WO2014014108A1 - パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 - Google Patents

パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 Download PDF

Info

Publication number
WO2014014108A1
WO2014014108A1 PCT/JP2013/069698 JP2013069698W WO2014014108A1 WO 2014014108 A1 WO2014014108 A1 WO 2014014108A1 JP 2013069698 W JP2013069698 W JP 2013069698W WO 2014014108 A1 WO2014014108 A1 WO 2014014108A1
Authority
WO
WIPO (PCT)
Prior art keywords
passivation
passivation layer
composition
layer
forming
Prior art date
Application number
PCT/JP2013/069698
Other languages
English (en)
French (fr)
Other versions
WO2014014108A9 (ja
Inventor
修一郎 足立
吉田 誠人
野尻 剛
倉田 靖
田中 徹
明博 織田
剛 早坂
服部 孝司
三江子 松村
敬司 渡邉
真年 森下
浩孝 濱村
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US14/414,865 priority Critical patent/US9714262B2/en
Priority to CN201380038209.0A priority patent/CN104471720A/zh
Priority to JP2014525892A priority patent/JPWO2014014108A1/ja
Priority to KR1020157002949A priority patent/KR102083249B1/ko
Publication of WO2014014108A1 publication Critical patent/WO2014014108A1/ja
Publication of WO2014014108A9 publication Critical patent/WO2014014108A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/005Compounds of elements of Group 5 of the Periodic Table without metal-carbon linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a composition for forming a passivation layer, a semiconductor substrate with a passivation layer, a method for manufacturing a semiconductor substrate with a passivation layer, a solar cell element, a method for manufacturing a solar cell element, and a solar cell.
  • n-type diffusion layer is uniformly formed by performing several tens of minutes at 800 ° C. to 900 ° C.
  • n-type diffusion layers are formed not only on the front surface, which is the light receiving surface, but also on the side surface and the back surface. Therefore, side etching is performed to remove the n-type diffusion layer formed on the side surface.
  • the n-type diffusion layer formed on the back surface needs to be converted into a p + -type diffusion layer. For this reason, by applying an aluminum paste containing aluminum powder and a binder to the entire back surface and heat-treating (baking) it, the n-type diffusion layer is converted into a p + -type diffusion layer and an aluminum electrode is formed. Get ohmic contact.
  • the aluminum electrode formed from the aluminum paste has low conductivity.
  • the aluminum electrode generally formed on the entire back surface must have a thickness of about 10 ⁇ m to 20 ⁇ m after heat treatment (firing).
  • the thermal expansion coefficient differs greatly between silicon and aluminum, a large internal stress is generated in the silicon substrate during the heat treatment (firing) and cooling in the silicon substrate on which the aluminum electrode is formed, and the grain boundary Cause damage, crystal defect growth, and warping.
  • a point contact method has been proposed in which an aluminum paste is applied to a part of the surface of a silicon substrate to partially form a p + -type diffusion layer and an aluminum electrode (for example, Japanese Patent No. 3107287). (See the publication).
  • an SiO 2 film or the like has been proposed as a passivation layer for the back surface (see, for example, JP-A-2004-6565).
  • a passivation effect by forming such a SiO 2 film there is an effect of terminating the dangling bonds of silicon atoms in the back surface layer portion of the silicon substrate and reducing the surface state density causing recombination.
  • Such a passivation effect is generally called a field effect, and an aluminum oxide (Al 2 O 3 ) film or the like has been proposed as a material having a negative fixed charge (see, for example, Japanese Patent No. 4767110).
  • Such a passivation layer is generally formed by a method such as an ALD (Atomic Layer Deposition) method or a CVD (Chemical Vapor Deposition) method (for example, Journal of Applied Physics, 104 (2008), 113703-1). 113703-7).
  • composition for forming a passivation layer used in the methods described in Thin Solid Films, 517 (2009), 6327-6330 and Chinese Physics Letters, 26 (2009), 088102-1-088102-4 is a gel over time. It is difficult to say that the storage stability is sufficient because of problems such as crystallization.
  • the present invention has been made in view of the above conventional problems, and provides a passivation layer forming composition capable of forming a passivation layer having excellent storage stability and a passivation effect by a simple method.
  • the task is to do.
  • the present invention provides a semiconductor substrate with a passivation layer provided with a passivation layer having an excellent passivation effect obtained using the composition for forming a passivation layer, a method for manufacturing a semiconductor substrate with a passivation layer, and excellent conversion efficiency. It is an object of the present invention to provide a solar cell element, a method for manufacturing the solar cell element, and a solar cell.
  • M includes at least one metal element selected from the group consisting of Nb, Ta, V, Y, and Hf.
  • R 1 independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • m represents an integer of 1 to 5.
  • composition for forming a passivation layer according to ⁇ 1> further comprising a compound represented by the following general formula (II).
  • each R 2 independently represents an alkyl group having 1 to 8 carbon atoms.
  • n represents an integer of 0 to 3.
  • X 2 and X 3 each independently represent an oxygen atom or a methylene group.
  • R 3 , R 4 and R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • composition for forming a passivation layer according to ⁇ 4> comprising the liquid medium and the resin, wherein the total content of the liquid medium and the resin is 5% by mass or more and 98% by mass or less.
  • the total content of the compound represented by the general formula (I) and the compound represented by the general formula (II) including the compound represented by the general formula (II) is 0.1% by mass.
  • ⁇ 8> A step of forming a composition layer by applying the composition for forming a passivation layer according to any one of ⁇ 1> to ⁇ 6> to the entire surface or a part of a semiconductor substrate, and the composition And forming a passivation layer by heat-treating the layer.
  • a solar cell having the solar cell element according to ⁇ 9> and a wiring material provided on an electrode of the solar cell element.
  • a passivation layer forming composition capable of forming a passivation layer having excellent storage stability and excellent passivation effect by a simple technique.
  • a semiconductor substrate with a passivation layer obtained using the composition for forming a passivation layer and having a passivation layer having an excellent passivation effect, a method for producing a semiconductor substrate with a passivation layer, and excellent conversion efficiency
  • a solar cell element a method for manufacturing a solar cell element, and a solar cell.
  • the term “process” is not only an independent process, but is included in this term if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • the term “layer” includes a configuration of a shape formed in part in addition to a configuration of a shape formed on the entire surface when observed as a plan view.
  • composition for forming a passivation layer of the present invention contains a compound represented by the following general formula (I) (hereinafter also referred to as “compound of formula (I)”).
  • the composition for forming a passivation layer may further contain other components as necessary.
  • a passivation layer having an excellent passivation effect can be formed by a simple technique. Further, the composition for forming a passivation layer is excellent in storage stability.
  • M includes at least one metal element selected from the group consisting of Nb, Ta, V, Y, and Hf.
  • R 1 represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • m represents an integer of 1 to 5.
  • the passivation effect of a semiconductor substrate refers to an effective lifetime of minority carriers in a semiconductor substrate on which a passivation layer is formed by using a device such as Nippon Semi-Lab Co., Ltd., WT-2000PVN, etc. It can be evaluated by measuring by the method.
  • the effective lifetime ⁇ is expressed by the following equation (A) by the bulk lifetime ⁇ b inside the semiconductor substrate and the surface lifetime ⁇ s of the semiconductor substrate surface.
  • ⁇ s becomes long, resulting in a long effective lifetime ⁇ .
  • the bulk lifetime ⁇ b is increased and the effective lifetime ⁇ is increased. That is, by measuring the effective lifetime ⁇ , the interface characteristics between the passivation layer and the semiconductor substrate and the internal characteristics of the semiconductor substrate such as dangling bonds can be evaluated.
  • composition for forming a passivation layer contains at least one compound represented by the general formula (I) (compound of formula (I)).
  • a passivation layer having an excellent passivation effect can be formed. The reason for this can be considered as follows.
  • a metal oxide formed by heat-treating (firing) a passivation layer-forming composition containing the compound of formula (I) has defects of metal atoms or oxygen atoms and is likely to generate fixed charges.
  • this fixed charge generates charge near the interface of the semiconductor substrate, the concentration of minority carriers can be reduced. As a result, the carrier recombination rate at the interface is suppressed, and an excellent passivation effect is achieved. Conceivable.
  • the state of the passivation layer that generates a fixed charge on the semiconductor substrate electron energy loss spectroscopy (EELS, Electron Energy Loss Spectroscopy) using a scanning transmission electron microscope (STEM, Scanning Transmission electron Microscope) ) Analysis of the binding mode. Further, by measuring an X-ray diffraction spectrum (XRD, X-ray diffraction), the crystal phase near the interface of the passivation layer can be confirmed. Furthermore, the fixed charge of the passivation layer can be evaluated by the CV method (CapacitanceitVoltage measurement).
  • M contains at least one metal element selected from the group consisting of Nb, Ta, V, Y, and Hf, and has a passivation effect, storage stability of the composition for forming a passivation layer, and From the viewpoint of workability when preparing the composition for forming a passivation layer, M is preferably at least one selected from the group consisting of Nb, Ta and Y, more preferably Nb. Further, from the viewpoint of making the fixed charge density of the passivation layer negative, M is preferably at least one selected from the group consisting of Nb, Ta, VO, and Hf.
  • each R 1 independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms, preferably an alkyl group having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms.
  • the alkyl group is more preferable.
  • the alkyl group represented by R 1 may be linear or branched. Specific examples of the alkyl group represented by R 1 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, hexyl, octyl, 2- Examples thereof include an ethylhexyl group and a 3-ethylhexyl group.
  • aryl group represented by R 1 examples include a phenyl group.
  • the alkyl group and aryl group represented by R 1 may have a substituent, and examples of the substituent of the alkyl group include an amino group, a hydroxyl group, a carboxyl group, a sulfone group, and a nitro group.
  • substituent for the aryl group include a methyl group, an ethyl group, an isopropyl group, an amino group, a hydroxyl group, a carboxyl group, a sulfone group, and a nitro group.
  • R 1 is preferably an unsubstituted alkyl group having 1 to 8 carbon atoms, and more preferably an unsubstituted alkyl group having 1 to 4 carbon atoms, from the viewpoint of storage stability and a passivation effect.
  • m represents an integer of 1 to 5. From the viewpoint of storage stability, m is preferably 5 when M is Nb, m is preferably 5 when M is Ta, and M is VO. M is preferably 3, m is preferably 3 when M is Y, and m is preferably 4 when M is Hf.
  • M is at least one selected from the group consisting of Nb, Ta and Y, and R 1 is an unsubstituted alkyl group having 1 to 4 carbon atoms. , M is preferably an integer of 1 to 5.
  • M is at least one selected from the group consisting of Nb, Ta, VO, and Hf, and R 1 is an unsubstituted C 1-4 substituent. It is preferable that m is an integer of 1 to 5.
  • the state of the compound represented by the general formula (I) may be solid or liquid. From the viewpoint of the storage stability of the composition for forming a passivation layer and the miscibility in the case where the compound represented by the general formula (II) described later is used in combination, the compound represented by the general formula (I) may be a liquid. preferable.
  • the compounds represented by the general formula (I) are niobium methoxide, niobium ethoxide, niobium isopropoxide, niobium n-propoxide, niobium n-butoxide, niobium t-butoxide, niobium isobutoxide, tantalum methoxide, tantalum ethoxy.
  • niobium ethoxide, niobium n-propoxide, niobium n-butoxide, tantalum ethoxide, tantalum n-propoxide, tantalum n-butoxide, vanadium ethoxide oxide, vanadium n-propoxy Preference is given to oxides, vanadium n-butoxide oxide, hafnium ethoxide, hafnium n-propoxide and hafnium n-butoxide.
  • a prepared product or a commercially available product may be used as the compound represented by the general formula (I).
  • Commercially available products include, for example, pentamethoxyniobium, pentaethoxyniobium, penta-i-propoxyniobium, penta-n-propoxyniobium, penta-i-butoxyniobium, penta-n-butoxyniobium from High Purity Chemical Laboratory, Inc.
  • Penta-sec-butoxy niobium pentamethoxy tantalum, pentaethoxy tantalum, penta-i-propoxy tantalum, penta-n-propoxy tantalum, penta-i-butoxy tantalum, penta-n-butoxy tantalum, penta-sec-butoxy tantalum , Penta-t-butoxytantalum, vanadium (V) trimethoxide oxide, vanadium (V) triethoxy oxide, vanadium (V) tri-i-propoxide oxide, vanadium (V) tri-n-propoxide oxide, vanadium (V Tri-i-butoxide oxide, vanadium (V) tri-n-butoxide oxide, vanadium (V) tri-sec-butoxide oxide, vanadium (V) tri-t-butoxide oxide, tri-i-propoxy yttrium, tri-n -Butoxy yttrium, tetramethoxy
  • a halide of a specific metal (M) and an alcohol are reacted in the presence of an inert organic solvent, and ammonia or an amine compound is used to further extract the halogen.
  • Known methods such as a method of adding (Japanese Patent Laid-Open No. 63-227593 and Japanese Patent Laid-Open No. 3-291247) can be used.
  • the compound represented by the general formula (I) may be a compound in which a chelate structure is formed by mixing with a compound having a specific structure having two carbonyl groups described later.
  • the number of carbonyl groups to be chelated is not particularly limited, but when M is Nb, the number of carbonyl groups to be chelated is preferably 1 to 5, and when M is Ta, the number of carbonyl groups to be chelated is The number of carbonyl groups to be chelated is preferably 1 to 3 when M is V, and the number of carbonyl groups to be chelated is 1 to 3 when M is Y. It is preferable that when M is Hf, the number of carbonyl groups to be chelated is preferably 1 to 4.
  • a chelate structure in the compound represented by the general formula (I) can be confirmed by a commonly used analysis method. For example, it can be confirmed using an infrared spectrum, a nuclear magnetic resonance spectrum, a melting point, or the like.
  • the content of the compound of the formula (I) contained in the composition for forming a passivation layer can be appropriately selected as necessary.
  • the content of the compound of formula (I) can be 0.1% by mass to 80% by mass in the composition for forming a passivation layer from the viewpoint of storage stability and a passivation effect, and 0.5% by mass to 70% by mass.
  • the content is preferably 1% by mass, more preferably 1% by mass to 60% by mass, and still more preferably 1% by mass to 50% by mass.
  • composition for forming a passivation layer of the present invention may contain at least one compound represented by the following general formula (II) (hereinafter also referred to as “organoaluminum compound”).
  • each R 2 independently represents an alkyl group having 1 to 8 carbon atoms.
  • n represents an integer of 0 to 3.
  • X 2 and X 3 each independently represent an oxygen atom or a methylene group.
  • R 3 , R 4 and R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the passivation effect can be further improved. This can be considered as follows.
  • the organoaluminum compound includes compounds called aluminum alkoxide, aluminum chelate and the like, and preferably has an aluminum chelate structure in addition to the aluminum alkoxide structure. Further, as described in Nippon Seramikkusu Kyokai Gakujitsu Ronbunshi, vol. 97, pp369-399 (1989), the organoaluminum compound becomes aluminum oxide (Al 2 O 3 ) by heat treatment (firing). At this time, since the formed aluminum oxide is likely to be in an amorphous state, a four-coordinate aluminum oxide layer is easily formed in the vicinity of the interface with the semiconductor substrate, and may have a large negative fixed charge due to the four-coordinate aluminum oxide. It is considered possible. At this time, it is considered that a passivation layer having an excellent passivation effect can be formed by compounding with an oxide derived from the compound of formula (I) having a fixed charge.
  • the passivation effect becomes higher due to the respective effects in the passivation layer. It is done.
  • the metal (M) represented by the general formula (I) and aluminum are heat-treated (fired) in a state where the compound represented by the general formula (I) and the compound represented by the general formula (II) are mixed.
  • the composite metal alkoxide with (Al) is generated, the physical properties such as reactivity and vapor pressure are improved, the denseness of the passivation layer as a heat-treated product (baked product) is improved, and as a result, the passivation effect becomes higher. Conceivable.
  • each R 2 independently represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group represented by R 2 may be linear or branched. Specific examples of the alkyl group represented by R 2 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, hexyl, octyl, 2- Examples thereof include an ethylhexyl group and a 3-ethylhexyl group.
  • the alkyl group represented by R 2 is preferably an unsubstituted alkyl group having 1 to 8 carbon atoms from the viewpoint of storage stability and a passivation effect, and is an unsubstituted alkyl group having 1 to 4 carbon atoms. More preferably.
  • n represents an integer of 0 to 3. n is preferably an integer of 1 to 3 and more preferably 1 or 3 from the viewpoint of storage stability.
  • X 2 and X 3 each independently represent an oxygen atom or a methylene group. From the viewpoint of storage stability, at least one of X 2 and X 3 is preferably an oxygen atom.
  • R 3 , R 4 and R 5 in the general formula (II) each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group represented by R 3 , R 4 and R 5 may be linear or branched.
  • the alkyl group represented by R 3 , R 4 and R 5 may have a substituent or may be unsubstituted, and is preferably unsubstituted.
  • the alkyl group represented by R 3 , R 4 and R 5 is an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
  • alkyl group represented by R 3 , R 4 and R 5 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a hexyl group.
  • R 3 and R 4 in the general formula (II) are preferably each independently a hydrogen atom or an unsubstituted alkyl group having 1 to 8 carbon atoms. Or it is more preferably an unsubstituted alkyl group having 1 to 4 carbon atoms.
  • R 5 in the general formula (II) is preferably a hydrogen atom or an unsubstituted alkyl group having 1 to 8 carbon atoms from the viewpoint of storage stability and a passivation effect, and is preferably a hydrogen atom or 1 to 4 carbon atoms.
  • the unsubstituted alkyl group is more preferable.
  • the compound represented by the general formula (II) is a compound in which n is 1 to 3 and R 5 is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms from the viewpoint of storage stability. It is preferable.
  • the compound represented by the general formula (II) is a compound in which n is 0, R 2 is each independently an alkyl group having 1 to 4 carbon atoms, and n is from the viewpoint of storage stability and a passivation effect. 1 to 3, R 2 is each independently an alkyl group having 1 to 4 carbon atoms, at least one of X 2 and X 3 is an oxygen atom, and R 3 and R 4 are each independently a hydrogen atom Or an alkyl group having 1 to 4 carbon atoms, and R 5 is preferably at least one selected from the group consisting of compounds each independently being a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 is each independently an unsubstituted alkyl group having 1 to 4 carbon atoms
  • n is 1 to 3
  • R 2 is each independently an unsubstituted alkyl group having 1 to 4 carbon atoms
  • at least one of X 2 and X 3 is an oxygen atom
  • R 3 or R 4 bonded to the oxygen atom is A group consisting of a compound having an alkyl group having 1 to 4 carbon atoms, and when X 2 or X 3 is a methylene group, R 3 or R 4 bonded to the methylene group is a hydrogen atom
  • R 5 is a hydrogen atom It is at least 1 sort chosen from more.
  • aluminum trialkoxide which is an organoaluminum compound represented by the general formula (II) and n is 0, include trimethoxyaluminum, triethoxyaluminum, triisopropoxyaluminum, trisec-butoxyaluminum, monosec-butoxy -Diisopropoxyaluminum, tri-t-butoxyaluminum, tri-n-butoxyaluminum and the like.
  • organoaluminum compound represented by the general formula (II) where n is 1 to 3 include aluminum ethyl acetoacetate diisopropylate and tris (ethylacetoacetate) aluminum.
  • organoaluminum compound represented by the general formula (II) and n being 1 to 3 a prepared product or a commercially available product may be used.
  • commercially available products include Kawaken Fine Chemical Co., Ltd. trade names, ALCH, ALCH-50F, ALCH-75, ALCH-TR, ALCH-TR-20, and the like.
  • the organoaluminum compound represented by the general formula (II) and n is 1 to 3 can be prepared by mixing an aluminum trialkoxide and a compound having a specific structure having two carbonyl groups.
  • a commercially available aluminum chelate compound may also be used.
  • the compound having a specific structure having two carbonyl groups is preferably at least one selected from the group consisting of ⁇ -diketone compounds, ⁇ -ketoester compounds and malonic acid diesters from the viewpoint of reactivity and storage stability. .
  • ⁇ -diketone compounds include acetylacetone, 3-methyl-2,4-pentanedione, 2,3-pentanedione, 3-ethyl-2,4-pentanedione, and 3-butyl-2,4-pentane.
  • Examples include dione, 2,2,6,6-tetramethyl-3,5-heptanedione, 2,6-dimethyl-3,5-heptanedione, 6-methyl-2,4-heptanedione, and the like.
  • ⁇ -ketoester compounds include methyl acetoacetate, ethyl acetoacetate, propyl acetoacetate, isopropyl acetoacetate, isobutyl acetoacetate, butyl acetoacetate, t-butyl acetoacetate, pentyl acetoacetate, isopentyl acetoacetate, acetoacetate Hexyl, n-octyl acetoacetate, heptyl acetoacetate, 3-pentyl acetoacetate, ethyl 2-acetylheptanoate, ethyl 2-methylacetoacetate, ethyl 2-butylacetoacetate, ethyl hexylacetoacetate, 4,4-dimethyl-3- Ethyl oxovalerate, ethyl 4-methyl-3-oxovalerate, ethyl 2-ethylacetoacetate, methyl
  • malonic acid diester examples include dimethyl malonate, diethyl malonate, dipropyl malonate, diisopropyl malonate, dibutyl malonate, di-t-butyl malonate, dihexyl malonate, t-butylethyl malonate, methyl malonate
  • examples include diethyl, diethyl ethylmalonate, diethyl isopropylmalonate, diethyl butylmalonate, diethyl sec-butylmalonate, diethyl isobutylmalonate, diethyl 1-methylbutylmalonate, and the like.
  • the number of aluminum chelate structures is not particularly limited as long as it is 1 to 3. Among these, 1 or 3 is preferable from the viewpoint of storage stability, and 1 is more preferable from the viewpoint of solubility.
  • the number of aluminum chelate structures can be controlled, for example, by appropriately adjusting the ratio of mixing aluminum trialkoxide and a compound having a specific structure having two carbonyl groups. Moreover, you may select suitably the compound which has a desired structure from a commercially available aluminum chelate compound.
  • the compounds represented by the general formula (II) from the viewpoint of the passivation effect and the compatibility with the solvent contained as necessary, specifically, it consists of aluminum ethyl acetoacetate diisopropylate and triisopropoxyaluminum. It is preferable to use at least one selected from the group, and it is more preferable to use aluminum ethyl acetoacetate diisopropylate.
  • an aluminum chelate structure in the organoaluminum compound can be confirmed by a commonly used analysis method. For example, it can be confirmed using an infrared spectrum, a nuclear magnetic resonance spectrum, a melting point, or the like.
  • the organoaluminum compound may be liquid or solid and is not particularly limited. From the viewpoint of the passivation effect and storage stability, the homogeneity of the formed passivation layer is further improved by using an organoaluminum compound having good stability at room temperature (25 ° C.) and solubility or dispersibility. A desired passivation effect can be stably obtained.
  • the content of the organoaluminum compound is not particularly limited.
  • the content of the organoaluminum compound when the total content of the compound of formula (I) represented by the general formula (I) and the organoaluminum compound is 100% by mass is 0.1% by mass or more and 80% by mass or less. It is preferably 0.5% by mass or more and 80% by mass or less, more preferably 1% by mass or more and 75% by mass or less, and further preferably 2% by mass or more and 70% by mass or less. Particularly preferred is 3% by mass or more and 70% by mass or less.
  • the storage stability of the composition for forming a passivation layer tends to be improved. Moreover, it exists in the tendency for the passivation effect to improve by making an organoaluminum compound 80 mass% or less.
  • the content of the organoaluminum compound in the composition for forming a passivation layer can be appropriately selected as necessary.
  • the content of the organoaluminum compound may be 0.1% by mass to 60% by mass in the composition for forming a passivation layer, and 0.5% by mass to 55% by mass from the viewpoint of storage stability and a passivation effect. It is preferably 1% by mass to 50% by mass, more preferably 1% by mass to 45% by mass.
  • the composition for forming a passivation layer may contain a liquid medium (solvent or dispersion medium).
  • a liquid medium solvent or dispersion medium
  • the viscosity can be easily adjusted, the impartability can be further improved, and a more uniform passivation layer can be formed.
  • the liquid medium is not particularly limited and can be appropriately selected as necessary. Among them, a liquid medium that can dissolve the compound represented by the general formula (I) and the compound represented by the general formula (II) that is added as necessary to give a uniform solution is preferable. It is more preferable that 1 type is included.
  • a liquid medium means a medium in a liquid state at room temperature (25 ° C.).
  • liquid medium examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, Ketone solvents such as dipropyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl Ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether
  • Aprotic polar solvents such as methylene chloride, chloroform, dichloroethane, benzene, toluene, xylene, hexane, octane, ethylbenzene, 2-ethylhexanoic acid, methyl isobutyl ketone, methyl ethyl ketone; methanol, ethanol, n-propanol , Isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, n-pentanol, isopentanol, 2-methylbutanol, sec-pentano , T-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-oct
  • the liquid medium preferably contains at least one selected from the group consisting of a terpene solvent, an ester solvent, and an alcohol solvent, and is selected from the group consisting of a terpene solvent, from the viewpoint of impartability to a semiconductor substrate and pattern formation. More preferably, at least one kind is included.
  • the content of the liquid medium is determined in consideration of the imparting property, pattern forming property, and storage stability.
  • the content of the liquid medium is preferably 5% by mass to 98% by mass with respect to the total mass of the composition for forming a passivation layer, from the viewpoint of impartability of the composition and pattern formability, More preferably, it is 95 mass%.
  • the composition for forming a passivation layer may further contain at least one resin.
  • the shape stability of the composition layer formed by applying the composition for forming the passivation layer on the semiconductor substrate is further improved, and the passivation layer is formed in a region where the composition layer is formed. It can be formed in a shape.
  • the type of resin is not particularly limited.
  • the resin is preferably a resin whose viscosity can be adjusted within a range in which a good pattern can be formed when the composition for forming a passivation layer is applied onto a semiconductor substrate.
  • Specific examples of the resin include polyvinyl alcohol, polyacrylamide, polyacrylamide derivatives, polyvinylamide, polyvinylamide derivatives, polyvinylpyrrolidone, polyethylene oxide, polyethylene oxide derivatives, polysulfonic acid, polyacrylamide alkylsulfonic acid, cellulose, and cellulose derivatives (carboxymethylcellulose).
  • Cellulose ethers such as hydroxyethyl cellulose and ethyl cellulose
  • gelatin gelatin derivatives, starch, starch derivatives, sodium alginate, sodium alginate derivatives, xanthan, xanthan derivatives, guar gum, guar gum derivatives, scleroglucan, scleroglucan derivatives, tragacanth, Tragacanth derivative, dextrin, dextrin derivative, (meta)
  • crylic acid resin (meth) acrylic acid ester resin (alkyl (meth) acrylate resin, dimethylaminoethyl (meth) acrylate resin, etc.), butadiene resin, styrene resin, siloxane resin, and copolymers thereof.
  • (meth) acrylic acid means at least one of “acrylic acid” and “methacrylic acid”
  • (meth) acrylate means at least one of “acrylate” and “methacrylate”. means.
  • the molecular weight of these resins is not particularly limited, and it is preferable to adjust appropriately in view of the desired viscosity as the composition for forming a passivation layer.
  • the weight average molecular weight of the resin is preferably from 1,000 to 10,000,000, more preferably from 1,000 to 5,000,000, from the viewpoints of storage stability and pattern formability.
  • the weight average molecular weight of resin is calculated
  • the calibration curve is approximated by a cubic equation using a standard polystyrene five sample set (PStQuick MP-H, PStQuick B [Tosoh Corporation, trade name]).
  • PStQuick MP-H, PStQuick B [Tosoh Corporation, trade name] The measurement conditions for GPC are shown below.
  • the content of the resin in the composition for forming a passivation layer can be appropriately selected as necessary.
  • the resin content is preferably 0.1% by mass to 50% by mass in the total mass of the composition for forming a passivation layer.
  • the resin content is more preferably 0.2% by mass to 25% by mass, and more preferably 0.5% by mass to 20% by mass. Is more preferable, and 0.5 to 15% by mass is particularly preferable.
  • the composition for forming a passivation layer of the present invention may further contain other components that are usually used in the art as needed, in addition to the components described above.
  • the composition for forming a passivation layer may contain an acidic compound or a basic compound.
  • the content of the acidic compound or the basic compound is 1% by mass or less in the composition for forming a passivation layer, respectively. It is preferable that the content is 0.1% by mass or less.
  • Examples of acidic compounds include Bronsted acid and Lewis acid. Specific examples include inorganic acids such as hydrochloric acid and nitric acid; organic acids such as acetic acid.
  • Examples of basic compounds include Bronsted bases and Lewis bases. Specifically, examples of the basic compound include inorganic bases such as alkali metal hydroxides and alkaline earth metal hydroxides; organic bases such as trialkylamine and pyridine.
  • examples of other components include plasticizers, dispersants, surfactants, thixotropic agents, inorganic fillers, other metal alkoxide compounds, and high boiling point materials.
  • at least 1 sort (s) selected from a thixotropic agent and an inorganic filler is included.
  • the shape stability of the composition layer formed by applying the composition for forming the passivation layer on the semiconductor substrate is further improved, and the passivation layer is composed. It can be formed in a desired shape in the region where the physical layer is formed.
  • thixotropic agents include fatty acid amides, polyalkylene glycol compounds, and organic fillers.
  • polyalkylene glycol compound examples include compounds represented by the following general formula (III).
  • R 6 and R 7 each independently represent a hydrogen atom or an alkyl group, and R 8 represents an alkylene group.
  • n is an arbitrary integer of 3 or more.
  • R 8 in the presence of a plurality of (O-R 8) may or may not be the same.
  • fatty acid amides examples include compounds represented by the following general formulas (1), (2), (3) and (4).
  • R 9 CONH 2 (1) R 9 CONH-R 10 -NHCOR 9 (2) R 9 NHCO—R 10 —CONHR 9 (3) R 9 CONH—R 10 —N (R 11 ) 2 ... (4)
  • R 9 and R 11 each independently represents an alkyl group or an alkenyl group having 2 to 30 carbon atoms having 1 to 30 carbon atoms
  • R 10 Represents an alkylene group having 1 to 10 carbon atoms.
  • R 9 and R 11 may be the same or different.
  • Two R 11 may be the same or different.
  • organic filler examples include particles of acrylic resin, cellulose resin, polystyrene resin, and the like.
  • the inorganic filler examples include particles of silicon dioxide, aluminum hydroxide, aluminum nitride, silicon nitride, aluminum oxide, zirconium oxide, silicon carbide and the like.
  • the inorganic filler may be glass particles.
  • the volume average particle diameter of the organic filler or inorganic filler is preferably 0.01 ⁇ m to 50 ⁇ m.
  • the volume average particle diameter refers to the particle diameter (D50%) when the volume-based integrated value in the particle size distribution is 50%.
  • the volume average particle size is measured by a laser diffraction / scattering particle size distribution analyzer (for example, Beckman Coulter, Inc., LS 13, 320). Hereinafter, a more detailed method for measuring the particle diameter will be described. For measurement, 0.01 g to 0.10 g of filler is used and dispersed in 125 ml of solvent (terpineol).
  • the refractive index of the solvent is set to 1.48
  • the refractive index of the filler is set to the value of each substance (for example, 1.57 in the case of aluminum hydroxide particles). From the particle size distribution measured under the above conditions, the particle size (D50%) when the volume-based integrated value is 50% is calculated.
  • metal alkoxide compounds include titanium alkoxide, zirconium alkoxide, silicon alkoxide and the like.
  • the composition for forming a passivation film may use a high-boiling point material together with the resin or as a material replacing the resin.
  • the high boiling point material is preferably a compound that is easily vaporized when heated and does not need to be degreased.
  • the high boiling point material is particularly preferably a high boiling point material having a high viscosity capable of maintaining a printed shape after printing or coating.
  • An example of a material that satisfies these conditions is isobornylcyclohexanol.
  • Isobornylcyclohexanol is commercially available as “Telsolve MTPH” (Nippon Terpene Chemical Co., Ltd., trade name). Isobornyl cyclohexanol has a high boiling point of 308 ° C. to 318 ° C. When it is removed from the composition layer, it does not need to be degreased by heat treatment (firing) like a resin, but is vaporized by heating. Can be eliminated. For this reason, most of the solvent and isobornyl cyclohexanol contained in the composition for forming a passivation layer as necessary can be removed in the drying step after application on the semiconductor substrate.
  • the content of the high boiling point material is preferably 3% by mass to 95% by mass in the total mass of the composition for forming a passivation layer, and 5% by mass. It is more preferably from 90% by mass, particularly preferably from 7% by mass to 80% by mass.
  • the composition for forming a passivation layer may contain at least one oxide selected from the group consisting of Nb, Ta, V, Y and Hf (hereinafter referred to as “specific oxide”). Since the specific oxide is an oxide generated by heat-treating (sintering) the compound of formula (I), the passivation layer formed from the composition for forming a passivation layer containing the specific oxide has an excellent passivation effect. Is expected to be played.
  • the composition for forming a passivation layer may further contain aluminum oxide (Al 2 O 3 ). Aluminum oxide is an oxide produced by heat-treating (firing) a compound represented by the formula (II). Therefore, the composition for forming a passivation layer containing the compound of formula (I) and aluminum oxide is expected to exhibit an excellent passivation effect.
  • the viscosity of the composition for forming a passivation layer is not particularly limited, and can be appropriately selected depending on a method for applying the composition to a semiconductor substrate.
  • the viscosity of the composition for forming a passivation layer can be 0.01 Pa ⁇ s to 10,000 Pa ⁇ s.
  • the viscosity of the composition for forming a passivation layer is preferably 0.1 Pa ⁇ s to 1000 Pa ⁇ s.
  • the viscosity is measured at 25 ° C. and a shear rate of 1.0 s ⁇ 1 using a rotary shear viscometer.
  • the shear viscosity of the composition for forming a passivation layer is not particularly limited, and the composition for forming a passivation layer preferably has thixotropy. Particularly when the passivation layer forming composition comprising a resin, from the viewpoint of pattern formability is calculated by dividing the shear viscosity eta 1 at a shear rate of 1.0 s -1 at shear viscosity eta 2 at a shear rate of 10s -1
  • the thixo ratio ( ⁇ 1 / ⁇ 2 ) is preferably 1.05 to 100, more preferably 1.1 to 50.
  • the shear viscosity is measured at a temperature of 25 ° C. using a rotary shear viscometer equipped with a cone plate (diameter 50 mm, cone angle 1 °).
  • shear viscosity at a shear rate of 1000 s -1 shear viscosity eta 1 at a shear rate of 1.0 s -1 eta 3 The thixo ratio ( ⁇ 1 / ⁇ 3 ) calculated by dividing by is preferably 1.05 to 100, more preferably 1.1 to 50.
  • a specific compound represented by the general formula (I), a compound represented by the general formula (II) contained as necessary, a liquid medium, a resin and the like are mixed by a commonly used mixing method. Can be manufactured.
  • the components contained in the composition for forming a passivation layer and the content of each component are determined by thermal analysis such as differential thermal-thermogravimetric simultaneous measurement (TG / DTA), nuclear magnetic resonance (NMR), infrared spectroscopy ( It can be confirmed by spectral analysis such as IR), chromatographic analysis such as high performance liquid chromatography (HPLC), gel permeation chromatography (GPC) and the like.
  • the semiconductor substrate with a passivation layer of the present invention includes a semiconductor substrate and a passivation layer that is a heat treatment product (baked product) of the composition for forming a passivation layer provided on the entire surface or a part of the semiconductor substrate.
  • the semiconductor substrate with a passivation layer exhibits an excellent passivation effect when it has a passivation layer that is a heat-treated product (baked product) of the composition for forming a passivation layer.
  • the semiconductor substrate is not particularly limited, and can be appropriately selected from those usually used according to the purpose.
  • Examples of the semiconductor substrate include those obtained by doping (diffusing) p-type impurities or n-type impurities into silicon, germanium, or the like. Of these, a silicon substrate is preferable.
  • the semiconductor substrate may be a p-type semiconductor substrate or an n-type semiconductor substrate. Among these, from the viewpoint of the passivation effect, it is preferable that the surface on which the passivation layer is formed is a semiconductor substrate having a p-type layer.
  • the p-type layer on the semiconductor substrate is a p-type layer derived from the p-type semiconductor substrate
  • the p-type layer is formed on the n-type semiconductor substrate or the p-type semiconductor substrate as a p-type diffusion layer or a p + -type diffusion layer. It may be a thing.
  • the thickness of the semiconductor substrate is not particularly limited and can be appropriately selected depending on the purpose.
  • the thickness of the semiconductor substrate can be 50 ⁇ m to 1000 ⁇ m, preferably 75 ⁇ m to 750 ⁇ m.
  • the thickness of the passivation layer formed on the semiconductor substrate is not particularly limited and can be appropriately selected depending on the purpose.
  • the thickness of the passivation layer is preferably 5 nm to 50 ⁇ m, more preferably 10 nm to 30 ⁇ m, and still more preferably 15 nm to 20 ⁇ m.
  • the thickness of the passivation layer can be measured with an interference film thickness meter or the like.
  • the semiconductor substrate with a passivation layer can be applied to solar cell elements, light emitting diode elements, and the like.
  • the solar cell element excellent in conversion efficiency can be obtained by applying to a solar cell element.
  • the method for producing a semiconductor substrate with a passivation layer according to the present invention includes a step of forming the composition layer by applying the composition for forming a passivation layer on the entire surface or a part of the semiconductor substrate, and heat-treating the composition layer ( Firing) to form a passivation layer.
  • the manufacturing method may further include other steps as necessary.
  • the method for producing a semiconductor substrate with a passivation layer preferably further includes a step of applying an alkaline aqueous solution on the semiconductor substrate before the step of forming the composition layer. That is, it is preferable to wash the surface of the semiconductor substrate with an alkaline aqueous solution before applying the composition for forming a passivation layer on the semiconductor substrate. By washing with an alkaline aqueous solution, organic substances, particles, and the like present on the surface of the semiconductor substrate can be removed, and the passivation effect is further improved.
  • a method for cleaning with an alkaline aqueous solution generally known RCA cleaning and the like can be exemplified.
  • the semiconductor substrate can be cleaned by removing organic substances and particles by immersing the semiconductor substrate in a mixed solution of aqueous ammonia and hydrogen peroxide and treating at 60 ° C. to 80 ° C.
  • the washing time is preferably 10 seconds to 10 minutes, and more preferably 30 seconds to 5 minutes.
  • a method for applying a composition for forming a passivation layer on a semiconductor substrate there is no particular limitation on the method for forming a composition layer by applying a passivation layer forming composition on a semiconductor substrate.
  • a method for applying a composition for forming a passivation layer on a semiconductor substrate using a known application method or the like can be mentioned.
  • Specific examples include an immersion method, a screen printing method, an ink jet method, a dispenser method, a spin coating method, a brush coating method, a spray method, a doctor blade method, and a roll coating method.
  • a screen printing method, an inkjet method, and the like are preferable.
  • the application amount of the composition for forming a passivation layer can be appropriately selected according to the purpose.
  • the thickness of the passivation layer to be formed can be appropriately adjusted so as to be a desired thickness described later.
  • a passivation layer is formed on a semiconductor substrate by heat-treating (baking) the composition layer formed by the composition for forming a passivation layer to form a heat-treated material layer (baked material layer) derived from the composition layer. be able to.
  • the heat treatment (firing) conditions of the composition layer are the compound represented by the general formula (I) contained in the composition layer and the compound represented by the general formula (II) contained in the composition layer as necessary. There is no particular limitation as long as it can be converted into a metal oxide or composite oxide which is a fired product).
  • the heat treatment (firing) temperature is preferably 300 ° C.
  • the heat treatment (firing) temperature here means the maximum temperature in the furnace used for the heat treatment (firing).
  • the heat treatment (firing) time can be appropriately selected according to the heat treatment (firing) temperature and the like. For example, it can be 0.1 to 10 hours, and preferably 0.2 to 5 hours.
  • the heat treatment (firing) time here means the holding time at the maximum temperature.
  • the heat treatment (firing) can be performed using a diffusion furnace (for example, ACCURONUCQ-1200, Hitachi Kokusai Electric Co., Ltd .; 206A-M100, Koyo Thermo System Co., Ltd.) and the like.
  • the atmosphere in which the heat treatment (firing) is performed is not particularly limited, and can be performed in the air.
  • the thickness of the passivation layer produced by the method for producing a semiconductor substrate with a passivation layer is not particularly limited and can be appropriately selected according to the purpose.
  • the average thickness of the passivation layer is preferably 5 nm to 50 ⁇ m, preferably 10 nm to 30 ⁇ m, and more preferably 15 nm to 20 ⁇ m.
  • the average thickness of the formed passivation layer measured the thickness of 3 points
  • a method of manufacturing a semiconductor substrate with a passivation layer includes: a composition layer comprising a composition for forming a passivation layer, after the composition for forming a passivation layer is applied to the semiconductor substrate and before the step of forming the passivation layer by heat treatment (firing). You may further have the process of drying-processing. By including the step of drying the composition layer, a passivation layer having a more uniform passivation effect can be formed.
  • the step of drying the composition layer is not particularly limited as long as at least a part of the liquid medium that may be contained in the passivation layer forming composition can be removed.
  • the drying treatment can be, for example, a heat treatment at 30 ° C. to 250 ° C. for 1 minute to 60 minutes, and is preferably a heat treatment at 40 ° C. to 220 ° C. for 3 minutes to 40 minutes.
  • the drying treatment may be performed under normal pressure or under reduced pressure.
  • the method for producing a semiconductor substrate with a passivation layer includes the step of forming a passivation layer after applying the composition for forming a passivation layer and before forming the passivation layer by heat treatment (firing). You may further have the process of degreasing the composition layer which consists of a composition for formation. By having a step of degreasing the composition layer, a passivation layer having a more uniform passivation effect can be formed.
  • the step of degreasing the composition layer is not particularly limited as long as at least part of the resin that may be contained in the composition for forming a passivation layer can be removed.
  • the degreasing treatment can be, for example, a heat treatment at 250 to 450 ° C. for 10 to 120 minutes, preferably a heat treatment at 300 to 400 ° C. for 3 to 60 minutes.
  • the degreasing treatment is preferably performed in the presence of oxygen, and more preferably performed in the atmosphere.
  • the solar cell element of the present invention includes a semiconductor substrate in which a p-type layer and an n-type layer are pn-junction, and a heat treatment product (baked product) of the passivation layer forming composition provided on the entire surface or a part of the semiconductor substrate. ) And an electrode provided on at least one of the p-type layer and the n-type layer of the semiconductor substrate.
  • the solar cell element may further include other components as necessary.
  • a solar cell element is excellent in conversion efficiency by having the passivation layer formed from the composition for passivation layer formation of this invention.
  • the semiconductor substrate to which the composition for forming a passivation layer is applied is not particularly limited, and can be appropriately selected from those usually used according to the purpose.
  • a semiconductor substrate what was demonstrated by the semiconductor substrate with a passivation layer can be used, and the thing which can be used conveniently is also the same.
  • the surface of the semiconductor substrate on which the passivation layer is provided may be any of the back surface, the light receiving surface, and the side surface of the solar cell element.
  • the thickness of the passivation layer formed on the semiconductor substrate is not particularly limited and can be appropriately selected depending on the purpose.
  • the average thickness of the passivation layer is preferably 5 nm to 50 ⁇ m, more preferably 10 nm to 30 ⁇ m, and still more preferably 15 nm to 20 ⁇ m.
  • the composition layer is formed by applying the passivation layer forming composition to the entire surface or a part of a semiconductor substrate in which a p-type layer and an n-type layer are pn-junctioned.
  • the method for manufacturing the solar cell element may further include other steps as necessary.
  • a solar cell element having excellent conversion efficiency can be produced by a simple method.
  • an electrode on at least one of a p-type layer and an n-type layer in a semiconductor substrate a commonly used method can be employed.
  • it can be manufactured by applying an electrode forming paste such as a silver paste or an aluminum paste to a desired region of a semiconductor substrate and performing a heat treatment (firing) as necessary.
  • the surface of the semiconductor substrate on which the passivation layer is provided may be a p-type layer or an n-type layer. Among these, a p-type layer is preferable from the viewpoint of conversion efficiency.
  • the details of the method for forming a passivation layer using the composition for forming a passivation layer are the same as the method for manufacturing a semiconductor substrate with a passivation layer described above, and the preferred embodiments are also the same.
  • the thickness of the passivation layer formed on the semiconductor substrate is not particularly limited and can be appropriately selected according to the purpose.
  • the average thickness of the passivation layer is preferably 5 nm to 50 ⁇ m, more preferably 10 nm to 30 ⁇ m, and still more preferably 15 nm to 20 ⁇ m.
  • FIG. 1 is a sectional view schematically showing an example of a method for producing a solar cell element having a passivation layer according to this embodiment.
  • this process diagram does not limit the present invention at all.
  • the p-type semiconductor substrate 1 is washed with an alkaline aqueous solution to remove organic substances, particles and the like on the surface of the p-type semiconductor substrate 1. Thereby, the passivation effect improves more.
  • an alkaline aqueous solution generally known RCA cleaning or the like can be used.
  • the surface of the p-type semiconductor substrate 1 is subjected to alkali etching or the like to form irregularities (also referred to as texture) on the surface.
  • alkali etching an etching solution composed of NaOH and IPA (isopropyl alcohol) can be used.
  • an n + -type diffusion layer 2 is formed with a depth of submicron order, A pn junction is formed at the boundary with the p-type bulk portion.
  • a method for diffusing phosphorus for example, a method of performing several tens of minutes at 800 ° C. to 1000 ° C. in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ), nitrogen, and oxygen can be cited.
  • the n + -type diffusion layer 2 is formed not only on the light receiving surface (front surface) but also on the back surface and side surfaces (not shown) as shown in FIG. Is formed.
  • a PSG (phosphosilicate glass) layer 3 is formed on the n + -type diffusion layer 2. Therefore, side etching is performed to remove the side PSG layer 3 and the n + -type diffusion layer 2.
  • the PSG layer 3 on the light receiving surface and the back surface is removed using an etching solution such as hydrofluoric acid. Further, as shown in FIG. 1 (5), the back surface is separately etched to remove the n + -type diffusion layer 2 on the back surface.
  • an antireflection film 4 such as silicon nitride is formed on the n + type diffusion layer 2 on the light receiving surface by a PECVD (Plasma Enhanced Chemical Vapor Deposition) method or the like at a thickness of about 90 nm.
  • PECVD Pulsma Enhanced Chemical Vapor Deposition
  • the passivation layer forming composition of the present invention is applied to a part of the back surface by screen printing or the like, and after drying, heat treatment (baking) at a temperature of 300 ° C. to 900 ° C. To form a passivation layer 5.
  • FIG. 5 an example of the formation pattern of the passivation layer 5 in the back surface is shown as a schematic plan view.
  • FIG. 7 is an enlarged schematic plan view of a portion A in FIG.
  • FIG. 8 is an enlarged schematic plan view of a portion B in FIG.
  • the passivation layer 5 on the back surface has a dot shape except for a portion where the back surface output extraction electrode 7 is formed in a later step.
  • the p-type semiconductor substrate 1 is formed with an exposed pattern.
  • the pattern of the dot-shaped openings is defined by the dot diameter (L a ) and the dot interval (L b ), and is preferably arranged regularly.
  • the dot diameter (L a ) and the dot interval (L b ) can be arbitrarily set, but from the viewpoint of the passivation effect and the suppression of minority carrier recombination, L a may be 5 ⁇ m to 2 mm and L b may be 10 ⁇ m to 3 mm. More preferably, L a is 10 ⁇ m to 1.5 mm and L b is 20 ⁇ m to 2.5 mm, more preferably L a is 20 ⁇ m to 1.3 mm and L b is 30 ⁇ m to 2 mm.
  • the passivation layer having a desired shape is formed by applying the passivation layer forming composition to a portion where the passivation layer is to be formed (portion other than the dot-shaped opening) and heat-treating (firing).
  • the composition for forming a passivation layer can be applied to the entire surface including the dot-shaped opening, and the passivation layer in the dot-shaped opening can be selectively removed by laser, photolithography, or the like after heat treatment (firing).
  • the composition for forming a passivation layer can be selectively applied by masking in advance with a mask material on a portion where the composition for forming a passivation layer is not desired to be applied, such as a dot-shaped opening.
  • FIG. 4 is a schematic plan view showing an example of the light receiving surface of the solar cell element.
  • the light receiving surface electrode includes a light receiving surface current collecting electrode 8 and a light receiving surface output extraction electrode 9.
  • the width of the light receiving surface current collecting electrode 8 is preferably 10 ⁇ m to 250 ⁇ m
  • the width of the light receiving surface output extraction electrode 9 is preferably 100 ⁇ m to 2 mm.
  • two light receiving surface output extraction electrodes 9 are provided.
  • the number of light receiving surface output extraction electrodes 9 may be three or four. it can.
  • FIG. 9 is a schematic plan view showing an example of the back surface of the solar cell element.
  • the width of the back surface output extraction electrode 7 is not particularly limited, but the width of the back surface output extraction electrode 7 is preferably 100 ⁇ m to 10 mm from the viewpoint of the connectivity of the wiring material in the subsequent manufacturing process of the solar cell.
  • the light receiving surface and the back surface After applying the electrode paste to each of the light receiving surface and the back surface, after drying, the light receiving surface and the back surface are both heat-treated (fired) at a temperature of about 450 ° C. to 900 ° C. in the atmosphere, and the light receiving surface collecting electrode 8 is applied to the light receiving surface. And the light receiving surface output extraction electrode 9 and the back surface collecting electrode 6 and the back surface output extraction electrode 7 are formed on the back surface, respectively.
  • the glass particles contained in the silver electrode paste forming the light receiving surface electrode react with the antireflection film 4 (fire through),
  • the light-receiving surface electrode (light-receiving surface current collecting electrode 8, light-receiving surface output extraction electrode 9) and the n + -type diffusion layer 2 are electrically connected (ohmic contact).
  • the aluminum in the aluminum electrode paste diffuses into the semiconductor substrate 1 by heat treatment (firing). , P + -type diffusion layer 10 is formed.
  • a composition for forming a passivation layer excellent in storage stability a passivation layer excellent in passivation effect can be formed by a simple method, and a solar cell element excellent in power generation performance can be manufactured. .
  • FIG. 2 is a cross-sectional view showing another example of a method for manufacturing a solar cell element having a passivation layer according to this embodiment, and the n + -type diffusion layer 2 on the back surface is removed by an etching process.
  • the solar battery cell can be manufactured in the same manner as in FIG. 1 except that the back surface is further flattened.
  • a technique such as immersing the back surface of the semiconductor substrate in a mixed solution of nitric acid, hydrofluoric acid and acetic acid or a potassium hydroxide solution can be used.
  • FIG. 3 is a cross-sectional view showing a process diagram illustrating another example of a method for manufacturing a solar cell element having a passivation layer according to the present embodiment. This method is the same as the method shown in FIG. 1 until the step of forming the texture structure, the n + -type diffusion layer 2 and the antireflection film 4 on the semiconductor substrate 1 (FIGS. 19 (19) to (24)).
  • FIG. 6 an example of the formation pattern of the passivation layer in the back surface is shown as a schematic plan view.
  • dot-like openings are arranged on the entire back surface, and dot-like openings are also arranged on the portion where the back-surface output extraction electrode is formed in a later step.
  • a p + -type diffusion layer 10 is formed by diffusing aluminum from the portion, and then etched with hydrochloric acid or the like to form a heat-treated product layer (baked product layer) derived from the aluminum paste formed on the p + -type diffusion layer 10 A method of removing can be used.
  • a silver electrode paste containing glass particles is applied to the light receiving surface by screen printing or the like, and a silver electrode paste containing glass particles is applied to the back surface by screen printing or the like.
  • the silver electrode paste on the light receiving surface is applied in a pattern according to the shape of the light receiving surface electrode shown in FIG. 4, and the silver electrode paste on the back surface is applied in a pattern according to the shape of the back electrode shown in FIG.
  • the light receiving surface and the back surface are heat-treated (fired) at a temperature of about 450 ° C. to 900 ° C. in air, as shown in FIG.
  • a light receiving surface collecting electrode 8 and a light receiving surface output extraction electrode 9 are formed on the light receiving surface, and an aluminum electrode 11 and a back surface output extraction electrode 7 are formed on the back surface, respectively.
  • the light receiving surface electrode and the n + -type diffusion layer 2 are electrically connected to each other on the light receiving surface
  • the aluminum electrode 11 formed by vapor deposition and the back surface output extraction electrode 7 are electrically connected to each other on the back surface.
  • the solar cell includes the above-described solar cell element and a wiring material provided on the electrode of the solar cell element.
  • the solar cell preferably includes at least one of the solar cell elements, and the wiring material is disposed on the output extraction electrode of the solar cell element.
  • the solar cell is configured by connecting a plurality of solar cell elements via a wiring material 13 and further sealing with a sealing material as necessary.
  • the wiring material and the sealing material are not particularly limited, and can be appropriately selected from those usually used in the technical field.
  • Example 1 (Preparation of composition 1 for forming a passivation layer) 1.2 g of pentaethoxyniobium (Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2), and terpineol (Nippon Terpene Chemical Co., Ltd., sometimes abbreviated as TPO) 18.8 g was mixed to prepare a composition 1 for forming a passivation layer.
  • pentaethoxyniobium Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2)
  • terpineol Nippon Terpene Chemical Co., Ltd., sometimes abbreviated as TPO
  • the shear viscosity of the composition 1 for forming a passivation layer prepared above was measured immediately after the preparation (within 12 hours), on a rotary shear viscometer (AntonPaar, MCR301), and a cone plate (diameter 50 mm, cone angle 1 °). It was mounted and measured at a temperature of 25 ° C. and shear rates of 1.0 s ⁇ 1 and 10 s ⁇ 1 .
  • the shear viscosity ( ⁇ 1 ) at a shear rate of 1.0 s ⁇ 1 was 22.3 Pa ⁇ s
  • the shear viscosity ( ⁇ 2 ) at a shear rate of 10 s ⁇ 1 was 18.9 Pa ⁇ s.
  • the thixo ratio ( ⁇ 1 / ⁇ 2 ) when the shear rate was 1.0 s ⁇ 1 and 10 s ⁇ 1 was 1.18.
  • the shear viscosity of the composition 1 for forming a passivation layer prepared above was measured immediately after preparation (within 12 hours) and after storage at 25 ° C. for 30 days, respectively.
  • the shear viscosity was measured by attaching a cone plate (diameter 50 nm, cone angle 1 °) to Anton Paar, MCR301, at a temperature of 25 ° C. and a shear rate of 1.0 s ⁇ 1 .
  • the shear viscosity at 25 ° C. was 22.3 Pa ⁇ s immediately after preparation, and 23.9 Pa ⁇ s after storage at 25 ° C. for 30 days.
  • the change rate of the shear viscosity after storage for 30 days is A when the change rate is less than 10%, B is the change rate of 10% or more and less than 30%, and C is 30% or more. If evaluation is A and B, it is favorable as the storage stability of the composition for forming a passivation layer.
  • Table 2 the numerical value of the shear viscosity immediately after preparation and the evaluation result of storage stability are shown.
  • a semiconductor substrate having a mirror-shaped single crystal p-type silicon substrate 50 mm square, thickness 625 ⁇ m, hereinafter referred to as substrate A
  • substrate B Two types of single crystal p-type silicon substrates (50 mm square, thickness 180 ⁇ m, hereinafter referred to as substrate B) on which a texture structure was formed were used.
  • the passivation layer forming composition 1 prepared above was screen-printed 10 times on each of the substrate A and the substrate B, and the substrate A was 9 sheets and the substrate B was 8 sheets. It was visually confirmed that there was no printing unevenness.
  • A is the case where 9 or more out of 10 sheets have no print unevenness during printing
  • B is the case of 8 or less and 6 or more
  • C is the case of 5 or less. If evaluation is A and B, it is favorable as printing unevenness of the composition for forming a passivation layer.
  • the uneven printing refers to a phenomenon in which the thickness of the composition layer varies depending on the location, which is caused when a part of the screen plate is badly separated when the screen plate is separated from the silicon substrate.
  • the prepared composition 1 for forming a passivation layer was printed on the entire surface of the substrate A and the substrate B in a pattern shown in FIG.
  • the dot-shaped opening pattern used in the evaluation has a dot diameter (L a ) of 368 ⁇ m and a dot interval (L b ) of 0.5 mm.
  • substrate B which provided the composition 1 for passivation layer formation were heated at 150 degreeC for 3 minute (s), and were dried by evaporating a liquid medium.
  • the substrate A and the substrate B were heat-treated (fired) at a temperature of 700 ° C. for 10 minutes, and then allowed to cool at room temperature (25 ° C.).
  • the dot diameter (L a ) of the dot-shaped opening in the passivation layer formed on the substrate after heat treatment (firing) was measured, and the dot diameter (L a ) was measured at 10 points. The average value was calculated.
  • the dot diameter (L a ) was 332 ⁇ m, and for substrate B, it was 270 ⁇ m.
  • the dot diameter (L a ) (368 ⁇ m) immediately after printing is less than 10%
  • the reduction rate of the dot diameter (L a ) after heat treatment (firing) is less than 10% and A is less than 30% Is B and 30% or more is C.
  • a and B it is favorable as printing bleeding of the composition for forming a passivation layer.
  • printing bleeding refers to a phenomenon in which a passivation layer forming composition applied on a semiconductor substrate stains and spreads.
  • the semiconductor substrate was heat-treated (fired) at a temperature of 700 ° C. for 10 minutes, and then allowed to cool at room temperature (25 ° C.) to obtain an evaluation substrate.
  • the heat treatment (firing) was performed using a diffusion furnace (ACCURON CQ-1200, Hitachi Kokusai Electric Co., Ltd.) under atmospheric conditions under conditions of a maximum temperature of 700 ° C. and a holding time of 10 minutes.
  • the effective lifetime of the evaluation substrate obtained above was measured at room temperature (25 ° C.) by the reflected microwave photoconductive decay method using a lifetime measuring device (Nippon Semi-Lab Co., Ltd., WT-2000PVN).
  • the effective lifetime of the region to which the composition for forming a passivation layer was applied was 203 ⁇ s.
  • MIS Metal-Insulator-Semiconductor
  • the voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A).
  • V fb flat band voltage
  • ⁇ ms ⁇ 0.81 [V]
  • N f the fixed charge density N f was calculated from the difference between the flat band voltages (V fb ⁇ ms ), the measured capacitance value, the area of the aluminum electrode, and the elementary charge.
  • the fixed charge density N f is a negative value when the value of V fb ⁇ ms is positive, that is, when V fb is larger than ⁇ 0.81 [V].
  • the passivation layer has a negative fixed charge. Will show.
  • a single crystal p-type semiconductor substrate (125 mm square, thickness 200 ⁇ m) was prepared, and texture structures were formed on the light receiving surface and the back surface by alkali etching.
  • a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ), nitrogen and oxygen treatment was performed at a temperature of 900 ° C. for 20 minutes to form n + -type diffusion layers on the light receiving surface, the back surface, and the side surface.
  • side etching was performed to remove the side PSG layer and the n + -type diffusion layer, and the PSG layer on the light-receiving surface and the back surface was removed using an etching solution containing hydrofluoric acid.
  • the back surface was separately etched to remove the n + -type diffusion layer on the back surface. Thereafter, an antireflection film made of silicon nitride was formed on the n + -type diffusion layer on the light-receiving surface with a thickness of about 90 nm by PECVD.
  • the passivation layer forming composition 1 prepared above was applied to the back surface in the pattern of FIGS. 5, 7 and 8, and then dried at a temperature of 150 ° C. for 5 minutes, and a diffusion furnace (ACCURON CQ-1200, The passivation layer 1 was formed by performing heat treatment (baking) under the conditions of a maximum temperature of 700 ° C. and a holding time of 10 minutes in an atmospheric atmosphere using Hitachi Kokusai Electric). 5, 7, and 8, the back surface passivation layer 1 is formed in a pattern in which the p-type semiconductor substrate is exposed in a dot shape except for a portion where the back surface output extraction electrode is formed in a later step.
  • the pattern of the dot-shaped openings has the same shape as that used in the printing bleeding evaluation, the dot diameter (L a ) is 368 ⁇ m, and the dot interval (L b ) is 0.5 mm.
  • a commercially available silver electrode paste (PV-16A, DuPont) was printed on the light receiving surface with the pattern shown in FIG. 4 by screen printing.
  • the electrode pattern is composed of a light receiving surface collecting electrode having a width of 120 ⁇ m and a light receiving surface output extraction electrode having a width of 1.5 mm, and printing conditions (for the screen plate) so that the thickness after heat treatment (firing) is 20 ⁇ m.
  • the mesh, printing speed and printing pressure) were adjusted as appropriate. This was heated at a temperature of 150 ° C. for 5 minutes to evaporate the liquid medium, thereby performing a drying treatment.
  • a wiring member (solder-plated rectangular wire for solar cell, product name: SSA-TPS 0.2 ⁇ 1.5 (20 ), A copper wire with a thickness of 0.2 mm x a width of 1.5 mm, with Sn-Ag-Cu lead-free solder plated to a maximum thickness of 20 ⁇ m per side, Hitachi Cable, Ltd.)
  • NPS-150-M Tabbing & Stringing Machine, NPC, Inc.
  • melting the solder under the conditions of a maximum temperature of 250 ° C. and a holding time of 10 seconds.
  • glass plate 16 / sealing material 14 / wiring material 13 are connected in the order of solar cell element 12 / sealing material 14 / back sheet 15, and a part of the wiring member is laminated using a vacuum laminator (LM-50 ⁇ 50, NPC Corporation). Was laminated for 5 minutes at a temperature of 140 ° C. so as to expose the solar cell 1.
  • a vacuum laminator LM-50 ⁇ 50, NPC Corporation
  • the evaluation of the power generation performance of the produced solar cell was performed using pseudo-sunlight (WXS-155S-10, Wacom Denso Co., Ltd.) and voltage-current (IV) evaluation measuring instrument (IV CURVE TRACER MP-180, This was performed in combination with a measuring device of Eihiro Seiki Co., Ltd.). Jsc (short circuit current), Voc (open voltage), F. F. (Form factor) and ⁇ (conversion efficiency) were obtained by measuring in accordance with JIS-C-8913 (fiscal 2005) and JIS-C-8914 (fiscal 2005), respectively. The obtained measured value was converted into a relative value with the measured value of the solar cell (solar cell C1) produced in Comparative Example 1 shown later as 100.0.
  • Example 2 ethyl cellulose (Nihon Kasei Co., Ltd., trade name: ETHOCEL 200 cps, sometimes abbreviated as EC) was added to the composition for forming a passivation layer. Specifically, the content of each component is 1.2 g of pentaethoxyniobium (Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2), and 18.5 g of terpineol. A composition 2 for forming a passivation layer was prepared in the same manner as in Example 1 except that ethyl cellulose was changed to 0.3 g.
  • pentaethoxyniobium Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2
  • a composition 2 for forming a passivation layer was prepared in the same manner as in Example 1 except that ethyl cellulose was
  • Example 2 Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the passivation layer forming composition 2, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 2 The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 2 and the solar cell 2 were produced, and the power generation performance was evaluated.
  • Example 3 aluminum ethyl acetoacetatodiisopropylate (Kawaken Fine Chemical Co., Ltd., trade name: ALCH) was added to the composition for forming a passivation layer. Specifically, the content of each component is 1.2 g of pentaethoxyniobium (Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.22) and 1.2 g of ALCH. A composition 3 for forming a passivation layer was prepared in the same manner as in Example 1 except that terpineol was changed to 17.6 g.
  • ALCH aluminum ethyl acetoacetatodiisopropylate
  • Example 2 Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the composition 3 for forming a passivation layer, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 3 The thickness and the fixed charge density were measured. Furthermore, it carried out similarly to Example 1, the solar cell element 3 and the solar cell 3 were produced, and electric power generation performance was evaluated.
  • Example 4 ethyl cellulose (ETHOCEL 200 cps) and aluminum ethyl acetoacetate diisopropylate (ALCH) were added to the composition for forming a passivation layer.
  • the content of each component is 1.6 g of pentaethoxyniobium (Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2), and 1.0 g of ALCH.
  • a composition 4 for forming a passivation layer was prepared in the same manner as in Example 1 except that 17.1 g of terpineol and 0.3 g of ethyl cellulose were changed.
  • Example 2 Thereafter, in the same manner as in Example 1, evaluation of the thixotropy of the passivation layer forming composition 4, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and passivation layer 4 effective lifetime Evaluation was made and thickness and fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 4 and the solar cell 4 were produced, and the power generation performance was evaluated.
  • Example 5 For each evaluation, the composition for forming a passivation layer prepared in Example 4 was used. Evaluation of printability (printing unevenness and printing bleeding) Preparation of substrate, measurement substrate for measurement of effective lifetime and thickness of passivation layer, heat treatment (firing) conditions for passivation layer forming composition 4 in preparation of solar cell element Except that the temperature was changed from 700 ° C. for 10 minutes to 600 ° C. for 15 minutes, in the same manner as in Example 1, evaluation of printability (printing unevenness and printing bleeding) and evaluation of the effective lifetime of the passivation layer 5 The thickness and the fixed charge density were measured, the solar cell element 5 and the solar cell 5 were produced, and the power generation performance was evaluated.
  • printability printing unevenness and printing bleeding
  • Example 6 For each evaluation, the composition for forming a passivation layer prepared in Example 4 was used. Evaluation of printability (printing unevenness and printing bleeding) Preparation of substrate, measurement substrate for measurement of effective lifetime and thickness of passivation layer, heat treatment (firing) conditions for passivation layer forming composition 4 in preparation of solar cell element The evaluation of the printability (printing unevenness and printing bleeding) and the evaluation of the passivation layer 6 effective lifetime were performed in the same manner as in Example 1 except that the temperature was changed from 700 ° C. for 10 minutes to 800 ° C. for 8 minutes. The thickness and fixed charge density were measured, the solar cell element 6 and the solar cell 6 were produced, and the power generation performance was evaluated.
  • Example 7 In Example 1, instead of pentaethoxyniobium, penta-n-butoxytantalum (High Purity Chemical Laboratory Co., Ltd., structural formula: Ta (On—C 4 H 9 ) 5 , molecular weight: 546.4) was used. Using. Specifically, a composition 7 for forming a passivation layer was prepared by mixing 1.6 g of penta-n-butoxytantalum and 18.4 g of terpineol with respect to the content of each component.
  • penta-n-butoxytantalum High Purity Chemical Laboratory Co., Ltd., structural formula: Ta (On—C 4 H 9 ) 5 , molecular weight: 546.4
  • Example 1 Thereafter, in the same manner as in Example 1, evaluation of the thixotropy of the passivation layer forming composition 7, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 7 The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 7 and the solar cell 7 were produced, and the power generation performance was evaluated.
  • Example 8 aluminum ethylacetoacetatodiisopropylate (Kawaken Fine Chemical Co., Ltd., trade name: ALCH) was added to the composition for forming a passivation layer. Specifically, the content of each component was changed to penta-n-butoxytantalum (High Purity Chemical Laboratory, structural formula: Ta (On—C 4 H 9 ) 5 , molecular weight: 546.4). A passivation layer forming composition 8 was prepared in the same manner as in Example 7 except that 1.2 g, ALCH was changed to 1.2 g, and terpineol was changed to 17.6 g.
  • Example 2 Thereafter, in the same manner as in Example 1, evaluation of the thixotropy of the passivation layer forming composition 8, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 8 The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 8 and the solar cell 8 were produced, and the power generation performance was evaluated.
  • Example 9 In Example 1, instead of pentaethoxyniobium, vanadium (V) triethoxide oxide (high purity chemical research institute, structural formula: VO (OC 2 H 5 ) 3 , molecular weight: 546.4) was used. . Specifically, 1.6 g of vanadium (V) triethoxide oxide and 18.4 g of terpineol were mixed to prepare a passivation layer forming composition 9. Thereafter, in the same manner as in Example 1, evaluation of the thixotropy of the composition 9 for forming a passivation layer, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 9 The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, a solar cell element 9 and a solar cell 9 were produced, and power generation performance was evaluated.
  • Example 10 Aluminum ethylacetoacetatodiisopropylate (Kawaken Fine Chemical Co., Ltd., trade name: ALCH) and ethyl cellulose (ETHOCEL 200 cps) were added to the composition for forming a passivation layer. Specifically, the content of each component was changed to 1. for vanadium (V) triethoxide oxide (High Purity Chemical Laboratory Co., Ltd., structural formula: VO (OC 2 H 5 ) 3 , molecular weight: 546.4).
  • V vanadium triethoxide oxide
  • a composition 10 for forming a passivation layer was prepared in the same manner as in Example 9 except that 2 g, ALCH 0.8 g, terpineol 17.7 g, and ethyl cellulose 0.3 g were changed. Thereafter, in the same manner as in Example 1, evaluation of the thixotropy of the composition 10 for forming a passivation layer, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 10 are performed. The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 10 and the solar cell 10 were produced, and the power generation performance was evaluated.
  • Example 11 In Example 1, instead of pentaethoxyniobium, tetra-t-butoxyhafnium (high purity chemical research institute, structural formula: Hf (Ot-C 4 H 9 ) 4 , molecular weight: 470.9) was used. Using. Specifically, 2.0 g of tetra-t-butoxyhafnium and 18.0 g of terpineol were mixed to prepare a passivation layer forming composition 11. Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the composition 11 for forming a passivation layer, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 11 are performed. The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 11 and the solar cell 11 were produced, and the power generation performance was evaluated.
  • Example 12 In Example 11, aluminum trisethyl acetoacetate (Kawaken Fine Chemical Co., Ltd., trade name: ALCH-TR) and ethyl cellulose (ETHOCEL 200 cps) were added to the composition for forming a passivation layer. Specifically, the content of each component was changed to tetra-t-butoxyhafnium (High-Purity Chemical Laboratory, structural formula: Hf (Ot-C 4 H 9 ) 4 , molecular weight: 470.9).
  • a passivation layer forming composition 12 was prepared in the same manner as in Example 11 except that 1.2 g, ALCH-TR 1.2 g, terpineol 17.3 g, and ethyl cellulose 0.3 g were changed. Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the passivation layer forming composition 12, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 12 were performed. The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, solar cell elements 12 and solar cells 12 were produced, and the power generation performance was evaluated.
  • Example 13> In the preparation of the composition for forming a passivation layer, pentaethoxyniobium (Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2), penta-n-butoxytantalum (high purity, Inc.) Chemical laboratory, structural formula: Ta (On-C 4 H 9 ) 5 , molecular weight: 546.4), terpineol, and ethyl cellulose (ETHOCEL 200 cps) were used.
  • pentaethoxyniobium Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2
  • penta-n-butoxytantalum high purity, Inc.
  • Ta On-C 4 H 9
  • terpineol terpineol
  • ETHOCEL 200 cps ETHOCEL 200 cps
  • composition 13 for forming a passivation layer was prepared. Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the composition 13 for forming a passivation layer, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 13 are performed. The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, a solar cell element 13 and a solar cell 13 were produced, and power generation performance was evaluated.
  • Example 14> In the preparation of the composition for forming a passivation layer, penta-n-butoxyniobium (high purity chemical research institute, structural formula: Nb (On—C 4 H 9 ) 5 , molecular weight: 458.5), vanadium ( V) Triethoxide oxide (High Purity Chemical Laboratory Co., Ltd., structural formula: VO (OC 2 H 5 ) 3 , molecular weight: 546.4), aluminum ethyl acetoacetate diisopropylate (Kawaken Fine Chemical Co., Ltd., commodity) Name: ALCH), terpineol, and ethyl cellulose (ETHOCEL 200 cps) were used.
  • each component was 1.6 g of penta-n-butoxyniobium, 0.6 g of vanadium (V) tri-n-propoxide oxide, 0.6 g of ALCH, and 17.0 g of terpineol.
  • a composition 14 for forming a passivation layer was prepared in the same manner as in Example 1 except that the ethyl cellulose was changed to 0.2 g. Thereafter, in the same manner as in Example 1, evaluation of the thixotropy of the composition 14 for forming a passivation layer, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 14 are performed. The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 14 and the solar cell 14 were produced, and the power generation performance was evaluated.
  • the passivation layer C1 made of aluminum oxide (Al 2 O 3 ) was formed using an ALD (Atomic Layer Deposition) method without using the passivation layer forming composition. Specifically, film formation conditions were adjusted using an atomic layer deposition apparatus so that the Al 2 O 3 layer had a thickness of 20 nm. In addition, the thickness after film-forming was measured using the interference type film thickness meter (F20 film thickness measuring system, Filmetrics Co., Ltd.).
  • the effective lifetime and thickness evaluation substrate of the passivation layer C1, the solar cell element C1 and the solar cell C1 are manufactured, the effective lifetime, the thickness and the fixed charge density are measured, and the solar cell C1.
  • the semiconductor substrate, type, film formation pattern, light receiving surface and back electrode forming method used for each evaluation are the same as those in Examples 1 to 16.
  • Example 2 In the preparation of the composition for forming a passivation layer in Example 1, as shown in Table 1, without using the compound of formula (I), triethoxybismuth (High Purity Chemical Laboratory, Structural Formula: Bi (OC 2 A composition C2 for forming a passivation layer consisting of H 5 ) 3 , molecular weight 344.2, terpineol, and ethyl cellulose (ETHOCEL 200 cps) was prepared. Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the passivation layer forming composition C2, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer C2 The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, a solar cell element C2 and a solar cell C2 were produced, and the power generation performance was evaluated.
  • Triethoxybismuth High Purity Chemical Laboratory, Structural Formula: Bi (OC 2 A composition C2 for forming a
  • Example 3 In the preparation of the composition for forming a passivation layer in Example 1, tetra-i-propoxytitanium (high purity chemical research institute, structural formula: Ti, as shown in Table 1 without using the compound of formula (I).
  • a passivation layer forming composition C3 comprising (Oi-C 3 H 7 ) 4 , molecular weight 284.2, terpineol, and ethyl cellulose (ETHOCEL 200 cps) was prepared. Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the passivation layer forming composition C3, evaluation of storage stability, evaluation of printability (print unevenness and printing bleeding), and effective lifetime of the passivation layer C3 Evaluation and thickness were measured. Further, in the same manner as in Example 1, a solar cell element C3 and a solar cell C3 were produced, and the power generation performance was evaluated.
  • a texture structure was formed on the light receiving surface and the back surface, and an antireflection film made of n + -type diffusion layer and silicon nitride was formed on the light receiving surface with a thickness of about 90 nm by PECVD.
  • a commercially available silver electrode paste PV-16A, DuPont was printed on the light-receiving surface with the pattern shown in FIG. 4 by screen printing, and this was heated at a temperature of 150 ° C. for 5 minutes to form a liquid medium. Drying was performed by transpiration.
  • Example 2 For the solar cell element C4 obtained above, similarly to Example 1, a wiring member was connected on the light receiving surface output extraction electrode and the back surface output extraction electrode, and then a glass plate, a sealing material, and a back sheet were used. Laminated and vacuum laminated using a laminator to produce a solar cell C4.
  • a resin ethyl cellulose
  • the effective lifetime and the power generation performance of the solar cell evaluated in Examples 1 to 14 are almost the same as those measured in Comparative Example 1.
  • the ALD method It was found that a passivation layer having an excellent passivation effect comparable to that of aluminum oxide (Al 2 O 3 ) was formed. From the measurement results of the fixed charge density, it was found that the passivation layers prepared in Examples 1 to 14 all showed negative fixed charges although the numerical values were different.
  • the power generation performance of the produced solar cell tended to be relatively high when the passivation layer forming composition containing a resin (ethyl cellulose) was used.
  • a resin ethyl cellulose
  • printability improves (a printing blur is suppressed) and the dot diameter which prescribes
  • the method for forming the passivation layer is not the screen printing method applied in the present example, but, for example, a passivation layer forming composition is applied to the entire back surface, and this is subjected to heat treatment (firing), followed by a desired pattern.
  • a passivation layer forming composition is applied to the entire back surface, and this is subjected to heat treatment (firing), followed by a desired pattern.
  • the power generation performance of the produced solar cell tended to be relatively high when the passivation layer forming composition containing both the compound of formula (I) and the organoaluminum compound was used.
  • the passivation layer forming composition containing both the compound of formula (I) and the organoaluminum compound was used.
  • a composite oxide of metal and aluminum derived from the compound of formula (I) is formed by heat treatment (firing). It is considered that the passivation effect is further improved by forming a denser passivation layer having a large negative fixed charge.
  • Example 14 even when two types of compounds of the formula (I) are contained in the composition for forming a passivation layer, the passivation effect is high and contributes to the improvement of power generation performance of the solar cell. I understood that.
  • a passivation film used for a solar cell element including aluminum oxide and niobium oxide and having a silicon substrate.
  • niobium oxide / aluminum oxide a mass ratio (niobium oxide / aluminum oxide) between the niobium oxide and the aluminum oxide is 30/70 to 90/10.
  • ⁇ 3> The passivation film according to ⁇ 1> or ⁇ 2>, in which a total content of the niobium oxide and the aluminum oxide is 90% by mass or more.
  • the passivation film according to any one of ⁇ 1> to ⁇ 4> which is a heat-treated product of a coating type material including an aluminum oxide precursor and a niobium oxide precursor.
  • a p-type silicon substrate made of single crystal silicon or polycrystalline silicon and having a light receiving surface and a back surface opposite to the light receiving surface;
  • An n-type impurity diffusion layer formed on the light-receiving surface side of the silicon substrate;
  • a first electrode formed on the surface of the n-type impurity diffusion layer on the light-receiving surface side of the silicon substrate;
  • a passivation film comprising aluminum oxide and niobium oxide formed on the back surface of the silicon substrate and having a plurality of openings;
  • a second electrode forming an electrical connection with the surface on the back side of the silicon substrate through the plurality of openings;
  • a solar cell element comprising:
  • a p-type silicon substrate made of single crystal silicon or polycrystalline silicon and having a light receiving surface and a back surface opposite to the light receiving surface;
  • An n-type impurity diffusion layer formed on the light-receiving surface side of the silicon substrate;
  • a first electrode formed on the surface of the n-type impurity diffusion layer on the light-receiving surface side of the silicon substrate;
  • a p-type impurity diffusion layer formed on a part or all of the back side of the silicon substrate and doped with impurities at a higher concentration than the silicon substrate;
  • a passivation film comprising aluminum oxide and niobium oxide formed on the back surface of the silicon substrate and having a plurality of openings;
  • a second electrode that forms an electrical connection with the surface of the p-type impurity diffusion layer on the back side of the silicon substrate through the plurality of openings;
  • a solar cell element comprising:
  • An n-type silicon substrate made of single crystal silicon or polycrystalline silicon and having a light receiving surface and a back surface opposite to the light receiving surface;
  • a p-type impurity diffusion layer formed on the light-receiving surface side of the silicon substrate;
  • a second electrode formed on the back side of the silicon substrate;
  • a passivation film formed on the light-receiving surface side surface of the silicon substrate and including a plurality of openings and containing aluminum oxide and niobium oxide;
  • a first electrode formed on the surface of the p-type impurity diffusion layer on the light-receiving surface side of the silicon substrate and forming an electrical connection with the surface on the light-receiving surface side of the silicon substrate through the plurality of openings;
  • a solar cell element comprising:
  • ⁇ 10> The solar cell element according to any one of ⁇ 7> to ⁇ 9>, wherein a mass ratio of niobium oxide to aluminum oxide (niobium oxide / aluminum oxide) in the passivation film is 30/70 to 90/10.
  • ⁇ 11> The solar cell element according to any one of ⁇ 7> to ⁇ 10>, wherein a total content of the niobium oxide and the aluminum oxide in the passivation film is 90% by mass or more.
  • ⁇ 12> a silicon substrate;
  • a passivation film having a long carrier lifetime of a silicon substrate and having a negative fixed charge can be realized at low cost.
  • a coating type material for realizing the formation of the passivation film can be provided.
  • a highly efficient solar cell element using the passivation film can be realized at low cost.
  • a silicon substrate with a passivation film having a long carrier lifetime and a negative fixed charge can be realized at low cost.
  • the passivation film of the present embodiment is a passivation film used for a silicon solar cell element, and includes aluminum oxide and niobium oxide.
  • the fixed charge amount of the film can be controlled by changing the composition of the passivation film.
  • the mass ratio of niobium oxide and aluminum oxide is 30/70 to 80/20 from the viewpoint that the negative fixed charge can be stabilized. Further, the mass ratio of niobium oxide and aluminum oxide is more preferably 35/65 to 70/30 from the viewpoint that the negative fixed charge can be further stabilized. Further, the mass ratio of niobium oxide and aluminum oxide is preferably 50/50 to 90/10 from the viewpoint that both improvement of carrier lifetime and negative fixed charge can be achieved.
  • the mass ratio of niobium oxide to aluminum oxide in the passivation film is measured by energy dispersive X-ray spectroscopy (EDX), secondary ion mass spectrometry (SIMS), and high frequency inductively coupled plasma mass spectrometry (ICP-MS). be able to.
  • Specific measurement conditions are as follows. Dissolving the passivation film in acid or alkaline aqueous solution, atomizing this solution and introducing it into Ar plasma, measuring the wavelength and intensity by spectroscopically analyzing the light emitted when the excited element returns to the ground state, Element qualification is performed from the obtained wavelength, and quantification is performed from the obtained intensity.
  • the total content of niobium oxide and aluminum oxide in the passivation film is preferably 80% by mass or more, and more preferably 90% by mass or more from the viewpoint of maintaining good characteristics. As the components of niobium oxide and aluminum oxide in the passivation film increase, the effect of negative fixed charges increases.
  • the total content of niobium oxide and aluminum oxide in the passivation film can be measured by combining thermogravimetric analysis, fluorescent X-ray analysis, ICP-MS, and X-ray absorption spectroscopy. Specific measurement conditions are as follows.
  • the ratio of inorganic components can be calculated by thermogravimetric analysis, the ratio of niobium and aluminum can be calculated by fluorescent X-ray or ICP-MS analysis, and the ratio of oxide can be examined by X-ray absorption spectroscopy.
  • components other than niobium oxide and aluminum oxide may be included as organic components from the viewpoint of improving the film quality and adjusting the elastic modulus.
  • the presence of the organic component in the passivation film can be confirmed by elemental analysis and measurement of the FT-IR of the film.
  • the content of the organic component in the passivation film is more preferably less than 10% by mass, further preferably 5% by mass or less, and particularly preferably 1% by mass or less in the passivation film.
  • the passivation film may be obtained as a heat-treated product of a coating type material containing an aluminum oxide precursor and a niobium oxide precursor. Details of the coating type material will be described next.
  • the coating material of the present embodiment includes an aluminum oxide precursor and a niobium oxide precursor, and is used for forming a passivation film for a solar cell element having a silicon substrate.
  • the aluminum oxide precursor can be used without particular limitation as long as it produces aluminum oxide.
  • As the aluminum oxide precursor it is preferable to use an organic aluminum oxide precursor from the viewpoint of uniformly dispersing aluminum oxide on the silicon substrate and chemically stable.
  • organic aluminum oxide precursors include aluminum triisopropoxide (structural formula: Al (OCH (CH 3 ) 2 ) 3 , High Purity Chemical Research Laboratory SYM-AL04, and the like.
  • the niobium oxide precursor can be used without particular limitation as long as it produces niobium oxide.
  • the niobium oxide precursor it is preferable to use an organic niobium oxide precursor from the viewpoint of uniformly dispersing niobium oxide on the silicon substrate and chemically stable.
  • organic niobium oxide precursors include niobium (V) ethoxide (structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.21), High Purity Chemical Laboratory Nb-05, etc. be able to.
  • a passivation film is formed by forming a coating type material containing an organic niobium oxide precursor and an organic aluminum oxide precursor using a coating method or a printing method, and then removing organic components by a subsequent heat treatment (firing). Can be obtained. Therefore, as a result, a passivation film containing an organic component may be used.
  • FIGS. 12 to 15 are cross-sectional views showing first to fourth configuration examples of the solar cell element using the passivation film on the back surface of the present embodiment.
  • silicon substrate (crystalline silicon substrate, semiconductor substrate) 101 used in this embodiment mode either single crystal silicon or polycrystalline silicon may be used. Further, as the silicon substrate 101, either p-type crystalline silicon or n-type crystalline silicon may be used. From the standpoint of exerting the effects of the present embodiment, p-type crystalline silicon is more suitable.
  • the single crystal silicon or polycrystalline silicon used for the silicon substrate 101 may be arbitrary, but single crystal silicon or polycrystalline silicon having a resistivity of 0.5 ⁇ ⁇ cm to 10 ⁇ ⁇ cm is preferable.
  • a light receiving surface antireflection film 103 such as a silicon nitride (SiN) film, and a first electrode 105 (light receiving surface side electrode, first surface electrode, upper surface electrode) using silver (Ag) or the like. , A light receiving surface electrode) is formed.
  • the light receiving surface antireflection film 103 may also have a function as a light receiving surface passivation film. By using the SiN film, both functions of the light receiving surface antireflection film and the light receiving surface passivation film can be provided.
  • the solar cell element of the present embodiment may or may not have the light-receiving surface antireflection film 103.
  • the light receiving surface of the solar cell element is preferably formed with a concavo-convex structure (texture structure) in order to reduce the reflectance on the surface, but the solar cell element of the present embodiment has a texture structure. It may or may not have.
  • a BSF (Back Surface Field) layer 104 which is a layer doped with a group III element such as aluminum or boron, is formed on the back side (lower side, second side, back side in the figure) of the silicon substrate 101.
  • the solar cell element of this embodiment may or may not have the BSF layer 104.
  • a second surface made of aluminum or the like is used on the back surface side of the silicon substrate 101 to make contact (electrical connection) with the BSF layer 104 (or the surface on the back surface side of the silicon substrate 101 when the BSF layer 104 is not provided). Electrodes 106 (back side electrode, second side electrode, back side electrode) are formed.
  • a contact region (a surface on the back side of the silicon substrate 101 when the BSF layer 104 is not provided) and the second electrode 106 are electrically connected (
  • a passivation film (passivation layer) 107 containing aluminum oxide and niobium oxide is formed in a portion excluding the opening OA).
  • the passivation film 107 of this embodiment can have a negative fixed charge. With this fixed charge, electrons which are minority carriers among the carriers generated in the silicon substrate 101 by light are bounced back to the surface side. For this reason, a short circuit current increases and it is anticipated that photoelectric conversion efficiency will improve.
  • the second electrode 106 is formed on the entire surface of the contact region (opening OA) and the passivation film 107.
  • the second electrode 106 is formed only in the region (opening OA).
  • the second electrode 106 may be formed only in part on the contact region (opening OA) and the passivation film 107. Even with the solar cell element having the configuration shown in FIG. 13, the same effect as in FIG. 12 (first configuration example) can be obtained.
  • the BSF layer 104 is formed only on a part of the back surface side including the contact region (opening OA portion) with the second electrode 106, and FIG. 12 (first configuration example). Thus, it is not formed on the entire back surface side. Even with the solar cell element having such a configuration (FIG. 14), the same effect as that of FIG. 12 (first configuration example) can be obtained. Further, according to the solar cell element of the third configuration example of FIG. 14, the BSF layer 104, that is, the impurity is doped at a higher concentration than the silicon substrate 101 by doping a group III element such as aluminum or boron. Since there are few areas, it is possible to obtain higher photoelectric conversion efficiency than that in FIG. 12 (first configuration example).
  • FIG. 15 a fourth configuration example shown in FIG. 15 will be described.
  • the second electrode 106 is formed on the entire surface of the contact region (opening OA) and the passivation film 107, but in FIG. 15 (fourth configuration example), the contact The second electrode 106 is formed only in the region (opening OA).
  • the second electrode 106 may be formed only in part on the contact region (opening OA) and the passivation film 107. Even with the solar cell element having the configuration shown in FIG. 15, the same effect as in FIG. 14 (third configuration example) can be obtained.
  • the second electrode 106 when the second electrode 106 is applied by a printing method and baked at a high temperature to form the entire surface on the back side, a convex warpage tends to occur in the temperature lowering process. Such warpage may cause damage to the solar cell element, which may reduce the yield. Further, the problem of warpage increases as the silicon substrate becomes thinner. The cause of this warp is that stress is generated because the thermal expansion coefficient of the second electrode 106 made of metal (for example, aluminum) is larger than that of the silicon substrate, and the shrinkage in the temperature lowering process is correspondingly large.
  • metal for example, aluminum
  • the electrode structure tends to be symmetrical vertically. This is preferable because stress due to the difference in thermal expansion coefficient is unlikely to occur. However, in that case, it is preferable to provide a separate reflective layer.
  • a texture structure is formed on the surface of the silicon substrate 101 shown in FIG.
  • the texture structure may be formed on both sides of the silicon substrate 101 or only on one side (light receiving side).
  • the damaged layer of the silicon substrate 101 is removed by immersing the silicon substrate 101 in a heated potassium hydroxide or sodium hydroxide solution.
  • a texture structure is formed on both surfaces or one surface (light receiving surface side) of the silicon substrate 101 by dipping in a solution containing potassium hydroxide and isopropyl alcohol as main components. Note that, as described above, the solar cell element of the present embodiment may or may not have a texture structure, and thus this step may be omitted.
  • a phosphorus diffusion layer (n + layer) is formed as the diffusion layer 102 by thermal diffusion of phosphorus oxychloride (POCl 3 ) or the like on the silicon substrate 101.
  • the phosphorus diffusion layer can be formed, for example, by applying a coating-type doping material solution containing phosphorus to the silicon substrate 101 and performing heat treatment. After the heat treatment, the phosphorous glass layer formed on the surface is removed with an acid such as hydrofluoric acid, whereby a phosphorous diffusion layer (n + layer) is formed as the diffusion layer 102.
  • the method for forming the phosphorus diffusion layer is not particularly limited.
  • the phosphorus diffusion layer may be formed so that the depth from the surface of the silicon substrate 101 is in the range of 0.2 ⁇ m to 0.5 ⁇ m, and the sheet resistance is in the range of 40 ⁇ / ⁇ to 100 ⁇ / ⁇ (ohm / square). preferable.
  • a BSF layer 104 on the back surface side is formed by applying a coating-type doping material solution containing boron, aluminum or the like to the back surface side of the silicon substrate 101 and performing heat treatment.
  • a coating-type doping material solution containing boron, aluminum or the like for the application, methods such as screen printing, inkjet, dispensing, spin coating and the like can be used.
  • the BSF layer 104 is formed by removing a layer of boron glass, aluminum, or the like formed on the back surface with hydrofluoric acid, hydrochloric acid, or the like.
  • the method for forming the BSF layer 104 is not particularly limited.
  • the BSF layer 104 is formed so that the concentration range of boron, aluminum, etc.
  • the solar cell element of the present embodiment may or may not have the BSF layer 104, and thus this step may be omitted.
  • the diffusion layer 102 on the light-receiving surface and the BSF layer 104 on the back surface are formed using a coating-type doping material solution
  • the above-described doping material solution is applied to both sides of the silicon substrate 101 to diffuse.
  • the phosphorous diffusion layer (n + layer) and the BSF layer 104 as the layer 102 may be formed in a lump, and then phosphorous glass, boron glass, or the like formed on the surface may be removed all at once.
  • a silicon nitride film as the light-receiving surface antireflection film 103 is formed on the diffusion layer 102.
  • the method for forming the light receiving surface antireflection film 103 is not particularly limited.
  • the light-receiving surface antireflection film 103 is preferably formed to have a thickness in the range of 50 to 100 nm and a refractive index in the range of 1.9 to 2.2.
  • the light-receiving surface antireflection film 103 is not limited to a silicon nitride film, and may be a silicon oxide film, an aluminum oxide film, a titanium oxide film, or the like.
  • the surface antireflection film 103 such as an silicon nitride film can be formed by a method such as plasma CVD or thermal CVD, and is preferably formed by plasma CVD that can be formed in a temperature range of 350 ° C. to 500 ° C.
  • the passivation film 107 contains aluminum oxide and niobium oxide.
  • an aluminum oxide precursor typified by an organometallic decomposition coating material from which aluminum oxide can be obtained by heat treatment (firing), and niobium oxide obtained by heat treatment (firing). It is formed by applying a material (passivation material) containing a niobium oxide precursor typified by a commercially available organometallic decomposition coating type material and heat-treating (firing).
  • the formation of the passivation film 107 can be performed as follows, for example.
  • the above coating material is spin-coated on one side of a 725 ⁇ m thick 8-inch (20.32 cm) p-type silicon substrate (8 ⁇ cm to 12 ⁇ cm) from which a natural oxide film has been previously removed with hydrofluoric acid having a concentration of 0.049% by mass
  • pre-baking is performed on a hot plate at 120 ° C. for 3 minutes. Thereafter, heat treatment is performed at 650 ° C. for 1 hour in a nitrogen atmosphere. In this case, a passivation film containing aluminum oxide and niobium oxide is obtained.
  • the thickness of the passivation film 107 formed by the above method is usually about several tens of nanometers as measured by an ellipsometer.
  • the coating type material is applied to a predetermined pattern including the contact area (opening OA) by a method such as screen printing, offset printing, inkjet printing, or dispenser printing.
  • the above-mentioned coating type material is pre-baked in the range of 80 ° C. to 180 ° C. after evaporation to evaporate the solvent, and then at 600 ° C. to 1000 ° C. for 30 minutes to 3 hours in a nitrogen atmosphere or in air. It is preferable to perform a degree of heat treatment (annealing) to form a passivation film 107 (oxide film).
  • the opening (contact hole) OA is preferably formed in a dot shape or a line shape on the BSF layer 104.
  • the mass ratio of niobium oxide to aluminum oxide is preferably 30/70 to 90/10, and preferably 30/70 to 80/20. More preferably, it is more preferably 35/65 to 70/30. Thereby, the negative fixed charge can be stabilized. Further, the mass ratio of niobium oxide and aluminum oxide is preferably 50/50 to 90/10 from the viewpoint that both improvement of carrier lifetime and negative fixed charge can be achieved.
  • the total content of niobium oxide and aluminum oxide is preferably 80% by mass or more, and more preferably 90% by mass or more.
  • the first electrode 105 which is an electrode on the light receiving surface side is formed.
  • the first electrode 105 is formed by forming a paste mainly composed of silver (Ag) on the light-receiving surface antireflection film 103 by screen printing and performing a heat treatment (fire through).
  • the shape of the 1st electrode 105 may be arbitrary shapes, for example, may be a known shape which consists of a finger electrode and a bus-bar electrode.
  • the second electrode 106 which is an electrode on the back side is formed.
  • the second electrode 106 can be formed by applying a paste containing aluminum as a main component using screen printing or a dispenser and heat-treating it.
  • the shape of the second electrode 106 is preferably the same shape as the shape of the BSF layer 104, a shape covering the entire back surface, a comb shape, a lattice shape, or the like.
  • the paste for forming the first electrode 105 and the second electrode 106, which are the electrodes on the light receiving surface side, is first printed, and then heat-treated (fire-through), whereby the first electrode 105 and the second electrode 106 are formed.
  • the two electrodes 106 may be formed together.
  • the BSF layer 104 is formed in a contact portion between the second electrode 106 and the silicon substrate 101 in a self-alignment manner. Is formed.
  • the BSF layer 104 may be separately formed by applying a coating-type doping material solution containing boron, aluminum, or the like to the back side of the silicon substrate 101 and heat-treating it. .
  • the diffusion layer 102 is formed by a layer doped with a group III element such as boron
  • the BSF layer 104 is formed by doping a group V element such as phosphorus.
  • a leakage current flows through a portion where the inversion layer formed at the interface due to the negative fixed charge and the metal on the back surface are in contact with each other, and the conversion efficiency may be difficult to increase.
  • FIG. 16 is a cross-sectional view illustrating a configuration example of a solar cell element using the light-receiving surface passivation film of the present embodiment.
  • the diffusion layer 102 on the light receiving surface side is p-type doped with boron, and collects holes on the light receiving surface side and electrons on the back surface side of the generated carriers. For this reason, it is preferable that the passivation film 107 having a negative fixed charge is on the light receiving surface side.
  • an antireflection film made of SiN or the like may be further formed by CVD or the like.
  • the passivation material (a-1) is spin-coated on one side of a 725 ⁇ m-thick 8-inch p-type silicon substrate (8 ⁇ cm to 12 ⁇ cm) from which a natural oxide film has been removed in advance with a hydrofluoric acid having a concentration of 0.049% by mass.
  • Pre-baking was performed on the plate at 120 ° C. for 3 minutes.
  • the FT-IR of the passivation film was measured, a very few peaks due to alkyl groups were observed in the vicinity of 1200 cm ⁇ 1 .
  • a plurality of aluminum electrodes having a diameter of 1 mm were formed on the above-described passivation film through a metal mask by vapor deposition, thereby manufacturing a capacitor having a metal-insulator-semiconductor (MIS) structure.
  • the voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A). As a result, it was found that the flat band voltage (Vfb) shifted from an ideal value of ⁇ 0.81V to + 0.32V. From this shift amount, it was found that the passivation film obtained from the passivation material (a-1) showed a negative fixed charge with a fixed charge density (Nf) of ⁇ 7.4 ⁇ 10 11 cm ⁇ 2 .
  • the passivation material (a-1) is applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to a heat treatment (firing) at 650 ° C. for 1 hour in a nitrogen atmosphere.
  • a sample in which both surfaces of the substrate were covered with a passivation film was produced.
  • the carrier lifetime of this sample was measured using a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 530 ⁇ s.
  • the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
  • the passivation film obtained by heat-treating (firing) the passivation material (a-1) showed a certain degree of passivation performance and a negative fixed charge.
  • Reference Example 1-2 Similar to Reference Example 1-1, a commercially available organometallic decomposition coating material from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (calcination) [High-Purity Chemical Laboratory, SYM-AL04, concentration 2. 3 mass%] and a commercially available organometallic decomposable coating type material [High Purity Chemical Laboratory, Nb-05, concentration 5 mass%] from which niobium oxide (Nb 2 O 5 ) can be obtained by heat treatment (firing). Passivation materials (a-2) to (a-7) shown in Table 3 were prepared by mixing at different ratios.
  • each of the passivation materials (a-2) to (a-7) was applied to one side of a p-type silicon substrate, and heat treatment (firing) was performed to produce a passivation film.
  • the voltage dependence of the capacitance of the obtained passivation film was measured, and the fixed charge density was calculated therefrom.
  • the carrier lifetime is also increased after heat treatment (firing). Since it showed a certain value, it was suggested that it functions as a passivation film. It was found that all the passivation films obtained from the passivation materials (a-2) to (a-7) stably show negative fixed charges and can be suitably used as a passivation for a p-type silicon substrate. .
  • the passivation material (c-1) is spin-coated on one side of a 725 ⁇ m-thick 8-inch p-type silicon substrate (8 ⁇ cm to 12 ⁇ cm) from which a natural oxide film has been removed in advance with a hydrofluoric acid having a concentration of 0.049% by mass.
  • Pre-baking was performed at 120 ° C. for 3 minutes on the plate.
  • heat treatment was performed at 600 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and niobium oxide. When the film thickness was measured with an ellipsometer, it was 50 nm.
  • a plurality of aluminum electrodes having a diameter of 1 mm were formed on the above-described passivation film through a metal mask by vapor deposition, thereby manufacturing a capacitor having a metal-insulator-semiconductor (MIS) structure.
  • the voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A). As a result, it was found that the flat band voltage (Vfb) shifted from an ideal value of ⁇ 0.81 V to +4.7 V. From this shift amount, it was found that the passivation film obtained from the passivation material (c-1) showed a negative fixed charge with a fixed charge density (Nf) of ⁇ 3.2 ⁇ 10 12 cm ⁇ 2 .
  • the passivation material (c-1) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 600 ° C. for 1 hour in a nitrogen atmosphere to obtain silicon.
  • a sample in which both surfaces of the substrate were covered with a passivation film was produced.
  • the carrier lifetime of this sample was measured using a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 330 ⁇ s.
  • the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
  • the passivation film obtained by heat-treating (sintering) the passivation material (c-1) exhibited a certain degree of passivation performance and a negative fixed charge.
  • the passivation material (c-2) is spin-coated on one side of a 725 ⁇ m-thick 8-inch p-type silicon substrate (8 ⁇ cm to 12 ⁇ cm) from which a natural oxide film has been removed in advance with a hydrofluoric acid having a concentration of 0.049% by mass.
  • Pre-baking was performed at 120 ° C. for 3 minutes on the plate.
  • heat treatment was performed at 600 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and niobium oxide. When the film thickness was measured by an ellipsometer, it was 14 nm.
  • a plurality of 1 mm diameter aluminum electrodes are deposited on the passivation film through a metal mask to form a MIS (Metal-Insulator-Semiconductor) capacitor.
  • the voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A).
  • Vfb flat band voltage
  • LCR meter HP, 4275A
  • Vfb flat band voltage
  • the passivation film obtained from the passivation material (c-2) showed a negative fixed charge with a fixed charge density (Nf) of ⁇ 0.8 ⁇ 10 11 cm ⁇ 2 .
  • the passivation material (c-2) is applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (firing) at 600 ° C. for 1 hour in a nitrogen atmosphere.
  • a sample in which both surfaces of the substrate were covered with a passivation film was produced.
  • the carrier lifetime of this sample was measured with a lifetime measuring device (Kobelco Research Institute Co., Ltd., RTA-540). As a result, the carrier lifetime was 200 ⁇ s.
  • the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
  • each of the passivation materials (b-1) to (b-7) was applied to one side of a p-type silicon substrate and heat-treated (fired) to produce a passivation film, Using this, the voltage dependence of the capacitance was measured, and the fixed charge density was calculated therefrom.
  • the passivation film obtained from the passivation materials (b-1) to (b-6) has a large carrier lifetime and has a function as a passivation.
  • the niobium oxide / aluminum oxide ratios were 10/90 and 20/80, the fixed charge density values varied greatly, and a negative fixed charge density could not be stably obtained. It was confirmed that a negative fixed charge density can be realized by using niobium oxide.
  • a negative fixed charge is stably generated because a passivation film showing a positive fixed charge is obtained in some cases. It turns out that it has not reached to show.
  • a passivation film exhibiting a fixed charge can be used as a passivation for an n-type silicon substrate.
  • a negative fixed charge density could not be obtained with the passivation material (b-7) containing 100% by mass of aluminum oxide.
  • a passivation material (d-3) As a passivation material (d-3), a commercially available organometallic decomposition coating material [having high purity chemical laboratory Hf-05, concentration 5 mass%] from which hafnium oxide (HfO 2 ) can be obtained by heat treatment (firing) is used. Got ready.
  • each of the passivation materials (d-1) to (d-3) is applied to one side of a p-type silicon substrate, and then heat-treated (fired) to produce a passivation film. Using this, the voltage dependence of the capacitance was measured, and the fixed charge density was calculated therefrom.
  • the passivation material was applied to both sides of the p-type silicon substrate, and the carrier lifetime was measured using a sample obtained by heat treatment (firing). The results obtained are summarized in Table 5.
  • the passivation films obtained from the passivation materials (d-1) to (d-3) have a small carrier lifetime and an insufficient function as a passivation. It also showed a positive fixed charge.
  • the passivation film obtained from the passivation material (d-3) had a negative fixed charge, but its value was small. It was also found that the carrier lifetime was relatively small and the function as a passivation was insufficient.
  • an SiN film produced by plasma CVD was formed as the light-receiving surface antireflection film 103 on the light-receiving surface side.
  • the passivation material (a-1) prepared in Reference Example 1-1 was applied to the region excluding the contact region (opening OA) on the back surface side of the silicon substrate 101 by the inkjet method. Thereafter, heat treatment was performed to form a passivation film 107 having an opening OA.
  • a sample using the passivation material (c-1) prepared in Reference Example 1-3 was separately prepared as the passivation film 107.
  • a paste mainly composed of silver was screen-printed in the shape of predetermined finger electrodes and bus bar electrodes.
  • a paste mainly composed of aluminum was screen-printed on the entire surface.
  • heat treatment fire-through
  • electrodes first electrode 105 and second electrode 106
  • aluminum is diffused into the opening OA on the back surface to form the BSF layer 104.
  • the fire-through process in which the SiN film is not perforated is described, but the opening OA is first formed in the SiN film by etching or the like, and then the silver electrode is formed. You can also.
  • the passivation film 107 is not formed in the above manufacturing process, aluminum paste is printed on the entire back surface, and the p + layer 114 corresponding to the BSF layer 104 and the electrode 116 corresponding to the second electrode.
  • the characteristic evaluation was performed on the entire surface to form a solar cell element having the structure shown in FIG.
  • characteristic evaluation was performed according to JIS-C-8913 (fiscal 2005) and JIS-C-8914 (fiscal 2005). The results are shown in Table 6.
  • the solar cell element having the passivation film 107 including the niobium oxide and aluminum oxide layers has both increased short-circuit current and open-circuit voltage as compared with the solar cell element not having the passivation film 107, and the conversion efficiency ( It was found that the photoelectric conversion efficiency was improved by 1% at the maximum.
  • a passivation film for use in a solar cell element having a silicon substrate comprising aluminum oxide and an oxide of at least one vanadium group element selected from the group consisting of vanadium oxide and tantalum oxide.
  • ⁇ 2> The passivation film according to ⁇ 1>, wherein a mass ratio of the oxide of the vanadium group element to the aluminum oxide (vanadium group element oxide / aluminum oxide) is 30/70 to 90/10.
  • ⁇ 3> The passivation film according to ⁇ 1> or ⁇ 2>, in which a total content of the oxide of the vanadium group element and the aluminum oxide is 90% or more.
  • the oxide of the vanadium group element includes any of oxides of two or three kinds of vanadium group elements selected from the group consisting of vanadium oxide, niobium oxide, and tantalum oxide. Any one of ⁇ 1> to ⁇ 3> The passivation film according to claim 1.
  • ⁇ 5> Heat treatment of a coating-type material comprising: a precursor of aluminum oxide; and a precursor of an oxide of at least one vanadium group element selected from the group consisting of a precursor of vanadium oxide and a precursor of tantalum oxide.
  • the said passivation film is a solar cell element containing aluminum oxide and the oxide of the at least 1 sort (s) of vanadium group element selected from the group which consists of vanadium oxide and a tantalum oxide.
  • a p-type impurity diffusion layer formed on part or all of the second surface side of the silicon substrate and doped with an impurity at a higher concentration than the silicon substrate,
  • the said passivation film is a solar cell element containing aluminum oxide and the oxide of the at least 1 sort (s) of vanadium group element selected from the group which consists of vanadium oxide and a tantalum oxide.
  • n-type impurity diffusion layer formed on a part or all of the second surface side of the silicon substrate and doped with impurities at a higher concentration than the silicon substrate, The solar cell element according to ⁇ 9>, wherein the second electrode is electrically connected to the n-type impurity diffusion layer through an opening of the passivation film.
  • ⁇ 11> The solar cell element according to any one of ⁇ 7> to ⁇ 10>, wherein a mass ratio of the oxide of the vanadium group element and the aluminum oxide in the passivation film is 30/70 to 90/10 .
  • ⁇ 12> The solar cell element according to any one of ⁇ 7> to ⁇ 11>, wherein the total content of the oxide of the vanadium group element and the aluminum oxide in the passivation film is 90% or more.
  • the oxide of the vanadium group element includes an oxide of two or three vanadium group elements selected from the group consisting of vanadium oxide, niobium oxide, and tantalum oxide, ⁇ 7> to ⁇ 12>
  • the solar cell element according to any one of the above.
  • ⁇ 14> a silicon substrate;
  • a passivation film having a long carrier lifetime of a silicon substrate and having a negative fixed charge can be realized at low cost.
  • a coating type material for realizing the formation of the passivation film can be provided.
  • a low-cost and highly efficient solar cell element using the passivation film can be realized.
  • a silicon substrate with a passivation film having a long carrier lifetime and a negative fixed charge can be realized at low cost.
  • the passivation film of the present embodiment is a passivation film used for a silicon solar cell element, and includes aluminum oxide and an oxide of at least one vanadium group element selected from the group consisting of vanadium oxide and tantalum oxide. It is what was included.
  • the amount of fixed charges possessed by the passivation film can be controlled by changing the composition of the passivation film.
  • the vanadium group element is a Group 5 element in the periodic table, and is an element selected from vanadium, niobium, and tantalum.
  • the mass ratio of the oxide of vanadium group element to aluminum oxide is preferably 35/65 to 90/10, from the viewpoint that the negative fixed charge can be stabilized, and is preferably 50/50 to 90/10. More preferably.
  • the mass ratio of vanadium group element oxide and aluminum oxide in the passivation film is determined by energy dispersive X-ray spectroscopy (EDX), secondary ion mass spectrometry (SIMS), and high frequency inductively coupled plasma mass spectrometry (ICP-MS). ) Can be measured. Specific measurement conditions are as follows in the case of ICP-MS, for example. Dissolving the passivation film in acid or alkaline aqueous solution, atomizing this solution and introducing it into Ar plasma, measuring the wavelength and intensity by spectroscopically analyzing the light emitted when the excited element returns to the ground state, Element qualification is performed from the obtained wavelength, and quantification is performed from the obtained intensity.
  • EDX energy dispersive X-ray spectroscopy
  • SIMS secondary ion mass spectrometry
  • ICP-MS high frequency inductively coupled plasma mass spectrometry
  • the total content of the vanadium group element oxide and aluminum oxide in the passivation film is preferably 80% by mass or more, and more preferably 90% by mass or more from the viewpoint of maintaining good characteristics.
  • the components other than the oxide of vanadium group elements and aluminum oxide in the passivation film increase, the effect of negative fixed charges increases.
  • components other than vanadium group oxide and aluminum oxide may be contained as organic components from the viewpoint of improving the film quality and adjusting the elastic modulus.
  • the presence of the organic component in the passivation film can be confirmed by elemental analysis and measurement of the FT-IR of the film.
  • vanadium oxide As the oxide of the vanadium group element, it is preferable to select vanadium oxide (V 2 O 5 ) from the viewpoint of obtaining a larger negative fixed charge.
  • the passivation film may include two or three vanadium group oxides selected from the group consisting of vanadium oxide, niobium oxide, and tantalum oxide as the vanadium group element oxide.
  • the passivation film is preferably obtained by heat-treating a coating-type material, and can be obtained by forming a coating-type material using a coating method or a printing method, and then removing organic components by heat treatment. More preferred. That is, the passivation film may be obtained as a heat-treated product of a coating type material containing an aluminum oxide precursor and a vanadium group element oxide precursor. Details of the coating type material will be described later.
  • the coating type material of the present embodiment is a coating type material used for a passivation film for a solar cell element having a silicon substrate, and includes a precursor of aluminum oxide, a precursor of vanadium oxide, and a precursor of tantalum oxide. And a precursor of an oxide of at least one vanadium group element selected from the group.
  • a precursor of the oxide of the vanadium group element contained in the coating material a precursor of vanadium oxide (V 2 O 5 ) is selected from the viewpoint of the negative fixed charge of the passivation film formed from the coating material. It is preferable.
  • the coating type material is composed of two or three vanadium group elements selected from the group consisting of vanadium oxide precursors, niobium oxide precursors and tantalum oxide precursors as vanadium group oxide precursors. An oxide precursor may also be included.
  • the aluminum oxide precursor can be used without particular limitation as long as it produces aluminum oxide.
  • As the aluminum oxide precursor it is preferable to use an organic aluminum oxide precursor from the viewpoint of uniformly dispersing aluminum oxide on the silicon substrate and a chemically stable viewpoint.
  • Examples of the organic aluminum oxide precursor include aluminum triisopropoxide (structural formula: Al (OCH (CH 3 ) 2 ) 3 , Kojundo Chemical Laboratory Co., Ltd., SYM-AL04.
  • the precursor of the oxide of the vanadium group element can be used without particular limitation as long as it generates an oxide of the vanadium group element.
  • the vanadium group element oxide precursor is preferably an organic vanadium group oxide oxide precursor from the viewpoint of uniformly dispersing aluminum oxide on the silicon substrate and chemically stable. .
  • organic vanadium oxide precursors examples include vanadium (V) oxytriethoxide (structural formula: VO (OC 2 H 5 ) 3 , molecular weight: 202.13), High Purity Chemical Laboratory, V-02 can be mentioned.
  • organic tantalum oxide precursors include tantalum (V) methoxide (structural formula: Ta (OCH 3 ) 5 , molecular weight: 336.12), Kojundo Chemical Laboratory, Ta-10-P Can be mentioned.
  • organic niobium oxide precursors examples include niobium (V) ethoxide (structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.21), High Purity Chemical Laboratory, Nb-05. Can be mentioned.
  • a passivation film By forming a coating type material containing an organic vanadium group oxide precursor and an organic aluminum oxide precursor using a coating method or a printing method, and then removing the organic components by a heat treatment, A passivation film can be obtained. Therefore, as a result, a passivation film containing an organic component may be used.
  • the content of the organic component in the passivation film is more preferably less than 10% by mass, still more preferably 5% by mass or less, and particularly preferably 1% by mass or less.
  • the solar cell element (photoelectric conversion device) of the present embodiment includes the passivation film (insulating film, protective insulating film) described in the above embodiment in the vicinity of the photoelectric conversion interface of the silicon substrate, that is, aluminum oxide and vanadium oxide. And at least one oxide of a vanadium group element selected from the group consisting of tantalum oxide. By containing aluminum oxide and an oxide of at least one vanadium group element selected from the group consisting of vanadium oxide and tantalum oxide, the carrier lifetime of the silicon substrate can be extended and negative fixed charges can be obtained. And the characteristics (photoelectric conversion efficiency) of the solar cell element can be improved.
  • Passivation of passivation material (a2-1) on one side of a 725 ⁇ m thick 8-inch p-type silicon substrate (8 ⁇ ⁇ cm to 12 ⁇ ⁇ cm) with natural oxide film removed beforehand with hydrofluoric acid at a concentration of 0.49% by mass It was applied and placed on a hot plate and prebaked at 120 ° C. for 3 minutes. Thereafter, a heat treatment (firing) was performed at 700 ° C. for 30 minutes in a nitrogen atmosphere to obtain a passivation film containing vanadium oxide and vanadium oxide [vanadium oxide / aluminum oxide 63/37 (mass%)]. It was 51 nm when the film thickness was measured with the ellipsometer. When the FT-IR of the passivation film was measured, a very few peaks due to alkyl groups were observed in the vicinity of 1200 cm ⁇ 1 .
  • the passivation material (a2-1) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 650 ° C. for 1 hour in a nitrogen atmosphere.
  • a sample in which both surfaces of the substrate were covered with a passivation film was produced.
  • the carrier lifetime of this sample was measured with a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 400 ⁇ s.
  • the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
  • the carrier lifetime was 380 ⁇ s.
  • the decrease in carrier lifetime (from 400 ⁇ s to 380 ⁇ s) was within ⁇ 10%, and the decrease in carrier lifetime was small.
  • the passivation film obtained by heat-treating (sintering) the passivation material (a2-1) showed a certain degree of passivation performance and a negative fixed charge.
  • Reference Example 2-2 Similar to Reference Example 2-1, a commercially available organometallic thin film coated material from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (calcination) [High Purity Chemical Laboratory, SYM-AL04, concentration 2 3 mass%] and a commercially available organometallic thin film coating type material [Vitamin Purity Laboratory, V-02, concentration 2 mass%] from which vanadium oxide (V 2 O 5 ) can be obtained by heat treatment, Passivation materials (a2-2) to (a2-7) shown in Table 7 were prepared by mixing at different ratios.
  • each of the passivation materials (a2-2) to (a2-7) was applied to one side of a p-type silicon substrate and heat-treated (fired) to produce a passivation film.
  • the voltage dependence of the capacitance of the obtained passivation film was measured, and the fixed charge density was calculated therefrom.
  • the carrier lifetime was measured using a sample obtained by applying a passivation material to both sides of a p-type silicon substrate and performing heat treatment (firing).
  • the passivation materials (a2-2) to (a2-7) are all negative after the heat treatment (firing). Since it showed a fixed charge and a certain carrier lifetime, it was suggested that it functions as a passivation film. It was found that all the passivation films obtained from the passivation materials (a2-2) to (a2-7) stably show negative fixed charges and can be suitably used as a passivation for a p-type silicon substrate. .
  • the passivation material (b2-1) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 600 ° C. for 1 hour in a nitrogen atmosphere.
  • a sample in which both surfaces of the substrate were covered with a passivation film was produced.
  • the carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 400 ⁇ s.
  • the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
  • the passivation film obtained by heat-treating (firing) the passivation material (b2-1) exhibits a certain degree of passivation performance and a negative fixed charge.
  • the passivation material (b2-2) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 600 ° C. for 1 hour in a nitrogen atmosphere. A sample in which both surfaces of the substrate were covered with a passivation film was produced. The carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 170 ⁇ s. For comparison, the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
  • the passivation film obtained by curing the passivation material (b2-2) exhibited a certain degree of passivation performance and a negative fixed charge.
  • Each of the passivation materials (c2-1) to (c2-6) is a 725 ⁇ m-thick 8-inch p-type silicon substrate (8 ⁇ ⁇ cm to 12 ⁇ ) from which a natural oxide film has been removed in advance with hydrofluoric acid having a concentration of 0.49% by mass.
  • (Cm) was spin-coated on one side, placed on a hot plate, and pre-baked at 120 ° C. for 3 minutes. Thereafter, a heat treatment (firing) was performed at 700 ° C. for 30 minutes in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and tantalum oxide. Using this passivation film, the voltage dependence of the capacitance was measured, and the fixed charge density was calculated therefrom.
  • each of the passivation materials (c2-1) to (c2-6) is applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and heat-treated (fired) at 650 ° C. for 1 hour in a nitrogen atmosphere. )
  • the carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540).
  • the passivation materials (c2-1) to (c2-6) are all negative after heat treatment (firing). Since it showed a fixed charge and a certain carrier lifetime, it was suggested that it functions as a passivation film.
  • Al oxide (Al 2 O 3 ) As a compound from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing), commercially available aluminum triisopropoxide (structural formula: Al (OCH (CH 3 ) 2 ) 3 , molecular weight: 204.25 2.04 g (0.010 mol) was dissolved in cyclohexane 60 g to prepare a passivation material (d2-1) having a concentration of 5% by mass.
  • Al (OCH (CH 3 ) 2 ) 3 As a compound from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing), commercially available aluminum triisopropoxide (structural formula: Al (OCH (CH 3 ) 2 ) 3 , molecular weight: 204.25 2.04 g (0.010 mol) was dissolved in cyclohexane 60 g to prepare a passivation material (d2-1) having a concentration of 5% by mass.
  • the passivation material (d2-1) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to a heat treatment (firing) at 600 ° C. for 1 hour in a nitrogen atmosphere.
  • a sample in which both surfaces of the substrate were covered with a passivation film was produced.
  • the carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 610 ⁇ s.
  • the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
  • the passivation film obtained by heat-treating the passivation material (d2-1) exhibited a certain degree of passivation performance and a negative fixed charge.
  • the passivation material (d2-2) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 600 ° C. for 1 hour in a nitrogen atmosphere. A sample in which both surfaces of the substrate were covered with a passivation film was produced. The carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 250 ⁇ s. For comparison, the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
  • the passivation film obtained by heat treatment (firing) the passivation material (d2-2) exhibits a certain degree of passivation performance and a negative fixed charge.
  • organometallic thin film coating type material High purity chemical research laboratory SYM-AL04, concentration 2.3 mass%
  • aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing)
  • heat treatment (firing) Niobium oxide (Nb 2 O) by commercially available organometallic thin film coating type material (VCO, Ltd., high purity chemical research laboratory V-02, concentration 2 mass%) from which vanadium oxide (V 2 O 5 ) is obtained, and heat treatment (firing) 5 )
  • a commercially available organometallic thin film coating type material [Co-development High Purity Chemical Laboratory, Nb-05, concentration 5 mass%] obtained is mixed to obtain a passivation material (e2-2) which is a coating type material. Prepared (see Table 9).
  • organometallic thin film coating type material High purity chemical research laboratory SYM-AL04, concentration 2.3 mass%] from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing), heat treatment (firing) Niobium oxide (Nb) by commercially available organometallic thin film coating material [Tapurio Chemical Lab. Ta-10-P, concentration 10% by mass] from which tantalum oxide (Ta 2 O 5 ) can be obtained, and heat treatment (firing) 2 O 5 ), a commercially available organometallic thin film coating material [High Purity Chemical Laboratory Nb-05, concentration 5 mass%] is mixed to form a passivation material (e2-3) which is a coating material Was prepared (see Table 9).
  • organometallic thin film coating type material High purity chemical research laboratory SYM-AL04, concentration 2.3 mass%
  • aluminum oxide Al 2 O 3
  • heat treatment firing
  • Tantalum oxide Ti 2 O 5
  • heat treatment Niobium oxide
  • Nb 2 O 5 Niobium oxide
  • a commercially available organometallic thin film coating type material [High purity chemical research laboratory Nb-05, concentration 5 mass%] was mixed to prepare a passivation material (e2-4) as a coating type material (see Table 9).
  • Each of the passivation materials (e2-1) to (e2-4) was 725 ⁇ m thick and 8 inches thick with the natural oxide film removed beforehand with hydrofluoric acid having a concentration of 0.49% by mass, as in Reference Example 2-1. It was spin-coated on one side of a p-type silicon substrate (8 ⁇ ⁇ cm to 12 ⁇ ⁇ cm), placed on a hot plate and prebaked at 120 ° C. for 3 minutes. Thereafter, a heat treatment (firing) was performed at 650 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and two or more vanadium group element oxides.
  • each of the passivation materials (e2-1) to (e2-4) is applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and heat-treated (fired) at 650 ° C. for 1 hour in a nitrogen atmosphere. )
  • the carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540).
  • each of the passivation materials (f2-1) to (f2-9) was applied to one side of a p-type silicon substrate, and then heat treatment (firing) was performed to form a passivation film. This was used to measure the voltage dependence of the capacitance, and the fixed charge density was calculated therefrom.
  • a SiN film was formed on the light receiving surface side by plasma CVD as the light receiving surface antireflection film 103.
  • the passivation material (a2-1) prepared in Reference Example 2-1 was applied to the region excluding the contact region (opening OA) on the back surface side of the silicon substrate 101 by an inkjet method. Thereafter, heat treatment was performed to form a passivation film 107 having an opening OA.
  • a sample using the passivation material (c2-1) prepared in Reference Example 2-5 was separately prepared as the passivation film 107.
  • a paste mainly composed of silver was screen-printed in the shape of predetermined finger electrodes and bus bar electrodes.
  • a paste mainly composed of aluminum was screen-printed on the entire surface.
  • heat treatment fire-through
  • electrodes first electrode 105 and second electrode 106
  • aluminum is diffused into the opening OA on the back surface to form the BSF layer 104.
  • the fire-through process in which the SiN film is not perforated is described.
  • the opening OA is first formed in the SiN film by etching or the like, and then the silver electrode is formed. You can also
  • the passivation film 107 is not formed in the above manufacturing process, aluminum paste is printed on the entire back surface, and the p + layer 114 corresponding to the BSF layer 104 and the electrode 116 corresponding to the second electrode. was formed on the entire surface to form a solar cell element having the structure of FIG.
  • characteristic evaluation a short circuit current, an open circuit voltage, a fill factor, and conversion efficiency
  • the characteristic evaluation was performed according to JIS-C-8913 (fiscal 2005) and JIS-C-8914 (fiscal 2005). The results are shown in Table 11.
  • the solar cell element having the passivation film 107 has both a short-circuit current and an open-circuit voltage that are increased as compared with the solar electronic element not having the passivation film 107, and the conversion efficiency (photoelectric conversion efficiency) is 0 at the maximum. It was found to improve by 6%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 一般式(I):M(ORで表される化合物を含有するパッシベーション層形成用組成物。式中、MはNb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含み、Rはそれぞれ独立して炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、mは1~5の整数を表す。

Description

パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
 本発明は、パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池に関する。
 従来のシリコン太陽電池素子の製造工程について説明する。
 まず、光閉じ込め効果を促して高効率化を図るよう、受光面側にテクスチャー構造を形成したp型シリコン基板を準備し、続いてオキシ塩化リン(POCl)、窒素及び酸素の混合ガス雰囲気において800℃~900℃で数十分の処理を行って一様にn型拡散層を形成する。この従来の方法では、混合ガスを用いてリンの拡散を行うため、受光面である表面のみならず、側面及び裏面にもn型拡散層が形成される。そのため、側面に形成されたn型拡散層を除去するためのサイドエッチングを行っている。また、裏面に形成されたn型拡散層はp型拡散層へ変換する必要がある。このため、裏面全体にアルミニウム粉末及びバインダを含むアルミニウムペーストを塗布し、これを熱処理(焼成)することで、n型拡散層をp型拡散層に変換し、且つアルミニウム電極を形成することでオーミックコンタクトを得ている。
 しかしながら、アルミニウムペーストから形成されるアルミニウム電極は導電率が低い。そのためシート抵抗を下げるために、通常裏面全体に形成したアルミニウム電極は熱処理(焼成)後において10μm~20μmほどの厚みを有していなければならない。更に、シリコンとアルミニウムとでは熱膨張率が大きく異なることから、アルミニウム電極が形成されたシリコン基板において、熱処理(焼成)及び冷却の過程で、シリコン基板中に大きな内部応力が発生し、結晶粒界へのダメージ、結晶欠陥の増長及び反りの原因となる。
 この問題を解決するために、アルミニウムペーストの塗布量を減らし、裏面電極層の厚さを薄くする方法がある。しかしながら、アルミニウムペーストの塗布量を減らすと、p型シリコン半導体基板の表面から内部に拡散するアルミニウムの量が不充分となる。その結果、所望のBSF(Back Surface Field)効果(p型拡散層の存在により生成キャリアの収集効率が向上する効果)を達成することができないため、太陽電池の特性が低下するという問題が生じる。
 上記に関連して、アルミニウムペーストをシリコン基板表面の一部に付与して部分的にp型拡散層とアルミニウム電極とを形成するポイントコンタクトの手法が提案されている(例えば、特許第3107287号公報参照)。
 このような受光面とは反対の面(以下、「裏面」ともいう)にポイントコンタクト構造を有する太陽電池の場合、アルミニウム電極以外の部分の表面において、少数キャリアの再結合速度を抑制する必要がある。そのための裏面用のパッシベーション層として、SiO膜等が提案されている(例えば、特開2004-6565号公報参照)。このようなSiO膜を形成することによるパッシベーション効果としては、シリコン基板の裏面表層部におけるケイ素原子の未結合手を終端させ、再結合の原因となる表面準位密度を低減させる効果がある。
 また、少数キャリアの再結合を抑制する別の方法として、パッシベーション層内の固定電荷が発生する電界によって少数キャリア密度を低減する方法がある。このようなパッシベーション効果は一般に電界効果と呼ばれ、負の固定電荷を有する材料として酸化アルミニウム(Al)膜等が提案されている(例えば、特許第4767110号公報参照)。
 このようなパッシベーション層は、一般的にはALD(Atomic Layer Deposition)法、CVD(Chemical Vapor Deposition)法等の方法で形成される(例えば、Journal of Applied Physics, 104(2008), 113703-1~113703-7参照)。また、半導体基板上に酸化アルミニウム膜を形成する簡便な手法として、ゾルゲル法による手法が提案されている(例えば、Thin Solid Films, 517(2009), 6327-6330、及びChinese Physics Letters, 26(2009), 088102-1~088102-4参照)。
 Journal of Applied Physics, 104(2008), 113703-1~113703-7に記載の手法は、蒸着等の複雑な製造工程を含むため、生産性を向上させることが困難な場合がある。また、Thin Solid Films, 517(2009), 6327-6330、及びChinese Physics Letters, 26(2009), 088102-1~088102-4に記載の手法に用いるパッシベーション層形成用組成物では、経時的にゲル化等の不具合が発生してしまい保存安定性が充分とは言い難い。
 本発明は、以上の従来の問題点に鑑みなされたものであり、保存安定性に優れ、パッシベーション効果に優れたパッシベーション層を簡便な手法で形成することが可能なパッシベーション層形成用組成物を提供することを課題とする。また、本発明は、前記パッシベーション層形成用組成物を用いて得られ、優れたパッシベーション効果を有するパッシベーション層を備えるパッシベーション層付半導体基板及びパッシベーション層付半導体基板の製造方法、並びに優れた変換効率を有する太陽電池素子、太陽電池素子の製造方法及び太陽電池を提供することを課題とする。
 前記課題を解決するための具体的手段は以下の通りである。
<1> 下記一般式(I)で表される化合物を含むパッシベーション層形成用組成物である。
  M(OR (I)
 式中、MはNb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含む。Rはそれぞれ独立して炭素数1~8のアルキル基又は炭素数6~14のアリール基を表す。mは1~5の整数を表す。
<2> 更に、下記一般式(II)で表される化合物を含有する<1>に記載のパッシベーション層形成用組成物である。
Figure JPOXMLDOC01-appb-C000002
 式中、Rはそれぞれ独立して炭素数1~8のアルキル基を表す。nは0~3の整数を表す。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。R、R及びRはそれぞれ独立して水素原子又は炭素数1~8のアルキル基を表す。
<3> 更に、液状媒体を含有する<1>又は<2>に記載のパッシベーション層形成用組成物である。
<4> 更に、樹脂を含有する<1>~<3>のいずれか1項に記載のパッシベーション層形成用組成物である。
<5> 前記液状媒体及び前記樹脂を含み、前記液状媒体及び前記樹脂の総含有率が5質量%以上98質量%以下である<4>に記載のパッシベーション層形成用組成物である。
<6> 前記一般式(II)で表される化合物を含み、前記一般式(I)で表される化合物及び前記一般式(II)で表される化合物の総含有率が0.1質量%以上80質量%以下である<2>~<5>のいずれか1項に記載のパッシベーション層形成用組成物である。
<7> 半導体基板と、前記半導体基板上の全面又は一部に設けられる<1>~<6>のいずれか1項に記載のパッシベーション層形成用組成物の熱処理物であるパッシベーション層と、を有するパッシベーション層付半導体基板である。
<8> 半導体基板上の全面又は一部に、<1>~<6>のいずれか1項に記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理してパッシベーション層を形成する工程と、を有するパッシベーション層付半導体基板の製造方法である。
<9> p型層及びn型層がpn接合されてなる半導体基板と、前記半導体基板上の全面又は一部に設けられる<1>~<6>のいずれか1項に記載のパッシベーション層形成用組成物の熱処理物であるパッシベーション層と、前記p型層及び前記n型層の少なくとも一方の層上に設けられる電極と、を有する太陽電池素子である。
<10> p型層及びn型層がpn接合されてなる半導体基板の全面又は一部に<1>~<6>のいずれか1項に記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を加熱処理して、パッシベーション層を形成する工程と、前記p型層及び前記n型層の少なくとも一方の層上に、電極を形成する工程と、を有する太陽電池素子の製造方法である。
<11> 前記<9>に記載の太陽電池素子と、前記太陽電池素子の電極上に設けられる配線材料と、を有する太陽電池である。
 本発明によれば、保存安定性に優れ、パッシベーション効果に優れたパッシベーション層を簡便な手法で形成することが可能なパッシベーション層形成用組成物を提供することができる。また本発明によれば、前記パッシベーション層形成用組成物を用いて得られ、優れたパッシベーション効果を有するパッシベーション層を備えるパッシベーション層付半導体基板及びパッシベーション層付半導体基板の製造方法、並びに優れた変換効率を有する太陽電池素子、太陽電池素子の製造方法及び太陽電池を提供することができる。
パッシベーション層を有する太陽電池素子の製造方法の一例を模式的に示す断面図である。 パッシベーション層を有する太陽電池素子の製造方法の他の一例を模式的に示す断面図である。 パッシベーション層を有する太陽電池素子の製造方法の他の一例を模式的に示す断面図である。 太陽電池素子の受光面の一例を示す概略平面図である。 パッシベーション層の裏面における形成パターンの一例を示す概略平面図である。 パッシベーション層の裏面における形成パターンの他の一例を示す概略平面図である。 図5のA部を拡大した概略平面図である。 図5のB部を拡大した概略平面図である。 太陽電池素子の裏面の一例を示す概略平面図である。 太陽電池の製造方法の一例を説明するための図である。 両面電極型の太陽電池素子の構造を示した断面図である。 参考実施形態に係る太陽電池素子の第1構成例を示す断面図である。 参考実施形態に係る太陽電池素子の第2構成例を示す断面図である。 参考実施形態に係る太陽電池素子の第3構成例を示す断面図である。 参考実施形態に係る太陽電池素子の第4構成例を示す断面図である。 参考実施形態に係る太陽電池素子の別の構成例を示す断面図である。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、本用語に含まれる。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。更に、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。
<パッシベーション層形成用組成物>
 本発明のパッシベーション層形成用組成物は、下記一般式(I)で表される化合物(以下、式(I)化合物」ともいう)を含む。前記パッシベーション層形成用組成物は必要に応じてその他の成分を更に含んでいてもよい。パッシベーション層形成用組成物が上記成分を含むことで、パッシベーション効果に優れたパッシベーション層を簡便な手法で形成することが可能である。また該パッシベーション層形成用組成物は保存安定性に優れる。
  M(OR (I)
 式中、MはNb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含む。Rは炭素数1~8のアルキル基又は炭素数6~14のアリール基を表す。mは1~5の整数を表す。
 本明細書において、半導体基板のパッシベーション効果は、パッシベーション層が形成された半導体基板内の少数キャリアの実効ライフタイムを、日本セミラボ株式会社、WT-2000PVN等の装置を用いて、反射マイクロ波導電減衰法によって測定することで評価することができる。
 ここで、実効ライフタイムτは、半導体基板内部のバルクライフタイムτと、半導体基板表面の表面ライフタイムτとによって下記式(A)のように表される。半導体基板表面の表面準位密度が小さい場合にはτが長くなる結果、実効ライフタイムτが長くなる。また、半導体基板内部のダングリングボンド等の欠陥が少なくなっても、バルクライフタイムτが長くなって実効ライフタイムτが長くなる。すなわち、実効ライフタイムτの測定によってパッシベーション層と半導体基板との界面特性、及び、ダングリングボンド等の半導体基板の内部特性を評価することができる。
  1/τ=1/τ+1/τ (A) 
 尚、実効ライフタイムτが長いほど少数キャリアの再結合速度が遅いことを示す。また実効ライフタイムが長い半導体基板を用いて太陽電池素子を構成することで、変換効率が向上する。
(一般式(I)で表される化合物)
 パッシベーション層形成用組成物は、前記一般式(I)で表される化合物(式(I)化合物)の少なくとも1種を含む。パッシベーション層形成用組成物が式(I)化合物の少なくとも1種を含むことで、優れたパッシベーション効果を有するパッシベーション層を形成することができる、この理由は以下のように考えることができる。
 式(I)化合物を含有するパッシベーション層形成用組成物を熱処理(焼成)することにより形成される金属酸化物では、金属原子又は酸素原子の欠陥を有し、固定電荷を生じやすくなると考えられる。この固定電荷が半導体基板の界面付近で電荷を発生させることで少数キャリアの濃度を低下させることができ、結果的に界面でのキャリア再結合速度が抑制され、優れたパッシベーション効果が奏されると考えられる。
 ここで、半導体基板上で固定電荷を発生させるパッシベーション層の状態については、半導体基板の断面を走査型透過電子顕微鏡(STEM、Scanning Transmission electron Microscope)による電子エネルギー損失分光法(EELS、Electron Energy Loss Spectroscopy)の分析で結合様式を調べることができる。また、X線回折スペクトル(XRD、X-ray diffraction)を測定することにより、パッシベーション層の界面付近の結晶相を確認することができる。更に、パッシベーション層がもつ固定電荷は、CV法(Capacitance Voltage measurement)で評価することが可能である。
 一般式(I)において、Mは、Nb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含み、パッシベーション効果、パッシベーション層形成用組成物の保存安定性、及びパッシベーション層形成用組成物を調製する際の作業性の観点から、MとしてはNb、Ta及びYからなる群より選択される少なくとも1種であることが好ましく、Nbであることがより好ましい。また、パッシベーション層の固定電荷密度を負にする観点からは、Mは、Nb、Ta、VO、及びHfからなる群より選択される少なくとも1種であることが好ましい。
 一般式(I)において、Rはそれぞれ独立に、炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、炭素数1~8のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。Rで表されるアルキル基は直鎖状であっても分岐鎖状であってもよい。Rで表されるアルキル基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、3-エチルヘキシル基等を挙げることができる。Rで表されるアリール基として具体的には、フェニル基を挙げることができる。Rで表されるアルキル基及びアリール基は、置換基を有していてもよく、アルキル基の置換基としては、アミノ基、ヒドロキシル基、カルボキシル基、スルホン基、ニトロ基等が挙げられる。アリール基の置換基としては、メチル基、エチル基、イソプロピル基、アミノ基、ヒドロキシル基、カルボキシル基、スルホン基、ニトロ基等が挙げられる。
 中でもRは、保存安定性とパッシベーション効果の観点から、炭素数1~8の無置換のアルキル基であることが好ましく、炭素数1~4の無置換のアルキル基であることがより好ましい。
 一般式(I)において、mは1~5の整数を表す。ここで、保存安定性の観点から、MがNbである場合にはmが5であることが好ましく、MがTaである場合にはmが5であることが好ましく、MがVOである場合にはmが3であることが好ましく、MがYである場合にはmが3であることが好ましく、MがHfである場合にはmが4であることが好ましい。
 一般式(I)で表される化合物としては、Mが、Nb、Ta及びYからなる群より選択される少なくとも1種であり、Rが炭素数1~4の無置換のアルキル基であり、mが1~5の整数であることが好ましい。
 また、一般式(I)で表される化合物としては、Mが、Nb、Ta、VO、及びHfからなる群より選択される少なくとも1種であり、Rが炭素数1~4の無置換のアルキル基であり、mが1~5の整数であることが好ましい。
 一般式(I)で表される化合物の状態は、固体であっても液体であってもよい。パッシベーション層形成用組成物の保存安定性、及び後述する一般式(II)で表わされる化合物を併用する場合における混合性の観点から、一般式(I)で表わされる化合物は、液体であることが好ましい。
 一般式(I)で表わされる化合物は、ニオブメトキシド、ニオブエトキシド、ニオブイソプロポキシド、ニオブn-プロポキシド、ニオブn-ブトキシド、ニオブt-ブトキシド、ニオブイソブトキシド、タンタルメトキシド、タンタルエトキシド、タンタルイソプロポキシド、タンタルn-プロポキシド、タンタルn-ブトキシド、タンタルt-ブトキシド、タンタルイソブトキシド、イットリウムメトキシド、イットリウムエトキシド、イットリウムイソプロポキシド、イットリウムn-プロポキシド、イットリウムn-ブトキシド、イットリウムt-ブトキシド、イットリウムイソブトキシド、バナジウムメトキシドオキシド、バナジウムエトキシドオキシド、バナジウムイソプロポキシドオキシド、バナジウムn-プロポキシドオキシド、バナジウムn-ブトキシドオキシド、バナジウムt-ブトキシドオキシド、バナジウムイソブトキシドオキシド、ハフニウムメトキシド、ハフニウムエトキシド、ハフニウムイソプロポキシド、ハフニウムn-プロポキシド、ハフニウムn-ブトキシド、ハフニウムt-ブトキシド、ハフニウムイソブトキシド等を挙げることができ、中でもニオブエトキシド、ニオブn-プロポキシド、ニオブn-ブトキシド、タンタルエトキシド、タンタルn-プロポキシド、タンタルn-ブトキシド、イットリウムイソプロポキシド及びイットリウムn-ブトキシドが好ましい。負の固定電荷密度を得る観点からは、ニオブエトキシド、ニオブn-プロポキシド、ニオブn-ブトキシド、タンタルエトキシド、タンタルn-プロポキシド、タンタルn-ブトキシド、バナジウムエトキシドオキシド、バナジウムn-プロポキシドオキシド、バナジウムn-ブトキシドオキシド、ハフニウムエトキシド、ハフニウムn-プロポキシド及びハフニウムn-ブトキシドが好ましい。
 また一般式(I)で表わされる化合物は、調製したものを用いても、市販品を用いてもよい。市販品としては、例えば、株式会社高純度化学研究所のペンタメトキシニオブ、ペンタエトキシニオブ、ペンタ-i-プロポキシニオブ、ペンタ-n-プロポキシニオブ、ペンタ-i-ブトキシニオブ、ペンタ-n-ブトキシニオブ、ペンタ-sec-ブトキシニオブ、ペンタメトキシタンタル、ペンタエトキシタンタル、ペンタ-i-プロポキシタンタル、ペンタ-n-プロポキシタンタル、ペンタ-i-ブトキシタンタル、ペンタ-n-ブトキシタンタル、ペンタ-sec-ブトキシタンタル、ペンタ-t-ブトキシタンタル、バナジウム(V)トリメトキシドオキシド、バナジウム(V)トリエトキシオキシド、バナジウム(V)トリ-i-プロポキシドオキシド、バナジウム(V)トリ-n-プロポキシドオキシド、バナジウム(V)トリ-i-ブトキシドオキシド、バナジウム(V)トリ-n-ブトキシドオキシド、バナジウム(V)トリ-sec-ブトキシドオキシド、バナジウム(V)トリ-t-ブトキシドオキシド、トリ-i-プロポキシイットリウム、トリ-n-ブトキシイットリウム、テトラメトキシハフニウム、テトラエトキシハフニウム、テトラ-i-プロポキシハフニウム、テトラ-t-ブトキシハフニウム、北興化学工業株式会社のペンタエトキシニオブ、ペンタエトキシタンタル、ペンタブトキシタンタル、イットリウム-n-ブトキシド、ハフニウム-tert-ブトキシド、日亜化学工業株式会社のバナジウムオキシトリエトキシド、バナジウムオキシトリノルマルプロポキシド、バナジウムオキシトリノルマルブトキシド、バナジウムオキシトリイソブトキシド、バナジウムオキシトリセカンダリーブトキシド等を挙げることができる。
 一般式(I)で表される化合物の調製には、特定の金属(M)のハロゲン化物とアルコールとを不活性有機溶媒の存在下で反応させ、更にハロゲンを引き抜くためにアンモニア又はアミン化合物を添加する方法(特開昭63-227593号公報及び特開平3-291247号公報)等、既知の製法を用いることができる。
 一般式(I)で表される化合物は、後述する2つのカルボニル基を有する特定構造の化合物と混合することでキレート構造を形成した化合物を用いてよい。キレート化するカルボニル基数には特に制限はないが、MがNbである場合にはキレート化するカルボニル基数が1~5であることが好ましく、MがTaである場合にはキレート化するカルボニル基数が1~5であることが好ましく、MがVである場合にはキレート化するカルボニル基数が1~3であることが好ましく、MがYである場合にはキレート化するカルボニル基数が1~3であることが好ましく、MがHfである場合にはキレート化するカルボニル基数が1~4であることが好ましい。
 一般式(I)で表される化合物におけるキレート構造の存在は、通常用いられる分析方法で確認することができる。例えば、赤外分光スペクトル、核磁気共鳴スペクトル、融点等を用いて確認することができる。
 パッシベーション層形成用組成物に含まれる式(I)化合物の含有率は、必要に応じて適宜選択することができる。式(I)化合物の含有率は、保存安定性及びパッシベーション効果の観点から、パッシベーション層形成用組成物中に0.1質量%~80質量%とすることができ、0.5質量%~70質量%であることが好ましく、1質量%~60質量%であることがより好ましく、1質量%~50質量%であることが更に好ましい。
(一般式(II)で表される化合物)
 本発明のパッシベーション層形成用組成物は、下記一般式(II)で表される化合物(以下、「有機アルミニウム化合物」ともいう)の少なくとも1種を含有してもよい。
Figure JPOXMLDOC01-appb-C000003
 式中、Rはそれぞれ独立して炭素数1~8のアルキル基を表す。nは0~3の整数を表す。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。R、R及びRはそれぞれ独立して水素原子又は炭素数1~8のアルキル基を表す。
 パッシベーション層形成用組成物が上記有機アルミニウム化合物を含むことで、パッシベーション効果を更に向上させることができる。これは、以下のようにして考えることができる。
 有機アルミニウム化合物は、アルミニウムアルコキシド、アルミニウムキレート等と呼ばれる化合物を包含し、アルミニウムアルコキシド構造に加えてアルミニウムキレート構造を有していることが好ましい。また、Nippon Seramikkusu Kyokai Gakujitsu Ronbunshi, vol.97, pp369-399(1989)にも記載されているように、有機アルミニウム化合物は熱処理(焼成)により酸化アルミニウム(Al)となる。このとき、形成された酸化アルミニウムはアモルファス状態となりやすいため、4配位酸化アルミニウム層が半導体基板との界面付近に形成されやすく、4配位酸化アルミニウムに起因する大きな負の固定電荷をもつことができると考えられる。このとき、固定電荷を持つ式(I)化合物由来の酸化物と複合化することで、結果として優れたパッシベーション効果を有するパッシベーション層を形成することができるものと考えられる。
 上記に加え、本発明のように一般式(I)で表わされる化合物と一般式(II)で表わされる化合物とを組み合わせることで、パッシベーション層内でそれぞれの効果により、パッシベーション効果がより高くなると考えられる。更に、一般式(I)で表わされる化合物と一般式(II)で表わされる化合物が混合された状態で熱処理(焼成)されることで、一般式(I)で表わされる金属(M)とアルミニウム(Al)との複合金属アルコキシドが生成し、反応性、蒸気圧等の物理特性が改善され、熱処理物(焼成物)としてのパッシベーション層の緻密性が向上し、結果としてパッシベーション効果がより高くなると考えられる。
 一般式(II)において、Rはそれぞれ独立して炭素数1~8のアルキル基を表し、炭素数1~4のアルキル基であることが好ましい。Rで表されるアルキル基は直鎖状であっても分岐鎖状であってもよい。Rで表されるアルキル基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、3-エチルヘキシル基等を挙げることができる。中でもRで表されるアルキル基は、保存安定性とパッシベーション効果の観点から、炭素数1~8の無置換のアルキル基であることが好ましく、炭素数1~4の無置換のアルキル基であることがより好ましい。
 一般式(II)において、nは0~3の整数を表わす。nは保存安定性の観点から、1~3の整数であることが好ましく、1又は3であることがより好ましい。またX及びXはそれぞれ独立して酸素原子又はメチレン基を表す。保存安定性の観点から、X及びXの少なくとも一方は酸素原子であることが好ましい。
 一般式(II)におけるR、R及びRはそれぞれ独立して水素原子又は炭素数1~8のアルキル基を表す。R、R及びRで表されるアルキル基は直鎖状であっても分岐鎖状であってもよい。R、R及びRで表されるアルキル基は、置換基を有していても、無置換であってもよく、無置換であることが好ましい。R、R及びRで表されるアルキル基としては、炭素数1~8のアルキル基であり、炭素数1~4のアルキル基であることが好ましい。R、R及びRで表されるアルキル基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ヘキシル基、オクチル基、エチルヘキシル基等を挙げることができる。
 中でも保存安定性とパッシベーション効果の観点から、一般式(II)におけるR及びRはそれぞれ独立して、水素原子又は炭素数1~8の無置換のアルキル基であることが好ましく、水素原子又は炭素数1~4の無置換のアルキル基であることがより好ましい。
 また、一般式(II)におけるRは、保存安定性及びパッシベーション効果の観点から、水素原子又は炭素数1~8の無置換のアルキル基であることが好ましく、水素原子又は炭素数1~4の無置換のアルキル基であることがより好ましい。
 一般式(II)で表される化合物は、保存安定性の観点から、nが1~3であり、Rがそれぞれ独立して水素原子又は炭素数1~4のアルキル基である化合物であることが好ましい。
 一般式(II)で表される化合物は、保存安定性とパッシベーション効果の観点から、nが0であり、Rがそれぞれ独立して炭素数1~4のアルキル基である化合物、並びにnが1~3であり、Rがそれぞれ独立して炭素数1~4のアルキル基であり、X及びXの少なくとも一方が酸素原子であり、R及びRがそれぞれ独立して水素原子又は炭素数1~4のアルキル基であり、Rがそれぞれ独立して水素原子又は炭素数1~4のアルキル基である化合物からなる群より選ばれる少なくとも1種であることが好ましい。
 より好ましくは、一般式(II)で表される化合物は、nが0であり、Rがそれぞれ独立して炭素数1~4の無置換のアルキル基である化合物、並びにnが1~3であり、Rがそれぞれ独立して炭素数1~4の無置換のアルキル基であり、X及びXの少なくとも一方が酸素原子であり、この酸素原子に結合するR又はRが炭素数1~4のアルキル基であり、X又はXがメチレン基の場合、このメチレン基に結合するR又はRが水素原子であり、Rが水素原子である化合物からなる群より選ばれる少なくとも1種である。
 一般式(II)で表され、nが0の有機アルミニウム化合物であるアルミニウムトリアルコキシドとして具体的には、トリメトキシアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、トリsec-ブトキシアルミニウム、モノsec-ブトキシ-ジイソプロポキシアルミニウム、トリt-ブトキシアルミニウム、トリn-ブトキシアルミニウム等を挙げることができる。
 また一般式(II)で表され、nが1~3である有機アルミニウム化合物として具体的には、アルミニウムエチルアセトアセテートジイソプロピレート、トリス(エチルアセトアセタト)アルミニウム等を挙げることができる。
 また一般式(II)で表され、nが1~3である有機アルミニウム化合物は、調製したものを用いても、市販品を用いてもよい。市販品としては例えば、川研ファインケミカル株式会社の商品名、ALCH、ALCH-50F、ALCH-75、ALCH-TR、ALCH-TR-20等を挙げることができる。
 また一般式(II)で表され、nが1~3である有機アルミニウム化合物は、アルミニウムトリアルコキシドと、2つのカルボニル基を有する特定構造の化合物とを混合することで調製することができる。また市販されているアルミニウムキレート化合物を用いてもよい。
 アルミニウムトリアルコキシドと、2つのカルボニル基を有する特定構造の化合物とを混合すると、アルミニウムトリアルコキシドのアルコキシド基の少なくとも一部が特定構造の化合物と置換して、アルミニウムキレート構造を形成する。このとき必要に応じて、液状媒体が存在してもよく、また、加熱処理、触媒の添加等を行ってもよい。アルミニウムアルコキシド構造の少なくとも一部がアルミニウムキレート構造に置換されることで、有機アルミニウム化合物の加水分解及び重合反応に対する安定性が向上し、これを含むパッシベーション層形成用組成物の保存安定性がより向上する。
 2つのカルボニル基を有する特定構造の化合物としては、反応性と保存安定性の観点から、β-ジケトン化合物、β-ケトエステル化合物及びマロン酸ジエステルからなる群より選ばれる少なくとも1種であることが好ましい。
 β-ジケトン化合物として具体的には、アセチルアセトン、3-メチル-2,4-ペンタンジオン、2,3-ペンタンジオン、3-エチル-2,4-ペンタンジオン、3-ブチル-2,4-ペンタンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、2,6-ジメチル-3,5-ヘプタンジオン、6-メチル-2,4-ヘプタンジオン等を挙げることができる。
 β-ケトエステル化合物として具体的には、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸イソプロピル、アセト酢酸イソブチル、アセト酢酸ブチル、アセト酢酸t-ブチル、アセト酢酸ペンチル、アセト酢酸イソペンチル、アセト酢酸ヘキシル、アセト酢酸n-オクチル、アセト酢酸ヘプチル、アセト酢酸3-ペンチル、2-アセチルヘプタン酸エチル、2-メチルアセト酢酸エチル、2-ブチルアセト酢酸エチル、ヘキシルアセト酢酸エチル、4,4-ジメチル-3-オキソ吉草酸エチル、4-メチル-3-オキソ吉草酸エチル、2-エチルアセト酢酸エチル、4-メチル-3-オキソ吉草酸メチル、3-オキソヘキサン酸エチル、3-オキソ吉草酸エチル、3-オキソ吉草酸メチル、3-オキソヘキサン酸メチル、3-オキソヘプタン酸エチル、3-オキソヘプタン酸メチル、4,4-ジメチル-3-オキソ吉草酸メチル等を挙げることができる。
 マロン酸ジエステルとして具体的には、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジプロピル、マロン酸ジイソプロピル、マロン酸ジブチル、マロン酸ジ-t-ブチル、マロン酸ジヘキシル、マロン酸t-ブチルエチル、メチルマロン酸ジエチル、エチルマロン酸ジエチル、イソプロピルマロン酸ジエチル、ブチルマロン酸ジエチル、sec-ブチルマロン酸ジエチル、イソブチルマロン酸ジエチル、1-メチルブチルマロン酸ジエチル等を挙げることができる。
 有機アルミニウム化合物がアルミニウムキレート構造を有する場合、アルミニウムキレート構造の数は1~3であれば特に制限されない。中でも、保存安定性の観点から、1又は3であることが好ましく、溶解度の観点から、1であることがより好ましい。アルミニウムキレート構造の数は、例えば、アルミニウムトリアルコキシドと、2つのカルボニル基を有する特定構造の化合物とを混合する比率を適宜調整することで制御することができる。また市販のアルミニウムキレート化合物から所望の構造を有する化合物を適宜選択してもよい。
 一般式(II)で表される化合物のうち、パッシベーション効果及び必要に応じて含有される溶剤との相溶性の観点から、具体的にはアルミニウムエチルアセトアセテートジイソプロピレート及びトリイソプロポキシアルミニウムからなる群より選ばれる少なくとも1種を用いることが好ましく、アルミニウムエチルアセトアセテートジイソプロピレートを用いることがより好ましい。
 有機アルミニウム化合物におけるアルミニウムキレート構造の存在は、通常用いられる分析方法で確認することができる。例えば、赤外分光スペクトル、核磁気共鳴スペクトル、融点等を用いて確認することができる。
 有機アルミニウム化合物は、液状であっても固体であってもよく、特に制限はない。パッシベーション効果と保存安定性の観点から、常温(25℃)での安定性、及び溶解性又は分散性が良好な有機アルミニウム化合物を用いることで、形成されるパッシベーション層の均質性がより向上し、所望のパッシベーション効果を安定的に得ることができる。
 パッシベーション層形成用組成物において、有機アルミニウム化合物を含む場合、有機アルミニウム化合物の含有率は特に制限されない。中でも、一般式(I)で表される式(I)化合物と有機アルミニウム化合物の総含有率を100質量%としたときの有機アルミニウム化合物の含有率が、0.1質量%以上80質量%以下であることが好ましく、0.5質量%以上80質量%以下であることがより好ましく、1質量%以上75質量%以下であることが更に好ましく、2質量%以上70質量%以下であることが特に好ましく、3質量%以上70質量%以下であることが極めて好ましい。
 有機アルミニウム化合物の含有率を0.1質量%以上とすることで、パッシベーション層形成用組成物の保存安定性が向上する傾向にある。また有機アルミニウム化合物を80質量%以下とすることで、パッシベーション効果が向上する傾向にある。
 パッシベーション層形成用組成物において、有機アルミニウム化合物を含む場合、パッシベーション層形成用組成物中の有機アルミニウム化合物の含有率は、必要に応じて適宜選択することができる。有機アルミニウム化合物の含有率は、保存安定性とパッシベーション効果の観点から、パッシベーション層形成用組成物中に0.1質量%~60質量%とすることができ、0.5質量%~55質量%であることが好ましく、1質量%~50質量%であることがより好ましく、1質量%~45質量%であることが更に好ましい。
(液状媒体)
 パッシベーション層形成用組成物は、液状媒体(溶媒又は分散媒)を含んでいてもよい。パッシベーション層形成用組成物が液状媒体を含有することで、粘度の調整がより容易になり、付与性がより向上すると共により均一なパッシベーション層を形成することができる。液状媒体としては特に制限されず、必要に応じて適宜選択することができる。中でも一般式(I)で表される化合物及び必要に応じて添加される一般式(II)で表される化合物を溶解して均一な溶液を与えることができる液状媒体が好ましく、有機溶剤の少なくとも1種を含むことがより好ましい。液状媒体とは、室温(25℃)において液体の状態の媒体をいう。
 液状媒体として具体的には、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチルイソプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、メチル-n-ペンチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン等のケトン溶剤;ジエチルエーテル、メチルエチルエーテル、メチル-n-プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル-n-プロピルエーテル、ジエチレングリコールメチル-n-ブチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールメチル-n-ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル-n-ブチルエーテル、トリエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル-n-ブチルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、テトラエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールメチル-n-ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル-n-ブチルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル、テトラプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル等のエーテル溶剤;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、酢酸イソアミル、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン等のエステル溶剤;アセトニトリル、N-メチルピロリジノン、N-エチルピロリジノン、N-プロピルピロリジノン、N-ブチルピロリジノン、N-ヘキシルピロリジノン、N-シクロヘキシルピロリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;塩化メチレン、クロロホルム、ジクロロエタン、ベンゼン、トルエン、キシレン、ヘキサン、オクタン、エチルベンゼン、2-エチルヘキサン酸、メチルイソブチルケトン、メチルエチルケトン等の疎水性有機溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、イソペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル溶剤;テルピネン、テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、ピネン、カルボン、オシメン、フェランドレン等のテルペン溶剤;水などが挙げられる。これらの液状媒体は1種類を単独で又は2種類以上を組み合わせて使用される。
 中でも液状媒体は、半導体基板への付与性及びパターン形成性の観点から、テルペン溶剤、エステル溶剤及びアルコール溶剤からなる群より選ばれる少なくとも1種を含むことが好ましく、テルペン溶剤からなる群より選ばれる少なくとも1種を含むことがより好ましい。
 パッシベーション層形成用組成物が液状媒体を含む場合、液状媒体の含有率は、付与性、パターン形成性及び保存安定性を考慮して決定される。例えば、液状媒体の含有率は、組成物の付与性とパターン形成性の観点から、パッシベーション層形成用組成物の総質量中に5質量%~98質量%であることが好ましく、10質量%~95質量%であることがより好ましい。
(樹脂)
 パッシベーション層形成用組成物は、樹脂の少なくとも1種を更に含有してもよい。樹脂を含むことで、パッシベーション層形成用組成物が半導体基板上に付与されて形成される組成物層の形状安定性がより向上し、パッシベーション層を組成物層が形成された領域に、所望の形状で形成することができる。
 樹脂の種類は特に制限されない。樹脂は、パッシベーション層形成用組成物を半導体基板上に付与する際に、良好なパターン形成ができる範囲に粘度調整が可能な樹脂であることが好ましい。樹脂として具体的には、ポリビニルアルコール、ポリアクリルアミド、ポリアクリルアミド誘導体、ポリビニルアミド、ポリビニルアミド誘導体、ポリビニルピロリドン、ポリエチレンオキサイド、ポリエチレンオキサイド誘導体、ポリスルホン酸、ポリアクリルアミドアルキルスルホン酸、セルロース、セルロース誘導体(カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース等のセルロースエーテルなど)、ゼラチン、ゼラチン誘導体、澱粉、澱粉誘導体、アルギン酸ナトリウム、アルギン酸ナトリウム誘導体、キサンタン、キサンタン誘導体、グアーガム、グアーガム誘導体、スクレログルカン、スクレログルカン誘導体、トラガカント、トラガカント誘導体、デキストリン、デキストリン誘導体、(メタ)アクリル酸樹脂、(メタ)アクリル酸エステル樹脂(アルキル(メタ)アクリレート樹脂、ジメチルアミノエチル(メタ)アクリレート樹脂等)、ブタジエン樹脂、スチレン樹脂、シロキサン樹脂、これらの共重合体などを挙げることができる。これら樹脂は、1種単独で又は2種類以上を組み合わせて使用される。
 尚、本明細書における「(メタ)アクリル酸」とは「アクリル酸」及び「メタクリル酸」の少なくとも一方を意味し、「(メタ)アクリレート」とは「アクリレート」及び「メタクリレート」の少なくとも一方を意味する。
 これらの樹脂のなかでも、保存安定性及びパターン形成性の観点から、酸性及び塩基性の官能基を有さない中性樹脂を用いることが好ましく、含有量が少量の場合においても容易に粘度及びチキソ性を調節できる観点から、セルロース誘導体を用いることがより好ましい。
 またこれら樹脂の分子量は特に制限されず、パッシベーション層形成用組成物としての所望の粘度を鑑みて適宜調整することが好ましい。樹脂の重量平均分子量は、保存安定性及びパターン形成性の観点から、1000~10,000,000であることが好ましく、1,000~5,000,000であることがより好ましい。尚、樹脂の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。検量線は、標準ポリスチレンの5サンプルセット(PStQuick MP-H、PStQuick B[東ソー株式会社、商品名])を用いて3次式で近似する。GPCの測定条件を以下に示す。
装置:(ポンプ:L-2130型[株式会社日立ハイテクノロジーズ])
  (検出器:L-2490型RI[株式会社日立ハイテクノロジーズ])
  (カラムオーブン:L-2350[株式会社日立ハイテクノロジーズ])
カラム:Gelpack GL-R440 + Gelpack GL-R450 + Gelpack GL-R400M(計3本)(日立化成株式会社、商品名)
カラムサイズ:10.7mm(内径)×300mm
溶離液:テトラヒドロフラン
試料濃度:10mg/2mL
注入量:200μL
流量:2.05mL/分
測定温度:25℃
 パッシベーション層形成用組成物が樹脂を含有する場合、パッシベーション層形成用組成物中の樹脂の含有率は、必要に応じて適宜選択することができる。例えば、樹脂の含有率は、パッシベーション層形成用組成物の総質量中0.1質量%~50質量%であることが好ましい。パターン形成をより容易にするようなチキソ性を発現させる観点から、樹脂の含有率は0.2質量%~25質量%であることがより好ましく、0.5質量%~20質量%であることが更に好ましく、0.5質量%~15質量%であることが特に好ましい。
(その他の成分)
 本発明のパッシベーション層形成用組成物は、上述した成分に加え、必要に応じて当該分野で通常用いられるその他の成分を更に含むことができる。
 パッシベーション層形成用組成物は、酸性化合物又は塩基性化合物を含有してもよい。パッシベーション層形成用組成物が酸性化合物又は塩基性化合物を含有する場合、保存安定性の観点から、酸性化合物又は塩基性化合物の含有率が、パッシベーション層形成用組成物中にそれぞれ1質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。
 酸性化合物としては、ブレンステッド酸及びルイス酸を挙げることができる。具体的には塩酸、硝酸等の無機酸;酢酸等の有機酸などを挙げることができる。また塩基性化合物としては、ブレンステッド塩基及びルイス塩基を挙げることができる。具体的には、塩基性化合物としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物等の無機塩基;トリアルキルアミン、ピリジン等の有機塩基などを挙げることができる。
 また、その他の成分としては、例えば、可塑剤、分散剤、界面活性剤、チキソ剤、無機フィラー、他の金属アルコキシド化合物、高沸点材料等を挙げることができる。中でも、チキソ剤及び無機フィラーから選択される少なくとも1種を含むことが好ましい。チキソ剤及び無機フィラーから選択される少なくとも1種を含むことで、パッシベーション層形成用組成物が半導体基板上に付与されて形成される組成物層の形状安定性がより向上し、パッシベーション層を組成物層が形成された領域に、所望の形状で形成することができる。
 チキソ剤としては、脂肪酸アミド、ポリアルキレングリコール化合物、有機フィラー等が挙げられる。ポリアルキレングリコール化合物としては、下記一般式(III)で表される化合物等が挙げられる。
  R-(O-R-O-R  ・・・(III)
 式(III)中、R及びRはそれぞれ独立に水素原子又はアルキル基を示し、Rはアルキレン基を示す。nは3以上の任意の整数である。尚、複数存在する(O-R)におけるRは同一であっても異なっていてもよい。
 脂肪酸アミドとしては、例えば、下記一般式(1)、(2)、(3)及び(4)で表される化合物が挙げられる。
 RCONH・・・・(1)
 RCONH-R10-NHCOR・・・・(2)
 RNHCO-R10-CONHR・・・・(3)
 RCONH-R10-N(R11・・・・(4)
 一般式(1)、(2)、(3)及び(4)中、R及びR11は各々独立に炭素数1~30のアルキル基又は炭素数2~30のアルケニル基を示し、R10は炭素数1~10のアルキレン基を示す。R及びR11は同一であっても異なっていてもよい。2つのR11は同一であっても異なっていてもよい。
 有機フィラーとしては、アクリル樹脂、セルロース樹脂、ポリスチレン樹脂等の粒子が挙げられる。
 無機フィラーとしては、二酸化ケイ素、水酸化アルミニウム、窒化アルミニウム、窒化ケイ素、酸化アルミニウム、酸化ジルコニウム、炭化ケイ素等の粒子が挙げられる。また、無機フィラーはガラス粒子であってもよい。
 有機フィラー又は無機フィラーの体積平均粒子径は、0.01μm~50μmであることが好ましい。体積平均粒子径は、粒度分布における体積基準の積算値が50%の場合における粒子径(D50%)を指す。体積平均粒子径は、レーザー回折散乱法粒度分布測定装置(例えば、ベックマン・コールター株式会社、LS 13 320)によって測定される。以下に、より詳細な粒子径の測定方法を示す。測定には、フィラーを0.01g~0.10g用い、125mlの溶剤(テルピネオール)に分散させて測定する。このとき、溶剤の屈折率を1.48、フィラーの屈折率を各物質の値に設定する(例えば、水酸化アルミニウム粒子の場合は1.57である)。上記条件で測定された粒度分布から、体積基準の積算値が50%における粒子径(D50%)を算出する。
 他の金属アルコキシド化合物としては、チタンアルコキシド、ジルコニウムアルコキシド、シリコンアルコキシド等が挙げられる。
(高沸点材料)
 パッシベーション膜形成用組成物は、樹脂と共に又は樹脂に替わる材料として、高沸点材料を用いてもよい。高沸点材料は、加熱したときに容易に気化して脱脂処理する必要のない化合物であることが好ましい。高沸点材料は特に、印刷又は塗布後に印刷形状が維持できる高粘度の高沸点材料であることが好ましい。これらを満たす材料として、例えば、イソボルニルシクロヘキサノールが挙げられる。
 イソボルニルシクロヘキサノールは、「テルソルブ MTPH」(日本テルペン化学株式会社、商品名)として商業的に入手可能である。イソボルニルシクロヘキサノールは沸点が308℃~318℃と高く、また組成物層から除去する際には、樹脂のように熱処理(焼成)による脱脂処理を行うまでもなく、加熱により気化させることによって消失させることができる。このため、半導体基板上に付与した後の乾燥工程で、パッシベーション層形成用組成物中に必要に応じて含まれる溶剤とイソボルニルシクロヘキサノールの大部分を取り除くことができる。
 パッシベーション層形成用組成物が高沸点材料を含有する場合、高沸点材料の含有率は、パッシベーション層形成用組成物の総質量中に3質量%~95質量%であることが好ましく、5質量%~90質量%であることがより好ましく、7質量%~80質量%であることが特に好ましい。
 また、パッシベーション層形成用組成物は、Nb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の酸化物(以下「特定酸化物」と称する)を含有してもよい。特定酸化物は、式(I)化合物を熱処理(焼成)して生成する酸化物であることから、特定酸化物を含有するパッシベーション層形成用組成物から形成されたパッシベーション層は、優れたパッシベーション効果が奏されることが期待される。
 また、パッシベーション層形成用組成物は、酸化アルミニウム(Al)を更に含有してもよい。酸化アルミニウムは、式(II)で表される化合物を熱処理(焼成)して生成する酸化物である。したがって、式(I)化合物と酸化アルミニウムとを含有するパッシベーション層形成用組成物は、優れたパッシベーション効果が奏されることが期待される。
 パッシベーション層形成用組成物の粘度は特に制限されず、半導体基板への付与方法等に応じて適宜選択することができる。例えば、パッシベーション層形成用組成物の粘度は0.01Pa・s~10000Pa・sとすることができる。中でもパターン形成性の観点から、パッシベーション層形成用組成物の粘度は0.1Pa・s~1000Pa・sであることが好ましい。尚、粘度は回転式せん断粘度計を用いて、25℃、せん断速度1.0s-1で測定される。
 また、パッシベーション層形成用組成物のせん断粘度は特に制限されず、パッシベーション層形成用組成物は、チキソ性を有していることが好ましい。特にパッシベーション層形成用組成物が樹脂を含む場合、パターン形成性の観点から、せん断速度1.0s-1におけるせん断粘度ηをせん断速度10s-1におけるせん断粘度ηで除して算出されるチキソ比(η/η)が1.05~100であることが好ましく、1.1~50であることがより好ましい。尚、せん断粘度は、コーンプレート(直径50mm、コーン角1°)を装着した回転式のせん断粘度計を用いて、温度25℃で測定される。
 一方、パッシベーション層形成用組成物が樹脂の代わりに高沸点材料を含む場合、パターン形成性の観点から、せん断速度1.0s-1におけるせん断粘度ηをせん断速度1000s-1におけるせん断粘度ηで除して算出されるチキソ比(η/η)が1.05~100であることが好ましく、1.1~50であることがより好ましい。
 パッシベーション層形成用組成物の製造方法には特に制限はない。例えば、一般式(I)で表される特定の化合物と、必要に応じて含まれる一般式(II)で表される化合物と、液状媒体と、樹脂等とを、通常用いられる混合方法で混合することで製造することができる。
 尚、パッシベーション層形成用組成物中に含まれる成分、及び各成分の含有量は示差熱-熱重量同時測定(TG/DTA)等の熱分析、核磁気共鳴(NMR)、赤外分光法(IR)等のスペクトル分析、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフィー(GPC)等のクロマトグラフ分析などを用いて確認することができる。
<パッシベーション層付半導体基板>
 本発明のパッシベーション層付半導体基板は、半導体基板と、前記半導体基板上の全面又は一部に設けられる前記パッシベーション層形成用組成物の熱処理物(焼成物)であるパッシベーション層とを有する。前記パッシベーション層付半導体基板は、前記パッシベーション層形成用組成物の熱処理物(焼成物)であるパッシベーション層を有することで優れたパッシベーション効果を示す。
 半導体基板は特に制限されず、目的に応じて通常用いられるものから適宜選択することができる。半導体基板としては、シリコン、ゲルマニウム等にp型不純物又はn型不純物をドープ(拡散)したものが挙げられる。中でもシリコン基板であることが好ましい。また半導体基板は、p型半導体基板であっても、n型半導体基板であってもよい。中でもパッシベーション効果の観点から、パッシベーション層が形成される面がp型層である半導体基板であることが好ましい。半導体基板上のp型層は、p型半導体基板に由来するp型層であっても、p型拡散層又はp型拡散層として、n型半導体基板又はp型半導体基板上に形成されたものであってもよい。
 また、半導体基板の厚みは特に制限されず、目的に応じて適宜選択することができる。例えば、半導体基板の厚みは50μm~1000μmとすることができ、75μm~750μmであることが好ましい。
 半導体基板上に形成されたパッシベーション層の厚みは特に制限されず、目的に応じて適宜選択することができる。例えば、パッシベーション層の厚みは5nm~50μmであることが好ましく、10nm~30μmであることがより好ましく、15nm~20μmであることが更に好ましい。パッシベーション層の厚みは、干渉式膜厚計等で測定することができる。
 パッシベーション層付半導体基板は、太陽電池素子、発光ダイオード素子等に適用することができる。例えば、太陽電池素子に適用することで変換効率に優れた太陽電池素子を得ることができる。
<パッシベーション層付半導体基板の製造方法>
 本発明のパッシベーション層付半導体基板の製造方法は、半導体基板上の全面又は一部に、前記パッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理(焼成)してパッシベーション層を形成する工程とを有する。前記製造方法は必要に応じてその他の工程を更に含んでいてもよい。
 前記パッシベーション層形成用組成物を用いることで、優れたパッシベーション効果を有するパッシベーション層を簡便な方法で形成することができる。
 パッシベーション層付半導体基板の製造方法は、組成物層を形成する工程の前に、半導体基板上にアルカリ水溶液を付与する工程を更に有することが好ましい。すなわち、半導体基板上にパッシベーション層形成用組成物を付与する前に、半導体基板の表面をアルカリ水溶液で洗浄することが好ましい。アルカリ水溶液で洗浄することで、半導体基板表面に存在する有機物、パーティクル等を除去することができ、パッシベーション効果がより向上する。アルカリ水溶液による洗浄の方法としては、一般的に知られているRCA洗浄等を例示することができる。例えば、アンモニア水-過酸化水素水の混合溶液に半導体基板を浸し、60℃~80℃で処理することで、有機物及びパーティクルを除去して半導体基板を洗浄することができる。洗浄時間は、10秒~10分間であることが好ましく、30秒~5分間であることがより好ましい。
 半導体基板上に、パッシベーション層形成用組成物を付与して組成物層を形成する方法には特に制限はない。例えば、公知の付与方法等を用いて、半導体基板上にパッシベーション層形成用組成物を付与する方法を挙げることができる。具体的には、浸漬法、スクリーン印刷法、インクジェット法、ディスペンサー法、スピンコート法、刷毛塗り、スプレー法、ドクターブレード法、ロールコート法等を挙げることができる。これらの中でもパターン形成性及び生産性の観点から、スクリーン印刷法及びインクジェット法等が好ましい。
 パッシベーション層形成用組成物の付与量は、目的に応じて適宜選択することができる。例えば、形成されるパッシベーション層の厚みが、後述する所望の厚みとなるように適宜調整することができる。
 パッシベーション層形成用組成物によって形成された組成物層を熱処理(焼成)して、組成物層に由来する熱処理物層(焼成物層)を形成することで、半導体基板上にパッシベーション層を形成することができる。
 組成物層の熱処理(焼成)条件は、組成物層に含まれる一般式(I)で表される化合物及び必要に応じて含まれる一般式(II)で表される化合物を、その熱処理物(焼成物)である金属酸化物又は複合酸化物に変換可能であれば特に制限されない。パッシベーション層に効果的に固定電荷を与え、より優れたパッシベーション効果を得るために、具体的には、熱処理(焼成)温度は300℃~900℃が好ましく、450℃~800℃がより好ましい。ここでいう熱処理(焼成)温度は、熱処理(焼成)に用いる炉の中の最高温度を意味する。熱処理(焼成)時間は熱処理(焼成)温度等に応じて適宜選択できる。例えば、0.1時間~10時間とすることができ、0.2時間~5時間であることが好ましい。ここでいう熱処理(焼成)時間は、最高温度での保持時間を意味する。
 なお、熱処理(焼成)は、拡散炉(例えば、ACCURON CQ-1200、株式会社日立国際電気;206A-M100、光洋サーモシステム株式会社等)などを用いて行うことができる。熱処理(焼成)を行う雰囲気は特に制限されず、大気中で実施することができる。
 パッシベーション層付半導体基板の製造方法によって製造されるパッシベーション層の厚みは特に制限されず、目的に応じて適宜選択できる。例えば、パッシベーション層の平均厚みは、5nm~50μmであることが好ましく、10nm~30μmであることが好ましく、15nm~20μmであることが更に好ましい。
 尚、形成されたパッシベーション層の平均厚みは、干渉式膜厚計(例えば、フィルメトリクス株式会社、F20膜厚測定システム)を用いて常法により、3点の厚みを測定し、その算術平均値として算出される。
 パッシベーション層付半導体基板の製造方法は、パッシベーション層形成用組成物を半導体基板に付与した後、熱処理(焼成)によってパッシベーション層を形成する工程の前に、パッシベーション層形成用組成物からなる組成物層を乾燥処理する工程を更に有していてもよい。組成物層を乾燥処理する工程を有することで、より厚さの揃ったパッシベーション効果を有するパッシベーション層を形成することができる。
 組成物層を乾燥処理する工程は、パッシベーション層形成用組成物に含まれることがある液状媒体の少なくとも一部を除去することができれば、特に制限されない。乾燥処理は例えば30℃~250℃で1分間~60分間の加熱処理とすることができ、40℃~220℃で3分間~40分間の加熱処理であることが好ましい。また乾燥処理は、常圧下で行なっても減圧下で行なってもよい。
 パッシベーション層形成用組成物が樹脂を含む場合、パッシベーション層付半導体基板の製造方法は、パッシベーション層形成用組成物を付与した後、熱処理(焼成)によってパッシベーション層を形成する工程の前に、パッシベーション層形成用組成物からなる組成物層を脱脂処理する工程を更に有していてもよい。組成物層を脱脂処理する工程を有することで、より均一なパッシベーション効果を有するパッシベーション層を形成することができる。
 組成物層を脱脂処理する工程は、パッシベーション層形成用組成物に含まれることがある樹脂の少なくとも一部を除去することができれば、特に制限されない。脱脂処理は例えば250℃~450℃で10分間~120分間の熱処理とすることができ、300℃~400℃で3分間~60分間の熱処理であることが好ましい。脱脂処理は、酸素存在下で行うことが好ましく、大気中で行なうことがより好ましい。
<太陽電池素子>
 本発明の太陽電池素子は、p型層及びn型層がpn接合されてなる半導体基板と、前記半導体基板上の全面又は一部に設けられる前記パッシベーション層形成用組成物の熱処理物(焼成物)であるパッシベーション層と、前記半導体基板の前記p型層及び前記n型層の少なくとも一方の層上に設けられる電極とを有する。前記太陽電池素子は、必要に応じてその他の構成要素を更に有していてもよい。
 太陽電池素子は、本発明のパッシベーション層形成用組成物から形成されたパッシベーション層を有することで、変換効率に優れる。
 パッシベーション層形成用組成物を付与する半導体基板としては特に制限されず、目的に応じて通常用いられるものから適宜選択することができる。半導体基板としては、パッシベーション層付半導体基板で説明したものを使用することができ、好適に使用できるものも同様である。パッシベーション層が設けられる半導体基板の面は、太陽電池素子における裏面、受光面及び側面のいずれであってもよい。
 また、半導体基板上に形成されたパッシベーション層の厚みは特に制限されず、目的に応じて適宜選択することができる。例えばパッシベーション層の平均厚さは、5nm~50μmであることが好ましく、10nm~30μmであることがより好ましく、15nm~20μmであることが更に好ましい。
 太陽電池素子の形状及び大きさに制限はない。例えば、一辺が125mm~156mmの略正方形であることが好ましい。
<太陽電池素子の製造方法>
 本発明の太陽電池素子の製造方法は、p型層及びn型層がpn接合されてなる半導体基板の全面又は一部に、前記パッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理(焼成)して、パッシベーション層を形成する工程と、前記p型層及び前記n型層の少なくとも一方の層上に、電極を形成する工程と、を有する。前記太陽電池素子の製造方法は、必要に応じてその他の工程を更に有していてもよい。
 本発明のパッシベーション層形成用組成物を用いることで、変換効率に優れる太陽電池素子を簡便な方法で製造することができる。
 半導体基板におけるp型層及びn型層の少なくとも一方の層上に電極を形成する方法としては、通常用いられる方法を採用することができる。例えば、半導体基板の所望の領域に、銀ペースト、アルミニウムペースト等の電極形成用ペーストを付与し、必要に応じて熱処理(焼成)することで製造することができる。
 パッシベーション層が設けられる半導体基板の面は、p型層であっても、n型層であってもよい。中でも変換効率の観点からp型層であることが好ましい。
 パッシベーション層形成用組成物を用いてパッシベーション層を形成する方法の詳細は、既述のパッシベーション層付半導体基板の製造方法と同様であり、好ましい態様も同様である。
 半導体基板上に形成されるパッシベーション層の厚みは特に制限されず、目的に応じて適宜選択することができる。例えば、パッシベーション層の平均厚さは、5nm~50μmであることが好ましく、10nm~30μmであることがより好ましく、15nm~20μmであることが更に好ましい。
 次に、図面を参照しながら本発明の実施形態について説明する。
 図1は、本実施形態にかかるパッシベーション層を有する太陽電池素子の製造方法の一例を模式的に示す工程図を断面図として示したものである。但し、この工程図は、本発明をなんら制限するものではない。
 図1(1)では、p型半導体基板1をアルカリ水溶液で洗浄し、p型半導体基板1の表面の有機物、パーティクル等を除去する。これにより、パッシベーション効果がより向上する。アルカリ水溶液による洗浄方法としては、一般的に知られるRCA洗浄等を用いることができる。
 その後、図1(2)に示すように、p型半導体基板1の表面を、アルカリエッチング等を施し、表面に凹凸(テクスチャともいう)を形成する。これにより、受光面側では太陽光の反射を抑制することができる。尚、アルカリエッチングには、NaOHとIPA(イソプロピルアルコール)とからなるエッチング溶液を使用することができる。
 次いで、図1(3)に示すように、p型半導体基板1の表面にリン等を熱的に拡散させることにより、n型拡散層2がサブミクロンオーダーの深さで形成されるとともに、p型バルク部分との境界にpn接合部が形成される。
 リンを拡散させるための手法としては、例えば、オキシ塩化リン(POCl)、窒素及び酸素の混合ガス雰囲気において、800℃~1000℃で数十分の処理を行う方法が挙げられる。この方法では、混合ガスを用いてリンの拡散を行うため、図1(3)に示すように、受光面(表面)以外に、裏面及び側面(図示せず)にもn型拡散層2が形成される。またn型拡散層2の上には、PSG(リンシリケートガラス)層3が形成される。そこで、サイドエッチングを行い、側面のPSG層3及びn型拡散層2を除去する。
 その後、図1(4)に示すように、受光面及び裏面のPSG層3をフッ酸等のエッチング溶液を用いて除去する。更に裏面については、図1(5)に示すように、別途エッチング処理を行い、裏面のn型拡散層2を除去する。
 そして、図1(6)に示すように、受光面のn型拡散層2上に、PECVD(Plasma Enhansed Chemical Vapor Deposition)法等によって、窒化ケイ素等の反射防止膜4を厚さ90nm前後で設ける。
 次いで、図1(7)に示すように、裏面の一部に本発明のパッシベーション層形成用組成物をスクリーン印刷等にて付与した後、乾燥後に300℃~900℃の温度で熱処理(焼成)を行い、パッシベーション層5を形成する。
 図5に、裏面におけるパッシベーション層5の形成パターンの一例を概略平面図として示す。図7は、図5のA部を拡大した概略平面図である。図8は、図5のB部を拡大した概略平面図である。図5に示すパッシベーション層5の形成パターンの場合、図7及び図8からも分かるように、裏面のパッシベーション層5は後の工程で裏面出力取出し電極7が形成される部分を除き、ドット状にp型半導体基板1が露出したパターンで形成される。このドット状開口部のパターンは、ドット径(L)及びドット間隔(L)で規定され、規則正しく配列していることが好ましい。ドット径(L)及びドット間隔(L)は任意に設定できるが、パッシベーション効果及び少数キャリアの再結合抑制の観点から、Lが5μm~2mmでLが10μm~3mmであることが好ましく、Lが10μm~1.5mmでLが20μm~2.5mmであることがより好ましく、Lが20μm~1.3mmでLが30μm~2mmであることが更に好ましい。
 ここで、上記ではパッシベーション層を形成したい部位(ドット状開口部以外の部分)にパッシベーション層形成用組成物を付与し、熱処理(焼成)することで、所望の形状のパッシベーション層を形成している。これに対し、ドット状開口部を含む全面にパッシベーション層形成用組成物を付与し、熱処理(焼成)後にレーザー、フォトリソグラフィ等により、ドット状開口部のパッシベーション層を選択的に除去することもできる。また、ドット状開口部のようにパッシベーション層形成用組成物を付与したくない部分に予めマスク材によりマスクすることで、パッシベーション層形成用組成物を選択的に付与することもできる。
 次いで、図1(8)に示すように、受光面に、ガラス粒子を含む銀電極ペーストをスクリーン印刷等にて付与する。図4は、太陽電池素子の受光面の一例を示す概略平面図である。図4に示すように、受光面電極は、受光面集電用電極8と受光面出力取出し電極9からなる。受光面積を確保するため、これら受光面電極の形成面積は少なく抑える必要がある。その他、受光面電極の抵抗率及び生産性の観点から、受光面集電用電極8の幅は10μm~250μmで、受光面出力取出し電極9の幅は100μm~2mmであることが好ましい。また、図4では受光面出力取出し電極9を2本設けているが、少数キャリアの取出し効率(発電効率)の観点から、受光面出力取出し電極9の本数を3本又は4本とすることもできる。
 一方、図1(8)に示すように、裏面には、ガラス粉末を含むアルミニウム電極ペースト及びガラス粒子を含む銀電極ペーストを、スクリーン印刷等にて付与する。図9は、太陽電池素子の裏面の一例を示す概略平面図である。裏面出力取出し電極7の幅は特に制限されないが、後の太陽電池の製造工程での配線材料の接続性等の観点から、裏面出力取出し電極7の幅は、100μm~10mmであることが好ましい。
 受光面及び裏面にそれぞれ電極ペーストを付与した後は、乾燥後に大気中450℃~900℃程度の温度で、受光面及び裏面ともに熱処理(焼成)して、受光面に受光面集電用電極8及び受光面出力取出し電極9を、裏面に裏面集電用電極6及び裏面出力取出し電極7を、それぞれ形成する。
 熱処理(焼成)後、図1(9)に示すように、受光面では、受光面電極を形成する銀電極ペーストに含まれるガラス粒子と、反射防止膜4とが反応(ファイアースルー)して、受光面電極(受光面集電用電極8、受光面出力取出し電極9)とn型拡散層2とが電気的に接続(オーミックコンタクト)される。一方、裏面では、ドット状に半導体基板1が露出した部分(パッシベーション層5が形成されなかった部分)では、熱処理(焼成)により、アルミニウム電極ペースト中のアルミニウムが半導体基板1中に拡散することで、p型拡散層10が形成される。本発明においては、保存安定性に優れるパッシベーション層形成用組成物を用いることで、パッシベーション効果に優れたパッシベーション層を簡便な手法で形成でき、発電性能に優れた太陽電池素子を製造することができる。
 図2は、本実施形態にかかるパッシベーション層を有する太陽電池素子の製造方法の他の一例を示す工程図を断面図として示したものであり、裏面のn型拡散層2がエッチング処理によって除去された後に、更に裏面が平坦化されること以外は、図1と同様にして太陽電池セルを製造することができる。平坦化する際は、硝酸、フッ酸及び酢酸の混合溶液又は水酸化カリウム溶液に、半導体基板の裏面を浸す等の手法を用いることができる。
 図3は、本実施形態にかかるパッシベーション層を有する太陽電池素子の製造方法の他の一例を示す工程図を断面図として示したものである。この方法では、半導体基板1にテクスチャー構造、n型拡散層2及び反射防止膜4を形成する工程(図3(19)~(24))までは、図1の方法と同様である。
 反射防止膜4を形成した後、図3(25)に示すように、パッシベーション層形成用組成物を付与する。図6に、裏面におけるパッシベーション層の形成パターンの一例を概略平面図として示す。図6に示すパッシベーション層の形成パターンでは、裏面の全面に、ドット状開口部が配列し、後の工程で裏面出力取出し電極が形成される部分にもドット状開口部が配列されている。
 その後、図3(26)に示すように、裏面においてドット状に半導体基板1が露出した部分(パッシベーション層5が形成されなかった部分)から、ホウ素又はアルミニウムを拡散させ、p型拡散層10を形成する。p型拡散層を形成する際に、ホウ素を拡散させる場合は、三塩化ホウ素(BCl)を含むガス中で、1000℃付近の温度で処理する方法を用いることができる。但し、オキシ塩化リンを用いる場合と同様にガス拡散の手法であることから、半導体基板1の受光面、裏面及び側面にp型拡散層10が形成されてしまうため、これを抑制するためにドット状開口部以外の部分をマスキング処理して、ホウ素がp型半導体基板1の不要な部分に拡散するのを防止する等の措置が必要である。
 また、p型拡散層10を形成する際にアルミニウムを拡散させる場合は、アルミニウムペーストをドット状開口部に付与し、これを450℃~900℃の温度で熱処理(焼成)し、ドット状開口部からアルミニウムを拡散させてp型拡散層10を形成し、その後、塩酸等によりエッチングして、p型拡散層10上に形成されたアルミニウムペースト由来の熱処理物層(焼成物層)を除去する手法を用いることができる。
 次いで、図3(27)に示すように、裏面の全面にアルミニウムを物理的に蒸着することで、アルミニウム電極11を形成する。
 その後、図3(28)に示すように、受光面にはガラス粒子を含む銀電極ペーストをスクリーン印刷等にて付与し、裏面にはガラス粒子を含む銀電極ペーストをスクリーン印刷等にて付与する。受光面の銀電極ペーストは図4に示す受光面電極の形状に合わせて、裏面の銀電極ペーストは図9に示す裏面電極の形状に合わせて、パターン状に付与する。
 受光面及び裏面にそれぞれ電極ペーストを付与した後は、乾燥後に大気中450℃~900℃程度の温度で、受光面及び裏面ともに熱処理(焼成)して、図3(29)に示すように、受光面に受光面集電用電極8及び受光面出力取出し電極9を、裏面にアルミニウム電極11及び裏面出力取出し電極7を、それぞれ形成する。このとき、受光面では受光面電極とn型拡散層2が電気的に接続され、裏面では、蒸着により形成されたアルミニウム電極11と裏面出力取出し電極7とが電気的に接続される。
<太陽電池>
 太陽電池は、上記の太陽電池素子と、前記太陽電池素子の電極上に設けられる配線材料とを有する。太陽電池は、太陽電池素子の少なくとも1つを含み、太陽電池素子の出力取出し電極上に配線材料が配置されることが好ましい。太陽電池は更に必要に応じて、配線材料13を介して複数の太陽電池素子が連結され、更に封止材で封止されて構成される。前記配線材料及び封止材としては特に制限されず、当該技術分野で通常用いられているものから適宜選択することができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
(パッシベーション層形成用組成物1の調製)
 ペンタエトキシニオブ(北興化学工業株式会社、構造式:Nb(OC、分子量:318.2)を1.2g、及びテルピネオール(日本テルペン化学株式会社、TPOと略記することがある)を18.8g混合して、パッシベーション層形成用組成物1を調製した。
(チキソ性の評価)
 上記で調製したパッシベーション層形成用組成物1のせん断粘度を、調製直後(12時間以内)に、回転式せん断粘度計(AntonPaar社、MCR301)に、コーンプレート(直径50mm、コーン角1°)を装着し、温度25℃で、せん断速度1.0s-1及び10s-1の条件でそれぞれ測定した。
 せん断速度が1.0s-1の条件でのせん断粘度(η)は22.3Pa・s、せん断速度が10s-1の条件でのせん断粘度(η)は18.9Pa・sとなった。せん断速度が1.0s-1と10s-1の場合でのチキソ比(η/η)は1.18となった。
(保存安定性の評価)
 上記で調製したパッシベーション層形成用組成物1のせん断粘度を、調製直後(12時間以内)及び25℃で30日間保存した後にそれぞれ測定した。せん断粘度の測定には、AntonPaar社、MCR301に、コーンプレート(直径50nm、コーン角1°)を装着し、温度25℃でせん断速度1.0s-1で行った。25℃におけるせん断粘度は、調製直後は22.3Pa・s、25℃で30日間保存した後は23.9Pa・sであった。
 保存安定性の評価では、30日間保存した後のせん断粘度の変化率が10%未満のものをA、10%以上30%未満のものをB、30%以上のものをCとしている。評価がA及びBであれば、パッシベーション層形成用組成物の保存安定性としては良好である。表2では、調製直後のせん断粘度の数値と、保存安定性の評価結果を示す。
(印刷性の評価)
 パッシベーション層形成用組成物の印刷性の評価を行う際は、半導体基板として、表面がミラー形状の単結晶p型シリコン基板(50mm角、厚さ625μm、以下、基板Aと呼ぶ)と、表面にテクスチャー構造が形成された単結晶p型シリコン基板(50mm角、厚さ180μm、以下、基板Bと呼ぶ)の2種類を使用した。
 印刷ムラの評価では、上記で調製したパッシベーション層形成用組成物1を、基板A及び基板Bのそれぞれに10回連続でスクリーン印刷を行い、基板Aについては9枚に、基板Bについては8枚に印刷ムラがないことを目視で確認した。
 ここで、印刷中に目視によって印刷ムラが生じなかったものが10枚中9枚以上の場合をA、8枚以下かつ6枚以上の場合をB、5枚以下の場合をCとしている。評価がA及びBであれば、パッシベーション層形成用組成物の印刷ムラとしては良好である。
 尚、印刷ムラとは、スクリーン版がシリコン基板から離れる際に、一部版離れが悪い部分が生じたためにできる、組成物層の厚さが場所によりばらつく現象を指す。
 印刷滲みの評価では、調製したパッシベーション層形成用組成物1を、基板A及び基板Bそれぞれに、スクリーン印刷法を用いて、図8に示すパターンでドット状開口部以外の全面に印刷した。ここで、評価に用いたドット状開口部のパターンは、ドット径(L)が368μm、ドット間隔(L)が0.5mmである。
 その後、パッシベーション層形成用組成物1を付与した基板A及び基板Bを150℃で3分間加熱し、液状媒体を蒸散させることで乾燥処理した。次いで、基板A及び基板Bを700℃の温度で10分間熱処理(焼成)した後、室温(25℃)で放冷した。
 印刷滲みの評価では、熱処理(焼成)後の基板に形成されるパッシベーション層内のドット状開口部のドット径(L)を測定した、尚、ドット径(L)を10点測定し、その平均値を算出した。基板Aについてはドット径(L)が332μm、基板Bについては270μmであった。
 ここで、印刷直後のドット径(L)(368μm)に対し、熱処理(焼成)後のドット径(L)の減少率が10%未満のものをA、10%以上30%未満のものをB、30%以上のものをCとしている。評価がA及びBであれば、パッシベーション層形成用組成物の印刷滲みとしては良好である。
 尚、印刷滲みとは、半導体基板上に付与したパッシベーション層形成用組成物が染みて広がる現象を言う。
(実効ライフタイムの測定)
 上記印刷ムラの評価で作製した、パッシベーション層形成用組成物1を全面に付与した10枚の基板Aのうち1枚を、150℃で3分間加熱し、液状媒体を蒸散させることで乾燥処理した。次いで半導体基板を700℃の温度で10分間熱処理(焼成)した後、室温(25℃)で放冷し、評価用基板とした。熱処理(焼成)は、拡散炉(ACCURON CQ-1200、株式会社日立国際電気)を用いて、大気中雰囲気下、最高温度700℃、保持時間10分間の条件で行った。
 上記で得られた評価用基板の実効ライフタイムを、ライフタイム測定装置(日本セミラボ株式会社、WT-2000PVN)を用いて、室温(25℃)で反射マイクロ波光電導減衰法により測定した。得られた評価用基板において、パッシベーション層形成用組成物を付与した領域の実効ライフタイムは、203μsであった。
(パッシベーション層の厚さ測定)
 上記で得られた評価用基板上のパッシベーション層の厚みを、干渉式膜厚計(フィルメトリクス株式会社、F20膜厚測定システム)を用いて測定したところ、厚みは75nmであった。
(固定電荷密度の測定)
 上記で得られた評価用基板について、パッシベーション層上にメタルマスクを介して、直径1mmのアルミニウム電極を複数個蒸着し、MIS(Metal-Insulator-Semiconductor;金属-絶縁体-半導体)構造のキャパシタを作製した。
 このキャパシタの静電容量の電圧依存性(C-V特性)を、市販のプローバー及びLCRメータ(HP社、4275A)により測定した。ここで、横軸に電圧、縦軸に静電容量をプロットしたC-V曲線において、電圧値を上げていった際に、静電容量が減少し始める電圧値(Vfb:フラットバンド電圧)を測定し、パッシベーション層を形成しない場合の理想的なフラットバンド電圧(Φms;-0.81[V])との差を算出した。次いで、上記フラットバンド電圧の差分(Vfb-Φms)と、静電容量の測定値、アルミニウム電極の面積、及び素電荷から、固定電荷密度Nを算出した。
 尚、固定電荷密度Nは、Vfb-Φmsの値が正、つまりVfbが-0.81[V]よりも大きい場合は負の値となり、結果としてパッシベーション層が負の固定電荷を示すことになる。
 実施例1で作製したパッシベーション層については、フラットバンド電圧Vfbが、-0.81[V]から+0.23[V]にシフトした。このシフト量を用いて固定電荷密度Nを算出したところ、-3.8×1011cmで負の固定電荷を示すことがわかった。
(太陽電池素子の作製)
 まず、単結晶p型半導体基板(125mm角、厚さ200μm)を用意し、アルカリエッチングにより、受光面及び裏面にテクスチャー構造を形成した。次いでオキシ塩化リン(POCl)、窒素及び酸素の混合ガス雰囲気において、900℃の温度で20分間処理し、受光面、裏面及び側面にn型拡散層を形成した。その後、サイドエッチングを行い、側面のPSG層及びn型拡散層を除去し、そしてフッ酸を含むエッチング溶液を用いて受光面及び裏面のPSG層を除去した。更に裏面については別途エッチング処理を行い、裏面のn型拡散層を除去した。その後、受光面のn型拡散層上に窒化ケイ素からなる反射防止膜をPECVDにより約90nmの厚さで形成した。
 次いで、上記で調製したパッシベーション層形成用組成物1を、裏面に図5、図7及び図8のパターンで付与した後、150℃の温度で5分間乾燥し、拡散炉(ACCURON CQ-1200、株式会社日立国際電気)を用いて、大気中雰囲気下、最高温度700℃、保持時間10分間の条件で熱処理(焼成)を行い、パッシベーション層1を形成した。尚、図5、図7及び図8では、裏面のパッシベーション層1は後の工程で裏面出力取出し電極が形成される部分を除き、ドット状にp型半導体基板が露出したパターンで形成した。このドット状開口部のパターンは、印刷滲みの評価で用いたものと同じ形状で、ドット径(L)は368μm、ドット間隔(L)は0.5mmとした。
 次いで、受光面には市販の銀電極ペースト(PV-16A、デュポン株式会社)をスクリーン印刷法にて図4に示すパターンで印刷した。電極パターンは、120μm幅の受光面集電用電極と、1.5mm幅の受光面出力取出し電極で構成され、熱処理(焼成)後の厚さが20μmとなるように、印刷条件(スクリーン版のメッシュ、印刷速度及び印圧)を適宜調整した。これを150℃の温度で5分間加熱し、液状媒体を蒸散させることで乾
燥処理を行った。
 一方、裏面には、市販のアルミニウム電極ペースト(PVG-AD-02、PVG Solutions株式会社)及び市販の銀電極ペースト(PV-505、デュポン株式会社)をスクリーン印刷法にて図9のパターンで印刷した。銀電極ペーストからなる裏面出力取出し電極のパターンは、123mm×4mmで構成した。
 尚、熱処理(焼成)後の裏面出力取出し電極及び裏面集電用電極の厚さが20μmとなるように、銀電極ペースト及びアルミニウム電極ペーストの印刷条件(スクリーン版のメッシュ、印刷速度及び印圧)を適宜調整した。
 各電極ペーストを印刷した後、150℃の温度で5分間加熱し、液状媒体を蒸散させることで乾燥処理を行った。
 続いて、トンネル炉(1列搬送W/Bトンネル炉、株式会社ノリタケカンパニーリミテド)を用いて大気中雰囲気下、最高温度800℃、保持時間10秒の条件で熱処理(焼成)を行って、所望の電極が形成された太陽電池素子1を作製した。
 上記で得られた太陽電池素子1の受光面出力取出し電極及び裏面出力取出し電極の上に、配線部材(太陽電池用はんだめっき平角線、製品名:SSA-TPS 0.2×1.5(20)、厚さ0.2mm×幅1.5mmの銅線にSn-Ag-Cu系鉛フリーはんだを片面あたり最大20μmの厚さでめっきした仕様、日立電線株式会社)を配置し、タブ線接続装置(NTS-150-M、Tabbing & Stringing Machine、株式会社エヌピーシー)を用い、最高温度250℃、保持時間10秒の条件ではんだを溶融させることで、上記配線部材と受光面出力取出し電極及び裏面出力取出し電極とを接続した。
 その後、ガラス板(白板強化ガラス3KWE33、旭硝子株式会社)、封止材(エチレンビニルアセテート;EVA)、バックシートを用いて、図10に示すように、ガラス板16/封止材14/配線材料13を接続した太陽電池素子12/封止材14/バックシート15の順で積層し、この積層体を真空ラミネータ(LM-50×50、株式会社エヌピーシー)を用いて、配線部材の一部が露出するように、140℃の温度で5分間真空ラミネートし、太陽電池1を作製した。
 作製した太陽電池の発電性能の評価は、擬似太陽光(WXS-155S-10、株式会社ワコム電創)と、電圧-電流(I-V)評価測定器(I-V CURVE TRACER MP-180、英弘精機株式会社)の測定装置を組み合わせて行った。太陽電池としての発電性能を示すJsc(短絡電流)、Voc(開放電圧)、F.F.(形状因子)、η(変換効率)は、それぞれJIS-C-8913(2005年度)及びJIS-C-8914(2005年度)に準拠して測定を行い得られたものである。得られた測定値を、後に示す比較例1で作製した太陽電池(太陽電池C1)の測定値を100.0とした相対値に換算した。
<実施例2>
 実施例1において、パッシベーション層形成用組成物にエチルセルロース(日進化成株式会社、商品名:ETHOCEL200cps、ECと略記することがある)を加えた。具体的には、各成分の含有量を、ペンタエトキシニオブ(北興化学工業株式会社、構造式:Nb(OC、分子量:318.2)を1.2g、テルピネオールを18.5g、エチルセルロースを0.3gと変更したこと以外は、実施例1と同様にして、パッシベーション層形成用組成物2を調製した。
 その後は、実施例1と同様にして、パッシベーション層形成用組成物2のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層2の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子2及び太陽電池2を作製し、発電性能を評価した。
<実施例3>
 実施例1において、パッシベーション層形成用組成物にアルミニウムエチルアセトアセタトジイソプロピレート(川研ファインケミカル株式会社、商品名:ALCH)を加えた。具体的には、各成分の含有量を、ペンタエトキシニオブ(北興化学工業株式会社、構造式:Nb(OC、分子量:318.22)を1.2g、ALCHを1.2g、テルピネオールを17.6gと変更したこと以外は、実施例1と同様にして、パッシベーション層形成用組成物3を調製した。
 その後は、実施例1と同様にして、パッシベーション層形成用組成物3のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層3の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子3及び太陽電池3を作製し、発電性能を評価した。
<実施例4>
 実施例1において、パッシベーション層形成用組成物にエチルセルロース(ETHOCEL200cps)とアルミニウムエチルアセトアセタトジイソプロピレート(ALCH)を加えた。具体的には、各成分の含有量を、ペンタエトキシニオブ(北興化学工業株式会社、構造式:Nb(OC、分子量:318.2)を1.6g、ALCHを1.0g、テルピネオールを17.1g、エチルセルロースを0.3gと変更したこと以外は、実施例1と同様にして、パッシベーション層形成用組成物4を調製した。
 その後は、実施例1と同様にして、パッシベーション層形成用組成物4のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層4実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子4及び太陽電池4を作製し、発電性能を評価した。
<実施例5>
 各評価には、実施例4において調製したパッシベーション層形成用組成物を用いた。印刷性(印刷ムラ及び印刷滲み)の評価基板の作製、実効ライフタイム及びパッシベーション層の厚さの測定用基板の作製、太陽電池素子の作製におけるパッシベーション層形成用組成物4の熱処理(焼成)条件を700℃、10分間から、600℃、15分間と変更したこと以外は、実施例1と同様にして、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層5の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定し、太陽電池素子5及び太陽電池5を作製し、発電性能を評価した。
<実施例6>
 各評価には、実施例4において調製したパッシベーション層形成用組成物を用いた。印刷性(印刷ムラ及び印刷滲み)の評価基板の作製、実効ライフタイム及びパッシベーション層の厚さの測定用基板の作製、太陽電池素子の作製におけるパッシベーション層形成用組成物4の熱処理(焼成)条件を700℃、10分間から、800℃、8分間と変更したこと以外は、実施例1と同様にして、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層6実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定し、太陽電池素子6及び太陽電池6を作製し、発電性能を評価した。
<実施例7>
 実施例1において、ペンタエトキシニオブの代わりに、ペンタ-n-ブトキシタンタル(株式会社高純度化学研究所、構造式:Ta(O-n-C、分子量:546.4)を用いた。具体的には、各成分の含有量を、ペンタ-n-ブトキシタンタルを1.6g、テルピネオールを18.4g混合し、パッシベーション層形成用組成物7を調製した。
 その後は、実施例1と同様にして、パッシベーション層形成用組成物7のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層7の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子7及び太陽電池7を作製し、発電性能を評価した。
<実施例8>
 実施例7において、パッシベーション層形成用組成物にアルミニウムエチルアセトアセタトジイソプロピレート(川研ファインケミカル株式会社、商品名:ALCH)を加えた。具体的には、各成分の含有量を、ペンタ-n-ブトキシタンタル(株式会社高純度化学研究所、構造式:Ta(O-n-C、分子量:546.4)を1.2g、ALCHを1.2g、テルピネオールを17.6gと変更したこと以外は、実施例7と同様にして、パッシベーション層形成用組成物8を調製した。
 その後は、実施例1と同様にして、パッシベーション層形成用組成物8のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層8の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子8及び太陽電池8を作製し、発電性能を評価した。
<実施例9>
 実施例1において、ペンタエトキシニオブの代わりに、バナジウム(V)トリエトキシドオキシド(株式会社高純度化学研究所、構造式:VO(OC、分子量:546.4)を用いた。具体的には、各成分の含有量を、バナジウム(V)トリエトキシドオキシドを1.6g、テルピネオールを18.4g混合し、パッシベーション層形成用組成物9を調製した。
 その後は、実施例1と同様にして、パッシベーション層形成用組成物9のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション
層9の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子9及び太陽電池9を作製し、発電性能を評価した。
<実施例10>
 実施例9において、パッシベーション層形成用組成物にアルミニウムエチルアセトアセタトジイソプロピレート(川研ファインケミカル株式会社、商品名:ALCH)及びエチルセルロース(ETHOCEL200cps)を加えた。具体的には、各成分の含有量を、バナジウム(V)トリエトキシドオキシド(株式会社高純度化学研究所、構造式:VO(OC、分子量:546.4)を1.2g、ALCHを0.8g、テルピネオールを17.7g、エチルセルロースを0.3gと変更したこと以外は、実施例9と同様にして、パッシベーション層形成用組成物10を調製した。
 その後は、実施例1と同様にして、パッシベーション層形成用組成物10のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層10の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子10及び太陽電池10を作製し、発電性能を評価した。
<実施例11>
 実施例1において、ペンタエトキシニオブの代わりに、テトラ-t-ブトキシハフニウム(株式会社高純度化学研究所、構造式:Hf(O-t-C、分子量:470.9)を用いた。具体的には、各成分の含有量を、テトラ-t-ブトキシハフニウムを2.0g、テルピネオールを18.0g混合し、パッシベーション層形成用組成物11を調製した。
 その後は、実施例1と同様にして、パッシベーション層形成用組成物11のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層11の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子11及び太陽電池11を作製し、発電性能を評価した。
<実施例12>
 実施例11において、パッシベーション層形成用組成物にアルミニウムトリスエチルアセトアセテート(川研ファインケミカル株式会社、商品名:ALCH-TR)及びエチルセルロース(ETHOCEL200cps)を加えた。具体的には、各成分の含有量を、テトラ-t-ブトキシハフニウム(株式会社高純度化学研究所、構造式:Hf(O-t-C、分子量:470.9)を1.2g、ALCH-TRを1.2g、テルピネオールを17.3g、エチルセルロースを0.3gと変更したこと以外は、実施例11と同様にして、パッシベーション層形成用組成物12を調製した。
 その後は、実施例1と同様にして、パッシベーション層形成用組成物12のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層12の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子12及び太陽電池12を作製し、発電性能を評価した。
<実施例13>
 パッシベーション層形成用組成物の調製において、ペンタエトキシニオブ(北興化学工業株式会社、構造式:Nb(OC、分子量:318.2)、ペンタ-n-ブトキシタンタル(株式会社高純度化学研究所、構造式:Ta(O-n-C、分子量:546.4)、テルピネオール、及びエチルセルロース(ETHOCEL200cps)を用いた。具体的には、各成分の含有量を、ペンタエトキシニオブを1.4g、ペンタ-n-ブトキシタンタルを1.0g、テルピネオールを17.3g、エチルセルロースを0.3gと変更したこと以外は、実施例1と同様にして、パッシベーション層形成用組成物13を調製した。
 その後は、実施例1と同様にして、パッシベーション層形成用組成物13のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層13の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子13及び太陽電池13を作製し、発電性能を評価した。
<実施例14>
 パッシベーション層形成用組成物の調製において、ペンタ-n-ブトキシニオブ(株式会社高純度化学研究所、構造式:Nb(O-n-C、分子量:458.5)、バナジウム(V)トリエトキシドオキシド(株式会社高純度化学研究所、構造式:VO(OC、分子量:546.4)、アルミニウムエチルアセトアセタトジイソプロピレート(川研ファインケミカル株式会社、商品名:ALCH)、テルピネオール、及びエチルセルロース(ETHOCEL200cps)を用いた。具体的には、各成分の含有量を、ペンタ-n-ブトキシニオブを1.6g、バナジウム(V)トリ-n-プロポキシドオキシドを0.6g、ALCHを0.6g、テルピネオールを17.0g、エチルセルロースを0.2gと変更したこと以外は、実施例1と同様にして、パッシベーション層形成用組成物14を調製した。
 その後は、実施例1と同様にして、パッシベーション層形成用組成物14のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層14の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子14及び太陽電池14を作製し、発電性能を評価した。
<比較例1>
 半導体基板へのパッシベーション層形成において、パッシベーション層形成用組成物を用いずに、ALD(Atomic Layer Deposition)法を用いて酸化アルミニウム(Al)からなるパッシベーション層C1を形成した。
 具体的には、原子層堆積装置を用いて、Al層が20nmの厚さになるよう、成膜条件を調整した。尚、成膜後の厚さは干渉式膜厚計(F20膜厚測定システム、フィルメトリクス株式会社)を用いて測定した。
 上記の手法で、パッシベーション層C1の実効ライフタイム及び厚さの評価用基板、及び太陽電池素子C1及び太陽電池C1を作製し、実効ライフタイム、厚さ及び固定電荷密度の測定と、太陽電池C1の発電性能を評価した。尚、それぞれの評価に用いた半導体基板、種類、成膜パターン、受光面及び裏面の電極形成方法は、実施例1~16と同じである。
<比較例2>
 実施例1におけるパッシベーション層形成用組成物の調製において、式(I)化合物を用いずに、表1に示すように、トリエトキシビスマス(株式会社高純度化学研究所、構造式:Bi(OC、分子量344.2、テルピネオール、及びエチルセルロース(ETHOCEL200cps)からなるパッシベーション層形成用組成物C2を調製した。
 その後は、実施例1と同様にして、パッシベーション層形成用組成物C2のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層C2の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子C2及び太陽電池C2を作製し、発電性能を評価した。
<比較例3>
 実施例1におけるパッシベーション層形成用組成物の調製において、式(I)化合物を用いずに、表1に示すように、テトラ-i-プロポキシチタン(株式会社高純度化学研究所、構造式:Ti(O-i-C、分子量284.2、テルピネオール、及びエチルセルロース(ETHOCEL200cps)からなるパッシベーション層形成用組成物C3を調製した。
 その後は、実施例1と同様にして、パッシベーション層形成用組成物C3のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、パッシベーション層C3の実効ライフタイムの評価及び厚さを測定した。更に実施例1と同様にして、太陽電池素子C3及び太陽電池C3を作製し、発電性能を評価した。
<比較例4>
 太陽電池素子の作製において、裏面にパッシベーション層を形成せず、太陽電池素子C4及び太陽電池C4を作製し、発電性能を評価した。
 具体的には、受光面及び裏面にテクスチャー構造を形成し、受光面にn型拡散層及び窒化ケイ素からなる反射防止膜をPECVDにより約90nmの厚さで形成した。次いで、受光面には市販の銀電極ペースト(PV-16A、デュポン株式会社)をスクリーン印刷法にて図4に示すパターンで印刷し、これを150℃の温度で5分間加熱し、液状媒体を蒸散させることで乾燥処理を行った。一方、裏面には、市販のアルミニウム電極ペースト(PVG-AD-02、PVG Solutions株式会社)及び市販の銀電極ペースト(PV-505、デュポン株式会社)をスクリーン印刷法にて図9のパターンで印刷した。各電極ペーストを印刷した後、150℃の温度で5分間加熱し、液状媒体を蒸散させることで乾燥処理を行った。ここで、各電極ペーストの寸法及び印刷条件は、実施例1と同じとした。
 続いて、トンネル炉(1列搬送W/Bトンネル炉、株式会社ノリタケカンパニーリミテド)を用いて大気中雰囲気下、最高温度800℃、保持時間10秒の条件で熱処理(焼成)を行って、所望の電極が形成された太陽電池素子C4を作製した。
 上記で得られた太陽電池素子C4についても実施例1と同様に、受光面出力取出し電極及び裏面出力取出し電極の上に配線部材を接続し、その後ガラス板、封止材及びバックシートを用いて積層し、ラミネータを用いて真空ラミネートし、太陽電池C4を作製した。
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000005

 
 実施例1~14及び比較例1~4で実施したパッシベーション層形成用組成物のせん断粘度、チキソ性、保存安定性の評価結果及び印刷性の評価結果、ライフタイム及び厚さの測定結果、並びに太陽電池の発電性能の評価結果を表2に示す。
 実施例1~14で作製したパッシベーション層用組成物は、いずれも保存安定性及び印刷性が良好であることが分かった。印刷性の評価のうち、印刷滲みの評価では、樹脂(エチルセルロース)を含むパッシベーション層形成用組成物にて、印刷滲みがより少なく良好であった。
 また、実施例1~14で評価した実効ライフタイム及び太陽電池の発電性能は、比較例1で測定したものとほぼ同等であり、本発明のパッシベーション層形成用組成物を用いることにより、ALD法の酸化アルミニウム(Al)に匹敵する優れたパッシベーション効果を有するパッシベーション層が形成されていることが分かった。また固定電荷密度の測定結果から、実施例1~14で作製したパッシベーション層は、数値は異なるものの、いずれも負の固定電荷を示すことが分かった。
 作製した太陽電池の発電性能は、パッシベーション層形成用組成物に樹脂(エチルセルロース)を含むものを用いた場合に、相対的に高くなる傾向があった。これについては、上述した通り、パッシベーション層形成用組成物中に樹脂を含むことで、印刷性が向上(印刷滲みが抑制される)し、太陽電池作製時のパッシベーション層のパターンを規定するドット径(L)の大きさが維持され、アルミニウム電極ペーストと半導体基板間の接触面積率が保たれたことによると考えられる。
 ただし、パッシベーション層の形成方法として、今回の実施例で適用したスクリーン印刷法でなく、例えば、裏面全面にパッシベーション層形成用組成物を付与し、これを熱処理(焼成)した後に、所望のパターンでパッシベーション層を除去する等の方式を採用することにより、上記印刷滲みの発電性能への影響は少なくなるものと考えられる。結果として、本実施例のように、印刷滲みが生じても、それ自体が太陽電池の発電性能を低下させるものではないと考えられる。
 更に、作製した太陽電池の発電性能は、パッシベーション層形成用組成物に式(I)化合物と有機アルミニウム化合物の両方を含むものを用いた場合にて、相対的に高くなる傾向があった。これについては、パッシベーション層形成用組成物中に式(I)化合物と有機アルミニウム化合物の両方を含むことで、熱処理(焼成)により式(I)化合物由来の金属とアルミニウムの複合酸化物が形成され、より緻密で大きな負の固定電荷を持つパッシベーション層が形成される等して、パッシベーション効果がより向上したものと考えられる。
 また、実施例13及び実施例14の結果から、パッシベーション層形成用組成物中に式(I)化合物が2種含まれていた場合でも、パッシベーション効果は高く、太陽電池の発電性能向上に寄与することが分かった。
 比較例2及び比較例3で作製した太陽電池の発電性能は、比較例1及び実施例1~14に比べ低いことが分かった。これについては、固定電荷密度の測定結果からも分かるように、比較例2のパッシベーション層形成用組成物C2にはトリエトキシビスマス、比較例3のパッシベーション層形成用組成物C3にはテトラ-i-プロポキシチタンを用いており、これらを熱処理(焼成)して生成された酸化物〔酸化ビスマス(Bi)及び酸化チタン(TiO、TiO等)〕に、大きな値の固定電荷が生じなかったことにより、充分なパッシベーション効果が得られなかったと考えられる。
 比較例4で作製した太陽電池の発電性能は、比較例1及び実施例1~14に比べ低いことが分かった。これについては、比較例4で作製した太陽電池C4にはパッシベーション層が形成されていないため、アルミニウム電極ペーストを裏面に付与して熱処理(焼成)した際に、裏面全面でアルミニウムが半導体基板に拡散し、太陽電池内で発生した少数キャリアの裏面再結合が増加したと考えられる。
<参考実施形態1>
 以下は、参考実施形態1に係るパッシベーション膜、塗布型材料、太陽電池素子及びパッシベーション膜付シリコン基板である。
<1> 酸化アルミニウムと酸化ニオブとを含み、シリコン基板を有する太陽電池素子に用いられるパッシベーション膜。
<2> 前記酸化ニオブと前記酸化アルミニウムの質量比(酸化ニオブ/酸化アルミニウム)が30/70~90/10である<1>に記載のパッシベーション膜。
<3> 前記酸化ニオブ及び前記酸化アルミニウムの総含有率が90質量%以上である<1>又は<2>に記載のパッシベーション膜。
<4> 更に有機成分を含む<1>~<3>のいずれか1項に記載のパッシベーション膜。
<5> 酸化アルミニウム前駆体及び酸化ニオブ前駆体を含む塗布型材料の熱処理物である<1>~<4>のいずれか1項に記載のパッシベーション膜。
<6> 酸化アルミニウム前駆体及び酸化ニオブ前駆体を含み、シリコン基板を有する太陽電池素子のパッシベーション膜の形成に用いられる塗布型材料。
<7> 単結晶シリコン又は多結晶シリコンからなり、受光面及び前記受光面とは反対側の裏面を有するp型のシリコン基板と、
 前記シリコン基板の受光面側に形成されたn型の不純物拡散層と、
 前記シリコン基板の受光面側の前記n型の不純物拡散層の表面に形成された第1電極と、
 前記シリコン基板の裏面側の表面に形成され、複数の開口部を有する酸化アルミニウムと酸化ニオブを含むパッシベーション膜と、
 前記複数の開口部を通して、前記シリコン基板の裏面側の表面と電気的な接続を形成している第2電極と、
 を備える太陽電池素子。
<8> 単結晶シリコン又は多結晶シリコンからなり、受光面及び前記受光面とは反対側の裏面を有するp型のシリコン基板と、
 前記シリコン基板の受光面側に形成されたn型の不純物拡散層と、
 前記シリコン基板の受光面側の前記n型の不純物拡散層の表面に形成された第1電極と、
 前記シリコン基板の裏面側の一部又は全部に形成され、前記シリコン基板より高濃度に不純物が添加されたp型の不純物拡散層と、
 前記シリコン基板の裏面側の表面に形成され、複数の開口部を有する酸化アルミニウムと酸化ニオブを含むパッシベーション膜と、
 前記複数の開口部を通して、前記シリコン基板の裏面側の前記p型の不純物拡散層の表面と電気的な接続を形成している第2電極と、
 を備える太陽電池素子。
<9> 単結晶シリコン又は多結晶シリコンからなり、受光面及び前記受光面とは反対側の裏面を有するn型のシリコン基板と、
 前記シリコン基板の受光面側に形成されたp型の不純物拡散層と、
 前記シリコン基板の裏面側に形成された第2電極と、
 前記シリコン基板の受光面側の表面に形成され、複数の開口部を有する酸化アルミニウムと酸化ニオブを含むパッシベーション膜と、
 前記シリコン基板の受光面側の前記p型の不純物拡散層の表面に形成され、前記複数の開口部を通して前記シリコン基板の受光面側の表面と電気的な接続を形成している第1電極と、
 を備える太陽電池素子。
<10> パッシベーション膜における酸化ニオブと酸化アルミニウムの質量比(酸化ニオブ/酸化アルミニウム)が30/70~90/10である<7>~<9>のいずれか1項に記載の太陽電池素子。
<11> 前記パッシベーション膜における前記酸化ニオブ及び前記酸化アルミニウムの総含有率が90質量%以上である<7>~<10>のいずれか1項に記載の太陽電池素子。
<12> シリコン基板と、
 前記シリコン基板上の全面又は一部に設けられる<1>~<5>のいずれか1項に記載のパッシベーション膜と、
 を有するパッシベーション膜付シリコン基板。
 上記の参考実施形態によれば、シリコン基板のキャリアライフタイムを長くし且つ負の固定電荷を有するパッシベーション膜を低コストで実現することができる。また、そのパッシベーション膜の形成を実現するための塗布型材料を提供することができる。また、そのパッシベーション膜を用いた効率の高い太陽電池素子を低コストで実現することができる。また、キャリアライフタイムを長くし且つ負の固定電荷を有するパッシベーション膜付シリコン基板を低コストで実現することができる。
 本実施の形態のパッシベーション膜は、シリコン太陽電池素子に用いられるパッシベーション膜であり、酸化アルミニウムと酸化ニオブとを含むようにしたものである。
 また、本実施の形態では、パッシベーション膜の組成を変えることにより、その膜が持つ固定電荷量を制御することができる。
 また、酸化ニオブと酸化アルミニウムの質量比が30/70~80/20であることが、負の固定電荷を安定化できるという観点からより好ましい。また、酸化ニオブと酸化アルミニウムの質量比が35/65~70/30であることが、負の固定電荷を更に安定化することができるという観点から更に好ましい。また、酸化ニオブと酸化アルミニウムの質量比が50/50~90/10であることが、キャリアライフタイムの向上と負の固定電荷を両立できるという観点から好ましい。
 パッシベーション膜中の酸化ニオブと酸化アルミニウムの質量比は、エネルギー分散型X線分光法(EDX)、二次イオン質量分析法(SIMS)及び高周波誘導結合プラズマ質量分析法(ICP-MS)によって測定することができる。具体的な測定条件は次の通りである。パッシベーション膜を酸又はアルカリ水溶液に溶解し、この溶液を霧状にしてArプラズマに導入し、励起された元素が基底状態に戻る際に放出される光を分光して波長及び強度を測定し、得られた波長から元素の定性を行い、得られた強度から定量を行う。
 パッシベーション膜中の酸化ニオブ及び酸化アルミニウムの総含有率が、80質量%以上であることが好ましく、良好な特性を維持できる観点から90質量%以上であることがより好ましい。パッシベーション膜中の酸化ニオブ及び酸化アルミニウムの成分が多くなると、負の固定電荷の効果が大きくなる。
 パッシベーション膜中の酸化ニオブ及び酸化アルミニウムの総含有率は、熱重量分析、蛍光X線分析、ICP-MS及びX線吸収分光法を組み合わせることによって測定することができる。具体的な測定条件は次の通りである。熱重量分析によって無機成分の割合を算出し、蛍光X線やICP-MS分析によってニオブ及びアルミニウムの割合を算出し、酸化物の割合はX線吸収分光法で調べることができる。
 また、パッシベーション膜中には、膜質の向上や弾性率の調整の観点から、酸化ニオブ及び酸化アルミニウム以外の成分が有機成分として含まれていてもよい。パッシベーション膜中の有機成分の存在は、元素分析及び膜のFT-IRの測定から確認することができる。
 パッシベーション膜中の有機成分の含有率は、パッシベーション膜中、10質量%未満であることがより好ましく、5質量%以下であることが更に好ましく、1質量%以下であることが特に好ましい。
 パッシベーション膜は、酸化アルミニウム前駆体及び酸化ニオブ前駆体を含む塗布型材料の熱処理物として得てもよい。塗布型材料の詳細を次に説明する。
 本実施の形態の塗布型材料は、酸化アルミニウム前駆体及び酸化ニオブ前駆体を含み、シリコン基板を有する太陽電池素子用のパッシベーション膜の形成に用いられる。
 酸化アルミニウム前駆体は、酸化アルミニウムを生成するものであれば、特に限定されることなく用いることができる。酸化アルミニウム前駆体としては、酸化アルミニウムをシリコン基板上に均一に分散させる点、及び化学的に安定な点から、有機系の酸化アルミニウム前駆体を用いることが好ましい。有機系の酸化アルミニウム前駆体の例として、アルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、(株)高純度化学研究所SYM-AL04等を挙げることができる。
 酸化ニオブ前駆体は、酸化ニオブを生成するものであれば、特に限定されることなく用いることができる。酸化ニオブ前駆体としては、酸化ニオブをシリコン基板上に均一に分散させる点、及び化学的に安定な観点から有機系の酸化ニオブ前駆体を用いることが好ましい。有機系の酸化ニオブ前駆体の例として、ニオブ(V)エトキシド(構造式:Nb(OC、分子量:318.21)、(株)高純度化学研究所Nb-05等を挙げることができる。
 有機系の酸化ニオブ前駆体及び有機系の酸化アルミニウム前駆体を含む塗布型材料を塗布法又は印刷法を用いて成膜し、その後の熱処理(焼成)により有機成分を除去することにより、パッシベーション膜を得ることができる。したがって、結果として、有機成分を含むパッシベーション膜であってもよい。
<太陽電池素子の構造説明>
 本実施の形態の太陽電池素子の構造について図12~図15を参照しながら説明する。図12~図15は、本実施の形態の裏面にパッシベーション膜を用いた太陽電池素子の第1~第4構成例を示す断面図である。
 本実施の形態で用いるシリコン基板(結晶シリコン基板、半導体基板)101としては、単結晶シリコン、又は、多結晶シリコンのどちらを用いてもよい。また、シリコン基板101としては、導電型がp型の結晶シリコン、又は、導電型がn型の結晶シリコンのどちらを用いてもよい。本実施の形態の効果をより発揮する観点からは、導電型がp型の結晶シリコンがより適している。
 以下の図12~図15においては、シリコン基板101として、p型単結晶シリコンを用いた例について説明する。尚、当該シリコン基板101に用いる単結晶シリコン又は多結晶シリコンは、任意のものでよいが、抵抗率が0.5Ω・cm~10Ω・cmである単結晶シリコン又は多結晶シリコンが好ましい。
 図12(第1構成例)に示すように、p型のシリコン基板101の受光面側(図中上側、第1面)に、リン等のV族の元素をドーピングしたn型の拡散層102が形成される。そして、シリコン基板101と拡散層102との間でpn接合が形成される。拡散層102の表面には、窒化ケイ素(SiN)膜等の受光面反射防止膜103、及び銀(Ag)等を用いた第1電極105(受光面側の電極、第1面電極、上面電極、受光面電極)が形成される。受光面反射防止膜103は、受光面パッシベーション膜としての機能を兼ね備えてもよい。SiN膜を用いることで、受光面反射防止膜と受光面パッシベーション膜の機能を両方兼ね備えることができる。
 尚、本実施の形態の太陽電池素子は、受光面反射防止膜103を有していても有していなくてもよい。また、太陽電池素子の受光面には、表面での反射率を低減するため、凹凸構造(テクスチャー構造)が形成されることが好ましいが、本実施の形態の太陽電池素子は、テクスチャー構造を有していても有していなくてもよい。
 一方、シリコン基板101の裏面側(図中下側、第2面、裏面)には、アルミニウム、ボロン等のIII族の元素をドーピングした層であるBSF(Back Surface Field)層104が形成される。ただし、本実施の形態の太陽電池素子は、BSF層104を有していても有していなくてもよい。
 このシリコン基板101の裏面側には、BSF層104(BSF層104が無い場合はシリコン基板101の裏面側の表面)とコンタクト(電気的接続)をとるために、アルミニウム等で構成される第2電極106(裏面側の電極、第2面電極、裏面電極)が形成されている。
 更に、図12(第1構成例)においては、BSF層104(BSF層104が無い場合はシリコン基板101の裏面側の表面)と第2電極106とが電気的に接続されているコンタクト領域(開口部OA)を除いた部分に、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜(パッシベーション層)107が形成されている。本実施の形態のパッシベーション膜107は、負の固定電荷を有することが可能である。この固定電荷により、光によりシリコン基板101内で発生したキャリアのうち少数キャリアである電子を表面側へ跳ね返す。このため、短絡電流が増加し、光電変換効率が向上することが期待される。
 次いで、図13に示す第2構成例について説明する。図12(第1構成例)においては、第2電極106は、コンタクト領域(開口部OA)とパッシベーション膜107上の全面に形成されているが、図13(第2構成例)においては、コンタクト領域(開口部OA)のみに第2電極106が形成されている。コンタクト領域(開口部OA)とパッシベーション膜107上の一部のみに第2電極106が形成される構成としてもよい。図13に示す構成の太陽電池素子であっても図12(第1構成例)と同様の効果を得ることができる。
 次いで、図14に示す第3構成例について説明する。図14に示す第3構成例においては、BSF層104が、第2電極106とのコンタクト領域(開口部OA部)を含む裏面側の一部のみに形成され、図12(第1構成例)のように、裏面側の全面に形成されていない。このような構成の太陽電池素子(図14)であっても、図12(第1構成例)と同様の効果を得ることができる。また、図14の第3構成例の太陽電池素子によれば、BSF層104、つまり、アルミニウム、ボロン等のIII族の元素をドーピングすることでシリコン基板101よりも不純物が高い濃度でドーピングされた領域が少ないため、図12(第1構成例)より高い光電変換効率を得ることが可能である。
 次いで、図15に示す第4構成例について説明する。図14(第3構成例)においては、第2電極106は、コンタクト領域(開口部OA)とパッシベーション膜107上の全面に形成されているが、図15(第4構成例)においては、コンタクト領域(開口部OA)のみに第2電極106が形成されている。コンタクト領域(開口部OA)とパッシベーション膜107上の一部のみに第2電極106が形成される構成としてもよい。図15に示す構成の太陽電池素子であっても図14(第3構成例)と同様の効果を得ることができる。
 また、第2電極106を印刷法で付与し、高温で焼成することにより裏面側の全面に形成した場合は、降温過程で上に凸の反りが発生しやすい。このような反りは、太陽電池素子の破損を引き起こす場合があり、歩留りが低下する恐れがある。また、シリコン基板の薄膜化が進む際には反りの問題が大きくなる。この反りの原因は、シリコン基板よりも金属(例えばアルミニウム)よりなる第2電極106の熱膨張係数が大きく、その分、降温過程での収縮が大きいため、応力が発生することにある。
 以上のことから、図13(第2構成例)及び図15(第4構成例)のように第2電極106を裏面側の全面に形成しない方が、電極構造が上下で対称になり易く、熱膨張係数の差による応力が発生しにくいため好ましい。ただし、その場合は、別途反射層を設けることが好ましい。
 <太陽電池素子の製法説明>
 次に、上記構成をもつ本実施の形態の太陽電池素子(図12~図15)の製造方法の一例について説明する。ただし、本実施の形態は、以下に述べる方法で作製した太陽電池素子に限るものではない。
 まず、図12等に示すシリコン基板101の表面にテクスチャー構造を形成する。テクスチャー構造の形成は、シリコン基板101の両面に形成しても、片面(受光面側)のみに形成してもよい。テクスチャー構造を形成するため、まず、シリコン基板101を加熱した水酸化カリウム又は水酸化ナトリウムの溶液に浸して、シリコン基板101のダメージ層を除去する。その後、水酸化カリウム及びイソプロピルアルコールを主成分とする溶液に浸すことで、シリコン基板101の両面又は片面(受光面側)にテクスチャー構造を形成する。尚、上述したとおり、本実施の形態の太陽電池素子は、テクスチャー構造を有していても有していなくてもよいため、本工程は省略してもよい。
 続いて、シリコン基板101を塩酸、フッ酸等の溶液で洗浄した後、シリコン基板101にオキシ塩化リン(POCl)等の熱拡散により、拡散層102としてリン拡散層(n層)を形成する。リン拡散層は、例えば、リンを含んだ塗布型のドーピング材の溶液をシリコン基板101に付与し、熱処理をすることによって形成できる。熱処理後、表面に形成されたリンガラスの層をフッ酸等の酸で除去することで、拡散層102としてリン拡散層(n層)が形成される。リン拡散層を形成する方法は特に制限されない。リン拡散層は、シリコン基板101の表面からの深さが0.2μm~0.5μmの範囲、シート抵抗が40Ω/□~100Ω/□(ohm/square)の範囲となるように形成することが好ましい。
 その後、シリコン基板101の裏面側にボロン、アルミニウム等を含んだ塗布型のドーピング材の溶液を付与し、熱処理を行うことで、裏面側のBSF層104を形成する。付与には、スクリーン印刷、インクジェット、ディスペンス、スピンコート等の方法を用いることができる。熱処理後、裏面に形成されたボロンガラス、アルミニウム等の層をフッ酸、塩酸等によって除去することでBSF層104が形成される。BSF層104を形成する方法は特に制限されない。好ましくは、BSF層104は、ボロン、アルミニウム等の濃度の範囲が1018cm-3~1022cm-3となるように形成されることが好ましく、ドット状又はライン状にBSF層104を形成することが好ましい。尚、本実施の形態の太陽電池素子は、BSF層104を有していても有していなくてもよいため、本工程は省略してもよい。
 また、受光面の拡散層102、及び裏面のBSF層104とも塗布型のドーピング材の溶液を用いて形成する場合は、上記のドーピング材の溶液をそれぞれシリコン基板101の両面に付与して、拡散層102としてのリン拡散層(n層)とBSF層104の形成を一括して行い、その後、表面に形成したリンガラス、ボロンガラス等を一括して除去してもよい。
 その後、拡散層102の上に、受光面反射防止膜103である窒化ケイ素膜を形成する。受光面反射防止膜103を形成する方法は特に制限されない。受光面反射防止膜103は、厚さが50~100nmの範囲、屈折率が1.9~2.2の範囲となるように形成することが好ましい。受光面反射防止膜103は、窒化ケイ素膜に限られず、酸化ケイ素膜、酸化アルミニウム膜、酸化チタン膜等であってもよい。窒化イ素膜等の表面反射防止膜103は、プラズマCVD、熱CVD等の方法で作製でき、350℃~500℃の温度範囲で形成可能なプラズマCVDで作製することが好ましい。
 次に、シリコン基板101の裏面側にパッシベーション膜107を形成する。パッシベーション膜107は、酸化アルミニウムと酸化ニオブを含み、例えば、熱処理(焼成)により酸化アルミニウムが得られる有機金属分解塗布型材料に代表される酸化アルミニウム前駆体と、熱処理(焼成)により酸化ニオブが得られる市販の有機金属分解塗布型材料に代表される酸化ニオブ前駆体とを含む材料(パッシベーション材料)を付与し、熱処理(焼成)することにより形成される。
 パッシベーション膜107の形成は、例えば、以下のようにして行うことができる。上記の塗布型材料を、濃度0.049質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチ(20.32cm)のp型のシリコン基板(8Ωcm~12Ωcm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークを行う。その後、窒素雰囲気下で、650℃、1時間の熱処理を行う。この場合、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜が得られる。上記のような方法で形成されるパッシベーション膜107のエリプソメーターにより測定される膜厚は、通常は数十nm程度である。
 上記の塗布型材料は、スクリーン印刷、オフセット印刷、インクジェットによる印刷、ディスペンサーによる印刷等の方法により、コンタクト領域(開口部OA)を含んだ所定のパターンに付与される。尚、上記の塗布型材料は、付与後、80℃~180℃の範囲でプリベークして溶媒を蒸発させた後、窒素雰囲気下又は空気中において、600℃~1000℃で、30分~3時間程度の熱処理(アニール)を施し、パッシベーション膜107(酸化物の膜)とすることが好ましい。
 更に、開口部(コンタクト用の孔)OAは、BSF層104上に、ドット状又はライン状に形成することが好ましい。
 上記の太陽電池素子に用いるパッシベーション膜107としては、酸化ニオブと酸化アルミニウムの質量比(酸化ニオブ/酸化アルミニウム)が30/70~90/10であることが好ましく、30/70~80/20であることがより好ましく、35/65~70/30であることが更に好ましい。これにより、負の固定電荷を安定化させることができる。また、酸化ニオブと酸化アルミニウムの質量比が50/50~90/10であることが、キャリアライフタイムの向上と負の固定電荷を両立できるという観点から好ましい。
 更にパッシベーション膜107において、酸化ニオブ及び酸化アルミニウムの総含有率が80質量%以上であることが好ましく、90質量%以上であることがより好ましい。
 次に、受光面側の電極である第1電極105を形成する。第1電極105は、受光面反射防止膜103上に銀(Ag)を主成分とするペーストをスクリーン印刷により形成し、熱処理(ファイアースルー)を行うことで形成される。第1電極105の形状は、任意の形状でよく、例えば、フィンガー電極とバスバー電極とからなる周知の形状でよい。
 そして、裏面側の電極である第2電極106を形成する。第2電極106は、アルミニウムを主成分とするペーストをスクリーン印刷又はディスペンサーを用いて付与し、それを熱処理することによって形成できる。また、第2電極106の形状は、BSF層104の形状と同じ形状、裏面側の全面を覆う形状、櫛型状、格子状等であることが好ましい。尚、受光面側の電極である第1電極105と第2電極106とを形成するためのペーストの印刷をそれぞれ先に行って、その後、熱処理(ファイアスルー)することにより第1電極105と第2電極106とを一括して形成してもよい。
 また第2電極106の形成にアルミニウム(Al)を主成分とするペーストを用いることにより、アルミニウムがドーパントとして拡散して、自己整合で第2電極106とシリコン基板101との接触部にBSF層104が形成される。尚、先に述べたように、シリコン基板101の裏面側にボロン、アルミニウム等を含んだ塗布型のドーピング材の溶液を付与し、それを熱処理することで別途BSF層104を形成してもよい。
 尚、上記においては、シリコン基板101にp型のシリコンを用いた構造例及び製法例を示したが、シリコン基板101としてn型のシリコン基板も用いることができる。この場合は、拡散層102は、ボロン等のIII族の元素をドーピングした層で形成され、BSF層104は、リン等のV族の元素をドーピングして形成される。ただし、この場合は、負の固定電荷により界面に形成された反転層と裏面側の金属が接触した部分を通じて漏れ電流が流れ、変換効率が上がりにくい場合がある点に留意すべきである。
 またn型のシリコン基板を用いる場合には、酸化ニオブ及び酸化アルミニウムを含むパッシベーション膜107を図16に示すように受光面側に用いることができる。図16は、本実施の形態の受光面パッシベーション膜を用いた太陽電池素子の構成例を示す断面図である。
 この場合、受光面側の拡散層102は、ボロンをドーピングしてp型となっており、生成したキャリアのうち正孔を受光面側に、電子を裏面側に集める。このために、負の固定電荷をもったパッシベーション膜107が受光面側にあることが好ましい。
 酸化ニオブ及び酸化アルミニウムを含むパッシベーション膜の上には、更にCVD等によりSiN等で構成される反射防止膜を形成してもよい。
 以下、本実施の形態の参考実施例及び参考比較例を参照しながら詳細に説明する。
 [参考実施例1-1]
 熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所SYM-AL04、濃度2.3質量%]を3.0gと、熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Nb-05、濃度5質量%]を3.0gとを混合して、塗布型材料であるパッシベーション材料(a-1)を調製した。
 パッシベーション材料(a-1)を、濃度0.049質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ωcm~12Ωcm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜[酸化ニオブ/酸化アルミニウム=68/32(質量比)]を得た。エリプソメーターにより膜厚を測定したところ43nmであった。パッシベーション膜のFT-IRを測定したところ、1200cm-1付近に、ごくわずかのアルキル基に起因するピークが見られた。
 次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(Metal-Insulator-Semiconductor;金属-絶縁体-半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C-V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の-0.81Vから、+0.32Vにシフトしたことが判明した。このシフト量からパッシベーション材料(a-1)から得たパッシベーション膜は、固定電荷密度(Nf)が-7.4×1011cm-2で負の固定電荷を示すことがわかった。
 上記と同様に、パッシベーション材料(a-1)を8インチのp型のシリコン基板の両面に付与し、プリベークして、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置(株式会社コベルコ科研、RTA-540)により行った。その結果、キャリアライフタイムは530μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
 以上のことから、パッシベーション材料(a-1)を熱処理(焼成)して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
 [参考実施例1-2]
 参考実施例1-1と同様に、熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所、SYM-AL04、濃度2.3質量%]と、熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所、Nb-05、濃度5質量%]とを、比率を変えて混合して、表3に示すパッシベーション材料(a-2)~(a-7)を調製した。
 参考実施例1-1と同様に、パッシベーション材料(a-2)~(a-7)のそれぞれをp型のシリコン基板の片面に付与し、熱処理(焼成)してパッシベーション膜を作製した。得られたパッシベーション膜の静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
 更に、参考実施例1-1と同様に、パッシベーション材料をp型のシリコン基板の両面に付与し、熱処理(焼成)して得たサンプルを用いて、キャリアライフタイムを測定した。得られた結果を表3にまとめた。
 熱処理(焼成)後の酸化ニオブ/酸化アルミニウムの比率(質量比)により、異なる結果ではあるが、パッシベーション材料(a-2)~(a-7)については、熱処理(焼成)後にキャリアライフタイムもある程度の値を示していることから、パッシベーション膜として機能することが示唆された。パッシベーション材料(a-2)~(a-7)から得られるパッシベーション膜は、いずれも安定的に負の固定電荷を示し、p型のシリコン基板のパッシベーションとしても好適に用いることができることが分かった。
Figure JPOXMLDOC01-appb-T000006
 [参考実施例1-3]
 市販のニオブ(V)エトキシド(構造式:Nb(OC、分子量:318.21)を3.18g(0.010mol)と、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を1.02g(0.005mol)とをシクロヘキサン80gに溶解して、濃度5質量%のパッシベーション材料(c-1)を調製した。
 パッシベーション材料(c-1)を、濃度0.049質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ωcm~12Ωcm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークをした。その後、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ50nmであった。元素分析の結果、Nb/Al/C=81/14/5(質量%)であることがわかった。パッシベーション膜のFT-IRを測定したところ、1200cm-1付近に、ごくわずかのアルキル基に起因するピークが見られた。
 次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(Metal-Insulator-Semiconductor;金属-絶縁体-半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C-V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の-0.81Vから、+4.7Vにシフトしたことが判明した。このシフト量からパッシベーション材料(c-1)から得たパッシベーション膜は、固定電荷密度(Nf)が-3.2×1012cm-2で負の固定電荷を示すことがわかった。
 上記と同様に、パッシベーション材料(c-1)を8インチのp型のシリコン基板の両面に付与し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置(株式会社コベルコ科研、RTA-540)により行った。その結果、キャリアライフタイムは330μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
 以上のことから、パッシベーション材料(c-1)を熱処理(焼成)して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
 [参考実施例1-4]
 市販のニオブ(V)エトキシド(構造式:Nb(OC、分子量:318.21)を2.35g(0.0075mol)と、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を1.02g(0.005mol)と、ノボラック樹脂10gとを、ジエチレングリコールモノブチルエーテルアセタート10gとシクロヘキサン10gに溶解して、パッシベーション材料(c-2)を調製した。
 パッシベーション材料(c-2)を、濃度0.049質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ωcm~12Ωcm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークをした。その後、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ14nmであった。元素分析の結果、Nb/Al/C=75/17/8(質量%)であることがわかった。パッシベーション膜のFT-IRを測定したところ、1200cm-1付近に、ごくわずかのアルキル基に起因するピークが見られた。
 次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着して形成し、MIS(Metal-Insulator-Semiconductor;金属-絶縁体-半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C-V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の-0.81Vから、+0.10Vにシフトしたことが判明した。このシフト量からパッシベーション材料(c-2)から得たパッシベーション膜は、固定電荷密度(Nf)が-0.8×1011cm-2で負の固定電荷を示すことがわかった。
 上記と同様に、パッシベーション材料(c-2)を8インチのp型のシリコン基板の両面に付与し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置(株式会社コベルコ科研コ、RTA-540)により行った。その結果、キャリアライフタイムは200μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
 以上のことから、パッシベーション材料(c-2)から得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
 [参考実施例1-5及び参考比較例1-1]
 参考実施例1-1と同様に、熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所SYM-AL04、濃度2.3質量%]と、熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Nb-05、濃度5質量%]とを、比率を変えて混合して、表4に示すパッシベーション材料(b-1)~(b-7)を調製した。
 参考実施例1-1と同様に、パッシベーション材料(b-1)~(b-7)のそれぞれをp型のシリコン基板の片面に付与し、熱処理(焼成)して、パッシベーション膜を作製し、それを用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
 更に、参考実施例1-1と同様に、パッシベーション材料(塗布型材料)をp型のシリコン基板の両面に付与し、硬化させたサンプルを用いて、キャリアライフタイムを測定した。得られた結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000007
 パッシベーション材料(b-1)~(b-6)から得られるパッシベーション膜は、キャリアライフタイムがいずれも大きくパッシベーションとしての機能があることがわかった。また、酸化ニオブ/酸化アルミニウムが10/90及び20/80の場合には、固定電荷密度の値にばらつきが大きく、負の固定電荷密度を安定的に得ることができなかったが、酸化アルミニウムと酸化ニオブを用いることで負の固定電荷密度を実現できることが確認できた。酸化ニオブ/酸化アルミニウムが10/90及び20/80のパッシベーション材料を用いてCV法により測定した際には、場合によって正の固定電荷を示すパッシベーション膜となるため、負の固定電荷を安定的に示すまでには至っていないことが分かる。なお、正に固定電荷を示すパッシベーション膜は、n型のシリコン基板のパッシベーションとして使用可能である。
 一方、酸化アルミニウムが100質量%となるパッシベーション材料(b-7)では、負の固定電荷密度を得ることができなかった。
 [参考比較例1-2]
 パッシベーション材料(d-1)として、熱処理(焼成)により酸化チタン(TiO)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Ti-03-P、濃度3質量%]、パッシベーション材料(d-2)として、熱処理(焼成)によりチタン酸バリウム(BaTiO)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所BT-06、濃度6質量%]、パッシベーション材料(d-3)として、熱処理(焼成)により酸化ハフニウム(HfO)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Hf-05、濃度5質量%]を準備した。
 参考実施例1-1と同様に、パッシベーション材料(d-1)~(d-3)のそれぞれをp型のシリコン基板の片面に付与し、その後、熱処理(焼成)して、パッシベーション膜を作製し、それを用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
 更に、参考実施例1-1と同様に、パッシベーション材料をp型のシリコン基板の両面に付与し、熱処理(焼成)により得たサンプルを用いて、キャリアライフタイムを測定した。得られた結果を表5にまとめた。
Figure JPOXMLDOC01-appb-T000008
 パッシベーション材料(d-1)~(d-3)から得られるパッシベーション膜は、キャリアライフタイムがいずれも小さくパッシベーションとしての機能が不充分であることがわかった。また、正の固定電荷を示した。パッシベーション材料(d-3)から得られるパッシベーション膜は、負の固定電荷ではあるが、その値が小さかった。またキャリアライフタイムも比較的小さくパッシベーションとして機能が不十分であることがわかった。
 [参考実施例1-6]
 シリコン基板101として、ボロンをドーパントした単結晶シリコン基板を用いて、図14に示す構造の太陽電池素子を作製した。シリコン基板101の表面をテクスチャー処理した後、塗布型のリン拡散材を受光面側に付与し、熱処理により拡散層102(リン拡散層)を形成した。その後、塗布型のリン拡散材を希フッ酸で除去した。
 次に、受光面側に、受光面反射防止膜103として、プラズマCVDで作製したSiN膜を形成した。その後、参考実施例1-1で調製したパッシベーション材料(a-1)をインクジェット法により、シリコン基板101の裏面側に、コンタクト領域(開口部OA)を除いた領域に付与した。その後、熱処理を行って、開口部OAを有するパッシベーション膜107を形成した。
 また、パッシベーション膜107として、参考実施例1-3で調製したパッシベーション材料(c-1)を用いたサンプルも別途作製した。
 次に、シリコン基板101の受光面側に形成された受光面反射防止膜103(SiN膜)の上に、銀を主成分とするペーストを所定のフィンガー電極及びバスバー電極の形状でスクリーン印刷した。裏面側においては、アルミニウムを主成分とするペーストを全面にスクリーン印刷した。その後、850℃で熱処理(ファイアスルー)を行って、電極(第1電極105及び第2電極106)を形成し、且つ裏面の開口部OAの部分にアルミニウムを拡散させて、BSF層104を形成して、図14に示す構造の太陽電池素子を形成した。
 尚、ここでは、受光面の銀電極に関しては、SiN膜に穴あけをしないファイアスルー工程を記載したが、SiN膜に初めに開口部OAをエッチング等により形成し、その後に銀電極を形成することもできる。
 比較のために、上記作製工程のうち、パッシベーション膜107の形成を行わず、裏面側の全面にアルミニウムペーストを印刷し、BSF層104と対応するp層114及び第2電極と対応する電極116を全面に形成して、図11に示す構造の太陽電池素子を形成した。これらの太陽電池素子について、特性評価(短絡電流、開放電圧、曲線因子及び変換効率)を行った。特性評価は、JIS-C-8913(2005年度)及びJIS-C-8914(2005年度)に準拠して測定した。その結果を表6に示す。
 表6より、酸化ニオブ及び酸化アルミニウム層を含むパッシベーション膜107を有する太陽電池素子は、パッシベーション膜107を有しない太陽電池素子と比較すると、短絡電流及び開放電圧が共に増加しており、変換効率(光電変換効率)が最大で1%向上することが判明した。
Figure JPOXMLDOC01-appb-T000009

 
 <参考実施形態2>
 以下は、参考実施形態2に係るパッシベーション膜、塗布型材料、太陽電池素子及びパッシベーション膜付シリコン基板である。
 <1>酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含み、シリコン基板を有する太陽電池素子に用いられるパッシベーション膜。
 <2>前記バナジウム族元素の酸化物と前記酸化アルミニウムの質量比(バナジウム族元素の酸化物/酸化アルミニウム)が30/70~90/10である<1>に記載のパッシベーション膜。
 <3>前記バナジウム族元素の酸化物及び前記酸化アルミニウムの総含有率が90%以上である<1>又は<2>に記載のパッシベーション膜。
 <4>前記バナジウム族元素の酸化物として、酸化バナジウム、酸化ニオブ及び酸化タンタルよりなる群から選択される2種又は3種のバナジウム族元素の酸化物を含む<1>~<3>のいずれか1項に記載のパッシベーション膜。
 <5>酸化アルミニウムの前駆体と、酸化バナジウムの前駆体及び酸化タンタルの前駆体からなる群より選択される少なくとも1種のバナジウム族元素の酸化物の前駆体と、を含む塗布型材料の熱処理物である<1>~<4>のいずれか1項に記載のパッシベーション膜。
 <6>酸化アルミニウムの前駆体と、酸化バナジウムの前駆体及び酸化タンタルの前駆体からなる群より選択される少なくとも1種のバナジウム族元素の酸化物の前駆体と、を含み、シリコン基板を有する太陽電池素子のパッシベーション膜の形成に用いられる塗布型材料。
 <7>p型のシリコン基板と、
 前記シリコン基板の受光面側である第1面側に形成されたn型の不純物拡散層と、
 前記不純物拡散層上に形成された第1電極と、
 前記シリコン基板の受光面側とは逆の第2面側に形成され、開口部を有するパッシベーション膜と、
 前記シリコン基板の第2面側に形成され、前記シリコン基板の第2面側と前記パッシベーション膜の開口部を通して電気的に接続されている第2電極と、を備え、
 前記パッシベーション膜は、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含む太陽電池素子。
 <8>前記シリコン基板の第2面側の一部又は全部に形成され、前記シリコン基板より高濃度に不純物が添加されたp型の不純物拡散層を有し、
 前記第2電極は、前記p型の不純物拡散層と前記パッシベーション膜の開口部を通して電気的に接続されている、<7>に記載の太陽電池素子。
 <9>n型のシリコン基板と、
 前記シリコン基板の受光面側である第1面側に形成されたp型の不純物拡散層と、
 前記不純物拡散層上に形成された第1電極と、
 前記シリコン基板の受光面側とは逆の第2面側に形成され、開口部を有するパッシベーション膜と、
 前記シリコン基板の第2面側に形成され、前記シリコン基板の第2面側と前記パッシベーション膜の開口部を通して電気的に接続されている第2電極と、を備え、
 前記パッシベーション膜は、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含む太陽電池素子。
 <10>前記シリコン基板の第2面側の一部又は全部に形成され、前記シリコン基板より高濃度に不純物が添加されたn型の不純物拡散層を有し、
 前記第2電極は、前記n型の不純物拡散層と前記パッシベーション膜の開口部を通して電気的に接続されている、<9>に記載の太陽電池素子。
 <11>前記パッシベーション膜の前記バナジウム族元素の酸化物と前記酸化アルミニウムの質量比が30/70~90/10である、<7>~<10>のいずれか1項に記載の太陽電池素子。
 <12>前記パッシベーション膜の前記バナジウム族元素の酸化物及び前記酸化アルミニウムの総含有率が90%以上である、<7>~<11>のいずれか1項に記載の太陽電池素子。
 <13>前記バナジウム族元素の酸化物として、酸化バナジウム、酸化ニオブ、及び酸化タンタルよりなる群から選択される2種又は3種のバナジウム族元素の酸化物を含む、<7>~<12>のいずれか1項に記載の太陽電池素子。
 <14>シリコン基板と、
 前記シリコン基板上の全面又は一部に設けられる<1>~<5>のいずれか1項に記載の太陽電池素子用パッシベーション膜と、
 を有するパッシベーション膜付シリコン基板。
 上記の参考実施形態によれば、シリコン基板のキャリアライフタイムを長くし且つ負の固定電荷を有するパッシベーション膜を低コストで実現することができる。また、そのパッシベーション膜の形成を実現するための塗布型材料を提供することができる。また、そのパッシベーション膜を用いた低コストで効率の高い太陽電池素子を実現することができる。また、シリコン基板のキャリアライフタイムを長くし且つ負の固定電荷を有するパッシベーション膜付シリコン基板を低コストで実現することができる。
 本実施の形態のパッシベーション膜は、シリコン太陽電池素子に用いられるパッシベーション膜であり、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含むようにしたものである。
 また、本実施の形態では、パッシベーション膜の組成を変えることにより、パッシベーション膜が有する固定電荷の量を制御することができる。ここで、バナジウム族元素とは、周期律表の第5族元素であり、バナジウム、ニオブ及びタンタルから選ばれる元素である。
 また、バナジウム族元素の酸化物と酸化アルミニウムの質量比が35/65~90/10であることが、負の固定電荷を安定化できるという観点からより好ましく、50/50~90/10であることが更に好ましい。
 パッシベーション膜中のバナジウム族元素の酸化物と酸化アルミニウムの質量比は、エネルギー分散型X線分光法(EDX)、二次イオン質量分析法(SIMS)及び高周波誘導結合プラズマ質量分析法(ICP-MS)によって測定することができる。具体的な測定条件は、例えばICP-MSの場合は次の通りである。パッシベーション膜を酸又はアルカリ水溶液に溶解し、この溶液を霧状にしてArプラズマに導入し、励起された元素が基底状態に戻る際に放出される光を分光して波長及び強度を測定し、得られた波長から元素の定性を行い、得られた強度から定量を行う。
 パッシベーション膜中のバナジウム族元素の酸化物及び酸化アルミニウムの総含有率は80質量%以上であることが好ましく、良好な特性を維持できる観点から90質量%以上であることがより好ましい。パッシベーション膜中のバナジウム族元素の酸化物及び酸化アルミニウム以外の成分が多くなると、負の固定電荷の効果が大きくなる。
 また、パッシベーション膜中には、膜質の向上及び弾性率の調整の観点から、バナジウム族元素の酸化物及び酸化アルミニウム以外の成分が有機成分として含まれていてもよい。パッシベーション膜中の有機成分の存在は、元素分析及び膜のFT-IRの測定から確認することができる。
 前記バナジウム族元素の酸化物としては、より大きい負の固定電荷を得る観点からは、酸化バナジウム(V)を選択することが好ましい。
 前記パッシベーション膜は、バナジウム族元素の酸化物として、酸化バナジウム、酸化ニオブ及び酸化タンタルからなる群より選択される2種又は3種のバナジウム族元素の酸化物を含んでもよい。
 前記パッシベーション膜は、塗布型材料を熱処理することにより得られることが好ましく、塗布型材料を塗布法や印刷法を用いて成膜し、その後に熱処理により有機成分を除去することにより得られることがより好ましい。すなわち、パッシベーション膜は、酸化アルミニウム前駆体及びバナジウム族元素の酸化物の前駆体を含む塗布型材料の熱処理物として得てもよい。塗布型材料の詳細を後述する。
 本実施の形態の塗布型材料は、シリコン基板を有する太陽電池素子用のパッシベーション膜に用いる塗布型材料であって、酸化アルミニウムの前駆体と、酸化バナジウムの前駆体及び酸化タンタルの前駆体からなる群より選択される少なくとも1種のバナジウム族元素の酸化物の前駆体と、を含む。塗布型材料が含有するバナジウム族元素の酸化物の前駆体としては、塗布材料より形成されるパッシベーション膜の負の固定電荷の観点からは、酸化バナジウム(V)の前駆体を選択することが好ましい。塗布型材料は、バナジウム族元素の酸化物の前駆体として、酸化バナジウムの前駆体、酸化ニオブの前駆体及び酸化タンタルの前駆体からなる群より選択される2種又は3種のバナジウム族元素の酸化物の前駆体を含んでもよい。
 酸化アルミニウム前駆体は、酸化アルミニウムを生成するものであれば、特に限定されることなく用いることができる。酸化アルミニウム前駆体としては、酸化アルミニウムをシリコン基板上に均一に分散させる点、及び化学的に安定な観点から、有機系の酸化アルミニウム前駆体を用いることが好ましい。有機系の酸化アルミニウム前駆体の例として、アルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、(株)高純度化学研究所、SYM-AL04を挙げることができる。
 バナジウム族元素の酸化物の前駆体は、バナジウム族元素の酸化物を生成するものであれば、特に限定されることなく用いることができる。バナジウム族元素の酸化物の前駆体としては、酸化アルミニウムをシリコン基板上に均一に分散させる点、及び化学的に安定な観点から有機系のバナジウム族元素の酸化物の前駆体を用いることが好ましい。
 有機系の酸化バナジウムの前駆体の例としては、バナジウム(V)オキシトリエトキシド(構造式:VO(OC、分子量:202.13)、(株)高純度化学研究所、V-02を挙げることができる。有機系の酸化タンタルの前駆体の例としては、タンタル(V)メトキシド(構造式:Ta(OCH、分子量:336.12)、(株)高純度化学研究所、Ta-10-Pを挙げることができる。有機系の酸化ニオブ前駆体の例としては、ニオブ(V)エトキシド(構造式:Nb(OC、分子量:318.21)、(株)高純度化学研究所、Nb-05を挙げることができる。
 有機系のバナジウム族元素の酸化物の前駆体及び有機系の酸化アルミニウム前駆体を含む塗布型材料を塗布法又は印刷法を用いて成膜し、その後の熱処理により有機成分を除去することにより、パッシベーション膜を得ることができる。したがって、結果として、有機成分を含むパッシベーション膜であってもよい。パッシベーション膜中の有機成分の含有率は、10質量%未満であることがより好ましく、5質量%以下であることが更に好ましく、1質量%以下であることが特に好ましい。
 本実施の形態の太陽電池素子(光電変換装置)は、シリコン基板の光電変換界面の近傍に上記実施の形態で説明したパッシベーション膜(絶縁膜、保護絶縁膜)、すなわち、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物とを含む膜を有するものである。酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物とを含むことにより、シリコン基板のキャリアライフタイムを長くし且つ負の固定電荷を有することができ、太陽電池素子の特性(光電変換効率)を向上させることができる。
 本実施の形態に係る太陽電池素子の構造説明及び製法説明は、参考実施形態1に係る太陽電池素子の構造説明及び製法説明を参照することができる。
 以下、本実施の形態の参考実施例及び参考比較例を参照しながら詳細に説明する。
 <バナジウム族元素の酸化物として酸化バナジウムを使用した場合>
 [参考実施例2-1]
 熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM-AL04、濃度2.3質量%]を3.0gと、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V-02、濃度2質量%]を6.0gとを混合して、塗布型材料であるパッシベーション材料(a2-1)を調製した。
 パッシベーション材料(a2-1)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm~12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、700℃、30分の熱処理(焼成)を行い、酸化アルミニウム及び酸化バナジウムを含むパッシベーション膜[酸化バナジウム/酸化アルミニウム=63/37(質量%)]を得た。エリプソメーターにより膜厚を測定したところ51nmであった。パッシベーション膜のFT-IRを測定したところ、1200cm-1付近に、ごくわずかのアルキル基に起因するピークが見られた。
 次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属-絶縁体-半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C-V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の-0.81Vから、+0.02Vにシフトしたことが判明した。このシフト量からパッシベーション材料(a2-1)から得たパッシベーション膜は、固定電荷密度(Nf)が-5.2×1011cm-2で負の固定電荷を示すことがわかった。
 上記と同様に、パッシベーション材料(a2-1)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA-540)により測定した。その結果、キャリアライフタイムは400μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。また、サンプルの作製から14日後に、再度キャリアライフタイムを測定したところ、キャリアライフタイムは380μsであった。これにより、キャリアライフタイムの低下(400μsから380μs)は-10%以内となり、キャリアライフタイムの低下が小さいことがわかった。
 以上のことから、パッシベーション材料(a2-1)を熱処理(焼成)して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
 [参考実施例2-2]
 参考実施例2-1と同様に、熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM-AL04、濃度2.3質量%]と、熱処理により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V-02、濃度2質量%]とを、比率を変えて混合して、表7に示すパッシベーション材料(a2-2)~(a2-7)を調製した。
 参考実施例2-1と同様に、パッシベーション材料(a2-2)~(a2-7)のそれぞれをp型のシリコン基板の片面に塗布し、熱処理(焼成)してパッシベーション膜を作製した。得られたパッシベーション膜の静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
 更に、参考実施例2-1と同様に、パッシベーション材料をp型のシリコン基板の両面に塗布し、熱処理(焼成)して得たサンプルを用いて、キャリアライフタイムを測定した。
 得られた結果を表7にまとめた。またサンプルの作製から14日後に、再度キャリアライフタイムを測定したところ、キャリアライフタイムの低下は、表7に示すパッシベーション材料(a2-2)~(a2-7)を用いたパッシベーション膜のいずれも-10%以内であり、キャリアライフタイムの低下が小さいことがわかった。
 熱処理(焼成)後の酸化バナジウム/酸化アルミニウムの比率(質量比)により、異なる結果ではあるが、パッシベーション材料(a2-2)~(a2-7)については、熱処理(焼成)後にいずれも負の固定電荷を示し、キャリアライフタイムもある程度の値を示していることから、パッシベーション膜として機能することが示唆された。パッシベーション材料(a2-2)~(a2-7)から得られるパッシベーション膜は、いずれも安定的に負の固定電荷を示し、p型のシリコン基板のパッシベーションとしても好適に用いることができることが分かった。
Figure JPOXMLDOC01-appb-T000010

 
 [参考実施例2-3]
 熱処理(焼成)により酸化バナジウム(V)が得られる化合物として、市販のバナジウム(V)オキシトリエトキシド(構造式:VO(OC、分子量:202.13)を1.02g(0.010mol)と、熱処理(焼成)により酸化アルミニウム(Al)が得られる化合物として、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を2.04g(0.010mol)とをシクロヘキサン60gに溶解して、濃度5質量%のパッシベーション材料(b2-1)を調製した。
 パッシベーション材料(b2-1)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm~12Ω・cm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、酸化アルミニウム及び酸化バナジウムを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ、60nmであった。元素分析の結果、V/Al/C=64/33/3(質量%)であることがわかった。パッシベーション膜のFT-IRを測定したところ、1200cm-1付近に、ごくわずかのアルキル基に起因するピークが見られた。
 次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属-絶縁体-半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C-V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の-0.81Vから、+0.10Vにシフトしたことが判明した。このシフト量からパッシベーション材料(b2-1)から得たパッシベーション膜は、固定電荷密度(Nf)が-6.2×1011cm-2で負の固定電荷を示すことがわかった。
 上記と同様に、パッシベーション材料(b2-1)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA-540)により行った。その結果、キャリアライフタイムは400μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
 以上のことから、パッシベーション材料(b2-1)を熱処理(焼成)して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
 [参考実施例2-4]
 市販のバナジウム(V)オキシトリエトキシド(構造式:VO(OC、分子量:202.13)を1.52g(0.0075mol)と、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を1.02g(0.005mol)と、ノボラック樹脂10gとを、ジエチレングリコールモノブチルエーテルアセタート10gとシクロヘキサン10gに溶解して、パッシベーション材料(b2-2)を調製した。
 パッシベーション材料(b2-2)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm~12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、650℃、1時間の加熱を行い、酸化アルミニウム及び酸化バナジウムを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ、22nmであった。元素分析の結果、V/Al/C=71/22/7(質量%)であることがわかった。パッシベーション膜のFT-IRを測定したところ、1200cm-1付近に、ごくわずかのアルキル基に起因するピークが見られた。
 次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属-絶縁体-半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C-V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の-0.81Vから、+0.03Vにシフトしたことが判明した。このシフト量からパッシベーション材料(b2-2)から得たパッシベーション膜は、固定電荷密度(Nf)が-2.0×1011cm-2で負の固定電荷を示すことがわかった。
 上記と同様に、パッシベーション材料(b2-2)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA-540)により行った。その結果、キャリアライフタイムは170μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
 以上のことから、パッシベーション材料(b2-2)が硬化したパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
 <バナジウム族元素の酸化物として酸化タンタルを使用した場合>
 [参考実施例2-5]
 熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM-AL04、濃度2.3質量%]と、熱処理により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Ta-10-P、濃度10質量%]とを比率を変えて混合して、表8に示すパッシベーション材料(c2-1)~(c2-6)を調製した。
 パッシベーション材料(c2-1)~(c2-6)のそれぞれを濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm~12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、700℃、30分の熱処理(焼成)を行い、酸化アルミニウム及び酸化タンタルを含むパッシベーション膜を得た。このパッシベーション膜を用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
 次いで、パッシベーション材料(c2-1)~(c2-6)のそれぞれを8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA-540)により行った。
 得られた結果を表8にまとめた。またサンプルの作製から14日後に、再度キャリアライフタイムを測定したところ、キャリアライフタイムの低下は、表8に示すパッシベーション材料(c2-1)~(c2-6)を用いたパッシベーション膜のいずれも-10%以内であり、キャリアライフタイムの低下が小さいことがわかった。
 熱処理(焼成)後の酸化タンタル/酸化アルミニウムの比率(質量比)により、異なる結果ではあるが、パッシベーション材料(c2-1)~(c2-6)については、熱処理(焼成)後にいずれも負の固定電荷を示し、キャリアライフタイムもある程度の値を示していることから、パッシベーション膜として機能することが示唆された。
Figure JPOXMLDOC01-appb-T000011

 
 [参考実施例2-6]
 熱処理(焼成)により酸化タンタル(Ta)が得られる化合物として、市販のタンタル(V)メトキシド(構造式:Ta(OCH、分子量:336.12)を1.18g(0.0025mol)と、熱処理(焼成)により酸化アルミニウム(Al)が得られる化合物として、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を2.04g(0.010mol)とをシクロヘキサン60gに溶解して、濃度5質量%のパッシベーション材料(d2-1)を調製した。
 パッシベーション材料(d2-1)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm~12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークをした。その後、窒素雰囲気下で、700℃、1時間の加熱を行い、酸化アルミニウム及び酸化タンタルを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ、40nmであった。元素分析の結果、Ta/Al/C=75/22/3(wt%)であることがわかった。パッシベーション膜のFT-IRを測定したところ、1200cm-1付近に、ごくわずかのアルキル基に起因するピークが見られた。
 次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属-絶縁体-半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C-V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の-0.81Vから、-0.30Vにシフトしたことが判明した。このシフト量から、パッシベーション材料(d2-1)から得たパッシベーション膜は、固定電荷密度(Nf)が-6.2×1010cm-2で負の固定電荷を示すことがわかった。
 上記と同様に、パッシベーション材料(d2-1)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA-540)により行った。その結果、キャリアライフタイムは610μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
 以上のことから、パッシベーション材料(d2-1)を熱処理して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
 [参考実施例2-7]
 熱処理(焼成)により酸化タンタル(Ta)が得られる化合物として、市販のタンタル(V)メトキシド(構造式:Ta(OCH、分子量:336.12)1.18g(0.005mol)と、熱処理(焼成)により酸化アルミニウム(Al)が得られる化合物として、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を1.02g(0.005mol)と、ノボラック樹脂10gとを、ジエチレングリコールモノブチルエーテルアセタート10gとシクロヘキサン10gの混合物に溶解して、パッシベーション材料(d2-2)を調製した。
 パッシベーション材料(d2-2)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm~12Ω・cm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークをした。その後、窒素雰囲気下で、650℃、1時間の加熱を行い、酸化アルミニウム及び酸化タンタルを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ、18nmであった。元素分析の結果、Ta/Al/C=72/20/8(wt%)であることがわかった。パッシベーション膜のFT-IRを測定したところ、1200cm-1付近に、ごくわずかのアルキル基に起因するピークが見られた。
 次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属-絶縁体-半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C-V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の-0.81Vから、-0.43Vにシフトしたことが判明した。このシフト量から、パッシベーション材料(d-2)から得たパッシベーション膜は、固定電荷密度(Nf)が-5.5×1010cm-2で負の固定電荷を示すことがわかった。
 上記と同様に、パッシベーション材料(d2-2)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA-540)により行った。その結果、キャリアライフタイムは250μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
 以上のことから、パッシベーション材料(d2-2)を熱処理(焼成)して得たパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
 <2種以上のバナジウム族元素の酸化物を使用した場合>
 [参考実施例2-8]
 熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM-AL04、濃度2.3質量%]、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V-02、濃度2質量%]、及び熱処理(焼成)により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Ta-10-P、濃度10質量%]を混合して、塗布型材料であるパッシベーション材料(e2-1)を調製した(表9参照)。
 熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所SYM-AL04、濃度2.3質量%]、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所V-02、濃度2質量%]、及び熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Nb-05、濃度5質量%]を混合して、塗布型材料であるパッシベーション材料(e2-2)を調製した(表9参照)。
 熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所SYM-AL04、濃度2.3質量%]、熱処理(焼成)により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所Ta-10-P、濃度10質量%]、及び熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所Nb-05、濃度5質量%]を混合して、塗布型材料であるパッシベーション材料(e2-3)を調製した(表9参照)。
 熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所SYM-AL04、濃度2.3質量%]、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所V-02、濃度2質量%]、熱処理(焼成)により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所Ta-10-P、濃度10質量%]、及び熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所Nb-05、濃度5質量%]を混合して、塗布型材料であるパッシベーション材料(e2-4)を調製した(表9参照)。
 パッシベーション材料(e2-1)~(e2-4)のそれぞれを、参考実施例2-1と同様に、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm~12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークをした。その後、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、酸化アルミニウムと2種以上のバナジウム族元素の酸化物を含むパッシベーション膜を得た。
 上記で得られたパッシベーション膜を用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
 次いで、パッシベーション材料(e2-1)~(e2-4)のそれぞれを8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA-540)により行った。
 得られた結果を表9にまとめた。
 熱処理(焼成)後の2種以上のバナジウム族元素の酸化物と酸化アルミニウムの比率(質量比)により、異なる結果ではあるが、パッシベーション材料(e2-1)~(e2-4)を用いたパッシベーション膜については、熱処理(焼成)後にいずれも負の固定電荷を示し、キャリアライフタイムもある程度の値を示していることから、パッシベーション膜として機能することが示唆された。
Figure JPOXMLDOC01-appb-T000012

 
 [参考実施例2-9]
 参考実施例2-1と同様に、熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM-AL04、濃度2.3質量%]と、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V-02、濃度2質量%]、又は熱処理(焼成)により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Ta-10-P、濃度10質量%]を混合して、塗布型材料であるパッシベーション材料(f2-1)~(f2-8)を調製した(表10参照)。
 また、酸化アルミニウムを単独で用いたパッシベーション材料(f2-9)を調製した(表10参照)。
 参考実施例2-1と同様に、パッシベーション材料(f2-1)~(f2-9)のそれぞれをp型のシリコン基板の片面に塗布し、その後、熱処理(焼成)を行って、パッシベーション膜を作製し、それを用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
 更に、参考実施例2-1と同様に、パッシベーション材料(f2-1)~(f2-9)のそれぞれをp型のシリコン基板の両面に塗布し、熱処理(焼成)して得られたサンプルを用いて、キャリアライフタイムを測定した。得られた結果を表10にまとめた。
 表10に示すように、パッシベーション材料中の酸化アルミニウム/酸化バナジウム又は酸化タンタルが90/10及び80/20の場合には、固定電荷密度の値にばらつきが大きく、負の固定電荷密度を安定的に得ることができなかったが、酸化アルミニウムと酸化ニオブを用いることで負の固定電荷密度を実現できることが確認できた。酸化アルミニウム/酸化バナジウム又は酸化タンタルが90/10及び80/20のパッシベーション材料を用いてCV法により測定した際には、場合によって正の固定電荷を示すパッシベーション膜となるため、負の固定電荷を安定的に示すまでには至っていないことが判る。なお、正の固定電荷を示すパッシベーション膜は、n型のシリコン基板のパッシベーション膜として使用可能である。一方、酸化アルミニウムが100質量%となるパッシベーション材料(f2-9)では、負の固定電荷密度を得ることができなかった。
Figure JPOXMLDOC01-appb-T000013

 
 [参考実施例2-10]
 シリコン基板101として、ボロンをドーパントとした単結晶シリコン基板を用いて、図14に示す構造の太陽電池素子を作製した。シリコン基板101の表面をテクスチャー処理した後、塗布型のリン拡散材を受光面側のみに塗布し、熱処理により拡散層102(リン拡散層)を形成した。その後、塗布型のリン拡散材を希フッ酸で除去した。
 次に、受光面側に、受光面反射防止膜103として、プラズマCVDでSiN膜を形成した。その後、参考実施例2-1で調製したパッシベーション材料(a2-1)を、インクジェット法により、シリコン基板101の裏面側に、コンタクト領域(開口部OA)を除いた領域に塗布した。その後、熱処理を行って、開口部OAを有するパッシベーション膜107を形成した。また、パッシベーション膜107として、参考実施例2-5で調製したパッシベーション材料(c2-1)を用いたサンプルも別途作製した。
 次に、シリコン基板101の受光面側に形成された受光面反射防止膜103(SiN膜)の上に、銀を主成分とするペーストを所定のフィンガー電極及びバスバー電極の形状でスクリーン印刷した。裏面側においては、アルミニウムを主成分とするペーストを全面にスクリーン印刷した。その後、850℃で熱処理(ファイアスルー)を行って、電極(第1電極105及び第2電極106)を形成し、且つ裏面の開口部OAの部分にアルミニウムを拡散させて、BSF層104を形成して、図14に示す構造の太陽電池素子を形成した。
 尚、ここでは、受光面の銀電極の形成に関しては、SiN膜に穴あけをしないファイアスルー工程を記載したが、SiN膜に初めに開口部OAをエッチング等により形成し、その後に銀電極を形成することもできる。
 比較のために、上記作製工程のうち、パッシベーション膜107の形成を行わず、裏面側の全面にアルミニウムペーストを印刷し、BSF層104と対応するp層114及び第2電極と対応する電極116を全面に形成して、図11の構造の太陽電池素子を形成した。これらの太陽電池素子について、特性評価(短絡電流、開放電圧、曲線因子及び変換効率)を行った。特性評価は、JIS-C-8913(2005年度)及びJIS-C-8914(2005年度)に準拠して測定した。その結果を表11に示す。
 表11より、パッシベーション膜107を有する太陽電池素子は、パッシベーション膜107を有しない太陽電子素子と比較すると、短絡電流及び開放電圧が共に増加しており、変換効率(光電変換効率)が最大で0.6%向上することが判明した。
Figure JPOXMLDOC01-appb-T000014
 日本国特許出願第2012-160336号、第2012-218389号、第2013-011934号及び第2013-040153号の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (11)

  1.  下記一般式(I)で表される化合物を含有するパッシベーション層形成用組成物。
      M(OR (I)
    [式中、MはNb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含み、Rはそれぞれ独立して炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、mは1~5の整数を表す。]
  2.  更に、下記一般式(II)で表される化合物を含有する請求項1に記載のパッシベーション層形成用組成物。
    Figure JPOXMLDOC01-appb-C000001

     
    [式中、Rはそれぞれ独立して炭素数1~8のアルキル基を表す。nは0~3の整数を表す。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。R、R及びRはそれぞれ独立して水素原子又は炭素数1~8のアルキル基を表す。]
  3.  更に、液状媒体を含有する請求項1又は請求項2に記載のパッシベーション層形成用組成物。
  4.  更に、樹脂を含有する請求項1~請求項3のいずれか1項に記載のパッシベーション層形成用組成物。
  5.  前記液状媒体及び前記樹脂を含み、前記液状媒体及び前記樹脂の総含有率が5質量%以上98質量%以下である請求項4に記載のパッシベーション層形成用組成物。
  6.  前記一般式(II)で表される化合物を含み、前記一般式(I)で表される化合物及び前記一般式(II)で表される化合物の総含有率が0.1質量%以上80質量%以下である請求項2~請求項5のいずれか1項に記載のパッシベーション層形成用組成物。
  7.  半導体基板と、前記半導体基板上の全面又は一部に設けられる請求項1~請求項6のいずれか1項に記載のパッシベーション層形成用組成物の熱処理物であるパッシベーション層と、を有するパッシベーション層付半導体基板。
  8.  半導体基板上の全面又は一部に、請求項1~請求項6のいずれか1項に記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理してパッシベーション層を形成する工程と、を有するパッシベーション層付半導体基板の製造方法。
  9.  p型層及びn型層がpn接合されてなる半導体基板と、前記半導体基板上の全面又は一部に設けられる請求項1~請求項6のいずれか1項に記載のパッシベーション層形成用組成物の熱処理物であるパッシベーション層と、前記p型層及び前記n型層の少なくとも一方の層上に設けられる電極と、を有する太陽電池素子。
  10.  p型層及びn型層がpn接合されてなる半導体基板の全面又は一部に請求項1~請求項6のいずれか1項に記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理して、パッシベーション層を形成する工程と、前記p型層及び前記n型層の少なくとも一方の層上に、電極を形成する工程と、を有する太陽電池素子の製造方法。
  11.  請求項9に記載の太陽電池素子と、
     前記太陽電池素子の電極上に設けられる配線材料と、
     を有する太陽電池。
PCT/JP2013/069698 2012-07-19 2013-07-19 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 WO2014014108A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/414,865 US9714262B2 (en) 2012-07-19 2013-07-19 Composition for forming passivation layer, semiconductor substrate having passivation layer, method of producing semiconductor substrate having passivation layer, photovoltaic cell element, method of producing photovoltaic cell element and photovoltaic cell
CN201380038209.0A CN104471720A (zh) 2012-07-19 2013-07-19 钝化层形成用组合物、带钝化层的半导体基板、带钝化层的半导体基板的制造方法、太阳能电池元件、太阳能电池元件的制造方法及太阳能电池
JP2014525892A JPWO2014014108A1 (ja) 2012-07-19 2013-07-19 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
KR1020157002949A KR102083249B1 (ko) 2012-07-19 2013-07-19 패시베이션층 형성용 조성물, 패시베이션층이 형성된 반도체 기판, 패시베이션층이 형성된 반도체 기판의 제조 방법, 태양 전지 소자, 태양 전지 소자의 제조 방법 및 태양 전지

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012160336 2012-07-19
JP2012-160336 2012-07-19
JP2012-218389 2012-09-28
JP2012218389 2012-09-28
JP2013-011934 2013-01-25
JP2013011934 2013-01-25
JP2013040153 2013-02-28
JP2013-040153 2013-02-28

Publications (2)

Publication Number Publication Date
WO2014014108A1 true WO2014014108A1 (ja) 2014-01-23
WO2014014108A9 WO2014014108A9 (ja) 2014-07-03

Family

ID=49948928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069698 WO2014014108A1 (ja) 2012-07-19 2013-07-19 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池

Country Status (6)

Country Link
US (1) US9714262B2 (ja)
JP (1) JPWO2014014108A1 (ja)
KR (1) KR102083249B1 (ja)
CN (1) CN104471720A (ja)
TW (1) TWI608007B (ja)
WO (1) WO2014014108A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014014110A1 (ja) * 2012-07-19 2016-07-07 日立化成株式会社 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614190B1 (ko) * 2013-12-24 2016-04-20 엘지전자 주식회사 태양전지 및 이의 제조 방법
DE102014202718A1 (de) * 2014-02-14 2015-08-20 Evonik Degussa Gmbh Beschichtungszusammensetzung, Verfahren zu ihrer Herstellung und ihre Verwendung
JP6697456B2 (ja) * 2015-06-17 2020-05-20 株式会社カネカ 結晶シリコン太陽電池モジュールおよびその製造方法
CN109304951B (zh) * 2017-07-26 2021-06-25 天津环鑫科技发展有限公司 一种gpp丝网印刷钝化层的方法
CN109304950B (zh) * 2017-07-26 2021-06-25 天津环鑫科技发展有限公司 一种硅片沟槽内丝网印刷工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188938A (ja) * 1989-08-18 1991-08-16 Hitachi Ltd 無機ポリマ薄膜の形成方法
JP2000294817A (ja) * 1999-04-09 2000-10-20 Dainippon Printing Co Ltd 太陽電池モジュ−ル用表面保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP2004359532A (ja) * 2003-04-09 2004-12-24 Jsr Corp タンタル酸化物膜形成用組成物、タンタル酸化物膜およびその製造方法
JP2008019285A (ja) * 2006-07-10 2008-01-31 Sekisui Chem Co Ltd 金属含有ポリマーの製造方法、金属含有ポリマー、感光性樹脂組成物及び半導体素子
JP2011216845A (ja) * 2010-03-18 2011-10-27 Ricoh Co Ltd 絶縁膜形成用インク、絶縁膜の製造方法及び半導体装置の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328260A (en) * 1981-01-23 1982-05-04 Solarex Corporation Method for applying antireflective coating on solar cell
US4411703A (en) * 1981-01-23 1983-10-25 Solarex Corporation Composition for applying antireflective coating on solar cell
US4496398A (en) 1982-01-20 1985-01-29 Solarex Corporation Antireflective coating composition
US4830879A (en) 1986-09-25 1989-05-16 Battelle Memorial Institute Broadband antireflective coating composition and method
JP3107287B2 (ja) 1996-03-25 2000-11-06 株式会社日立製作所 太陽電池
US5907766A (en) 1996-10-21 1999-05-25 Electric Power Research Institute, Inc. Method of making a solar cell having improved anti-reflection passivation layer
JP3658962B2 (ja) * 1998-01-13 2005-06-15 三菱化学株式会社 プラスチック積層体
US6312565B1 (en) * 2000-03-23 2001-11-06 Agere Systems Guardian Corp. Thin film deposition of mixed metal oxides
JP2004006565A (ja) 2002-04-16 2004-01-08 Sharp Corp 太陽電池とその製造方法
US6982230B2 (en) * 2002-11-08 2006-01-03 International Business Machines Corporation Deposition of hafnium oxide and/or zirconium oxide and fabrication of passivated electronic structures
CN1206743C (zh) * 2003-04-03 2005-06-15 上海交通大学 一种晶体硅太阳电池的制作方法
CN2637473Y (zh) 2003-08-19 2004-09-01 叶建荣 改进型虹吸式净水器
CN100538915C (zh) * 2004-07-01 2009-09-09 东洋铝株式会社 糊组合物及使用该糊组合物的太阳能电池元件
JP4767110B2 (ja) 2006-06-30 2011-09-07 シャープ株式会社 太陽電池、および太陽電池の製造方法
JP2009088203A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 太陽電池、太陽電池モジュール及び太陽電池の製造方法
US20090139558A1 (en) * 2007-11-29 2009-06-04 Shunpei Yamazaki Photoelectric conversion device and manufacturing method thereof
KR101393265B1 (ko) 2009-12-25 2014-05-08 가부시키가이샤 리코 전계효과 트랜지스터, 반도체 메모리, 표시 소자, 화상 표시 장치, 및 시스템
FI20115534A0 (fi) * 2011-05-30 2011-05-30 Beneq Oy Menetelmä ja rakenne passivoivan kerroksen suojaamiseksi
TW201408675A (zh) 2012-07-19 2014-03-01 Hitachi Chemical Co Ltd 鈍化層形成用組成物、帶有鈍化層的半導體基板、帶有鈍化層的半導體基板的製造方法、太陽電池元件、太陽電池元件的製造方法及太陽電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188938A (ja) * 1989-08-18 1991-08-16 Hitachi Ltd 無機ポリマ薄膜の形成方法
JP2000294817A (ja) * 1999-04-09 2000-10-20 Dainippon Printing Co Ltd 太陽電池モジュ−ル用表面保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP2004359532A (ja) * 2003-04-09 2004-12-24 Jsr Corp タンタル酸化物膜形成用組成物、タンタル酸化物膜およびその製造方法
JP2008019285A (ja) * 2006-07-10 2008-01-31 Sekisui Chem Co Ltd 金属含有ポリマーの製造方法、金属含有ポリマー、感光性樹脂組成物及び半導体素子
JP2011216845A (ja) * 2010-03-18 2011-10-27 Ricoh Co Ltd 絶縁膜形成用インク、絶縁膜の製造方法及び半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014014110A1 (ja) * 2012-07-19 2016-07-07 日立化成株式会社 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池

Also Published As

Publication number Publication date
CN104471720A (zh) 2015-03-25
WO2014014108A9 (ja) 2014-07-03
KR20150036363A (ko) 2015-04-07
US9714262B2 (en) 2017-07-25
US20150166582A1 (en) 2015-06-18
TWI608007B (zh) 2017-12-11
TW201412759A (zh) 2014-04-01
JPWO2014014108A1 (ja) 2016-07-07
KR102083249B1 (ko) 2020-03-02

Similar Documents

Publication Publication Date Title
WO2014014109A9 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法、及び太陽電池
WO2014014110A9 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
WO2014014108A1 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
JP6350278B2 (ja) 太陽電池素子、太陽電池素子の製造方法及び太陽電池モジュール
JP6330661B2 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法
JP6295673B2 (ja) パッシベーション層付半導体基板、パッシベーション層形成用塗布型材料及び太陽電池素子
JP6269484B2 (ja) 電界効果型パッシベーション層形成用組成物、電界効果型パッシベーション層付半導体基板、電界効果型パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
JP6658522B2 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池
JP2015115488A (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
JP6176249B2 (ja) パッシベーション層付半導体基板及びその製造方法
JP2017188537A (ja) 太陽電池素子及びその製造方法並びに太陽電池
JP2016058438A (ja) パッシベーション層保護層形成用組成物、太陽電池素子及びその製造方法並びに太陽電池
JP2017188536A (ja) 太陽電池素子及び太陽電池
WO2016002902A1 (ja) パッシベーション層形成用組成物の製造方法、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池
JP2018174271A (ja) パッシベーション層付半導体基板、太陽電池素子、及び太陽電池
JP2018006421A (ja) パッシベーション層付半導体基板、太陽電池素子、及び太陽電池
JP2016225349A (ja) 太陽電池素子及びその製造方法、並びに太陽電池モジュール
JP2017011195A (ja) パッシベーション層付太陽電池素子の製造方法及び太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14414865

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014525892

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157002949

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13819930

Country of ref document: EP

Kind code of ref document: A1