WO2014010363A1 - 界磁極用磁石体の製造装置 - Google Patents

界磁極用磁石体の製造装置 Download PDF

Info

Publication number
WO2014010363A1
WO2014010363A1 PCT/JP2013/066204 JP2013066204W WO2014010363A1 WO 2014010363 A1 WO2014010363 A1 WO 2014010363A1 JP 2013066204 W JP2013066204 W JP 2013066204W WO 2014010363 A1 WO2014010363 A1 WO 2014010363A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
field pole
manufacturing apparatus
magnet piece
pole magnet
Prior art date
Application number
PCT/JP2013/066204
Other languages
English (en)
French (fr)
Inventor
一宏 高市
西村 公男
渡辺 英樹
関川 岳
靖志 松下
晃久 堀
巧 大島
倫人 岸
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/414,244 priority Critical patent/US9330840B2/en
Priority to CN201380036677.4A priority patent/CN104428982B/zh
Priority to JP2014524699A priority patent/JP5880709B2/ja
Priority to EP13816571.7A priority patent/EP2874288B1/en
Publication of WO2014010363A1 publication Critical patent/WO2014010363A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/5317Laminated device

Definitions

  • the present invention relates to a field pole magnet body manufacturing apparatus disposed in a rotating electrical machine that is formed by laminating magnet pieces made by breaking and dividing a permanent magnet.
  • a plate-like magnet body (hereinafter simply referred to as “magnet body”) is cleaved into a plurality of magnet pieces.
  • a field pole magnet body formed by bonding and laminating magnet pieces is known.
  • Such a field pole magnet body is formed of a plurality of magnet pieces, so that the volume of each magnet piece can be reduced, and the eddy current generated in the magnet piece due to the fluctuation of the magnetic field due to the rotation of the rotor is reduced. be able to. Thereby, the heat generation of the field pole magnet body accompanying the generation of the eddy current can be suppressed, and irreversible thermal demagnetization can be prevented.
  • JP2009-148201A discloses disposing the above-described field pole magnet body in the rotor slot of the IPM motor.
  • the outer dimensions in the width direction and the thickness direction are limited within predetermined standards.
  • the standard is set, for example, to be within a value obtained by adding a predetermined value to the maximum tolerance value of the rough dimension of the magnet body.
  • the magnet pieces are bound to each other by restraining the six surfaces of the laminated magnet pieces with a magnet restraining jig.
  • the magnet restraining jig for example, the plane and side surfaces of the cleaved individual magnet pieces are brought into contact with a jig serving as a reference, and the magnet pieces are pressed and aligned from the width direction and the thickness direction by a pressing member. Further, the magnet restraining jig is pressed from the longitudinal direction in a state where the magnet piece is pressed, and the split sections are bonded to each other.
  • the magnet restraining jig as described above has a structure in which the magnet piece is pressed independently from each other in the width direction, the thickness direction, and the longitudinal direction in order to restrain the magnet piece, the jig structure is complicated. The manufacturing cost of the jig increases and the maintenance becomes complicated. Moreover, since it is necessary to provide a pressing member that performs the restraining operation from the width direction, the thickness direction, and the longitudinal direction when the magnet piece is restrained, the capital investment increases by the amount of the pressing member.
  • This invention aims at simplifying the structure of the magnet restraining jig
  • an apparatus for manufacturing a field pole magnet body disposed in a rotating electrical machine that is formed by stacking magnet pieces formed by breaking and dividing a permanent magnet.
  • the manufacturing apparatus sequentially accommodates a plurality of magnet pieces each having an adhesive applied to the split cross-section, with the cross-sections facing each other, and an accommodating portion having an inner side surface adjacent to the outer side surface of the accommodated magnet pieces, Pressing means for pressing the magnet piece accommodated in the accommodating portion in the longitudinal direction toward the bottom of the accommodating portion.
  • the magnet piece is pressed by the pressing means, the magnet piece is restrained in the width direction and the thickness direction by the inner side surface of the housing portion.
  • FIG. 1A is a schematic configuration diagram illustrating a configuration of a main part of a permanent magnet type electric motor to which a field pole magnet body composed of magnet pieces manufactured by a manufacturing apparatus according to the present embodiment is applied.
  • 1B is a cross-sectional view showing a 1B-1B cross section of the permanent magnet type electric motor of FIG. 1A.
  • FIG. 2 is a configuration diagram showing the configuration of the field pole magnet body.
  • FIG. 3A is a diagram illustrating a cleaving process of the magnet body.
  • FIG. 3B is a diagram illustrating a cleaving process of the magnet body.
  • FIG. 4A is a cross-sectional view showing a magnet restraining jig used in a magnet piece laminating process in a comparative example.
  • FIG. 4B is a cross-sectional view showing a cross section 4B-4B of FIG. 4A.
  • FIG. 5A is a diagram illustrating dimensions of the magnet body after completion.
  • FIG. 5B is a diagram illustrating dimensions of the magnet body after completion.
  • FIG. 6A is a cross-sectional view showing a magnet restraining jig used in the magnet piece laminating step in the first embodiment.
  • FIG. 6B is a cross-sectional view showing a 6B-6B cross section of FIG. 6A.
  • FIG. 7A is a diagram illustrating a magnet piece stacking process according to the first embodiment.
  • FIG. 7B is a diagram illustrating a magnet piece stacking process according to the first embodiment.
  • FIG. 7C is a diagram illustrating a magnet piece stacking process according to the first embodiment.
  • FIG. 7D is a diagram illustrating a magnet piece stacking process according to the first embodiment.
  • FIG. 7E is a diagram illustrating a magnet piece laminating process in the first embodiment.
  • FIG. 7F is a diagram illustrating a magnet piece stacking process according to the first embodiment.
  • FIG. 7G is a diagram illustrating a magnet piece stacking process according to the first embodiment.
  • FIG. 8A is a cross-sectional view showing a magnet restraining jig used in the magnet piece laminating step in the second embodiment.
  • FIG. 8B is a cross-sectional view showing the 8B-8B cross section of FIG. 8A.
  • FIG. 9A is a diagram illustrating a magnet piece laminating process in the second embodiment.
  • FIG. 9B is a diagram illustrating a magnet piece stacking process according to the second embodiment.
  • FIG. 9C is a diagram illustrating a magnet piece stacking process according to the second embodiment.
  • FIG. 9D is a diagram illustrating a magnet piece stacking process according to the second embodiment.
  • FIG. 9E is a diagram illustrating a magnet piece laminating process in the second embodiment.
  • FIG. 9F is a diagram illustrating a magnet piece stacking process according to the second embodiment.
  • FIG. 9G is a diagram illustrating a magnet piece laminating process according to the second embodiment.
  • FIG. 1B showing a 1B-1B cross section of FIG. 1A and FIG. 1A shows a permanent magnet embedded type rotating electrical machine A to which a field pole magnet body 80 composed of a magnet piece manufactured by a manufacturing apparatus in this embodiment is applied ( Hereinafter, it is simply referred to as “rotating electric machine A”.
  • Rotating electrical machine A includes an annular stator 10 that constitutes a part of a casing, and a cylindrical rotor 20 that is arranged coaxially with the stator 10.
  • the stator 10 includes a stator core 11 and a plurality of coils 12.
  • the plurality of coils 12 are accommodated in slots 13 formed at equal angular intervals on the same circumference around the axis O in the stator core 11.
  • the rotor 20 includes a rotor core 21, a rotating shaft 23 that rotates integrally with the rotor core 21, and a plurality of field pole magnet bodies 80.
  • the plurality of field pole magnet bodies 80 are centered on the axis O.
  • the slots 22 are formed at equal angular intervals on the same circumference.
  • the field pole magnet body 80 accommodated in the slot 22 of the rotor 20 is configured as an aggregate of magnet pieces 31 in which a plurality of magnet pieces 31 are aligned in a line.
  • the magnet piece 31 is manufactured by cleaving a plate-like magnet body 30 (FIG. 3A) having a rectangular upper and lower surface along the short side direction of the rectangle.
  • the field pole magnet body 80 is configured by bonding the divided sections of a plurality of divided magnet pieces 31 with a resin 32.
  • the resin 32 used is, for example, an epoxy thermosetting adhesive, a UV curable adhesive, a two-component room temperature curable adhesive, or the like. Further, this adhesive is blended with a spacer to ensure a clearance between the magnet pieces 31.
  • the spacer is, for example, a glass bead, a resin bead, or an insulating cloth.
  • Adjacent magnet pieces 31 are bonded to each other via the adhesive and the spacer, and both are electrically insulated.
  • eddy currents generated in the magnet pieces 31 due to fluctuations in the acting magnetic field are reduced by being retained in the individual magnet pieces 31, and the heat generation of the field pole magnet body 80 due to the eddy currents is suppressed, which is irreversible. Thermal demagnetization can be prevented.
  • a notch groove 33 (FIG. 3A) in advance in a portion of the magnet body 30 to be cleaved.
  • the notch groove 33 is not indispensable. If the notch groove 33 is not provided, the magnet body 30 can be cleaved. It is not necessary to provide the notch groove 33 in. As the notch groove 33 to be provided is deeper from the surface and the sharpness of the tip of the notch groove 33 is sharper, the flatness of the cut section when cleaved as the magnet piece 31 is improved.
  • a method of forming the notch groove 33 As a method of forming the notch groove 33, a method of forming the magnet body 30 by a groove forming protrusion provided in the mold of the magnet body 30, a method of machining such as a dicer or a slicer, or the like by laser beam irradiation. There are methods, wire cut electric discharge machining and the like.
  • FIG. 3A is an example of a cantilever type cleaving device 40 that cleaves the magnet body 30 into a plurality of magnet pieces 31.
  • the cantilever-type cleaving device 40 sequentially feeds the magnet body 30 placed on the die 41 one magnet piece at a time in the longitudinal direction. Further, the magnet body 30 on the die 41 is pressed downward by the magnet presser 42 in a state where only one magnet piece protrudes from one end of the die 41.
  • the feeding and positioning of the magnet body 30 is performed using a servo mechanism or the like.
  • the magnet presser 42 presses the magnet body 30 by bolt fastening, hydraulic pressure, air pressure or the like.
  • the punch 43 is lowered and the magnet body 30 is pressed downward to cleave the magnet body 30.
  • the punch 43 is driven by a servo press, a mechanical press, a hydraulic press or the like.
  • FIG. 3B is an example of a three-point bending type cleaving device 45 that cleaves the magnet body 30 into a plurality of magnet pieces 31.
  • the cleaving device 45 of the three-point bending method sequentially feeds the magnet body 30 spanned on the pair of dies 46 by one magnet piece in the longitudinal direction, and the cleaving portion 47 of the magnet body 30 is between the pair of dies 46. Position it so that it is in the center of In this state, the magnet body 30 on each die 46 is pressed downward by the magnet presser 48.
  • the feeding and positioning of the magnet body 30 is performed using a servo mechanism or the like, and the magnet presser 48 presses the magnet body 30 by bolt fastening, hydraulic pressure, air pressure, or the like.
  • the magnet body 30 is cleaved by lowering the punch 49 arranged at the upper center between the pair of dies 46 and pressing the magnet body 30 downward.
  • the punch 49 is driven by a servo press, a mechanical press, a hydraulic press or the like.
  • the magnet pieces 31 cleaved in this way are bonded and integrated by a resin to form a field pole magnet body 80. Since the field pole magnet body 80 is housed in the slot 22 of the rotor 20 in the assembly process of the rotating electrical machine A, it is necessary to keep the outer dimensions in the width direction and the thickness direction within predetermined standards. If the outer dimension of the field pole magnet body 80 is larger than a predetermined standard, the field pole magnet body 80 cannot be inserted into the slot 22. Therefore, the predetermined standard is set to a value slightly larger than the maximum value of the coarse material size in the width direction and the thickness direction of the magnet piece 31, for example.
  • FIG. 4A is a cross-sectional view showing a magnet restraining jig 90 used in the lamination process of the magnet pieces 31 in the comparative example.
  • 4B is a cross-sectional view showing a cross section 4B-4B of FIG. 4A.
  • the magnet restraining jig 90 includes a reference jig 91 formed with reference surfaces in the thickness direction, the width direction, and the longitudinal direction that support the plurality of magnet pieces 31 in the thickness direction, the width direction, and the longitudinal direction. Further, the magnet restraining jig 90 includes a longitudinal direction pressing portion 93 that presses the plurality of magnet pieces 31 toward the longitudinal direction reference surface 92 of the reference jig 91, and the thickness direction reference of the reference jig. A thickness direction pressing portion 95 that presses against the surface 94 and a width direction pressing portion 97 that presses the plurality of magnet pieces 31 against the width direction reference surface 96 of the reference jig are provided.
  • the magnet restraining jig 90 presses the plurality of magnet pieces 31 aligned in a row against the longitudinal direction reference surface 92 in a state where the magnet pieces 31 are pressed against the thickness direction reference surface 94 and the width direction reference surface 96. Thereby, six surfaces of the laminated magnet body 30 are restrained by the magnet restraining jig 90, and the magnet pieces 31 are integrated by curing the adhesive in this state.
  • the external dimension of the magnet body 80 after completion can be adjusted by adjusting the pressing force of the thickness direction pressing part 95, the width direction pressing part 97, and the longitudinal direction pressing part 93. it can.
  • the completed magnet body 80 is measured for its overall length, thickness, and width in a dimensional inspection process to check whether it is within a predetermined standard.
  • the lamination process is performed using a magnet restraining jig 50 as described below.
  • FIG. 6A is a cross-sectional view showing a magnet restraining jig 50 used in the lamination process of the magnet pieces 31 in the present embodiment.
  • FIG. 6B is a cross-sectional view showing a 6B-6B cross section of FIG. 6A.
  • the magnet restraining jig 50 is a box-shaped rectangular parallelepiped and has a stacking jig 52 having a housing part 51 for housing the magnet piece 31 in the longitudinal direction, and an opening 51a of the housing part 51 by being inserted into the housing part 51. And a lid portion 53 that covers the lid.
  • the accommodating part 51 opens to the longitudinal direction one end side of the lamination
  • the inner dimension of the accommodating part 51 is set to be slightly larger than the outer dimension in the width direction and the thickness direction of the magnet piece 31, and when the magnet piece 31 is accommodated, the outer surface of the magnet piece 31 is the inner part of the accommodating part 51. Adjacent to the side surface over the entire circumference (FIG. 6B).
  • the accommodating part 51 has the taper part 54 which an internal dimension expands gradually as the opening part 51a is approached in the opening part 51a vicinity.
  • the accommodating part 51 has two areas, an adhesive area 55 and a guide area 56, along the longitudinal direction.
  • the adhesion region 55 is a region on the side of the bottom surface 57 adjacent to the magnet piece 31 when the magnet piece 31 is adhered, and the guide region 56 is an adhesion region 55 that passes when the completed magnet body 80 is pushed out from the accommodating portion 51. This is a region closer to the opening 51a.
  • the inner dimension of the accommodating part 51 in the adhesion region 55 is set to a dimension slightly larger than the maximum value (maximum allowable dimension) of the dimensional tolerance of the magnet piece 31.
  • the inner dimension of the accommodating portion 51 in the guide region 56 is set to the maximum value of the dimensional tolerance of the magnet body 80 after being laminated and bonded (the maximum value within the standard of the finished product).
  • the maximum value of the dimensional tolerance of the magnet body 80 after completion is set to a value larger than the maximum value of the dimensional tolerance of the magnet piece 31, the magnet piece 31 thrown into the accommodating portion 51 is not inside the guide region 56. It won't get caught on the side.
  • the lid portion 53 includes a block portion 58 having a predetermined weight and an insertion portion 59 that extends from the block portion 58 and is inserted into the accommodating portion 51.
  • the length of the insertion part 59 is set longer than the length from the rear end of the magnet piece 31 to the opening of the accommodation part 51 when a necessary number of magnet pieces 31 are accommodated in the accommodation part 51. Accordingly, the magnet piece 31 is pressed against the bottom surface 57 of the housing portion 51 by the weight of the block portion 58 by inserting the lid portion 53 into the housing portion 51 in a state where the magnet piece 31 is housed in the housing portion 51. Can do.
  • the magnet restraining jig 50 is further inserted into the pusher hole 61 penetrating from the surface on the opposite side of the opening 51 a of the housing portion 51 to the bottom surface 57 of the housing portion 51 and the pusher hole 61 so as to be able to advance and retreat. And a pusher 60 that pushes out the completed magnet body 80 to be paid out from the accommodating portion 51.
  • the pusher 60 waits so that the tip is located in the pusher hole 61 during the bonding of the magnet piece 31, and rises from the bottom surface of the housing portion 51 after the bonding to move the completed magnet body 80 upward from the housing portion 51. Can be paid out. Therefore, the diameters of the pusher 60 and the pusher hole 61 are set to values that do not cause the magnet piece 31 accommodated in the accommodating portion 51 to fall.
  • the magnet restraining jig 50 is an inner surface of the bonding region 55 and a groove 62 formed at a position where a split section between the magnet pieces 31 faces when a necessary number of magnet pieces 31 are accommodated in the accommodating portion 51. Is provided.
  • the groove 62 is formed over the outer periphery of the bonding portion between the magnet pieces 31. Thereby, even when the adhesive protrudes from the adhesive portion between the magnet pieces 31 when the magnet piece 31 of the storage portion 51 is constrained, it can be prevented from adhering to the inner surface of the storage portion 51.
  • each groove 62 communicates with the external atmosphere through a communication hole 63. Thereby, the vaporization component produced at the time of hardening of an adhesive agent can be discharge
  • the loading of the magnet pieces 31 into the housing part 51 of the stacking jig 52 is performed by a magnet piece transfer jig 64 that is movable upward of the housing part 51.
  • the magnet piece transfer jig 64 places the number of magnet pieces 31 (for example, five pieces) to be put into the accommodating portion 51 in a direction orthogonal to the paper surface, and is opened and closed by an opening / closing member provided on the bottom surface of the end portion. Open and close the bottom.
  • the magnet piece 31 at the end falls to the accommodating portion 51 and closes the bottom surface, and then the magnet piece transfer jig 64 packs the remaining magnet piece 31 placed on the end. .
  • the end bottom surface is opened again, the end magnet piece 31 falls into the accommodating portion 51.
  • the magnet piece transfer jig 64 sequentially puts as many pieces of magnet pieces 31 into the housing portion 51 as possible by repeating the above operation.
  • the magnet pieces 31 are put into the housing portion 51 by the magnet piece transfer jig 64, but instead, the magnet pieces 31 may be put into the housing portion 51 sequentially by robot picking. Is possible.
  • the magnet piece transfer jig 64 moves to the upper part of the accommodating portion 51 of the empty stacking jig 52. At this time, the magnet piece transfer jig 64 is aligned so that the bottom surface of the end that can be opened and closed is located immediately above the opening 51 a of the housing 51.
  • the first magnet piece 31 is loaded from the magnet piece transfer jig 64. Since the inner dimension of the adhesion region 55 of the accommodating part 51 is set slightly larger than the maximum allowable dimension of the magnet piece 31, the magnet piece 31 falls to the bottom surface 57 of the accommodating part 51 by its own weight.
  • the second magnet piece 31 is loaded from the magnet piece transfer jig 64.
  • the magnet pieces 31 fall on the upper surface of the first magnet piece 31 and the cut sections come into contact with each other.
  • the third, fourth, and fifth magnet pieces 31 are loaded from the magnet piece transfer jig 64.
  • the five magnet pieces 31 are aligned in a line in a state where the cut surfaces are in contact with each other along the longitudinal direction of the housing portion 51.
  • the magnet piece transfer jig 64 is separated from immediately above the accommodating portion 51.
  • the insertion portion 59 of the lid portion 53 is inserted into the accommodating portion 51.
  • the insertion portion 59 contacts the rear end of the fifth magnet piece 31 and presses the magnet piece 31 downward by the weight of the block portion 58.
  • the five magnet pieces 31 are restrained in the longitudinal direction between the insertion portion 59 and the bottom surface 57 of the accommodating portion 51.
  • each magnet piece 31 is also restrained in the width direction and the thickness direction. That is, the five magnet pieces 31 are simultaneously restrained in the width direction, the thickness direction, and the longitudinal direction only by being pressed downward by the lid portion 53 in the housing portion 51.
  • the adhesive is cured with the magnet piece 31 restrained as described above.
  • the adhesive used is a thermosetting adhesive
  • the magnet restraining jig 50 is transported to a heating furnace and heated to a predetermined temperature to cure the adhesive.
  • the adhesive may protrude from the adhesion surface of the magnet piece 31 in the width direction or the thickness direction by pressing in the longitudinal direction due to its own weight of the lid portion 53, but faces the adhesion portion on the inner side surface of the housing portion 51. Since the groove 62 is formed over the outer periphery of the magnet piece 31, the magnet piece 31 and the stacking jig 52 can be prevented from being bonded by the adhesive.
  • the vaporized component of the adhesive can be discharged to the outside because the communication hole 63 communicates with the external atmosphere.
  • the magnet restraining jig 90 is unloaded from the heating furnace. Further, when the lid portion 53 is removed from the housing portion 51, the completed magnet body 80 which is bonded and integrated is pressed upward by the pusher 60 and is paid out from the opening 51 a of the housing portion 51. At this time, the completed magnet body 80 passes through the guide region 56, but the inner dimension of the guide region 56 is set in accordance with the standard of the completed magnet body 80, so that the magnet that has passed through the guide region 56 The body 80 will have an outside dimension within the standard. Therefore, it is not necessary to check whether the dimensions in the width direction and the thickness direction of the magnet body 80 after being paid out by the pusher 60 are within the standard in the subsequent dimension inspection process.
  • the width direction and the thickness direction of the laminated magnet pieces 31 depend on the inner surface of the accommodating part 51. Be bound. Therefore, since the width direction and the thickness direction can be restricted at the same time only by restraining the magnet piece 31 in the longitudinal direction, the structure of the magnet restraining jig 50 can be simplified and the manufacturing cost of the magnet restraining jig 50 can be reduced. In addition, the maintenance work can be simplified.
  • the restraining operation in the width direction and the thickness direction is unnecessary, it is not necessary to prepare a drive source necessary for the restraining operation, and the equipment investment can be reduced correspondingly.
  • the dimensions in the width direction and the thickness direction are defined by the dimensions of the inner surface of the accommodating portion 51, it is possible to more reliably prevent the dimensions in the width direction and the thickness direction from becoming out of specification.
  • the magnet piece 31 accommodated in the accommodating portion 51 is pressed and restrained by its own weight of the lid portion 53, it is unnecessary to perform maintenance and inspection work on the member that performs the restraining operation compared to the case where a spring or the like is used.
  • the jig structure is simplified, the maintenance work can be simplified.
  • the magnet restraining jig 50 includes a pusher hole 61 and a pusher 60 that can be advanced and retracted into the housing part 51 via the pusher hole 61 on the bottom surface of the housing part 51, the integrated magnet body after lamination and bonding can be used. It can be easily dispensed upward from the accommodating portion 51.
  • the taper portion 54 is provided near the upper end of the accommodating portion 51, it is possible to promote swallowing of the magnet piece 31 when the magnet piece 31 is introduced from the magnet piece transfer jig 64 to the accommodating portion 51, It is possible to prevent the facility from being temporarily stopped due to clogging.
  • channel which spaces apart an inner surface from the adhesion part is provided in the inner surface of the accommodating part 51 and the part which faces the adhesion part of the accommodated magnet piece 31, the adhesion protruded from the adhesion surface at the time of adhesion of the magnet piece 31 It is possible to prevent the agent from adhering to the inner side surface of the accommodating portion 51. Therefore, maintenance work such as removing the adhesive deposited on the inner side surface of the accommodating portion 51 can be omitted.
  • the groove 62 communicates with the external atmosphere of the accommodating portion 51, the vaporized component generated when the adhesive is cured can be discharged to the outside.
  • the inner dimension in the guide area 56 of the accommodating part 51 is set to the dimension of the completed magnet body 80
  • variety are obtained by taking out the completed magnet body 80 from the accommodating part 51 by the pusher 60. Since the dimension inspection in the direction is performed, the dimension inspection process performed after the stacking process can be simplified.
  • This embodiment is the same as the first embodiment until the cleaving process of the magnet body 80, and the magnet restraining jig 70 used in the laminating process of the cleaved magnet pieces 31 is different.
  • FIG. 8A is a cross-sectional view showing a magnet restraining jig 70 used in the lamination process of the magnet pieces 31 in the present embodiment.
  • FIG. 8B is a cross-sectional view showing the 8B-8B cross section of FIG. 8A.
  • the magnet restraining jig 70 of this embodiment is different from the first embodiment in the direction in which the magnet piece 31 is inserted.
  • the magnet piece 31 is introduced so as to drop from the upper opening 51 a of the housing portion 51.
  • the magnet piece 31 is pushed up by the pusher 60 from below and is housed in the housing portion 51.
  • the accommodating portion 51 opens to the upper end side of the stacking jig 52 and also opens to the lower end side. That is, there is no bottom surface of the housing part 51, and the housing part 51 communicates from the upper surface to the lower surface of the stacking jig 52.
  • the lower end of the stacking jig 52 is provided with a rotating claw 71 that can open and close the accommodating portion 51 by rotating, and a biasing member 72 that biases the rotating claw 71 to the closed position.
  • the rotating claw 71 is urged by the urging member, and the tip 71 a comes into contact with the inner surface of the accommodating portion 51.
  • the rotating claw 71 rotates against the urging force of the urging member 72 to the open position, and the accommodating portion 51 is opened.
  • the structure which has a taper part which an internal dimension expands gradually as the opening part 51b of the accommodating part 51 approaches the opening part 51b may be sufficient.
  • the loading of the magnet pieces 31 into the housing portion 51 of the stacking jig 52 is performed by a magnet piece transfer jig 73 that can move downward in the housing portion 51.
  • the magnet piece transfer jig 73 places the number of magnet pieces 31 (for example, five pieces) to be put into the accommodating portion 51 in a direction perpendicular to the paper surface, and an opening is provided on the upper surface of the end portion. . Further, a hole through which the pusher 60 can advance and retreat is provided on the lower surface of the end portion.
  • the magnet piece transfer jig 73 When the pusher 60 raises the magnet piece 31 at the end to the accommodating part 51 and then descends below the magnet piece transfer jig 73, the magnet piece transfer jig 73 is left as a remaining magnet piece. 31 is packed to the end portion, and the magnet piece 31 at the end portion is again raised to the accommodating portion 51 by the pusher 60.
  • the magnet piece transfer jig 73 sequentially puts as many pieces of magnet pieces 31 into the housing portion 51 as possible by repeating the above operation.
  • the magnet piece transfer jig 73 moves to the lower part of the accommodating portion 51 of the empty stacking jig 52. At this time, alignment is performed so that the opening on the upper surface of the end of the magnet piece transfer jig 73 is positioned directly below the lower opening 51 b of the housing 51.
  • the pusher 60 is raised and the first magnet piece 31 is pushed into the accommodating portion 51 from the magnet piece transfer jig 73.
  • the rotating claw 71 pressed by the magnet piece 31 rotates against the urging force of the urging member 72, and the magnet piece 31 is pushed upward from the tip 71 a of the rotating claw 71.
  • the rotating claw 71 again closes the accommodating portion 51 and supports the accommodated first magnet piece 31.
  • the magnet piece transfer jig 73 packs the remaining magnet pieces 31 to the ends.
  • the pusher 60 is raised and the second magnet piece 31 is accommodated in the accommodating portion 51 from the magnet piece transfer jig 73.
  • the rotating claw 71 pushed by the magnet piece 31 rotates against the urging force of the urging member 72, and the opening of the rotating claw 71 causes the first magnet piece 31 and the second magnet piece 31 to move.
  • the split section with the magnet piece 31 comes into contact.
  • the pusher 60 raises the two magnet pieces 31 as they are, and after the second magnet piece 31 is pushed upward from the tip 71a of the rotating claw 71, the pusher 60 is lowered. Thereby, the rotation claw 71 again closes the accommodating portion 51 and supports the two magnet pieces 31 accommodated.
  • the third, fourth, and fifth magnet pieces 31 are housed in the housing portion 51 from the magnet piece transfer jig 73 by the pusher 60.
  • the insertion portion 59 of the lid portion 53 is inserted into the accommodation portion 51. Subsequent adhesion of the magnet pieces 31 and delivery of the magnet body 80 after completion are the same as in the first embodiment.
  • the magnet piece 31 is put into the housing portion 51 of the stacking jig 52 by the pusher 60 from below the housing portion 51, the inside of the housing portion 51 is accommodated when the magnet piece 31 is housed. It is possible to more reliably prevent the production facility from being temporarily stopped due to being caught on the side surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

 永久磁石を破断分割して作成した磁石片同士を積層して形成する回転電機に配設される界磁極用磁石体の製造装置は、割断面に接着剤が塗付された複数の磁石片を割断面同士を対向させて順に収容し、収容された磁石片の外側面と隣接する内側面を有する収容部と、収容部に収容された磁石片を収容部の底部に向けて長手方向に押圧する押圧手段と、を備える。押圧手段によって磁石片が押圧される時、磁石片は収容部の内側面によって幅方向及び厚み方向に拘束される。

Description

界磁極用磁石体の製造装置
 本発明は、永久磁石を破断分割して作成した磁石片同士を積層して形成する回転電機に配設される界磁極用磁石体の製造装置に関するものである。
 永久磁石埋込型回転電機のロータコアに配設される界磁極用磁石体として、板状の磁石体(以下、単に「磁石体」と示す)を割断して複数の磁石片とし、この複数の磁石片同士を接着及び積層することによって形成した界磁極用磁石体が知られている。このような界磁極用磁石体は、複数の磁石片で形成されるため個々の磁石片の体積を小さくすることができ、ロータの回転による磁界の変動によって磁石片に発生する渦電流を低減させることができる。これにより、渦電流の発生に伴う界磁極用磁石体の発熱を抑制し、不可逆な熱減磁を防止することができる。
 JP2009-142081Aは、IPMモータのロータスロットに上述の界磁極用磁石体を配設することを開示している。
 界磁極用磁石体はロータスロットに適切に収容される必要があるので、その幅方向及び厚み方向の外形寸法は所定の規格内に制限される。規格は、例えば磁石体の粗材寸法の公差最大値に所定値を加算した値以内といったように設定される。
 界磁極用磁石体を規格内の寸法とするため、磁石片の積層工程では、磁石拘束治具によって積層状態の磁石片の6面を拘束し、磁石片同士を接着させることが考えられる。磁石拘束治具は、例えば、割断された個々の磁石片の平面及び側面を基準となる治具に当接させ、押圧部材によって幅方向及び厚み方向から磁石片を押し付けて整列させる。さらに、磁石拘束治具は、磁石片を押し付けた状態で長手方向から押圧して割断面同士を接着させる。
 しかし、上記のような磁石拘束治具は、磁石片を拘束するために幅方向、厚み方向、及び長手方向からそれぞれ独立して磁石片を押圧する構造であるので、治具構造が複雑化して治具の製造コストが増加する上、メンテナンスが煩雑化する。また、磁石片の拘束時に幅方向、厚み方向、及び長手方向からそれぞれ拘束動作を行う押圧部材を設ける必要があるので、押圧部材の分だけ設備投資が増大する。
 本発明は、磁石片を幅方向、厚み方向及び長手方向から拘束することができる磁石拘束治具の構造を簡素化することを目的とする。
 本発明のある態様によれば、永久磁石を破断分割して作成した磁石片同士を積層して形成する回転電機に配設される界磁極用磁石体の製造装置が提供される。この製造装置は、割断面に接着剤が塗付された複数の磁石片を割断面同士を対向させて順に収容し、収容された磁石片の外側面と隣接する内側面を有する収容部と、収容部に収容された磁石片を収容部の底部に向けて長手方向に押圧する押圧手段と、を備える。押圧手段によって磁石片が押圧される時、磁石片は収容部の内側面によって幅方向及び厚み方向に拘束される。
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1Aは、本実施形態における製造装置によって製造された磁石片から構成される界磁極用磁石体を適用した永久磁石型電動機の主要部の構成を示す概略構成図である。 図1Bは、図1Aの永久磁石型電動機の1B-1B断面を示す断面図である。 図2は、界磁極用磁石体の構成を示す構成図である。 図3Aは、磁石体の割断工程を示した図である。 図3Bは、磁石体の割断工程を示した図である。 図4Aは、比較例における磁石片の積層工程において用いられる磁石拘束治具を示す断面図である。 図4Bは、図4Aの4B-4B断面を示す断面図である。 図5Aは、完成後の磁石体の寸法について説明した図である。 図5Bは、完成後の磁石体の寸法について説明した図である。 図6Aは、第1実施形態における磁石片の積層工程において用いられる磁石拘束治具を示す断面図である。 図6Bは、図6Aの6B-6B断面を示す断面図である。 図7Aは、第1実施形態における磁石片の積層工程について説明した図である。 図7Bは、第1実施形態における磁石片の積層工程について説明した図である。 図7Cは、第1実施形態における磁石片の積層工程について説明した図である。 図7Dは、第1実施形態における磁石片の積層工程について説明した図である。 図7Eは、第1実施形態における磁石片の積層工程について説明した図である。 図7Fは、第1実施形態における磁石片の積層工程について説明した図である。 図7Gは、第1実施形態における磁石片の積層工程について説明した図である。 図8Aは、第2実施形態における磁石片の積層工程において用いられる磁石拘束治具を示す断面図である。 図8Bは、図8Aの8B-8B断面を示す断面図である。 図9Aは、第2実施形態における磁石片の積層工程について説明した図である。 図9Bは、第2実施形態における磁石片の積層工程について説明した図である。 図9Cは、第2実施形態における磁石片の積層工程について説明した図である。 図9Dは、第2実施形態における磁石片の積層工程について説明した図である。 図9Eは、第2実施形態における磁石片の積層工程について説明した図である。 図9Fは、第2実施形態における磁石片の積層工程について説明した図である。 図9Gは、第2実施形態における磁石片の積層工程について説明した図である。
 以下では図面を参照して本発明の実施の形態について詳しく説明する。
 初めに、第1実施形態について説明する。
 図1A及び図1Aの1B-1B断面を示す図1Bは、本実施形態における製造装置によって製造された磁石片から構成される界磁極用磁石体80を適用した永久磁石埋込型回転電機A(以下、単に「回転電機A」という)を示している。
 回転電機Aは、ケーシングの一部を構成する円環形のステータ10と、このステータ10と同軸的に配置された円柱形のロータ20とから構成される。
 ステータ10は、ステータコア11と、複数のコイル12とから構成され、複数のコイル12はステータコア11に軸心Oを中心とした同一円周上に等角度間隔で形成されるスロット13に収設される。
 ロータ20は、ロータコア21と、ロータコア21と一体的に回転する回転軸23と、複数の界磁極用磁石体80とから構成され、複数の界磁極用磁石体80は軸心Oを中心とした同一円周上に等角度間隔で形成されるスロット22に収設される。
 ロータ20のスロット22に収設される界磁極用磁石体80は、図2に示すように、複数の磁石片31を一列に整列させた磁石片31の集合体として構成される。磁石片31は、長方形の上下面を有する板状の磁石体30(図3A)を長方形の短辺方向に沿って割断して製造される。界磁極用磁石体80は、分割された複数の磁石片31の割断面同士を樹脂32により接着して構成される。
 使用される樹脂32は、例えば、エポキシ系の熱硬化型接着剤、UV硬化型接着剤、2液室温硬化型接着剤等である。さらに、この接着剤には、磁石片31間のクリアランスを確保するためスペーサが配合される。スペーサは、例えば、ガラスビーズ、樹脂ビーズ、絶縁クロス等である。
 隣接する磁石片31同士は上記接着剤及びスペーサを介して接着され、両者は電気的に絶縁される。これにより、作用する磁界の変動により磁石片31に発生する渦電流を個々の磁石片31内に留めることで低減させ、渦電流に伴う界磁極用磁石体80の発熱を抑制して、不可逆な熱減磁を防止することができる。
 磁石体30を複数の磁石片31に割断するためには、磁石体30の割断しようとする部位に、予め切り欠き溝33(図3A)を形成することが有効である。以下では、切り欠き溝33が形成されている磁石体30について説明するが、この切り欠き溝33は必要不可欠なものではなく、切り欠き溝33を設けなくとも割断できる場合には、磁石体30に切り欠き溝33を設けなくてもよい。設ける切り欠き溝33は、表面からの深さが深いほど、また、切り欠き溝33の先端の尖りが鋭いほど、磁石片31として割断した場合の割断面の平面度が向上する。
 切り欠き溝33の形成方法としては、磁石体30の成形型に設けた溝形成用の突条により磁石体30の成形工程で設ける方法、ダイサーやスライサー等の機械加工による方法、レーザビーム照射による方法、ワイヤカット放電加工等がある。
 図3Aは、磁石体30を複数の磁石片31に割断する片持ち方式の割断装置40の一例である。片持ち方式の割断装置40は、ダイ41上に載置された磁石体30を長手方向に磁石片1個分ずつ順に送る。さらに、ダイ41の一端から磁石片1個分だけはみ出た状態で、ダイ41上の磁石体30を磁石押さえ42によって下方へと押し付ける。磁石体30の送り及び位置合わせは、サーボ機構等を用いて行う。磁石押さえ42は、ボルト締結、油圧、エア圧等によって磁石体30を押し付ける。
 そして、ダイ41の一端から磁石片1個分だけはみ出た状態で、パンチ43を下降させて磁石体30を下方へ押圧することで磁石体30を割断する。パンチ43は、サーボプレス、機械プレス、油圧プレス等によって駆動される。
 また、図3Bは、磁石体30を複数の磁石片31に割断する3点曲げ方式の割断装置45の一例である。3点曲げ方式の割断装置45は、一対のダイ46上に架け渡された磁石体30を長手方向に磁石片1個分ずつ順に送り、磁石体30の割断予定部位47が一対のダイ46間の中央に位置するように位置決めを行う。この状態で、各ダイ46上の磁石体30を磁石押さえ48によって下方へと押し付ける。なお、図3Aと同様に、磁石体30の送り及び位置合わせは、サーボ機構等を用いて行い、磁石押さえ48は、ボルト締結、油圧、エア圧等によって磁石体30を押し付ける。
 そして、一対のダイ46間の中央上方に配置されるパンチ49を下降させて磁石体30を下方へ押圧することで磁石体30を割断する。パンチ49は、サーボプレス、機械プレス、油圧プレス等によって駆動される。
 このようにして割断された磁石片31は、樹脂により接着して一体化されて界磁極用磁石体80となる。界磁極用磁石体80は、回転電機Aの組み立て工程においてロータ20のスロット22に収容されるので、幅方向及び厚み方向の外形寸法を所定の規格内に抑える必要がある。仮に、界磁極用磁石体80の外形寸法が所定の規格より大きくなった場合には、界磁極用磁石体80をスロット22に挿入することができなくなる。そこで、所定の規格は、例えば、磁石片31の幅方向及び厚み方向の粗材寸法最大値より僅かに大きい値に設定される。
 図4Aは、比較例における磁石片31の積層工程において用いられる磁石拘束治具90を示す断面図である。図4Bは図4Aの4B-4B断面を示す断面図である。
 磁石拘束治具90は、複数の磁石片31を厚み方向、幅方向及び長手方向に支持する厚み方向、幅方向及び長手方向の基準面を形成した基準治具91を備える。また、磁石拘束治具90は、複数の磁石片31を基準治具91の長手方向基準面92に向かって押圧する長手方向押圧部93と、複数の磁石片31を基準治具の厚み方向基準面94に押圧する厚み方向押圧部95と、複数の磁石片31を基準治具の幅方向基準面96に押圧する幅方向押圧部97と、を備える。
 磁石拘束治具90は、一列に整列した複数の磁石片31を、厚み方向基準面94及び幅方向基準面96に押圧した状態で全体を長手方向基準面92に押圧する。これにより、積層された磁石体30は磁石拘束治具90によって6面が拘束され、この状態で接着剤を硬化させることで磁石片31が一体化する。
 これにより、磁石片31の拘束時に、厚み方向押圧部95、幅方向押圧部97及び長手方向押圧部93の押圧力を調整することで、完成後の磁石体80の外形寸法を調整することができる。完成後の磁石体80は、図5A及び図5Bに示すように、寸法検査工程においてその全長寸法、厚み寸法及び幅寸法が測定され、所定の規格内であるか否かがチェックされる。
 ところで、このような磁石拘束治具90では、厚み方向押圧部95、幅方向押圧部97及び長手方向押圧部93が、それぞれ独立して駆動する構造となっているので、磁石拘束治具90の構造が複雑化して治具90の製造コストが増加してしまう。さらに、構造が複雑な分だけメンテナンス作業が煩雑化する。
 さらに、磁石片31を拘束するために厚み方向、幅方向及び長手方向の各方向から拘束動作を行う必要があるので、各押圧部93、95、97の駆動源をそれぞれ設ける必要があり、設備投資が増大する。
 さらに、寸法検査工程において完成した磁石体80の全長寸法、厚み寸法及び幅寸法を測定して、各値が規格内であるか否かをチェックする必要があるので、寸法検査工程が煩雑化し、製造コストが増大する。
 そこで、本実施形態では、以下のような磁石拘束治具50を用いて積層工程を行う。
 図6Aは、本実施形態における磁石片31の積層工程において用いられる磁石拘束治具50を示す断面図である。図6Bは、図6Aの6B-6B断面を示す断面図である。
 磁石拘束治具50は、箱形状の直方体であって長手方向に磁石片31を収容する収容部51を有する積層治具52と、収容部51に挿入されることで収容部51の開口部51aに蓋をする蓋部53と、を有する。
 収容部51は、積層治具52の長手方向一端側に開口し、磁石片31を割断面同士を対向させて順に一列に収容する。収容部51の内寸は、磁石片31の幅方向及び厚み方向の外寸より僅かに大きくなるように設定され、磁石片31を収容した場合に磁石片31の外側面は収容部51の内側面に全周に亘って隣接する(図6B)。また、収容部51は、開口部51aに近づくにつれて徐々に内寸が拡大するテーパ部54を開口部51a近傍に有する。
 収容部51は、長手方向に沿って接着領域55及びガイド領域56の2つの領域を有する。接着領域55は、磁石片31を接着させる時に磁石片31と隣接する底面57側の領域であり、ガイド領域56は、完成後の磁石体80が収容部51から押し出される時に通過する接着領域55より開口部51a側の領域である。
 接着領域55における収容部51の内寸は、磁石片31の寸法公差の最大値(最大許容寸法)より僅かに大きい寸法に設定される。これにより、収容部51に投入される磁石片31はすべて収容部51の内側面に挟まることなく接着領域55まで到達することができる。
 また、ガイド領域56における収容部51の内寸は、積層及び接着した完成後の磁石体80の寸法公差の最大値(完成品の規格内最大値)に設定される。これにより、ガイド領域56を通過して収容部51から排出される完成後の磁石体80は、すべて規格内の寸法であることになる。なお、完成後の磁石体80の寸法公差の最大値は、磁石片31の寸法公差の最大値より大きい値に設定されるので、収容部51に投入される磁石片31がガイド領域56において内側面に挟まることはない。
 蓋部53は、所定の重量を有するブロック部58と、ブロック部58から延設され収容部51内へ挿入される挿入部59と、から構成される。挿入部59の長さは、必要な数の磁石片31を収容部51に収容した場合に磁石片31の後端から収容部51の開口までの長さより長く設定される。これにより、収容部51に磁石片31を収容した状態で蓋部53を収容部51へと挿入することで、ブロック部58の自重によって磁石片31を収容部51の底面57へと押圧することができる。
 磁石拘束治具50はさらに、収容部51の開口部51aとは反対側の面から収容部51の底面57までを貫通するプッシャ穴61と、プッシャ穴61に進退可能に挿通され底面57に当接する完成後の磁石体80を押して収容部51から払い出すプッシャ60と、を備える。
 プッシャ60は、磁石片31の接着中は先端がプッシャ穴61内に位置するように待機し、接着後に収容部51の底面から上昇して完成後の磁石体80を収容部51から上方へと払い出すことができる。よって、プッシャ60及びプッシャ穴61の径は、収容部51に収容される磁石片31が落下しない程度の値に設定される。
 磁石拘束治具50はさらに、接着領域55の内側面であって収容部51に必要な数の磁石片31が収容された場合に磁石片31間の割断面が臨む位置に形成される溝62を備える。溝62は、各磁石片31間の接着部の外周にわたって形成される。これにより、収容部51の磁石片31を拘束した際に磁石片31間の接着部から接着剤がはみ出したとしても収容部51の内側面に付着することを防止することができる。さらに、各溝62は、連通孔63によって外部雰囲気と連通している。これにより、接着剤の硬化時に生じる気化成分を外部へと放出することができる。
 次に、図7A~図7Gを参照して磁石拘束治具50を用いて磁石片31を積層及び接着する積層工程について説明する。
 積層治具52の収容部51への磁石片31の投入は、収容部51の上方へと移動可能な磁石片移載治具64によって行われる。磁石片移載治具64は、収容部51へ投入される数(例えば5個)の磁石片31を紙面に対して直交する方向に載置しており、端部底面に設けられる開閉部材によって底面を開閉させる。底面が開放すると端部の磁石片31が収容部51へと落下し、底面を閉じた後、磁石片移載治具64は、載置されている残りの磁石片31を端部へと詰める。再度、端部底面が開放すると端部の磁石片31が収容部51へと落下する。磁石片移載治具64は、以上の動作を繰り返すことで投入数分の磁石片31を収容部51へと順に投入する。
 なお、本実施形態では、収容部51への磁石片31の投入を磁石片移載治具64によって行っているが、代わりにロボットピッキングによって磁石片31を順に収容部51へと投入することも可能である。
 図7Aに示すように、磁石片移載治具64が空の積層治具52の収容部51の上部に移動する。この時、磁石片移載治具64は開閉可能な端部底面が収容部51の開口部51aの直上に位置するように位置合わせされる。
 図7Bに示すように、磁石片移載治具64から1個目の磁石片31が投入される。収容部51の接着領域55の内寸は、磁石片31の最大許容寸法より僅かに大きく設定されているので、磁石片31は自重により収容部51の底面57まで落下する。
 図7Cに示すように、磁石片移載治具64から2個目の磁石片31が投入される。磁石片31は1個目の磁石片31の上面に落下して互いに割断面が当接する。
 同様に、図7D、図7E及び図7Fに示すように、磁石片移載治具64から3個目、4個目及び5個目の磁石片31が投入される。これにより、5個の磁石片31が収容部51の長手方向に沿って互いに割断面を当接させた状態で一列に整列する。その後、磁石片移載治具64は収容部51の直上から離間する。
 続いて、図7Gに示すように、蓋部53の挿入部59が収容部51に挿入される。挿入部59は、5個目の磁石片31の後端に当接し、ブロック部58の自重によって磁石片31を下方へと押圧する。これにより、5個の磁石片31は挿入部59と収容部51の底面57との間で長手方向に拘束される。このとき、各磁石片31の幅方向及び厚み方向には、収容部51の内側面が隣接しているので、各磁石片31は幅方向及び厚み方向にも拘束されている。つまり、5個の磁石片31は、収容部51内で蓋部53によって下方へと押圧されるだけで、幅方向、厚み方向及び長手方向に同時に拘束される。
 続いて、上記のように磁石片31を拘束した状態で、接着剤を硬化させる。使用される接着剤が熱硬化型接着剤の場合には、磁石拘束治具50を加熱炉に搬送し、所定の温度まで加熱することで接着剤を硬化させる。
 接着剤は、蓋部53の自重による長手方向への押圧によって磁石片31の接着面から幅方向又は厚み方向へとはみ出す可能性があるが、収容部51の内側面であって接着部に臨む部分は磁石片31の外周にわたって溝62が形成されているので、接着剤によって磁石片31と積層治具52とが接着されてしまうことを防止することができる。
 また、加熱炉において接着剤の気化成分が気化しても、連通孔63が外部雰囲気と連通しているので気化成分を外部へと放出することができる。
 続いて、接着剤が硬化すると磁石拘束治具90が加熱炉から搬出される。さらに、蓋部53が収容部51から取り払われると、接着されて一体化した完成後の磁石体80がプッシャ60によって上方へと押圧され、収容部51の開口部51aから払い出される。このとき、完成後の磁石体80は、ガイド領域56を通過するが、ガイド領域56の内寸は完成後の磁石体80の規格どおりに設定されているので、このガイド領域56を通過した磁石体80は規格内の外形寸法を有することになる。よって、プッシャ60によって払い出された後の磁石体80の幅方向及び厚み方向の寸法が規格内に収まっているか否かを、続く寸法検査工程においてチェックする必要はない。
 以上の実施形態によれば、以下に示す効果を奏する。
 接着領域55における収容部51の内寸が、磁石片31の最大許容寸法より僅かに大きい寸法に設定されるので、積層された磁石片31の幅方向及び厚み方向は収容部51の内側面によって拘束される。よって、磁石片31を長手方向に拘束するだけで、同時に幅方向及び厚み方向も拘束することができるので、磁石拘束治具50の構造を簡略化でき、磁石拘束治具50の製造コストを低減することができるとともに、メンテナンス作業を簡略化することができる。
 また、幅方向及び厚み方向の拘束動作が不要であるので、拘束動作に必要な駆動源を用意する必要がなく、その分設備投資を削減することができる。
 さらに、幅方向及び厚み方向の寸法は収容部51の内側面の寸法によって規定されるので、幅方向及び厚み方向の寸法が規格外となることをより確実に防止することができる。
 さらに、収容部51に収容された磁石片31は、蓋部53の自重によって押圧して拘束するので、バネ等を用いた場合と比較して拘束動作を行う部材の保守及び点検作業が不要となる上に治具構造が簡素化されるので、メンテナンス作業を簡素化することができる。
 さらに、磁石拘束治具50は収容部51の底面にプッシャ穴61とプッシャ穴61を介して収容部51内に進退可能なプッシャ60とを備えるので、積層及び接着後の一体化した磁石体を収容部51から上方へと容易に払い出すことができる。
 さらに、収容部51の上端付近にテーパ部54が設けられるので、磁石片移載治具64から収容部51へ磁石片31が投入される際における磁石片31の飲み込みを促進することができ、詰まりの発生による設備の一時停止を防止することができる。
 さらに、収容部51の内側面であって収容された磁石片31の接着部分に臨む部分に内側面を接着部分から離間させる溝が設けられるので、磁石片31の接着時に接着面からはみ出た接着剤が収容部51の内側面に付着することを防止することができる。よって、収容部51の内側面に蒸着した接着剤を除去する等のメンテナンス作業を省略することができる。
 さらに、溝62は収容部51の外部雰囲気に連通しているので、接着剤の硬化時に生じる気化成分を外部へと放出することができる。
 さらに、収容部51のガイド領域56における内寸が完成後の磁石体80の寸法に設定されているので、プッシャ60によって完成後の磁石体80を収容部51から取り出すことで、厚み方向及び幅方向の寸法検査が行われることになるので、積層工程の後に行われる寸法検査工程を簡略化することができる。
 次に、第2実施形態について説明する。
 本実施形態は、磁石体80の割断工程までは第1実施形態と同一であり、割断された磁石片31の積層工程において用いられる磁石拘束治具70が異なる。
 図8Aは、本実施形態における磁石片31の積層工程において用いられる磁石拘束治具70を示す断面図である。図8Bは、図8Aの8B-8B断面を示す断面図である。
 本実施形態の磁石拘束治具70は、磁石片31を投入する方向が第1実施形態と異なる。第1実施形態では、磁石片31を収容部51の上側開口部51aから落下させるようにして投入したが、本実施形態では、下方からプッシャ60によって押し上げて収容部51に収容させる。
 そこで、収容部51は、積層治具52の上端側に開口するとともに下端側にも開口している。すなわち、収容部51の底面はなく、収容部51は積層治具52の上面から下面まで連通している。
 さらに、積層治具52の下端には、回動することで収容部51を開閉可能な回動爪71と、回動爪71を閉塞位置に付勢する付勢部材72と、が設けられる。回動爪71は、付勢部材によって付勢されて先端71aが収容部51の内側面に当接する。プッシャ60によって下方から磁石片31が押し込まれると、回動爪71が付勢部材72の付勢力に抗して開放位置へと回動し収容部51が開放される。
 なお、収容部51の下側開口部51bは、開口部51bに近づくにつれて徐々に内寸が拡大するテーパ部を有する構造であってもよい。
 次に、図9A~図9Gを参照して磁石拘束治具70を用いて磁石片31を積層及び接着する積層工程について説明する。
 積層治具52の収容部51への磁石片31の投入は、収容部51の下方へと移動可能な磁石片移載治具73によって行われる。磁石片移載治具73は、収容部51へ投入される数(例えば5個)の磁石片31を紙面に対して直交する方向に載置しており、端部上面には開口が設けられる。さらに、端部下面にはプッシャ60が進退可能な孔が設けられる。
 磁石片移載治具73は、プッシャ60が端部の磁石片31を収容部51へと上昇させた後に磁石片移載治具73より下方まで下降すると、載置されている残りの磁石片31を端部へと詰め、再度、プッシャ60によって端部の磁石片31を収容部51へと上昇させる。磁石片移載治具73は、以上の動作を繰り返すことで投入数分の磁石片31を収容部51へと順に投入する。
 図9Aに示すように、磁石片移載治具73が空の積層治具52の収容部51の下部に移動する。この時、磁石片移載治具73の端部上面の開口が収容部51の下側開口部51bの直下に位置するように位置合わせされる。
 図9Bに示すように、プッシャ60が上昇して磁石片移載治具73から1個目の磁石片31が収容部51へと押し込まれる。このとき、磁石片31に押される回動爪71は付勢部材72の付勢力に抗して回動し、磁石片31が回動爪71の先端71aより上方へ押し込まれる。その後、プッシャ60が下降すると、回動爪71は再び収容部51を閉塞し、収容された1個目の磁石片31を支持する。さらにプッシャ60が下降すると、磁石片移載治具73は残りの磁石片31を端部へと詰める。
 図9Cに示すように、プッシャ60が上昇して磁石片移載治具73から2個目の磁石片31が収容部51へと収容される。このとき、磁石片31に押される回動爪71は付勢部材72の付勢力に抗して回動し、回動爪71が開放したことにより1個目の磁石片31と2個目の磁石片31との割断面が当接する。プッシャ60はそのまま2個の磁石片31を上昇させ、2個目の磁石片31が回動爪71の先端71aより上方へ押し込まれた後、プッシャ60が下降する。これにより、回動爪71は再び収容部51を閉塞し、収容された2個の磁石片31を支持する。
 同様に、図9D、図9E及び図9Fに示すように、プッシャ60によって磁石片移載治具73から3個目、4個目及び5個目の磁石片31が収容部51へと収容される。これにより、5個の磁石片31が収容部51の長手方向に沿って互いに割断面を当接させた状態で一列に整列する。その後、磁石片移載治具73は収容部51の直下から離間する。
 続いて、図9Gに示すように、蓋部53の挿入部59が収容部51に挿入される。以降の磁石片31の接着及び完成後の磁石体80の払い出しについては第1実施形態と同様である。
 以上の実施形態によれば、以下に示す効果を奏する。
 本実施形態では特に、積層治具52の収容部51への磁石片31の投入が、収容部51の下方からプッシャ60によって行われるので、磁石片31が収容される際に収容部51の内側面に引っ掛かり、詰まりが生じて生産設備が一時停止することをより確実に防止することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例を示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 本願は2012年7月13日に日本国特許庁に出願された特願2012-157586に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (8)

  1.  永久磁石を破断分割して作成した磁石片同士を積層して形成する回転電機に配設される界磁極用磁石体の製造装置であって、
     割断面に接着剤が塗付された複数の前記磁石片を割断面同士を対向させて順に収容し、収容された前記磁石片の外側面と隣接する内側面を有する収容部と、
     前記収容部に収容された前記磁石片を前記収容部の底部に向けて長手方向に押圧する押圧手段と、
    を備え、
     前記押圧手段によって前記磁石片が押圧される時、前記磁石片は前記収容部の内側面によって幅方向及び厚み方向に拘束される、
    界磁極用磁石体の製造装置。
  2.  請求項1に記載の界磁極用磁石体の製造装置であって、
     前記収容部は前記底部が下方となる向きに配置され、
     前記押圧手段は、自重により前記磁石片を前記収容部の底部に向けて押圧する、
    界磁極用磁石体の製造装置。
  3.  請求項2に記載の界磁極用磁石体の製造装置であって、
     前記押圧手段による前記磁石片の接着が終了した後の磁石体を前記底部とは反対方向に押して前記収容部から払い出すプッシャと、
     前記収容部の底部に設けられ前記プッシャが進退するプッシャ穴と、
    をさらに備える界磁極用磁石体の製造装置。
  4.  請求項3に記載の界磁極用磁石体の製造装置であって、
     前記収容部は前記磁石片を上方から収容し、
     前記収容部の上端部は、下方へ行くほど内寸が縮小するテーパ状に形成される、
    界磁極用磁石体の製造装置。
  5.  請求項3に記載の界磁極用磁石体の製造装置であって、
     前記底部は、閉塞位置に付勢され前記プッシャによって上方へと押されることで開放する回動部材であり、
     前記収容部は前記プッシャによって下方から押し上げられる前記磁石片を収容する、
    界磁極用磁石体の製造装置。
  6.  請求項1から請求項5までのいずれか一項に記載の界磁極用磁石体の製造装置であって、
     前記収容部の内側面であって収容された前記磁石片の接着部分に臨む部位に、前記内側面を前記接着部分から離間させる溝が形成される、
    界磁極用磁石体の製造装置。
  7.  請求項6に記載の界磁極用磁石体の製造装置であって、
     前記溝は前記収容部の外側に連通している、
    界磁極用磁石体の製造装置。
  8.  請求項1から請求項7までのいずれか一項に記載の界磁極用磁石体の製造装置であって、
     前記収容部は、前記押圧手段によって前記磁石片が押圧される際に前記磁石片を幅方向及び厚み方向に拘束する接着領域と、接着された後の磁石体が通過するガイド領域と、を有し、
     前記ガイド領域の内寸は前記界磁極用磁石体の完成品寸法に設定される、
    界磁極用磁石体の製造装置。
PCT/JP2013/066204 2012-07-13 2013-06-12 界磁極用磁石体の製造装置 WO2014010363A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/414,244 US9330840B2 (en) 2012-07-13 2013-06-12 Apparatus for manufacturing field pole magnetic body
CN201380036677.4A CN104428982B (zh) 2012-07-13 2013-06-12 场磁极用磁体的制造装置
JP2014524699A JP5880709B2 (ja) 2012-07-13 2013-06-12 界磁極用磁石体の製造装置
EP13816571.7A EP2874288B1 (en) 2012-07-13 2013-06-12 Device for producing field-pole magnetic body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012157586 2012-07-13
JP2012-157586 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010363A1 true WO2014010363A1 (ja) 2014-01-16

Family

ID=49915831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066204 WO2014010363A1 (ja) 2012-07-13 2013-06-12 界磁極用磁石体の製造装置

Country Status (5)

Country Link
US (1) US9330840B2 (ja)
EP (1) EP2874288B1 (ja)
JP (1) JP5880709B2 (ja)
CN (1) CN104428982B (ja)
WO (1) WO2014010363A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2793376A1 (en) * 2011-12-15 2014-10-22 Nissan Motor Co., Ltd Device and method for producing magnet body for field pole
EP3029693A1 (en) * 2014-11-28 2016-06-08 Yantai Shougang Magnetic Materials Inc. Method of bonding nd-fe-b permanent magnets

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5929153B2 (ja) * 2011-12-14 2016-06-01 日産自動車株式会社 界磁極用磁石体の製造装置およびその製造方法
EP3073612B1 (en) * 2015-03-26 2019-10-09 Skf Magnetic Mechatronics Stator assembly and magnetic bearing or electric motor comprising such a stator assembly
CN106787508A (zh) * 2016-12-19 2017-05-31 南京磁谷科技有限公司 一种磁悬浮电机转子磁性材料叠压安装结构
EP3382864A1 (de) 2017-03-29 2018-10-03 Siemens Aktiengesellschaft Hybrid-käfigläufer
JP6542835B2 (ja) * 2017-05-30 2019-07-10 ファナック株式会社 固定子及び回転電機
JP6830996B1 (ja) * 2019-12-26 2021-02-17 山洋電気株式会社 同期電動機のフレーム構造並びにフレーム及び電機子の製造方法
CN211981596U (zh) * 2020-04-07 2020-11-20 精进电动科技股份有限公司 一种旋变定子定位压片和定位结构
KR20220040265A (ko) * 2020-09-23 2022-03-30 현대모비스 주식회사 모터

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328927A (ja) * 2003-04-25 2004-11-18 Neomax Co Ltd 永久磁石付きヨークおよびその製造方法、永久磁石式回転電機、並びにリニアモーター
JP2009142081A (ja) 2007-12-06 2009-06-25 Toyota Motor Corp 永久磁石とその製造方法、およびロータとipmモータ
WO2011158710A1 (ja) * 2010-06-17 2011-12-22 日産自動車株式会社 回転電機に配設される永久磁石の製造装置およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126933A (en) * 1977-07-14 1978-11-28 Carrier Corporation Method for assembling a permanent magnet rotor
JPH07118876B2 (ja) * 1986-03-24 1995-12-18 三菱電機株式会社 磁石式電動機のヨーク製造方法
US4918802A (en) * 1989-02-06 1990-04-24 Franklin Electric Co., Inc. Method and apparatus for making permanent magnet rotors
EP2333935B1 (en) * 2008-10-02 2016-01-06 Nissan Motor Co., Ltd. Field pole magnet, field pole magnet manufacturing method, and permanent magnet rotary machine
CN101763929B (zh) * 2008-12-25 2012-05-23 北京中科三环高技术股份有限公司 实现钕铁硼永磁体件之间绝缘的粘接方法
US8672013B2 (en) * 2009-07-29 2014-03-18 Toyota Jidosha Kabushiki Kaisha Apparatus for handling magnet
JP5614096B2 (ja) * 2010-05-19 2014-10-29 日産自動車株式会社 回転電機のロータコアに埋込まれる永久磁石およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328927A (ja) * 2003-04-25 2004-11-18 Neomax Co Ltd 永久磁石付きヨークおよびその製造方法、永久磁石式回転電機、並びにリニアモーター
JP2009142081A (ja) 2007-12-06 2009-06-25 Toyota Motor Corp 永久磁石とその製造方法、およびロータとipmモータ
WO2011158710A1 (ja) * 2010-06-17 2011-12-22 日産自動車株式会社 回転電機に配設される永久磁石の製造装置およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2874288A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2793376A1 (en) * 2011-12-15 2014-10-22 Nissan Motor Co., Ltd Device and method for producing magnet body for field pole
EP2793376A4 (en) * 2011-12-15 2015-04-29 Nissan Motor DEVICE AND PRODUCTION OF A MAGNETIC BODY FOR A POLAR PART
US9659707B2 (en) 2011-12-15 2017-05-23 Nissan Motor Co., Ltd. Manufacturing device for field-pole magnet and manufacturing method for same
EP3029693A1 (en) * 2014-11-28 2016-06-08 Yantai Shougang Magnetic Materials Inc. Method of bonding nd-fe-b permanent magnets

Also Published As

Publication number Publication date
CN104428982A (zh) 2015-03-18
JP5880709B2 (ja) 2016-03-09
US9330840B2 (en) 2016-05-03
US20150143691A1 (en) 2015-05-28
EP2874288B1 (en) 2017-08-09
EP2874288A1 (en) 2015-05-20
JPWO2014010363A1 (ja) 2016-06-20
EP2874288A4 (en) 2015-12-02
CN104428982B (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
JP5880709B2 (ja) 界磁極用磁石体の製造装置
JP5967297B2 (ja) ロータコア磁石挿入孔への磁石挿入装置および方法
US8497613B2 (en) Permanent magnet, manufacturing method thereof, and rotor and IPM motor
US8729748B2 (en) Split stator and manufacturing method thereof
EP2600508B1 (en) Rotor for motor and method of manufacturing the same
US20170012510A1 (en) Method for manufacturing rotary electric machine rotor
JP2009261086A (ja) ステータ及びステータの製造方法
CN111251696A (zh) 制造层叠铁芯制品的方法和设备
CN111801879B (zh) 铁芯制品的制造方法
JP2016082831A (ja) ロータの製造方法
JP7302418B2 (ja) 回転電機ロータの製造方法及び回転電機ロータの製造装置
CN113924712B (zh) 旋转电机及制造定子核心的方法
JP7155849B2 (ja) 回転電機ロータの製造方法及び製造装置
JP2021048679A (ja) 鉄心製品の製造方法及び鉄心製品
JP7490746B2 (ja) 鉄心製品の製造方法及び鉄心製品の製造装置
CN111869063A (zh) 铁芯产品的制造方法、铁芯产品以及旋转体的制造方法
JP2024075993A (ja) 回転電機のコア部製造方法及びコア部製造装置
KR930011833B1 (ko) 수지몰드 전동기 제작방법 및 장치
CN111541345A (zh) 层叠构造体的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524699

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14414244

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013816571

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013816571

Country of ref document: EP