WO2014009103A1 - Dispositif de ventilation equipe d'un boitier conforme en volute - Google Patents

Dispositif de ventilation equipe d'un boitier conforme en volute Download PDF

Info

Publication number
WO2014009103A1
WO2014009103A1 PCT/EP2013/062475 EP2013062475W WO2014009103A1 WO 2014009103 A1 WO2014009103 A1 WO 2014009103A1 EP 2013062475 W EP2013062475 W EP 2013062475W WO 2014009103 A1 WO2014009103 A1 WO 2014009103A1
Authority
WO
WIPO (PCT)
Prior art keywords
volute
turbine
angle
expansion
radial
Prior art date
Application number
PCT/EP2013/062475
Other languages
English (en)
Inventor
David Pihet
Original Assignee
Delphi Automotive Systems Luxembourg Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Automotive Systems Luxembourg Sa filed Critical Delphi Automotive Systems Luxembourg Sa
Priority to EP13729333.8A priority Critical patent/EP2872783B1/fr
Priority to US14/414,236 priority patent/US9745983B2/en
Priority to CN201380037068.0A priority patent/CN104411981B/zh
Priority to JP2015520872A priority patent/JP6256720B2/ja
Publication of WO2014009103A1 publication Critical patent/WO2014009103A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4233Fan casings with volutes extending mainly in axial or radially inward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • Ventilation device equipped with a casing shaped volute TECHNICAL DOMAIN
  • the present invention relates to a ventilation device for a heating, ventilation and / or air conditioning system, or HVAC (Heating Ventilating Air Conditionning), in particular for equipping a motor vehicle.
  • HVAC Heating Ventilating Air Conditionning
  • the invention relates more particularly to a ventilation device comprising at least one centrifugal air propulsion member for conveying air through a distribution circuit to the passenger compartment of the vehicle.
  • the centrifugal propulsion member comprises an annular turbine provided with fins which is rotated about an axis of rotation by a motor and which is arranged generally in the center of a casing shaped volute.
  • the air is taken up by the turbine axially from the outside of the housing and is driven along a corridor formed by the housing to a discharge orifice, or radial air outlet mouth communicating with the cooling circuit. distribution.
  • the corridor is delimited by the external surface of revolution of the turbine, defined by the outer edge of the fins, and the inner face of the peripheral wall of the housing enveloping the blades of the turbine at a distance.
  • the radial profile of the peripheral wall of the housing evolves in volute so as to gradually vary the separation distance between the edge of the fins and the inner face of the peripheral wall.
  • the peripheral wall thus forms a spiral around the turbine in the direction, said spiral evolving in the direction of rotation of the turbine.
  • volute To define the shape of the volute, we define an angle of expansion of the volute which corresponds, at a determined point of the volute, to the angle formed between the tangent to the volute and the tangent to a circle passing through this point , the center of the volute and said circle being constituted here by the axis of rotation of the turbine.
  • the invention aims to solve the problem mentioned above by proposing a ventilation device that is particularly effective, especially in terms of size and sound level.
  • the invention proposes a ventilation device for a heating, ventilation and / or air-conditioning installation of a passenger compartment of a motor vehicle, comprising a turbine with blades rotating around an axis of rotation at the inside a casing radially shaped volute, the housing having an axial suction air mouth and a radial air outlet mouth communicating with the interior of a volute compartment delimited by the peripheral wall of the housing , the peripheral wall of the housing progressively moving away from the periphery of the turbine from a volute nose to a distal end of the volute, the radial expansion of the volute being defined by an expansion angle, characterized in that that the initial expansion angle in the vicinity of the volute nose is 1.5 times to 3 times greater than the final expansion angle in the vicinity of the distal end of the volute, so that the The device's periphery moves away more rapidly from the fins at the beginning of the volute, minimizing the turbulence generated at the volute spout.
  • the ventilation device according to the invention also has the advantage of obtaining these good results while having a structure easy to manufacture and assemble, so that the cost of manufacture / efficiency is particularly interesting.
  • R v i is the radius of the volute at a certain point in the volute
  • R t is the outside radius of the turbine
  • dtv is the minimum radial distance between the outer edge of the turbine blades and the volute nose
  • 9i is the angle defined by the initial end of the volute and the determined point of the volute around the axis of rotation
  • ai is the initial expansion angle of the volute
  • a 2 is the final expansion angle of the volute
  • Omax is the volute angle that corresponds to the angle defined by the initial end of the volute and the distal end of the volute around the axis of rotation.
  • the volute angle is between 290 and 315 degrees
  • the initial expansion angle is between 3.5 and 9 degrees
  • the final expansion angle is between 3 and 5 degrees
  • the axial section of the peripheral wall of the volute has a generally C-shaped profile, preferably an oval profile;
  • the radial outlet mouth has an axial section with a rounded or oval profile so that the outlet section extends from the end distal from the volute to the radial outlet mouth, gradually forms a tube;
  • the volute beak has a generally oval profile
  • the external profile of the turbine, in an axial plane, is generally parallel to the axis of the turbine;
  • the inner circumferential edge of the volute is extended, on the side of the suction axial mouth, by a radial extension which covers a portion of the turbine and which defines the axial suction mouth;
  • the housing is made in the form of two half-shells, preferably made by molding in plastic material, the two half-shells being assembled with each other along a joint plane orthogonal to the axis of the turbine .
  • FIG. 1 is a perspective view which shows schematically a ventilation device comprising a cased housing in accordance with the teachings of the invention
  • FIG. 2 is a view similar to that of Figure 1 in which a portion of the housing has been torn to highlight the inside of the housing and the turbine;
  • FIG. 3 is a partial axial sectional view which shows the volute nozzle of the housing of Figure 1;
  • FIG. 4 is an axial sectional view along the plane 4-4 which shows the ventilation device of the figure and which illustrates the profile of the peripheral wall of the housing;
  • FIG. 5 is a top view which shows the ventilation device of Figure 1 and which illustrates the expansion angles of the volute. DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 to 5 There is shown in Figures 1 to 5 a ventilation device 10 made in accordance with the teachings of the invention and intended to equip a heating, ventilation and / or air conditioning of a passenger compartment of a motor vehicle.
  • the ventilation device 10 comprises a turbine 12 fin 13 rotatably mounted about an axis of rotation Al inside a casing 14 radially shaped volute.
  • the housing 14 has an axial air inlet mouth 16 and a radial air outlet mouth 18 which communicate with the interior of a compartment 20, or corridor, volute delimited by the peripheral wall 22 of the housing 14
  • the peripheral wall 22 of the housing 14 moves away radially and progressively from the periphery of the turbine 12 from a spout 24 of volute to a distal end E 2 of the volute, as shown in FIG.
  • the spout 24 of volute which is shown in more detail in FIG. 3, consists of a portion of the peripheral wall 22 which is located generally at the intersection between the volute and a tubular outlet section 28 which extends from the distal end E 2 of the volute to the radial mouth 18.
  • the distal end E 2 of the volute corresponds generally to the end of the radial expansion of the housing 14, the outlet section 28 extending in a generally correct way line in the direction of the air discharge Fl, in a direction generally tangent to the turbine 12.
  • the volute has, at its spout 24, an initial expansion angle ai and at its distal end E 2 a final expansion angle a 2 .
  • the value of the initial expansion angle ⁇ 1 is preferably between 1.5 and 3 times the value of the final expansion angle a 2 .
  • the higher value of the initial expansion angle ai allows the volute to move radially away from the turbine 12 more rapidly at the beginning of its radial expansion than at the end of its radial expansion so as to minimize the turbulence produced. in the air flow at volute spout 24 which are the source of significant noise pollution given the close proximity of volute spout 24 with turbine 12.
  • the expansion angle 3 ⁇ 4 increases gradually until it reaches its average value around the first third of the volute.
  • the radial expansion of the volute is defined by the equation:
  • R v i is the radius of the volute at a given point Ei of the volute
  • R t is the outside radius of the turbine 12
  • dtv is the minimum radial distance between the outer edge of the fins 13 of the turbine 12 and the spout 24 of volute
  • 9i is the angle defined by the initial end Ei of the volute and the determined point Ei of the volute around the axis of rotation Al,
  • ai is the initial expansion angle of the volute
  • a 2 is the final expansion angle of the volute
  • Omax is the volute angle that corresponds to the angle defined by the initial end Ei of the volute and the distal end E 2 of the volute around the axis of rotation Al.
  • the volute angle 9 max thus defines the value of the angular sector along which the volute develops.
  • the initial expansion angle ai of the volute is preferably between 3.5 and 9 degrees and the final expansion angle a 2 is preferably between 3 and 5 degrees.
  • the volute angle ⁇ max is preferably between 290 and 315 degrees.
  • Equation (1) defines the evolution of the radius R v i of the volute from the initial end Ei to the distal end E 2 . This equation has been developed to allow both an initial expansion angle ⁇ greater than the final expansion angle a 2 and a controlled progressiveness of radial expansion. The tests and measurements carried out by the applicant showed excellent results in terms of reduced sound level and in terms of efficiency of the pulsed air flow. Equation (1) provides a spiral profile for the volute which is particularly well suited for applications of the HVAC type for motor vehicles.
  • the evolution of the axial expansion of the volute follows generally the evolution of the radial expansion of the volute.
  • the evolution of the axial expansion can be dissociated from the evolution of the radial expansion, for example by increasing continuously and regularly all along the volute from its spout 24 to its distal end E2.
  • the profile of the peripheral wall 22 of the casing 14 in an axial plane is curved to form a substantially oval or ellipsoidal portion intended to eliminate the angles inside the compartment 20.
  • the axial section of the peripheral wall 22 possesses preferably a generally "C" shaped profile, as illustrated by the axial sectional view of FIG. 4.
  • the volute thus has an upper inner circumferential edge 30 which is curved inwards and downwards and a circumferential edge lower internal 32 which is bent inwards and upwards.
  • the upper circumferential edge 30 extends partially above the turbine 12, at the fins 13.
  • the lower circumferential edge 32 is extended radially inwardly to form the bottom wall 36 of the housing 22, opposite the axial mouth 16.
  • the radial outlet mouth 18 has an axial section of rounded or oval-shaped profile, as illustrated in FIGS. 1, 2 and 3, so that the outlet section gradually forms a tube.
  • the spout 24 of volute has an oval profile, generally ellipsoidal or parabolic, which is illustrated in Figure 3, so as to minimize the turbulence produced in the air pulsed at the spout 24 of volute.
  • the housing 22 according to the invention is particularly suitable for a turbine 12 whose outer profile, in an axial plane, is generally parallel to the axis A1, the outer edge of the fins 13 being generally vertical.
  • the casing 14 is made in the form of two half-shells 38, 40 which are assembled with one another along a joint plane 42 orthogonal to the axis Al of the turbine 12, the joint plane 42 being illustrated in Figures 1 and 2.
  • the two half-shells 38, 40 can thus be made by molding plastic material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Dispositif de ventilation (10 )comportant une turbine (12) montée à l'intérieur d'un boîtier (14) radialement conformé en volute, la paroi périphérique (22) du boîtier (14) s'éloignant progressivement de la périphérie de la turbine (12) depuis un bec (24) de volute jusqu'à une extrémité distale (E2) de la volute, l'expansion radiale de la volute étant définie par un angle d'expansion (a), caractérisé en ce que l'angle d'expansion initial (a) au voisinage du bec (24) de volute est 1,5 fois à 3 fois supérieur à l'angle d'expansion final (a2) au voisinage de l'extrémité distale (E2) de la volute, de sorte que la paroi périphérique (22) du boîtier (14) s'éloigne plus rapidement des ailettes au début de la volute en minimisant les turbulences générées au niveau du bec (24) de volute.

Description

Dispositif de ventilation équipé d'un boîtier conformé en volute DOMAINE TECHNIQUE
La présente invention concerne un dispositif de ventilation pour une installation de chauffage, de ventilation et/ou de climatisation, ou HVAC (Heating Ventilating Air Conditionning), notamment destinée à équiper un véhicule automobile.
ARRIERE-PLAN TECHNOLOGIQUE DE L'INVENTION
L'invention concerne plus particulièrement un dispositif de ventilation comprenant au moins un organe de propulsion centrifuge d'air destiné à acheminer l'air à travers un circuit de distribution vers l'habitacle du véhicule. L'organe de propulsion centrifuge comporte une turbine annulaire pourvue d'ailettes qui est entraînée en rotation autour d'un axe de rotation par un moteur et qui est agencée globalement au centre d'un boîtier conformé en volute. L'air est prélevé par la turbine axialement depuis l'extérieur du boîtier et est entraîné le long d'un couloir formé par le boîtier jusqu'à un orifice d'évacuation, ou bouche radiale de refoulement d'air communicant avec le circuit de distribution.
Le couloir est délimité par la surface de révolution extérieure de la turbine, définie par la tranche extérieure des ailettes, et la face interne de la paroi périphérique du boîtier enveloppant à distance les ailettes de la turbine. Le profil radial de la paroi périphérique du boîtier évolue en volute de manière à faire varier progressivement la distance de séparation entre la tranche des ailettes et la face interne de la paroi périphérique. La paroi périphérique forme donc une spirale autour de la turbine dans la direction, ladite spirale évoluant dans le sens de rotation de la turbine.
Pour définir la forme de la volute, on définit un angle d'expansion de la volute qui correspond, en un point déterminé de la volute, à l'angle formé entre la tangente à la volute et la tangente à un cercle passant par ce point, le centre de la volute et dudit cercle étant constitué ici par l'axe de rotation de la turbine.
Généralement, lorsque l'on parcourt la volute dans le sens de rotation de la turbine, on constate que l'angle d'expansion est sensiblement constant, ce qui conduit à une augmentation régulière de la distance entre la tranche externe des ailettes de la turbine et la face interne de la paroi périphérique.
Pour la conception d'un tel dispositif de ventilation, il est nécessaire de composer avec différents paramètres tels que l'efficacité du dispositif, le rendement et le débit d'air offert par la turbine, l'encombrement global et les dimensions relatives entre la turbine et le boîtier, ainsi que les nuisances sonores générées. On souhaite généralement avoir un encombrement du dispositif le plus faible possible pour optimiser l'espace disponible, et on souhaite éviter au mieux la création de zones de turbulences génératrices de nuisances sonores.
Diverses solutions et différents compromis ont été proposés dans les dispositifs de l'art antérieur, mais ils ne permettent pas d'obtenir un résultat entièrement satisfaisant en termes d'encombrement et de niveau sonore.
RESUME DE L'INVENTION
L'invention vise à résoudre le problème mentionné précédemment en proposant un dispositif de ventilation qui soit particulièrement efficace, notamment en termes d'encombrement et de niveau sonore.
Dans ce but, l'invention propose un dispositif de ventilation pour une installation de chauffage, de ventilation et/ou de climatisation d'un habitacle de véhicule automobile, comportant une turbine à ailettes montée tournante autour d'un axe de rotation à l'intérieur d'un boîtier radialement conformé en volute, le boîtier comportant une bouche axiale d'aspiration d'air et une bouche radiale de refoulement d'air qui communiquent avec l'intérieur d'un compartiment en volute délimité par la paroi périphérique du boîtier, la paroi périphérique du boîtier s'éloignant progressivement de la périphérie de la turbine depuis un bec de volute jusqu'à une extrémité distale de la volute, l'expansion radiale de la volute étant définie par un angle d'expansion, caractérisé en ce que l'angle d'expansion initial au voisinage du bec de volute est 1 ,5 fois à 3 fois supérieur à l'angle d'expansion final au voisinage de l'extrémité distale de la volute, de sorte que la paroi périphérique du boîtier s'éloigne plus rapidement des ailettes au début de la volute en minimisant les turbulences générées au niveau du bec de volute.
Les essais effectués par le demandeur ont permis de démontrer que la combinaison de caractéristiques du dispositif de ventilation selon l'invention permet d'obtenir des résultats particulièrement bons, en particulier en matière de niveau sonore puisqu'il a été possible de gagner plusieurs décibels (au moins 3dB(A)) en diminuant les turbulences non désirées tout en maintenant un débit du flux d'air puisé et une vélocité du flux d'air puisé de niveaux élevés. De plus, ces bons résultats ont été obtenus à encombrement extérieur du boîtier constant, c'est- à-dire sans avoir à augmenter les dimensions extérieures du boîtier.
Le dispositif de ventilation selon l'invention présente également l'avantage d'obtenir ces bons résultats tout en ayant une structure facile à fabriquer et à assembler, de sorte que le rapport coût de fabrication/efficacité est particulièrement intéressant.
Avantageusement, des résultats particulièrement bons sont obtenus lorsque l'expansion radiale de la volute est définie par l'équation :
Rvi = (Rt + dtv) x e 1 v 1 v emax J lJJ
où :
Rvi est le rayon de la volute en un point déterminé de la volute,
Rt est le rayon extérieur de la turbine,
dtv est la distance radiale minimale entre le bord extérieur des ailettes de la turbine et le bec de volute,
9i est l'angle défini par l'extrémité initiale de la volute et le point déterminé de la volute autour de l'axe de rotation,
ai est l'angle d'expansion initial de la volute,
a2 est l'angle d'expansion final de la volute,
Omax est l'angle de volute qui correspond à l'angle défini par l'extrémité initiale de la volute et l'extrémité distale de la volute autour de l'axe de rotation.
Selon d'autres caractéristiques avantageuses de l'invention :
- l'angle de volute est compris entre 290 et 315 degrés ;
- l'angle d'expansion initial est compris entre 3,5 et 9 degrés ;
- l'angle d'expansion final est compris entre 3 et 5 degrés ;
- la section axiale de la paroi périphérique de la volute a un profil globalement en forme de « C », de préférence un profil ovalisé ;
- la bouche radiale de refoulement possède une section axiale de profil arrondi ou ovalisé de sorte que le tronçon de sortie, qui s'étend depuis l'extrémité distale de la volute jusqu'à la bouche radiale de refoulement, forme progressivement un tube ;
- l'évolution de l'expansion axiale de la volute suit globalement l'évolution de son expansion radiale ;
- le bec de volute a globalement un profil ovalisé ;
- le profil extérieur de la turbine, dans un plan axial, est globalement parallèle à l'axe de la turbine ;
- le bord circonférentiel interne de la volute se prolonge, du côté de la bouche axiale d'aspiration, par une extension radiale qui recouvre une portion de la turbine et qui délimite la bouche axiale d'aspiration ;
- le boîtier est réalisé sous la forme de deux demi-coquilles, de préférence réalisées par moulage en matériau plastique, les deux demi-coquilles étant assemblées l'une avec l'autre selon un plan de joint orthogonal à l'axe de la turbine.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques, buts et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, et en regard des dessins annexés, donnés à titre d'exemple non limitatif et sur lesquels:
- la figure 1 est une vue en perspective qui représente schématiquement un dispositif de ventilation comportant un boîtier en volute conforme aux enseignements de l'invention ;
- la figure 2 est une vue similaire à celle de la figure 1 dans laquelle une portion du boîtier a été arrachée pour mettre en évidence l'intérieur du boîtier et la turbine ;
- la figure 3 est une vue en coupe axiale partielle qui représente le bec de volute du boîtier de la figure 1 ;
- la figure 4 est une vue en coupe axiale selon le plan 4-4 qui représente le dispositif de ventilation de la figure et qui illustre le profil de la paroi périphérique du boîtier ;
- la figure 5 est une vue de dessus qui représente le dispositif de ventilation de la figure 1 et qui illustre les angles d'expansion de la volute. DESCRIPTION DES MODES DE REALISATION PREFERES
On a représenté sur les figures 1 à 5 un dispositif de ventilation 10 réalisé conformément aux enseignements de l'invention et destiné à équiper une installation de chauffage, de ventilation et/ou de climatisation d'un habitacle de véhicule automobile.
Le dispositif de ventilation 10 comporte une turbine 12 à ailettes 13 montée tournante autour d'un axe de rotation Al à l'intérieur d'un boîtier 14 radialement conformé en volute.
Dans la suite de la description, on utilisera à titre non limitatif une orientation axiale verticale suivant l'axe de rotation Al et une orientation radiale par rapport à l'axe de rotation Al .
Le boîtier 14 comporte une bouche axiale 16 d'aspiration d'air et une bouche radiale 18 de refoulement d'air qui communiquent avec l'intérieur d'un compartiment 20, ou couloir, en volute délimité par la paroi périphérique 22 du boîtier 14. Dans un plan radial, la paroi périphérique 22 du boîtier 14 s'éloigne radialement et progressivement de la périphérie de la turbine 12 depuis un bec 24 de volute jusqu'à une extrémité distale E2 de la volute, comme illustré par la figure 5. Le bec 24 de volute, qui est représenté plus en détail sur la figure 3, est constitué par une portion de la paroi périphérique 22 qui se situe globalement à l'intersection entre la volute et un tronçon de sortie 28 tubulaire, qui s'étend depuis l'extrémité distale E2 de la volute jusqu'à la bouche radiale 18. L'extrémité distale E2 de la volute correspond globalement à la fin de l'expansion radiale du boîtier 14, le tronçon de sortie 28 s'étendant de manière globalement rectiligne dans la direction du refoulement d'air Fl, selon une direction globalement tangente par rapport à la turbine 12.
Sur la figure 5, on a illustré l'angle d'expansion initial ai de la volute à son origine c'est-à-dire à l'extrémité initiale Ei située au niveau du bec 24 de volute.
La volute comporte, au niveau de son bec 24, un angle d'expansion initial ai et au niveau de son extrémité distale E2 un angle d'expansion final a2. La valeur de l'angle d'expansion initial ai est de préférence comprise entre 1,5 et 3 fois la valeur de l'angle d'expansion final a2. La valeur plus élevée de l'angle d'expansion initial ai permet à la volute de s'écarter radialement de la turbine 12 plus rapidement au début de son expansion radiale qu'à la fin de son expansion radiale de manière à minimiser les turbulences produites dans le flux d'air au niveau du bec de volute 24 qui sont la sources de fortes nuisances sonores compte tenu de la grande proximité du bec de volute 24 avec la turbine 12.
De préférence, l'angle d'expansion ¾ augmente progressivement jusqu'à atteindre sa valeur moyenne aux environs du premier tiers de la volute.
Avantageusement, l'expansion radiale de la volute est définie par l'équation :
Rvi = (Rt + dtv) e emax j lJJ (i)
où :
Rvi est le rayon de la volute en un point déterminé Ei de la volute,
Rt est le rayon extérieur de la turbine 12,
dtv est la distance radiale minimale entre le bord extérieur des ailettes 13 de la turbine 12 et le bec 24 de volute,
9i est l'angle défini par l'extrémité initiale Ei de la volute et le point déterminé Ei de la volute autour de l'axe de rotation Al,
ai est l'angle d'expansion initial de la volute,
a2 est l'angle d'expansion final de la volute,
Omax est l'angle de volute qui correspond à l'angle défini par l'extrémité initiale Ei de la volute et l'extrémité distale E2 de la volute autour de l'axe de rotation Al . L'angle de volute 9max définit ainsi la valeur du secteur angulaire le long duquel se développe la volute.
L'angle d'expansion initial ai de la volute est de préférence compris entre 3,5 et 9 degrés et l'angle d'expansion final a2 est de préférence compris entre 3 et 5 degrés.
L'angle de volute 9max est compris de préférence entre 290 et 315 degrés.
L'équation (1) permet de définir l'évolution du rayon Rvi de la volute depuis l'extrémité initiale Ei jusqu'à l'extrémité distale E2. Cette équation a été mise au point de manière à permettre à la fois un angle d'expansion initial ai plus élevé que l'angle d'expansion final a2 et une progressivité contrôlée de l'expansion radiale. Les tests et mesures effectués par le demandeur ont montré d'excellents résultats en termes de niveau sonore réduit et en termes d'efficacité du flux d'air puisé. L'équation (1) permet d'obtenir un profil de spirale pour la volute qui est particulièrement bien adapté aux applications du type HVAC pour les véhicules automobiles.
De préférence, l'évolution de l'expansion axiale de la volute, c'est-à-dire l'évolution de la dimension axiale maximale de la paroi périphérique 22, suit globalement l'évolution de l'expansion radiale de la volute. Selon une variante de réalisation, l'évolution de l'expansion axiale peut être dissociée de l'évolution de l'expansion radiale, par exemple en augmentant de manière continue et régulière tout le long de la volute depuis son bec 24 jusqu'à son extrémité distale E2.
De manière avantageuse, le profil de la paroi périphérique 22 du boîtier 14 dans un plan axial est courbé pour former une portion sensiblement ovale ou ellipsoïdale visant à supprimer les angles à l'intérieur du compartiment 20. La section axiale de la paroi périphérique 22 possède de préférence un profil globalement en forme de « C », comme illustré par la vue en coupe axiale de la figure 4. La volute comporte ainsi un bord circonférentiel interne supérieur 30 qui est recourbé vers l'intérieur et vers le bas et un bord circonférentiel interne inférieur 32 qui est recourbé vers l'intérieur et vers le haut.
Selon le mode de réalisation représenté, le bord circonférentiel supérieur
30 se prolonge radialement vers l'intérieur pour former le bord périphérique 34 délimitant la bouche axiale 16. Le bord circonférentiel supérieur 30 s'étend partiellement au-dessus de la turbine 12, au niveau des ailettes 13. Le bord circonférentiel inférieur 32 se prolonge radialement vers l'intérieur pour former la paroi de fond 36 du boîtier 22, en vis-à-vis de la bouche axiale 16.
Avantageusement, la bouche radiale 18 de refoulement possède une section axiale de profil arrondi ou ovalisé, comme illustré sur les figures 1 , 2 et 3, de sorte que le tronçon de sortie forme progressivement un tube.
De préférence, le bec 24 de volute a un profil ovalisé, globalement ellipsoïdal ou parabolique, qui est illustré par la figure 3, de manière à minimiser les turbulences produites dans l'air puisé au niveau du bec 24 de volute. Le boîtier 22 selon l'invention est particulièrement adapté à une turbine 12 dont le profil extérieur, dans un plan axial, est globalement parallèle à l'axe Al , la tranche extérieure des ailettes 13 étant globalement verticale.
Avantageusement, le boîtier 14 est réalisé sous la forme de deux demi- coquilles 38, 40 qui sont assemblées l'une avec l'autre selon un plan de joint 42 orthogonal à l'axe Al de la turbine 12, le plan de joint 42 étant illustré sur les figures 1 et 2. Les deux demi-coquilles 38, 40 peuvent ainsi être réalisées par moulage en matériau plastique.

Claims

REVENDICATIONS
1. Dispositif de ventilation (10) pour une installation de chauffage, de ventilation et/ou de climatisation d'un habitacle de véhicule automobile, comportant une turbine (12) à ailettes (13) montée tournante autour d'un axe de rotation (Al) à l'intérieur d'un boîtier (14) radialement conformé en volute, le boîtier (14) comportant une bouche axiale (16) d'aspiration d'air et une bouche radiale (18) de refoulement d'air qui communiquent avec l'intérieur d'un compartiment (20) en volute délimité par la paroi périphérique (22) du boîtier (14), la paroi périphérique (22) du boîtier (14) s'éloignant progressivement de la périphérie de la turbine (12) depuis un bec (24) de volute jusqu'à une extrémité distale (E2) de la volute, l'expansion radiale de la volute étant définie par un angle d'expansion (ai), caractérisé en ce que l'angle d'expansion initial (ai) au voisinage du bec (24) de volute est 1,5 fois à 3 fois supérieur à l'angle d'expansion final (a2) au voisinage de l'extrémité distale (E2) de la volute, de sorte que la paroi périphérique (22) du boîtier (14) s'éloigne plus rapidement des ailettes (13) au début de la volute en minimisant les turbulences générées au niveau du bec (24) de volute, et en ce que
l'expansion radiale de la volute est définie par l'équation :
Rvi = (Rt + dtv) e emax j lJJ (i)
où :
Rvi est le rayon de la volute en un point déterminé (E;) de la volute, Rt est le rayon extérieur de la turbine (12),
dtv est la distance radiale minimale entre le bord extérieur des ailettes (13) de la turbine (12) et le bec (24) de volute,
9i est l'angle défini par l'extrémité initiale (Ei) de la volute et le point déterminé (E;) de la volute autour de l'axe de rotation (Al),
ai est l'angle d'expansion initial de la volute,
a2 est l'angle d'expansion final de la volute,
Omax est l'angle de volute qui correspond à l'angle défini par l'extrémité initiale (Ei) de la volute et l'extrémité distale (E2) de la volute autour de l'axe de rotation (Al) et, en ce que l'angle de volute (9max) est compris entre 290 et 315 degrés.
2. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'angle d'expansion initial (ai) est compris entre 3,5 et 9 degrés.
3. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'angle d'expansion final (a2) est compris entre 3 et 5 degrés.
4. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que la section axiale de la paroi périphérique (22) de la volute a un profil globalement en forme de « C », de préférence un profil ovalisé.
5. Dispositif (10) selon la revendication précédente, caractérisé en ce que la bouche radiale (18) de refoulement possède une section axiale de profil arrondi ou ovalisé de sorte que le tronçon de sortie (28), qui s'étend depuis l'extrémité distale (E2) de la volute jusqu'à la bouche radiale (18) de refoulement, forme progressivement un tube.
6. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'évolution de l'expansion axiale de la volute suit globalement l'évolution de son expansion radiale.
7. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que le bec (24) de volute a globalement un profil ovalisé.
8. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que le profil extérieur de la turbine (12), dans un plan axial, est globalement parallèle à l'axe (Al) de la turbine (12).
9. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que le bord circonférentiel interne (30) de la volute se prolonge, du côté de la bouche axiale (16) d'aspiration, par une extension radiale (34) qui recouvre une portion de la turbine (12) et qui délimite la bouche axiale (16) d'aspiration.
10. Dispositif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que le boîtier (22) est réalisé sous la forme de deux demi-coquilles (38, 40), de préférence réalisées par moulage en matériau plastique, les deux demi-coquilles (38, 40) étant assemblées l'une avec l'autre selon un plan de joint (42) orthogonal à l'axe (Al) de la turbine (12).
PCT/EP2013/062475 2012-07-13 2013-06-17 Dispositif de ventilation equipe d'un boitier conforme en volute WO2014009103A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13729333.8A EP2872783B1 (fr) 2012-07-13 2013-06-17 Dispositif de ventilation équipé d'un boîtier conforme en volute
US14/414,236 US9745983B2 (en) 2012-07-13 2013-06-17 Ventilation device provided with a volute-shaped casing
CN201380037068.0A CN104411981B (zh) 2012-07-13 2013-06-17 具备旋涡形状壳体的通风装置
JP2015520872A JP6256720B2 (ja) 2012-07-13 2013-06-17 渦巻き形状のケーシングを備えた換気デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256755 2012-07-13
FR1256755A FR2993208B1 (fr) 2012-07-13 2012-07-13 Dispositif de ventilation equipe d'un boitier conforme en volute.

Publications (1)

Publication Number Publication Date
WO2014009103A1 true WO2014009103A1 (fr) 2014-01-16

Family

ID=47191881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/062475 WO2014009103A1 (fr) 2012-07-13 2013-06-17 Dispositif de ventilation equipe d'un boitier conforme en volute

Country Status (6)

Country Link
US (1) US9745983B2 (fr)
EP (1) EP2872783B1 (fr)
JP (1) JP6256720B2 (fr)
CN (1) CN104411981B (fr)
FR (1) FR2993208B1 (fr)
WO (1) WO2014009103A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104343732A (zh) * 2014-08-29 2015-02-11 宁波方太厨具有限公司 一种用于吸油烟机的风机蜗舌结构
CN109059233A (zh) * 2018-10-24 2018-12-21 奥克斯空调股份有限公司 风道结构及空调器
CN109681469A (zh) * 2017-10-18 2019-04-26 宁波方太厨具有限公司 离心风机蜗壳结构

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102240314B1 (ko) * 2015-02-16 2021-04-14 삼성전자주식회사 공기조화기용 스크롤 및 이를 구비하는 공기조화기
JP6554867B2 (ja) * 2015-03-30 2019-08-07 日本電産株式会社 遠心ファン
CN105065332B (zh) * 2015-09-11 2018-11-30 珠海格力电器股份有限公司 一种空调、鼓形蜗壳风道系统及其风道蜗壳
CN105508265B (zh) * 2016-01-26 2018-07-17 西安交通大学 一种新型多翼离心风机
CN105736480B (zh) * 2016-04-28 2020-06-02 深圳市大雅医疗技术有限公司 小型风机及其进风口降噪装置及采用该风机的呼吸机
CN106855062A (zh) * 2016-12-15 2017-06-16 东华大学 一种变深度降噪蜗舌及多翼离心风机
CA2990792A1 (fr) * 2017-01-04 2018-07-04 Tti (Macao Commercial Offshore) Limited Dispositif de gonflage
US10458431B2 (en) * 2017-04-10 2019-10-29 Hamilton Sundstrand Corporation Volutes for engine mounted boost stages
EP3431705B1 (fr) * 2017-07-19 2020-01-08 Esquare Lab Ltd Turbine de tesla comportant un distributeur statique
CN107702306B (zh) * 2017-10-30 2024-01-30 四川长虹空调有限公司 空调器室内机用蜗舌及空调器室内机
CN108005956A (zh) * 2017-12-30 2018-05-08 豫新汽车空调股份有限公司 一种汽车空调用蜗壳结构
CN109058170B (zh) * 2018-10-24 2024-05-10 奥克斯空调股份有限公司 风机及空调器
JP2020133410A (ja) * 2019-02-13 2020-08-31 株式会社ケーヒン 送風機
JP2020133411A (ja) * 2019-02-13 2020-08-31 株式会社ケーヒン 車両用空調装置
JP7337525B2 (ja) * 2019-03-26 2023-09-04 株式会社日立産機システム 遠心式流体機械
CN109989926A (zh) * 2019-03-28 2019-07-09 宁波纽新克电机股份有限公司 一种高效的保流道离心风机
US11913460B2 (en) * 2020-03-20 2024-02-27 Greenheck Fan Corporation Exhaust fan
US11982290B2 (en) * 2021-10-21 2024-05-14 Lennox Industries Inc. Housing for forward curved blower
US11946441B2 (en) * 2022-02-10 2024-04-02 Kamil Podhola Outer turbine system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2015210A (en) * 1934-10-13 1935-09-24 Young Radiator Co Centrifugal fan
US2452274A (en) * 1944-09-21 1948-10-26 American Blower Corp Fan having auxiliary cutoff
US2841326A (en) * 1954-06-14 1958-07-01 Trane Co Centrifugal fan

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH286975A (de) * 1951-05-01 1952-11-15 Karrer Josef Fliehkraftgebläse, insbesondere Ventilator mit Spiralgehäuse.
US4213742A (en) * 1977-10-17 1980-07-22 Union Pump Company Modified volute pump casing
US4512716A (en) * 1982-09-30 1985-04-23 Wallace Murray Corporation Vortex transition duct
DE4331606C1 (de) * 1993-09-17 1994-10-06 Gutehoffnungshuette Man Spiralgehäuse für Turbomaschinen
KR960703203A (ko) * 1994-04-28 1996-06-19 시게후치 마사토시 다익(多翼) 레이디얼 팬의 설계 방법 및 그 다익 레이디얼 팬(multivane radial fan designing method and multivane radial fan)
FR2746864B1 (fr) * 1996-03-26 1998-05-22 Valeo Climatisation Ventilateur centrifuge a module de commande integre, notamment pour vehicule automobile
CA2314532C (fr) * 1999-08-10 2009-10-27 Lg Electronics Inc. Ventilateur
JP4026366B2 (ja) * 2001-03-16 2007-12-26 株式会社デンソー 遠心式送風機
JP3843893B2 (ja) * 2001-07-16 2006-11-08 株式会社デンソー 遠心式送風機
CN1985093A (zh) * 2004-01-30 2007-06-20 百思科技公司 用于离心通风机、泵或涡轮机的机罩
KR100591335B1 (ko) * 2004-06-16 2006-06-19 엘지전자 주식회사 원심 송풍기
US20080310957A1 (en) * 2007-06-14 2008-12-18 Rbc Horizon, Inc. Extended Length Cutoff Blower
JP4631941B2 (ja) * 2008-07-18 2011-02-16 株式会社デンソー 遠心式送風機
KR101218690B1 (ko) * 2010-07-09 2013-01-04 선문대학교 산학협력단 스크롤 케이스용 벨마우스
CN201836122U (zh) * 2010-10-28 2011-05-18 上海德尔福汽车空调系统有限公司 汽车空调鼓风机进风圈结构
US9039363B2 (en) * 2012-06-22 2015-05-26 Trane International Inc. Blower housing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2015210A (en) * 1934-10-13 1935-09-24 Young Radiator Co Centrifugal fan
US2452274A (en) * 1944-09-21 1948-10-26 American Blower Corp Fan having auxiliary cutoff
US2841326A (en) * 1954-06-14 1958-07-01 Trane Co Centrifugal fan

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104343732A (zh) * 2014-08-29 2015-02-11 宁波方太厨具有限公司 一种用于吸油烟机的风机蜗舌结构
CN109681469A (zh) * 2017-10-18 2019-04-26 宁波方太厨具有限公司 离心风机蜗壳结构
CN109681469B (zh) * 2017-10-18 2023-11-17 宁波方太厨具有限公司 离心风机蜗壳结构
CN109059233A (zh) * 2018-10-24 2018-12-21 奥克斯空调股份有限公司 风道结构及空调器
CN109059233B (zh) * 2018-10-24 2024-03-15 奥克斯空调股份有限公司 风道结构及空调器

Also Published As

Publication number Publication date
JP6256720B2 (ja) 2018-01-10
US20150204337A1 (en) 2015-07-23
FR2993208B1 (fr) 2016-08-05
EP2872783A1 (fr) 2015-05-20
US9745983B2 (en) 2017-08-29
JP2015522128A (ja) 2015-08-03
FR2993208A1 (fr) 2014-01-17
EP2872783B1 (fr) 2016-12-07
CN104411981A (zh) 2015-03-11
CN104411981B (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
EP2872783B1 (fr) Dispositif de ventilation équipé d'un boîtier conforme en volute
EP1138954A1 (fr) Ventilateur centrifuge
WO2016066739A1 (fr) Ventilateur centrifuge avec séparateurs de flux
FR3045741A1 (fr) Pulseur d'aspiration destine a un dispositif de chauffage, ventilation et/ou climatisation d'un vehicule automobile et dispositif de chauffage, ventilation et/ou climatisation
FR3073580A1 (fr) Systeme de mise en mouvement d’air
EP1996818B1 (fr) Helice de ventilateur, en particulier pour vehicules automobiles
WO2013156254A1 (fr) Ventilateur pour automobile a encombrement axial reduit
FR3034175A1 (fr) Module de traitement d'air, notamment pour vehicule automobile
EP1152153B1 (fr) Ventilateur pour véhicule automobile muni d'aubes directrices
FR2859251A1 (fr) Pulseur a haut rendement aeraulique pour appareil de ventilation, de chauffage et/ou de climatisation d'habitacle de vehicule automobile
FR2868813A1 (fr) Organe de propulsion centrifuge d'air pour installation de chauffage, de ventilation et/ou de climatisation d'un habitacle de vehicule notamment
FR3069895A1 (fr) Roue de type centrifuge pour groupe moto-ventilateur
EP1712382B1 (fr) Dispositif de ventilation d'un véhicule automobile comportant des moyens d'atténuation de bruit
FR3066235B1 (fr) Ventilateur centrifuge d'extraction d'air a basse pression.
FR3074237A1 (fr) Groupe moto-ventilateur pour vehicule automobile
FR2781531A1 (fr) Groupe moto-ventilateur a caracteristiques acoustiques ameliorees, notamment pour installation de chauffage-climatisation de vehicule automobile
FR3074236A1 (fr) Groupe moto-ventilateur pour vehicule automobile
EP1728987B1 (fr) Dispositif de refroidissement pour un véhicule automobile et le véhicule automobile correspondant
EP2516865A1 (fr) Helice de ventilateur et buse de ventilateur associee, en particulier pour vehicule automobile
WO2021094680A1 (fr) Dispositif de chauffage, ventilation et/ou climatisation pour vehicule automobile
FR2989730A1 (fr) Ventilateur pour automobile comportant un stator en amont de l'helice
WO2016050304A1 (fr) Ventilateur pour automobile á pales optimisées pour l'acoustique et l'aérodynamique
FR3073909A1 (fr) Volute pour groupe moto-ventilateur
FR3062179A1 (fr) Dispositif de propulsion d'un flux d'air, roue de pulseur d'air, pulseur d'air et installation de chauffage, ventilation et/ou climatisation pour vehicule automobile correspondante
FR3073908A1 (fr) Volute pour groupe moto-ventilateur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13729333

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013729333

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013729333

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015520872

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14414236

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE