WO2014012340A1 - 一种锂离子动力电池隔离膜及其制备方法 - Google Patents

一种锂离子动力电池隔离膜及其制备方法 Download PDF

Info

Publication number
WO2014012340A1
WO2014012340A1 PCT/CN2012/087242 CN2012087242W WO2014012340A1 WO 2014012340 A1 WO2014012340 A1 WO 2014012340A1 CN 2012087242 W CN2012087242 W CN 2012087242W WO 2014012340 A1 WO2014012340 A1 WO 2014012340A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium sulfate
dispersion
coating
power battery
lithium ion
Prior art date
Application number
PCT/CN2012/087242
Other languages
English (en)
French (fr)
Inventor
刘源
刘楷
Original Assignee
湛江市鑫满矿业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湛江市鑫满矿业有限公司 filed Critical 湛江市鑫满矿业有限公司
Publication of WO2014012340A1 publication Critical patent/WO2014012340A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lithium ion power battery separator and a preparation method thereof, which are suitable for preparing a battery separator of a lithium ion power battery. It belongs to the field of new energy materials technology.
  • Lithium-ion power batteries are mainly composed of positive and negative electrodes, electrolytes, and separators. They are excellent in high energy density and have become one of the main energy sources for electric vehicles.
  • the lithium ion power battery generates a large amount of heat energy during operation. Due to the defects of the prior art isolation membrane structure, the heat energy generated by the lithium ion power battery during operation cannot be effectively discharged, and the battery temperature is likely to rise and the life is short. , the problem of poor security. Therefore, the separator plays a vital role in the lithium ion power battery. It is between the positive and negative electrodes to avoid physical contact between the two electrodes and improve battery safety. Summary of the invention
  • the first object of the present invention is to solve the problem that the thermal energy generated by the lithium ion power battery during operation cannot be effectively discharged by the prior art isolation membrane, and provide a lithium ion power battery isolation membrane, which can extend lithium The life of the ion power battery increases the safety of the power battery.
  • a second object of the present invention is to provide a method for preparing a lithium ion power battery separator.
  • the first object of the invention can be achieved by the following technical solutions:
  • a lithium ion power battery separator comprising a microporous base film, the structural features of which are:
  • each of the upper surface and the lower surface of the microporous base film is coated with a barium sulfate ceramic coating
  • the barium sulfate ceramic coating is formed by coating and precipitating a nano barium sulfate coating solution
  • the nano barium sulfate coating solution comprises a nanometer barium sulfate slurry, and the nanometer barium sulfate slurry is composed of a mass percentage of 40% to 50% of barium sulfate, 0.5 to 1.5% of barium, methylpyrrolidone, and ethylene.
  • pyrrolidone 0.5 to 1.5% of pyrrolidone, 0.5 to 1.5% of divinyl carbonate, 1 to 5% of aluminum oxide, 0.1 to 0.5% of organic fluorine dispersant, and the balance is deionized water, which is prepared by grinding;
  • the percentage content is from 35 to 45% of the nanometer barium sulfate slurry and 10 to 25% of the chemical binder, 1 to 3% of the thickener, 0.05 to 0.15% of the antifoaming agent, 0.05 to 0.15% of the wetting agent, and dispersed.
  • the agent is 0.05 ⁇ 0.15% and the leveling agent is 0.05 ⁇ 0.15%, and is uniformly mixed by stirring.
  • a technical improvement of the first object of the present invention is: the microporous base film is ⁇ type, ⁇ type,
  • UHMW-PE type or PVDF type porous base film or a composite base film of ⁇ type and ⁇ type, or ⁇ Composite film with type and UHMW-PE type.
  • a technical improvement of the first object of the present invention is that the microporous base film may have a thickness of 20 ⁇ m, 25 ⁇ m 30 ⁇ m or 40 ⁇ m.
  • a technical improvement of the first object of the present invention is: the chemical connecting material is SBR styrene-butadiene latex dispersion/solvent-type dispersion, or carboxylated styrene-butadiene rubber dispersion/solvent-type dispersion, or polyurethane aqueous dispersion Liquid/solvent dispersion PUD, or acrylic acid-primary amine copolymer emulsion/dispersion/solvent dispersion, or vinylidene fluoride aqueous dispersion PVDF/solvent dispersion.
  • SBR styrene-butadiene latex dispersion/solvent-type dispersion or carboxylated styrene-butadiene rubber dispersion/solvent-type dispersion, or polyurethane aqueous dispersion Liquid/solvent dispersion PUD, or acrylic acid-primary amine copolymer emulsion/dispersion/solvent dis
  • a method for preparing a lithium ion power battery separator characterized in that the method comprises the following steps:
  • a technical improvement of the second object of the present invention is: a process for preparing a nanometer barium sulfate coating liquid, which comprises two processes of conventional grinding and dispersion grinding; conventional grinding means that the precipitated barium sulfate as a raw material of the reaction is passed through a conventional one. Grinding to form powdered barium sulfate; dispersion grinding refers to the placement of powdered barium sulfate in the reaction medium of lithium ion batteries, ⁇ -methylpyrrolidone ( ⁇ ), vinylpyrrolidone (NVP) and divinyl carbonate ionic liquid Then, grinding and stirring to obtain a nano-scale dispersion, and the time of grinding and stirring may be 24 hours to 48 hours, respectively.
  • conventional grinding means that the precipitated barium sulfate as a raw material of the reaction is passed through a conventional one. Grinding to form powdered barium sulfate; dispersion grinding refers to the placement of powdered barium sulfate in
  • a technical improvement of the second object of the present invention is:
  • the process of preparing a nanometer barium sulfate coating solution comprises the following steps:
  • the materials are supplied in the following mass percentages: precipitation method: barium sulfate 40 ⁇ 50%, barium, strontium-methylpyrrolidone 0.5 ⁇ 1.5%, vinylpyrrolidone 0.5 ⁇ 1.5%, divinyl carbonate 0.5 ⁇ 1.5%, trioxide Al2O1 ⁇ 5%, organic fluorine dispersant 0.1 ⁇ 0.5%, and deionized water balance, spare;
  • Step 2 35 ⁇ 45% of the obtained polishing slurry, 10 ⁇ 25% of chemical binder, 1 ⁇ 3% of thickener, 0.05 ⁇ 0.15% of the above antifoaming agent, 0.05 of wetting agent ⁇ 0.15%, dispersant 0.05 ⁇ 0.15% and leveling agent 0.05 ⁇ 0.15%
  • the slurry is dispersed into water through a chemical binder, thickened with a small molecular weight thickener to the coating viscosity required by the coater, and then pumped into the agitating feed system of the coater. Then, adding a defoaming agent, a wetting agent, a dispersing agent, and a leveling agent, and uniformly stirring, to obtain a nano barium sulfate coating liquid.
  • the nano barium sulfate coating liquid is coated with a microporous base film by a coater to form a film.
  • the organofluorine dispersant described in the step 1) is a DuPontTM Zonyl FSWET-1010 type dispersant.
  • a technical improvement of the second object of the present invention is that the speed of the dispersing machine described in the step 2) is 3000 rpm; the grinding machine is a horizontal grinding machine of a 25 L tungsten carbide inner liner, having a diameter of Lmm of zirconium dioxide is used as the grinding beads.
  • a technical improvement of the second object of the present invention is that the chemical connecting material described in the step 3) is an SBR styrene-butadiene latex dispersion/solvent-type dispersion, or a carboxylated styrene-butadiene rubber dispersion/solvent-type dispersion, Or polyurethane aqueous dispersion/solvent dispersion PUD, or acrylic acid-primary amine copolymer emulsion/dispersion/solvent dispersion, or vinylidene fluoride aqueous dispersion/solvent dispersion PVDF.
  • SBR styrene-butadiene latex dispersion/solvent-type dispersion or a carboxylated styrene-butadiene rubber dispersion/solvent-type dispersion, Or polyurethane aqueous dispersion/solvent dispersion PUD, or acrylic acid-primary amine copolymer emulsion/disper
  • a technical improvement of the second object of the present invention is: the solvent type is toluene, butanone, N-methylpyrrolidone (MP), vinylpyrrolidone (NVP), acetone, methylcyclohexane, acetic acid Propyl ester, propylene glycol methyl ether acetate, isopropanol, ethanol or methanol.
  • MP N-methylpyrrolidone
  • NDP vinylpyrrolidone
  • acetone methylcyclohexane
  • acetic acid Propyl ester
  • propylene glycol methyl ether acetate isopropanol
  • isopropanol ethanol or methanol.
  • a technical improvement of the second object of the present invention is that the thickening agent described in the step 3) is hydroxymethylpropylcellulose.
  • a technical improvement of the second object of the present invention is: the coater described in the step 3) is a micro gravure coater or a slit coater; the three dry air vent temperature of the micro gravure coater
  • the coating speed was 20 m/min at 120 to 140 ° C, 140 to 150 ° C, and 120 to 130 ° C, respectively, and the thickness of the coating was in the range of 10 ⁇ m ⁇ 0.5 ⁇ .
  • the present invention has the following outstanding benefits:
  • the separator prepared by the invention is laminated with the positive electrode material and the negative electrode material, the electrolyte is added, and the lithium ion power battery has good MD/TD extension and high piercing strength, and no micro short circuit is formed.
  • high electrolyte saturation can be formed, and 3 ⁇ 10% electrolyte can be added, which can significantly improve the life of the lithium ion power battery, prolong the cycle life, increase the charge and discharge rate, and enable the lithium produced by the same process.
  • the ion battery extends the life of 40%; the closed-cell temperature of the lithium-ion battery is increased to increase the safety of the battery.
  • the separator obtained by the preparation of the invention improves the winding production of the battery due to the low surface tension of barium sulfate Rate, most of the coating materials used in the preparation process are domestic raw materials, which will greatly reduce the cost of domestic lithium-ion power batteries.
  • the lithium ion power battery separator according to the embodiment includes a microporous base film, and the upper surface and the lower surface of the microporous base film are coated with a barium sulfate ceramic coating; the barium sulfate ceramic coating is composed of nanometer.
  • the barium sulfate coating solution is formed by coating precipitation; the nano barium sulfate coating solution comprises nano barium sulfate polishing liquid, and the nanometer barium sulfate polishing liquid is composed of mass percentage of precipitation method of barium sulfate 40 ⁇ 50%, strontium, barium- Methylpyrrolidone 0.5 ⁇ 1.5%, vinylpyrrolidone 0.5 ⁇ 1.5%, divinyl carbonate 0.5 ⁇ 1.5%, aluminum oxide 1 ⁇ 5%, organic fluorine dispersant 0.1 ⁇ 0.5%, balance is deionized water , by grinding, according to the mass percentage, from the description of the nanometer barium sulfate slurry 35 ⁇ 45% with chemical binder 10 ⁇ 25%, thickener 1 ⁇ 3%, defoamer 0.05 ⁇ 0.15%,
  • the wetting agent is 0.05 ⁇ 0.15%
  • the dispersing agent is 0.05 ⁇ 0.15%
  • the leveling agent is 0.05 ⁇ 0.15%, and is uniformly mixed by stirring.
  • the microporous base film is a ⁇ -type, ⁇ -type, UHMW-PE type or PVDF type porous base film, or a composite base film of ⁇ type and ⁇ type, or a composite base film of ⁇ type and UHMW-PE type.
  • the microporous base film may have a thickness of 20 ⁇ m, 25 ⁇ m, 30 ⁇ m or 40 ⁇ m.
  • the chemical binder is SBR styrene-butadiene latex dispersion/solvent dispersion, or carboxyl styrene-butadiene rubber dispersion/solvent dispersion, or polyurethane aqueous dispersion/solvent dispersion PUD, or acrylic-primary amine copolymerization.
  • the preparation process of the nanometer barium sulfate coating liquid comprises two processes of conventional grinding and dispersion grinding; the conventional grinding means that the precipitated barium sulfate as a raw material of the reaction is subjected to conventional grinding to form powdery barium sulfate; the dispersion grinding means powder
  • the barium sulphate is placed in a ruthenium, ⁇ -methylpyrrolidone ( ⁇ ), vinylpyrrolidone (NVP) and divinyl carbonate ionic liquid in a lithium ion battery reaction medium, and then ground and stirred to obtain a nano-sized dispersion.
  • the time of regrinding and stirring may be 24 hours to 48 hours, respectively.
  • the process of preparing the nano barium sulfate coating solution comprises the following steps:
  • Step 2) 40% of the obtained grinding slurry, 25% of chemical binder BR styrene latex dispersion, 3% thickener, 0.1% of antifoaming agent, 0.1% of wetting agent, dispersion 0.1%, leveling [J 0.1%
  • the slurry is dispersed into water through a chemical binder, thickened with a small molecular weight thickener to the coating viscosity required by the coater, and then pumped into the agitating feed system of the coater. Then, adding a defoaming agent, a wetting agent, a dispersing agent, and a leveling agent, and uniformly stirring, to obtain a nano barium sulfate coating liquid.
  • the nano barium sulfate coating liquid is coated with a microporous base film by a coater to form a film.
  • the organofluorine dispersant described in the step 1) is a DuPontTM Zonyl FSWET-1010 dispersant.
  • the dispersing machine described in the step 2) was rotated at 3000 rpm.
  • the grinder was a horizontal grinder of 25 L of tungsten carbide inner liner, and zirconia having a diameter of 1 mm was used as the grinding beads.
  • the chemical binder described in the step 3) is an SBR styrene-butadiene latex dispersion/solvent-type dispersion, or a carboxylated styrene-butadiene rubber dispersion/solvent-type dispersion, or an aqueous polyurethane dispersion/solvent dispersion PUD, or acrylic acid.
  • SBR styrene-butadiene latex dispersion/solvent-type dispersion or a carboxylated styrene-butadiene rubber dispersion/solvent-type dispersion, or an aqueous polyurethane dispersion/solvent dispersion PUD, or acrylic acid.
  • PUD aqueous polyurethane dispersion/solvent dispersion
  • acrylic acid - Primary amine copolymer emulsion/dispersion/solvent dispersion, or vinylidene fluoride aqueous dispersion/solvent dispersion PVDF.
  • the coating machine described in the step 3) is a micro gravure coater or a slit coater; the temperature of the three dry tuyeres of the micro gravure coater is 120 to 140 ° C, 140 to 150 ° C, respectively.
  • the coating speed per side was 20 m/min at 120 to 130 ° C, and the thickness of the coating was in the range of 10 ⁇ m ⁇ ⁇ 0.5 ⁇ .
  • the solvent types are toluene, methyl ethyl ketone, fluorene-methyl pyrrolidone (oxime), vinyl pyrrolidone (NVP), acetone, methyl cyclohexane, n-propyl acetate, propylene glycol methyl ether acetate, isopropanol, ethanol Or methanol.
  • the wound separator is re-rolled after being relaxed for 24 hours, and the coating defect is detected in the coating detector by the CCD camera, and the coated ceramic separator is used.
  • the main feature of this embodiment is that the precipitated barium sulfate of the type BF as a reaction raw material is ground.
  • the binder in the step 2) is a carboxyl styrene butadiene rubber dispersion having a percentage of 10% and a percentage of the thickener of 1%.
  • the rest of the preparation process is the same as in the specific example 1.
  • the main feature of this embodiment is that the type EX of the reaction material and the precipitation method of barium sulfate of the type BF are mixed and ground.
  • the percentage of barium sulfate in the EX precipitation method was 20%, and the percentage of barium sulfate in the BF precipitation method was 25%.
  • the microporous base film is a PVDF type porous base film having a thickness of 25 ⁇ m, 30 ⁇ m or 40 ⁇ m.
  • the connecting material described in step 2) is an aqueous polyurethane dispersion (PUD). Dispersion), or acrylic acid-primary amine copolymer emulsion/dispersion, or PVDF (vinylidene fluoride aqueous dispersion). The rest are the same as in the specific examples 1-3.
  • the connecting material described in the step 2) is a SBR styrene-butadiene latex solvent-type dispersion, or a carboxylated styrene-butadiene rubber solvent-based dispersion, or a polyurethane aqueous solvent-based dispersion (PUD dispersion). Or an acrylic acid-primary amine copolymer solvent type dispersion, or PVDF (vinylidene fluoride solvent type dispersion).
  • the solvent types are toluene, butanone, N-methylpyrrolidone (NMP), vinylpyrrolidone (NVP), acetone, methylcyclohexane, n-propyl acetate, propylene glycol methyl ether acetate, isopropanol, ethanol Or methanol.
  • the main feature of this embodiment is that the coater described in step 2) is a slit coater.
  • the rest are the same as in the specific examples 1-4.
  • the nano barium sulfate coating liquid comprises a nanometer barium sulfate polishing liquid
  • the nanometer barium sulfate polishing liquid is composed of a mass percentage of the precipitation method of barium sulfate 40 to 50%, strontium, barium-A 0.5 to 1.5% of pyrrolidone, 0.5 to 1.5% of vinylpyrrolidone, 0.5 to 1.5% of divinyl carbonate, 1 to 5% of alumina, 0.1 to 0.5% of organic fluorine dispersant, and the balance is deionized water.
  • the nanometer barium sulfate slurry is 35 ⁇ 45% and the chemical binder is 10 ⁇ 25%, the thickener is 1 ⁇ 3%, the defoaming agent is 0.05 ⁇ 0.15%, The wet agent is 0.05 to 0.15%, the dispersing agent is 0.05 to 0.15%, and the leveling agent is 0.05 to 0.15%.
  • the process of preparing the nano barium sulfate coating solution comprises the following steps:
  • the materials are supplied in the following mass percentages: precipitation method: barium sulfate 40 ⁇ 50%, barium, strontium-methylpyrrolidone 0.5 ⁇ 1.5%, vinylpyrrolidone 0.5 ⁇ 1.5%, divinyl carbonate 0.5 ⁇ 1.5%, trioxide Al2O1 ⁇ 5%, organic fluorine dispersant 0.1 ⁇ 0.5%, and deionized water balance, spare;
  • Step 2 35 ⁇ 45% of the obtained polishing slurry, 10 ⁇ 25% of chemical binder, 1 ⁇ 3% of thickener, 0.05 ⁇ 0.15% of the above antifoaming agent, 0.05 of wetting agent ⁇ 0.15%, dispersant 0.05 ⁇ 0.15% and leveling agent 0.05 ⁇ 0.15%
  • the slurry is dispersed into water through a chemical binder, thickened with a small molecular weight thickener to the coating viscosity required by the coater, and then pumped into the agitating feed system of the coater. , adding defoamer, After the wetting agent, the dispersing agent and the leveling agent are uniformly stirred, a nano barium sulfate coating liquid is prepared.
  • the nano barium sulfate coating liquid is coated with a microporous base film by a coater to form a film.
  • the above is only a preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any technical person skilled in the art within the scope of the present disclosure, according to the technical solution of the present invention and Equivalent substitutions or changes of the inventive concept are within the scope of the invention.
  • the invention adopts a precipitation method of barium sulfate as a ceramic coating to coat a microporous base film of a lithium ion power battery, as shown in Table 1 and Table 2, respectively, physical properties of various types of barium sulfate and impurity content of barium sulfate. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Cell Separators (AREA)
  • Paints Or Removers (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供了一种锂离子动力电池隔离膜及其制备方法,所述锂离子动力电池隔离膜,包括微孔基膜,在所述微孔基膜的上表面和下表面各涂布有硫酸钡陶瓷涂层;所述硫酸钡陶瓷涂层由纳米硫酸钡涂布液经涂布沉淀形成;其制备方法:在N,N—甲基吡咯烷酮、乙烯基吡咯烷酮和碳酸二乙烯基酯中加入沉淀法硫酸钡和三氧化二铝,再加入去离子水,然后在分散机中加入有机氟分散剂,开动分散机搅拌、分散20~40min后,输送到研磨机内研磨20~50h,得到研磨浆料;研磨浆料由连接料分散入水中,用小分子量的增稠剂增稠到涂布机的涂布粘度后,在涂布机中对微孔基膜进行涂布,形成薄膜;涂布后的薄膜干燥后,复卷检测,经过辊压处理后,使得硫酸钡涂布浆料与锂离子微孔基膜紧密结合。所述隔离膜可延长电池寿命、增加电池安全性,且成本低。

Description

一种锂离子动力电池隔离膜及其制备方法
技术领域
本发明涉及一种锂离子动力电池隔离膜及其制备方法, 适用锂离子动力电池的 电池隔离膜制备。 属于新能源材料技术领域。
背景技术
随着电子产业的进步, 电池也被广泛应用于各个层面, 例如移动电话、 笔记本 电脑等。 因此, 电池的需求在持续不断地增长, 在效能提升的同时安全性也受到了 重视。 而锂离子动力电池, 主要由正负极、 电解液、 隔离膜等部分组成, 其具有高 能量密度等优秀, 现已成为电动车主要能量来源之一。 但是, 锂离子动力电池在工 作时会产生大量的热能, 由于现有技术的隔离膜结构存在缺陷, 造成锂离子动力电 池在工作时产生的热能无法有效排出, 容易造成电池温度上升而出现寿命短、 安全 性差的问题。 因此, 隔离膜对锂离子动力电池起到至关重要的作用, 它介于正负极 之间, 避免两电极产生物理性的接触, 可提升电池安全性。 发明内容
本发明的第一个目的, 是为了解决现有技术的隔离膜造成锂离子动力电池在工 作时产生的热能无法有效排出的问题, 提供一种锂离子动力电池隔离膜, 该隔离膜 可延长锂离子动力电池寿命、 增加该动力电池安全性。
本发明的第二个目的, 是为了提供一种锂离子动力电池隔离膜的制备方法。 本发明的第一个目的可以通过以下技术方案达到:
一种锂离子动力电池隔离膜, 包括微孔基膜, 其结构特点是:
1 ) 在所述微孔基膜的上表面和下表面各涂布有硫酸钡陶瓷涂层;
2) 所述硫酸钡陶瓷涂层由纳米硫酸钡涂布液经涂布沉淀形成,;
3 )所述纳米硫酸钡涂布液包括纳米硫酸钡研磨液, 纳米硫酸钡研磨液由质量百 分含量为沉淀法硫酸钡 40〜50%、 Ν,Ν-甲基吡咯烷酮 0.5〜1.5%、 乙烯基吡咯烷酮 0.5〜1.5%、碳酸二乙烯基酯0.5〜1.5%、三氧化二铝1〜5%、有机氟分散剂0.1〜0.5%, 余量为去离子水, 经研磨制成; 再按质量百分含量计由述所纳米硫酸钡研磨液 35〜 45%与化工连接料 10〜25%、 增稠剂 1〜3%、 消泡剂 0.05〜0.15%、 润湿剂 0.05〜 0.15%、 分散剂 0.05〜0.15%和流平剂 0.05〜0.15%经搅拌均匀混合而成。
本发明的第一个目的还可以通过以下技术方案达到:
本发明第一个目的的一种技术改进方案是: 所述微孔基膜为 ΡΡ 型、 ΡΕ 型、
UHMW-PE型或 PVDF型多孔基膜, 或者为 ΡΡ型与 ΡΕ型的复合基膜, 或者为 ΡΡ 型与 UHMW-PE型的复合基膜。
本发明第一个目的的一种技术改进方案是: 所述微孔基膜的厚度可以为 20μιη、 25μηι 30μιη或 40μιη。
本发明第一个目的的一种技术改进方案是: 所述的化工连接料为 SBR丁苯胶乳 分散液 /溶剂型分散液, 或羧基丁苯橡胶分散液 /溶剂型分散液, 或聚氨酯水性分散液 /溶剂型分散液 PUD, 或丙烯酸-伯胺共聚乳液 /分散液 /溶剂型分散液, 或偏氟乙烯水 性分散液 PVDF/溶剂型分散液。
本发明的第二个目的可以通过以下技术方案达到:
一种锂离子动力电池隔离膜的制备方法, 其特征在于包括如下步骤:
1 ) 准备好微孔基膜;
2 ) 按设定的物质组份和方法制备纳米硫酸钡涂布液;
3 )涂布, 将纳米硫酸钡涂布液涂布在微孔基膜的上表面和下表面, 通过涂布沉 淀法在所述微孔基膜的表面形成纳米硫酸钡陶瓷涂层; 涂布方式采用微凹版技术涂 布或狭缝式挤出涂布, 形成涂布薄膜;
4 )涂布后处理, 待涂布薄膜干燥后, 复卷检测, 经过辊压处理后, 使得这种硫 酸钡陶瓷涂料与层隔离膜基膜结合紧密, 制得锂离子动力电池隔离膜。
本发明的第二个目的还可以通过以下技术方案达到:
本发明第二个目的的一种技术改进方案是: 制备纳米硫酸钡涂布液的过程, 包 括常规研磨和分散研磨二个过程; 常规研磨是指将作为反应原料的沉淀法硫酸钡通 过常规的研磨, 形成粉状硫酸钡; 分散研磨是指将粉状硫酸钡放置在锂离子电池反 应介质的 Ν,Ν-甲基吡咯烷酮 ( ΜΡ)、 乙烯基吡咯烷酮 (NVP ) 和碳酸二乙烯基酯 离子液体中, 再研磨、 搅拌, 制得到纳米级分散液, 再研磨、 搅拌的时间分别可是 24小时至 48小时。
本发明第二个目的的一种技术改进方案是: 制备纳米硫酸钡涂布液的过程包括 如下步骤:
1 ) 按以下质量百分比配备物料: 沉淀法硫酸钡 40〜50%、 Ν,Ν-甲基吡咯烷酮 0.5〜1.5%、乙烯基吡咯烷酮 0.5〜1.5%、碳酸二乙烯基酯 0.5〜1.5%、三氧化二铝 1〜 5%、 有机氟分散剂 0.1〜0.5%, 和去离子水余量, 备用;
2 ) 在 Ν,Ν-甲基吡咯烷酮、 乙烯基吡咯烷酮和碳酸二乙烯基酯中加入沉淀法硫 酸钡和三氧化二铝, 再加入去离子水, 然后在分散机中加入有机氟分散剂, 开动分 散机搅拌、 分散 20〜40分钟后, 用隔膜泵泵入密封管路系统, 将浆料输送到研磨机 内研磨 20〜50小时, 得到研磨浆料; 3 ) 制备纳米硫酸钡涂布液
首先, 准备以下百分比的配料: 步骤 2) 所得的研磨浆料 35〜45%、 化工连接 料 10〜25%、 增稠剂 1〜3%、 上述消泡剂 0.05〜0.15%、 润湿剂 0.05〜0.15%、 分散 剂 0.05〜0.15%和流平剂 0.05〜0.15%
然后, 将所述研磨浆料通过化工连接料分散入水中, 用小分子量的增稠剂增稠 到涂布机所需的涂布粘度后, 将物料泵入涂布机的搅拌供料系统中, 再加入消泡剂、 润湿剂、 分散剂、 流平剂后搅拌均匀, 制得纳米硫酸钡涂布液。
所述纳米硫酸钡涂布液由涂布机对微孔基膜进行涂布, 形成薄膜。
本发明第二个目的的一种技术改进方案是: 步骤 1 ) 中所述的有机氟分散剂为 杜邦 TM Zonyl FSWET-1010型分散剂。
本发明第二个目的的一种技术改进方案是:步骤 2)中所述的分散机转速为 3000 转 /min; 所述的研磨机为 25L碳化钨内胆的卧式研磨机, 以直径为 lmm的二氧化锆 作为研磨珠。
本发明第二个目的的一种技术改进方案是:步骤 3 )中所述的化工连接料为 SBR 丁苯胶乳分散液 /溶剂型分散液, 或羧基丁苯橡胶分散液 /溶剂型分散液, 或聚氨酯水 性分散液 /溶剂型分散液 PUD, 或丙烯酸-伯胺共聚乳液 /分散液 /溶剂型分散液, 或偏 氟乙烯水性分散液 /溶剂型分散液 PVDF。
本发明第二个目的的一种技术改进方案是: 所述溶剂类型为甲苯、 丁酮、 N-甲 基吡咯烷酮 ( MP)、 乙烯基吡咯烷酮 (NVP)、 丙酮、 甲基环己烷、 乙酸正丙酯、 丙 二醇甲醚醋酸酯、 异丙醇、 乙醇或甲醇。
本发明第二个目的的一种技术改进方案是: 步骤 3 ) 中所述的增稠剂为羟基甲 基丙基纤维素。
本发明第二个目的的一种技术改进方案是: 步骤 3 ) 中所述的涂布机为微凹版 涂布机或狭缝式涂布机;所述微凹版涂布机的三节干燥风口温度分别为 120〜140°C、 140〜150°C、 120〜130°C, 单面涂布速度为 20m/min, 涂布的厚度在 10μιη±0.5μιη 范围内。
本发明具有如下突出的有益效果:
1、 本发明制备所得的隔离膜与正极材料和负极材料叠片后, 加注电解液, 应用 于锂离子动力电池中具有良好的 MD/TD 延伸及高的穿剌强度, 无微短路形成, 在 锂离子电池中可形成高的电解液饱液量, 可以多添加 3〜10%的电解液, 显著提高锂 离子动力电池寿命, 延长循环寿命, 提高充放电倍率, 可使得同样工艺生产的锂离 子电池延长 40%的寿命; 将锂离子动力电池的闭孔温度提高, 增加电池的安全性。
2、 本发明制备所得的隔离膜由于硫酸钡的低表面张力提高电池的卷绕生产良 率, 在制备过程中的涂布原料大部分使用地是国产原材料, 将极大地降低国产锂离 子动力电池的成本。
具体实施方式
具体实施例 1 :
本实施例涉及的锂离子动力电池隔离膜,包括微孔基膜,在所述微孔基膜的上表 面和下表面各涂布有硫酸钡陶瓷涂层;所述硫酸钡陶瓷涂层由纳米硫酸钡涂布液经涂 布沉淀形成; 所述纳米硫酸钡涂布液包括纳米硫酸钡研磨液, 纳米硫酸钡研磨液由质 量百分含量为沉淀法硫酸钡 40〜50%、 Ν,Ν-甲基吡咯烷酮 0.5〜1.5%、 乙烯基吡咯烷 酮 0.5〜1.5%、 碳酸二乙烯基酯 0.5〜1.5%、 三氧化二铝 1〜5%、 有机氟分散剂 0.1〜 0.5%, 余量为去离子水, 经研磨制成; 再按质量百分含量计由述所纳米硫酸钡研磨液 35〜45%与化工连接料 10〜25%、增稠剂 1〜3%、消泡剂 0.05〜0.15%、润湿剂 0.05〜 0.15%、 分散剂 0.05〜0.15%和流平剂 0.05〜0.15%经搅拌均匀混合而成。
本实施例中:
所述微孔基膜为 ΡΡ型、 ΡΕ型、 UHMW-PE型或 PVDF型多孔基膜, 或者为 ΡΡ 型与 ΡΕ型的复合基膜, 或者为 ΡΡ型与 UHMW-PE型的复合基膜。所述微孔基膜的 厚度可以为 20μιη、 25μιη、 30μιη或 40μιη。 所述的化工连接料为 SBR丁苯胶乳分散 液 /溶剂型分散液, 或羧基丁苯橡胶分散液 /溶剂型分散液, 或聚氨酯水性分散液 /溶 剂型分散液 PUD, 或丙烯酸-伯胺共聚乳液 /分散液 /溶剂型分散液, 或偏氟乙烯水性 分散液 PVDF/溶剂型分散液。
本实施例的制备方法如下:
1 ) 准备好微孔基膜;
2) 按设定的物质组份和方法制备纳米硫酸钡涂布液;
3 )涂布, 将纳米硫酸钡涂布液涂布在微孔基膜的上表面和下表面, 通过涂布沉 淀法在所述微孔基膜的表面形成纳米硫酸钡陶瓷涂层; 涂布方式采用微凹版技术涂 布或狭缝式挤出涂布, 形成涂布薄膜;
4)涂布后处理, 待涂布薄膜干燥后, 复卷检测, 经过辊压处理后, 使得这种硫 酸钡陶瓷涂料与层隔离膜基膜结合紧密, 制得锂离子动力电池隔离膜。
本实施例涉及的制备方法中:
制备纳米硫酸钡涂布液的过程, 包括常规研磨和分散研磨二个过程; 常规研磨 是指将作为反应原料的沉淀法硫酸钡通过常规的研磨, 形成粉状硫酸钡; 分散研磨 是指将粉状硫酸钡放置在锂离子电池反应介质的 Ν,Ν-甲基吡咯烷酮 ( ΜΡ)、 乙烯 基吡咯烷酮 (NVP) 和碳酸二乙烯基酯离子液体中, 再研磨、 搅拌, 制得到纳米级 分散液, 再研磨、 搅拌的时间分别可是 24小时至 48小时。 制备纳米硫酸钡涂布液的过程包括如下步骤:
1 ) 分散和研磨
准备以下百分比的配料: EX沉淀法硫酸钡 45%、 Ν,Ν-甲基吡咯烷酮 1%、 乙烯 基吡咯烷酮 1%、 碳酸二乙烯基酯 1%、 三氧化二铝 3%、 有机氟分散剂 0.3%、 去离 子水为除前述物质外的余量; 备用;
2) 在 Ν,Ν-甲基吡咯烷酮、 乙烯基吡咯烷酮和碳酸二乙烯基酯中加入沉淀法硫 酸钡和三氧化二铝, 再加入去离子水, 然后在分散机中加入有机氟分散剂, 开动分 散机搅拌、 分散 20〜40分钟后, 用隔膜泵泵入密封管路系统, 将浆料输送到研磨机 内研磨 20〜50小时, 得到研磨浆料;
3 ) 制备纳米硫酸钡涂布液
首先, 准备以下百分比的配料: 步骤 2)所得的研磨浆料 40%、 化工连接料 BR 丁苯胶乳分散液 25%、 增稠剂 3%、 消泡剂 0.1%、 润湿剂 0.1%、 分散剂 0.1%、 流平 齐 [J 0.1%
然后, 将所述研磨浆料通过化工连接料分散入水中, 用小分子量的增稠剂增稠 到涂布机所需的涂布粘度后, 将物料泵入涂布机的搅拌供料系统中, 再加入消泡剂、 润湿剂、 分散剂、 流平剂后搅拌均匀, 制得纳米硫酸钡涂布液。
所述纳米硫酸钡涂布液由涂布机对微孔基膜进行涂布, 形成薄膜。
其中: 步骤 1 ) 中所述的有机氟分散剂为杜邦 TM Zonyl FSWET-1010型分散剂。
步骤 2) 中所述的分散机转速为 3000转 /min; 所述的研磨机为 25L碳化钨内胆 的卧式研磨机, 以直径为 1mm的二氧化锆作为研磨珠。
步骤 3 ) 中所述的化工连接料为 SBR丁苯胶乳分散液 /溶剂型分散液, 或羧基丁 苯橡胶分散液 /溶剂型分散液, 或聚氨酯水性分散液 /溶剂型分散液 PUD, 或丙烯酸- 伯胺共聚乳液 /分散液 /溶剂型分散液, 或偏氟乙烯水性分散液 /溶剂型分散液 PVDF。 步骤 3 ) 中所述的增稠剂为羟基甲基丙基纤维素。 步骤 3 ) 中所述的涂布机为微凹版 涂布机或狭缝式涂布机;所述微凹版涂布机的三节干燥风口温度分别为 120〜140°C、 140〜150°C、 120〜130°C, 单面涂布速度为 20m/min, 涂布的厚度在 10μιη±0.5μιη 范围内。
所述溶剂类型为甲苯、丁酮、 Ν-甲基吡咯烷酮( ΜΡ)、 乙烯基吡咯烷酮 (NVP)、 丙酮、 甲基环己烷、 乙酸正丙酯、 丙二醇甲醚醋酸酯、 异丙醇、 乙醇或甲醇。
本实施例涉及的锂离子动力电池隔离膜, 收卷的隔离膜经过 24小时松弛后, 复 卷一次, 用 CCD摄像头在涂布检测机中检测涂布缺陷, 经过涂布后的陶瓷隔离膜采 用以下检测标准: 测试方法: EN 29073-T1
EN 29073-T2
ASTM-737
ASTM-D177
吸液量: (31Wt%;KOH)
PP型、 PE型和 UHMW-PE型
Figure imgf000007_0001
表 3 PP型、 PE型和 UHMW-PE型微孔基膜性能指标的检测结果 A 具体实施例 2:
本实施例的主要特点是: 将作为反应原料的型号 BF的沉淀法硫酸钡进行研磨。 步骤 2) 中所述连接料为羧基丁苯橡胶分散液, 其百分比为 10%, 所述增稠剂百分 比为 1%。 其余制备过程同具体实施例 1。
PP型、 PE型和 UHMW-PE型
Figure imgf000008_0001
表 4 PP型、 PE型和 UHMW-PE型微孔基膜性能指标的检测结果 B 具体实施例 3:
本实施例的主要特点是:将作为反应原料的型号 EX和型号 BF的沉淀法硫酸钡 混合进行研磨。 所述 EX沉淀法硫酸钡的百分比为 20%, BF沉淀法硫酸钡百分比为 25%。 所述微孔基膜为 PVDF型多孔基膜, 厚度为 25μιη、 30μιη或 40μιη。
PVDF型多孔基膜的三种厚度的检测结果如下:
Figure imgf000009_0001
表 5 PVDF型多孔基膜的三种厚度的检测结果
具体实施例 4:
本实施例的主要特点是: 步骤 2) 中所述的连接料为聚氨酯水性分散液 (PUD 分散液), 或丙烯酸-伯胺共聚乳液 /分散液, 或 PVDF (偏氟乙烯水性分散液)。 其余 同具体实施例 1-3。
具体实施例 5:
本实施例的主要特点是: 步骤 2) 中所述的连接料为 SBR丁苯胶乳溶剂型分散 液, 或羧基丁苯橡胶溶剂型分散液, 或聚氨酯水性溶剂型分散液 (PUD 分散液), 或丙烯酸 -伯胺共聚溶剂型分散液, 或 PVDF (偏氟乙烯溶剂型分散液)。所述溶剂类 型为甲苯、 丁酮、 N-甲基吡咯烷酮 (NMP)、 乙烯基吡咯烷酮 (NVP)、 丙酮、 甲基环 己烷、 乙酸正丙酯、 丙二醇甲醚醋酸酯、 异丙醇、 乙醇或甲醇。
具体实施例 6:
本实施例的主要特点是: 步骤 2) 中所述的涂布机为狭缝式涂布机。 其余同具 体实施例 1-4。
其他具体实施例:
本发明其他具体实施例的特点是: 所述纳米硫酸钡涂布液包括纳米硫酸钡研磨 液, 纳米硫酸钡研磨液由质量百分含量为沉淀法硫酸钡 40〜50%、 Ν,Ν-甲基吡咯烷 酮 0.5〜1.5%、 乙烯基吡咯烷酮 0.5〜1.5%、 碳酸二乙烯基酯 0.5〜1.5%、 三氧化二 铝 1〜5%、 有机氟分散剂 0.1〜0.5%, 余量为去离子水, 经研磨制成; 再按质量百 分含量计由述所纳米硫酸钡研磨液 35〜45%与化工连接料 10〜25%、增稠剂 1〜3%、 消泡剂 0.05〜0.15%、润湿剂 0.05〜0.15%、分散剂 0.05〜0.15%和流平剂 0.05〜0.15% 经搅拌均匀混合而成。
制备纳米硫酸钡涂布液的过程包括如下步骤:
1 ) 按以下质量百分比配备物料: 沉淀法硫酸钡 40〜50%、 Ν,Ν-甲基吡咯烷酮 0.5〜1.5%、 乙烯基吡咯烷酮 0.5〜1.5%、 碳酸二乙烯基酯 0.5〜1.5%、 三氧化二铝 1〜5%、 有机氟分散剂 0.1〜0.5%, 和去离子水余量, 备用;
2) 在 Ν,Ν-甲基吡咯烷酮、 乙烯基吡咯烷酮和碳酸二乙烯基酯中加入沉淀法硫 酸钡和三氧化二铝, 再加入去离子水, 然后在分散机中加入有机氟分散剂, 开动分 散机搅拌、 分散 20〜40分钟后, 用隔膜泵泵入密封管路系统, 将浆料输送到研磨机 内研磨 20〜50小时, 得到研磨浆料;
3 ) 制备纳米硫酸钡涂布液
首先, 准备以下百分比的配料: 步骤 2) 所得的研磨浆料 35〜45%、 化工连接 料 10〜25%、 增稠剂 1〜3%、 上述消泡剂 0.05〜0.15%、 润湿 剂 0.05〜0.15%、 分散剂 0.05〜0.15%和流平剂 0.05〜0.15%
然后, 将所述研磨浆料通过化工连接料分散入水中, 用小分子量的增稠剂增稠 到涂布机所需的涂布粘度后, 将物料泵入涂布机的搅拌供料系统中, 再加入消泡剂、 润湿剂、 分散剂、 流平剂后搅拌均匀, 制得纳米硫酸钡涂布液。
所述纳米硫酸钡涂布液由涂布机对微孔基膜进行涂布, 形成薄膜。
其余同具体实施例 1。
以上所述, 仅为本发明较佳的具体实施例, 但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的范围内, 根据本发明的技术方案及 其发明构思加以等同替换或改变, 都属于本发明的保护范围。 本发明采用沉淀法硫酸钡作为陶瓷涂料, 对锂离子动力电池的微孔基膜进行涂 布, 如表 1和表 2所示, 分别为各种型号硫酸钡的物理性能和硫酸钡的杂质含量。
Figure imgf000011_0001
Oil Absorption 吸 13 11 11 10 9 9 12.5 油量
Color-L* 亮度 96 96 95 94 94 94 98
Refractive Index 1.64 表 1 各种型号硫酸钡的物理性能
Figure imgf000012_0001
表 2硫酸钡的杂质含量

Claims

权利 要 求
1、 一种锂离子动力电池隔离膜, 包括微孔基膜, 其特征是:
1 ) 在所述微孔基膜的上表面和下表面各涂布有硫酸钡陶瓷涂层;
2) 所述硫酸钡陶瓷涂层由纳米硫酸钡涂布液经涂布沉淀形成;
3 )所述纳米硫酸钡涂布液包括纳米硫酸钡研磨液, 纳米硫酸钡研磨液由质量百 分含量为沉淀法硫酸钡 40〜50%、 Ν,Ν-甲基吡咯烷酮 0.5〜1.5%、 乙烯基吡咯烷酮 0.5〜1.5%、碳酸二乙烯基酯0.5〜1.5%、三氧化二铝1〜5%、有机氟分散剂0.1〜0.5%, 余量为去离子水, 经研磨制成; 再按质量百分含量计由述所纳米硫酸钡研磨液 35〜 45%与化工连接料 10〜25%、 增稠剂 1〜3%、 消泡剂 0.05〜0.15%、 润湿剂 0.05〜 0.15%、 分散剂 0.05〜0.15%和流平剂 0.05〜0.15%经搅拌均匀混合而成。
2、 根据权利要求 1所述的一种锂离子动力电池隔离膜, 其特征是: 所述微孔基 膜为 ΡΡ型、 ΡΕ型、 UHMW-PE型或 PVDF型多孔基膜, 或者为 ΡΡ型与 ΡΕ型的复 合基膜, 或者为 ΡΡ型与 UHMW-PE型的复合基膜。
3、 根据权利要求 1或 2所述的一种锂离子动力电池隔离膜, 其特征是: 所述微 孔基膜的厚度可以为 20μιη、 25μιη、 30μιη或 40μιη。
4、 根据权利要求 1或 2所述的一种锂离子动力电池隔离膜, 其特征是: 所述的 化工连接料为 SBR丁苯胶乳分散液 /溶剂型分散液, 或羧基丁苯橡胶分散液 /溶剂型 分散液, 或聚氨酯水性分散液 /溶剂型分散液 PUD, 或丙烯酸-伯胺共聚乳液 /分散液 / 溶剂型分散液, 或偏氟乙烯水性分散液 PVDF/溶剂型分散液。
5、如权利要求 1所述的一种锂离子动力电池隔离膜的制备方法, 其特征在于包 括如下步骤:
1 ) 准备好微孔基膜;
2) 按设定的物质组份和方法制备纳米硫酸钡涂布液;
3 )涂布, 将纳米硫酸钡涂布液涂布在微孔基膜的上表面和下表面, 通过涂布沉 淀法在所述微孔基膜的表面形成纳米硫酸钡陶瓷涂层; 涂布方式采用微凹版技术涂 布或狭缝式挤出涂布, 形成涂布薄膜;
4)涂布后处理, 待涂布薄膜干燥后, 复卷检测, 经过辊压处理后, 使得这种硫 酸钡陶瓷涂料与层隔离膜基膜结合紧密, 制得锂离子动力电池隔离膜。
6、 如权利要求 5所述的一种锂离子动力电池隔离膜的制备方法, 其特征在于: 制备纳米硫酸钡涂布液的过程, 包括常规研磨和分散研磨二个过程; 常规研磨是指 将作为反应原料的沉淀法硫酸钡通过常规的研磨, 形成粉状硫酸钡; 分散研磨是指 将粉状硫酸钡放置在锂离子电池反应介质的 Ν,Ν-甲基吡咯烷酮 ( ΜΡ)、 乙烯基吡 咯烷酮 (NVP) 和碳酸二乙烯基酯离子液体中, 再研磨、 搅拌, 制得到纳米级分散 液, 再研磨、 搅拌的时间分别可是 24小时至 48小时。
7、 如权利要求 5所述的一种锂离子动力电池隔离膜的制备方法, 其特征在于: 制备纳米硫酸钡涂布液的过程包括如下步骤:
1 ) 按以下质量百分比配备物料: 沉淀法硫酸钡 40〜50%、 Ν,Ν-甲基吡咯烷酮 0.5〜1.5%、乙烯基吡咯烷酮 0.5〜1.5%、碳酸二乙烯基酯 0.5〜1.5%、三氧化二铝 1〜
5%、 有机氟分散剂 0.1〜0.5%, 和去离子水余量, 备用;
2) 在 Ν,Ν-甲基吡咯烷酮、 乙烯基吡咯烷酮和碳酸二乙烯基酯中加入沉淀法硫 酸钡和三氧化二铝, 再加入去离子水, 然后在分散机中加入有机氟分散剂, 开动分 散机搅拌、 分散 20〜40分钟后, 用隔膜泵泵入密封管路系统, 将浆料输送到研磨机 内研磨 20〜50小时, 得到研磨浆料;
3 ) 制备纳米硫酸钡涂布液
首先, 准备以下百分比的配料: 步骤 2) 所得的研磨浆料 35〜45%、 化工连接 料 10〜25%、 增稠剂 1〜3%、 上述消泡剂 0.05〜0.15%、 润湿剂 0.05〜0.15%、 分散 剂 0.05〜0.15%和流平剂 0.05〜0.15%
然后, 将所述研磨浆料通过化工连接料分散入水中, 用小分子量的增稠剂增稠 到涂布机所需的涂布粘度后, 将物料泵入涂布机的搅拌供料系统中, 再加入消泡剂、 润湿剂、 分散剂、 流平剂后搅拌均匀, 制得纳米硫酸钡涂布液。
8、 如权利要求 5所述的一种锂离子动力电池隔离膜的制备方法, 其特征在于: 步骤 1 ) 中所述的有机氟分散剂为杜邦 TM Zonyl FSWET-1010型分散剂; 步骤 2) 中所述的分散机转速为 3000转 /min;所述的研磨机为 25L碳化钨内胆的卧式研磨机, 以直径为 1mm的二氧化锆作为研磨珠。
9、 如权利要求 5所述的一种锂离子动力电池隔离膜的制备方法, 其特征在于: 步骤 3 ) 中所述的化工连接料为 SBR丁苯胶乳分散液 /溶剂型分散液, 或羧基丁苯橡 胶分散液 /溶剂型分散液, 或聚氨酯水性分散液 /溶剂型分散液 PUD, 或丙烯酸 -伯胺 共聚乳液 /分散液 /溶剂型分散液, 或偏氟乙烯水性分散液 /溶剂型分散液 PVDF; 步骤 3 ) 中所述的增稠剂为羟基甲基丙基纤维素; 步骤 3 ) 中所述的涂布机为微凹版涂布 机或狭缝式涂布机; 所述微凹版涂布机的三节干燥风口温度分别为 120〜140°C、 140〜150°C、 120〜130°C, 单面涂布速度为 20m/min, 涂布的厚度在 10μιη±0.5μιη 范围内。
10、如权利要求 5所述的一种锂离子动力电池隔离膜的制备方法, 其特征在于: 所述溶剂类型为甲苯、 丁酮、 Ν-甲基吡咯烷酮 ΜΡ、 乙烯基吡咯烷酮 NVP、 丙酮、 甲基环己烷、 乙酸正丙酯、 丙二醇甲醚醋酸酯、 异丙醇、 乙醇或甲醇。
PCT/CN2012/087242 2012-07-15 2012-12-23 一种锂离子动力电池隔离膜及其制备方法 WO2014012340A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012102501763A CN102751463A (zh) 2012-07-15 2012-07-15 一种锂离子动力电池隔离膜及其制备方法
CN201210250176.3 2012-07-15

Publications (1)

Publication Number Publication Date
WO2014012340A1 true WO2014012340A1 (zh) 2014-01-23

Family

ID=47031473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087242 WO2014012340A1 (zh) 2012-07-15 2012-12-23 一种锂离子动力电池隔离膜及其制备方法

Country Status (2)

Country Link
CN (1) CN102751463A (zh)
WO (1) WO2014012340A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013482A (zh) * 2021-02-22 2021-06-22 江西省允福亨新能源有限责任公司 一种固态电解质及全固态锂离子电池的制备方法
CN116190920A (zh) * 2023-04-26 2023-05-30 宁德卓高新材料科技有限公司 一种涂覆隔膜及其制备方法及应用

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751463A (zh) * 2012-07-15 2012-10-24 湛江市鑫满矿业有限公司 一种锂离子动力电池隔离膜及其制备方法
CN104073068A (zh) * 2013-03-28 2014-10-01 上海双奥能源技术有限公司 涂层组合物、电池隔膜及其制备方法
CN103474605A (zh) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 锂离子动力电池隔离膜及其制备方法和锂离子动力电池
CN103474606A (zh) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 锂离子动力电池隔离膜及其制备方法和锂离子动力电池
CN103468211A (zh) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 锂离子动力电池隔离膜的研磨料、涂布浆料及其制备方法
CN103474607A (zh) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 锂离子动力电池隔离膜及其制备方法和锂离子动力电池
CN103468208A (zh) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 锂离子动力电池隔离膜的研磨料、涂布浆料及其制备方法
CN103474604A (zh) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 锂离子动力电池隔离膜及其制备方法和锂离子动力电池
CN103468209A (zh) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 锂离子动力电池隔离膜的研磨料、涂布浆料及其制备方法
CN103468210A (zh) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 锂离子动力电池隔离膜的研磨料、涂布浆料及其制备方法
CN103468207A (zh) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 锂离子动力电池隔离膜的研磨料、涂布浆料及其制备方法
CN103474608A (zh) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 锂离子动力电池隔离膜及其制备方法和锂离子动力电池
CN103545475B (zh) * 2013-10-29 2015-04-15 山东正华隔膜技术有限公司 锂离子电池硫酸钡隔膜及其制备方法
CN104157819A (zh) * 2014-09-02 2014-11-19 深圳市星源材质科技股份有限公司 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法
CN107731532A (zh) * 2017-11-18 2018-02-23 陈馨雅 一种电解电容器用隔膜纸
CN108002181A (zh) * 2017-12-12 2018-05-08 湖南光学传媒有限公司 电梯内的多媒体系统
CN108807790A (zh) * 2018-06-08 2018-11-13 杨凯 一种动力锂电池用陶瓷改性聚烯烃多孔膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102124591A (zh) * 2009-03-13 2011-07-13 日立麦克赛尔株式会社 电池用隔膜以及使用其的非水电解液电池
CN102148344A (zh) * 2011-03-11 2011-08-10 河南义腾新能源科技有限公司 一种锂离子电池隔膜的制备方法
CN102437303A (zh) * 2011-12-01 2012-05-02 北京师范大学 复合多孔膜及其制备方法
CN102751463A (zh) * 2012-07-15 2012-10-24 湛江市鑫满矿业有限公司 一种锂离子动力电池隔离膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271965B (zh) * 2008-04-30 2010-06-09 中南大学 锂离子电池隔膜及其制备方法
JP5568023B2 (ja) * 2011-01-12 2014-08-06 株式会社日立製作所 非水電解液電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102124591A (zh) * 2009-03-13 2011-07-13 日立麦克赛尔株式会社 电池用隔膜以及使用其的非水电解液电池
CN102148344A (zh) * 2011-03-11 2011-08-10 河南义腾新能源科技有限公司 一种锂离子电池隔膜的制备方法
CN102437303A (zh) * 2011-12-01 2012-05-02 北京师范大学 复合多孔膜及其制备方法
CN102751463A (zh) * 2012-07-15 2012-10-24 湛江市鑫满矿业有限公司 一种锂离子动力电池隔离膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013482A (zh) * 2021-02-22 2021-06-22 江西省允福亨新能源有限责任公司 一种固态电解质及全固态锂离子电池的制备方法
CN116190920A (zh) * 2023-04-26 2023-05-30 宁德卓高新材料科技有限公司 一种涂覆隔膜及其制备方法及应用
CN116190920B (zh) * 2023-04-26 2023-09-05 宁德卓高新材料科技有限公司 一种涂覆隔膜及其制备方法及应用

Also Published As

Publication number Publication date
CN102751463A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2014012340A1 (zh) 一种锂离子动力电池隔离膜及其制备方法
CN108281592B (zh) 一种耐高温的复合电池隔膜及其制备方法
WO2018018870A1 (zh) 一种电化学装置隔离膜及其制备方法
CN106159173B (zh) 一种聚合物复合膜及其制备方法、该方法制备的聚合物复合膜、凝胶电解质、锂离子电池
CN108711605A (zh) 一种复合电池隔膜、制备方法和电池
WO2022161088A1 (zh) 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜
WO2016086783A1 (zh) 锂离子电池隔膜制造方法及其制得的电池隔膜和电池
CN109167004A (zh) 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池
WO2012061963A1 (zh) 多孔膜及其制备方法
CN108807825A (zh) 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池
CN108933219B (zh) 一种锂电池隔膜的制备方法
CN113136121B (zh) 一种生物基隔膜涂敷液及其制备方法和在锂电池中的应用
JP5750033B2 (ja) リチウムイオン電池セパレータ
WO2015111230A1 (ja) 塗工液及び積層多孔質フィルム
CN110048058A (zh) 一种复合型锂离子电池隔膜及其制备方法
CN112635916A (zh) 一种陶瓷复合隔膜及其制备方法及电池
CN109301129B (zh) 一种锂离子电池低水分陶瓷浆料及低水分陶瓷隔膜
CN105576173A (zh) 一种陶瓷涂层材料的制备方法及其应用
WO2020107287A1 (zh) 多孔复合隔膜,其制备方法和包含其的锂离子电池
CN112151728A (zh) 一种锂离子电池复合隔膜及其制备方法、锂离子电池
CN110176568A (zh) 一种高性能涂层隔膜的制备方法
CN114361718A (zh) 锂离子电池用隔膜、锂离子电池
CN112928383A (zh) 一种锂电池隔膜及其制备方法
CN114335904A (zh) 一种锂电池复合隔膜及其制备方法和应用
JP2016012548A (ja) 電池用セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881291

Country of ref document: EP

Kind code of ref document: A1