算出された可変動弁機構28の目標値が吸気弁の開時期を最遅角位置よりもさらに遅角させるような場合、吸気弁の開時期を最遅角位置とするように可変動弁機構28を制御する。
 図4は、上述した実施例における可変動弁機構28の制御内容を示したブロック図である。S1では、エンジン回転数と吸入空気量から定常状態における可変動弁機構28の基本目標値(バルブタイミング)を算出する。S2では、運転条件によって決まる目標EGR率と、吸入空気量と、EGR制御弁21から吸気系内の上記所定位置に至る流路の体積と、を用いて吸気系の上記所定位置におけるEGR率を算出する。S3では、S2で算出されたEGR率と、運転条件によって決まる目標EGR率との差異(乖離量)を算出する。S4では、S3で算出された乖離量とエンジン回転数とを用いて、吸気系内の上記所定位置におけるEGR率がS2で算出されたEGR率となるように、可変動弁機構28の定常状態での目標値に対するバルブタイミング補正量を算出する。S5では、S1で算出された基本目標値を、S4で算出されたバルブタイミング補正量で補正し、可変動弁機構28の目標値として設定する。
 なお、上述した実施例では、吸気弁側の動弁機構のみを可変動弁機構としたが、排気弁を駆動する動弁機構にも、排気弁のリフト中心角の位相(図示せぬクランクシャフトに対する位相)を進角もしくは遅角させることで排気弁の開時期を変更可能な可変動弁機構を適用し、内部EGRを増加させる場合には吸気弁側の可変動弁機構で吸気弁の開時期を進角すると共に、排気弁側の可変動弁機構で排気弁の閉時期を遅角して吸気弁と排気弁とのバルブオーバーラップを増大させるようにしてもよい。吸気弁側の動弁機構及び排気弁側の動弁機構としては、吸気弁または排気弁のリフト量と作動角とを両者同時かつ連続的に拡大縮小させることが可能な可変動弁機構であってもよい。
 また、上述した実施例では、非過給時の場合のバルブタイミングコントロールデバイスについて説明しているが、過給時の場合にも、EGR制御弁21の開度を変更する際には、非過給時と同様にバルブタイミングコントロールデバイスである可変動弁機構28を制御すれば、筒内の外部EGR率の変化に、筒内の内部EGR率の変化を追従させることができ、筒内トータルEGR率が目標値から大きく乖離してしまうことを抑制できる。

Claims (14)

  1.  スロットル弁の上流側に位置する過給機と、該過給機よりも上流側から排気の一部をEGRとして還流するEGR通路と、上記EGR通路の途中に配置されたEGR制御弁と、を備えた内燃機関の制御装置において、
     上記EGR制御弁の開度の変更によって生じる内燃機関のシリンダ内のEGR率の変化を先取りして予測するEGR率予測手段と、
     機関弁のバルブタイミングを変更可能なバルブタイミングコントロールデバイスと、を有し、
     上記EGR率予測手段での予測に基づいて上記バルブタイミングコントロールデバイスを制御し、上記シリンダ内のEGR率が目標EGR率となるように内部EGRガス量を調整する内燃機関の制御装置。
  2.  上記バルブタイミングコントロールデバイスは、吸気弁の開時期を変更するものであり、
     内部EGRを増加させる場合には上記吸気弁の開時期を進角して吸気弁と排気弁とのバルブオーバーラップを増大させ、内部EGRを減少させる場合には上記吸気弁の開時期を遅角して上記バルブオーバーラップを減少させる請求項1に記載の内燃機関の制御装置。
  3.  上記バルブタイミングコントロールデバイスは、吸気弁の開時期と排気弁の閉時期を変更するものであり、
     内部EGRを増加させる場合には上記吸気弁の開時期を進角すると共に、上記排気弁の閉時期を遅角して上記吸気弁と上記排気弁とのバルブオーバーラップを増大させ、
     内部EGRを減少させる場合には上記吸気弁の開時期を遅角すると共に、上記排気弁の閉時期を進角して上記バルブオーバーラップを減少させる請求項1に記載の内燃機関の制御装置。
  4.  上記EGR率予測手段は、上記EGR通路と上記吸気通路との合流部よりも下流側となる吸気系の所定位置でのEGR率を予測する請求項1~3のいずれかに記載の内燃機関の制御装置。
  5.  上記EGR率予測手段は、上記EGR制御弁の開度の変更により上記シリンダ内のEGR率が変化するタイミングよりも、上記バルブタイミングコントロールデバイスの目標値を変更してから機関弁のバルブタイミングが変化するまでのバルブタイミングコントロールデバイス応答時間分だけ早いタイミングでEGR率が変化する吸気系の所定位置でのEGR率を予測するものであり、
     上記所定位置におけるEGR率に基づいて上記バルブタイミングコントロールデバイスを制御する請求項1~4のいずれかに記載の内燃機関の制御装置。
  6.  上記EGR率予測手段は、上記EGR制御弁の開度が変更されてから、上記EGR通路と上記吸気通路との合流部よりも下流側となる吸気系の所定位置においてEGR率が変化するまでのディレイ時間を予測する請求項1~3のいずれかに記載の内燃機関の制御装置。
  7.  上記EGR率予測手段は、上記EGR制御弁の開度の変更により上記シリンダ内のEGR率が変化するタイミングよりも上記バルブタイミングコントロールデバイスの目標値を変更してから機関弁のバルブタイミングが変化するまでのバルブタイミングコントロールデバイス応答時間分だけ早いタイミングでEGR率が変化する吸気系の所定位置で、上記EGR制御弁の開度を変更してからEGR率が変化するまでのディレイ時間を予測するものであり、
     上記EGR制御弁の開度を変更した際には、上記EGR制御弁の開度を変更してから上記ディレイ時間経過後に、上記バルブタイミングコントロールデバイスの目標値を変更する請求項1~3、または6のいずれかに記載の内燃機関の制御装置。
  8.  上記バルブタイミングコントロールデバイスの目標値を変更してから機関弁のバルブタイミングが変化するまでの時間に応じて上記所定位置を変更する請求項4~7のいずれかに記載の内燃機関の制御装置。
  9.  上記バルブタイミングコントロールデバイスの目標値を変更してから機関弁のバルブタイミングが変化するまでの時間が長くなる運転条件では、上記所定位置を相対的に吸気系内の上流側に変更する請求項4~8のいずれかに記載の内燃機関の制御装置。
  10.  上記バルブタイミングコントロールデバイスは油圧駆動するものであり、油温もしくは冷却水温が低い運転条件では、上記所定位置を相対的に吸気系内の上流側に変更する請求項9に記載の内燃機関の制御装置。
  11.  上記所定位置におけるEGR率は、吸入空気量と、上記EGR通路と上記吸気通路との合流部におけるEGR率と、上記EGR制御弁から上記所定位置に至る流路の体積とに基づいて推定される請求項4または5に記載の内燃機関の制御装置。
  12.  上記所定位置におけるEGR率は、EGR率を検知可能なセンサにより検出される請求項4または5に記載の内燃機関の制御装置。
  13.  上記バルブタイミングコントロールデバイスによる内部EGRガス量の調整は、該バルブタイミングコントロールデバイスの動作可能範囲内で実施され、
    該バルブタイミングコントロールデバイスの目標値が上記動作可能範囲を越える動きを要求する場合には、上記動作可能範囲の動作限界を限度に内部EGRガス量の調整を行う請求項1~12のいずれかに記載の内燃機関の制御装置。
  14.  スロットル弁の上流側に位置する過給機よりもさらに上流側から排気の一部をEGRとして還流するEGR通路に配置されたEGR制御弁の開度の変更によって生じる内燃機関のシリンダ内のEGR率の変化を先取りして予測し、この予測に基づいて機関弁のバルブタイミングを変更可能なバルブタイミングコントロールデバイスを制御し、上記シリンダ内のEGR率が目標EGR率となるように内部EGRガス量を調整する内燃機関の制御方法。
PCT/JP2013/065992 2012-07-25 2013-06-10 内燃機関の制御装置及び制御方法 WO2014017189A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014526809A JP5733478B2 (ja) 2012-07-25 2013-06-10 内燃機関の制御装置及び制御方法
EP13822609.7A EP2878792B1 (en) 2012-07-25 2013-06-10 Control device and control method of internal combustion engine
CN201380038006.1A CN104471216B (zh) 2012-07-25 2013-06-10 内燃机的控制装置及控制方法
US14/414,980 US9964055B2 (en) 2012-07-25 2013-06-10 Control device and control method of internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012164252 2012-07-25
JP2012-164252 2012-07-25

Publications (1)

Publication Number Publication Date
WO2014017189A1 true WO2014017189A1 (ja) 2014-01-30

Family

ID=49997006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065992 WO2014017189A1 (ja) 2012-07-25 2013-06-10 内燃機関の制御装置及び制御方法

Country Status (5)

Country Link
US (1) US9964055B2 (ja)
EP (1) EP2878792B1 (ja)
JP (1) JP5733478B2 (ja)
CN (1) CN104471216B (ja)
WO (1) WO2014017189A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150176477A1 (en) * 2013-12-23 2015-06-25 Hyundai Motor Company Engine cooling system
JP2018076867A (ja) * 2016-11-11 2018-05-17 現代自動車株式会社Hyundai Motor Company エンジンシステムの制御方法及び装置
KR20180124502A (ko) * 2017-05-12 2018-11-21 현대자동차주식회사 저압 egr 시스템의 제어 장치 및 제어 방법
WO2019181292A1 (ja) * 2018-03-20 2019-09-26 日立オートモティブシステムズ株式会社 内燃機関制御装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015218044A1 (de) * 2015-09-21 2017-03-23 Robert Bosch Gmbh Verfahren zum Regeln einer internen Abgasrückführrate bei einer Brennkraftmaschine
FR3041999B1 (fr) * 2015-10-02 2020-01-10 Psa Automobiles Sa. Procede de limitation du taux de gaz recircules pour un moteur a dephaseurs lors d’une phase transitoire de charge en air
US10330034B2 (en) * 2016-04-29 2019-06-25 Ford Global Technologies, Llc Device and method for predicting the exhaust gas recirculation rate
JP6528788B2 (ja) * 2017-01-17 2019-06-12 トヨタ自動車株式会社 内燃機関の制御装置
JP6930178B2 (ja) * 2017-03-30 2021-09-01 三菱自動車工業株式会社 内燃機関の制御装置
JP6834752B2 (ja) * 2017-04-28 2021-02-24 トヨタ自動車株式会社 過給機付き内燃機関の制御装置
FR3087842B1 (fr) * 2018-10-24 2020-10-23 Psa Automobiles Sa Procede de regulation du debit d’air d’une vanne de recirculation des gaz a l’echappement utilisant un modele de rendement volumetrique anticipe
EP4006326A4 (en) * 2019-07-26 2022-07-27 Nissan Motor Company Limited CONTROL METHOD AND DEVICE FOR AN INTERNAL COMBUSTION ENGINE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158954A (ja) * 1994-12-06 1996-06-18 Nissan Motor Co Ltd 内燃機関のegr制御装置
JP2005146960A (ja) * 2003-11-13 2005-06-09 Toyota Motor Corp 予混合圧縮着火内燃機関
JP2007315230A (ja) * 2006-05-24 2007-12-06 Toyota Motor Corp 内燃機関の排気還流装置
JP2008150957A (ja) 2006-12-14 2008-07-03 Toyota Motor Corp Egr装置付き内燃機関
JP2008208801A (ja) * 2007-02-27 2008-09-11 Toyota Motor Corp Egr装置付内燃機関の制御装置
JP2009041485A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009167868A (ja) * 2008-01-15 2009-07-30 Toyota Motor Corp 予混合圧縮自着火内燃機関

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7367188B2 (en) * 2006-07-28 2008-05-06 Ford Global Technologies, Llc System and method for diagnostic of low pressure exhaust gas recirculation system and adapting of measurement devices
JP2007113485A (ja) * 2005-10-20 2007-05-10 Hitachi Ltd 内燃機関の制御方法及び制御装置
JP4618141B2 (ja) 2006-01-20 2011-01-26 トヨタ自動車株式会社 内燃機関の排気ガス還流装置
JP2008309030A (ja) * 2007-06-13 2008-12-25 Toyota Motor Corp 内燃機関の排気還流装置
JP2009138650A (ja) * 2007-12-07 2009-06-25 Denso Corp 内燃機関の可変バルブタイミング制御装置
JP4941413B2 (ja) 2008-06-19 2012-05-30 トヨタ自動車株式会社 内燃機関の制御装置
US20100077990A1 (en) * 2008-09-26 2010-04-01 Mazda Motor Corporation Control of spark ignited internal combustion engine
JP5107963B2 (ja) * 2009-05-26 2012-12-26 日立オートモティブシステムズ株式会社 エンジンの制御装置
US8103427B2 (en) * 2009-09-25 2012-01-24 Cummins Inc. EGR flow compensation for a diesel air handling system
US8103428B2 (en) * 2011-01-11 2012-01-24 Ford Global Technologies, Llc Method for controlling an engine
WO2014184871A1 (ja) * 2013-05-14 2014-11-20 トヨタ自動車株式会社 内燃機関の制御装置
US9587617B2 (en) * 2014-12-10 2017-03-07 Cummins Inc. Method of spark timing adjustment for an internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158954A (ja) * 1994-12-06 1996-06-18 Nissan Motor Co Ltd 内燃機関のegr制御装置
JP2005146960A (ja) * 2003-11-13 2005-06-09 Toyota Motor Corp 予混合圧縮着火内燃機関
JP2007315230A (ja) * 2006-05-24 2007-12-06 Toyota Motor Corp 内燃機関の排気還流装置
JP2008150957A (ja) 2006-12-14 2008-07-03 Toyota Motor Corp Egr装置付き内燃機関
JP2008208801A (ja) * 2007-02-27 2008-09-11 Toyota Motor Corp Egr装置付内燃機関の制御装置
JP2009041485A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009167868A (ja) * 2008-01-15 2009-07-30 Toyota Motor Corp 予混合圧縮自着火内燃機関

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2878792A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150176477A1 (en) * 2013-12-23 2015-06-25 Hyundai Motor Company Engine cooling system
US9816432B2 (en) * 2013-12-23 2017-11-14 Hyundai Motor Company Engine cooling system
JP2018076867A (ja) * 2016-11-11 2018-05-17 現代自動車株式会社Hyundai Motor Company エンジンシステムの制御方法及び装置
KR20180124502A (ko) * 2017-05-12 2018-11-21 현대자동차주식회사 저압 egr 시스템의 제어 장치 및 제어 방법
KR102261363B1 (ko) 2017-05-12 2021-06-07 현대자동차주식회사 저압 egr 시스템의 제어 장치 및 제어 방법
WO2019181292A1 (ja) * 2018-03-20 2019-09-26 日立オートモティブシステムズ株式会社 内燃機関制御装置
JP2019163735A (ja) * 2018-03-20 2019-09-26 日立オートモティブシステムズ株式会社 内燃機関制御装置

Also Published As

Publication number Publication date
EP2878792A4 (en) 2016-03-30
US9964055B2 (en) 2018-05-08
CN104471216A (zh) 2015-03-25
CN104471216B (zh) 2016-04-27
EP2878792B1 (en) 2017-04-19
JP5733478B2 (ja) 2015-06-10
JPWO2014017189A1 (ja) 2016-07-07
EP2878792A1 (en) 2015-06-03
US20150192079A1 (en) 2015-07-09

Similar Documents

Publication Publication Date Title
JP5733478B2 (ja) 内燃機関の制御装置及び制御方法
EP1848885B1 (en) Control method and control apparatus for internal combustion engine
JP5672417B2 (ja) 内燃機関の制御装置及び制御方法
WO2013077155A1 (ja) 内燃機関の制御装置
JP4816811B2 (ja) 内燃機関の制御装置
WO2014010361A1 (ja) 内燃機関の制御装置
US20180266365A1 (en) Exhaust gas control apparatus of internal combustion engine
EP3730770B1 (en) Internal combustion engine and method of controlling same
JP6350304B2 (ja) リーンバーンエンジン
US9951742B2 (en) Ignition control system for internal combustion engine and ignition control method
JP6486852B2 (ja) 内燃機関の制御装置及び制御方法
JP6158389B2 (ja) 内燃機関の制御装置
EP2570644A1 (en) Control device for internal combustion engine
JP2007032515A (ja) 内燃機関の制御装置
JP5169876B2 (ja) 内燃機関の制御装置及び制御方法
JP2005002931A (ja) 内燃機関の制御装置
JP5263249B2 (ja) 過給機付き内燃機関の可変バルブタイミング制御装置
JP2018131924A (ja) 内燃機関の制御方法及び内燃機関の制御装置
WO2019145991A1 (ja) 内燃機関の制御方法及び内燃機関の制御装置
JP6154232B2 (ja) 過給機付きエンジンの制御装置
JPWO2014188755A1 (ja) 内燃機関の制御装置および制御方法
JP6191311B2 (ja) エンジンの制御装置
JP2010261358A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380038006.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526809

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14414980

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013822609

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013822609

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE