WO2014014079A1 - 発光装置、波長変換部材、蛍光体組成物、及び蛍光体混合物 - Google Patents

発光装置、波長変換部材、蛍光体組成物、及び蛍光体混合物 Download PDF

Info

Publication number
WO2014014079A1
WO2014014079A1 PCT/JP2013/069607 JP2013069607W WO2014014079A1 WO 2014014079 A1 WO2014014079 A1 WO 2014014079A1 JP 2013069607 W JP2013069607 W JP 2013069607W WO 2014014079 A1 WO2014014079 A1 WO 2014014079A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
excitation spectrum
spectrum intensity
wavelength
conversion member
Prior art date
Application number
PCT/JP2013/069607
Other languages
English (en)
French (fr)
Inventor
覚成 勝本
実 相馬
友幸 来島
吉田 尚史
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013043101A external-priority patent/JP2014170895A/ja
Priority claimed from JP2013138464A external-priority patent/JP2014130998A/ja
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020147036183A priority Critical patent/KR20150035742A/ko
Publication of WO2014014079A1 publication Critical patent/WO2014014079A1/ja
Priority to US14/594,981 priority patent/US20150166888A1/en
Priority to US15/085,126 priority patent/US20160208164A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present invention relates to a light emitting device, and particularly to a light emitting device including a blue semiconductor light emitting element. Moreover, it is related with the wavelength conversion member with which a light-emitting device is equipped.
  • Patent Document 1 a problem has been found that color unevenness occurs in the illumination light as the lighting time becomes longer.
  • two types of phosphors that generate visible light of the same color are provided, and the slopes of the excitation spectra of the two types of phosphors are reversed at the emission peak wavelength of the semiconductor light emitting device. It has been proposed (see Patent Document 1).
  • Patent Document 2 discloses "LED binning" as a problem, and discloses a multi-cell LED circuit having a plurality of cells having binning classes depending on emission wavelength characteristics and luminance characteristics, and an impedance element (patent).
  • Reference 2 discloses that the LED is binned from any viewpoint among the light peak wavelength, the light peak intensity, and the forward voltage, and in particular, the chromaticity is self-adjusted according to the fluctuation of the LED excitation wavelength.
  • a “smart” phosphor composition is disclosed (see Patent Document 3).
  • Patent Document 4 proposes a semiconductor light emitting device in which the chromaticity variation is reduced with respect to the fluctuation of the peak wavelength of the semiconductor light emitting element. Specifically, in the vicinity of the peak wavelength of the semiconductor light emitting element, There has been proposed a semiconductor light emitting device having a first phosphor whose excitation intensity increases with an increase, and a second phosphor whose excitation intensity is flattened or decreased as the wavelength increases (see Patent Document 4).
  • Patent Document 3 tried to solve the problem by adding an orange phosphor to the yellow phosphor, but suppressed the change in chromaticity. This is not enough for practical use.
  • Patent Document 4 although an attempt is made to suppress a change in chromaticity by combining a yellow phosphor and an orange phosphor, color rendering properties and light emission efficiency are insufficient.
  • the present invention solves such a problem, and provides a light-emitting device having a binning characteristic that can withstand practical use while maintaining sufficient color rendering properties and luminous efficiency.
  • a phosphor composition capable of forming a wavelength conversion member capable of providing a light emitting device having a binning characteristic that can withstand practical use, and a phosphor composition formed by molding the phosphor composition
  • the present invention relates to a wavelength conversion member.
  • the inventors have conducted intensive research to solve the above problems, and in a light emitting device using a blue semiconductor light emitting element, a wavelength conversion member containing a yellow phosphor and a green phosphor, not containing a yellow phosphor, By using a wavelength conversion member containing a specific green phosphor or a wavelength conversion member containing a specific yellow-green phosphor, it was found that a light-emitting device having sufficient binning characteristics can be provided, and the present invention has been completed. .
  • a first aspect of the present invention is an invention relating to a light emitting device, and a first embodiment thereof is as follows.
  • a light-emitting device that includes phosphor G that is represented by the following general formula (G1) and has an emission wavelength spectrum having a peak wavelength of 520 nm or more and 540 nm or less when excited at 450 nm. (Y, Ce, Tb, Lu) x (Ga, Sc, Al) y O
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is preferably 0.25 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 435 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the phosphor Y is a phosphor represented by the following general formula (Y2)
  • the phosphor G is a phosphor represented by the following general formula (G2)
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is preferably 0.23 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 435 nm to 470 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the phosphor Y is a phosphor represented by the following general formula (Y3)
  • the phosphor G is a phosphor represented by the following general formula (G3)
  • the excitation spectrum intensity change rate at the emission wavelength of 540 nm of the wavelength conversion member is preferably 0.33 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the intensity change rate of the following synthetic excitation spectrum is 0.15 or less.
  • the synthetic excitation spectrum is an excitation spectrum in which the excitation spectrum intensity at each wavelength is represented by the following calculation formula (Z).
  • Synthetic excitation spectrum intensity (excitation spectrum intensity of phosphor Y) ⁇ (weight fraction of phosphor Y) + (excitation spectrum intensity of phosphor G) ⁇ (weight fraction of phosphor G) (Z)
  • the weight fraction of phosphor Y is expressed as phosphor Y / (phosphor Y + phosphor G).
  • the weight fraction of the phosphor G is similarly expressed.
  • the synthetic excitation spectrum intensity change rate is represented by the difference between the maximum value and the minimum value of the synthetic excitation spectrum intensity in the range of 430 nm to 470 nm when the excitation spectrum intensity at 450 nm of the excitation spectrum is 1.0.
  • the phosphor Y has an excitation spectrum intensity at 430 nm smaller than the excitation spectrum intensity at 470 nm in the excitation spectrum at an emission wavelength of 540 nm
  • the phosphor G has an excitation spectrum in an excitation spectrum at an emission wavelength of 540 nm. It is preferable that the excitation spectrum intensity at 430 nm is larger than the excitation spectrum intensity at 470 nm.
  • the light-emitting device described above preferably further includes a blue-green phosphor represented by the following general formula (B1) and having a peak wavelength of an emission wavelength spectrum when excited at 450 nm of 500 nm to 520 nm.
  • B1 blue-green phosphor represented by the following general formula (B1) and having a peak wavelength of an emission wavelength spectrum when excited at 450 nm of 500 nm to 520 nm.
  • the composition ratio of the phosphor Y and the phosphor G is preferably 10:90 or more and 90:10 or less.
  • the fifth embodiment in the first invention is as follows.
  • a light emitting device including a blue semiconductor light emitting element and a wavelength conversion member The wavelength conversion member is A phosphor G represented by the following general formula (G4) and having a peak wavelength of an emission wavelength spectrum when excited at 450 nm is 520 nm or more and 540 nm or less, The light-emitting device whose excitation spectrum intensity change rate in emission wavelength 540nm of this wavelength conversion member is 0.33 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • ⁇ u′v ′ The chromaticity change ⁇ u′v ′ of light emitted from the light emitting device when the emission wavelength of the blue semiconductor light emitting element is continuously changed from 445 nm to 455 nm satisfies ⁇ u′v ′ ⁇ 0.004.
  • ⁇ u′v ′ is the distance between the chromaticity (u ′ i , v ′ i ) at an arbitrary wavelength inm from 445 nm to 455 nm and the average value (u ′ ave , v ′ ave ) of chromaticity from 445 nm to 455 nm. .
  • ⁇ u′v ′ is the distance between the chromaticity (u ′ i , v ′ i ) at an arbitrary wavelength inm from 435 nm to 470 nm and the average value (u ′ ave , v ′ ave ) of chromaticity from 435 nm to 470 nm. .
  • the red phosphor preferably further contains a red phosphor having an emission peak wavelength of 600 nm or more and less than 640 nm and a half-value width of 2 nm or more and 120 nm or less in a composition weight ratio of 30 to the total amount of the red phosphor. % Or more is preferable.
  • the red phosphor having an emission peak wavelength of 600 nm to less than 640 nm and a half width of 2 nm to 120 nm is (Sr, Ca) AlSiN 3 : Eu or Ca 1-x Al 1-x Si 1 + x N 3-x O x : Eu (where 0 ⁇ x ⁇ 0.5) is preferable.
  • the red phosphor preferably includes a red phosphor having an emission peak wavelength of 640 nm to 670 nm and a half width of 2 nm to 120 nm.
  • the light emitted from the light emitting device preferably has a deviation duv from the light-colored blackbody radiation locus of ⁇ 0.0200 to 0.0200 and a color temperature of 1800 K or more and 7000 K or less. More preferably, the temperature is 2500 or more and 3500 K or less.
  • the average color rendering index Ra is preferably 80 or more.
  • the sixth embodiment in the first invention is as follows.
  • a light emitting device including a blue semiconductor light emitting element and a wavelength conversion member The wavelength conversion member is represented by the following general formula (YG1), and includes a yellow-green phosphor having a peak wavelength of an emission wavelength spectrum when excited at 450 nm of 530 nm to 550 nm, In this light-emitting device, the wavelength conversion member has an excitation spectrum intensity change rate at an emission wavelength of 540 nm of 0.25 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 470 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the excitation spectrum intensity change rate of the yellow-green phosphor is preferably 0.13 or less.
  • the excitation spectrum intensity change rate of the yellow-green phosphor is the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 465 nm when the excitation spectrum intensity of the yellow-green phosphor at 450 nm is 1.0. Expressed as a difference.
  • ⁇ u′v ′ is the distance between the chromaticity (u ′ i , v ′ i ) at an arbitrary wavelength inm from 445 nm to 455 nm and the average value (u ′ ave , v ′ ave ) of chromaticity from 445 nm to 455 nm. .
  • the yellow-green phosphor is preferably a yellow-green phosphor represented by the following general formula (YG2).
  • A is one or more elements selected from the group of Y and Lu and containing 90% or more of Y.
  • E is Ga or Ga and Sc.
  • a + b 3, 4.5 ⁇ c + d ⁇ 5.5, 10.8 ⁇ e ⁇ 13.2, 0 ⁇ a ⁇ 0.9, 0.8 ⁇ c ⁇ 1.2)
  • the intensity change of the excitation spectrum of the yellow-green phosphor is 4.0% or less of the excitation light spectrum intensity at 450 nm from 440 nm to 460 nm.
  • the seventh embodiment in the first invention is as follows.
  • a blue semiconductor light emitting device A light-emitting device including a wavelength conversion member containing a yellow-green phosphor,
  • the yellow-green phosphor is represented by the following general formula (YG3), and the difference between the maximum value and the minimum value of the excitation intensity normalized by the excitation intensity of 450 nm when excited at an excitation wavelength of 440 nm to 460 nm is 0.05.
  • the following phosphors (Y, Ce) 3 (Ga, Al) f O g (YG3) (4.5 ⁇ f ⁇ 5.5, 10.8 ⁇ g ⁇ 13.2)
  • the chromaticity change ⁇ u′v ′ from the average chromaticity of the light emitted from the wavelength conversion member when excited at an excitation wavelength of 445 nm to 455 nm is 0.005 or less.
  • ⁇ u′v ′ is the distance between the chromaticity (u ′ i , v ′ i ) at an arbitrary wavelength inm from 445 nm to 455 nm and the average value (u ′ ave , v ′ ave ) of chromaticity from 445 nm to 455 nm. .
  • a red phosphor is further included, and the intensity change of the excitation spectrum of the red phosphor varies from 440 nm to 460 nm, which is 4.0 of the excitation light spectrum intensity at 450 nm. % Or less is preferable.
  • the red phosphor preferably includes a red phosphor having an emission peak wavelength of 620 to 640 nm and a half-value width of 2 nm to 100 nm in a composition weight ratio of 50% or more with respect to the total amount of the red phosphor.
  • the red phosphor is preferably SCASN.
  • the red phosphor further includes a red phosphor having an emission peak wavelength of 640 to 670 nm and a half-value width of 2 nm to 120 nm.
  • the light emitted from the light-emitting device has a deviation duv from the light-colored blackbody radiation locus of ⁇ 0.0200 to 0.0200 and a color temperature of 1800 K or more and 7000 K or less.
  • the blue semiconductor light emitting element and the wavelength conversion member including a yellow-green phosphor may be disposed through a space.
  • a lighting device including these light emitting devices and a backlight including these light emitting devices are also preferable inventions.
  • a wavelength conversion member comprising a transparent material.
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm is 0.25 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 435 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the phosphor Y is a phosphor represented by the following general formula (Y2)
  • the phosphor G is a phosphor represented by the following general formula (G2)
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is preferably 0.23 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 435 nm to 470 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the phosphor Y is a phosphor represented by the following general formula (Y3)
  • the phosphor G is a phosphor represented by the following general formula (G3)
  • the excitation spectrum intensity change rate at the emission wavelength of 540 nm of the wavelength conversion member is preferably 0.33 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the intensity change rate of the following synthetic excitation spectrum is 0.15 or less.
  • the synthetic excitation spectrum is an excitation spectrum in which the excitation spectrum intensity at each wavelength is represented by the following calculation formula (Z).
  • Synthetic excitation spectrum intensity (excitation spectrum intensity of phosphor Y) ⁇ (weight fraction of phosphor Y) + (excitation spectrum intensity of phosphor G) ⁇ (weight fraction of phosphor G) (Z)
  • the weight fraction of phosphor Y is expressed as phosphor Y / (phosphor Y + phosphor G).
  • the weight fraction of the phosphor G is similarly expressed.
  • the synthetic excitation spectrum intensity change rate is represented by the difference between the maximum value and the minimum value of the synthetic excitation spectrum intensity in the range of 430 nm to 470 nm when the excitation spectrum intensity at 450 nm of the excitation spectrum is 1.0.
  • the phosphor Y has an excitation spectrum intensity at 430 nm lower than the excitation spectrum intensity at 470 nm in the excitation spectrum at an emission wavelength of 540 nm, and the phosphor G has an excitation spectrum at an emission wavelength of 540 nm.
  • the excitation spectrum intensity at 430 nm is preferably larger than the excitation spectrum intensity at 470 nm.
  • the wavelength conversion member described above preferably further includes a blue-green phosphor represented by the following general formula (B1) and having a peak wavelength of an emission wavelength spectrum when excited at 450 nm of 500 nm to 520 nm.
  • B1 blue-green phosphor represented by the following general formula (B1) and having a peak wavelength of an emission wavelength spectrum when excited at 450 nm of 500 nm to 520 nm.
  • the composition ratio of the phosphor Y and the phosphor G is preferably 10:90 or more and 90:10 or less.
  • Phosphor G which is represented by the following general formula (G4) and has an emission wavelength spectrum having a peak wavelength of 520 nm or more and 540 nm or less when excited at 450 nm, A wavelength conversion member comprising a transparent material, A wavelength conversion member having an excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member of 0.33 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the chromaticity change ⁇ u′v ′ of light emitted from the wavelength conversion member satisfies ⁇ u′v ′ ⁇ 0.004 when the excitation wavelength is continuously changed from 445 nm to 455 nm.
  • ⁇ u′v ′ is the distance between the chromaticity (u ′ i , v ′ i ) at an arbitrary wavelength inm from 445 nm to 455 nm and the average value (u ′ ave , v ′ ave ) of chromaticity from 445 nm to 455 nm. .
  • the chromaticity change ⁇ u′v ′ of light emitted from the wavelength conversion member satisfies ⁇ u′v ′ ⁇ 0.015 when the excitation wavelength is continuously changed from 435 nm to 470 nm.
  • ⁇ u′v ′ is the distance between the chromaticity (u ′ i , v ′ i ) at an arbitrary wavelength inm from 435 nm to 470 nm and the average value (u ′ ave , v ′ ave ) of chromaticity from 435 nm to 470 nm.
  • the sixth embodiment in the second invention is as follows.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 470 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the excitation spectrum intensity change rate of the yellow-green phosphor is preferably 0.13 or less.
  • the excitation spectrum intensity change rate of the yellow-green phosphor is the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 465 nm when the excitation spectrum intensity of the yellow-green phosphor at 450 nm is 1.0. Expressed as a difference.
  • the chromaticity change ⁇ u′v ′ of light emitted from the light emitting device preferably satisfies ⁇ u′v ′ ⁇ 0.005.
  • ⁇ u′v ′ is the distance between the chromaticity (u ′ i , v ′ i ) at an arbitrary wavelength inm from 445 nm to 455 nm and the average value (u ′ ave , v ′ ave ) of chromaticity from 445 nm to 455 nm. .
  • the yellow-green phosphor is preferably a yellow-green phosphor represented by the following general formula (YG2).
  • A is one or more elements selected from the group of Y and Lu and containing 90% or more of Y.
  • E is Ga or Ga and Sc.
  • a + b 3, 4.5 ⁇ c + d ⁇ 5.5, 10.8 ⁇ e ⁇ 13.2, 0 ⁇ a ⁇ 0.9, 0.8 ⁇ c ⁇ 1.2)
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is preferably 0.25 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 435 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the phosphor Y is a phosphor represented by the following general formula (Y2)
  • the phosphor G is a phosphor represented by the following general formula (G2)
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is preferably 0.23 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 435 nm to 470 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the phosphor Y is a phosphor represented by the following general formula (Y3)
  • the phosphor G is a phosphor represented by the following general formula (G3)
  • the excitation spectrum intensity change rate at the emission wavelength of 540 nm of the wavelength conversion member is preferably 0.33 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the phosphor Y in the wavelength conversion member has an excitation spectrum intensity at 430 nm in an excitation spectrum at an emission wavelength of 540 nm. It is preferable that the phosphor G in the wavelength conversion member is smaller than the excitation spectrum intensity at 470 nm, and the excitation spectrum intensity at 430 nm is larger than the excitation spectrum intensity at 470 nm in the excitation spectrum at the emission wavelength of 540 nm.
  • the phosphor composition described above preferably further includes a blue-green phosphor represented by the following general formula (B1) and having a peak wavelength of an emission wavelength spectrum when excited at 450 nm of 500 nm to 520 nm.
  • B1 blue-green phosphor represented by the following general formula (B1) and having a peak wavelength of an emission wavelength spectrum when excited at 450 nm of 500 nm to 520 nm.
  • the composition ratio of the phosphor Y and the phosphor G is preferably 10:90 or more and 90:10 or less.
  • the fifth embodiment in the third invention is as follows.
  • Phosphor G which is represented by the following general formula (G4) and has an emission wavelength spectrum having a peak wavelength of 520 nm or more and 540 nm or less when excited at 450 nm, A phosphor composition comprising a transparent material, A phosphor composition, wherein when the home antibody composition is molded into a wavelength conversion member, the excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is 0.33 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the sixth embodiment in the third invention is as follows.
  • a phosphor composition comprising a transparent material, When the phosphor composition is molded into a wavelength conversion member, the phosphor composition has an excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member of 0.25 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 470 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the yellow-green phosphor is preferably a yellow-green phosphor represented by the following general formula (YG2).
  • A is one or more elements selected from the group of Y and Lu and containing 90% or more of Y.
  • E is Ga or Ga and Sc.
  • a + b 3, 4.5 ⁇ c + d ⁇ 5.5, 10.8 ⁇ e ⁇ 13.2, 0 ⁇ a ⁇ 0.9, 0.8 ⁇ c ⁇ 1.2)
  • a red phosphor is further included.
  • a fourth aspect of the present invention is an invention relating to a phosphor mixture, and a first embodiment thereof is as follows.
  • a phosphor Y represented by the following general formula (Y1) and having a peak wavelength of an emission wavelength spectrum when excited at 450 nm is 540 nm or more and 570 nm or less;
  • (Y, Ce, Tb, Lu) x (Ga, Sc, Al) y O z (Y1) (X 3, 4.5 ⁇ y ⁇ 5.5, 10.8 ⁇ z ⁇ 13.4)
  • a phosphor mixture comprising phosphor G which is represented by the following general formula (G1) and has an emission wavelength spectrum having a peak wavelength of 520 nm or more and 540 nm or less when excited at 450 nm.
  • (Y, Ce, Tb, Lu) x (Ga, Sc, Al) y O z (G1) (X 3, 4.5 ⁇ y ⁇ 5.5, 10.8 ⁇ z ⁇ 13.4)
  • the rate of change in excitation spectrum intensity at an emission wavelength of 540 nm is preferably 0.40 or less.
  • the excitation spectrum intensity change rate of the phosphor mixture is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 470 nm when the excitation spectrum intensity of the phosphor mixture at 450 nm is 1.0. It is represented by
  • the phosphor Y is a phosphor represented by the following general formula (Y2)
  • the phosphor G is a phosphor represented by the following general formula (G2)
  • the rate of change in excitation spectrum intensity at an emission wavelength of 540 nm is preferably 0.30 or less.
  • the excitation spectrum intensity change rate of the phosphor mixture is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 435 nm to 470 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. It is represented by
  • the phosphor Y is a phosphor represented by the following general formula (Y3)
  • the phosphor G is a phosphor represented by the following general formula (G3)
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm is 0.25 or less.
  • the excitation spectrum intensity change rate of the phosphor mixture is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 435 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. It is represented by
  • the phosphor Y has an excitation spectrum intensity at 430 nm smaller than that at 470 nm in the excitation spectrum at an emission wavelength of 540 nm, and the phosphor Y has an excitation spectrum intensity at 430 nm in an excitation spectrum at 540 nm. Is preferably greater than the excitation spectral intensity at 470 nm.
  • a blue-green phosphor represented by the following general formula (B1) and having a peak wavelength of an emission wavelength spectrum when excited at 450 nm of 500 nm to 520 nm.
  • B1 a blue-green phosphor represented by the following general formula (B1) and having a peak wavelength of an emission wavelength spectrum when excited at 450 nm of 500 nm to 520 nm.
  • composition ratio of the phosphor Y and the phosphor G is preferably 10:90 or more and 90:10 or less.
  • the fifth embodiment in the fourth invention is as follows.
  • a phosphor mixture comprising phosphor G, which is represented by the following general formula (G4) and has an emission wavelength spectrum having a peak wavelength of 520 nm or more and 540 nm or less when excited at 450 nm,
  • the phosphor mixture wherein an excitation spectrum change rate at an emission wavelength of 540 nm of the phosphor mixture is 0.25 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 435 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the sixth embodiment in the fourth invention is as follows.
  • a phosphor mixture comprising a yellow-green phosphor represented by the following general formula (YG1) and having an emission wavelength spectrum having a peak wavelength of 530 nm or more and 550 nm or less when excited at 450 nm,
  • the phosphor mixture has an excitation spectrum intensity change rate at an emission wavelength of 575 nm of 0.12 or less.
  • the excitation spectrum intensity change rate of the phosphor mixture is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 465 nm when the excitation spectrum intensity of the phosphor mixture at 450 nm is 1.0. It is represented by
  • a red phosphor is further included.
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is 0.00. It is preferable that it is 05 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 440 nm to 460 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the yellow-green phosphor is preferably a yellow-green phosphor represented by the following general formula (YG2).
  • A is selected from the group of Y and Lu, and 1 or 2 or more elements including 90% or more of Y.
  • E is Ga, or Ga and Sc.
  • a + b 3, 4.5 ⁇ c + d ⁇ 5.5, 10.8 ⁇ e ⁇ 13.2, 0 ⁇ a ⁇ 0.9, 0.8 ⁇ c ⁇ 1.2)
  • the first to seventh embodiments of the first invention of the present invention it is possible to provide a light-emitting device that is excellent in binning characteristics and has high luminous efficiency and color rendering.
  • a YAG phosphor that is a typical example of the phosphor Y, or a GYAG phosphor that is a typical example of the phosphor G is used alone.
  • a high total luminous flux can be achieved. For this reason, the amount of electric power input when attempting to achieve the target total luminous flux in the light emitting device is reduced, and more energy saving can be achieved.
  • a LuAG phosphor that is a typical example of the phosphor G is used alone, so that a YAG phosphor that is a typical example of the phosphor Y can be used alone.
  • High total luminous flux can be achieved compared to the case of using.
  • the LuAG phosphor can achieve high color rendering while maintaining a high total luminous flux as compared with the case where the YAG phosphor is used. Therefore, it is possible to refrain from using a phosphor other than the LuAG phosphor.
  • a YAG phosphor that is a representative example of the phosphor Y is used alone.
  • a high total luminous flux can be achieved.
  • a light-emitting device with excellent binning characteristics can be provided. These light-emitting devices not only have excellent binning characteristics, but also have high luminous efficiency and high color rendering, so that they can be put to practical use as lighting devices and backlights equipped with these light-emitting devices. .
  • the luminous efficiency is high and the amount of phosphor used is reduced, there is an economic advantage.
  • the second invention of the present invention it is possible to provide a wavelength conversion member that can provide a light-emitting device that has excellent binning characteristics as described above and has high luminous efficiency and color rendering.
  • a phosphor composition or a phosphor mixture that can provide a light emitting device having excellent binning characteristics as described above and having high luminous efficiency and color rendering. can do.
  • FIG. 10 is a graph showing changes in excitation spectrum intensity at the emission wavelength of 540 nm of the test pieces prepared in Experimental Examples 4 to 8.
  • 10 is a graph showing changes in excitation spectrum intensity at the emission wavelength of 540 nm of the test pieces prepared in Experimental Examples 9-12.
  • 6 is a graph showing binning characteristics of light emitting devices manufactured in Experimental Examples 1 to 3.
  • 9 is a graph showing binning characteristics of light emitting devices manufactured in Experimental Examples 4 to 8.
  • 10 is a graph showing binning characteristics of light emitting devices manufactured in Experimental Examples 9 to 12.
  • 7 is a graph showing binning characteristics of light emitting devices manufactured in Experimental Examples 1 to 3 and 9 to 12.
  • 9 is a graph showing binning characteristics of light emitting devices manufactured in Experimental Examples 4 to 8. It is the graph showing the excitation spectrum intensity change in the luminescence wavelength of 540 nm of the fluorescent substance mixture produced in Experimental example 13 and 14.
  • 6 is a graph showing changes in excitation spectrum intensity at the emission wavelength of 540 nm of the phosphor mixtures prepared in Experimental Examples 15 to 20. It is the graph showing the excitation spectrum intensity
  • 28 is a graph showing binning characteristics of light emitting devices manufactured in Experimental Examples 23 to 27.
  • each composition formula is delimited by a punctuation mark (,).
  • commas when a plurality of elements are listed separated by commas (,), one or two or more of the listed elements may be included in any combination and composition.
  • the light emitting device includes a blue semiconductor light emitting element and a wavelength conversion member.
  • the blue semiconductor light emitting device is a semiconductor light emitting device that emits light having an emission peak at 420 nm or more and 475 nm or less.
  • the blue semiconductor light-emitting element preferably emits light having an emission peak at 430 nm to 465 nm, and preferably emits light having an emission peak at 445 nm to 455 nm.
  • the blue semiconductor light emitting element preferably has a half width of 5 nm or more and 30 nm or less from the viewpoint of light emission efficiency.
  • the blue semiconductor light emitting device is preferably a light emitting diode device having a pn junction type light emitting portion formed of a nitrogen gallium based, zinc oxide based or silicon carbide based semiconductor.
  • the wavelength converting member is a wavelength converting member that wavelength-converts at least part of incident light and emits outgoing light having a wavelength different from that of the incident light.
  • the wavelength converting member is at least one of the incident light.
  • a phosphor that emits outgoing light having a wavelength different from that of the incident light.
  • the phosphor is preferably dispersed in a transparent or translucent material that absorbs less visible light such as resin.
  • the wavelength conversion member may have a self-supporting shape due to the contained transparent material or the like.
  • the phosphor may be mixed and applied to a resin or the like on a transparent substrate such as glass if necessary.
  • the phosphor Y is a yellow phosphor having a peak wavelength of an emission wavelength spectrum of 540 nm or more and 570 nm or less when excited at 450 nm, that is, a peak wavelength of the emission wavelength spectrum in a yellow region.
  • a typical example of the phosphor Y is a phosphor represented by the following general formula (1) called a YAG phosphor, but is not limited thereto.
  • Y a (Ce, Tb, Lu) b (Ga, Sc) c Al d O e (1) (A + b 3, 0 ⁇ b ⁇ 0.2, 4.5 ⁇ c + d ⁇ 5.5, 0 ⁇ c ⁇ 0.2, 10.8 ⁇ e ⁇ 13.4)
  • the phosphor G is a green phosphor having a peak wavelength of an emission wavelength spectrum of 520 nm or more and 540 nm or less when excited at 450 nm, that is, a peak wavelength of the emission wavelength spectrum in a green region.
  • Representative examples of the phosphor G include a phosphor represented by the following general formula (m1) called a GYAG phosphor and a fluorescence represented by the following general formula (m2) called a LuAG phosphor.
  • the body is raised, but it is not limited to these.
  • the light-emitting device is a light-emitting device having excellent binning characteristics that can withstand practical use by satisfying the above requirements.
  • variation in emission peak wavelength is usually about 10 nm in many cases.
  • the light-emitting device according to the first embodiment of the first invention has a so-called binning characteristic in which the chromaticity change of the emitted light is small with respect to the variation in the emission peak wavelength of the blue semiconductor light-emitting element as such a light source. It is an excellent light emitting device.
  • Such a light emitting device having excellent binning characteristics can be achieved by using together the phosphor Y represented by the general formula (Y1) and the phosphor G represented by the general formula (G1).
  • Y1 the phosphor Y represented by the general formula (Y1)
  • G1 the phosphor G represented by the general formula (G1).
  • FIG. 1 is a graph showing changes in the excitation emission spectrum when the excitation wavelength is changed from 430 nm to 470 nm for phosphors of YAG, GYAG, SCASN, and CASN.
  • YAG represented by the general formula (Y1) has an increased excitation wavelength and an increased emission intensity at an excitation wavelength from 445 nm to 455 nm.
  • GYAG represented by the general formula (G1) has an increased excitation wavelength and a lower emission intensity at an excitation wavelength from 445 nm to 455 nm. Therefore, by using together the phosphor Y represented by the general formula (Y1) and the phosphor G represented by the general formula (G1), the binning characteristics of the light emitting device according to the first embodiment of the first invention are provided. Can be made excellent.
  • the rate of change in excitation spectrum intensity at the light emission wavelength of 540 nm of the wavelength conversion member is 0.25 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is represented by the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 435 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. Is done.
  • the excitation spectrum intensity change rate is calculated using the intensity at the emission wavelength of 540 nm.
  • the inventors pay attention to the excitation spectrum intensity of the phosphor, which indicates how much light the phosphor emits at what excitation wavelength, and particularly the wavelength of the light emitted by the blue semiconductor light emitting element.
  • Excitation spectrum intensity in the vicinity of 450 nm light was examined in detail.
  • the excitation spectrum intensity change rate at the emission wavelength of 540 nm of the wavelength conversion member was 0.25 or less, so that high total luminous flux could be achieved in addition to good binning characteristics.
  • the excitation spectrum intensity changes greatly the fluorescence intensity emitted from the phosphor changes greatly when the excitation wavelength changes, and the chromaticity of the light emitted from the light emitting device is shifted.
  • the chromaticity deviation of the light emitted from the wavelength conversion member was suppressed by setting the excitation spectrum intensity change rate at the emission wavelength of 540 nm of the wavelength conversion member to 0.25 or less.
  • the excitation spectrum intensity change rate at the emission wavelength of 540 nm of the wavelength conversion member is preferably 0.24 or less, and more preferably 0.23 or less.
  • the excitation spectrum intensity change rate is preferably 0.03 or more, and more preferably 0.05 or more.
  • the phosphor Y is a phosphor represented by the following general formula (Y2)
  • the phosphor G is a phosphor represented by the following general formula (G2)
  • an excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is 0.23 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 435 nm to 470 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0.
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is preferably 0.21 or less, and more preferably 0.20 or less. Further, the excitation spectrum intensity change rate is preferably 0.03 or more, and more preferably 0.05 or more.
  • the half width is preferably 100 nm or more and 130 nm or less from the viewpoint of color rendering properties.
  • the fluorescent substance G is a GYAG fluorescent substance, it is preferable from a viewpoint of color rendering property that a half value width is 105 to 120 nm.
  • the phosphor Y is a phosphor represented by the following general formula (Y3)
  • the phosphor G is a phosphor represented by the following general formula (G3)
  • an excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is 0.33 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0.
  • the excitation spectrum intensity change rate at the emission wavelength of 540 nm of the wavelength conversion member is preferably 0.30 or less, and more preferably 0.28 or less. Further, the excitation spectrum intensity change rate is preferably 0.03 or more, and more preferably 0.05 or more.
  • the half width is preferably 100 nm or more and 130 nm or less from the viewpoint of color rendering properties.
  • the fluorescent substance G is a LuAG fluorescent substance, it is preferable from a viewpoint of color rendering property that a half value width is 30 nm or more and 120 nm or less.
  • the intensity change rate of the following synthetic excitation spectrum is 0.15 or less.
  • the synthetic excitation spectrum is an excitation spectrum in which the excitation spectrum intensity at each wavelength is represented by the following calculation formula (Z).
  • Synthetic excitation spectrum intensity (excitation spectrum intensity of phosphor Y) ⁇ (weight fraction of phosphor Y) + (excitation spectrum intensity of phosphor G) ⁇ (weight fraction of phosphor G) (Z)
  • the weight fraction of phosphor Y is expressed as phosphor Y / (phosphor Y + phosphor G).
  • the weight fraction of the phosphor G is similarly expressed.
  • the synthetic excitation spectrum intensity change rate is represented by the difference between the maximum value and the minimum value of the synthetic excitation spectrum intensity in the range of 430 nm to 470 nm when the excitation spectrum intensity at 450 nm of the excitation spectrum is 1.0.
  • the present inventors pay attention to the excitation spectrum intensity of the phosphor, which indicates how much light the phosphor emits at what excitation wavelength, and in particular, the light emitted by the blue semiconductor light emitting element.
  • the synthetic excitation spectrum intensity change rate of the phosphors Y and G 0.15 or less in both the third and fourth embodiments, the fluorescence intensity changes emitted by the phosphors Y and G can be suppressed as a total, Suppressed chromaticity shift.
  • the excitation spectrum intensity change rate at the emission wavelength of 540 nm of the wavelength conversion member may be 0.23 or 0.33 or less in the third and fourth embodiments, respectively. In any of the embodiments, it may be 0.15 or less, and for this, the types and contents of the phosphor Y and the phosphor G may be appropriately adjusted. In any of the above-described embodiments, the phosphor Y and / or the phosphor G to be used are not limited in the rate of change of the individual excitation spectrum intensity as long as the synthetic excitation spectrum intensity is 0.15 or less. The synthetic excitation spectrum intensity of the phosphor G may be 0.15 or less alone.
  • the synthetic excitation spectrum intensity change rate is more preferably 0.14 or less, and still more preferably 0.12, in any of the embodiments.
  • the synthetic excitation spectrum intensity change rate is preferably 0.02 or more, and more preferably 0.04 or more.
  • the phosphor Y has an excitation spectrum intensity at 430 nm lower than an excitation spectrum intensity at 470 nm in an excitation spectrum at an emission wavelength of 540 nm
  • the phosphor G preferably has an excitation spectrum intensity at 430 nm larger than an excitation spectrum intensity at 470 nm in an excitation spectrum at an emission wavelength of 540 nm.
  • a blue-green phosphor represented by the following general formula (B1) and having a peak wavelength of an emission wavelength spectrum when excited at 450 nm is preferably 500 nm or more and 520 nm or less.
  • (Y, Ce, Tb, Lu) x (Ga, Sc, Al) y O z (B1) (X 3, 4.5 ⁇ y ⁇ 5.5, 10.8 ⁇ z ⁇ 13.4)
  • a part of Al of the LuAG phosphor as shown by the following general formula (B2) is used.
  • a blue-green phosphor whose emission wavelength is adjusted to 500 nm or more and 520 nm or less by substituting with Ga is mentioned (hereinafter sometimes referred to as GLuAG).
  • the emission intensity in the wavelength region of 500 to 520 nm which cannot be reproduced by the phosphor G and the phosphor Y can be adjusted according to the change of the excitation wavelength, and better binning characteristics can be achieved.
  • the composition ratio of phosphor Y and phosphor G is usually 10:90 or more and 90:10 or less, preferably 12:88 or more and 88:12 or less, more preferably 15:85 or more, 85:15. It is as follows. By satisfying this condition, the shape can be significantly adjusted in the emission spectrum other than the excitation light when the excitation wavelength is changed. If it is outside the above range, the emission spectrum shape that can be adjusted is limited, and binning characteristics may not be improved.
  • the wavelength conversion member used in the fifth embodiment of the first invention is A phosphor G represented by the following general formula (G4) and having a peak wavelength of an emission wavelength spectrum when excited at 450 nm is 520 nm or more and 540 nm or less,
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is 0.33 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the excitation spectrum intensity change rate at the emission wavelength of 540 nm of the wavelength conversion member is preferably 0.30 or less, and more preferably 0.28 or less. Further, the excitation spectrum intensity change rate is preferably 0.03 or more, and more preferably 0.05 or more.
  • the light-emitting devices according to the first to fifth embodiments have a rate of change in excitation spectrum intensity at the emission wavelength of 540 nm of the wavelength conversion member, which is not more than the above value, preferably the rate of change in synthetic excitation spectrum intensity represented by the formula (Z).
  • a good binning effect is exhibited in a range of approximately 430 nm to 465 nm.
  • the chromaticity change ⁇ u′v ′ of light emitted from the light emitting device is ⁇ u′v ′ ⁇ 0. It is preferable to satisfy .004.
  • ⁇ u′v ′ ⁇ 0.0035 is satisfied.
  • ⁇ u′v ′ is the distance between the chromaticity (u ′ i , v ′ i ) at an arbitrary wavelength inm from 445 nm to 455 nm and the average value (u ′ ave , v ′ ave ) of chromaticity from 445 nm to 455 nm.
  • the chromaticity change ⁇ u′v ′ of light emitted from the light emitting device when the emission wavelength of the blue semiconductor light emitting element is continuously changed from 435 nm to 470 nm satisfies ⁇ u′v ′ ⁇ 0.015. Is preferred.
  • ⁇ u′v ′ is the distance between the chromaticity (u ′ i , v ′ i ) at an arbitrary wavelength inm from 435 nm to 470 nm and the average value (u ′ ave , v ′ ave ) of chromaticity from 435 nm to 470 nm. .
  • the wavelength conversion member used in the sixth embodiment of the first invention is: A yellowish green phosphor represented by the following general formula (YG1), wherein the peak wavelength of the emission wavelength spectrum when excited at 450 nm is 530 nm or more and 550 nm or less; The excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is 0.25 or less.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 470 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the excitation spectrum intensity change rate of the yellow-green phosphor is 0.13 or less.
  • the excitation spectrum intensity change rate of the yellow-green phosphor is the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 465 nm when the excitation spectrum intensity of the yellow-green phosphor at 450 nm is 1.0. Expressed as a difference.
  • ⁇ u′v ′ The chromaticity change ⁇ u′v ′ of light emitted from the light emitting device when the emission wavelength of the blue semiconductor light emitting element is continuously changed from 445 nm to 455 nm satisfies ⁇ u′v ′ ⁇ 0.005.
  • ⁇ u′v ′ is the distance between the chromaticity (u ′ i , v ′ i ) at an arbitrary wavelength inm from 445 nm to 455 nm and the average value (u ′ ave , v ′ ave ) of chromaticity from 445 nm to 455 nm. .
  • the said yellow-green fluorescent substance is what is shown by the following general formula (YG2).
  • M a A b E c Al d O e ⁇ (YG2) M is a Ce element.
  • A is one or more elements selected from the group of Y and Lu and containing 90% or more of Y.
  • E is Ga or Ga and Sc.
  • a + b 3, 4.5 ⁇ c + d ⁇ 5.5, 10.8 ⁇ e ⁇ 13.2, 0 ⁇ a ⁇ 0.9, 0.8 ⁇ c ⁇ 1.2)
  • the phosphor represented by the general formula (YG1) has a peak wavelength of an emission wavelength spectrum of 530 nm or more and 550 nm or less when excited at 450 nm, that is, a peak wavelength of an emission wavelength spectrum in a yellow-green region.
  • the phosphors referred to are included.
  • the intensity change of the excitation spectrum of the yellow-green phosphor is preferably 4.0% or less of the intensity of the excitation light spectrum at 450 nm from 440 nm to 460 nm.
  • the intensity change of the excitation spectrum is calculated based on the intensity at 540 nm.
  • the inventors pay attention to the excitation spectrum intensity of the phosphor, which indicates how much light the phosphor emits at what excitation wavelength, and particularly the wavelength of the light emitted by the blue semiconductor light emitting element.
  • Excitation spectrum intensity in the vicinity of 450 nm light was examined in detail. As a result, it has been conceived that a high luminance can be achieved in addition to good binning characteristics when the change rate of the excitation spectrum intensity at the emission wavelength of 540 nm of the wavelength conversion member is 0.25 or less.
  • the excitation spectrum intensity changes greatly the fluorescence intensity emitted from the phosphor changes greatly when the excitation wavelength changes, and the chromaticity of the light emitted from the light emitting device is shifted.
  • the chromaticity deviation of the light emitted from the wavelength conversion member was suppressed by setting the excitation spectrum intensity change rate at the emission wavelength of 540 nm of the wavelength conversion member to 0.25 or less.
  • the variation in emission peak wavelength is usually about ⁇ 5 nm. Further, even the blue semiconductor light emitting element having the largest variation is about ⁇ 20 nm.
  • the light-emitting device according to this embodiment has excellent binning characteristics in which the chromaticity change of the emitted light is small with respect to the variation in the emission peak wavelength of the blue semiconductor light-emitting element serving as the light source.
  • a light emitting device is preferable.
  • the wavelength conversion member used in the seventh embodiment of the first invention is A phosphor represented by the following general formula (YG3), wherein the difference between the maximum value and the minimum value of the excitation spectrum intensity normalized with the excitation intensity of 450 nm when excited at an excitation wavelength of 440 nm to 460 nm is 0.05 or less Contains yellow-green phosphor.
  • the half width is preferably 105 nm or more and 120 nm or less from the viewpoint of color rendering properties.
  • the difference between the maximum value and the minimum value of the excitation spectrum intensity normalized with the excitation intensity of 450 nm when excited with an excitation wavelength of 440 nm to 460 nm is set to 0.05 or less, thereby reducing the wavelength conversion member.
  • the chromaticity deviation of the emitted light was suppressed. Therefore, by providing the wavelength conversion member, the light emitting device in this embodiment has a chromaticity change ⁇ u′v from the average chromaticity of light emitted from the wavelength conversion member when excited at an excitation wavelength of 445 nm to 455 nm. 'Becomes 0.005 or less.
  • ⁇ u′v ′ is the distance between the chromaticity (u ′ i , v ′ i ) at an arbitrary wavelength inm from 445 nm to 455 nm and the average value (u ′ ave , v ′ ave ) of chromaticity from 445 nm to 455 nm. .
  • the variation in emission peak wavelength is usually about ⁇ 5 nm. Further, even the blue semiconductor light emitting element having the largest variation is about ⁇ 20 nm.
  • the light-emitting device according to the first to seventh embodiments of the first invention satisfies the above requirements, so that the chromaticity of the emitted light with respect to the variation in the emission peak wavelength of the blue semiconductor light-emitting element serving as the light source A light-emitting device having a small change and excellent so-called binning characteristics is preferable.
  • a spectrum of light emitted from the light emitting device is obtained using a 20 inch integrating sphere (LMS-200) manufactured by Labsphere and a spectrometer (Solid Lambda UV-Vis) manufactured by Carl Zeiss, and chromaticity ( u ′ i , v ′ i ) are calculated.
  • the excitation wavelength is changed at least every 5 nm, preferably every 3 nm, more preferably every 2 nm, and even more preferably every 1 nm.
  • the chromaticity (u ′ i , v ′ i ) at an arbitrary wavelength i nm emitted from is measured, and the average value (u ′ ave , v ′ ave ) is calculated. Then, the distance between the chromaticity (u ′ i , v ′ i ) and (u ′ ave , v ′ ave ) at the wavelength inm is obtained. Note that when measuring the average value of the chromaticity of light emitted from the light emitting device, the interval for changing the wavelength may be constant or random.
  • the phosphor represented by the general formula (YG1), the phosphor represented by the general formula (YG2), and the general formula (YG3) The content of the phosphor represented by (2) is not particularly limited, and can be appropriately set according to a request such as a color temperature of light emitted from the light emitting device.
  • the particle size of the phosphor used in the first to fifth embodiments of the first invention is preferably a volume-based median diameter D 50v of 0.1 ⁇ m or more, more preferably 1 ⁇ m or more. . Moreover, the thing of 30 micrometers or less is preferable, and the thing of 20 micrometers or less can be used more preferably.
  • the volume-based median diameter D 50v is a volume-based relative when a sample is measured and a particle size distribution (cumulative distribution) is obtained using a particle size distribution measuring apparatus based on a laser diffraction / scattering method. It is defined as the particle size at which the particle amount is 50%.
  • a phosphor is put in ultrapure water, an ultrasonic disperser (manufactured by Kaijo Co., Ltd.) is used, the frequency is 19 KHz, the ultrasonic intensity is 5 W, and the sample is ultrasonicated for 25 seconds.
  • the transmittance is adjusted to a range of 88% to 92% using a flow cell, and after confirming that the particles are not aggregated, the particle size is measured by a laser diffraction type particle size distribution analyzer (Horiba LA-300). Examples include a method of measuring in a diameter range of 0.1 to 600 ⁇ m.
  • a dispersing agent may be used.
  • the phosphor is put in an aqueous solution containing 0.0003% by weight of Tamol (manufactured by BASF). In the same manner as described above, the measurement may be performed after ultrasonic dispersion.
  • D v / D n is a ratio (D v / D n ) between the volume-based average particle diameter D v and the number-based average particle diameter D n of the phosphor.
  • D v / D n is preferably 1.0 or more, more preferably 1.2 or more, and further preferably 1.4 or more.
  • D v / D n is preferably 25 or less, more preferably 10 or less, and particularly preferably 5 or less. If D v / D n is too large, there will be phosphor particles with significantly different weights, and the phosphor particles will tend to be non-uniformly dispersed in the phosphor layer.
  • the phosphor it is also possible to use a phosphor whose surface is previously coated with a third component.
  • the type of the third component used for coating and the coating method are not particularly limited, and any known third component and method may be used.
  • Examples of the third component include organic acids, inorganic acids, silane treating agents, silicone oil, liquid paraffin, and the like.
  • silane coupling materials dioalkyltrisilanol, dialkyldisianol, trialkylsilanol, monoalkyltrialkoxysilane, dialkyldialkoxysilane, trialkylalkoxysilane
  • siloxane having a substituent, silicone, and the like are preferable.
  • the surface treatment and coating amount are usually 0.01 to 10 parts by weight per 100 parts by weight of the phosphor. If the amount is less than 0.01 parts by weight, the affinity, dispersibility, thermal stability, fluorescence coloring property, etc. The improvement effect is difficult to obtain, and if it exceeds 10 parts by weight, problems such as deterioration of thermal stability, mechanical properties, and fluorescence coloring property are likely to occur.
  • the content of the phosphor in the wavelength conversion member depends on the type of the light diffusing material and the resin described later.
  • the resin is a polycarbonate resin
  • It is usually 0.1 parts by weight or more, preferably 0.5 parts by weight or more, more preferably 1 part by weight or more, and usually 50 parts by weight or less, preferably 40 parts by weight or less based on 100 parts by weight of the polycarbonate resin. More preferably, it is 30 parts by weight or less, and still more preferably 20 parts by weight or less. If the content of the phosphor is too small, the wavelength conversion effect of the phosphor tends to be difficult to obtain, and if it is too large, the mechanical properties may deteriorate, which is not preferable.
  • the resin when it is a silicone resin, it is usually 0.1 parts by weight or more, preferably 1 part by weight or more, more preferably 3 parts by weight or more, and usually 80 parts by weight with respect to 100 parts by weight of the silicone resin. Part or less, preferably 60 parts by weight or less, more preferably 50 parts by weight or less, and still more preferably 40 parts by weight or less. If the content of the phosphor is too small, the wavelength conversion effect of the phosphor tends to be difficult to obtain, and if it is too large, the mechanical properties may deteriorate, which is not preferable.
  • the wavelength conversion member preferably further includes a red phosphor (also referred to as a first red phosphor).
  • a red phosphor also referred to as a first red phosphor.
  • the intensity change of the excitation spectrum when the excitation light wavelength is changed from 445 nm to 455 nm is 5.0% or less of the excitation spectrum by the excitation light of 455 nm. It is more preferably 0% or less, and further preferably 1.0% or less.
  • red phosphors satisfying such requirements (Sr, Ca) AlSiN 3 : Eu, Ca 1 ⁇ x Al 1 ⁇ x Si 1 + x N 3 ⁇ x O x : Eu (where 0 ⁇ x ⁇ 0 .5), K 2 SiF: Mn 4+ , Eu y (Sr, Ca, Ba) 1-y : Al 1 + x Si 4 ⁇ x O x N 7 ⁇ x (where 0 ⁇ x ⁇ 4, 0 ⁇ (Sr, Ca) AlSiN 3 : Eu or Ca 1 ⁇ x Al 1 ⁇ x Si 1 + x N 3 ⁇ x O x : Eu (where 0 ⁇ x ⁇ 0. 5) is preferable.
  • the first red phosphor is preferably a red phosphor having an emission peak wavelength of 600 nm to less than 640 nm and a half-value width of 2 nm to 120 nm.
  • red phosphors satisfying such requirements, (Sr, Ca) AlSiN 3 : Eu, Ca 1 ⁇ x Al 1 ⁇ x Si 1 + x N 3 ⁇ x O x : Eu (where 0 ⁇ x ⁇ 0 .5), Eu y (Sr, Ca, Ba) 1-y : Al 1 + x Si 4-x O x N 7-x (where 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 0.2), K 2 SiF: Mn 4+ , (Sr, Ca) AlSiN 3 : Eu or Ca 1 ⁇ x Al 1 ⁇ x Si 1 + x N 3 ⁇ x O x : Eu (provided that 0 ⁇ x ⁇ 0.
  • the first red phosphor having an emission peak wavelength of 600 nm or more and less than 640 nm and a half width of 2 nm or more and 120 nm or less preferably includes 30% or more, preferably 40% or more in terms of the composition weight ratio with respect to the total amount of the red phosphor. Is more preferable, and it is particularly preferable to include 50% or more. Further, it is preferably 95% or less, more preferably 90% or less, and particularly preferably 85% or less.
  • a red phosphor in addition to the first red phosphor described above or in place of the first red phosphor, a red phosphor (hereinafter also referred to as a second red phosphor). Preferably). More preferably, two kinds of red phosphors are included.
  • the phosphor X and the phosphor Y are combined to include at least four types of phosphors.
  • the light emitting device including the four types of phosphors can be selected to be a light emitting device that can achieve high conversion efficiency in addition to the good color rendering by adding the red phosphor. The degree of freedom increases. This is explained by the result of simulation described later.
  • the intensity change of the excitation spectrum when the excitation light wavelength is changed from 445 nm to 455 nm is 5.0% or less of the excitation spectrum by the excitation light of 455 nm. It is more preferably 0% or less, and further preferably 1.0% or less.
  • a red phosphor having an emission peak wavelength of 640 nm to 670 nm and a half width of 2 nm to 120 nm is preferable.
  • Examples of such a phosphor include CaAlSiN 3 : Eu phosphor, 3.5MgO ⁇ 0.5MgF 2 ⁇ GeO 2 : Mn 4+ phosphor, and the like is preferably a CaAlSiN 3 : Eu phosphor.
  • the content is not particularly limited as long as the effects of the present invention are not impaired, but the composition weight ratio with respect to the total amount of the red phosphor is 0.0% or more, 50. It is preferably 0% or less.
  • the intensity of the excitation spectrum of the red phosphor mixture when the excitation light wavelength is changed from 445 nm to 455 nm when mixed with the first red phosphor.
  • the change is preferably 5.0% or less of the excitation spectrum by 455 nm excitation light, more preferably 3.0% or less, and further preferably 1.0% or less.
  • a red phosphor also referred to as a first red phosphor
  • strength change of the excitation spectrum when the excitation light wavelength changes from 440 nm to 460 nm is 4.0% or less of the excitation spectrum by 450 nm excitation light. It is more preferably 0% or less, and further preferably 1.0% or less.
  • the lower limit is not particularly limited and is 0% or more.
  • the first red phosphor is preferably a red phosphor having an emission peak wavelength of 620 nm or more and less than 640 nm and a half width of 2 nm or more and 100 nm or less.
  • red phosphors satisfying such requirements (Sr, Ca) AlSiN 3 : Eu, Ca 1 ⁇ x Al 1 ⁇ x Si 1 + x N 3 ⁇ x O x : Eu (where 0 ⁇ x ⁇ 0.5 ), Eu y (Sr, Ca, Ba) 1-y : Al 1 + x Si 4 ⁇ x O x N 7 ⁇ x (where 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 0.2), K 2 SiF: Mn 4+ and the like, and (Sr, Ca) AlSiN 3 : Eu or Ca 1 ⁇ x Al 1 ⁇ x Si 1 + x N 3 ⁇ x O x : Eu (where 0 ⁇ x ⁇ 0.5) is preferable.
  • the (Sr, Ca) AlSiN 3: Eu is, M a A b D c E d X e (wherein, M is Eu, 1 A is selected from Mg, Ca, Sr, the group consisting of Ba 1 or 2 or more elements, D is Si, E is an essential element of Al, and is selected from the group consisting of B, Al, Ga, In, Sc, Y, La, Gd, and Lu.
  • X is an essential element, and X is one or more elements selected from the group consisting of O, N, and F.
  • the first red phosphor having an emission peak wavelength of 620 nm or more and less than 640 nm and a half width of 2 nm or more and 100 nm or less preferably includes 30% or more, preferably 40% or more in a composition weight ratio with respect to the total amount of the red phosphor Is more preferable, and it is particularly preferable to include 50% or more.
  • red phosphor hereinafter also referred to as a second red phosphor
  • a red phosphor hereinafter also referred to as a second red phosphor
  • two kinds of red phosphors are included.
  • the second red phosphor in addition to the good color rendering due to the addition of the red phosphor, the degree of freedom regarding the type and amount of the phosphor that can be selected in order to achieve a light emitting device that can achieve high conversion efficiency Will increase.
  • the intensity change of the excitation spectrum when the excitation light wavelength is changed from 440 nm to 460 nm is 5.0% or less of the excitation spectrum by 450 nm excitation light. It is more preferably 0% or less, and further preferably 1.0% or less.
  • a red phosphor having an emission peak wavelength of 640 nm to 670 nm and a half width of 2 nm to 120 nm is preferable.
  • Examples of such a phosphor include CaAlSiN 3 : Eu phosphor, 3.5MgO ⁇ 0.5MgF 2 .GeO 2 : Mn 4+ phosphor, and the like is preferably a CaAlSiN 3 : Eu phosphor.
  • the content is not particularly limited as long as the effects of the present invention are not impaired, but the composition weight ratio with respect to the total amount of the red phosphor is 0.0% or more and 50.0%. The following is preferable.
  • the intensity of the excitation spectrum of the red phosphor mixture when the excitation light wavelength is changed from 440 nm to 460 nm when mixed with the first red phosphor.
  • the change is preferably 5.0% or less of the excitation spectrum by 450 nm excitation light, more preferably 3.0% or less, and further preferably 1.0% or less.
  • the wavelength conversion member according to the first to seventh embodiments of the first invention includes a transparent material.
  • the transparent material is not particularly limited as long as it can transmit light without substantially absorbing light, and can be used for dispersing the phosphor, but has a refractive index of 1.3 to 1.7. It is preferable.
  • the measuring method of the refractive index of a transparent material is as follows. The measurement temperature is 20 ° C., measured by the prism coupler method. The measurement wavelength is 450 nm.
  • Table 1 shows the refractive index of a resin generally used as a transparent material.
  • the refractive index of each resin in Table 1 is a general reference value, and the refractive index of each resin is not necessarily limited to the value in Table 1.
  • These resins used as the transparent material described above may be used alone or in combination of two or more. Moreover, the copolymer of these resin may be sufficient.
  • thermoplastic resins thermosetting resins, photocurable resins, etc., glass, etc.
  • polycarbonate resin and silicone resin are transparent and heat resistant.
  • polycarbonate resin is more preferable from the viewpoint of versatility
  • silicone resin is preferable from the viewpoint of heat resistance.
  • the polycarbonate resin will be described in detail.
  • the polycarbonate resin used in the first to seventh embodiments of the first invention is a polymer having a basic structure having a carbonic acid bond represented by the following general chemical formula (1).
  • X 1 is generally a hydrocarbon, but X 1 into which a hetero atom or a hetero bond is introduced may be used for imparting various properties.
  • the polycarbonate resin can be classified into an aromatic polycarbonate resin in which the carbon directly bonded to the carbonic acid bond is an aromatic carbon, and an aliphatic polycarbonate resin in which the carbon is an aliphatic carbon, either of which can be used.
  • aromatic polycarbonate resins are preferred from the viewpoints of heat resistance, mechanical properties, electrical characteristics, and the like.
  • the polycarbonate polymer formed by making a dihydroxy compound and a carbonate precursor react is mentioned.
  • a polyhydroxy compound or the like may be reacted.
  • a method of reacting carbon dioxide with a cyclic ether using a carbonate precursor may be used.
  • the polycarbonate polymer may be linear or branched.
  • the polycarbonate polymer may be a homopolymer composed of one type of repeating unit or a copolymer having two or more types of repeating units.
  • the copolymer can be selected from various copolymerization forms such as a random copolymer and a block copolymer.
  • such a polycarbonate polymer is a thermoplastic resin.
  • aromatic dihydroxy compounds include dihydroxy compounds such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene (ie, resorcinol), 1,4-dihydroxybenzene, and the like.
  • Benzenes such as 2,5-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl; 2,2′-dihydroxy-1,1′-binaphthyl, 1,2-dihydroxy Dihydroxynaphthalenes such as naphthalene, 1,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene; 2 , 2'- Hydroxydiphenyl ether, 3,3′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxy-3,3′-dimethyldiphenyl ether, 1,4-bis (3-hydroxyphenoxy) benzene, 1,3 Dihydroxydiary
  • Dihydroxydiaryl sulfoxides such as 4,4′-dihydroxydiphenylsulfone and 4,4′-dihydroxy-3,3′-dimethyldiphenylsulfone;
  • bis (hydroxyaryl) alkanes are preferred, and bis (4-hydroxyphenyl) alkanes are preferred, and 2,2-bis (4-hydroxyphenyl) propane (ie, in terms of impact resistance and heat resistance) Bisphenol A) is preferred.
  • 1 type may be used for an aromatic dihydroxy compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
  • Examples of monomers used as raw materials for aliphatic polycarbonate resins include ethane-1,2-diol, propane-1,2-diol, propane-1,3-diol, 2,2-dimethylpropane-1, 3-diol, 2-methyl-2-propylpropane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, decane-1,10-diol Alkanediols such as cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,4-diol, 1,4-cyclohexanedimethanol, 4- (2-hydroxyethyl) cyclohexanol, Cycloalkanediols such as 2,2,4,4-tetramethyl-cyclobutane-1,3-di
  • examples of the carbonate precursor include carbonyl halide and carbonate ester.
  • 1 type may be used for a carbonate precursor and it may use 2 or more types together by arbitrary combinations and a ratio.
  • carbonyl halide examples include phosgene, haloformates such as bischloroformate of dihydroxy compounds, and monochloroformate of dihydroxy compounds.
  • carbonate ester examples include diaryl carbonates such as diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; biscarbonate bodies of dihydroxy compounds, monocarbonate bodies of dihydroxy compounds, and cyclic carbonates. And carbonate bodies of dihydroxy compounds such as
  • the method for producing the polycarbonate resin is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
  • an interfacial polymerization method a melt transesterification method
  • a pyridine method a ring-opening polymerization method of a cyclic carbonate compound
  • a solid phase transesterification method of a prepolymer a prepolymer.
  • the interfacial polymerization method and the melt transesterification method which are particularly suitable among these methods, will be specifically described.
  • Interfacial polymerization method In the interfacial polymerization method, a dihydroxy compound and a carbonate precursor (preferably phosgene) are reacted in the presence of an organic solvent inert to the reaction and an aqueous alkaline solution, usually at a pH of 9 or higher. Polycarbonate resin is obtained by interfacial polymerization in the presence.
  • a molecular weight adjusting agent terminal terminator
  • an antioxidant may be present to prevent the oxidation of the dihydroxy compound.
  • the dihydroxy compound and the carbonate precursor are as described above.
  • phosgene is preferably used, and a method using phosgene is particularly called a phosgene method.
  • organic solvent inert to the reaction examples include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene. .
  • 1 type may be used for an organic solvent and it may use 2 or more types together by arbitrary combinations and a ratio.
  • alkali compound contained in the alkaline aqueous solution examples include alkali metal compounds and alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and sodium hydrogen carbonate, among which sodium hydroxide and water Potassium oxide is preferred.
  • 1 type may be used for an alkali compound and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the concentration of the alkali compound in the alkaline aqueous solution is not limited, but is usually used at 5 to 10% by weight in order to control the pH in the alkaline aqueous solution of the reaction to 10 to 12.
  • the molar ratio of the bisphenol compound to the alkali compound is usually 1: 1.9 or more in order to control the pH of the aqueous phase to be 10 to 12, preferably 10 to 11.
  • the ratio is 1: 2.0 or more, usually 1: 3.2 or less, and more preferably 1: 2.5 or less.
  • polymerization catalyst examples include aliphatic tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, and trihexylamine; alicyclic rings such as N, N′-dimethylcyclohexylamine and N, N′-diethylcyclohexylamine Tertiary amines; aromatic tertiary amines such as N, N′-dimethylaniline and N, N′-diethylaniline; quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride and triethylbenzylammonium chloride; Examples include pyridine, guanine, guanidine salts, and the like. In addition, 1 type may be used for a polymerization catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the molecular weight modifier examples include aromatic phenols having a monovalent phenolic hydroxyl group; aliphatic alcohols such as methanol and butanol, mercaptans, and phthalimides, among which aromatic phenols are preferred.
  • aromatic phenols include alkyl groups such as m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol, and p-long chain alkyl-substituted phenol.
  • Substituted phenols vinyl group-containing phenols such as isopropanyl phenol, epoxy group-containing phenols, carboxyl group-containing phenols such as o-oxine benzoic acid and 2-methyl-6-hydroxyphenylacetic acid.
  • a molecular weight regulator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the amount of the molecular weight modifier used is usually 0.5 mol or more, preferably 1 mol or more, and usually 50 mol or less, preferably 30 mol or less, per 100 mol of the dihydroxy compound.
  • the order of mixing the reaction substrate, reaction medium, catalyst, additive and the like is arbitrary as long as a desired polycarbonate resin is obtained, and an appropriate order may be arbitrarily set.
  • the molecular weight regulator can be mixed at any time as long as it is between the reaction (phosgenation) of the dihydroxy compound and phosgene and the start of the polymerization reaction.
  • the reaction temperature is usually 0 to 40 ° C.
  • the reaction time is usually several minutes (for example, 10 minutes) to several hours (for example, 6 hours).
  • melt transesterification method for example, a transesterification reaction between a carbonic acid diester and a dihydroxy compound is performed.
  • the dihydroxy compound is as described above.
  • examples of the carbonic acid diester include dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate, and di-tert-butyl carbonate; diphenyl carbonate; substituted diphenyl carbonate such as ditolyl carbonate, and the like. Of these, diphenyl carbonate and substituted diphenyl carbonate are preferable, and diphenyl carbonate is particularly preferable.
  • carbonic acid diester may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the ratio of the dihydroxy compound and the carbonic acid diester is arbitrary as long as the desired polycarbonate resin can be obtained, but it is preferable to use an equimolar amount or more of the carbonic acid diester with respect to 1 mol of the dihydroxy compound. Is more preferable.
  • the upper limit is usually 1.30 mol or less. By setting it as such a range, the amount of terminal hydroxyl groups can be adjusted to a suitable range.
  • the amount of terminal hydroxyl groups tends to have a large effect on thermal stability, hydrolysis stability, color tone, and the like. For this reason, you may adjust the amount of terminal hydroxyl groups as needed by a well-known arbitrary method.
  • a polycarbonate resin in which the terminal hydroxyl group amount is adjusted can be usually obtained by adjusting the mixing ratio of the carbonic acid diester and the aromatic dihydroxy compound, the degree of vacuum during the transesterification reaction, and the like.
  • the molecular weight of the polycarbonate resin usually obtained can also be adjusted by this operation.
  • the mixing ratio is as described above.
  • a more aggressive adjustment method there may be mentioned a method in which a terminal terminator is mixed separately during the reaction.
  • the terminal terminator at this time include monohydric phenols, monovalent carboxylic acids, carbonic acid diesters, and the like.
  • 1 type may be used for a terminal terminator and it may use 2 or more types together by arbitrary combinations and a ratio.
  • a transesterification catalyst is usually used. Any transesterification catalyst can be used. Among them, it is preferable to use, for example, an alkali metal compound and / or an alkaline earth metal compound. In addition, auxiliary compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds may be used in combination. In addition, 1 type may be used for a transesterification catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the reaction temperature is usually 100 to 320 ° C.
  • the pressure during the reaction is usually a reduced pressure condition of 2 mmHg or less.
  • a melt polycondensation reaction may be performed under the above-mentioned conditions while removing a by-product such as an aromatic hydroxy compound.
  • the melt polycondensation reaction can be performed by either a batch method or a continuous method.
  • the order which mixes a reaction substrate, a reaction medium, a catalyst, an additive, etc. is arbitrary as long as a desired aromatic polycarbonate resin is obtained, What is necessary is just to set an appropriate order arbitrarily.
  • the melt polycondensation reaction is preferably carried out continuously.
  • a catalyst deactivator may be used as necessary.
  • a compound that neutralizes the transesterification catalyst can be arbitrarily used. Examples thereof include sulfur-containing acidic compounds and derivatives thereof.
  • 1 type may be used for a catalyst deactivator and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the amount of the catalyst deactivator used is usually 0.5 equivalents or more, preferably 1 equivalent or more, and usually 10 equivalents or less, relative to the alkali metal or alkaline earth metal contained in the transesterification catalyst. Preferably it is 5 equivalents or less. Furthermore, it is 1 ppm or more normally with respect to aromatic polycarbonate resin, and is 100 ppm or less normally, Preferably it is 20 ppm or less.
  • the molecular weight of the polycarbonate resin is arbitrary and may be appropriately selected and determined.
  • the viscosity average molecular weight [Mv] converted from the solution viscosity is usually 10,000 or more, preferably 16,000 or more, more preferably 18, 000 or more, and usually 40,000 or less, preferably 30,000 or less.
  • the viscosity average molecular weight can be equal to or lower than the upper limit of the above range, the polycarbonate resin composition of the present invention can be suppressed and improved in fluidity, and the molding processability can be improved and the molding process can be easily performed.
  • Two or more types of polycarbonate resins having different viscosity average molecular weights may be mixed and used, and in this case, a polycarbonate resin having a viscosity average molecular weight outside the above-mentioned preferred range may be mixed.
  • the intrinsic viscosity [ ⁇ ] is a value calculated by the following formula (1) by measuring the specific viscosity [ ⁇ sp ] at each solution concentration [C] (g / dl).
  • the terminal hydroxyl group concentration of the polycarbonate resin is arbitrary and may be appropriately selected and determined, but is usually 1,000 ppm or less, preferably 800 ppm or less, more preferably 600 ppm or less. Thereby, the residence heat stability and color tone of the polycarbonate resin composition of the present invention can be further improved. Moreover, it is 10 ppm or more normally, Preferably it is 30 ppm or more, More preferably, it is 40 ppm or more. Thereby, the fall of molecular weight can be suppressed and the mechanical characteristic of the polycarbonate resin composition of this invention can be improved more.
  • the unit of the terminal hydroxyl group concentration is the weight of the terminal hydroxyl group expressed in ppm relative to the weight of the polycarbonate resin.
  • the measuring method is a colorimetric determination by the titanium tetrachloride / acetic acid method (the method described in Macromol. Chem. 88 215 (1965)).
  • the polycarbonate resin may be used alone or in combination of two or more in any combination and ratio.
  • the polycarbonate resin is a polycarbonate resin alone (the polycarbonate resin alone is not limited to an embodiment containing only one type of polycarbonate resin, and is used in a sense including an embodiment containing a plurality of types of polycarbonate resins having different monomer compositions and molecular weights, for example. .), Or an alloy (mixture) of a polycarbonate resin and another thermoplastic resin may be used in combination.
  • a polycarbonate resin is copolymerized with an oligomer or polymer having a siloxane structure; for the purpose of further improving thermal oxidation stability and flame retardancy
  • the proportion of the polycarbonate resin in the resin component is preferably 50% by weight or more, more preferably 60% by weight or more, and 70% by weight or more. Further preferred.
  • the polycarbonate resin may contain a polycarbonate oligomer.
  • the viscosity average molecular weight [Mv] of this polycarbonate oligomer is usually 1,500 or more, preferably 2,000 or more, and usually 9,500 or less, preferably 9,000 or less.
  • the polycarbonate ligomer contained is preferably 30% by weight or less of the polycarbonate resin (including the polycarbonate oligomer).
  • the polycarbonate resin may be not only a virgin raw material but also a polycarbonate resin regenerated from a used product (so-called material-recycled polycarbonate resin).
  • used products include: optical recording media such as optical disks; light guide plates; vehicle window glass, vehicle headlamp lenses, windshields and other vehicle transparent members; water bottles and other containers; eyeglass lenses; Examples include architectural members such as glass windows and corrugated sheets.
  • non-conforming products, pulverized products obtained from sprues, runners, etc., or pellets obtained by melting them can be used.
  • the recycled polycarbonate resin is preferably 80% by weight or less, more preferably 50% by weight or less, among the polycarbonate resins contained in the polycarbonate resin composition of the present invention.
  • Recycled polycarbonate resin is likely to have undergone deterioration such as heat deterioration and aging deterioration, so when such polycarbonate resin is used more than the above range, hue and mechanical properties can be reduced. It is because there is sex.
  • the above-mentioned transparent material can contain various known additives as necessary within the range not impairing the characteristics of the present invention.
  • heat stabilizer, antioxidant, mold release agent, flame retardant, flame retardant aid, UV absorber, lubricant, light stabilizer, plasticizer, antistatic agent, thermal conductivity improver, conductivity improver, Coloring agents, impact resistance improving agents, antibacterial agents, chemical resistance improving agents, reinforcing agents, laser marking improving agents, refractive index adjusting agents and the like can be mentioned.
  • the specific kind and amount of these additives can be selected from known suitable materials for transparent materials.
  • the heat stabilizer examples include phosphorus compounds. Any known phosphorous compound can be used. Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid; acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, and acidic calcium pyrophosphate; phosphoric acid Examples thereof include phosphates of Group 1 or Group 10 metals such as potassium, sodium phosphate, cesium phosphate, and zinc phosphate; organic phosphate compounds, organic phosphite compounds, and organic phosphonite compounds.
  • triphenyl phosphite tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl diphenyl phosphite, Dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) ) Organic phosphites such as octyl phosphite are preferred.
  • the content of the heat stabilizer is usually 0.0001 parts by weight or more, preferably 0.001 parts by weight or more, more preferably 0.01 parts by weight or more with respect to 100 parts by weight of the polycarbonate resin. It is not more than parts by weight, preferably not more than 0.5 parts by weight, more preferably not more than 0.3 parts by weight, still more preferably not more than 0.1 parts by weight. If the amount of the heat stabilizer is too small, it is difficult to obtain the effect of improving the heat stability. If the amount is too large, the heat stability may be lowered.
  • antioxidants examples include hindered phenol antioxidants. Specific examples thereof include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl).
  • pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]
  • octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate
  • the content of the antioxidant is usually 0.001 part by weight or more, preferably 0.01 part by weight or more, and usually 1 part by weight or less, preferably 0.5 part by weight with respect to 100 parts by weight of the polycarbonate resin. Part or less, more preferably 0.3 part by weight or less.
  • the content of the antioxidant is less than the lower limit of the range, the effect as an antioxidant may be insufficient, and when the content of the antioxidant exceeds the upper limit of the range, There is a possibility that the effect reaches its peak and is not economical.
  • release agent examples include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, and polysiloxane silicone oils.
  • the aliphatic carboxylic acid examples include saturated or unsaturated aliphatic monovalent, divalent, or trivalent carboxylic acids.
  • the aliphatic carboxylic acid includes alicyclic carboxylic acid.
  • preferred aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferred.
  • aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellicic acid, tetrariacontanoic acid, montanic acid, adipine Examples include acids and azelaic acid.
  • the aliphatic carboxylic acid in the ester of an aliphatic carboxylic acid and an alcohol for example, the same one as the aliphatic carboxylic acid can be used.
  • the alcohol include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, a monovalent or polyvalent saturated alcohol having 30 or less carbon atoms is preferable, and an aliphatic or alicyclic saturated monohydric alcohol or aliphatic saturated polyhydric alcohol having 30 or less carbon atoms is more preferable.
  • alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol, and the like. Is mentioned.
  • esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
  • esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
  • examples thereof include rate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastea
  • Examples of the aliphatic hydrocarbon compound having a number average molecular weight of 200 to 15,000 include liquid paraffin, paraffin wax, microwax, polyethylene wax, Fischer-Tropsch wax, and ⁇ -olefin oligomer having 3 to 12 carbon atoms.
  • the aliphatic hydrocarbon includes alicyclic hydrocarbons.
  • paraffin wax polyethylene wax, or a partial oxide of polyethylene wax is preferable, and paraffin wax and polyethylene wax are more preferable.
  • the number average molecular weight of the aliphatic hydrocarbon is preferably 5,000 or less.
  • polysiloxane silicone oil examples include dimethyl silicone oil, phenylmethyl silicone oil, diphenyl silicone oil, and fluorinated alkyl silicone.
  • the content of the release agent is usually 0.001 part by weight or more, preferably 0.01 part by weight or more, and usually 5 parts by weight or less, preferably 3 parts by weight or less, relative to 100 parts by weight of the polycarbonate resin. More preferably, it is 1 part by weight or less, and still more preferably 0.5 part by weight or less.
  • the content of the release agent is less than the lower limit of the range, the effect of releasability may not be sufficient, and when the content of the release agent exceeds the upper limit of the range, hydrolysis resistance And mold contamination during injection molding may occur.
  • the flame retardant examples include organic flame retardants such as halogen-based, phosphorus-based, organic acid metal salt-based, silicone-based, organic halogen compounds, antimony compounds, phosphorus compounds, nitrogen compounds, inorganic flame retardants, and flame retardant aids. And fluorine resin flame retardant aids.
  • a flame retardant and a flame retardant aid can be used in combination, or a plurality of flame retardants can be used in combination. Among these, phosphorus flame retardants, organic acid metal salt flame retardants, and fluororesin flame retardant aids are preferred.
  • phosphorus flame retardants include aromatic phosphate esters, and phosphazene compounds such as phenoxyphosphazene and aminophosphazene having a bond between a phosphorus atom and a nitrogen atom in the main chain.
  • aromatic phosphate ester flame retardant examples include triphenyl phosphate, resorcinol bis (dixylenyl phosphate), hydroquinone bis (dixylenyl phosphate), 4,4 ′ -Biphenol bis (dixylenyl phosphate), bisphenol A bis (dixylenyl phosphate), resorcinol bis (diphenyl phosphate), hydroquinone bis (diphenyl phosphate), 4,4 ' -Biphenol bis (diphenyl phosphate), bisphenol A bis (diphenyl phosphate) and the like.
  • the content of the flame retardant is usually 0.01 to 30 parts by weight with respect to 100 parts by weight of the resin.
  • an organic sulfonic acid metal salt is preferable, and a fluorine-containing organic sulfonic acid metal salt is particularly preferable.
  • Specific examples thereof include potassium perfluorobutane sulfonate.
  • Examples of the organic halogen compound include brominated polycarbonate, brominated epoxy resin, brominated phenoxy resin, brominated polyphenylene ether resin, brominated polystyrene resin, brominated bisphenol A, pentabromobenzyl polyacrylate, and the like.
  • Examples of the antimony compound include antimony trioxide, antimony pentoxide, sodium antimonate, and the like.
  • Examples of the nitrogen-based compound include melamine, cyanuric acid, melamine cyanurate, and the like.
  • Examples of the inorganic flame retardant include aluminum hydroxide, magnesium hydroxide, silicon compound, boron compound and the like.
  • the fluorine-based flame retardant aid a fluoroolefin resin is preferable, and a tetrafluoroethylene resin having a fibril structure can be exemplified.
  • the fluorine-based flame retardant aid may be in a powder form, a dispersion form, a powder form in which a fluororesin is coated with another resin, or any form.
  • the ultraviolet absorber examples include inorganic ultraviolet absorbers such as cerium oxide and zinc oxide; organics such as benzotriazole compounds, benzophenone compounds, salicylate compounds, cyanoacrylate compounds, triazine compounds, oxanilide compounds, malonic ester compounds, hindered amine compounds, etc. Examples include ultraviolet absorbers. Of these, organic ultraviolet absorbers are preferred, and benzotriazole compounds are more preferred. By selecting an organic ultraviolet absorber, the polycarbonate resin composition of the present invention tends to have good transparency and mechanical properties.
  • benzotriazole compound examples include, for example, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis ( ⁇ , ⁇ -dimethylbenzyl). ) Phenyl] -benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butyl-phenyl) -benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5 ′) -Methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butyl-phenyl) -5-chlorobenzotriazole), 2- (2'-hydroxy-3 ', 5'-di-tert-amyl) -benzotriazole, 2- (2'-hydroxy-5'-tert-octylphenyl) benzotriazole 2,2′-methylenebis [4- (1,
  • benzotriazole compounds include “Seesorb 701”, “Seesorb 702”, “Seesorb 703”, “Seesorb 704”, and “Seesorb 705” manufactured by Sipro Kasei Co., Ltd. (trade names, the same applies hereinafter). , “Seasorb 709”, “Biosorb 520”, “Biosorb 580”, “Biosorb 582”, “Biosorb 583” manufactured by Kyodo Yakuhin Co., Ltd. “Chemisorb 71”, “Chemisorb 72” manufactured by Chemipro Kasei Co., Ltd.
  • UV5411 Adeka's “LA-32”, “LA-38”, “LA-36”, “LA-34”, “LA-31”, Ciba Specialty Chemicals' “Chinubin P”, “Chinubin” 234 ",” Tinubin 326 “,” Tinubin 327 “,” Tinubin 28 ", and the like.
  • the preferable content of the ultraviolet absorber is 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, and 5 parts by weight or less, preferably 3 parts by weight or less with respect to 100 parts by weight of the polycarbonate resin. More preferably, it is 1 part by weight or less, and still more preferably 0.5 part by weight or less. If the content of the ultraviolet absorber is less than the lower limit of the range, the effect of improving the weather resistance may be insufficient, and if the content of the ultraviolet absorber exceeds the upper limit of the range, the mold Debogit etc. may occur and cause mold contamination. In addition, 1 type may contain the ultraviolet absorber and 2 or more types may contain it by arbitrary combinations and a ratio.
  • the silicone resin used in the first to seventh embodiments of the first invention is not particularly limited. However, the smaller the absorption in visible light, the smaller the loss of light, which is preferable.
  • a liquid silicone resin or the like is preferable in terms of mixing with a phosphor and processability to a wavelength conversion member.
  • the liquid silicone resin using an addition curing type that cures by hydrosilylation reaction, no by-product is generated at the time of curing, and there is no problem that the pressure in the mold does not become abnormally high, This is particularly preferable because sink marks and bubbles are hardly generated in the molded product, and further, since the curing speed is high, the molding cycle can be shortened.
  • the addition curing type liquid silicone resin contains an organopolysiloxane having a hydrosilyl group (first component), an organopolysiloxane having an alkenyl group (second component), and a curing catalyst.
  • a typical example of the first component is a polydiorganosiloxane having two or more hydrosilyl groups in the molecule, specifically, a polydiorganosiloxane having hydrosilyl groups at both ends, and a polypolyorganosiloxane having both ends blocked with trimethylsilyl groups.
  • the second component those having at least two vinyl groups bonded to silicon atoms in one molecule are preferably used.
  • An organopolysiloxane that serves both as the first component and the second component that is, an organopolysiloxane having both a hydrosilyl group and an alkenyl group in one molecule may be used. Further, the first component and the second component may be used alone, or two or more kinds of the first component and / or the second component may be used in combination.
  • the curing catalyst is a catalyst for promoting the addition reaction between the hydrosilyl group in the first component and the alkenyl group in the second component.
  • examples thereof include platinum black, second platinum chloride, chloroplatinic acid, chloride.
  • Platinum group metal catalysts such as a reaction product of platinum acid and a monohydric alcohol, a complex of chloroplatinic acid and olefins, a platinum-based catalyst such as platinum bisacetoacetate, a palladium-based catalyst, and a rhodium-based catalyst.
  • a curing catalyst may be used independently and may use 2 or more types together.
  • fumed silica can be added to the silicone resin for the purpose of imparting thixotropic properties to the raw material composition.
  • Fumed silica is an ultrafine particle having a large specific surface area of 50 m 2 / g or more, and commercially available products include Aerosil (registered trademark) of Nippon Aerosil Co., Ltd. and WACKER HDK (Asahi Kasei Silicone Co., Ltd.). Registered trademark). Giving thixotropy is effective in preventing the composition of the raw material composition from becoming non-uniform due to the precipitation of the phosphor.
  • thixotropic properties can be imparted to the raw material composition without causing excessive thickening.
  • a raw material composition having both high fluidity suitable for injection molding and an anti-settling effect of the phosphor can be obtained.
  • a fumed silica Usually 0.1 weight part or more with respect to 100 weight part of silicone resins, Preferably it is 0.5 weight part or more, Especially preferably, it is 1 weight part or more, Usually 20 It is not more than parts by weight, preferably not more than 18 parts by weight, particularly preferably not more than 15 parts by weight. If the amount is less than 0.1 parts by weight, high fluidity suitable for injection molding and the effect of preventing the settling of the phosphor cannot be sufficiently obtained. It is not preferable because the properties cannot be obtained.
  • the raw material composition is a curing rate control agent, anti-aging agent, radical inhibitor, ultraviolet absorber, adhesion improver, flame retardant, surfactant, storage stability improver, ozone deterioration prevention.
  • Additives such as an agent, a light stabilizer, a plasticizer, a coupling agent, an antioxidant, a heat stabilizer, an antistatic agent, and a release agent can be added.
  • the wavelength conversion member of the first to seventh embodiments in the first invention may contain a diffusing material.
  • a diffusing material By containing the diffusing material, it is possible to cause the wavelength conversion member to exhibit light diffusibility.
  • it contains a diffusing material it is preferable to contain an inorganic light diffusing material, an organic light diffusing material or bubbles.
  • inorganic light diffusing materials include silicon dioxide (silica), white carbon, fused silica, talc, magnesium oxide, zinc oxide, titanium oxide, aluminum oxide, zirconium oxide, boron oxide, boron nitride, aluminum nitride, and nitride.
  • Silicon calcium carbonate, barium carbonate, magnesium carbonate, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, barium sulfate, calcium silicate, magnesium silicate, aluminum silicate, sodium silicate aluminide, zinc silicate, zinc sulfide,
  • the material include glass particles, glass fibers, glass flakes, mica, wollastonite, zeolite, sepiolite, bentonite, montmorillonite, hydrotalcite, kaolin, and potassium titanate.
  • These inorganic light diffusing materials may be treated with various surface treatment agents such as a silane coupling agent, a titanate coupling agent, methyl hydrogen polysiloxane, and a fatty acid-containing hydrocarbon compound. It may be coated with an active inorganic compound.
  • organic light diffusing material examples include materials such as styrene (co) polymers, acrylic (co) polymers, siloxane (co) polymers, and polyamide (co) polymers. Some or all of these molecules of the organic diffusing material may or may not be cross-linked.
  • (co) polymer means both “polymer” and “copolymer”.
  • the diffusion material preferably contains at least one selected from the group consisting of silica, glass, calcium carbonate, mica, crosslinked acrylic (co) polymer particles, and siloxane (co) polymer particles. Further, the average particle diameter is preferably 1 ⁇ m or more, and preferably 30 ⁇ m or less. The average particle size is a particle size measured with an integrated weight percentage, a particle size distribution meter or the like.
  • the Mohs hardness is preferably less than 8, and more preferably less than 7.
  • a diffusion material having such hardness it is preferable that ratio L / D of the major axis L and the minor axis D is 200 or less.
  • L / D is more preferably 50 or less.
  • the diffusing material when adjusting the transmittance of the wavelength conversion member by the diffusing material, for example, a diffusing material having a small average particle diameter is added, a diffusing material having a large refractive index difference from the transparent material is added, or Adjustment by lowering the transmittance of the wavelength conversion member can be performed by increasing the amount of addition.
  • the average particle size of the diffusing material is usually 100 ⁇ m or less, preferably 0.1 to 30 ⁇ m, more preferably 0.1 to 15 ⁇ m, still more preferably 1 to 5 ⁇ m.
  • the diffusing agent may be a crosslinked acrylic (co) polymer particle, a crosslinked particle of a copolymer of an acrylic compound and a styrene compound, a siloxane (co) polymer particle, an acrylic It is preferable to use hybrid crosslinked particles of a compound and a compound containing a silicon atom, and it is more preferable to use crosslinked acrylic (co) polymer particles and siloxane (co) polymer particles.
  • crosslinked acrylic (co) polymer particles polymer particles composed of a non-crosslinkable acrylic monomer and a crosslinkable monomer are more preferable, and polymer particles obtained by crosslinking methyl methacrylate and trimethylolpropane tri (meth) acrylate are more preferable.
  • siloxane-based (co) polymer polyorganosilsesquioxane particles are more preferable, and polymethylsilsesquioxane particles are more preferable.
  • polymethylsilsesquioxane particles are particularly preferable in terms of excellent thermal stability.
  • the dispersion shape of the diffusing material in the wavelength conversion member may be substantially spherical, plate-like, needle-like, or indefinite, but is preferably substantially spherical in that there is no anisotropy in the light scattering effect.
  • the average dimension of the diffusing material is usually 100 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, and usually 0.01 ⁇ m or more, preferably 0.1 ⁇ m or more. If the average size of the diffusing material is out of the above range, the light diffusivity is likely to fluctuate greatly due to subtle differences in the content of the diffusing material and the difference in particle size, and the light diffusing property should be controlled stably.
  • the average dimension of the diffusing material is a 50% average dimension based on volume, and is the value of the median diameter (D50) of the volume standard particle size distribution measured by laser or diffraction scattering method.
  • the particle size distribution of the diffusing material may be a monodisperse system or a polydisperse system having several peak tops. However, it is preferable that the particle size distribution is narrow and the particle size is almost a single particle size (monodispersion or particle size distribution close to monodispersion).
  • D v / D n As an index indicating the degree of distribution of the particle size of the diffusing material, there is a ratio (D v / D n ) between the volume-based average particle size D v and the number-based average particle size D n of the diffusing material.
  • D v / D n is preferably 1.0 or more.
  • D v / D n is preferably 5 or less. If D v / D n is too large, there will be diffusing materials with significantly different weights, and the dispersion of the diffusing material tends to be non-uniform in the wavelength conversion member.
  • the inorganic light diffusing material, the organic light diffusing material, and the bubbles used as the diffusing material described above may be used alone or in combination of two or more different materials and dimensions.
  • the refractive index of the diffusing material is calculated by the volume average of a plurality of diffusing materials.
  • the refractive index of the diffusing material is preferably 1.0 or more and 1.9 or less.
  • the diffusing material is preferably highly transparent and excellent in light transmittance.
  • the extinction coefficient may be 10 ⁇ 2 or less, preferably 10 ⁇ 3 or less, and more preferably 10 ⁇ . 4 or less, particularly preferably 10 ⁇ 6 or less.
  • the refractive index of the diffusing material can be measured by the immersion method (Aerosol Research Vol. 9, No. 1 Spring pp. 44-50 (1994)) of YOSHIYAMA et al. The measurement temperature is 20 ° C., and the measurement wavelength is 450 nm.
  • Table 2 below lists the refractive indices of materials generally used as diffusion materials.
  • the refractive index of each material in Table 2 is a general reference value, and the refractive index of each material is not necessarily limited to the value in Table 2.
  • the content of the diffusing material in the wavelength conversion member depends on the type of transparent material.
  • the transparent material is a polycarbonate resin and the diffusing material is polymethylsilsesquioxane particles
  • the content is 100 parts by weight of the polycarbonate resin.
  • it is usually 0.1 parts by weight or more, preferably 0.3 parts by weight or more, more preferably 0.5 parts by weight or more, and usually 10.0 parts by weight or less, preferably 7.0 parts by weight or less. More preferably, it is 3.0 parts by weight or less. If the content of the diffusing material is too small, the diffusing effect is insufficient, and if it is too large, the mechanical identification may decrease, which is not preferable.
  • a wavelength conversion member including a transparent material The wavelength conversion member according to the first to sixth
  • the manufacturing method of the wavelength conversion member is not particularly limited, and a known method may be used.
  • a general manufacturing method when the transparent material is a polycarbonate resin is as follows.
  • phosphor and diffusing material blended into polycarbonate resin if necessary, and mix with various mixers such as tumbler mixer and Henschel mixer. Mixing may be performed by mixing all raw materials at once, or by dividing several raw materials and mixing them. Thereafter, it is melt-kneaded with a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader or the like to obtain resin composition pellets.
  • various mixers such as tumbler mixer and Henschel mixer.
  • Mixing may be performed by mixing all raw materials at once, or by dividing several raw materials and mixing them. Thereafter, it is melt-kneaded with a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader or the like to obtain resin composition pellets.
  • the transparent material is polycarbonate resin and the case where a diffusing material other than air bubbles is contained is illustrated in more detail and preferable conditions.
  • Polycarbonate resin, phosphor, diffusing material, and other additives are mixed with a tumbler mixer and then melt kneaded using a single screw or twin screw extruder.
  • a screw composed mainly of a forward-flight flight screw element is used as a screw so as not to apply excessive pruning force.
  • the frequent use of a screw element that strongly applies a cutting force, such as a reverse feed flight screw or a kneading screw element, is undesirable because it causes discoloration of the resin.
  • a screw and cylinder made of a material that has been subjected to an abrasion-resistant treatment that is difficult to cut.
  • the kneading temperature is preferably in the range of 230 to 340 ° C. If the measured resin temperature exceeds 340 ° C., discoloration tends to occur, which is not preferable. If the resin temperature is less than 230 ° C., the melt viscosity of the polycarbonate resin is too high, and the mechanical load on the extruder increases.
  • a particularly preferable kneading temperature is in the range of 240 to 300 ° C.
  • the screw rotation speed and discharge amount may be appropriately selected in view of the production speed, the load on the extruder, and the state of the resin pellets. Moreover, it is preferable to install one or more vent structures in the extruder for releasing air entrained with the raw material and gas generated by heating out of the extruder system.
  • a wavelength conversion member is formed using the polycarbonate resin composition pellets obtained as described above.
  • the method for forming the wavelength deformable member is not particularly limited, and may be formed by a known method according to the required specifications. Examples thereof include sheet / film extrusion molding, profile extrusion molding, vacuum molding, injection molding, blow molding, injection blow molding, rotational molding, foam molding, and the like. Among these, it is preferable to adopt an injection molding method. Furthermore, if necessary, the molded body can be further processed by welding, bonding, cutting, and the like.
  • the diffusing material is a bubble
  • the bubble may be formed in the member by a method such as blending of a blowing agent, nitrogen gas injection, supercritical gas injection, or the like.
  • the wavelength conversion member may be an embodiment of a wavelength conversion member formed only from the phosphor composition, or may be formed by applying the phosphor composition on a transparent substrate such as glass or an acrylic plate, and may be used as the wavelength conversion member. .
  • the polycarbonate resin composition pellet is an example of the phosphor composition according to the third invention of the present invention.
  • the third invention of the present invention is an invention relating to a phosphor composition
  • the first embodiment of the third invention is:
  • (Y, Ce, Tb, Lu) x (Ga, Sc, Al) y O z (Y1) (X 3, 4.5 ⁇ y ⁇ 5.5, 10.8 ⁇ z ⁇ 13.4)
  • Phosphor G which is represented by the following general formula (G1) and has an emission wavelength spectrum having a peak wavelength of 520 nm or more and 540 nm or less when excited at 450 nm,
  • (Y, Ce, Tb, Lu) x (Ga, Sc, Al) y O z (G1) (X 3, 4.5 ⁇ y ⁇ 5.5, 10.8 ⁇ z ⁇ 13.4)
  • a transparent material
  • the phosphor composition is not limited to a pellet, but is preferably a pellet from the viewpoint of flowability and ease of handling.
  • the explanation of the first to sixth embodiments in the second invention is applied, respectively.
  • the description of the first to seventh embodiments in the first invention is applied to the configuration of the phosphor composition.
  • the fourth invention of the present invention is an invention related to a phosphor mixture
  • the first embodiment is A phosphor Y represented by the following general formula (Y1) and having a peak wavelength of an emission wavelength spectrum when excited at 450 nm is 540 nm or more and 570 nm or less;
  • (Y, Ce, Tb, Lu) x (Ga, Sc, Al) y O z (Y1) (X 3, 4.5 ⁇ y ⁇ 5.5, 10.8 ⁇ z ⁇ 13.4)
  • It is a phosphor mixture containing phosphor G which is represented by the following general formula (G1) and has a peak wavelength of an emission wavelength spectrum when excited at 450 nm of 520 nm or more and 540 nm or less.
  • (Y, Ce, Tb, Lu) x (Ga, Sc, Al) y O z (G1) (X 3, 4.5 ⁇ y ⁇ 5.5, 10.8 ⁇ z ⁇ 13.4)
  • the excitation spectrum intensity change rate at a fluorescence wavelength of 540 nm is preferably 0.40 or less.
  • the excitation spectrum intensity change rate of the phosphor mixture is expressed by the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 430 nm to 470 nm when the excitation spectrum intensity of the phosphor mixture at 450 nm is 1.0. Is done.
  • the excitation spectrum intensity change rate is calculated using the intensity at the emission wavelength of 540 nm.
  • the excitation spectrum intensity change rate can be determined by measuring the excitation spectrum of the phosphor mixture at room temperature (25 ° C.) using a fluorescence spectrophotometer F-4500 manufactured by Hitachi, Ltd. More specifically, the emission peak at 540 nm is monitored to obtain an excitation spectrum in the wavelength range of 430 nm to 470 nm, the excitation spectrum intensity at an excitation wavelength of 450 nm is 1.0, and the excitation wavelength is from 430 nm to 470 nm. It is obtained by calculating the intensity change of the excitation spectrum when changed to.
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is preferably 0.36 or less, and more preferably 0.33 or less. By setting it within this range, an abrupt change in the emission spectrum according to the excitation wavelength change can be suppressed, and good binning characteristics can be obtained. Further, the excitation spectrum intensity change rate is preferably 0.03 or more, and more preferably 0.05 or more. When the excitation spectrum is 0.03 or less, the emission spectrum intensity when the excitation wavelength is changed is the same, but since the photopic sensitivity is different, the luminance and chromaticity may change substantially, which is not preferable. .
  • the phosphor Y is a phosphor represented by the following general formula (Y2)
  • the phosphor G is a phosphor represented by the following general formula (G2)
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm is 0.30 or less.
  • the excitation spectrum intensity change rate can be measured in the same manner as described above. More specifically, the emission peak at 540 nm is monitored to obtain an excitation spectrum in the wavelength range of 435 nm to 470 nm, the excitation spectrum intensity at an excitation wavelength of 450 nm is 1.0, and the excitation wavelength is from 435 nm to 470 nm. It is obtained by calculating the intensity change of the excitation spectrum when changed to.
  • the excitation spectrum intensity change rate at the emission wavelength of 540 nm of the wavelength conversion member is preferably 0.28 or less, and more preferably 0.25 or less. By setting it within this range, an abrupt change in the emission spectrum according to the excitation wavelength change can be suppressed, and good binning characteristics can be obtained.
  • the excitation spectrum intensity is desirably 0.03 or more, and more preferably 0.05 or more.
  • the phosphor is a YAG phosphor
  • the half width is 100 nm or more and 130 nm or less.
  • the fluorescent substance G is a GYAG fluorescent substance
  • a half value width is 105 to 120 nm.
  • the phosphor Y is a phosphor represented by the following general formula (Y3)
  • the phosphor G is a phosphor represented by the following general formula (G3)
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm is 0.25 or less.
  • the excitation spectrum intensity change rate can be measured in the same manner as described above. More specifically, the emission peak at 540 nm is monitored to obtain an excitation spectrum in the wavelength range of 435 nm to 465 nm, the excitation spectrum intensity at an excitation wavelength of 450 nm is 1.0, and the excitation wavelength is from 435 nm to 465 nm. It is obtained by calculating the intensity change of the excitation spectrum when changed to.
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is preferably 0.23 or less, and more preferably 0.20 or less. By setting it within this range, an abrupt change in the emission spectrum according to the excitation wavelength change can be suppressed, and good binning characteristics can be obtained. Further, the excitation spectrum intensity change rate is preferably 0.03 or more, and more preferably 0.05 or more.
  • the phosphor is a YAG phosphor
  • the half width is 100 nm or more and 130 nm or less.
  • the fluorescent substance G is a LuAG fluorescent substance
  • a half value width is 30 nm or more and 120 nm or less.
  • the fifth embodiment is as follows.
  • a phosphor mixture comprising phosphor G, which is represented by the following general formula (G4) and has an emission wavelength spectrum having a peak wavelength of 520 nm or more and 540 nm or less when excited at 450 nm,
  • the phosphor mixture has an excitation spectrum change rate of 0.25 nm or less at an emission wavelength of 540 nm.
  • the excitation spectrum intensity change rate of the wavelength conversion member is the difference between the maximum value and the minimum value of the excitation spectrum intensity in the range of 435 nm to 465 nm when the excitation spectrum intensity of the wavelength conversion member at 450 nm is 1.0. expressed.
  • the excitation spectrum intensity change rate can be determined by measuring the excitation spectrum of the phosphor mixture at room temperature (25 ° C.) using a fluorescence spectrophotometer F-4500 manufactured by Hitachi, Ltd. More specifically, the emission peak at 540 nm is monitored to obtain an excitation spectrum in the wavelength range of 435 nm to 465 nm, the excitation spectrum intensity at an excitation wavelength of 450 nm is 1.0, and the excitation wavelength is from 435 nm to 465 nm. It is obtained by calculating the intensity change of the excitation spectrum when changed to.
  • the excitation spectrum intensity change rate at an emission wavelength of 540 nm of the wavelength conversion member is preferably 0.23 or less, and more preferably 0.20 or less. By setting it within this range, an abrupt change in the emission spectrum according to the excitation wavelength change can be suppressed, and good binning characteristics can be obtained. Further, the excitation spectrum intensity change rate is preferably 0.03 or more, and more preferably 0.05 or more.
  • the description of the first to seventh embodiments in the first invention is applied to the other configurations of the phosphor mixture according to the first to sixth embodiments in the fourth invention.
  • the description of the first to sixth embodiments in the second invention is applied to the method of kneading and molding the phosphor mixture with silicone resin or polycarbonate resin to obtain the wavelength conversion member. Specifically, the method described in Examples can be used.
  • FIG. 2 is a schematic diagram illustrating an example of a light emitting device including a wavelength conversion member according to the first to seventh embodiments of the first invention.
  • the semiconductor light emitting device 10 includes at least a blue semiconductor light emitting element 1 and a wavelength conversion member 3 as its constituent members.
  • the blue semiconductor light emitting element 1 emits excitation light for exciting the phosphor contained in the wavelength conversion member 3.
  • the blue semiconductor light emitting element 1 usually emits excitation light having a peak wavelength of 425 nm to 475 nm, and preferably emits excitation light having a peak wavelength of 430 nm to 465 nm.
  • the number of blue semiconductor light emitting elements 1 can be appropriately set depending on the intensity of excitation light required by the apparatus.
  • the violet semiconductor light emitting device usually emits excitation light having a peak wavelength of 390 nm to 425 nm, and preferably emits excitation light having a peak wavelength of 395 to 415 nm.
  • the blue semiconductor light emitting element 1 is mounted on the chip mounting surface 2 a of the wiring board 2.
  • a wiring pattern (not shown) for supplying electrodes to these blue semiconductor light emitting elements 1 is formed on the wiring substrate 2 to constitute an electric circuit.
  • the wavelength conversion member 3 is displayed on the wiring board 2, but the present invention is not limited to this, and the wiring board 2 and the wavelength conversion member 3 may be arranged via other members.
  • the wiring substrate 2 and the wavelength conversion member 3 are arranged via the frame body 4.
  • the frame body 4 may have a tapered shape in order to give light directivity.
  • the frame 4 may be a reflective material.
  • the wiring board 2 is excellent in electrical insulation, has good heat dissipation, and preferably has a high reflectance, but on the surface where the blue semiconductor light emitting element 1 is not present on the chip mounting surface of the wiring board 2, Alternatively, a reflective plate having a high reflectance can be provided on at least a part of the inner surface of another member that connects the wiring substrate 2 and the wavelength conversion member 3.
  • the reflectance of such a wiring board or reflector is preferably 80% or more.
  • alumina ceramic, resin, glass epoxy, composite resin containing filler in resin, or the like can be used.
  • a resin containing a white pigment such as alumina powder, silica powder, magnesium oxide, titanium oxide, zirconium oxide, zinc oxide, or zinc sulfide is used. It can.
  • Preferred resins include silicone resin, polycarbonate resin, polybutylene terephthalate resin, polyphenylene sulfide resin, fluorine-based resin and the like.
  • the wavelength conversion member 3 converts the wavelength of part of the incident light emitted from the blue semiconductor light emitting element 1 and emits outgoing light having a wavelength different from that of the incident light.
  • the wavelength conversion member 3 contains a transparent material and a phosphor G, and preferably further contains a phosphor Y.
  • the resin in which the phosphor is dispersed include polycarbonate resin, polyester resin, acrylic resin, epoxy resin, and silicone resin.
  • the wavelength conversion member 3 contains a small amount of a diffusing material together with the phosphor.
  • the diffusing material include inorganic light diffusing materials, organic light diffusing materials, and bubbles.
  • the diffusing material preferably contains at least one selected from the group consisting of silica, glass, calcium carbonate, mica, crosslinked acrylic (co) polymer particles, and siloxane (co) polymer particles.
  • the wavelength conversion member 3 has a distance from the blue semiconductor light emitting element 1. That is, the wavelength conversion member 3 and the blue semiconductor light emitting element 1 are separated from each other. There may be a gap between the wavelength conversion member 3 and the blue semiconductor light emitting element 1 or may be filled with a filler. Thus, by the aspect which has distance between the wavelength conversion member 3 and the blue semiconductor light-emitting device 1, deterioration of the phosphor contained in the wavelength conversion member 3 and the wavelength conversion member by the heat which the blue semiconductor light-emitting device 1 emits is suppressed. can do.
  • the distance between the blue semiconductor light emitting element 1 and the wavelength conversion member 3 is preferably 10 ⁇ m or more, more preferably 100 ⁇ m or more, and particularly preferably 1.0 mm or more.
  • the distance between the wavelength conversion member 3 and the blue semiconductor light emitting element 1 is preferably 1.0 m or less, 500 mm or less is further preferable, and 100 mm or less is particularly preferable.
  • the light emitting device 10 can be suitably applied as a light emitting device used for general illumination.
  • the light emitting devices according to the first to fifth embodiments of the first invention are preferably provided in a general lighting device and used as a general lighting device that emits white light.
  • the light emitting device 10 has a light output emitted from the light emitting device having a deviation duv from the light-colored blackbody radiation locus of ⁇ 0.0200 to 0.0200 and a color temperature. Is preferably 1800K or more and 7000K or less, and more preferably 5000K or less.
  • the light emitting devices according to the first to fifth embodiments of the first invention emit light having high color rendering properties.
  • the average color rendering index Ra is preferably 80 or more, more preferably 82 or more, and further preferably 85 or more.
  • the light emitting device 10 is provided in an image display device and can be used as an image display device that emits white light.
  • the light emitting device 10 When applied to such a use, the light emitting device 10 has a light output emitted from the light emitting device having a deviation duv from the light-colored blackbody radiation locus of ⁇ 0.0200 to 0.0200 and a color temperature. Is preferably 5000K or more and 20000K or less, and more preferably 15000K or less.
  • the light emitting device according to the sixth to seventh embodiments of the first invention can be suitably applied as a light emitting device used for general illumination or a light emitting device used for a backlight.
  • the general lighting device including the light emitting device according to the sixth to seventh embodiments of the first invention is preferably a general lighting device that emits white light.
  • the light emitted from the light emitting device has a deviation duv from the black body radiation locus of the light color of ⁇ 0.0200 to 0.0200, and the color The temperature is preferably 1800K or more and 7000K or less.
  • the light emitting device according to the sixth to seventh embodiments of the first invention when applied to a backlight, the light emitting device according to the sixth to seventh embodiments of the first invention emits light from the light emitting device.
  • the light to be emitted preferably has a color temperature higher than 7000K and lower than 20000K.
  • FIG. 4 and Table 3 show simulation results when the phosphors represented by the general formula (m1) performed by the present inventors are used, and the color rendering properties of light emitted from the light emitting device depending on the type of the phosphors. It shows how the luminous efficiency changes.
  • a chip having a peak wavelength of 453 nm was used as an excitation source, and four types of fluorescence of YAG, GYAG, SCASN, and CASN (each measured data such as an emission spectrum of a phosphor used in an experimental example described later) was used.
  • the wavelength conversion member was comprised using 3 types of fluorescent substance among the bodies. Then, by adjusting the content ratio of each phosphor so that the emission color from the wavelength conversion member becomes 2700K, it was simulated how the relationship between the color rendering properties and the emission efficiency changes.
  • the straight line located on the left side shows a case where simulation is performed using three types of phosphors, YAG, GYAG, and CASN, and the color rendering property (CRI) of light emitted from the light emitting device and the light flux (Lumen).
  • CRI color rendering property
  • the straight line located on the right side is located on the lower side when three types of phosphors are used: YAG, GYAG, and SCASN.
  • the straight line located on the upper side is located on the lower side when three types of phosphors are used, GYAG, SCASN, and CASN.
  • the straight lines indicate the simulation results for the case where three types of phosphors, YAG, SCASN, and CASN, are used, both of which show the color rendering properties (CRI) of light emitted from the light emitting device and the light flux (Lumen). ) Is a trade-off relationship.
  • the left straight line and the right straight line represent the color rendering properties and light flux of the light emitted from the light emitting device according to this embodiment including YAG and GYAG, but compared with the upper straight line and the lower straight line, It can be understood that the slope of the straight line is large. That is, although the relationship between the color rendering property (CRI) of the light emitted from the light emitting device and the light beam (Lumen) is a trade-off relationship, the light emitting device can suppress the reduction of the light beam accompanying the improvement in the color rendering property. I understand.
  • the light emitting device including YAG and GYAG is a light emitting device capable of achieving both high color rendering properties and conversion efficiency in addition to good binning characteristics.
  • a light-emitting device using four types of phosphors which is a light-emitting device according to a preferred embodiment of this embodiment, light emitted by the light-emitting device within the range surrounded by these four straight lines It is possible to arbitrarily set the relationship between the color rendering property (CRI) and the luminous flux (Lumen) of light. Therefore, in a preferred embodiment of this embodiment, the degree of freedom in selecting a phosphor for producing a light emitting device having binning characteristics and having both color rendering properties and conversion efficiency is improved.
  • CRI color rendering property
  • Luen luminous flux
  • FIG. 5 and Table 4 show simulation results when the phosphors represented by the general formula (m2) performed by the present inventors are used, and the color rendering properties of the light emitted from the light emitting device depending on the types of the phosphors. It shows how the luminous efficiency changes.
  • a chip with a peak wavelength of 453 nm was used as an excitation source, and four types of fluorescence of YAG, LuAG, SCASN, and CASN (each measured data such as an emission spectrum of a phosphor used in an experimental example described later) were used.
  • the wavelength conversion member was comprised using the body. Then, by adjusting the content ratio of each phosphor so that the emission color from the wavelength conversion member becomes 2700K, it was simulated how the relationship between the color rendering properties and the emission efficiency changes.
  • the straight line located on the left side shows a case where three types of phosphors YAG, LuAG, and CASN are used for simulation, and the color rendering properties (CRI) of light emitted from the light emitting device and the light flux (Lumen).
  • CRI color rendering properties
  • the straight line located on the right side is located on the lower side when three types of phosphors, YAG, LuAG, and SCASN are used.
  • the straight line located on the upper side is located on the lower side when three types of phosphors, LuAG, SCASN, and CASN, are used.
  • the straight lines indicate the simulation results for the case where three types of phosphors, YAG, SCASN and CASN, are used, both of which show the color rendering properties (CRI) of the light emitted from the light emitting device and the light flux (Lumen). ) Is a trade-off relationship.
  • the straight line on the left side and the straight line on the right side represent the color rendering properties and the luminous flux of the light emitted from the light emitting device according to the embodiment of the present invention including YAG and LuAG, but compared with the upper straight line and the lower straight line.
  • the slope of the straight line is large. That is, although the relationship between the color rendering property (CRI) of the light emitted from the light emitting device and the light beam (Lumen) is a trade-off relationship, the light emitting device can suppress the reduction of the light beam accompanying the improvement in the color rendering property. I understand.
  • the light-emitting device including YAG and LuAG is a light-emitting device capable of achieving both high color rendering properties and conversion efficiency in addition to good binning characteristics.
  • the light emitted from the light-emitting device is within the range surrounded by these four straight lines. It is possible to arbitrarily set the relationship between the color rendering properties (CRI) and the luminous flux (Lumen) of light. Therefore, in a preferred embodiment of the present invention, the degree of freedom in phosphor selection for producing a light emitting device having binning characteristics and having both color rendering properties and conversion efficiency is improved.
  • Table 5 shows the particle diameter and emission peak wavelength of the phosphor synthesized by the above method. Note that only GYAG1 is shown for the GYAG phosphor, and only LuAG1 is shown for the LuAG phosphor.
  • excitation spectra of the phosphor YAG and the phosphors GYAG1 to GYAG4 were measured at room temperature (25 ° C.) using a fluorescence spectrophotometer F-4500 manufactured by Hitachi, Ltd. More specifically, the emission peak at 540 nm was monitored to obtain an excitation spectrum in the wavelength range of 430 nm to 470 nm. Furthermore, the intensity change of the excitation spectrum was calculated when the excitation spectrum intensity at an excitation wavelength of 450 nm was 1.0 and the excitation wavelength was changed from 430 nm to 470 nm. The excitation intensity change curve for each phosphor is shown in FIG.
  • GYAG represented by the general formula (m3) of the present invention can provide a light-emitting device having excellent binning characteristics when the value of c is 1.2 or more and 2.6 or less. Further, the value of c is preferably 2.4 or less, more preferably 1.8 or less.
  • FIG. 7 shows a synthetic excitation spectrum intensity change obtained by calculating the excitation spectrum intensity at each wavelength of YAG and LuAG1 by a 50:50 weighted average.
  • the spectral intensity change rate in the range of 430 nm to 465 nm of each phosphor was determined and summarized in Table 7-1.
  • the rate of change in spectral intensity was calculated as the maximum-minimum value of the spectral intensity in the range of 430 nm to 465 nm, with the excitation spectral intensity at an excitation wavelength of 450 nm being 1.0.
  • YAG represented by the general formula (1) has an increased excitation wavelength and an increased emission intensity at the excitation wavelength from 430 nm to 465 nm.
  • the spectral intensity change rate is 15.4%.
  • LuAG1 and LuAG2 represented by the general formula (m2) have a peak in the vicinity of 450 nm and show a peak-shaped excitation spectrum intensity. Moreover, the rate of change in the intensity of each excitation spectrum is 10.2% and 8.6%.
  • the spectral intensity change rate of the synthetic excitation spectrum calculated by the 50:50 weighted average of YAG represented by the general formula (l) and LuAG1 represented by the general formula (m2) is 11.1%.
  • the rate of change of the synthetic excitation spectrum intensity can be adjusted to 12% or less.
  • a phosphor G having an excitation spectrum intensity change rate of 12% or less may be used.
  • the phosphor Y it is preferable to use the phosphor Y and the phosphor G whose excitation spectrum intensity change rates are both 12% or less.
  • Table 8 shows the spectrum of the synthetic excitation spectrum at each weight fraction of YAG represented by the general formula (l), GYAG1 represented by the general formula (m1), and LuAG1 represented by the general formula (m2).
  • the intensity change rate was shown.
  • the spectral intensity change rate was calculated as the maximum value-minimum value of the spectrum intensity in the range of 430 nm to 470 nm, with the excitation spectrum intensity at the excitation wavelength of 450 nm being 1.0.
  • the synthetic excitation spectrum intensity change rate can be adjusted to 15% or less.
  • a phosphor G having an excitation spectrum intensity change rate of 15% or less may be used.
  • the phosphor Y is contained, it is preferable to use the phosphor Y and the phosphor G whose excitation spectrum intensity change rates are both 15% or less.
  • the phosphor Y having the maximum value of the excitation spectrum intensity in the range of 430 nm to 470 nm is 450 nm or more and the phosphor G having the minimum value of the excitation spectrum intensity in the range of 430 nm to 470 nm is 450 nm or more. preferable.
  • each material was weighed at a weight ratio shown in Table 10 so that the total weight was 10 g, and a vacuum defoaming kneader V-mini300 manufactured by EME was used. Was used for defoaming and kneading at 1200 rpm for 3 minutes at room temperature to obtain a phosphor-containing silicone resin composition.
  • Resin B each material was weighed at a weight ratio shown in Table 10 so that the total weight was 50 g, and a lab plast mill 10C100 manufactured by Toyo Seiki Co., Ltd. and a mixer type (R60) were used. It was melt kneaded at 260 ° C. and 100 rpm for 5 minutes to obtain phosphor-containing polycarbonate resin compositions, respectively.
  • the composition of the phosphor GYAG1 was analyzed and as shown in Table 11.
  • the molar ratio was calculated from the analysis results obtained in Table 11.
  • a result is shown in Table 12 with the molar ratio at the time of preparation.
  • the phosphor-containing silicone resin compositions according to Experimental Examples 1 to 3 and 9 to 12 are cast so as to have a thickness of 62 mm and a thickness of 1 mm, and are molded by heating and curing at 150 ° C. for 5 minutes and subsequently at 200 ° C. for 20 minutes.
  • a test piece for optical properties was obtained, and the phosphor-containing polycarbonate resin compositions according to Experimental Examples 4 to 8 were vacuum-dried at 120 ° C. for 2 hours, and then heated at 260 ° C. using a hot press molding machine (for example, manufactured by Imoto Seisakusho). It is melt-pressed at 4 MPa for 2 minutes, and then cooled at 20 ° C.
  • the excitation spectrum intensity measurement at an emission wavelength of 540 nm was performed in the range of 430 nm to 470 nm using the Hitachi spectrofluorometer F-4500, and the excitation spectrum intensity change rate was calculated.
  • the obtained excitation spectrum intensities are shown in FIGS. 9-1 to 9-3 and Table 13.
  • Tables 14 to 16 show the excitation spectrum intensity change rates in the range of 435 nm to 465 nm, the range of 435 nm to 470 nm, and the range of 430 nm to 465 nm calculated from the spectrum in each experimental example.
  • the light-emitting device which can obtain white light was produced by irradiating the obtained disc test piece with the blue light light-emitted from LED chip (peak wavelength 450nm).
  • the emission spectrum was observed from the apparatus using a 20 inch integrating sphere manufactured by Sphere Optics and a spectroscope USB2000 manufactured by Ocean Optics, and chromaticity, luminous flux, and Ra were measured. Table 17 shows the measurement results.
  • the change in chromaticity ⁇ u′v ′ when the excitation light source was changed to a xenon spectral light source and the excitation wavelength was changed from 425 nm to 475 nm was measured.
  • the spectral light source used was Spectracorp, and the change in chromaticity was observed with a 20 inch integrating sphere (LMS-200) manufactured by Labsphere and a spectroscope manufactured by Carl Zeiss (Solid Lambda UV-Vis).
  • the light emitting devices according to the first to fifth embodiments of the first invention can achieve a high total luminous flux (light emission efficiency) while maintaining high color rendering properties. Further, from FIGS. 10-1 to 10-3 and FIGS. 11-1 to 11-2, it is understood that the light-emitting device of the present invention exhibits good binning characteristics.
  • Excitation spectrum intensity change rate of phosphor mixture As Experimental Examples 13 to 22, each phosphor was weighed and mixed so as to have a total amount of 1 g at the weight ratio described in the phosphor mixing examples 1 to 7 and 9 to 11. The obtained mixed powder (mixture consisting only of phosphor and not including transparent material) was measured for excitation spectrum intensity at 430 nm to 470 nm at emission wavelength 540 nm using Hitachi spectrofluorometer F-4500. The excitation spectrum intensity change rate was calculated. The obtained excitation spectrum intensities are shown in FIGS. 12-1 to 12-3 and Table 21.
  • Table 22 shows excitation spectrum intensity change rates in the range of 430 nm to 470 nm, the range of 435 nm to 470 nm, and the range of 435 nm to 465 nm calculated from the spectrum in each experimental example.
  • Second embodiment> The description of the example in the first embodiment described above is applied to the example in this embodiment.
  • phosphor> Regarding the synthesis of the phosphor in the present embodiment, ⁇ 1-2-1 in the first embodiment described above.
  • the description of synthesis of YAG phosphor, GLuAG phosphor, SCASN phosphor, CASN phosphor> is applied.
  • the particle diameter and emission peak wavelength of the phosphor are described in ⁇ 1-2-5.
  • the description of GYAG1, GLuAG, YAG, SCASN, CASN described in “Particle size and emission peak wavelength of phosphor” is applied.
  • ⁇ 3-3 Measurement of excitation spectrum intensity>
  • ⁇ 1-3-1 Measurement of excitation spectrum intensity 1>
  • ⁇ 1-3-3 The description of GYAG1 and YAG described in Measurement of excitation spectral intensity 3> applies.
  • wavelength conversion member and light emitting device> In this embodiment, ⁇ 1-4. In the first embodiment described above. The descriptions of phosphor mixing examples 3 to 11 and experimental examples 4 to 9 described in “Manufacturing of wavelength conversion member and light emitting device> are applied.
  • Luminescent characteristics In the present embodiment, ⁇ 1-5. The description of Experimental Examples 4 to 8 described in “Luminescent characteristics” is applied.
  • ⁇ 4-2 Synthesis of phosphor> Regarding the synthesis of the phosphor in the present embodiment, ⁇ 1-2-2 in the first embodiment described above. Synthesis of phosphor LuAG1>, ⁇ 1-2-3. Synthesis of phosphor LuAG2>, ⁇ 1-2-4. The description of synthesis of YAG phosphor, GLuAG phosphor, SCASN phosphor, CASN phosphor> is applied. The particle diameter and emission peak wavelength of the phosphor are described in ⁇ 1-2-5. The descriptions of LuAG1, GLuAG, YAG, SCASN, CASN described in “Particle size and emission peak wavelength of phosphor” are applied.
  • wavelength conversion member and light emitting device> In this embodiment, ⁇ 1-4. In the first embodiment described above. The description of phosphor mixing examples 1, 2, 8 to 10 and experimental examples 1 to 3 described in “Manufacturing of wavelength conversion member and light emitting device> is applied.
  • phosphor> Regarding the synthesis of the phosphor in the present embodiment, ⁇ 1-2-2 in the first embodiment described above.
  • the description of synthesis of YAG phosphor, GLuAG phosphor, SCASN phosphor, CASN phosphor> is applied.
  • the particle diameter and emission peak wavelength of the phosphor are described in ⁇ 1-2-5.
  • LuAG1, YAG, SCASN, CASN described in “Particle size and emission peak wavelength of phosphor” is applied.
  • wavelength conversion member and light emitting device> In this embodiment, ⁇ 1-4. In the first embodiment described above. The description of phosphor mixing examples 1, 2, 8, and 9 and experimental examples 1 to 3 described in “Production of wavelength conversion member and light-emitting device> is applied.
  • Synthesis of phosphor GYAG6 (hereinafter also referred to as “synthesis example 2”)> 23.71 g of Y 2 O 3 and 155.56 g of Al 2 O 3 so that the charged composition of each raw material of the phosphor becomes Y 2.91 Ce 0.09 Al 4.2 Ga 0.8 O 12.
  • a phosphor GYAG6 (average particle size 15 ⁇ m) was prepared in the same manner as in Synthesis Example 1 except that 54.47 g of Ga 2 O 3 , 11.25 g of CeO 2 and 27.6 g of BaF 2 as a flux were respectively weighed. Obtained.
  • Synthesis of phosphor GYAG7 (hereinafter also referred to as “Synthesis Example 3”)> 245.01 g of Y 2 O 3 and 156.43 g of Al 2 O 3 so that the charged composition of each raw material of the phosphor is Y 2.97 Ce 0.03 Al 4.2 Ga 0.8 O 12
  • a phosphor GYAG7 (average particle size 12 ⁇ m) was prepared in the same manner as in Synthesis Example 1 except that 54.78 g of Ga 2 O 3 , 3.77 g of CeO 2 and 27.6 g of BaF 2 as a flux were respectively weighed. Obtained.
  • Synthesis of phosphor GYAG8 (hereinafter also referred to as “synthesis example 4”)> 23.62 g of Y 2 O 3 , 146.58 g of Al 2 O 3 , and Ga 2 O so that the charged composition of each raw material of the phosphor is Y 2.94 Ce 0.06 Al 4 Ga 1 O 12.
  • Phosphor GYAG8 (average particle size 11 ⁇ m) was obtained in the same manner as in Synthesis Example 1, except that 67.37 g of Ce 3 , 7.42 g of CeO 2 and 27.6 g of BaF 2 as a flux were respectively weighed.
  • Synthesis of YAG phosphor, SCASN phosphor and CASN phosphor (among these, synthesis of YAG phosphor is also referred to as “synthesis example 5” below)>
  • the YAG phosphor is described in JP-A-2008-7751
  • the SCASN phosphor is described in JP-A-2006-008721.
  • the CASN phosphor was obtained by the manufacturing method.
  • the particle size and the weight median diameter d50 were measured by a laser diffraction particle size distribution analyzer LA-300 manufactured by Horiba. Specifically, it is a value obtained from a frequency-based particle size distribution curve measured by a laser diffraction / scattering method in which a phosphor is dispersed in an aqueous solution.
  • the phosphors shown in Synthesis Examples 1 to 4 have an excitation spectrum intensity change of 4.0% or less of the excitation light spectrum intensity at 450 nm in the wavelength range of 440 to 460 nm, and 440 to 460 nm. A stable emission spectrum is obtained upon excitation.
  • each material phosphor, additive, silicone resin
  • a vacuum defoaming kneader V-mini300 manufactured by EME Defoaming and kneading for 3 minutes at 1200 rpm gave a phosphor-containing silicone resin composition.
  • the obtained silicone resin composition was cast into a 20 mm ⁇ glass vial so as to have a thickness of 1 mm, and cured by heating at 150 ° C. for 5 minutes and then at 200 ° C. for 20 minutes.
  • a characteristic test piece (wavelength conversion member) was obtained.
  • a light-emitting device capable of obtaining white light was produced by irradiating the obtained test piece having a thickness of 1 mm and 20 mm ⁇ with blue light emitted from an LED chip (peak wavelength: 450 nm).
  • the emission spectrum was observed from the apparatus using a 20 inch integrating sphere manufactured by Sphere Optics and a spectroscope USB2000 manufactured by Ocean Optics, and chromaticity, luminous flux (lumen), and Ra were measured. The measurement results are shown in Table 25.
  • the excitation spectrum at 540 nm emission was measured using a spectrofluorometer F-4500 manufactured by Hitachi, and the excitation intensity at 450 nm was 1.0.
  • the relative excitation intensity at 430 nm to 470 nm was calculated.
  • the difference between the maximum value and the minimum value of the relative excitation spectrum intensity in the wavelength range of 430 to 470 nm is 0.25 or less
  • the difference between the maximum value and the minimum value of the relative excitation spectrum intensity in the wavelength range of 440 to 460 nm is 0.13 or less
  • a stable emission spectrum is obtained at 430 to 470 nm excitation, and particularly stable at 440 to 460 nm. Is obtained.
  • Chromaticity and lumen values are measured for excitation wavelengths of 445 nm, 448 nm, 450 nm, 452 nm, 454 nm, and 455 nm, respectively.
  • the average value (u ′ ave , v ′ ave ) is calculated and then averaged The distance from the value was calculated, and in the lumen value, the relative luminance was calculated when the lumen having an excitation wavelength of 455 nm was set to 1. These are shown in FIG. 13 and Table 27, respectively.
  • the light emitting device using the phosphor in the present invention has high luminance and good binning characteristics.
  • the difference between the maximum value and the minimum value of the relative excitation spectrum intensity in the wavelength range of 430 to 465 nm is 0.12 or less
  • the difference between the maximum value and the minimum value of the relative excitation spectrum intensity in the wavelength range of 440 to 460 nm is 0.05 or less
  • a stable emission spectrum is obtained at 430 to 465 nm excitation, and particularly stable emission spectrum at 440 to 460 nm. Is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

励起波長のズレにより生じる色味の変化を抑制した、良好なビニング特性を有する発光装置を提供する。 本発明では、青色半導体発光素子と波長変換部材を備えた発光装置であって、該波長変換部材は、 下記一般式(Y1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下である蛍光体Yと、 (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(Y1) (x=3、4.5≦y≦5.5、10.8≦z≦13.4) 下記一般式(G1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gを含む、発光装置により、上記課題を解決する。 (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(G1) (x=3、4.5≦y≦5.5、10.8≦z≦13.4)

Description

発光装置、波長変換部材、蛍光体組成物、及び蛍光体混合物
 本発明は発光装置に関し、特に、青色半導体発光素子を備えた発光装置に関する。また、発光装置に備えられる波長変換部材に関する。
 半導体発光素子を用いた発光装置は、省エネルギー発光装置としてその存在感が高まっている。一方、半導体発光素子を用いた発光装置の開発が進むにつれて、様々な課題が生じている。
 例えば、特許文献1では、点灯時間が長くなってくると照明光の中に色ムラが生じてくるという課題が見出されている。該課題に対しては、同じ色の可視光を発生する2種類の蛍光体を備え、2種類の蛍光体の励起スペクトルの傾きが、半導体発光素子の発光ピーク波長において逆とすることで、対応することが提案されている(特許文献1参照)。
 一方、特許文献2では、「LEDビニング」を課題として開示し、放出波長特性および輝度特性に依存するビニングクラスを有する複数のセル、並びにインピーダンス素子を有する多重セルLED回路が開示されている(特許文献2参照)。
 また、特許文献3では、光のピーク波長、光のピーク強度、及び順電圧のうち、任意の観点からLEDをビニングすることについて開示され、特にLED励起波長の変動に応じて色度を自己調整することができる「スマート」蛍光体組成物が開示される(特許文献3参照)。
 加えて、特許文献4では、半導体発光素子のピーク波長の変動に対して、色度変動が低減された半導体発光装置が提案され、具体的には、半導体発光素子のピーク波長近傍において、波長の増大とともに励起強度が増大する第1の蛍光体、及び波長の増大に対して励起強度が平坦又は減少する第2の蛍光体を有する半導体発光装置が提案されている(特許文献4参照)。
特開2005-228833号公報 特表2009-503831号公報 特表2010-500444号公報 特開2008-135725号公報
 LEDのビニングに関しては、いくつかの文献において指摘されているものの、実用化に至るような具体的な提案はされていない。本発明者らが、上記文献に係る蛍光体の組合せを検討したところ、特許文献3では黄色蛍光体に橙色蛍光体を加えることで課題を解決する試みがされているものの、色度変化を抑えきれておらず、実用化には不十分である。また、特許文献4では、黄色蛍光体と橙色蛍光体を組み合わせることで色度変化を抑える試みがされているものの、演色性や発光効率が不十分となる。
 本発明は、このような課題を解決するものであり、十分な演色性と発光効率を維持し、実用化に耐えうるビニング特性を有した発光装置を提供するものである。また、発光装置に適用した際に、実用化に耐えうるビニング特性を有する発光装置を提供することができる波長変換部材を形成し得る蛍光体組成物、及び該蛍光体組成物を成形してなる波長変換部材に関するものである。
 本発明者らは、上記課題を解決すべく鋭意研究を行い、青色半導体発光素子を用いた発光装置において、黄色蛍光体と緑色蛍光体を含有する波長変換部材、黄色蛍光体を含有せず、特定の緑色蛍光体を含有する波長変換部材、または特定の黄緑色蛍光体を含有する波長変換部材を用いることで、十分なビニング特性を有する発光装置を提供できることを見出し、本発明を完成させた。
 本発明は、以下の第一乃至第四の発明を含む。
 本発明の第一の発明は、発光装置に係る発明であり、その第一の実施態様は以下のとおりである。
 青色半導体発光素子と波長変換部材を備えた発光装置であって、
 該波長変換部材は、
 下記一般式(Y1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下である蛍光体Yと、
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(Y1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 下記一般式(G1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gを含む、発光装置。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(G1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 なお、第二の実施態様として、
 前記波長変換部材の発光波長540nmでの励起スペクトル強度変化率は、0.25以下であることが好ましい。
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、第三の実施態様として、
 前記蛍光体Yが、下記一般式(Y2)で示される蛍光体であり、
 前記蛍光体Gが、下記一般式(G2)で示される蛍光体であり、
 前記波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.23以下であることが好ましい。
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y2)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(G2)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、1.2≦c≦2.6、10.8≦e≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、第四の実施態様として、
 前記蛍光体Yが、下記一般式(Y3)で示される蛍光体であり、
 前記蛍光体Gが、下記一般式(G3)で示される蛍光体であり、
 前記波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下であることが好ましい。
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y3)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
  Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G3)
(f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 なお、前記第三および第四の実施態様において、
 下記合成励起スペクトルの強度変化率が0.15以下であることが好ましい。
 合成励起スペクトルは、各波長における励起スペクトル強度が、下記算出式(Z)で表される励起スペクトルである。
 合成励起スペクトル強度=(蛍光体Yの励起スペクトル強度)×(蛍光体Yの重量分率)+(蛍光体Gの励起スペクトル強度)×(蛍光体Gの重量分率) ・・・(Z)
 蛍光体Yの重量分率は、蛍光体Y/(蛍光体Y+蛍光体G)で表される。
 蛍光体Gの重量分率も同様に表される。
 合成励起スペクトル強度変化率は、励起スペクトルの450nmにおける励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における合成励起スペクトル強度の最大値と最小値との差で表される。
 また、前記第一乃至第四の実施態様において、
 上述した発光装置は、前記蛍光体Yが、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも小さく、前記蛍光体Gが、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも大きいことが好ましい。
 また、前記第一乃至第四の実施態様において、
 上述した発光装置は、さらに、下記一般式(B1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が500nm以上520nm以下である青緑色蛍光体を含むことが好ましい。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(B1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 また、前記第一乃至第四の実施態様において、
 上述した発光装置は、前記蛍光体Yと前記蛍光体Gの組成比が、10:90以上、90:10以下であることが好ましい。
 また、第一の発明における第五の実施態様は以下のとおりである。
 青色半導体発光素子と波長変換部材を備えた発光装置であって、
 該波長変換部材は、
 下記一般式(G4)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gを含み、
 該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下である、発光装置。
  Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G4)
  (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、前記第一乃至第五の実施態様に係る発光装置において、
 前記青色半導体発光素子の発光波長を445nmから455nmに連続的に変化させたときに発光装置から放射される光の色度変化Δu'v 'が、Δu'v '≦0.004を満たすことが好ましい。
 ただし、Δu'v 'は、445nmから455nmにおける任意の波長inmにおける色度(u'i,v ' i)と、445nmから455nmにおける色度の平均値(u'ave,v' ave)の距離を表すものとする。
 また、前記第一乃至第五の実施態様において、
 前記青色半導体発光素子の発光波長を435nmから470nmに連続的に変化させたときに発光装置から放射される光の色度変化Δu'v 'が、Δu'v '≦0.015を満たすことが好ましい。
 ただし、Δu'v 'は、435nmから470nmにおける任意の波長inmにおける色度(u'i,v ' i)と、435nmから470nmにおける色度の平均値(u'ave,v' ave)の距離を表すものとする。
 また、前記第一乃至第五の実施態様において、
 さらに赤色蛍光体を含むことが好ましく、前記赤色蛍光体は、発光ピーク波長が600nm以上640nm未満、かつ半値幅が2nm以上120nm以下である赤色蛍光体を、赤色蛍光体全量に対する組成重量比で30%以上含むことが好ましい。
 また、前記発光ピーク波長が600nm以上640nm未満、かつ半値幅が2nm以上120nm以下である赤色蛍光体が、(Sr,Ca)AlSiN3:Eu又はCa1-xAl1-xSi1+x3-xx:Eu(但し、0<x<0.5)であることが好ましい。
 また、赤色蛍光体として、発光ピーク波長が640nm以上670nm以下、かつ半値幅が2nm以上120nm以下である赤色蛍光体を含むことが好ましい。
 また、発光装置から放射される光が、光色の黒体輻射軌跡からの偏差duvが-0.0200~0.0200であり、かつ色温度が1800K以上、7000K以下であることが好ましく、色温度が2500以上、3500K以下であることがさらに好ましい。また、平均演色評価数Raが80以上であることが好ましい。
 また、第一の発明における第六の実施態様は以下のとおりである。
 青色半導体発光素子と波長変換部材を備えた発光装置であって、
 該波長変換部材は、下記一般式(YG1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が530nm以上550nm以下である黄緑色蛍光体を含み、
 該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が、0.25以下である、発光装置である。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(YG1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 前記黄緑色蛍光体の励起スペクトル強度変化率は、0.13以下であることが好ましい。但し、黄緑色蛍光体の励起スペクトル強度変化率は、450nmにおける黄緑色蛍光体の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、前記青色半導体発光素子の発光波長を445nmから455nmに連続的に変化させたときに、発光装置から放射される光の色度変化Δu'v 'は、Δu'v '≦0.005を満たすことが好ましい。ただし、Δu'v 'は、445nmから455nmにおける任意の波長inmにおける色度(u'i,v ' i)と、445nmから455nmにおける色度の平均値(u'ave,v' ave)の距離を表すものとする。
 また、前記黄緑色蛍光体が、下記一般式(YG2)で示される黄緑色蛍光体であるものが好ましい。
  MAle ・・・(YG2)
  (Mは、Ce元素。Aは、Y、Luの群から選ばれる、Yを90%以上含む、1又は2以上の元素。Eは、Ga、又はGa及びSc。a+b=3、4.5≦c+d≦5.5、10.8≦e≦13.2、0≦a≦0.9、0.8≦c≦1.2)
 また、前記黄緑色蛍光体の励起スペクトルの強度変化が、440nmから460nmにおいて、450nmにおける励起光スペクトル強度の4.0%以下であることが好ましい。
 また、第一の発明における第七の実施態様は以下のとおりである。
 青色半導体発光素子と、
 黄緑色蛍光体を含む波長変換部材を備えた発光装置であって、
 前記黄緑色蛍光体が、下記一般式(YG3)で示され、440nmから460nmの励起波長で励起したときの450nmの励起強度で規格化した励起強度の最大値と最小値の差が0.05以下の蛍光体であり、
  (Y,Ce)(Ga,Al)g ・・・(YG3)
  (4.5≦f≦5.5、10.8≦g≦13.2)
 445nmから455nmの励起波長で励起したときに波長変換部材から放射される光の平均色度からの色度変化Δu’v’が、0.005以下である発光装置である。
 ただし、Δu’v ’は、445nmから455nmにおける任意の波長inmにおける色度(u’,v ’ i)と、445nmから455nmにおける色度の平均値(u’ave,v ’ ave)の距離を表すものとする。
 また、前記第六乃至第七の実施態様において、更に赤色蛍光体を含むことが好ましく、その赤色蛍光体の励起スペクトルの強度変化が、440nmから460nmにおいて、450nmにおける励起光スペクトル強度の4.0%以下であることが好ましい。
 また、前記赤色蛍光体が、発光ピーク波長が620~640nmであり、かつ半値幅が2nm以上100nm以下である赤色蛍光体を、赤色蛍光体全量に対する組成重量比で50%以上含むことが好ましく、該赤色蛍光体が、SCASNであることが好ましい。
 また、赤色蛍光体としてさらに、発光ピーク波長が640~670nmであり、かつ半値幅が2nm以上120nm以下である赤色蛍光体を含むことが好ましい。
 また、発光装置が発する光が、光色の黒体輻射軌跡からの偏差duvが-0.0200~0.0200であり、かつ色温度が1800K以上、7000K以下である態様が好ましく、一方、発光装置から放射される光の色温度が7000K以上、20000K以下である態様も好ましい。
 また、前記第六乃至第七の実施態様において、青色半導体発光素子と、黄緑色蛍光体を含む波長変換部材とが、空間を介して配置されてもよい。
 また、これら発光装置を備えた照明装置や、これら発光装置を含むバックライトも好ましい発明である。
 本発明の第二の発明は、波長変換部材に係る発明であり、その第一の実施態様は以下のとおりである。
 下記一般式(Y1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下である蛍光体Yと、
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(Y1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 下記一般式(G1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gと、
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(G1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 透明材料と、を含む、波長変換部材。
 なお、第二の実施態様として、
 発光波長540nmでの励起スペクトル強度変化率が0.25以下であることが好ましい。
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、第三の実施態様として、
 前記蛍光体Yが、下記一般式(Y2)で示される蛍光体であり、
 前記蛍光体Gが、下記一般式(G2)で示される蛍光体であり、
 前記波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.23以下であることが好ましい。
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y2)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(G2)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、1.2≦c≦2.6、10.8≦e≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、第四の実施態様として、
 前記蛍光体Yが、下記一般式(Y3)で示される蛍光体であり、
 前記蛍光体Gが、下記一般式(G3)で示される蛍光体であり、
 前記波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下であることが好ましい。
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y3)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
  Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G3)
  (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 なお、前記第三および第四の実施態様において、
 下記合成励起スペクトルの強度変化率が0.15以下であることが好ましい。
 合成励起スペクトルは、各波長における励起スペクトル強度が、下記算出式(Z)で表される励起スペクトルである。
 合成励起スペクトル強度=(蛍光体Yの励起スペクトル強度)×(蛍光体Yの重量分率)+(蛍光体Gの励起スペクトル強度)×(蛍光体Gの重量分率) ・・・(Z)
 蛍光体Yの重量分率は、蛍光体Y/(蛍光体Y+蛍光体G)で表される。
 蛍光体Gの重量分率も同様に表される。
 合成励起スペクトル強度変化率は、励起スペクトルの450nmにおける励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における合成励起スペクトル強度の最大値と最小値との差で表される。
 また、前記第一乃至第四の実施態様において、
 上述した波長変換部材は、前記蛍光体Yは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも小さく、前記蛍光体Gは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも大きいことが好ましい。
 また、前記第一乃至第四の実施態様において、
 上述した波長変換部材は、さらに、下記一般式(B1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が500nm以上520nm以下である青緑色蛍光体を含むことが好ましい。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(B1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 また、前記第一乃至第四の実施態様において、
 上述した波長変換部材は、前記蛍光体Yと前記蛍光体Gの組成比が、10:90以上、90:10以下であることが好ましい。
 また、第二の発明における第五の実施態様は以下のとおりである。
 下記一般式(G4)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gと、
 透明材料と、を含む、波長変換部材であって、
 該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下である、波長変換部材。
  Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G4)
  (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、前記第一乃至第五の実施態様に係る波長変換部材において、
 励起波長を445nmから455nmに連続的に変化させたときに波長変換部材から放射される光の色度変化Δu'v 'が、Δu'v '≦0.004を満たすことが好ましい。
 ただし、Δu'v 'は、445nmから455nmにおける任意の波長inmにおける色度(u'i,v ' i)と、445nmから455nmにおける色度の平均値(u'ave,v' ave)の距離を表すものとする。
 また、前記第一乃至第五の実施態様において、
 励起波長を435nmから470nmに連続的に変化させたときに波長変換部材から放射される光の色度変化Δu'v 'が、Δu'v '≦0.015を満たすことが好ましい。
 ただし、Δu'v 'は、435nmから470nmにおける任意の波長inmにおける色度(u'i,v ' i)と、435nmから470nmにおける色度の平均値(u'ave,v' ave)の距離を表すものとする。
 また、第二の発明における第六の実施態様は以下のとおりである。
 下記一般式(YG1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が530nm以上550nm以下である黄緑色蛍光体と、
 透明材料と、を含む波長変換部材であって、
 該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が、0.25以下である、波長変換部材である。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(YG1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 前記黄緑色蛍光体の励起スペクトル強度変化率は、0.13以下であることが好ましい。但し、黄緑色蛍光体の励起スペクトル強度変化率は、450nmにおける黄緑色蛍光体の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、励起波長を445nmから455nmに連続的に変化させたときに、発光装置から放射される光の色度変化Δu'v 'は、Δu'v '≦0.005を満たすことが好ましい。ただし、Δu'v 'は、445nmから455nmにおける任意の波長inmにおける色度(u'i,v ' i)と、445nmから455nmにおける色度の平均値(u'ave,v' ave)の距離を表すものとする。
 また、前記黄緑色蛍光体が、下記一般式(YG2)で示される黄緑色蛍光体であるものが好ましい。
  MAle ・・・(YG2)
  (Mは、Ce元素。Aは、Y、Luの群から選ばれる、Yを90%以上含む、1又は2以上の元素。Eは、Ga、又はGa及びSc。a+b=3、4.5≦c+d≦5.5、10.8≦e≦13.2、0≦a≦0.9、0.8≦c≦1.2)
 本発明の第三の発明は、蛍光体組成物に係る発明であり、その第一の実施態様は以下のとおりである。
 下記一般式(Y1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下である蛍光体Yと、
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(Y1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 下記一般式(G1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gと、透明材料と、を含む、蛍光体組成物。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(G1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 なお、第二の実施態様として、
 前記蛍光体組成物を成形して波長変換部材とした際、該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.25以下であることが好ましい。
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、第三の実施態様として、
 前記蛍光体Yが、下記一般式(Y2)で示される蛍光体であり、
 前記蛍光体Gが、下記一般式(G2)で示される蛍光体であり、
 前記蛍光体組成物を成形して波長変換部材とした際、該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.23以下であることが好ましい。
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y2)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(G2)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、1.2≦c≦2.6、10.8≦e≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、第四の実施態様として、
 前記蛍光体Yが、下記一般式(Y3)で示される蛍光体であり、
 前記蛍光体Gが、下記一般式(G3)で示される蛍光体であり、
 前記蛍光体組成物を成形して波長変換部材とした際、該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下であることが好ましい。
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y3)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
  Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G3)
  (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、前記第一乃至第四の実施態様において、
 上述した蛍光体組成物は、前記蛍光体組成物を成形して波長変換部材とした際、該波長変換部材における前記蛍光体Yは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも小さく、該波長変換部材における前記蛍光体Gは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも大きいことが好ましい。
 また、前記第一乃至第四の実施態様において、
上述した蛍光体組成物は、さらに、下記一般式(B1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が500nm以上520nm以下である青緑色蛍光体を含むことが好ましい。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(B1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 また、前記第一乃至第四の実施態様において、
 上述した蛍光体組成物は、前記蛍光体Yと前記蛍光体Gの組成比が、10:90以上、90:10以下であることが好ましい。
 また、第三の発明における第五の実施態様は以下のとおりである。
 下記一般式(G4)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gと、
 透明材料と、を含む、蛍光体組成物であって、
 該家抗体組成物を成形して波長変換部材とした際、該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下である、蛍光体組成物。
  Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G4)
  (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、第三の発明における第六の実施態様は以下のとおりである。
 下記一般式(YG1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が530nm以上550nm以下である黄緑色蛍光体と、
 透明材料と、を含む蛍光体組成物であって、
 該蛍光体組成物を成形して波長変換部材とした際、該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が、0.25以下である、蛍光体組成物である。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(YG1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、前記黄緑色蛍光体が、下記一般式(YG2)で示される黄緑色蛍光体であるものが好ましい。
  MAle ・・・(YG2)
  (Mは、Ce元素。Aは、Y、Luの群から選ばれる、Yを90%以上含む、1又は2以上の元素。Eは、Ga、又はGa及びSc。a+b=3、4.5≦c+d≦5.5、10.8≦e≦13.2、0≦a≦0.9、0.8≦c≦1.2)
 また、本実施態様において、更に赤色蛍光体を含むことが好ましい。
 本発明の第四の発明は、蛍光体混合物に係る発明であり、その第一の実施態様は以下のとおりである。
 下記一般式(Y1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下である蛍光体Yと、
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(Y1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 下記一般式(G1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gを含む、蛍光体混合物。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(G1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 なお、第二の実施態様として、
 発光波長540nmでの励起スペクトル強度変化率が0.40以下であるであることが好ましい。
 但し、該蛍光体混合物の励起スペクトル強度変化率は、450nmにおける蛍光体混合物の励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、第三の実施態様として、
 前記蛍光体Yが、下記一般式(Y2)で示される蛍光体であり、
 前記蛍光体Gが、下記一般式(G2)で示される蛍光体であり、
 発光波長540nmでの励起スペクトル強度変化率が0.30以下であることが好ましい。
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y2)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(G2)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、1.2≦c≦2.6、10.8≦e≦13.4)
 但し、該蛍光体混合物の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、第四の実施態様として、
 前記蛍光体Yが、下記一般式(Y3)で示される蛍光体であり、
 前記蛍光体Gが、下記一般式(G3)で示される蛍光体であり、
 発光波長540nmでの励起スペクトル強度変化率が0.25以下であることが好ましい。
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y3)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
  Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G3)
  (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
 但し、該蛍光体混合物の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、前記第一乃至第四の実施態様において、
 前記蛍光体Yは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも小さく、前記蛍光体Yは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも大きいことが好ましい。
 また、前記第一乃至第四の実施態様において、
 さらに、下記一般式(B1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が500nm以上520nm以下である青緑色蛍光体を含むことが好ましい。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(B1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 また、前記第一乃至第四の実施態様において、
 前記蛍光体Yと前記蛍光体Gの組成比が、10:90以上、90:10以下であることが好ましい。
 また、第四の発明における第五の実施態様は以下のとおりである。
 下記一般式(G4)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gを含む、蛍光体混合物であって、
 該蛍光体混合物の発光波長540nmでの励起スペクトル変化率が、0.25以下である、蛍光体混合物。
  Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G4)
  (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、第四の発明における第六の実施態様は以下のとおりである。
 下記一般式(YG1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が530nm以上550nm以下である黄緑色蛍光体を含む蛍光体混合物であって、
 該蛍光体混合物の発光波長575nmでの励起スペクトル強度変化率が、0.12以下である、蛍光体混合物である。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(YG1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 但し、該蛍光体混合物の励起スペクトル強度変化率は、450nmにおける蛍光体混合物の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、本実施態様において、更に赤色蛍光体を含むことが好ましい。
 また、前記蛍光体混合物と、シリコーン樹脂とを混合、またはポリカーボネート樹脂とを混練、成形して波長変換部材とした際、該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が、0.05以下であることが好ましい。
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、440nmから460nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、前記黄緑色蛍光体が、下記一般式(YG2)で示される黄緑色蛍光体であるものが好ましい。
  MAle ・・・(YG2)
  (Mは、Ce元素。Aは、Y、Luの群から選ばれ、Yを90%以上含む、1又は2以上の元素。Eは、Ga、又はGa及びSc。a+b=3、4.5≦c+d≦5.5、10.8≦e≦13.2、0≦a≦0.9、0.8≦c≦1.2)
 本発明の第一の発明における第一乃至第七の実施態様により、ビニング特性に優れ、高い発光効率と演色性を有した発光装置を提供することができる。特に、蛍光体Yと蛍光体Gとを組み合わせて用いることで、蛍光体Yの代表的な例であるYAG蛍光体、または蛍光体Gの代表的な例であるGYAG蛍光体を単独で用いた場合と比較して、高い全光束を達成することができる。そのため、発光装置において目標とする全光束を達成しようとする際に投入する電力量が低減され、より省エネルギーを達成できる。
 また、第一の発明における第五の実施態様により、蛍光体Gの代表的な例であるLuAG蛍光体を単独で用いることで、蛍光体Yの代表的な例であるYAG蛍光体を単独で用いた場合と比較して、高い全光束を達成することができる。特に色温度4000K以上の高色温度領域においては、LuAG蛍光体は、YAG蛍光体を利用した場合と比較して高い全光束を維持したまま、高演色性を達成することができる。そのため、LuAG蛍光体以外の蛍光体の使用を控えることができる。
 さらに、第一の発明における第六及び第七の実施態様により、特定の黄緑色蛍光体を単独で用いることで、蛍光体Yの代表的な例であるYAG蛍光体を単独で用いた場合と比較して、高い全光束を達成することができる。また、ビニング特性に優れた発光装置を提供することができる。そして、これらの発光装置はビニング特性に優れるのみならず、発光効率が高く、かつ演色性も高いものであるため、これらの発光装置を搭載した照明装置、バックライトとして、実用化が可能となる。さらに、発光効率が高く、蛍光体の使用量が低減されることから、経済的にもメリットを有する。
 また、本発明の第二の発明により、上記のようなビニング特性に優れ、高い発光効率と演色性を有した発光装置を提供し得る波長変換部材を提供することができる。
 また、本発明の第三、第四の発明により、上記のようなビニング特性に優れ、高い発光効率と演色性を有した発光装置を提供し得る蛍光体組成物、あるいは、蛍光体混合物を提供することができる。
第一の発明の一実施形態における例であり、YAG、GYAG、SCASN、CASNそれぞれの蛍光体について、励起波長を430nmから470nmまで変化させたときの、発光強度の変化を示すグラフである。 本発明の一実施形態に係る発光装置の断面模式図である。 本発明の一実施形態に係る発光装置の断面模式図である。 蛍光体の種類による演色性と発光効率の関係を表わすシミュレーション結果をプロットした図である。 蛍光体の種類による演色性と発光効率の関係を表わすシミュレーション結果をプロットした図である。 一般式(m3)で表わされる蛍光体の一般式の組成と励起発光スペクトルの関係を表したグラフである。 一般式(m5)で表わされる蛍光体の一般式の組成と励起発光スペクトルの関係を表したグラフである。 YAG、LuAG1、LuAG2、SCASN、CASNそれぞれの蛍光体について、励起波長を430nmから465nmまで変化させたときの、発光強度の変化を示すグラフである。また、YAGとLuAG1とを1:1の加重平均で産出した合成励起スペクトル強度の変化を併せて示すグラフである。 GYAG1、LuAG1、GLuAG、YAGそれぞれの蛍光体について、励起波長を430nmから470nmまで変化させたときの、発光強度の変化を示すグラフである。 実験例1~3において作製した試験片の、発光波長540nmでの励起スペクトル強度変化を表したグラフである。 実験例4~8において作製した試験片の、発光波長540nmでの励起スペクトル強度変化を表したグラフである。 実験例9~12において作製した試験片の、発光波長540nmでの励起スペクトル強度変化を表したグラフである。 実験例1~3において作製した発光装置のビニング特性を表したグラフである。 実験例4~8において作製した発光装置のビニング特性を表したグラフである。 実験例9~12において作製した発光装置のビニング特性を表したグラフである。 実験例1~3、9~12において作製した発光装置のビニング特性を表したグラフである。 実験例4~8において作製した発光装置のビニング特性を表したグラフである。 実験例13および14において作製した蛍光体混合物の、発光波長540nmでの励起スペクトル強度変化を表したグラフである。 実験例15~20において作製した蛍光体混合物の、発光波長540nmでの励起スペクトル強度変化を表したグラフである。 実験例21および22において作製した蛍光体混合物の、発光波長540nmでの励起スペクトル強度変化を表したグラフである。 実験例23~27において作製した発光装置のビニング特性を表したグラフである。
 以下、本発明について実施態様を用いて説明するが、本発明は具体的な実施態様のみに限定されない。
 以下、本明細書中の蛍光体の組成式において、各組成式の区切りは読点(、)で区切って表わす。また、カンマ(,)で区切って複数の元素を列記する場合には、列記された元素のうち一種又は二種以上を任意の組み合わせ及び組成で含有していてもよいことを示している。
 第一の発明の第一乃至第七の実施態様に係る発光装置は、青色半導体発光素子と波長変換部材を備える。
 青色半導体発光素子は、420nm以上475nm以下に発光ピークを有する光を放出する半導体発光素子である。青色半導体発光素子は、430nm以上465nm以下に発光ピークを有する光を放出することが好ましく、445nm以上455nm以下に発光ピークを有する光を放出することも好ましい。
 また青色半導体発光素子は、半値幅が5nm以上30nm以下であることが、発光効率の点から好ましい。
 青色半導体発光素子は、窒素ガリウム系、酸化亜鉛系または炭化ケイ素系の半導体で形成されたpn接合形の発光部を有する発光ダイオード素子であることが好ましい。
 波長変換部材とは、入射光の少なくとも一部を波長変換して、前記入射光とは異なる波長の出射光を放出する波長変換部材であって、該波長変換部材は、前記入射光の少なくとも一部を波長変換して、前記入射光とは異なる波長の出射光を放出する蛍光体を含む。前記蛍光体は、樹脂等の可視光において吸収の少ない透明または半透明材料に分散等されていることが好ましい。また、該波長変換部材は、含有する透明材料等により自立した形状を保持している場合もある。さらに別の態様として、ガラス等の透明基板に蛍光体を必要に応じて樹脂等に混合して塗布したものであっても良い。
 第一の発明における第一の実施態様に用いられる波長変換部材は、
 下記一般式(Y1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下である蛍光体Yと、
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(Y1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 下記一般式(G1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gと、を含む。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(G1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 蛍光体Yは、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下、すなわち黄色領域に発光波長スペクトルのピーク波長を有する黄色蛍光体である。
 蛍光体Yの代表例としては、YAG蛍光体と称される以下の一般式(l)で表される蛍光体があげられるが、これらに限られるものではない。
 Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(l)
(a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
 蛍光体Gは、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下、すなわち緑色領域に発光波長スペクトルのピーク波長を有する緑色蛍光体である。
 蛍光体Gの代表例としては、GYAG蛍光体と称される以下の一般式(m1)で表される蛍光体や、LuAG蛍光体と称される以下の一般式(m2)で表される蛍光体があげられるが、これらに限られるものではない。
 Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(m1)
 (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、1.2≦c≦2.6、10.8≦e≦13.4)
 Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(m2)
 (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
 第一の発明における第一の実施態様に係る発光装置は、上記要件を充足することで、実用化に耐え得る優れたビニング特性を有した発光装置となる。発光装置の光源となる青色半導体発光素子において、発光ピーク波長のばらつきは通常10nm程度であることが多い。第一の発明における第一の実施態様に係る発光装置は、このような光源となる青色半導体発光素子の発光ピーク波長のばらつきに対して、放射する光の色度変化が小さい、いわゆるビニング特性に優れた発光装置である。
 このようなビニング特性に優れた発光装置は、上記一般式(Y1)で表わされる蛍光体Y及び上記一般式(G1)で表わされる蛍光体Gを併用することで達成することができる。
 このことについて、蛍光体Yの代表例であるYAG蛍光体、および、蛍光体Gの代表例であるGYAG蛍光体を併用した場合について、図1を用いて説明する。
 図1は、YAG、GYAG、SCASN、CASNそれぞれの蛍光体について、励起波長を430nmから470nmまで変化させたときの、励起発光スペクトルの変化を示すグラフである。
 図1から理解できるように、一般式(Y1)で表わされるYAGは、445nmから455nmまでの励起波長においては、励起波長が増加すると共にその発光強度が大きくなっている。
 一方、一般式(G1)で表わされるGYAGは、445nmから455nmまでの励起波長においては、励起波長が増加すると共にその発光強度が小さくなっている。
 このことから、一般式(Y1)で表わされる蛍光体Yと一般式(G1)で表わされる蛍光体Gを併用することで、第一の発明における第一の実施態様に係る発光装置のビニング特性を優れたものとすることが可能となる。
 第一の発明に係る発光装置は、第二の実施態様として、波長変換部材の発光波長540nmでの励起スペクトル強度変化率が、0.25以下であることが好ましい。
 上記波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。なお、励起スペクトル強度変化率は、発光波長540nmでの強度を用いて算出される。
 本発明者らは、どのような励起波長においてどの程度の強度の光を蛍光体が発するかを示す、蛍光体の励起スペクトル強度に着目し、特に、青色半導体発光素子が発する光の波長である450nmの光付近における励起スペクトル強度を詳細に検討した。その結果、波長変換部材の発光波長540nmでの励起スペクトル強度変化率が、0.25以下であることで、良好なビニング特性に加え、高い全光束を達成できることに想到した。
 励起スペクトル強度が大きく変化することで、励起波長が変化した場合に当該蛍光体が発する蛍光強度が大きく変化し、発光装置が出射する光の色度にズレが生じる。本実施態様においては、波長変換部材の発光波長540nmでの励起スペクトル強度変化率を0.25以下とすることで、波長変換部材から放出される光の色度のズレを抑制した。
 波長変換部材の発光波長540nmでの励起スペクトル強度変化率は、0.24以下とすることが好ましく、0.23以下とすることがより好ましい。
 また、励起スペクトル強度変化率は0.03以上であることが好ましく、0.05以上であることがより好ましい。励起スペクトル強度変化率が0.03以下であると、励起波長が変化した場合の発光スペクトル強度は同一となるが、明所視感度が異なるため実質的には、輝度や色度が変化する場合がある。
 第一の発明における第三の実施態様として、
 前記蛍光体Yが、下記一般式(Y2)で示される蛍光体であり、
 前記蛍光体Gが、下記一般式(G2)で示される蛍光体であり、
 前記波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.23以下であることも好ましい。
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y2)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(G2)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、1.2≦c≦2.6、10.8≦e≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 波長変換部材の発光波長540nmでの励起スペクトル強度変化率は、0.21以下とすることが好ましく、0.20以下とすることがより好ましい。
 また、励起スペクトル強度変化率は0.03以上であることが好ましく、0.05以上であることがより好ましい。
 また、蛍光体がYAG蛍光体である場合、半値幅が100nm以上130nm以下であることが、演色性の観点から好ましい。また、蛍光体GがGYAG蛍光体である場合、半値幅が105nm以上120nm以下であることが、演色性の観点から好ましい。
 第一の発明における第四の実施態様として、
 前記蛍光体Yが、下記一般式(Y3)で示される蛍光体であり、
 前記蛍光体Gが、下記一般式(G3)で示される蛍光体であり、
 前記波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下であることも好ましい。
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y3)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
  Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G3)
(f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 波長変換部材の発光波長540nmでの励起スペクトル強度変化率は、0.30以下とすることが好ましく、0.28以下とすることがより好ましい。
 また、励起スペクトル強度変化率は0.03以上であることが好ましく、0.05以上であることがより好ましい。
 また、蛍光体がYAG蛍光体である場合、半値幅が100nm以上130nm以下であることが、演色性の観点から好ましい。また、蛍光体GがLuAG蛍光体である場合、半値幅が30nm以上120nm以下であることが、演色性の観点から好ましい。
 また、第一の発明における第三および第四の実施態様において、
 下記合成励起スペクトルの強度変化率が0.15以下であることが好ましい。
 合成励起スペクトルは、各波長における励起スペクトル強度が、下記算出式(Z)で表される励起スペクトルである。
 合成励起スペクトル強度=(蛍光体Yの励起スペクトル強度)×(蛍光体Yの重量分率)+(蛍光体Gの励起スペクトル強度)×(蛍光体Gの重量分率) ・・・(Z)
 蛍光体Yの重量分率は、蛍光体Y/(蛍光体Y+蛍光体G)で表される。
 蛍光体Gの重量分率も同様に表される。
 合成励起スペクトル強度変化率は、励起スペクトルの450nmにおける励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における合成励起スペクトル強度の最大値と最小値との差で表される。
 本発明者らは、上記同様に、どのような励起波長においてどの程度の強度の光を蛍光体が発するかを示す、蛍光体の励起スペクトル強度に着目し、特に、青色半導体発光素子が発する光の波長である450nmの光付近における励起スペクトル強度を詳細に検討した。蛍光体YとGの合成励起スペクトル強度変化率を、第三および第四の実施態様のいずれにおいても0.15以下とすることで、蛍光体YとGが発する蛍光強度変化をトータルとして抑え、色度のズレを抑制した。
 波長変換部材の発光波長540nmでの励起スペクトル強度変化率を、上記第三および第四の実施態様において、それぞれ0.23、0.33以下とするためには、上記合成励起スペクトル強度変化率を、いずれの実施態様においても0.15以下とすればよく、これには、蛍光体Y及び蛍光体Gの種類、含有量を適宜調整すれば良い。
 用いる蛍光体Yおよび/または蛍光体Gは、上記いずれの実施態様においても、合成励起スペクトル強度が0.15以下であれば、それぞれ単独の励起スペクトル強度変化率に制限はなく、蛍光体Yおよび/または蛍光体Gの合成励起スペクトル強度が単独で0.15以下であっても良い。
 また、上記合成励起スペクトル強度変化率は、いずれの実施態様においても、0.14以下であることがより好ましく、0.12であることが更に好ましい。
 また、合成励起スペクトル強度変化率は0.02以上であることが好ましく、0.04以上であることがより好ましい。
 また、第一の発明における第一乃至第四の実施態様において、
 前記蛍光体Yは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも小さく、
 前記蛍光体Gは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも大きいことが好ましい。
 この条件を満たすことによって、励起波長が430nmから470nmへと変化した際に、励起波長以外の発光スペクトルが、蛍光体Gの寄与度が高い発光色から蛍光体Yの寄与度が高い発光色へと変化し、励起波長を含む実質的な発光色が励起波長に依存することなく常に一定とすることができる。
 さらに、第一の発明における第一乃至第四の実施態様において、
 下記一般式(B1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が500nm以上520nm以下である青緑色蛍光体を含むことが好ましい。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(B1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 上記450nmで励起した時の発光波長スペクトルのピーク波長が500nm以上520nm以下である青緑色蛍光体としては、例えば、下記一般式(B2)で示されるような、LuAG蛍光体のAlの一部をGaで置換することにより発光波長を500nm以上520nm以下へと調整した青緑色蛍光体が挙げられる(以下GLuAGと記載する場合がある)。
  LufCegGahAlij  ・・・(B2)
  (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦4.0、10.8≦j≦13.4)
 該青緑色蛍光体を含むことによって、蛍光体Gと蛍光体Yでは再現できない500~520nmの波長領域の発光強度を、励起波長変化に応じて調整可能となり、より良好なビニング特性が達成できる。
 第一の発明における第一乃至第四の実施態様において、
 蛍光体Yと蛍光体Gの組成比は、通常10:90以上、90:10以下であり、好ましくは12:88以上、88:12以下であり、さらに好ましくは15:85以上、85:15以下である。
 この条件を満たすことによって、励起波長が変化した際の、励起光以外の発光スペクトルにおいて有意に形状を調整できる。上記範囲外だと調整可能な発光スペクトル形状が限定的で、ビニング特性が向上しない場合があり好ましくない。
 第一の発明における第五の実施態様に用いられる波長変換部材は、
 下記一般式(G4)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gを含み、
 該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下である。
  Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G4)
  (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 また、波長変換部材の発光波長540nmでの励起スペクトル強度変化率は、0.30以下とすることが好ましく、0.28以下とすることがより好ましい。
 また、励起スペクトル強度変化率は0.03以上であることが好ましく、0.05以上であることがより好ましい。
 第一乃至第五の実施態様に係る発光装置は、波長変換部材の発光波長540nmでの励起スペクトル強度変化率上記の値以下、好ましくは式(Z)で表される合成励起スペクトル強度変化率を上記の値以下とすることで、おおよそ430nmから465nmの範囲において、良好なビニング効果を奏する。実用的な観点からは、青色半導体発光素子の発光波長を445nmから455nmに連続的に変化させたときに発光装置から放射される光の色度変化Δu’v ’が、Δu’v ’≦0.004を満たすことが好ましい。また、Δu’v ’≦0.0035を満たすことがより好ましい。
 ただし、Δu’v ’は、445nmから455nmにおける任意の波長inmにおける色度(u’i,v ’ i)と、445nmから455nmにおける色度の平均値(u’ave,v ’ ave)の距離を表すものとする。
 また、青色半導体発光素子の発光波長を435nmから470nmに連続的に変化させたときに発光装置から放射される光の色度変化Δu’v ’が、Δu’v ’≦0.015を満たすことが好ましい。また、Δu’v ’≦0.012を満たすことがより好ましい。
 ただし、Δu’v ’は、435nmから470nmおける任意の波長inmにおける色度(u’i,v ’ i)と、435nmから470nmにおける色度の平均値(u’ave,v ’ ave)の距離を表すものとする。
 第一の発明における第六の実施態様に用いられる波長変換部材は、
 下記一般式(YG1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が530nm以上550nm以下である黄緑色蛍光体を含み、
 該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が、0.25以下である。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(YG1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 前記黄緑色蛍光体の励起スペクトル強度変化率が、0.13以下であることが好ましい。
 但し、黄緑色蛍光体の励起スペクトル強度変化率は、450nmにおける黄緑色蛍光体の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 前記青色半導体発光素子の発光波長を445nmから455nmに連続的に変化させたときに発光装置から放射される光の色度変化Δu'v 'が、Δu'v '≦0.005を満たすことが好ましい。
 ただし、Δu'v 'は、445nmから455nmにおける任意の波長inmにおける色度(u'i,v ' i)と、445nmから455nmにおける色度の平均値(u'ave,v' ave)の距離を表すものとする。
 また、前記黄緑色蛍光体が、下記一般式(YG2)で示されるものであることが好ましい。
  MAle ・・・(YG2)
  (Mは、Ce元素。Aは、Y、Luの群から選ばれる、Yを90%以上含む、1又は2以上の元素。Eは、Ga、又はGa及びSc。a+b=3、4.5≦c+d≦5.5、10.8≦e≦13.2、0≦a≦0.9、0.8≦c≦1.2)
 一般式(YG1)で表わされる蛍光体には、450nmで励起した時の発光波長スペクトルのピーク波長が530nm以上550nm以下、すなわち黄緑色領域に発光波長スペクトルのピーク波長を有し、一般的にGYAGと称される蛍光体が含まれる。
 上記黄緑色蛍光体の励起スペクトルの強度変化は、440nmから460nmにおいて、450nmにおける励起光スペクトルの強度の4.0%以下であることが好ましい。なお、励起スペクトルの強度変化は、540nmでの強度に基づき算出する。
 本発明者らは、どのような励起波長においてどの程度の強度の光を蛍光体が発するかを示す、蛍光体の励起スペクトル強度に着目し、特に、青色半導体発光素子が発する光の波長である450nmの光付近における励起スペクトル強度を詳細に検討した。その結果、波長変換部材の発光波長540nmでの励起スペクトル強度変化率が、0.25以下であることで、良好なビニング特性に加え、高い輝度を達成できることに想到した。
 励起スペクトル強度が大きく変化することで、励起波長が変化した場合に当該蛍光体が発する蛍光強度が大きく変化し、発光装置が出射する光の色度にズレが生じる。本実施態様においては、波長変換部材の発光波長540nmでの励起スペクトル強度変化率を0.25以下とすることで、波長変換部材から放出される光の色度のズレを抑制した。
 発光装置の光源となる青色半導体発光素子において、発光ピーク波長のばらつきは通常±5nm程度であることが多い。また、もっともばらつきが大きい青色半導体発光素子であっても、±20nm程度である。本実施態様に係る発光装置は、上記要件を充足することで、光源となる青色半導体発光素子の発光ピーク波長のばらつきに対して、放射する光の色度変化が小さい、いわゆるビニング特性に優れた発光装置となり、好ましい。
 また、第一の発明における第七の実施態様に用いられる波長変換部材は、
下記一般式(YG3)で示され、440nmから460nmの励起波長で励起したときの450nmの励起強度で規格化した励起スペクトル強度の最大値と最小値の差が0.05以下の蛍光体である黄緑色蛍光体を含む。
  (Y,Ce)(Ga,Al)g ・・・(YG3)
  (4.5≦f≦5.5、10.8≦g≦13.2)
 440nmから460nmの励起波長で励起したときの450nmの励起強度で規格化した励起スペクトル強度は、Ga濃度に依存するため、4.5≦f≦5.5の範囲においてGa濃度を調節することにより、上記励起スペクトル強度の最大値と最小値の差を減少させ、0.05以下とすることができる。
 一般式(YG2)及び一般式(YG3)で表わされる蛍光体がGYAG蛍光体である場合、半値幅が105nm以上120nm以下であることが、演色性の観点から好ましい。
 本実施態様においては、440nmから460nmの励起波長で励起したときの450nmの励起強度で規格化した励起スペクトル強度の最大値と最小値の差を0.05以下とすることで、波長変換部材から放出される光の色度のズレを抑制した。
 よって、上記波長変換部材を備えることにより、本実施態様における発光装置は、445nmから455nmの励起波長で励起したときに波長変換部材から放射される光の平均色度からの色度変化Δu’v’が、0.005以下となる。
 ただし、Δu’v ’は、445nmから455nmにおける任意の波長inmにおける色度(u’,v ’ i)と、445nmから455nmにおける色度の平均値(u’ ave,v ’ ave)の距離を表すものとする。
 発光装置の光源となる青色半導体発光素子において、発光ピーク波長のばらつきは通常±5nm程度であることが多い。また、もっともばらつきが大きい青色半導体発光素子であっても、±20nm程度である。第一の発明における第一乃至第七の実施態様に係る発光装置は、上記要件を充足することで、光源となる青色半導体発光素子の発光ピーク波長のばらつきに対して、放射する光の色度変化が小さい、いわゆるビニング特性に優れた発光装置となり、好ましい。
 上記任意の波長inmにおいて発光装置が発する光の色度(u’i,v ’ i)、および特定領域の波長において発光装置が発する光の色度の平均値(u’ ave,v ’ ave)は、CIE 1976UCS色度図に基づき算出される。具体的にはラブスフェア社製20inch積分球(LMS-200)及びCarl Zeiss社製分光器(Solid Lambda UV-Vis)を用いて発光装置が発する光のスペクトルを得、そのスペクトルを元に色度(u’i,v ’ i)を算出する。そして、算出された色度(u’i,v ’i)をu’ v ’色度図上にプロットし、以下の数式により平均値(u’ ave,v ’ ave)との距離を求め、色度変化Δu’v ’とする。
Figure JPOXMLDOC01-appb-M000001
 第一の発明における第一乃至第七の実施態様に係る発光装置においては、励起波長を少なくとも5nmごと、好ましくは3nmごと、より好ましくは2nmごと、更に好ましくは1nmごとに変化させて、発光装置が発する任意の波長inmにおける色度(u’i,v ’ i)を測定し、その平均値(u’ ave,v ’ ave)を算出する。そして、波長inmにおける色度(u’i,v ’ i)と(u’ ave,v ’ ave)の距離を求める。
 なお、発光装置が発する光の色度の平均値を測定する際に、波長を変化させる間隔は、一定であってもランダムであっても良い。
 第一の発明における第六乃至第七の実施態様の発光装置に係る波長変換部材において、一般式(YG1)で表される蛍光体、一般式(YG2)で表わされる蛍光体及び一般式(YG3)で表わされる蛍光体の含有量について特段の制限は無く、発光装置が発する光の色温度などの要請に応じ、適宜設定することが可能である。
 第一の発明における第一乃至第五の実施態様において用いられる蛍光体の粒径は、通常体積基準のメディアン径D50vが0.1μm以上のものが好ましく、1μm以上のものがより好ましく使用できる。また、30μm以下のものが好ましく、20μm以下のものがより好ましく使用できる。ここで体積基準のメディアン径D50vとは、レーザー回折・散乱法を測定原理とする粒度分布測定装置を用いて、試料を測定し、粒度分布(累積分布)を求めたときの体積基準の相対粒子量が50%になる粒子径と定義される。測定方法としては例えば、超純水中に蛍光体を入れ、超音波分散器((株)カイジョ製)を用いて周波数を19KHz、超音波の強さを5Wとし、25秒間試料を超音波で分散させた後に、フローセルを用いて透過率88%から92%の範囲に調整し、凝集していないことを確認した上で、レーザー回折式粒度分布測定装置(堀場製作所 LA-300)により、粒径範囲0.1μm~600μmにて測定する方法が挙げられる。また、上述の方法では蛍光体粒子が凝集してしまう場合には、分散剤をもちいてもよく、例としてはタモール(BASF社製)などを0.0003重量%含む水溶液中に蛍光体を入れ、上述の方法と同様に超音波で分散させた上で測定してもよい。
 粒子径の分布の度合いを示す指標としては、蛍光体の体積基準の平均粒子径Dvと個数基準の平均粒子径Dnの比(Dv/Dn)がある。本願発明においては、Dv/Dnが1.0以上であることが好ましく、1.2以上がより好ましく、1.4以上がさらに好ましい。一方で、Dv/Dnが25以下であることが好ましく、10以下がさらに好ましく、5以下が特に好ましい。Dv/Dnが大きすぎる場合には重量が大きく異なる蛍光体粒子が存在することになり、蛍光体層中において蛍光体粒子の分散が不均一となる傾向がある。
 また、蛍光体としては、その表面を第三成分により予めコーティングしたものを用いることも可能である。コーティングに用いる第三成分の種類、コーティングの手法は特に限定されず、公知の任意の第三成分及び手法を用いればよい。
 第三成分としては、例えば、有機酸、無機酸、シラン処理剤、シリコーンオイル、流動パラフィン等が挙げられる。その中でもシランカップリング材(モノアルキルトリシラノール、ジアルキルジシラノール、トリアルキルシラノール、モノアルキルトリアルコキシシラン、ジアルキルジアルコキシシラン、トリアルキルアルコキシシラン)、置換基を有するシロキサン、シリコーンなどが好ましい。これらの第三成分を用いて、蛍光体を表面処理、被覆することにより、樹脂等の波長変換部材への親和性、分散性、熱安定性、蛍光発色性等が改善される傾向にある。表面処理、被覆量としては、通常、100重量部の蛍光体あたり0.01~10重量部であり、0.01重量部より少ないと親和性、分散性、熱安定性、蛍光発色性等の改善効果が得難く、10重量部より多くても熱安定性、機械的特性、蛍光発色性が低下するなどの不具合を生じやすくなる。
 第一の発明における第一乃至第五の実施態様において、波長変換部材中の蛍光体の含有量は、後述する光拡散材、樹脂の種類にもよるが、例えば、樹脂がポリカーボネート樹脂の場合、ポリカーボネート樹脂100重量部に対して、通常0.1重量部以上、好ましくは0.5重量部以上、より好ましくは1重量部以上であり、また、通常50重量部以下、好ましくは40重量部以下、より好ましくは30重量部以下、さらに好ましくは20重量部以下である。蛍光体の含有量が少なすぎると蛍光体の波長変換効果が得難くなる傾向にあり、多すぎると機械的特性が低下する場合があり好ましくない。
 また、例えば、樹脂がシリコーン樹脂の場合、シリコーン樹脂100重量部に対して、通常0.1重量部以上、好ましくは1重量部以上、より好ましくは3重量部以上であり、また、通常80重量部以下、好ましくは60重量部以下、より好ましくは50重量部以下、さらに好ましくは40重量部以下である。蛍光体の含有量が少なすぎると蛍光体の波長変換効果が得難くなる傾向にあり、多すぎると機械的特性が低下する場合があり好ましくない。
 第一の発明における第一乃至第五の実施態様において波長変換部材は、更に赤色蛍光体(第一の赤色蛍光体ともいう。)を含むことが好ましい。第一の赤色蛍光体を含むことで、発光装置が放出する光の演色性を向上させることが可能であり、また、発光装置の比較的低色温度での調整が容易となる。
 第一の赤色蛍光体としては、その励起光波長が445nmから455nmに変化したときの励起スペクトルの強度変化が、455nmの励起光による励起スペクトルの5.0%以下であることが好ましく、3.0%以下であることがより好ましく、1.0%以下であることが更に好ましい。このような赤色蛍光体を用いることで、発光装置が有するビニング特性を十分なものとした上で、さらに演色性を向上させることが可能となる。なお、下限値は特段限定されず、0%以上である。
 このような要件を満たす赤色蛍光体としては、(Sr,Ca)AlSiN3:Eu、Ca1-xAl1-xSi1+x3-xx:Eu(但し、0<x<0.5)、K2SiF:Mn4+、Euy(Sr,Ca,Ba)1-y:Al1+xSi4-xx7-x(但し、0≦x<4、0≦y<0.2)などが挙げられ、(Sr,Ca)AlSiN3:Eu又はCa1-xAl1-xSi1+x3-xx:Eu(但し、0<x<0.5)であることが好ましい。
 また、第一の赤色蛍光体として、発光ピーク波長が600nm以上640nm未満、かつ半値幅が2nm以上120nm以下である赤色蛍光体であることが好ましい。このような要件を満たす赤色蛍光体としては、(Sr,Ca)AlSiN3:Eu、Ca1-xAl1-xSi1+x3-xx:Eu(但し、0<x<0.5)、Euy(Sr,Ca,Ba)1-y:Al1+xSi4-xx7-x(但し、0≦x<4、0≦y<0.2)、K2SiF:Mn4+などが挙げられ、(Sr,Ca)AlSiN3:Eu又はCa1-xAl1-xSi1+x3-xx:Eu(但し、0<x<0.5)であることが好ましい。
 また、発光ピーク波長が600nm以上640nm未満、かつ半値幅が2nm以上120nm以下である第一の赤色蛍光体は、赤色蛍光体全量に対する組成重量比で30%以上含むことが好ましく、40%以上含むことがさらに好ましく、50%以上含むことが特に好ましい。また、95%以下であることが好ましく、90%以下であることがさらに好ましく、85%以下であることが特に好ましい。
 第一の発明における第一乃至第五の実施態様では、上述の第一の赤色蛍光体に加えて、または第一の赤色蛍光体に換えて、赤色蛍光体(以下第二の赤色蛍光体ともいう。)を含むことが好ましい。2種類の赤色蛍光体を含むことがより好ましい。
 第一の赤色蛍光体に加えて第二の赤色蛍光体を更に含むことで、蛍光体Xおよび蛍光体Yと合わせて、少なくとも4種類の蛍光体を含むこととなる。このように4種類の蛍光体を含む発光装置は、赤色蛍光体の添加による良好な演色性に加えて、高い変換効率を達成できる発光装置となるために選択し得る蛍光体の種類・量についての自由度が増加する。このことは、後述するシミュレーションの結果により説明される。
 第二の赤色蛍光体としては、その励起光波長が445nmから455nmに変化したときの励起スペクトルの強度変化が、455nmの励起光による励起スペクトルの5.0%以下であることが好ましく、3.0%以下であることがより好ましく、1.0%以下であることが更に好ましい。
 また、発光ピーク波長が640nm以上670nm以下、かつ半値幅が2nm以上120nm以下である赤色蛍光体が好ましい。このような蛍光体としては、CaAlSiN3:Eu蛍光体、3.5MgO・0.5MgF2・GeO2:Mn4+蛍光体などが挙げられ、CaAlSiN3:Eu蛍光体であることが好ましい。
 第二の赤色蛍光体を含有させる場合には、本発明の効果を阻害しない限りその含有量は特段限定されないが、赤色蛍光体の総量に対しする組成重量比で0.0%以上、50.0%以下であることが好ましい。
 また、第二の赤色蛍光体を含有させる場合には、第一の赤色蛍光体と混合した場合に、その励起光波長が445nmから455nmに変化したときのその赤色蛍光体混合物の励起スペクトルの強度変化が、455nmの励起光による励起スペクトルの5.0%以下であることが好ましく、3.0%以下であることがより好ましく、1.0%以下であることが更に好ましい。
 第一の発明における第六乃至第七の実施態様においては、更に赤色蛍光体(第一の赤色蛍光体ともいう。)を含むことが好ましい。第一の赤色蛍光体を含むことで、発光装置が放出する光の演色性を向上させることが可能であり、また、発光装置の色温度の調整が容易となる。
 第一の赤色蛍光体としては、その励起光波長が440nmから460nmに変化したときの励起スペクトルの強度変化が、450nmの励起光による励起スペクトルの4.0%以下であることが好ましく、3.0%以下であることがより好ましく、1.0%以下であることが更に好ましい。このような赤色蛍光体を用いることで、発光装置が有するビニング特性を十分なものとした上で、さらに演色性を向上させることが可能となる。なお、下限値は特段限定されず、0%以上である。
 このような要件を満たす赤色蛍光体としては、(Sr,Ca)AlSiN:Eu、Ca1-xAl1-xSi1+x3-x:Eu(但し、0<x<0.5)、KSiF:Mn4+、Eu(Sr、Ca、Ba)1-y:Al1+xSi4-x7-x(但し、0≦x<4、0≦y<0.2)などが挙げられ、(Sr,Ca)AlSiN:Eu又はCa1-xAl1-xSi1+x3-x:Eu(但し、0<x<0.5)であることが好ましい。
 また、第一の赤色蛍光体として、発光ピーク波長が620nm以上640nm未満、かつ半値幅が2nm以上100nm以下である赤色蛍光体であることが好ましい。このような要件を満たす赤色蛍光体としては、(Sr,Ca)AlSiN:Eu、Ca1-xAl1-xSi1+x3-x:Eu(但し、0<x<0.5)、Eu(Sr、Ca、Ba)1-y:Al1+xSi4-x7-x(但し、0≦x<4、0≦y<0.2)、KSiF:Mn4+などが挙げられ、(Sr,Ca)AlSiN:Eu又はCa1-xAl1-xSi1+x3-x:Eu(但し、0<x<0.5)であることが好ましい。
 前記(Sr,Ca)AlSiN:Euは、M(式中、Mは、Euであり、Aは、Mg、Ca、Sr、Baからなる群から選ばれる1種または2種以上の元素であり、Dは、Siであり、Eは、Alを必須元素とし、B、Al、Ga、In、Sc、Y、La、Gd、Luからなる群から選ばれる1種または2種以上の元素であり、Xは、Nを必須元素とし、O、N、Fからなる群から選ばれる1種または2種以上の元素である。また、a、b、c、d、eの値は、0.00001≦a≦0.1、a+b=1、0.5≦c≦1.8、0.5≦d≦1.8、0.8×(2/3+4/3×c+d)≦e、e≦1.2×(2/3+4/3×c+d)の条件を全て満たす値から選ばれる。)の一般式で示されることもある。
 また、発光ピーク波長が620nm以上640nm未満、かつ半値幅が2nm以上100nm以下である第一の赤色蛍光体は、赤色蛍光体全量に対する組成重量比で30%以上含むことが好ましく、40%以上含むことがさらに好ましく、50%以上含むことが特に好ましい。
 本発明では、上述の第一の赤色蛍光体に加えて、または第一の赤色蛍光体に代えて、赤色蛍光体(以下第二の赤色蛍光体ともいう。)を含むことが好ましい。2種類の赤色蛍光体を含むことがより好ましい。
 第二の赤色蛍光体を含むことで、赤色蛍光体の添加による良好な演色性に加えて、高い変換効率を達成できる発光装置となるために選択し得る蛍光体の種類・量についての自由度が増加する。
 第二の赤色蛍光体としては、その励起光波長が440nmから460nmに変化したときの励起スペクトルの強度変化が、450nmの励起光による励起スペクトルの5.0%以下であることが好ましく、3.0%以下であることがより好ましく、1.0%以下であることが更に好ましい。
 また、発光ピーク波長が640nm以上670nm以下、かつ半値幅が2nm以上120nm以下である赤色蛍光体が好ましい。このような蛍光体としては、CaAlSiN:Eu蛍光体、3.5MgO・0.5MgF・GeO:Mn4+蛍光体などが挙げられ、CaAlSiN:Eu蛍光体であることが好ましい。
 第二の赤色蛍光体を含有させる場合には、本発明の効果を阻害しない限りその含有量は特段限定されないが、赤色蛍光体の総量に対する組成重量比で0.0%以上、50.0%以下であることが好ましい。
 また、第二の赤色蛍光体を含有させる場合には、第一の赤色蛍光体と混合した場合に、その励起光波長が440nmから460nmに変化したときのその赤色蛍光体混合物の励起スペクトルの強度変化が、450nmの励起光による励起スペクトルの5.0%以下であることが好ましく、3.0%以下であることがより好ましく、1.0%以下であることが更に好ましい。
 第一の発明における第一乃至第七の実施態様では、波長変換部材に、本発明の効果を阻害しない範囲において、他の既知の蛍光体を加えることもでき、そのような態様についても本発明の範囲に含まれる。
 第一の発明における第一乃至第七の実施態様に係る波長変換部材は、透明材料を含む。透明材料としては、実質的に光を吸収することなく透過することができ、蛍光体を分散させる際に用いるものであれば特段限定されないが、1.3以上1.7以下の屈折率を有していることが好ましい。なお、透明材料の屈折率の測定方法は、以下の通りである。測定温度は20℃であり、プリズムカプラー法にて測定する。測定波長は450nmである。
 以下の表1に、透明材料として一般的に用いられる樹脂の屈折率を記載する。なお、表1における各樹脂の屈折率は一般的な参考値であり、各樹脂の屈折率が必ずしも表1における値に限定されるわけではない。
Figure JPOXMLDOC01-appb-T000002
 上述した透明材料として用いられるこれらの樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。また、これらの樹脂の共重合体であってもよい。
 透明材料としては、各種熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等の樹脂、ガラス等を用途に応じて使用することができるが、ポリカーボネート樹脂、及びシリコーン樹脂が、透明性、耐熱性、機械的特性、難燃性に優れる点で、好ましく使用でき、汎用性の観点からポリカーボネート樹脂がより好ましく、耐熱性の観点からはシリコーン樹脂が好ましい。
 以下に、ポリカーボネート樹脂について詳細に説明する。
 第一の発明における第一乃至第七の実施態様に用いられるポリカーボネート樹脂は、下記の一般的な化学式(1)で表される、炭酸結合を有する基本構造の重合体である。
Figure JPOXMLDOC01-appb-C000003
 化学式(1)中、X1は一般には炭化水素であるが、種々の特性付与のためヘテロ原子、ヘテロ結合の導入されたX1を用いてもよい。
 また、ポリカーボネート樹脂は、炭酸結合に直接結合する炭素がそれぞれ芳香族炭素である芳香族ポリカーボネート樹脂、及び脂肪族炭素である脂肪族ポリカーボネート樹脂に分類できるが、いずれを用いることもできる。なかでも、耐熱性、機械的物性、電気的特性等の観点から、芳香族ポリカーボネート樹脂が好ましい。
 ポリカーボネート樹脂の具体的な種類に制限はないが、例えば、ジヒドロキシ化合物とカーボネート前駆体とを反応させてなるポリカーボネート重合体が挙げられる。この際、ジヒドロキシ化合物及びカーボネート前駆体に加えて、ポリヒドロキシ化合物等を反応させるようにしてもよい。また、二酸化炭素をカーボネート前駆体として、環状エーテルと反応させる方法も用いてもよい。また、ポリカーボネート重合体は、直鎖状でもよく、分岐鎖状でもよい。さらに、ポリカーボネート重合体は1種の繰り返し単位からなる単独重合体であってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。このとき共重合体は、ランダム共重合体、ブロック共重合体等、種々の共重合形態を選択することができる。なお、通常、このようなポリカーボネート重合体は、熱可塑性の樹脂となる。
 芳香族ポリカーボネート樹脂の原料となるモノマーのうち、芳香族ジヒドロキシ化合物の例を挙げると、1,2-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン(即ち、レゾルシノール)、1,4-ジヒドロキシベンゼン等のジヒドロキシベンゼン類;2,5-ジヒドロキシビフェニル、2,2'-ジヒドロキシビフェニル、4,4'-ジヒドロキシビフェニル等のジヒドロキシビフェニル類;2,2'-ジヒドロキシ-1,1'-ビナフチル、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等のジヒドロキシナフタレン類;2,2'-ジヒドロキシジフェニルエーテル、3,3'-ジヒドロキシジフェニルエーテル、4,4'-ジヒドロキシジフェニルエーテル、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルエーテル、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類;2,2-ビス(4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)、1,1-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、2-(4-ヒドロキシフェニル)-2-(3-メトキシ-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2-(4-ヒドロキシフェニル)-2-(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、α,α’-ビス(4-ヒドロキシフェニル)-1,4-ジイソプロピルベンゼン、1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシフェニル)シクロヘキシルメタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)(4-プロペニルフェニル)メタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1-ビス(4-ヒドロキシフェニル)エタン、2-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-1-ナフチルエタン、1-ビス(4-ヒドロキシフェニル)ブタン、2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、1-ビス(4-ヒドロキシフェニル)オクタン、2-ビス(4-ヒドロキシフェニル)オクタン、1-ビス(4-ヒドロキシフェニル)ヘキサン、2-ビス(4-ヒドロキシフェニル)ヘキサン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)ノナン、10-ビス(4-ヒドロキシフェニル)デカン、1-ビス(4-ヒドロキシフェニル)ドデカン等のビス(ヒドロキシアリール)アルカン類;1-ビス(4-ヒドロキシフェニル)シクロペンタン、1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3-ジメチルシクロヘキサン、1-ビス(4-ヒドロキシフェニル)-3,4-ジメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5-ジメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-プロピル-5-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-tert-ブチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-tert-ブチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-フェニルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-フェニルシクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン類;9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;4,4'-ジヒドロキシジフェニルスルホキシド、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類等が挙げられる。
 これらの中でもビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4-ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の点から2,2-ビス(4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)が好ましい。
 なお、芳香族ジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 また、脂肪族ポリカーボネート樹脂の原料となるモノマーの例を挙げると、エタン-1,2-ジオール、プロパン-1,2-ジオール、プロパン-1,3-ジオール、2,2-ジメチルプロパン-1,3-ジオール、2-メチル-2-プロピルプロパン-1,3-ジオール、ブタン-1,4-ジオール、ペンタン-1,5-ジオール、ヘキサン-1,6-ジオール、デカン-1,10-ジオール等のアルカンジオール類;シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,4-ジオール、1,4-シクロヘキサンジメタノール、4-(2-ヒドロキシエチル)シクロヘキサノール、2,2,4,4-テトラメチル-シクロブタン-1,3-ジオール等のシクロアルカンジオール類;2,2'-オキシジエタノール(即ち、エチレングリコール)、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、スピログリコール等のグリコール類;1,2-ベンゼンジメタノール、1,3-ベンゼンジメタノール、1,4-ベンゼンジメタノール、1,4-ベンゼンジエタノール、1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、2,3-ビス(ヒドロキシメチル)ナフタレン、1,6-ビス(ヒドロキシエトキシ)ナフタレン、4,4'-ビフェニルジメタノール、4,4'-ビフェニルジエタノール、1,4-ビス(2-ヒドロキシエトキシ)ビフェニル、ビスフェノールAビス(2-ヒドロキシエチル)エーテル、ビスフェノールSビス(2-ヒドロキシエチル)エーテル等のアラルキルジオール類;1,2-エポキシエタン(即ち、エチレンオキシド)、1,2-エポキシプロパン(即ち、プロピレンオキシド)、1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,4-エポキシシクロヘキサン、1-メチル-1,2-エポキシシクロヘキサン、2,3-エポキシノルボルナン、1,3-エポキシプロパン等の環状エーテル類が挙げられ、これらは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 芳香族ポリカーボネート樹脂の原料となるモノマーのうち、カーボネート前駆体の例を挙げると、カルボニルハライド、カーボネートエステル等が挙げられる。なお、カーボネート前駆体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 カルボニルハライドとしては、具体的には例えば、ホスゲンや、ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。
 カーボネートエステルとしては、具体的には例えば、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;ジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。
 ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。以下、これらの方法のうち特に好適な、界面重合法及び溶融エステル交換法について具体的に説明する。
(界面重合法)
 界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、ジヒドロキシ化合物とカーボネート前駆体(好ましくは、ホスゲン)とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。なお、反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させるようにしてもよく、ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させるようにしてもよい。
 ジヒドロキシ化合物及びカーボネート前駆体は、前述のとおりである。なお、カーボネート前駆体の中でもホスゲンを用いることが好ましく、ホスゲンを用いた場合の方法は特にホスゲン法と呼ばれる。
 反応に不活性な有機溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。なお、有機溶媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 アルカリ水溶液に含有されるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物が挙げられるが、中でも水酸化ナトリウム及び水酸化カリウムが好ましい。なお、アルカリ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 アルカリ水溶液中のアルカリ化合物の濃度に制限はないが、通常、反応のアルカリ水溶液中のpHを10~12にコントロールするために、5~10重量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10~12、好ましくは10~11になる様にコントロールするために、ビスフェノール化合物とアルカリ化合物とのモル比を、通常1:1.9以上、中でも1:2.0以上、また、通常1:3.2以下、中でも1:2.5以下とすることが好ましい。
 重合触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の脂肪族三級アミン;N,N’-ジメチルシクロヘキシルアミン、N,N’-ジエチルシクロヘキシルアミン等の脂環式三級アミン;N,N’-ジメチルアニリン、N,N’-ジエチルアニリン等の芳香族三級アミン;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩、ピリジン、グアニン、グアニジンの塩等が挙げられる。なお、重合触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 分子量調整剤としては、例えば、一価のフェノール性水酸基を有する芳香族フェノール;メタノール、ブタノールなどの脂肪族アルコール、メルカプタン、フタル酸イミド等が挙げられるが、中でも芳香族フェノールが好ましい。このような芳香族フェノールとしては、具体的に、m-メチルフェノール、p-メチルフェノール、m-プロピルフェノール、p-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等のアルキル基置換フェノール;イソプロパニルフェノール等のビニル基含有フェノール、エポキシ基含有フェノール、o-オキシン安息香酸、2-メチル-6-ヒドロキシフェニル酢酸等のカルボキシル基含有フェノール等が挙げられる。なお、分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 分子量調整剤の使用量は、ジヒドロキシ化合物100モルに対して、通常0.5モル以上、好ましくは1モル以上であり、また、通常50モル以下、好ましくは30モル以下である。分子量調整剤の使用量をこの範囲とすることで、ポリカーボネート樹脂組成物の熱安定性及び耐加水分解性を向上させることができる。
 反応の際に、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。例えば、カーボネート前駆体としてホスゲンを用いた場合には、分子量調節剤はジヒドロキシ化合物とホスゲンとの反応(ホスゲン化)の時から重合反応開始時までの間であれば任意の時期に混合できる。なお、反応温度は通常0~40℃であり、反応時間は通常は数分(例えば、10分)~数時間(例えば、6時間)である。
(溶融エステル交換法)
 溶融エステル交換法では、例えば、炭酸ジエステルとジヒドロキシ化合物とのエステル交換反応を行う。
 ジヒドロキシ化合物は、前述の通りである。一方、炭酸ジエステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ-tert-ブチルカーボネート等の炭酸ジアルキル化合物;ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネートなどが挙げられる。中でも、ジフェニルカーボネート及び置換ジフェニルカーボネートが好ましく、特にジフェニルカーボネートが好ましい。なお、炭酸ジエステルは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 ジヒドロキシ化合物と炭酸ジエステルとの比率は所望のポリカーボネート樹脂が得られる限り任意であるが、ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用いることが好ましく、中でも1.01モル以上用いることがより好ましい。なお、上限は通常1.30モル以下である。このような範囲にすることで、末端水酸基量を好適な範囲に調整できる。
 ポリカーボネート樹脂では、その末端水酸基量が熱安定性、加水分解安定性、色調等に大きな影響を及ぼす傾向がある。このため、公知の任意の方法によって末端水酸基量を必要に応じて調整してもよい。エステル交換反応においては、通常、炭酸ジエステルと芳香族ジヒドロキシ化合物との混合比率、エステル交換反応時の減圧度などを調整することにより、末端水酸基量を調整したポリカーボネート樹脂を得ることができる。なお、この操作により、通常は得られるポリカーボネート樹脂の分子量を調整することもできる。
 炭酸ジエステルとジヒドロキシ化合物との混合比率を調整して末端水酸基量を調整する場合、その混合比率は前記の通りである。また、より積極的な調整方法としては、反応時に別途、末端停止剤を混合する方法が挙げられる。この際の末端停止剤としては、例えば、一価フェノール類、一価カルボン酸類、炭酸ジエステル類などが挙げられる。なお、末端停止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は任意のものを使用できる。なかでも、例えばアルカリ金属化合物及び/又はアルカリ土類金属化合物を用いることが好ましい。また補助的に、例えば塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物などの塩基性化合物を併用してもよい。なお、エステル交換触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 溶融エステル交換法において、反応温度は通常100~320℃である。また、反応時の圧力は通常2mmHg以下の減圧条件である。具体的操作としては、前記の条件で、芳香族ヒドロキシ化合物等の副生成物を除去しながら、溶融重縮合反応を行えばよい。
 溶融重縮合反応は、バッチ式、連続式の何れの方法でも行うことができる。バッチ式で行う場合、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望の芳香族ポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。ただし中でも、ポリカーボネート樹脂及びポリカーボネート樹脂組成物の安定性等を考慮すると、溶融重縮合反応は連続式で行うことが好ましい。
 溶融エステル交換法においては、必要に応じて、触媒失活剤を用いてもよい。触媒失活剤としてはエステル交換触媒を中和する化合物を任意に用いることができる。その例を挙げると、イオウ含有酸性化合物及びその誘導体などが挙げられる。なお、触媒失活剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 触媒失活剤の使用量は、前記のエステル交換触媒が含有するアルカリ金属又はアルカリ土類金属に対して、通常0.5当量以上、好ましくは1当量以上であり、また、通常10当量以下、好ましくは5当量以下である。更には、芳香族ポリカーボネート樹脂に対して、通常1ppm以上であり、また、通常100ppm以下、好ましくは20ppm以下である。
 ポリカーボネート樹脂の分子量は任意であり、適宜選択して決定すればよいが、溶液粘度から換算した粘度平均分子量[Mv]は、通常10,000以上、好ましくは16,000以上、より好ましくは18,000以上であり、また、通常40,000以下、好ましくは30,000以下である。粘度平均分子量を前記範囲の下限値以上とすることにより本発明のポリカーボネート樹脂組成物の機械的強度をより向上させることができ、機械的強度の要求の高い用途に用いる場合により好ましいものとなる。一方、粘度平均分子量を前記範囲の上限値以下とすることにより本発明のポリカーボネート樹脂組成物の流動性低下を抑制して改善でき、成形加工性を高めて成形加工を容易に行えるようになる。なお、粘度平均分子量の異なる2種類以上のポリカーボネート樹脂を混合して用いてもよく、この場合には、粘度平均分子量が上記の好適な範囲外であるポリカーボネート樹脂を混合してもよい。
 なお、粘度平均分子量[Mv]とは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10-4Mv0.83から算出される値を意味する。また極限粘度[η]とは、各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記数式(1)により算出した値である。
Figure JPOXMLDOC01-appb-M000004
 ポリカーボネート樹脂の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常1,000ppm以下、好ましくは800ppm以下、より好ましくは600ppm以下である。これにより本発明のポリカーボネート樹脂組成物の滞留熱安定性及び色調をより向上させることができる。また、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。これにより、分子量の低下を抑制し、本発明のポリカーボネート樹脂組成物の機械的特性をより向上させることができる。なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の重量に対する、末端水酸基の重量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。
 ポリカーボネート樹脂は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 ポリカーボネート樹脂は、ポリカーボネート樹脂単独(ポリカーボネート樹脂単独とは、ポリカーボネート樹脂の1種のみを含む態様に限定されず、例えば、モノマー組成や分子量が互いに異なる複数種のポリカーボネート樹脂を含む態様を含む意味で用いる。)で用いてもよく、ポリカーボネート樹脂と他の熱可塑性樹脂とのアロイ(混合物)とを組み合わせて用いてもよい。さらに、例えば、難燃性や耐衝撃性をさらに高める目的で、ポリカーボネート樹脂を、シロキサン構造を有するオリゴマーまたはポリマーとの共重合体;熱酸化安定性や難燃性をさらに向上させる目的でリン原子を有するモノマー、オリゴマーまたはポリマーとの共重合体;熱酸化安定性を向上させる目的で、ジヒドロキシアントラキノン構造を有するモノマー、オリゴマーまたはポリマーとの共重合体;光学的性質を改良するためにポリスチレン等のオレフィン系構造を有するオリゴマーまたはポリマーとの共重合体;耐薬品性を向上させる目的でポリエステル樹脂オリゴマーまたはポリマーとの共重合体等の、ポリカーボネート樹脂を主体とする共重合体として構成してもよい。他の熱可塑性樹脂と組み合わせて用いる場合は、樹脂成分中のポリカーボネート樹脂の割合が50重量%以上であることが好ましく、60重量%以上であることがより好ましく、70重量%以上であることがさらに好ましい。
 また、成形品の外観の向上や流動性の向上を図るため、ポリカーボネート樹脂は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量[Mv]は、通常1,500以上、好ましくは2,000以上であり、また、通常9,500以下、好ましくは9,000以下である。さらに、含有されるポリカーボネートリゴマーは、ポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)の30重量%以下とすることが好ましい。
 さらに、ポリカーボネート樹脂は、バージン原料だけでなく、使用済みの製品から再生されたポリカーボネート樹脂(いわゆるマテリアルリサイクルされたポリカーボネート樹脂)であってもよい。前記の使用済みの製品としては、例えば、光学ディスク等の光記録媒体;導光板;自動車窓ガラス、自動車ヘッドランプレンズ、風防等の車両透明部材;水ボトル等の容器;メガネレンズ;防音壁、ガラス窓、波板等の建築部材などが挙げられる。また、製品の不適合品、スプルー、ランナー等から得られた粉砕品またはそれらを溶融して得たペレット等も使用可能である。
 ただし、再生されたポリカーボネート樹脂は、本発明のポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂のうち、80重量%以下であることが好ましく、中でも50重量%以下であることがより好ましい。再生されたポリカーボネート樹脂は、熱劣化や経年劣化等の劣化を受けている可能性が高いため、このようなポリカーボネート樹脂を前記の範囲よりも多く用いた場合、色相や機械的物性を低下させる可能性があるためである。
 上述した透明材料には、本発明の特性を損なわない範囲において必要に応じて公知の各種添加剤を含有させることができる。例えば、熱安定剤、酸化防止剤、離型剤、難燃剤、難燃助剤、紫外線吸収剤、滑剤、光安定剤、可塑剤、帯電防止剤、熱伝導性改良剤、導電性改良剤、着色剤、耐衝撃性改良剤、抗菌剤、耐薬品性改良剤、強化剤、レーザーマーキング改良剤、屈折率調整剤などが挙げられる。これらの添加剤の具体的な種類や量は、透明材料に対して公知の好適なものを選択することができる。
 ここで、ポリカーボネート樹脂に配合する好ましい添加剤について例示する。
 熱安定剤としては、例えばリン系化合物が挙げられる。リン系化合物としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第10族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられる。
 なかでも、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等の有機ホスファイトが好ましい。
 熱安定剤の含有量は、ポリカーボネート樹脂100重量部に対して、通常0.0001重量部以上、好ましくは0.001重量部以上、より好ましくは0.01重量部以上であり、また、通常1重量部以下、好ましくは0.5重量部以下、より好ましくは0.3重量部以下、さらに好ましくは0.1重量部以下である。熱安定剤が少なすぎると熱安定性改良効果が得難く、多すぎると逆に熱安定性が低下する場合がある。
 酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤が挙げられる。その具体例としては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N'-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオナミド)、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフォエート、3,3’,3’’,5,5’,5’’-ヘキサ-tert-ブチル-a,a’,a’’-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール等が挙げられる。
 なかでも、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましい。
 酸化防止剤の含有量は、ポリカーボネート樹脂100重量部に対して、通常0.001重量部以上、好ましくは0.01重量部以上であり、また、通常1重量部以下、好ましくは0.5重量部以下、より好ましくは0.3重量部以下である。酸化防止剤の含有量が前記範囲の下限値未満の場合は、酸化防止剤としての効果が不十分となる可能性があり、酸化防止剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。
 離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15,000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが挙げられる。
 脂肪族カルボン酸としては、例えば、飽和または不飽和の脂肪族一価、二価または三価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で好ましい脂肪族カルボン酸は炭素数6~36の一価または二価カルボン酸であり、炭素数6~36の脂肪族飽和一価カルボン酸がさらに好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。
 脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、例えば、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、例えば、飽和または不飽和の一価または多価アルコールが挙げられる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の一価または多価の飽和アルコールが好ましく、炭素数30以下の脂肪族又は脂環式飽和一価アルコールまたは脂肪族飽和多価アルコールがさらに好ましい。
 かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。
 脂肪族カルボン酸とアルコールとのエステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。
 数平均分子量200~15,000の脂肪族炭化水素化合物としては、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックス、フィッシャ-トロプシュワックス、炭素数3~12のα-オレフィンオリゴマー等が挙げられる。なお、ここで脂肪族炭化水素としては、脂環式炭化水素も含まれる。
 これらの中では、パラフィンワックス、ポリエチレンワックスまたはポリエチレンワックスの部分酸化物が好ましく、パラフィンワックス、ポリエチレンワックスがさらに好ましい。
 また、前記の脂肪族炭化水素の数平均分子量は、好ましくは5,000以下である。
 ポリシロキサン系シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、フェニルメチルシリコーンオイル、ジフェニルシリコーンオイル、フッ素化アルキルシリコーン等が挙げられる。
 離型剤の含有量は、ポリカーボネート樹脂100重量部に対して、通常0.001重量部以上、好ましくは0.01重量部以上であり、また、通常5重量部以下、好ましくは3重量部以下、より好ましくは1重量部以下、さらに好ましくは0.5重量部以下である。離型剤の含有量が前記範囲の下限値未満の場合は、離型性の効果が十分でない場合があり、離型剤の含有量が前記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。
 難燃剤としては、例えば、ハロゲン系、リン系、有機酸金属塩系、シリコーン系、有機ハロゲン化合物、アンチモン化合物、リン化合物、窒素化合物等の有機難燃剤及び無機難燃剤、難燃助剤としては、フッ素樹脂系難燃助剤が挙げられる。
 難燃剤及び難燃助剤は併用することも可能であり、また、複数を組み合わせて使用することもできる。中でも好ましいのは、リン系難燃剤、有機酸金属塩系難燃剤、フッ素樹脂系難燃助剤である。
 リン系難燃剤としては芳香族リン酸エステルやリン原子と窒素原子の結合を主鎖に有するフェノキシホスファゼン、アミノホスファゼン等のホスファゼン化合物が挙げられる。
 前記芳香族リン酸エステル系難燃剤の具体例としては、トリフェニルホスフェ-ト、レゾルシノールビス(ジキシレニルホスフェ-ト)、ハイドロキノンビス(ジキシレニルホスフェ-ト)、4,4'-ビフェノールビス(ジキシレニルホスフェ-ト)、ビスフェノールAビス(ジキシレニルホスフェ-ト)、レゾルシノールビス(ジフェニルホスフェ-ト)、ハイドロキノンビス(ジフェニルホスフェ-ト)、4,4'-ビフェノールビス(ジフェニルホスフェ-ト)、ビスフェノールAビス(ジフェニルホスフェ-ト)等が挙げられる。難燃剤の含有量は、樹脂100重量部に対し、通常0.01~30重量部である。
 有機酸金属塩系難燃剤としては、有機スルホン酸金属塩が好ましく含フッ素の有機スルホン酸金属塩が特に好ましく、具体的にはパーフルオロブタンスルホン酸カリウム等を例示できる。
 有機ハロゲン化合物としては、例えば、臭素化ポリカーボネート、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、臭素化ポリフェニレンエーテル樹脂、臭素化ポリスチレン樹脂、臭素化ビスフェノールA、ペンタブロモベンジルポリアクリレート等が挙げられる。アンチモン化合物としては、例えば、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム等が挙げられる。窒素系化合物としては、例えば、メラミン、シアヌル酸、シアヌル酸メラミン等が挙げられる。無機難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ケイ素化合物、ホウ素化合物等が挙げられる。
 フッ素系難燃助剤としては、フルオロオレフィン樹脂が好ましく、フィブリル構造を有するテトラフルオロエチレン樹脂が例示できる。フッ素系難燃助剤はパウダー状でもディスパージョン状でも、フッ素樹脂を別の樹脂で被覆したパウダー状でも何れの形態であってもよい。
 紫外線吸収剤としては、例えば、酸化セリウム、酸化亜鉛などの無機紫外線吸収剤;ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリシレート化合物、シアノアクリレート化合物、トリアジン化合物、オギザニリド化合物、マロン酸エステル化合物、ヒンダードアミン化合物などの有機紫外線吸収剤などが挙げられる。これらのうち、有機紫外線吸収剤が好ましく、中でもベンゾトリアゾール化合物がより好ましい。有機紫外線吸収剤を選択することで、本発明のポリカーボネート樹脂組成物の透明性や機械物性が良好なものになる傾向にある。
 ベンゾトリアゾール化合物の具体例としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-[2’-ヒドロキシ-3’,5’-ビス(α,α-ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチル-フェニル)-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチル-フェニル)-5-クロロベンゾトリアゾール)、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミル)-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾール-2-イル)フェノール]等が挙げられ、なかでも2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2'-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾール-2-イル)フェノール]が好ましく、特に2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾールが好ましい。
 このようなベンゾトリアゾール化合物としては、具体的には例えば、シプロ化成社製(商品名、以下同じ)「シーソーブ701」、「シーソーブ702」、「シーソーブ703」、「シーソーブ704」、「シーソーブ705」、「シーソーブ709」、共同薬品社製「バイオソーブ520」、「バイオソーブ580」、「バイオソーブ582」、「バイオソーブ583」、ケミプロ化成社製「ケミソーブ71」、「ケミソーブ72」、サイテックインダストリーズ社製「サイアソーブUV5411」、アデカ社製「LA-32」、「LA-38」、「LA-36」、「LA-34」、「LA-31」、チバ・スペシャルティ・ケミカルズ社製「チヌビンP」、「チヌビン234」、「チヌビン326」、「チヌビン327」、「チヌビン328」等が挙げられる。
 紫外線吸収剤の好ましい含有量は、ポリカーボネート樹脂100重量部に対して、0.01重量部以上、より好ましくは0.1重量部以上であり、また、5重量部以下、好ましくは3重量部以下、より好ましくは1重量部以下、さらに好ましくは0.5重量部以下である。紫外線吸収剤の含有量が前記範囲の下限値未満の場合は、耐候性の改良効果が不十分となる可能性があり、紫外線吸収剤の含有量が前記範囲の上限値を超える場合は、モールドデボジット等が生じ、金型汚染を引き起こす可能性がある。なお、紫外線吸収剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 次に、シリコーン樹脂について詳細に説明する。
 第一の発明における第一乃至第七の実施態様に用いられるシリコーン樹脂としては、特に制限はないが、可視光において吸収が少なければ少ないほど光の損失が少なくなり好ましい。また、液状シリコーン樹脂などが蛍光体との混合および波長変換部材への加工性という点で好ましい。特に液状シリコーン樹脂においては、ヒドロシリル化反応によって硬化する付加硬化タイプを用いることが、硬化時に副生成物が発生せず、金型内の圧力が異常に高くなることがないなどの問題がなく、成形品にヒケや気泡が生じにくい、さらには、硬化速度が速いため、成形サイクルを短くすることができるという点から特に好ましい。
 付加硬化タイプの液状シリコーン樹脂は、ヒドロシリル基を有するオルガノポリシロキサン(第1成分)、アルケニル基を有するオルガノポリシロキサン(第2成分)および硬化触媒を含有する。
 第1成分の典型例は分子内に2個以上のヒドロシリル基を有するポリジオルガノシロキサンであり、具体的には、両末端にヒドロシリル基を有するポリジオルガノシロキサン、両末端がトリメチルシリル基で封鎖されたポリメチルヒドロシロキサン、メチルヒドロシロキサン-ジメチルシロキサン共重合体等である。第2成分としては、1分子中にケイ素原子に結合したビニル基を少なくとも2個有するものが好ましく用いられる。第1成分と第2成分を兼用するオルガノポリシロキサン、すなわち、1分子中にヒドロシリル基とアルケニル基の両者を有するオルガノポリシロキサンが使用されることもある。また、第1成分および第2成分を単独で用いても良く2種以上の第1成分および/または第2成分を併用してもよい。
 硬化触媒は、第1成分中のヒドロシリル基と第2成分中のアルケニル基との付加反応を促進するための触媒であり、その例としては、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。硬化触媒は単独で用いてもよく2種以上を併用してもよい。
 さらに、シリコーン樹脂には、原料組成物にチキソトロピー性を付与する目的でフュームドシリカを添加することができる。
 フュームドシリカは50m2/g以上という大きな比表面積を有する超微粒子であり、市販されているものとしては、日本アエロジル(株)のアエロジル(登録商標)、旭化成ワッカーシリコーン(株)のWACKER HDK(登録商標)などが挙げられる。チキソトロピー性の付与は、蛍光体の沈降により原料組成物の組成が不均一化するのを防止するうえで有効である。
 特に、トリメチルシリル基、ジメチルシリル基、ジメチルシリコーン鎖などで表面修飾した疎水性フュームドシリカを用いると、過度な増粘を引き起こすことなく、原料組成物にチキシトロピー性を付与できる。換言すれば、射出成形に適した高い流動性と、蛍光体の沈降防止効果の両方を備えた原料組成物を得ることができる。
 フュームドシリカの添加量に特に制限はないが、シリコーン樹脂100重量部に対して通常0.1重量部以上、好ましくは0.5重量部以上、特に好ましくは1重量部以上であり、通常20重量部以下、好ましく18重量部以下、特に好ましくは15重量部以下である。0.1重量部より少ないと、射出成形に適した高い流動性と、蛍光体の沈降防止効果を十分に得られず、好ましくなく、20重量部より多いと、粘度高く射出成形時に十分な流動性が得られず好ましくない。
 その他、原料組成物には必要に応じて、硬化速度制御剤、老化防止剤、ラジカル禁止剤、紫外線吸収剤、接着性改良剤、難燃剤、界面活性剤、保存安定性改良剤、オゾン劣化防止剤、光安定剤、可塑剤、カップリング剤、酸化防止剤、熱安定剤、帯電防止剤、離型剤などの添加物を加えることができる。
 第一の発明における第一乃至第七の実施態様の波長変換部材は、拡散材を含有してもよい。拡散材を含有することで、波長変換部材に光拡散性を発現させることが可能である。
 拡散材を含有する場合は、無機系光拡散材、有機系光拡散材又は気泡を含有することが好ましい。
 無機系光拡散材の具体例としては、二酸化ケイ素(シリカ)、ホワイトカーボン、溶融シリカ、タルク、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化ホウ素、窒化ホウ素、窒化アルミニウム、窒化珪素、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、硫酸バリウム、珪酸カルシウム、珪酸マグネシウム、珪酸アルミニウム、珪酸アルミ化ナトリウム、珪酸亜鉛、硫化亜鉛、ガラス粒子、ガラス繊維、ガラスフレーク、マイカ、ワラストナイト、ゼオライト、セピオライト、ベントナイト、モンモリロナイト、ハイドロタルサイト、カオリン、チタン酸カリウム等の材料が挙げられる。
 これらの無機系光拡散材は、シランカップリング剤、チタネートカップリング剤、メチルハイドロジェンポリシロキサン、脂肪酸含有炭化水素化合物等の各種表面処理剤で処理されたものであっても良く、表面を不活性な無機化合物で被覆されたものでもよい。
 有機系光拡散材としては、スチレン系(共)重合体、アクリル系(共)重合体、シロキサン系(共)重合体、ポリアミド系(共)重合体等の材料が挙げられる。これら、有機系拡散材の分子の一部又は全部は、架橋していても架橋していなくてもよい。ここで、「(共)重合体」とは「重合体」及び「共重合体」の双方を意味する。
 拡散材としては、シリカ、ガラス、炭酸カルシウム、マイカ、架橋アクリル系(共)重合体粒子、シロキサン系(共)重合体粒子からなる群から選択される少なくとも1種を含むことが好ましい。また、さらに平均粒子径が1μm以上であることが好ましく、30μm以下であることが好ましい。なお、平均粒子径は、積算重量百分率、粒度分布計等により測定した粒子径である。
 また、拡散材としては、モース硬度が8未満であることが好ましく、7未満であることが更に好ましい。このような硬度の拡散材を用いることで、成形体の変色が抑えられ、また、容器を傷つけることなく不純物が混じらない。
 また、拡散材としては、その長径Lと短径Dとの比L/Dが200以下であることが好ましい。このような範囲の拡散材を用いることで、成形体の変色が抑えられ、また、容器を傷つけることなく不純物が混じらない。L/Dは50以下であることがより好ましい。
 また拡散材により波長変換部材の透過率を調整する際には、例えば、平均粒子径が小さい拡散材を添加する、透明材料との屈折率差が大きい拡散材を添加する、あるいは、拡散材の添加量を増やすことにより波長変換部材の透過率を下げることによる調整ができる。拡散材の平均粒子径は通常100μm以下で、好ましくは0.1~30μmであり、より好ましくは0.1~15μm、更に好ましくは1~5μmである。
 上述した材料のうち、少量で光拡散効果を大きくするためには、透明材料の屈折率と選択した拡散材の屈折率との差が大きい材料を選ぶことが好ましい。また、発光効率を大きく低下させないためには、高い透明性を有している材料を選ぶことが好ましい。
 例えば、透明材料がポリカーボネート樹脂の場合、拡散材としては架橋アクリル系(共)重合体粒子、アクリル系化合物とスチレン系化合物の共重合体の架橋粒子、シロキサン系(共)重合体粒子、アクリル系化合物とケイ素原子を含む化合物のハイブリッド型架橋粒子を用いることが好ましく、架橋アクリル系(共)重合体粒子、シロキサン系(共)重合体粒子を用いることがより好ましい。
 架橋アクリル系(共)重合体粒子としては、非架橋性アクリルモノマーと架橋性モノマーからなる重合体粒子がより好ましく、メチルメタクリレートとトリメチロールプロパントリ(メタ)アクリレートが架橋した重合体粒子がさらに好ましい。シロキサン系(共)重合体としては、ポリオルガノシルセスキオキサン粒子がより好ましく、ポリメチルシルセキスキオキサン粒子がさらに好ましい。
 本発明においては、とりわけポリメチルシルセスキオキサン粒子が、熱安定性に優れる点で好ましい。
 波長変換部材中での拡散材の分散形状は、略球状、板状、針状、不定形の何れでもよいが、光散乱効果に異方性がない点で、略球状であることが好ましい。拡散材の平均的な寸法は、通常100μm以下であり、好ましくは30μm以下であり、より好ましくは10μm以下であり、また、通常0.01μm以上であり、好ましくは0.1μm以上である。拡散材の平均的な寸法が上記範囲から外れる場合は、拡散材の微妙な含有量の差異や粒子径の差異によって光拡散性が大きく変動しやすくなり、光拡散性を安定的にコントロールすることが難しくなり、本発明で必要とされる十分な光拡散性を発揮することが困難となる場合がある。また、これにより、結果的に波長変換効率を好ましい範囲で安定制御することが難しくなる可能性が生じる。ここで、拡散材の平均的な寸法とは、体積基準による50%平均寸法であり、レーザー又は回折散乱法によって測定される体積基準粒度分布のメジアン径(D50)の値である。
 また、拡散材の粒径分布は、単分散系でも、幾つかのピークトップを有する多分散系であってもよく、また、1つのピークトップであって、その粒径分布が狭くても広くてもよいが、好ましくは粒径分布が狭くほぼ単一の粒径であること(単分散又は単分散に近い粒径分布)が好ましい。
 拡散材の粒子径の分布の度合いを示す指標としては、拡散材の体積基準の平均粒子径Dvと個数基準の平均粒子径Dnの比(Dv/Dn)がある。本願発明においては、Dv/Dnが1.0以上であることが好ましい。一方で、Dv/Dnが5以下であることが好ましい。Dv/Dnが大きすぎる場合には重量が大きく異なる拡散材が存在することになり、波長変換部材中において拡散材の分散が不均一となる傾向がある。
 上述した拡散材として用いられる無機系光拡散材、有機系光拡散材、及び気泡は、1種類を単独で用いてもよく、材質や寸法の異なるものを2種類以上組み合わせて用いてもよい。2種類以上を組み合わせて用いる場合に、拡散材の屈折率は、複数の拡散材の体積平均によって算出される。
 拡散材の屈折率は、1.0以上1.9以下であることが好ましい。また、拡散材は、透明性が高く、光透過性に優れることが好ましく、例えば、消衰係数が10-2以下であってもよく、好ましくは10-3以下であり、更に好ましくは10-4以下であり、特に好ましくは10-6以下である。なお、拡散材の屈折率は、YOSHIYAMAらの液浸法(エアロゾル研究 Vol.9, No.1 Spring pp.44-50 (1994))によって測定することができる。測定温度は20℃、測定波長は450nmである。
 以下の表2に、拡散材として一般的に用いられる材料の屈折率を記載する。なお、表2における各材料の屈折率は一般的な参考値であり、各材料の屈折率が必ずしも表2における値に限定されるわけではない。
Figure JPOXMLDOC01-appb-T000005
 波長変換部材中の拡散材の含有量は、透明材料の種類にもよるが、例えば、透明材料がポリカーボネート樹脂で、拡散材がポリメチルシルセスキオキサン粒子である場合、ポリカーボネート樹脂100重量部に対して、通常0.1重量部以上、好ましくは0.3重量部以上、より好ましくは0.5重量部以上であり、また、通常10.0重量部以下、好ましくは7.0重量部以下、より好ましくは3.0重量部以下である。拡散材の含有量が少なすぎると拡散効果が不十分となり、多すぎると機械的特定が低下する場合があり好ましくない。
 本発明の第二の発明は、波長変換部材に係る発明であり、その第一の実施態様は、
 下記一般式(Y1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下である蛍光体Yと、
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(Y1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 下記一般式(G1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gと、
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(G1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 透明材料と、を含む、波長変換部材である。
 第二の発明おける第一乃至第六の実施態様に係る波長変換部材は、励起光を一部または全部吸収し、他の波長へと変換することができる部材である。波長変換部材の構成については、それぞれ、第一の発明における第一乃至第六の実施態様の説明が適用される。
 波長変換部材の製造方法は特に限定されず、公知の手法を用いればよい。例えば、透明材料がポリカーボネート樹脂の場合の一般的な製造方法は次の通りである。
 ポリカーボネート樹脂に蛍光体、及び必要に応じて配合される拡散材などのその他の成分を加え、タンブラーミキサーやヘンシェルミキサーなどの各種混合機で混合する。混合は全原料一括混合でも、幾つかの原料を分割して混合してもよい。その後に、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどで溶融混練して樹脂組成物ペレットを得る。
 透明材料がポリカーボネート樹脂の場合で、気泡以外の拡散材を含有させる場合について、さらに詳しく好ましい条件を例示する。
 ポリカーボネート樹脂と蛍光体、拡散材、その他添加剤をタンブラーミキサーで混合後、単軸或いは二軸押出機を用いて溶融混練する。溶融混練条件としては、剪段力を加え過ぎない様に、スクリューとして順送りのフライトスクリューエレメントを中心に構成されたスクリューを使用する。逆送りのフライトスクリュー、ニーディングスクリューエレメントなどの剪段力を強く負荷するスクリューエレメントの多用は、樹脂の変色を招き好ましくない。また、蛍光体が固い場合、スクリュー、シリンダーの材質として、削れ難い耐摩処理の施された材質のものを用いることが好ましい。
 また、混練温度は230~340℃の範囲が好ましい。実測樹脂温度として340℃を超えると変色しやすくなるため好ましくなく、樹脂温度が230℃未満ではポリカーボネート樹脂の溶融粘度が高過ぎて押出機への機械的負荷が大きくなり好ましくない。特に好ましい混練温度は240~300℃の範囲である。
 スクリュー回転数、吐出量は生産速度、押出機への負荷、樹脂ペレットの状態を鑑みて適宜選択すればよい。また、押出機には原料と共に巻き込んだ空気、加熱により発生したガスを押出機系外に放出するベント構造を1カ所以上設置することが好ましい。
 以上により得られたポリカーボネート樹脂組成物ペレットを用いて、波長変換部材を成形する。
 波長変形部材の成形方法は特段限定されず、要求される仕様に従い、公知の方法により成形すれば良い。例えば、シート・フィルムなどの押出成形、異型押出成形、真空成形、射出成形、ブロー成形、インジェクションブロー成形、回転成形、発泡成形などが挙げられる。中でも、射出成形法を採用することが好ましい。さらに、必要に応じてその成形体を更に溶着、接着、切削など加工することもできる。また、拡散材が気泡の場合は、発泡剤配合、窒素ガス注入、超臨界ガス注入などの手法により部材内に気泡を構成させればよい。
 波長変換部材は、蛍光体組成物のみから成形される波長変換部材の態様でもよく、ガラスやアクリル板などの透明基板上に蛍光体組成物を塗布することで成形し、波長変換部材としても良い。
 なお、上記ポリカーボネート樹脂組成物ペレットは、本発明の第三の発明である蛍光体組成物の一例である。
 本発明の第三の発明は、蛍光体組成物に係る発明であり、第三の発明における第一の実施態様は、
 下記一般式(Y1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下である蛍光体Yと、
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(Y1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 下記一般式(G1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gと、
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(G1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 透明材料と、を含む蛍光体組成物である。
 蛍光体組成物は、ペレット状のものに限られないが、流通性や取扱いの容易性からペレット状が好ましい。第三の発明における第一乃至第六の実施態様に係る蛍光体組成物を波長変換部材に成形する方法は、上記それぞれ第二の発明における第一乃至第六の実施態様の説明が適用され、また、蛍光体組成物の構成については、それぞれ第一の発明における第一乃至第七の実施態様の説明が適用される。
 また、本発明の第四の発明は、蛍光体混合物に係る発明であり、その第一の実施態様は、
 下記一般式(Y1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下である蛍光体Yと、
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(Y1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 下記一般式(G1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gを含む蛍光体混合物である。
  (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(G1)
  (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
 また、第二の実施態様として、
 蛍光波長540nmでの励起スペクトル強度変化率が、0.40以下であることが好ましい。
 上記蛍光体混合物の励起スペクトル強度変化率は、450nmにおける蛍光体混合物の励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。なお、励起スペクトル強度変化率は、発光波長540nmでの強度を用いて算出される。
 なお、励起スペクトル強度変化率は、蛍光体混合物の励起スペクトルを、室温(25℃)において、日立製作所製蛍光分光光度計F-4500を用いて測定することにより求めることができる。より具体的には、540nmの発光ピークをモニターして、430nm以上470nm以下の波長範囲内の励起スペクトルを得、さらに、励起波長450nmにおける励起スペクトル強度を1.0とし、励起波長を430nmから470nmまで変化させたときの、励起スペクトルの強度変化を算出することにより得られる。
 波長変換部材の発光波長540nmでの励起スペクトル強度変化率は、0.36以下とすることが好ましく、0.33以下とすることがより好ましい。この範囲とすることにより励起波長変化に応じた発光スペクトルの急激な変化が抑えられ、良好なビニング特性が得られる。また、励起スペクトル強度変化率は0.03以上であることが好ましく、0.05以上であることがより好ましい。励起スペクトルが0.03以下だと、励起波長が変化した場合の発光スペクトル強度は同一となるが、明所視感度が異なるため実質的には、輝度や色度が変化する場合があり好ましくない。
 また、第三の実施態様として、
 前記蛍光体Yが、下記一般式(Y2)で示される蛍光体であり、
 前記蛍光体Gが、下記一般式(G2)で示される蛍光体であり、
 発光波長540nmでの励起スペクトル強度変化率が0.30以下であることも好ましい。
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y2)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(G2)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、1.2≦c≦2.6、10.8≦e≦13.4)
 上記蛍光体混合物の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。なお、励起スペクトル強度変化率は、発光波長540nmでの強度を用いて算出される。
 なお、励起スペクトル強度変化率は、上記同様に測定することができる。より具体的には、540nmの発光ピークをモニターして、435nm以上470nm以下の波長範囲内の励起スペクトルを得、さらに、励起波長450nmにおける励起スペクトル強度を1.0とし、励起波長を435nmから470nmまで変化させたときの、励起スペクトルの強度変化を算出することにより得られる。
 波長変換部材の発光波長540nmでの励起スペクトル強度変化率は、0.28以下とすることが好ましく、0.25以下とすることがより好ましい。この範囲とすることにより励起波長変化に応じた発光スペクトルの急激な変化が抑えられ、良好なビニング特性が得られる。
 また、励起スペクトル強度は0.03以上であることが望ましく、0.05以上であることがより好ましい。
 また、蛍光体がYAG蛍光体である場合、半値幅が100nm以上130nm以下であることが、演色性の観点から好ましい。また、蛍光体GがGYAG蛍光体である場合、半値幅が105nm以上120nm以下であることが、演色性の観点から好ましい。
 また、第四の実施態様として、
 前記蛍光体Yが、下記一般式(Y3)で示される蛍光体であり、
 前記蛍光体Gが、下記一般式(G3)で示される蛍光体であり、
 発光波長540nmでの励起スペクトル強度変化率が0.25以下であることも好ましい。
  Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y3)
  (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
  Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G3)
  (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
 上記蛍光体混合物の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。なお、励起スペクトル強度変化率は、発光波長540nmでの強度を用いて算出される。
 なお、励起スペクトル強度変化率は、上記同様に測定することができる。より具体的には、540nmの発光ピークをモニターして、435nm以上465nm以下の波長範囲内の励起スペクトルを得、さらに、励起波長450nmにおける励起スペクトル強度を1.0とし、励起波長を435nmから465nmまで変化させたときの、励起スペクトルの強度変化を算出することにより得られる。
 波長変換部材の発光波長540nmでの励起スペクトル強度変化率は、0.23以下とすることが好ましく、0.20以下とすることがより好ましい。この範囲とすることにより励起波長変化に応じた発光スペクトルの急激な変化が抑えられ、良好なビニング特性が得られる。
 また、励起スペクトル強度変化率は0.03以上であることが好ましく、0.05以上であることがより好ましい。
 また、蛍光体がYAG蛍光体である場合、半値幅が100nm以上130nm以下であることが、演色性の観点から好ましい。また、蛍光体GがLuAG蛍光体である場合、半値幅が30nm以上120nm以下であることが、演色性の観点から好ましい。
 また、第五の実施態様は、
 下記一般式(G4)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gを含む、蛍光体混合物であって、
 該蛍光体混合物の発光波長540nmでの励起スペクトル変化率が0.25以下である、蛍光体混合物である。
  Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G4)
  (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
 但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
 なお、励起スペクトル強度変化率は、蛍光体混合物の励起スペクトルを、室温(25℃)において、日立製作所製蛍光分光光度計F-4500を用いて測定することにより求めることができる。より具体的には、540nmの発光ピークをモニターして、435nm以上465nm以下の波長範囲内の励起スペクトルを得、さらに、励起波長450nmにおける励起スペクトル強度を1.0とし、励起波長を435nmから465nmまで変化させたときの、励起スペクトルの強度変化を算出することにより得られる。
 波長変換部材の発光波長540nmでの励起スペクトル強度変化率は、0.23以下とすることが好ましく、0.20以下とすることがより好ましい。この範囲とすることにより励起波長変化に応じた発光スペクトルの急激な変化が抑えられ、良好なビニング特性が得られる。
 また、励起スペクトル強度変化率は0.03以上であることが好ましく、0.05以上であることがより好ましい。
 第四の発明における第一乃至第六の実施態様に係る蛍光体混合物のその他の構成については、第一の発明における第一乃至第七の実施態様の説明が適用される。また、蛍光体混合物を、シリコーン樹脂、またはポリカーボネート樹脂と混練、成形して波長変換部材とする方法は、上記それぞれ第二の発明における第一乃至第六の実施態様の説明が適用される。具体的には、実施例に記載の方法によることもできる。
 以下、本発明の第一の発明における第一乃至第七の実施態様に係る発光装置について、その構成について、図を用いて説明する。
 図2は、第一の発明における第一乃至第七の実施態様に係る、波長変換部材を備えた発光装置の一例を示す模式図である。
 半導体発光装置10は、その構成部材として、少なくとも青色半導体発光素子1と波長変換部材3を有する。青色半導体発光素子1は、波長変換部材3に含有される蛍光体を励起するための励起光を発する。
 青色半導体発光素子1は、通常ピーク波長が425nm~475nmの励起光を発し、好ましくはピーク波長が430nm~465nmの励起光を発する。青色半導体発光素子1の数は、装置が必要とする励起光の強さにより適宜設定することが可能である。
 青色半導体発光素子1の代わりに、紫色半導体発光素子を用いることもできる。紫色半導体発光素子は、通常ピーク波長が390nm~425nmの励起光を発し、好ましくはピーク波長が395~415nmの励起光を発する。
 青色半導体発光素子1は、配線基板2のチップ実装面2aに実装される。配線基板2には、これら青色半導体発光素子1に電極を供給するための配線パターン(図示せず)が形成され、電気回路を構成する。図2中、配線基板2に波長変換部材3が載っているように表示されているがこの限りではなく、配線基板2と波長変換部材3が他の部材を介して配置されていても良い。
 例えば図3では、配線基板2と波長変換部材3が、枠体4を介して配置される。枠体4は、光に指向性を持たせるために、テーパ状になっていてもよい。また、枠体4は反射材であってもよい。
 配線基板2は、電気絶縁性に優れて良好な放熱性を有し、かつ、反射率が高いことが好ましいが、配線基板2のチップ実装面上で青色半導体発光素子1の存在しない面上、もしくは配線基板2と波長変換部材3を接続する他の部材の内面の少なくとも一部に反射率の高い反射板を設ける事もできる。このような配線基板もしくは反射板の反射率としては、80%以上であることが好ましい。このような配線基板としては、アルミナ系セラミック、樹脂、ガラスエポキシ、樹脂中にフィラーを含有した複合樹脂などを用いることができる。また、配線基板2のチップ実装面2a上に設置する反射板としては、アルミナ粉末、シリカ粉末、酸化マグネシウム、酸化チタン、酸化ジルコニウム、酸化亜鉛、硫化亜鉛などの白色顔料を含む樹脂を用いることができる。好ましい樹脂としては、シリコーン樹脂、ポリカーボネート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンスルフィド樹脂、フッ素系樹脂等をあげることができる。
 波長変換部材3は、青色半導体発光素子1が発する入射光の一部を波長変換し、入射光とは異なる波長の出射光を放射する。波長変換部材3は、透明材料、及び蛍光体Gを含有し、好ましくは更に蛍光体Yを含有する。蛍光体が分散される樹脂としては、ポリカーボネート樹脂、ポリエステル系樹脂、アクリル系樹脂、エポキシ樹脂、シリコーン系樹脂などが挙げられる。
 また、波長変換部材3中には、蛍光体とともに、少量の拡散材を含有させることが好ましい。拡散材としては、無機系光拡散材、有機系光拡散材又は気泡が挙げられる。拡散材としては、シリカ、ガラス、炭酸カルシウム、マイカ、架橋アクリル系(共)重合体粒子、シロキサン系(共)重合体粒子からなる群から選択される1種以上を含むことが好ましい。
 また、波長変換部材3は、青色半導体発光素子1との間に距離を有する。すなわち波長変換部材3と青色半導体発光素子1とは離れて存在する。波長変換部材3と青色半導体発光素子1との間は、空隙であってもよく、充填剤で充填されていても良い。このように、波長変換部材3と青色半導体発光素子1との間に距離を有する態様により、青色半導体発光素子1が発する熱によって波長変換部材3及び波長変換部材に含まれる蛍光体の劣化を抑制することができる。青色半導体発光素子1と波長変換部材3との間の距離は、10μm以上が好ましく、100μm以上がさらに好ましく、1.0mm以上が特に好ましい、一方、波長変換部材3と青色半導体発光素子1との距離が大きくなりすぎると、波長変換部材の発光面積が拡大し、蛍光体使用量が増大してしまうため、波長変換部材3と青色半導体発光素子1との距離は、1.0m以下が好ましく、500mm以下がさらに好ましく、100mm以下が特に好ましい。
 発光装置10は、一般照明に用いる発光装置として好適に適用できる。
 発光装置10は、第一の発明における第一乃至第五の実施態様の発光装置は、一般照明装置に備えられ、白色光を発光する一般照明装置として用いられることが好ましい。このような用途に適用される場合、発光装置10は、発光装置から放射される光が、光色の黒体輻射軌跡からの偏差duvが-0.0200~0.0200であり、かつ色温度が1800K以上、7000K以下であることが好ましく、5000K以下であることがより好ましい。
 特に、色温度が2500K以上、3500K以下の温白色を発する発光装置において、優れたビニング特性を発揮する。
 また、第一の発明における第一乃至第五の実施態様に係る発光装置は、高い演色性を有する光を出射する。第一の発明における第一乃至第五の実施態様の発光装置は、平均演色評価数Raが80以上であることが好ましく、82以上であることがより好ましく、85以上であることが更に好ましい。
 また、発光装置10は、画像表示装置に備えられ、白色光を発光する画像表示装置として用いられることができる。このような用途に適用される場合、発光装置10は、発光装置から放射される光が、光色の黒体輻射軌跡からの偏差duvが-0.0200~0.0200であり、かつ色温度が5000K以上、20000K以下であることが好ましく、15000K以下であることがより好ましい。
 また、第一の発明における第六乃至第七の実施態様に係る発光装置は、一般照明に用いる発光装置やバックライトに用いる発光装置として好適に適用できる。
 第一の発明における第六乃至第七の実施態様の発光装置を含む一般照明装置は、白色光を発光する一般照明装置であることが好ましく、このような用途に適用される場合、第一の発明における第六乃至第七の実施態様に係る発光装置は、発光装置から放射される光が、光色の黒体輻射軌跡からの偏差duvが-0.0200~0.0200であり、かつ色温度が1800K以上、7000K以下であることが好ましい。
 一方、第一の発明における第六乃至第七の実施態様の発光装置がバックライトに適用される場合、第一の発明における第六乃至第七の実施態様に係る発光装置は、発光装置から放射される光が、色温度が7000Kより大きく、20000K以下であることが好ましい。
 以下、実施例及びシミュレーションにより、本発明をより詳細に説明するが、本発明は、以下の実施態様にのみ限られないことはいうまでもない。
<1.第一の実施態様>
<1-1-1.演色性と発光効率のシミュレーション1>
 図4、表3は、本発明者らが行った一般式(m1)で示される蛍光体を用いた場合のシミュレーション結果であり、蛍光体の種類によって、発光装置が出射する光の演色性と発光効率がどのように変化するかを表している。
 シミュレーションでは、ピーク波長453nmのチップを励起源として用い、YAG、GYAG、SCASN、CASN(それぞれ、後述する実験例で使用する蛍光体の発光スペクトル等の実測データを使用した。)の4種類の蛍光体のうち、3種類の蛍光体を用いて波長変換部材を構成した。そして、各蛍光体の含有比率を、波長変換部材からの発光色が2700Kとなるように調整することで、演色性と発光効率の関係がどのように変化するかをシミュレートした。
Figure JPOXMLDOC01-appb-T000006
 図4において、左側に位置する直線は、蛍光体としてYAG、GYAG及びCASNの3種類を用いてシミュレートした場合を示し、発光装置が発する光の演色性(CRI)と光の光束(Lumen)の関係がトレードオフの関係となることを示す。右側に位置する直線は、蛍光体としてYAG、GYAG及びSCASNの3種類を用いた場合、上側に位置する直線は、蛍光体としてGYAG、SCASN及びCASNの3種類を用いた場合、下側に位置する直線は、蛍光体としてYAG、SCASN、CASNの3種類を用いた場合について、それぞれシミュレートした結果を示しており、いずれも発光装置が発する光の演色性(CRI)と光の光束(Lumen)の関係が、トレードオフの関係となる。
 一方、左側の直線及び右側の直線は、YAG及びGYAGを含む本実施態様に係る発光装置が発する光の演色性及び光束を表わしているが、上側の直線及び下側の直線と比較して、直線の傾きが大きいことが理解できる。すなわち、発光装置が発する光の演色性(CRI)と光の光束(Lumen)の関係がトレードオフの関係となるものの、演色性の向上に伴う光束の低減が抑えられた発光装置であることが解る。
 このように、YAG及びGYAGを含む本実施態様に係る発光装置は、良好なビニング特性に加え、高い演色性と変換効率を両立させることができる発光装置であることが理解できる。
 加えて、本実施態様の好ましい実施態様に係る発光装置である、4種類の蛍光体を用いた発光装置の場合には、これらの4つの直線で囲まれた範囲内において、発光装置が発する光の演色性(CRI)と光の光束(Lumen)の関係を任意に設定することが可能となる。そのため、本実施態様の好ましい実施態様においては、ビニング特性を有し、かつ演色性と変換効率を両立させた発光装置を作製するための蛍光体選択の自由度が向上する。
<1-1-2.演色性と発光効率のシミュレーション2>
 図5、表4は、本発明者らが行った一般式(m2)で示される蛍光体を用いた場合のシミュレーション結果であり、蛍光体の種類によって、発光装置が出射する光の演色性と発光効率がどのように変化するかを表している。
 シミュレーションでは、ピーク波長453nmのチップを励起源として用い、YAG、LuAG、SCASN、CASN(それぞれ、後述する実験例で使用する蛍光体の発光スペクトル等の実測データを使用した。)の4種類の蛍光体を用いて波長変換部材を構成した。そして、各蛍光体の含有比率を、波長変換部材からの発光色が2700Kとなるように調整することで、演色性と発光効率の関係がどのように変化するかをシミュレートした。
Figure JPOXMLDOC01-appb-T000007
 図5において、左側に位置する直線は、蛍光体としてYAG、LuAG及びCASNの3種類を用いてシミュレートした場合を示し、発光装置が発する光の演色性(CRI)と光の光束(Lumen)の関係がトレードオフの関係となることを示す。右側に位置する直線は、蛍光体としてYAG、LuAG及びSCASNの3種類を用いた場合、上側に位置する直線は、蛍光体としてLuAG、SCASN及びCASNの3種類を用いた場合、下側に位置する直線は、蛍光体としてYAG、SCASN及びCASNの3種類を用いた場合について、それぞれシミュレートした結果を示しており、いずれも発光装置が発する光の演色性(CRI)と光の光束(Lumen)の関係が、トレードオフの関係となる。
 一方、左側の直線及び右側の直線は、YAG及びLuAGを含む本発明の実施態様に係る発光装置が発する光の演色性及び光束を表わしているが、上側の直線及び下側の直線と比較して、直線の傾きが大きいことが理解できる。すなわち、発光装置が発する光の演色性(CRI)と光の光束(Lumen)の関係がトレードオフの関係となるものの、演色性の向上に伴う光束の低減が抑えられた発光装置であることが解る。
 このように、YAG及びLuAGを含む本発明の実施態様に係る発光装置は、良好なビニング特性に加え、高い演色性と変換効率を両立させることができる発光装置であることが理解できる。
 加えて、本発明の好ましい実施態様に係る発光装置である、4種類の蛍光体を用いた発光装置の場合には、これらの4つの直線で囲まれた範囲内において、発光装置が発する光の演色性(CRI)と光の光束(Lumen)の関係を任意に設定することが可能となる。そのため、本発明の好ましい実施態様においては、ビニング特性を有し、かつ演色性と変換効率を両立させた発光装置を作製するための蛍光体選択の自由度が向上する。
<1-2.蛍光体の合成>
<1-2-1.蛍光体GYAG1~4の合成>
 次に、一般式(m1)で表される蛍光体のうち、YaCebGacAlde・・・(m3)で表わされる蛍光体について、cの値を変化させることで励起スペクトルがどのように変化するかを測定するために、後述する表6-1に示す5種類の蛍光体(YAG、GYAG1、GYAG2、GYAG3、GYAG4)を合成した。なお、a=2.94、b=0.06、c+d=5、e=12である。合成法は、Huhらの方法(Bull. Korean Chem. Soc. 2002, Vol.23, No.1, p.1435-1438)に従った。
<1-2-2.蛍光体LuAG1の合成>
 蛍光体の各原料の仕込み組成が、Lu2.91Ce0.09Al5.012となるように、Lu23を409.57g、Al23を180.33g、CeO2を10.96g及びフラックスであるBaF2を27.6gそれぞれ秤量し十分に攪拌混合を行った後、アルミナ坩堝に密充填した。これを温度調節器つき抵抗加熱式電気炉内に置き、水素含有窒素雰囲気下で1500℃まで加熱した後、室温まで放冷し、篩処理、塩酸洗処理により上記蛍光体LuAG1(平均粒径12μm)を得た。
<1-2-3.蛍光体LuAG2の合成>
 蛍光体の各原料の仕込み組成が、Lu2.85Ce0.15Al5.012となるように、Lu23を401.12g、Al23を180.33g、CeO2を18.27g及びフラックスであるBaF2を27.6gそれぞれ秤量し十分に攪拌混合を行った後、アルミナ坩堝に密充填した。これを温度調節器つき抵抗加熱式電気炉内に置き、水素含有窒素雰囲気下で1500℃まで加熱した後、室温まで放冷し、篩処理、塩酸洗処理により上記蛍光体LuAG2(平均粒径9μm)を得た。
<1-2-4.YAG蛍光体、GLuAG蛍光体、SCASN蛍光体、CASN蛍光体の合成>
 特開2006-265542に記載されている製法で、YAG蛍光体およびGLuAG蛍光体を、特開2008-7751号公報に記載されている製法で、SCASN蛍光体を、特開2006-008721号公報に記載されている製法で、CASN蛍光体を得た。
<1-2-5.蛍光体の粒径および発光ピーク波長>
 上記方法により合成した蛍光体の粒径および発光ピーク波長を表5に示す。なお、GYAG蛍光体についてはGYAG1のみ、LuAG蛍光体についてはLuAG1のみを示す。
Figure JPOXMLDOC01-appb-T000008
<1-3-1.励起スペクトル強度の測定1>
 上記の通り合成されたYAG蛍光体およびGYAG1~4蛍光体の5種類の蛍光体について、発光スペクトルのピーク波長及び色度座標を測定した。その結果を表6-1に示す。
Figure JPOXMLDOC01-appb-T000009
 次に、蛍光体YAGおよび蛍光体GYAG1~GYAG4について、励起スペクトルを、室温(25℃)において、日立製作所製蛍光分光光度計F-4500を用いて測定した。より具体的には、540nmの発光ピークをモニターして、430nm以上470nm以下の波長範囲内の励起スペクトルを得た。さらに、励起波長450nmにおける励起スペクトル強度を1.0とし、励起波長を430nmから470nmまで変化させたときの、励起スペクトルの強度変化を算出した。各蛍光体における励起強度変化曲線を図6-1に示す。
 図6-1に示すように、一般式(m3)で表わされるGYAG蛍光体については、c=1.0の場合のように、cの値が小さい場合には、励起波長の長波長化に伴った規格化励起スペクトルの低下がほとんどなく、一般式(l)で表わされるYAG蛍光体の規格化励起スペクトルの増大に対応できない。一方、c=1.6の場合、2の場合、2.5の場合では、一般式(l)で表されるYAG蛍光体の規格化励起スペクトルの増大に対応している。
 そのため、本発明の一般式(m3)で表わされるGYAGは、cの値が1.2以上2.6以下の場合に、優れたビニング特性を有する発光装置を提供することが可能となる。また、好ましくはcの値が2.4以下、さらに好ましくは1.8以下である。
 次に、一般式(m1)で表される蛍光体のうち、Yf(Ce,Tb,Lu)gGahSciAljk・・・(m5)で表わされる蛍光体についてiの値を変化させることで励起スペクトルがどのように変化するかを測定するために、以下の表6-2に示す5種類の蛍光体(SC-1、SC-2、SC-3、SC-4、SC-5)を合成した。なお、f=2.88、g=0.12、h=0、k=12として、組成式Y2.88Ce0.09Tb0.03SciAlj12で示される蛍光体を、原料にSc23を用い、Huhらの方法に従って合成した。
 上記の通り合成された5種類の蛍光体について、発光スペクトルのピーク波長及び色度座標を測定した(表6-2)。また、励起光を440nmから460nmに変化させた際の蛍光体の規格化励起スペクトルを測定・算出した。なお、各蛍光体の450nmの励起光にて励起した際の規格化励起スペクトルの強度を1として、相対強度を求めた。結果を図6-2に示す。
Figure JPOXMLDOC01-appb-T000010
<1-3-2.励起スペクトル強度の測定2>
 次に、蛍光体YAGおよびLuAG1~2について、波長範囲を430nmから465nmとしたこと以外は上記と同様にして、励起スペクトルの強度変化を算出した。各蛍光体における励起強度変化曲線を図7に示す。さらに図7には、YAG、及びLuAG1の各波長における励起スペクトル強度を50:50加重平均で算出した合成励起スペクトル強度変化を示す。
 ここで、各蛍光体の、430nmから465nmの範囲におけるスペクトル強度変化率を求め、表7-1にまとめた。スペクトル強度変化率は、励起波長450nmにおける励起スペクトル強度を1.0とし、430nmから465nmの範囲におけるスペクトル強度の最大値-最小値で算出した。
Figure JPOXMLDOC01-appb-T000011
 図7および表7-1から理解できるように、一般式(l)で表わされるYAGは、430nmから465nmまでの励起波長においては、励起波長が増加すると共にその発光強度が大きくなっており、励起スペクトル強度変化率は15.4%である。
 一方、一般式(m2)で表わされるLuAG1及びLuAG2は、450nm付近にピークがあり、山型の励起スペクトル強度を示す。また、それぞれの励起スペクトル強度変化率は、10.2%、及び8.6%である。
 さらに、一般式(l)で表わされるYAGと一般式(m2)で表わされるLuAG1の50:50加重平均で算出した合成励起スペクトルのスペクトル強度変化率は、11.1%である。
 このように、一般式(X)で表わされる緑色蛍光体を含有することで、あるいは一般式(X)で表される黄色蛍光体と緑色蛍光体とをある所望の割合で併用することで、合成励起スペクトル強度変化率を12%以下に調整することができる。
 合成励起スペクトル強度変化率を12%以下に調製するためには、例えば、励起スペクトル強度変化率が12%以下である蛍光体Gを用いることでよい。
 更に蛍光体Yを含有させる場合には、励起スペクトル強度変化率が共に12%以下である蛍光体Y及び蛍光体Gを使用することが好ましい。乃至は、430nmから465nmの範囲における励起スペクトル強度の最大値が450nm以上にある蛍光体Yと、430nmから465nmの範囲における励起スペクトル強度の最小値が450nm以上にある蛍光体Gとを用いることが好ましい。
<1-3-3.励起スペクトル強度の測定3>
 次に、蛍光体YAG、GYAG1およびLuAG1について、波長範囲を430nmから470nmとしたこと以外は上記と同様にして、励起スペクトルの強度変化を算出した。各蛍光体における励起強度変化曲線を図8に示す。
 ここで、各蛍光体の、430nmから470nmの範囲におけるスペクトル強度変化率を求め、表7-2にまとめた。スペクトル強度変化率は、励起波長450nmにおける励起スペクトル強度を1.0とし、430nmから470nmの範囲におけるスペクトル強度の最大値-最小値で算出した。
Figure JPOXMLDOC01-appb-T000012
 さらに、表8には、一般式(l)で表されるYAG、一般式(m1)で表されるGYAG1、一般式(m2)で表されるLuAG1の各重量分率における合成励起スペクトルのスペクトル強度変化率を示した。
 ここで、スペクトル強度変化率は、励起波長450nmにおける励起スペクトル強度を1.0とし、430nmから470nmの範囲におけるスペクトル強度の最大値-最小値で算出した。
Figure JPOXMLDOC01-appb-T000013
 このように、一般式(m1)で表わされるGYAG蛍光体を含有することで、あるいは一般式(l)で表される蛍光体Yと該蛍光体GYAGとをある所望の割合で併用することで、合成励起スペクトル強度変化率を15%以下に調整することができる。
 合成励起スペクトル強度変化率を15%以下に調整するためには、例えば、励起スペクトル強度変化率が15%以下である蛍光体Gを用いることでよい。
 更に蛍光体Yを含有させる場合には、励起スペクトル強度変化率が共に15%以下である蛍光体Y及び蛍光体Gを使用することが好ましい。乃至は、430nmから470nmの範囲における励起スペクトル強度の最大値が450nm以上にある蛍光体Yと、430nmから470nmの範囲における励起スペクトル強度の最小値が450nm以上にある蛍光体Gとを用いることが好ましい。
<1-4.波長変換部材、及び発光装置の製造>
 表9に示す蛍光体混合例1~11に記載した重量比で、各蛍光体を総量10gとなるように秤量して混合した。
Figure JPOXMLDOC01-appb-T000014
 樹脂Aを用いている実験例1~3、9~12については、表10に示す重量比で、各材料を総重量10gとなるように秤量し、EME社製真空脱泡混練機V-mini300を用いて室温下、1200rpmで3分間脱泡混練し、蛍光体含有シリコーン樹脂組成物を得た。
 樹脂Bを用いている実験例4~8については、表10に示す重量比で、各材料を総重量50gとなるように秤量し、東洋精機社製ラボプラストミル10C100、ミキサータイプ(R60)を用いて260℃、100rpmで5分間溶融混練し、それぞれ蛍光体含有ポリカーボネート樹脂組成物を得た。
Figure JPOXMLDOC01-appb-T000015
 上記蛍光体GYAG1について、組成分析を実施したところ、表11に示すとおりであった。また、表11で得られた分析結果からモル比を計算した。結果を表12に、仕込時のモル比と共に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 次に、実験例1~3、9~12に係る蛍光体含有シリコーン樹脂組成物を62mmΦ厚み1mmとなるよう注型し、150℃5分、続いて200℃20分加熱硬化することで成形し、光学特性用試験片を得、実験例4~8に係る蛍光体含有ポリカーボネート樹脂組成物を120℃で2時間真空乾燥後、熱プレス成型機(例えば井元製作所社製)を用いて260℃、4MPa、2分溶融プレスし、続いて水冷プレス機(例えば井元製作所社製)を用いて20℃、1MPaで5分間冷却し、厚さ1.2mmのシートを作製する。得られたシートから15mmφの円板形状で試験片を打ち抜いた。
 得られた厚み円板試験片に対して、日立分光蛍光光度計F-4500を用いて発光波長540nmでの励起スペクトル強度測定を430nmから470nmの範囲で行い、励起スペクトル強度変化率を算出した。得られた励起スペクトル強度を図9-1~9-3及び表13に示した。また表14~16には、各実験例において、該スペクトルより算出した435nmから465nmの範囲、435nmから470nmの範囲、および430nmから465nmの範囲における、励起スペクトル強度変化率をそれぞれ示した。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
<1-5.発光特性>
 さらに、得られた円板試験片に対して、LEDチップ(ピーク波長450nm)から発光させた青色光を照射することで白色光を得ることができる発光装置を作製した。その装置から発光スペクトルをSphereOptics社製20inch積分球およびOceanOptics社製分光器USB2000を用いて観測し、色度、光束(lumen)、Raを計測した。測定結果を表17に示す。
Figure JPOXMLDOC01-appb-T000022
<1-6.Δu’v ’の測定>
 次に、実験例1~12で作製した発光装置について、励起光源をキセノン分光光源に変更し、励起波長を445nm~455nmまで変化させた際の、色度の変化Δu’v ’を測定した。分光光源はスペクトラコープ社製を用い、ラブスフェア社製20inch積分球(LMS-200)及びCarl Zeiss社製分光器(Solid LambdaUV-Vis)によって色度の変化を観測した。励起波長が445nm、448nm、450nm、452nm、454nm、455nmの場合における色度をそれぞれ測定し、その平均値(u’ave,v ’ ave)を計算し、平均値との距離を測定した。
 結果を表18および図10-1~10-3に示す。
 また、実験例1~12で作製した半導体発光装置について、励起光源をキセノン分光光源に変更し、励起波長を425nm~475nmまで変化させた際の、色度の変化Δu’v ’を測定した。分光光源はスペクトラコープ社製を用い、ラブスフェア社製20inch積分球(LMS-200)及びCarl Zeiss社製分光器(Solid Lambda UV-Vis)によって色度の変化を観測した。励起波長が430nm、440nm、450nm、460nm、470nmの場合、又は、425nm、435nm、445nm、455nm、465nm、475nmの場合における色度をそれぞれ測定し、その平均値(u’ave,v ’ ave)を計算し、平均値との距離を測定した。
 結果を表19、20、および図11-1~11-2に示す。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 以上より、第一の発明における第一乃至第五の実施態様に係る発光装置は、高い演色性を維持しつつ、高い全光束(発光効率)を達成できることが理解される。また、図10-1~10-3及び図11-1~11-2から、本発明の発光装置は、良好なビニング特性を奏することが理解される。
<1-7.蛍光体混合物の励起スペクトル強度変化率>
 実験例13~22として、蛍光体混合例1~7および9~11に記載した重量比で、各蛍光体を総量1gとなるように秤量して混合した。得られた混合粉(蛍光体のみからなる混合物であって、透明材料を含まない。)をそれぞれ日立分光蛍光光度計F-4500を用いて発光波長540nmでの励起スペクトル強度測定を430nmから470nmの範囲で行い、励起スペクトル強度変化率を算出した。得られた励起スペクトル強度を図12-1~12-3及び表21に示した。また表22には、各実験例において、該スペクトルより算出した430nmから470nmの範囲、435nmから470nmの範囲、及び、435nmから465nmの範囲における、励起スペクトル強度変化率をそれぞれ示した。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
<2.第二の実施態様>
 本実施態様における実施例は、上述した第一の実施態様における実施例の説明が適用される。
<3.第三の実施態様>
<3-1.演色性と発光効率のシミュレーション>
 本実施態様においては、上述した第一の実施態様における<1-1-1.演色性と発光効率のシミュレーション1>の説明が適用される。
<3-2.蛍光体の合成>
 本実施態様における蛍光体の合成については、上述した第一の実施態様における<1-2-1.蛍光体GYAG1~4の合成>、<1-2-4.YAG蛍光体、GLuAG蛍光体、SCASN蛍光体、CASN蛍光体の合成>の説明が適用される。
 また、蛍光体の粒径および発光ピーク波長については、上述した第一の実施態様における<1-2-5.蛍光体の粒径および発光ピーク波長>に記載したGYAG1、GLuAG、YAG、SCASN、CASNの説明が適用される。
<3-3.励起スペクトル強度の測定>
 本実施態様においては、上述した第一の実施態様における<1-3-1.励起スペクトル強度の測定1>および<1-3-3.励起スペクトル強度の測定3>に記載したGYAG1およびYAGの説明が適用される。
<3-4.波長変換部材、及び発光装置の製造>
 本実施態様においては、上述した第一の実施態様における<1-4.波長変換部材、及び発光装置の製造>に記載した蛍光体混合例3~11および実験例4~9の説明が適用される。
<3-5.発光特性>
 本実施態様においては、上述した第一の実施態様における<1-5.発光特性>に記載した実験例4~8の説明が適用される。
<3-6.Δu’v ’の測定>
 本実施態様においては、上述した第一の実施態様における<1-6.Δu’v ’の測定>に記載した実験例4~8の説明が適用される。
<3-7.蛍光体混合物の励起スペクトル強度変化率>
 本実施態様においては、上述した第一の実施態様における<1-7.蛍光体混合物の励起スペクトル強度変化率>に記載した実験例15~20の説明が適用される。
<4.第四の実施態様>
<4-1.演色性と発光効率のシミュレーション>
 本実施態様においては、上述した第一の実施態様における<1-1-2.演色性と発光効率のシミュレーション2>の説明が適用される。
<4-2.蛍光体の合成>
 本実施態様における蛍光体の合成については、上述した第一の実施態様における<1-2-2.蛍光体LuAG1の合成>、<1-2-3.蛍光体LuAG2の合成>、<1-2-4.YAG蛍光体、GLuAG蛍光体、SCASN蛍光体、CASN蛍光体の合成>の説明が適用される。
 また、蛍光体の粒径および発光ピーク波長については、上述した第一の実施態様における<1-2-5.蛍光体の粒径および発光ピーク波長>に記載したLuAG1、GLuAG、YAG、SCASN、CASN説明が適用される。
<4-3.励起スペクトル強度の測定>
 本実施態様においては、上述した第一の実施態様における<1-3-2.励起スペクトル強度の測定2>および<1-3-3.励起スペクトル強度の測定3>に記載したLuAG1およびYAGの説明が適用される。
<4-4.波長変換部材、及び発光装置の製造>
 本実施態様においては、上述した第一の実施態様における<1-4.波長変換部材、及び発光装置の製造>に記載した蛍光体混合例1、2、8~10および実験例1~3の説明が適用される。
<4-5.発光特性>
 本実施態様においては、上述した第一の実施態様における<1-5.発光特性>に記載した実験例1~3の説明が適用される。
<4-6.Δu’v ’の測定>
 本実施態様においては、上述した第一の実施態様における<1-6.Δu’v ’の測定>に記載した実験例1~3の説明が適用される。
<4-7.蛍光体混合物の励起スペクトル強度変化率>
 本実施態様においては、上述した第一の実施態様における<1-7.蛍光体混合物の励起スペクトル強度変化率>に記載した実験例13、14、20の説明が適用される。
<5.第五の実施態様>
<5-1.演色性と発光効率のシミュレーション>
 本実施態様においては、上述した第一の実施態様における<1-1-2.演色性と発光効率のシミュレーション2>の説明が適用される。
<5-2.蛍光体の合成>
 本実施態様における蛍光体の合成については、上述した第一の実施態様における<1-2-2.蛍光体LuAG1の合成>、<1-2-3.蛍光体LuAG2の合成>、<1-2-4.YAG蛍光体、GLuAG蛍光体、SCASN蛍光体、CASN蛍光体の合成>の説明が適用される。
 また、蛍光体の粒径および発光ピーク波長については、上述した第一の実施態様における<1-2-5.蛍光体の粒径および発光ピーク波長>に記載したLuAG1、YAG、SCASN、CASNの説明が適用される。
<5-3.励起スペクトル強度の測定>
 本実施態様においては、上述した第一の実施態様における<1-3-2.励起スペクトル強度の測定2>および<1-3-3.励起スペクトル強度の測定3>に記載したLuAG1およびYAGの説明が適用される。
<5-4.波長変換部材、及び発光装置の製造>
 本実施態様においては、上述した第一の実施態様における<1-4.波長変換部材、及び発光装置の製造>に記載した蛍光体混合例1、2、8、9および実験例1~3の説明が適用される。
<5-5.発光特性>
 本実施態様においては、上述した第一の実施態様における<1-5.発光特性>に記載した実験例1~3の説明が適用される。
<5-6.Δu’v ’の測定>
 本実施態様においては、上述した第一の実施態様における<1-6.Δu’v ’の測定>に記載した実験例1~3の説明が適用される。
<5-7.蛍光体混合物の励起スペクトル強度変化率>
 本実施態様においては、上述した第一の実施態様における<1-7.蛍光体混合物の励起スペクトル強度変化率>に記載した実験例13、14、20の説明が適用される。
<6.第六の実施態様>
<6-1-1.蛍光体GYAG5の合成(以下、「合成例1」ともいう。)>
 蛍光体の各原料の仕込み組成が、Y2.91Ce0.09Al3.8Ga1.212となるように、Yを232.44g、Alを137.04g、Gaを79.56g、CeOを10.96g及びフラックスであるBaFを27.6gそれぞれ秤量し十分に攪拌混合を行った後、アルミナ坩堝に密充填した。これを温度調節器つき抵抗加熱式電気炉内に置き、水素含有窒素雰囲気下で1450℃まで加熱した後、室温まで放冷し、篩処理、塩酸洗処理により上記蛍光体GYAG5(平均粒径15μm)を得た。
<6-1-2.蛍光体GYAG6の合成(以下、「合成例2」ともいう。)>
 蛍光体の各原料の仕込み組成が、Y2.91Ce0.09Al4.2Ga0.812となるように、Yを238.71g、Alを155.56g、Gaを54.47g、CeOを11.25g及びフラックスであるBaFを27.6gそれぞれ秤量した以外は、合成例1と同様にして、蛍光体GYAG6(平均粒径15μm)を得た。
<6-1-3.蛍光体GYAG7の合成(以下、「合成例3」ともいう。)>
 蛍光体の各原料の仕込み組成が、Y2.97Ce0.03Al4.2Ga0.812となるように、Yを245.01g、Alを156.43g、Gaを54.78g、CeOを3.77g及びフラックスであるBaFを27.6gそれぞれ秤量した以外は、合成例1と同様にして、蛍光体GYAG7(平均粒径12μm)を得た。
<6-1-4.蛍光体GYAG8の合成(以下、「合成例4」ともいう。)>
 蛍光体の各原料の仕込み組成が、Y2.94Ce0.06AlGa12となるように、Yを238.62g、Alを146.58g、Gaを67.37g、CeOを7.42g及びフラックスであるBaFを27.6gそれぞれ秤量した以外は、合成例1と同様にして、蛍光体GYAG8(平均粒径11μm)を得た。
<6-1-5.YAG蛍光体、SCASN蛍光体、CASN蛍光体の合成(このうち、Y AG蛍光体の合成については、以下、「合成例5」ともいう。)>
 特開2006-265542に記載されている製法で、YAG蛍光体を、特開2008-7751号公報に記載されている製法で、SCASN蛍光体を、特開2006-008721号公報に記載されている製法で、CASN蛍光体を得た。
<6-2.粉体特性>
 合成例1~4で合成した蛍光体GYAG5~8と、YAG蛍光体(三菱化学社製品 BY-102;平均粒径18μm)における蛍光体の、GaまたはCeの仕込み組成、および粉体特性結果(相対輝度、発光ピーク、色度、粒度、450nm励起強度100%としたときの各波長励起強度)を表23にまとめた。
Figure JPOXMLDOC01-appb-T000028
(粉体発光特性評価方法)
 なお、日立社製分光蛍光光度計F-4500を用いて、励起波長450nmにおける発光スペクトルを合成例1~5の蛍光体について、相対輝度、発光ピーク、色度を求めた。
相対輝度は、合成例5のYAG蛍光体の輝度を100%としたときの各蛍光体の相対輝度とした。
(粉体粒度測定方法)
 また、堀場製作所社製レーザー回折式粒度分布測定装置LA-300により粒度、重量メジアン径d50を測定した。具体的には水溶液中に蛍光体を分散させレーザー回折・散乱法で測定された頻度基準粒度分布曲線から得られる値である。
(450nm励起強度100%としたときの各波長励起強度)
 また、日立社製分光蛍光光度計F-4500を用いて、各蛍光体の表23に示す発光ピークにおける励起スペクトルを測定し、450nmの励起強度を100%とした際の440nm~460nmにおける相対励起強度を算出した。
 表23に示したように、合成例1~4に示す蛍光体は、波長440~460nmの範囲において励起スペクトルの強度変化が450nmにおける励起光スペクトル強度の4.0%以下であり、440~460nm励起において安定な発光スペクトルが得られる。
<6-3.波長変換部材の製造>
 次に、表24に示す重量比で各材料(蛍光体、添加材、シリコーン樹脂)を総重量10gとなるように秤量し、EME社製真空脱泡混練機V-mini300を用いて室温下、1200rpmで3分間脱泡混練し、蛍光体含有シリコーン樹脂組成物を得た。
Figure JPOXMLDOC01-appb-T000029
<6-4.発光装置の製造および発光特性>
 得られたシリコーン樹脂組成物を20mmΦのガラス製バイアル瓶に厚み1mmとなるよう注型し、150℃5分、続いて200℃20分加熱硬化することで、蛍光体含有シリコーン樹脂組成物の光学特性用試験片(波長変換部材)を得た。得られた厚み1mm、20mmφの試験片に対して、LEDチップ(ピーク波長450nm)から発光させた青色光を照射することで白色光を得ることができる発光装置を作製した。その装置から発光スペクトルをSphereOptics社製20inch積分球およびOceanOptics社製分光器USB2000を用いて観測し、色度、光束(ルーメン)、Raを計測した。測定結果を表25に示す。
Figure JPOXMLDOC01-appb-T000030
 次に、実験例23~27で作製した発光装置について、日立社製分光蛍光光度計F-4500を用いて、発光540nmにおける励起スペクトルを測定し、450nmの励起強度を1.0とした際の430nm~470nmにおける相対励起強度を算出した。
 表26に示したように、実験例23~26に示す蛍光体は、波長430~470nmの範囲における相対励起スペクトル強度の最大値と最小値との差が0.25以下であり、さらには、波長440~460nmの範囲における相対励起スペクトル強度の最大値と最小値との差が0.13以下であり、430~470nm励起において安定な発光スペクトルが得られ、特に440~460nmにおいて安定な発光スペクトルが得られる。
Figure JPOXMLDOC01-appb-T000031
<6-5.Δu’v ’の測定>
 次に、実験例23~27で作製した発光装置について、励起光源をキセノン分光光源に変更し、励起波長を445nm~455nmまで変化させた際の、色度の変化Δu’v ’を測定した。分光光源はスペクトラコープ社製を用い、ラブスフェア社製20inch積分球(LMS-200)及びCarl Zeiss社製分光器(Solid Lambda UV-Vis)によって色度の変化を観測した。励起波長が445nm、448nm、450nm、452nm、454nm、455nmの場合における色度、およびルーメン値をそれぞれ測定し、色度においては、その平均値(u’ave,v ’ ave)を計算後、平均値との距離を算出し、ルーメン値においては励起波長455nmのルーメンを1としたときの相対輝度を算出した。それぞれ図13および表27に示す。
Figure JPOXMLDOC01-appb-T000032
 表25、図13および表26からわかるように、本発明における蛍光体を用いた発光装置は、高輝度かつ良好なビニング特性を有することがわかる。
<6-6.混合粉体における450nm励起強度1.0としたときの各波長励起強度>
 表28に示す配合比で蛍光体を密閉容器に秤量し、十分に攪拌混合することでそれぞれ混合蛍光体を得た。
 得られた混合蛍光体を、日立社製分光蛍光光度計F-4500を用いて、発光575nmにおける励起スペクトルを測定し、450nmの励起強度を1.0とした際の430nm~465nmにおける相対励起強度を算出した。
 表29に示したように、実験例28~32に示す蛍光体は、波長430~465nmの範囲における相対励起スペクトル強度の最大値と最小値との差が0.12以下であり、さらには、波長440~460nmの範囲における相対励起スペクトル強度の最大値と最小値との差が0.05以下であり、430~465nm励起において安定な発光スペクトルが得られ、特に440~460nmにおいて安定な発光スペクトルが得られる。 
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
<7.第七の実施態様>
 本実施態様における実施例は、上述した第六の実施態様における実施例の説明が適用される。
10 発光装置
1  青色半導体発光素子
2  配線基板
2a チップ実装面
3  波長変換部材
4  枠体

Claims (72)

  1.  青色半導体発光素子と波長変換部材を備えた発光装置であって、
     該波長変換部材は、
     下記一般式(Y1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下である蛍光体Yと、
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(Y1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
     下記一般式(G1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gを含む、発光装置。
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(G1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
  2.  前記波長変換部材は、発光波長540nmでの励起スペクトル強度変化率が0.25以下である、請求項1に記載の発光装置。
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  3.  前記蛍光体Yが、下記一般式(Y2)で示される蛍光体であり、
     前記蛍光体Gが、下記一般式(G2)で示される蛍光体であり、
     前記波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.23以下である、請求項1に記載の発光装置。
      Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y2)
      (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
      Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(G2)
      (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、1.2≦c≦2.6、10.8≦e≦13.4)
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  4.  前記蛍光体Yが、下記一般式(Y3)で示される蛍光体であり、
     前記蛍光体Gが、下記一般式(G3)で示される蛍光体であり、
     前記波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下である、請求項1に記載の発光装置。
      Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y3)
      (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
      Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G3)
      (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  5.  前記蛍光体Yは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも小さく、
     前記蛍光体Gは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも大きい、
     請求項1から4のいずれか1項に記載の発光装置。
  6.  さらに、下記一般式(B1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が500nm以上520nm以下である青緑色蛍光体を含むことを特徴とする、請求項1から5のいずれか1項に記載の発光装置。
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(B1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
  7.  前記蛍光体Yと前記蛍光体Gの組成比が、10:90以上、90:10以下である、請求項1から5のいずれか1項に記載の発光装置。
  8.  下記合成励起スペクトルの強度変化率が0.15以下である請求項3または4に記載の発光装置。
     合成励起スペクトルは、各波長における励起スペクトル強度が、下記算出式(Z)で表される励起スペクトルである。
     合成励起スペクトル強度=(蛍光体Yの励起スペクトル強度)×(蛍光体Yの重量分率)+(蛍光体Gの励起スペクトル強度)×(蛍光体Gの重量分率) ・・・(Z)
     蛍光体Yの重量分率は、蛍光体Y/(蛍光体Y+蛍光体G)で表される。
     蛍光体Gの重量分率も同様に表される。
     合成励起スペクトル強度変化率は、励起スペクトルの450nmにおける励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における合成励起スペクトル強度の最大値と最小値との差で表される。
  9.  青色半導体発光素子と波長変換部材を備えた発光装置であって、
     該波長変換部材は、
     下記一般式(G4)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gを含み、
     該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下である、発光装置。
      Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G4)
      (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  10.  前記青色半導体発光素子の発光波長を445nmから455nmに連続的に変化させたときに発光装置から放射される光の色度変化Δu'v 'が、Δu'v '≦0.004を満たす、請求項1から9のいずれか1項に記載の発光装置。
     ただし、Δu'v 'は、445nmから455nmにおける任意の波長inmにおける色度(u'i,v ' i)と、445nmから455nmにおける色度の平均値(u'ave,v' ave)の距離を表すものとする。
  11.  前記青色半導体発光素子の発光波長を435nmから470nmに連続的に変化させたときに発光装置から放射される光の色度変化Δu'v 'が、Δu'v '≦0.015を満たす、請求項1から10のいずれか1項に記載の発光装置。
     ただし、Δu'v 'は、435nmから470nmにおける任意の波長inmにおける色度(u'i,v ' i)と、435nmから470nmにおける色度の平均値(u'ave,v' ave)の距離を表すものとする。
  12.  さらに赤色蛍光体を含むことを特徴とする請求項1から11のいずれか1項に記載の発光装置。
  13.  前記赤色蛍光体は、発光ピーク波長が600nm以上640nm未満、かつ半値幅が2nm以上120nm以下である赤色蛍光体を、赤色蛍光体全量に対する組成重量比で30%以上含むことを特徴とする請求項12に記載の発光装置。
  14.  前記発光ピーク波長が600nm以上640nm未満、かつ半値幅が2nm以上120nm以下である赤色蛍光体が、(Sr,Ca)AlSiN3:Eu又はCa1-xAl1-xSi1+x3-xx:Eu(但し、0<x<0.5)である請求項13に記載の発光装置。
  15.  赤色蛍光体として、発光ピーク波長が640nm以上670nm以下、かつ半値幅が2nm以上120nm以下である赤色蛍光体を含む請求項12から14のいずれか1項に記載の発光装置。
  16.  発光装置から放射される光が、光色の黒体輻射軌跡からの偏差duvが-0.0200~0.0200であり、かつ色温度が1800K以上、7000K以下である請求項1から15のいずれか1項に記載の発光装置。
  17.  発光装置から放射される光が、光色の黒体輻射軌跡からの偏差duvが-0.0200~0.0200であり、かつ色温度が2500以上、3500K以下である請求項1から16のいずれか1項に記載の発光装置。
  18.  平均演色評価数Raが80以上である、請求項1から17のいずれか1項に記載の発光装置。
  19.  青色半導体発光素子と波長変換部材を備えた発光装置であって、
     該波長変換部材は、下記一般式(YG1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が530nm以上550nm以下である黄緑色蛍光体を含み、
     該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.25以下である、発光装置。
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(YG1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  20.  前記黄緑色蛍光体の励起スペクトル強度変化率が、0.13以下である、請求項19に記載の発光装置。
     但し、黄緑色蛍光体の励起スペクトル強度変化率は、450nmにおける黄緑色蛍光体の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  21.  前記青色半導体発光素子の発光波長を445nmから455nmに連続的に変化させたときに発光装置から放射される光の色度変化Δu'v 'が、Δu'v '≦0.005を満たす、請求項19又は20に記載の発光装置。
     ただし、Δu'v 'は、445nmから455nmにおける任意の波長inmにおける色度(u'i,v 'i)と、445nmから455nmにおける色度の平均値(u'ave,v'ave)の距離を表すものとする。
  22.  前記黄緑色蛍光体が下記一般式(YG2)で示されることを特徴とする、請求項19から21のいずれか1項に記載の発光装置。
      MAle ・・・(YG2)
      (Mは、Ce元素。Aは、Y、Luの群から選ばれ、Yを90%以上含む、1又は2以上の元素。Eは、Ga、又はGa及びSc。a+b=3、4.5≦c+d≦5.5、10.8≦e≦13.2、0≦a≦0.9、0.8≦c≦1.2)
  23.  前記黄緑色蛍光体の励起スペクトルの強度変化が、440nmから460nmにおいて、450nmにおける励起光スペクトル強度の4.0%以下である請求項19から22のいずれか1項に記載の発光装置。
  24.  さらに赤色蛍光体を含むことを特徴とする請求項19から23のいずれか1項に記載の発光装置。
  25.  前記赤色蛍光体の励起スペクトルの強度変化が、440nmから460nmにおいて、450nmにおける励起光スペクトル強度の4.0%以下である請求項24に記載の発光装置。
  26.  前記赤色蛍光体が、発光ピーク波長が620~640nmであり、かつ半値幅が2nm以上100nm以下である赤色蛍光体を、赤色蛍光体全量に対する組成重量比で50%以上含む請求項24又は25に記載の発光装置。
  27.  前記赤色蛍光体が、SCASNである請求項24から26のいずれか1項に記載の発光装置。
  28.  赤色蛍光体としてさらに、発光ピーク波長が640~670nmであり、かつ半値幅が2nm以上120nm以下である赤色蛍光体を含む請求項24から27のいずれか1項に記載の発光装置。
  29.  発光装置が発する光が、光色の黒体輻射軌跡からの偏差duvが-0.0200~0.0200であり、かつ色温度が1800K以上7000K以下である請求項19から28のいずれか1項に記載の発光装置。
  30.  発光装置から放射される光の色温度が7000K以上、20000K以下である請求項19から28のいずれか1項に記載の発光装置。
  31.  青色半導体発光素子と、
     黄緑色蛍光体を含む波長変換部材を備えた発光装置であって、
     黄緑色蛍光体が、下記一般式(YG3)で示され、440nmから460nmの励起波長で励起したときの450nmの励起スペクトル強度で規格化した励起強度の最大値と最小値の差が0.05以下の蛍光体であり、
      (Y,Ce)(Ga,Al)g ・・・(YG3)
      (4.5≦f≦5.5、10.8≦g≦13.2)
     445nmから455nmの励起波長で励起したときに波長変換部材から放射される光の平均色度からの色度変化Δu’v’が、0.005以下である発光装置。
  32.  前記青色半導体発光素子と、前記黄緑色蛍光体を含む波長変換部材とが、空間を介して配置される、請求項19から31のいずれか1項に記載の発光装置。
  33.  請求項1から18、19から29、31及び32のいずれか1項に記載の発光装置を備えた照明装置。
  34.  請求項19から28及び30から32のいずれか1項に記載の発光装置を含むバックライト。
  35.  下記一般式(Y1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下である蛍光体Yと、
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(Y1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
     下記一般式(G1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gと、
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(G1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
     透明材料と、を含む、波長変換部材。
  36.  発光波長540nmでの励起スペクトル強度変化率が0.25以下である、請求項35に記載の波長変換部材。
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  37.  前記蛍光体Yが、下記一般式(Y2)で示される蛍光体であり、
     前記蛍光体Gが、下記一般式(G2)で示される蛍光体であり、
     前記波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.23以下である、請求項35に記載の波長変換部材。
      Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y2)
      (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
      Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(G2)
      (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、1.2≦c≦2.6、10.8≦e≦13.4)
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  38.  前記蛍光体Yが、下記一般式(Y3)で示される蛍光体であり、
     前記蛍光体Gが、下記一般式(G3)で示される蛍光体であり、
     前記波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下である、請求項35に記載の波長変換部材。
      Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y3)
      (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
      Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G3)
      (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  39.  前記蛍光体Yは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも小さく、
     前記蛍光体Gは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも大きい、
     請求項35から38のいずれか1項に記載の波長変換部材。
  40.  さらに、下記一般式(B1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が500nm以上520nm以下である青緑色蛍光体を含むことを特徴とする、請求項35から39のいずれか1項に記載の波長変換部材。
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(B1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
  41.  前記蛍光体Yと前記蛍光体Gの組成比が、10:90以上、90:10以下である、請求項35から39のいずれか1項に記載の波長変換部材。
  42.  下記合成励起スペクトルの強度変化率が0.15以下である、請求項37または38に記載の波長変換部材。
     合成励起スペクトルは、各波長における励起スペクトル強度が、下記算出式(Z)で表される励起スペクトルである。
     合成励起スペクトル強度=(蛍光体Yの励起スペクトル強度)×(蛍光体Yの重量分率)+(蛍光体Gの励起スペクトル強度)×(蛍光体Gの重量分率) ・・・(Z)
     蛍光体Yの重量分率は、蛍光体Y/(蛍光体Y+蛍光体G)で表される。
     蛍光体Gの重量分率も同様に表される。
     合成励起スペクトル強度変化率は、励起スペクトルの450nmにおける励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における合成励起スペクトル強度の最大値と最小値との差で表される。
  43.  下記一般式(G4)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gと、
     透明材料と、を含む、波長変換部材であって、
     該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下である、波長変換部材。
      Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G4)
      (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  44.  励起波長を445nmから455nmに連続的に変化させたときに波長変換部材から放射される光の色度変化Δu'v 'が、Δu'v '≦0.004を満たす、請求項35から43のいずれか1項に記載の波長変換部材。
     ただし、Δu'v 'は、445nmから455nmにおける任意の波長inmにおける色度(u'i,v ' i)と、445nmから455nmにおける色度の平均値(u'ave,v' ave)の距離を表すものとする。
  45.  励起波長を435nmから470nmに連続的に変化させたときに波長変換部材から放射される光の色度変化Δu'v 'が、Δu'v '≦0.015を満たす、請求項35から44のいずれか1項に記載の波長変換部材。
     ただし、Δu'v 'は、435nmから470nmにおける任意の波長inmにおける色度(u'i,v ' i)と、435nmから470nmにおける色度の平均値(u'ave,v' ave)の距離を表すものとする。
  46.  下記一般式(YG1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が530nm以上550nm以下である黄緑色蛍光体と、
     透明材料と、を含む波長変換部材であって、
     該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が、0.25以下である、波長変換部材。
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(YG1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  47.  前記黄緑色蛍光体の励起スペクトル強度変化率が、0.13以下である、請求項46に記載の波長変換部材。
     但し、前記黄緑色蛍光体の励起スペクトル強度変化率は、450nmにおける黄緑色蛍光体の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  48.  励起波長を445nmから455nmに連続的に変化させたときに波長変換部材から放射される光の色度変化Δu'v 'が、Δu'v '≦0.005を満たす、請求項46又は47に記載の波長変換部材。
     ただし、Δu'v 'は、445nmから455nmにおける任意の波長inmにおける色度(u'i,v 'i)と、445nmから455nmにおける色度の平均値(u'ave,v'ave)の距離を表すものとする。
  49.  前記黄緑蛍光体が下記一般式(YG2)で示されることを特徴とする、請求項46から48のいずれか1項に記載の波長変換部材。
      MAle ・・・(YG2)
      (Mは、Ce元素。Aは、Y、Luの群から選ばれ、Yを90%以上含む、1又は2以上の元素。Eは、Ga、又はGa及びSc。a+b=3、4.5≦c+d≦5.5、10.8≦e≦13.2、0≦a≦0.9、0.8≦c≦1.2)
  50.  下記一般式(Y1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下である蛍光体Yと、
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(Y1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
     下記一般式(G1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gと、
     透明材料と、を含む、蛍光体組成物。
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(G1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
  51.  前記蛍光体組成物を成形して波長変換部材とした際、該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.25以下である、請求項50に記載の蛍光体組成物。
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  52.  前記蛍光体Yが、下記一般式(Y2)で示される蛍光体であり、
     前記蛍光体Gが、下記一般式(G2)で示される蛍光体であり、
     前記蛍光体組成物を成形して波長変換部材とした際、該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.23以下である、請求項50に記載の蛍光体組成物。
      Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y2)
      (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
      Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(G2)
      (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、1.2≦c≦2.6、10.8≦e≦13.4)
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  53.  前記蛍光体Yが、下記一般式(Y3)で示される蛍光体であり、
     前記蛍光体Gが、下記一般式(G3)で示される蛍光体であり、
     前記蛍光体組成物を成形して波長変換部材とした際、該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下である、請求項50に記載の蛍光体組成物。
      Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y3)
      (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
      Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G3)
      (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  54.  前記蛍光体組成物を成形して波長変換部材とした際、
     該波長変換部材における前記蛍光体Yは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも小さく、
     該波長変換部材における前記蛍光体Gは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも大きい、
     請求項50から53のいずれか1項に記載の蛍光体組成物。
  55.  さらに、下記一般式(B1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が500nm以上520nm以下である青緑色蛍光体を含むことを特徴とする請求項50から54のいずれか1項に記載の蛍光体組成物。
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(B1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
  56.  前記蛍光体Yと前記蛍光体Gの組成比が、10:90以上、90:10以下である、請求項50から54のいずれか1項に記載の蛍光体組成物。
  57.  下記一般式(G4)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gと、
     透明材料と、を含む、蛍光体組成物であって、
     該蛍光体組成物を成形して波長変換部材とした際、該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が0.33以下である、蛍光体組成物。
      Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G4)
      (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  58.  下記一般式(YG1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が530nm以上550nm以下である黄緑色蛍光体と、
     透明材料と、を含む蛍光体組成物であって、
     該蛍光体組成物を成形して波長変換部材とした際、該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が、0.25以下である、蛍光体組成物。
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(YG1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  59.  前記黄緑蛍光体が下記一般式(YG2)で示されることを特徴とする、請求項58に記載の蛍光体組成物。
      MAle ・・・(YG2)
      (Mは、Ce元素。Aは、Y、Luの群から選ばれ、Yを90%以上含む、1又は2以上の元素。Eは、Ga、又はGa及びSc。a+b=3、4.5≦c+d≦5.5、10.8≦e≦13.2、0≦a≦0.9、0.8≦c≦1.2)
  60.  さらに、赤色蛍光体を含むことを特徴とする請求項58又は59に記載の蛍光体組成物。
  61.  下記一般式(Y1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が540nm以上570nm以下である蛍光体Yと、
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(Y1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
     下記一般式(G1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gを含む、蛍光体混合物。
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(G1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
  62.  発光波長540nmでの励起スペクトル強度変化率が0.40以下である、請求項61に記載の蛍光体混合物。
     但し、該蛍光体混合物の励起スペクトル強度変化率は、450nmにおける蛍光体混合物の励起スペクトル強度を1.0とした際の、430nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  63.  前記蛍光体Yが、下記一般式(Y2)で示される蛍光体であり、
     前記蛍光体Gが、下記一般式(G2)で示される蛍光体であり、
     発光波長540nmでの励起スペクトル強度変化率が0.30以下である、請求項61に記載の蛍光体混合物。
      Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y2)
      (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
      Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(G2)
      (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、1.2≦c≦2.6、10.8≦e≦13.4)
     但し、該蛍光体混合物の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから470nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  64.  前記蛍光体Yが、下記一般式(Y3)で示される蛍光体であり、
     前記蛍光体Gが、下記一般式(G3)で示される蛍光体であり、
     発光波長540nmでの励起スペクトル強度変化率が0.25以下である、請求項61に記載の蛍光体混合物。
      Ya(Ce,Tb,Lu)b(Ga,Sc)cAlde  ・・・(Y3)
      (a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦0.2、10.8≦e≦13.4)
      Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G3)
      (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
     但し、該蛍光体混合物の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  65.  前記蛍光体Yは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも小さく、
     前記蛍光体Yは、発光波長540nmでの励起スペクトルにおいて、430nmにおける励起スペクトル強度が470nmにおける励起スペクトル強度よりも大きい、
     請求項61から64のいずれか1項に記載の蛍光体混合物。
  66.  さらに、下記一般式(B1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が500nm以上520nm以下である青緑色蛍光体を含むことを特徴とする請求項61から65のいずれか1項に記載の蛍光体混合物。
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(B1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
  67.  前記蛍光体Yと前記蛍光体Gの組成比が、10:90以上、90:10以下である、請求項61から65のいずれか1項に記載の蛍光体混合物。
  68.  下記一般式(G4)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が520nm以上540nm以下である蛍光体Gを含む、蛍光体混合物であって、
     該蛍光体混合物の発光波長540nmでの励起スペクトル変化率が0.25以下である、蛍光体混合物。
      Luf(Ce,Tb,Y)g(Ga,Sc)hAlij  ・・・(G4)
      (f+g=3、0≦g≦0.2、4.5≦h+i≦5.5、0≦i≦0.2、10.8≦j≦13.4)
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、435nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  69.  下記一般式(YG1)で示され、450nmで励起した時の発光波長スペクトルのピーク波長が530nm以上550nm以下である黄緑色蛍光体を含む蛍光体混合物であって、
     該蛍光体混合物の発光波長575nmでの励起スペクトル強度変化率が、0.12以下である、蛍光体混合物。
      (Y,Ce,Tb,Lu)x(Ga,Sc,Al)yz ・・・(YG1)
      (x=3、4.5≦y≦5.5、10.8≦z≦13.4)
     但し、該蛍光体混合物の励起スペクトル強度変化率は、450nmにおける蛍光体混合物の励起スペクトル強度を1.0とした際の、430nmから465nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  70.  さらに、赤色蛍光体を含む、請求項69に記載の蛍光体混合物。
  71.  前記蛍光体混合物と、シリコーン樹脂とを混合、またはポリカーボネート樹脂とを混練、成形して波長変換部材とした際、該波長変換部材の発光波長540nmでの励起スペクトル強度変化率が、0.05以下である、請求項69又は70に記載の蛍光体混合物。
     但し、波長変換部材の励起スペクトル強度変化率は、450nmにおける波長変換部材の励起スペクトル強度を1.0とした際の、440nmから460nmの範囲における励起スペクトル強度の最大値と最小値との差で表される。
  72.  前記黄緑蛍光体が下記一般式(YG2)で示されることを特徴とする、請求項69から71のいずれか1項に記載の蛍光体混合物。
     MAle ・・・(YG2)
    (Mは、Ce元素。Aは、Y、Luの群から選ばれ、Yを90%以上含む、1又は2以上の元素。Eは、Ga、又はGa及びSc。a+b=3、4.5≦c+d≦5.5、10.8≦e≦13.2、0≦a≦0.9、0.8≦c≦1.2)
PCT/JP2013/069607 2012-07-20 2013-07-19 発光装置、波長変換部材、蛍光体組成物、及び蛍光体混合物 WO2014014079A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147036183A KR20150035742A (ko) 2012-07-20 2013-07-19 발광 장치, 파장 변환 부재, 형광체 조성물 및 형광체 혼합물
US14/594,981 US20150166888A1 (en) 2012-07-20 2015-01-12 Light-emitting device, wavelength conversion member, phosphor composition and phosphor mixture
US15/085,126 US20160208164A1 (en) 2012-07-20 2016-03-30 Light-emitting device, wavelength conversion member, phosphor composition and phosphor mixture

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012161508 2012-07-20
JP2012-161508 2012-07-20
JP2012-262614 2012-11-30
JP2012262614 2012-11-30
JP2013-043101 2013-03-05
JP2013043101A JP2014170895A (ja) 2013-03-05 2013-03-05 波長変換部材及びこれを用いた発光装置
JP2013138464A JP2014130998A (ja) 2012-07-20 2013-07-01 発光装置、波長変換部材、蛍光体組成物、及び蛍光体混合物
JP2013-138464 2013-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/594,981 Continuation US20150166888A1 (en) 2012-07-20 2015-01-12 Light-emitting device, wavelength conversion member, phosphor composition and phosphor mixture

Publications (1)

Publication Number Publication Date
WO2014014079A1 true WO2014014079A1 (ja) 2014-01-23

Family

ID=49948899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069607 WO2014014079A1 (ja) 2012-07-20 2013-07-19 発光装置、波長変換部材、蛍光体組成物、及び蛍光体混合物

Country Status (2)

Country Link
TW (1) TWI563690B (ja)
WO (1) WO2014014079A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106796976A (zh) * 2014-10-08 2017-05-31 首尔半导体株式会社 发光装置
EP3300128A1 (en) * 2016-09-21 2018-03-28 Vestel Elektronik Sanayi ve Ticaret A.S. Phosphor arrangement and method
US11870016B2 (en) 2019-12-02 2024-01-09 Seoul Semiconductor Co., Ltd. Light emitting device and lighting apparatus including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109424940B (zh) 2017-07-04 2021-05-04 中强光电股份有限公司 光波长转换模块以及照明模块
CN111334244A (zh) * 2020-02-28 2020-06-26 Tcl华星光电技术有限公司 封装荧光胶层及其制作方法、量子点背光源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208815A (ja) * 1996-07-29 2000-07-28 Nichia Chem Ind Ltd 発光ダイオ―ド
JP2005008844A (ja) * 2003-02-26 2005-01-13 Nichia Chem Ind Ltd 蛍光体及びそれを用いた発光装置
WO2009028656A1 (ja) * 2007-08-30 2009-03-05 Nichia Corporation 発光装置
JP2012049022A (ja) * 2010-08-27 2012-03-08 Stanley Electric Co Ltd 半導体発光装置及びそれを用いた車両用灯具

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104908B2 (en) * 2010-03-04 2012-01-31 Xicato, Inc. Efficient LED-based illumination module with high color rendering index
JP2012079989A (ja) * 2010-10-05 2012-04-19 Stanley Electric Co Ltd 光源装置および照明装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208815A (ja) * 1996-07-29 2000-07-28 Nichia Chem Ind Ltd 発光ダイオ―ド
JP2005008844A (ja) * 2003-02-26 2005-01-13 Nichia Chem Ind Ltd 蛍光体及びそれを用いた発光装置
WO2009028656A1 (ja) * 2007-08-30 2009-03-05 Nichia Corporation 発光装置
JP2012049022A (ja) * 2010-08-27 2012-03-08 Stanley Electric Co Ltd 半導体発光装置及びそれを用いた車両用灯具

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106796976A (zh) * 2014-10-08 2017-05-31 首尔半导体株式会社 发光装置
EP3206240A4 (en) * 2014-10-08 2018-05-23 Seoul Semiconductor Co., Ltd. Light emitting device
CN110055059A (zh) * 2014-10-08 2019-07-26 首尔半导体株式会社 发光装置
EP3546544A1 (en) * 2014-10-08 2019-10-02 Seoul Semiconductor Co., Ltd. Light emitting device
US10811572B2 (en) 2014-10-08 2020-10-20 Seoul Semiconductor Co., Ltd. Light emitting device
CN110055059B (zh) * 2014-10-08 2022-12-27 首尔半导体株式会社 发光装置
US11545599B2 (en) 2014-10-08 2023-01-03 Seoul Semiconductor Co., Ltd. Light emitting device
EP3300128A1 (en) * 2016-09-21 2018-03-28 Vestel Elektronik Sanayi ve Ticaret A.S. Phosphor arrangement and method
WO2018055028A1 (en) * 2016-09-21 2018-03-29 Vestel Elektronik Sanayi Ve Ticaret A.S. Phosphor arrangement and method
US11104845B2 (en) 2016-09-21 2021-08-31 Vestel Elektronik Sanayi Ve Ticaret A.S. Phosphor arrangement and method
US11870016B2 (en) 2019-12-02 2024-01-09 Seoul Semiconductor Co., Ltd. Light emitting device and lighting apparatus including the same

Also Published As

Publication number Publication date
TWI563690B (en) 2016-12-21
TW201409774A (zh) 2014-03-01

Similar Documents

Publication Publication Date Title
US20160208164A1 (en) Light-emitting device, wavelength conversion member, phosphor composition and phosphor mixture
WO2013129477A1 (ja) 波長変換部材及びこれを用いた半導体発光装置
US9711695B2 (en) Light emitting diode device and method for production thereof containing conversion material chemistry
JP2013211250A (ja) 波長変換部材及びこれを用いた半導体発光装置
CN104918992B (zh) 发光二极管装置、制造方法、其应用
CN105206732B (zh) 塑料模制器件和发光器件
US20130221837A1 (en) Polycarbonate made from low sulfur bisphenol a and containing converions material chemistry, and articles made therefrom
WO2014014079A1 (ja) 発光装置、波長変換部材、蛍光体組成物、及び蛍光体混合物
JP2014143344A (ja) 波長変換部材及びこれを用いた半導体発光装置
JP5598593B2 (ja) 発光装置、波長変換部材、蛍光体組成物、及び蛍光体混合物
JP6204839B2 (ja) 発光装置、及び波長変換部材
JP2014125597A (ja) 熱可塑性樹脂組成物、波長変換部材、発光装置、及びled照明器具
WO2015194224A1 (ja) 蓄光性ポリカーボネート樹脂組成物及びその成形品
JP6428161B2 (ja) 蓄光性ポリカーボネート樹脂組成物及びその成形品
JP5723090B2 (ja) ポリカーボネート樹脂組成物及びそれからなる成形品
JP2014175322A (ja) 発光装置、該発光装置を有する照明装置、及び画像表示装置、並びに蛍光体組成物、及び該蛍光体組成物を成形してなる波長変換部材
JP2014170895A (ja) 波長変換部材及びこれを用いた発光装置
JP2014192251A (ja) 波長変換部材およびこれを用いた半導体発光装置
KR20190020768A (ko) 폴리카보네이트의 원격 형광체 광학 특성을 개선하는 방법
JP2014079905A (ja) 波長変換部材の製造方法、及び発光装置の製造方法
JP2011057786A (ja) ポリカーボネート樹脂組成物及びそれからなる成形品
WO2013129509A1 (ja) 波長変換部材およびその製造方法、該波長変換部材を含む発光装置および照明器具、並びに樹脂組成物
JP2014080467A (ja) 蛍光体樹脂組成物、及びその製造方法、蛍光体樹脂成形体、及びその製造方法、並びに半導体発光装置
JP2014112630A (ja) 波長変換部材およびその製造方法、該波長変換部材を含む発光装置および照明器具、並びに樹脂組成物
TW202130728A (zh) 聚碳酸酯樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147036183

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819925

Country of ref document: EP

Kind code of ref document: A1