WO2014007238A1 - Conductive particles with insulating particles, conductive material, and connection structure - Google Patents

Conductive particles with insulating particles, conductive material, and connection structure Download PDF

Info

Publication number
WO2014007238A1
WO2014007238A1 PCT/JP2013/068116 JP2013068116W WO2014007238A1 WO 2014007238 A1 WO2014007238 A1 WO 2014007238A1 JP 2013068116 W JP2013068116 W JP 2013068116W WO 2014007238 A1 WO2014007238 A1 WO 2014007238A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
conductive
insulating particles
insulating
conductive particles
Prior art date
Application number
PCT/JP2013/068116
Other languages
French (fr)
Japanese (ja)
Inventor
茂雄 真原
沙織 上田
伸也 上野山
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201380032489.4A priority Critical patent/CN104380392B/en
Priority to KR1020147029846A priority patent/KR102095826B1/en
Priority to JP2013535614A priority patent/JP6480661B2/en
Publication of WO2014007238A1 publication Critical patent/WO2014007238A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to conductive particles with insulating particles that can be used for electrical connection between electrodes, for example. Moreover, this invention relates to the electrically-conductive material and connection structure using the said electroconductive particle with an insulating particle.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive materials conductive particles are dispersed in a binder resin.
  • the anisotropic conductive material is used for connection between an IC chip and a flexible printed circuit board, connection between an IC chip and a circuit board having an ITO electrode, and the like. For example, after disposing an anisotropic conductive material between the electrode of the IC chip and the electrode of the circuit board, these electrodes can be electrically connected by heating and pressing.
  • Patent Document 1 includes an insulating particle including a particle having a conductive metal surface and an insulating particle covering the surface of the particle having the conductive metal surface. Conductive particles are disclosed. Patent Document 1 describes that when two or more kinds of insulating particles having different particle diameters are used in combination, small insulating particles enter a gap covered with large insulating particles, thereby improving the coating density. .
  • the conductive metal surface is covered with insulating particles, and therefore, between the vertically adjacent electrodes that should not be connected after the upper and lower conductive connections. Electrical connection can be suppressed. That is, the insulation reliability in the conductively connected connection structure can be improved.
  • the small insulating particles are inserted into the gaps covered with the large insulating particles, thereby increasing the coating density, thereby increasing the insulation reliability. be able to.
  • Patent Document 1 only describes that small insulating particles are allowed to enter a gap covered with large insulating particles.
  • the insulating particles are easily detached from the surface of the conductive particles unintentionally before the conductive connection.
  • the insulating particles may be easily detached from the surface of the conductive particles to expose the surface of the conductive particles. As a result, there is a problem that the insulation reliability is lowered.
  • An object of the present invention is to provide conductive particles with insulating particles that can increase insulation reliability when electrodes are connected, and a conductive material and a connection structure using the conductive particles with insulating particles. It is to be.
  • a limited object of the present invention is to provide conductive particles with insulating particles that are difficult to insulate from the surface of the conductive particles even if an impact is applied before the conductive connection, and the insulating property. It is to provide a conductive material and a connection structure using conductive particles with particles.
  • conductive particles having at least a conductive portion on the surface, a plurality of first insulating particles disposed on the surface of the conductive particles, and on the surface of the conductive particles A plurality of second insulating particles arranged, wherein an average particle diameter of the second insulating particles is smaller than an average particle diameter of the first insulating particles, and the second insulating particles
  • the conductive particles with insulating particles are provided on the surface of the conductive particles so that 50% or more of the total number of the conductive particles does not come into contact with the first insulating particles.
  • the 70% or more of the total number of the second insulating particles is not in contact with the first insulating particles. It is arrange
  • 50% or more of the total number of the second insulating particles does not contact the first insulating particles and It arrange
  • the first insulating particles are attached to the surface of the conductive particles through a chemical bond.
  • the second insulating particles are attached to the surface of the conductive particles through a chemical bond.
  • the first insulating particles and the second insulating particles are respectively disposed on the surfaces of the conductive particles by a hybridization method. It has not been.
  • the conductive particles have protrusions on the outer surface of the conductive part.
  • a conductive material including the conductive particles with insulating particles described above and a binder resin.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member A connecting portion connecting the second connection target member, wherein the connecting portion is formed of the above-described conductive particles with insulating particles, or the conductive particles with insulating particles and a binder resin.
  • a connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles in the conductive particles with insulating particles. Is provided.
  • the conductive particles with insulating particles according to the present invention include conductive particles having at least a conductive portion on the surface, a plurality of first insulating particles disposed on the surface of the conductive particles, and the conductive particles. Second insulating particles disposed on the surface of the first insulating particles, and the average particle size of the second insulating particles is smaller than the average particle size of the first insulating particles. Since 50% or more of the total number of the insulating particles is arranged on the surface of the conductive particles so as not to contact the first insulating particles, the insulating particles according to the present invention are attached. Insulating reliability can be improved when the electrodes are connected using conductive particles.
  • FIG. 1 is a cross-sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing conductive particles with insulating particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing conductive particles with insulating particles according to the third embodiment of the present invention.
  • FIG. 4 is a front cross-sectional view schematically showing a connection structure using the conductive particles with insulating particles shown in FIG.
  • FIG. 5 is a schematic diagram for explaining a method for evaluating the coverage.
  • FIG. 1 is a sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention.
  • the conductive particle 1 includes a conductive particle 2, a plurality of first insulating particles 3, and a plurality of second insulating particles 4.
  • the conductive particles 2 have at least a conductive portion 12 on the surface.
  • the first insulating particles 3 are disposed on the surface of the conductive particles 2.
  • the second insulating particles 4 are disposed on the surface of the conductive particles 2.
  • 50% or more of the total number of the second insulating particles 4 is arranged on the surface of the conductive particles 2 so as not to contact the first insulating particles 3. All of the second insulating particles 4 may be disposed on the surface of the conductive particles 2 so as not to contact the first insulating particles 3. A part of the second insulating particles 4 may be arranged on the surface of the conductive particles 2 so as to be in contact with the first insulating particles 3.
  • the plurality of first insulating particles 3 are in contact with the surface of the conductive particles 2 and are attached to the surface of the conductive particles 2.
  • the plurality of first insulating particles 3 are in contact with the outer surface of the conductive part 12 in the conductive particle 2 and are attached to the outer surface of the conductive part 12.
  • the plurality of second insulating particles 4 are in contact with the surface of the conductive particles 2 and are attached to the surface of the conductive particles 2.
  • the plurality of second insulating particles 4 are in contact with the outer surface of the conductive portion 12 in the conductive particles 2 and are attached to the outer surface of the conductive portion 12.
  • the conductive particles 2 have base material particles 11 and conductive portions 12 arranged on the surface of the base material particles 11.
  • the conductive part 12 is a conductive layer.
  • the conductive part 12 covers the surface of the base particle 11.
  • the conductive particle 2 is a coated particle in which the surface of the base particle 11 is coated with the conductive portion 12.
  • the conductive particle 2 has a conductive portion 12 on the surface.
  • the first insulating particles 3 and the second insulating particles 4 are each formed of an insulating material.
  • the average particle diameter of the second insulating particles 4 is smaller than the average particle diameter of the first insulating particles 3.
  • FIG. 2 is a sectional view showing conductive particles with insulating particles according to the second embodiment of the present invention.
  • 2 includes conductive particles 22, a plurality of first insulating particles 3, and a plurality of second insulating particles 4.
  • the conductive particles 22 have at least a conductive portion 26 on the surface.
  • the first insulating particles 3 are disposed on the surface of the conductive particles 22.
  • the second insulating particles 4 are disposed on the surface of the conductive particles 22.
  • 50% or more of the total number of the second insulating particles 4 is arranged on the surface of the conductive particles 22 so as not to contact the first insulating particles 3.
  • the conductive particles 1 with insulating particles and the conductive particles 21 with insulating particles differ only in the conductive particles 2 and 22.
  • the conductive particle 22 includes the base particle 11 and a conductive portion 26 disposed on the surface of the base particle 11.
  • the conductive particle 22 has a plurality of core substances 27 on the surface of the base particle 11.
  • the conductive portion 26 covers the base particle 11 and the core material 27. By covering the core material 27 with the conductive portion 26, the conductive particles 22 have a plurality of protrusions 28 on the surface.
  • the surface of the conductive portion 26 is raised by the core material 27, and a plurality of protrusions 28 are formed.
  • FIG. 3 is a sectional view showing conductive particles with insulating particles according to the third embodiment of the present invention.
  • 3 includes conductive particles 32, a plurality of first insulating particles 3, and a plurality of second insulating particles 4.
  • the conductive particles 32 have at least a conductive portion 36 on the surface.
  • the first insulating particles 3 are disposed on the surface of the conductive particles 32.
  • the second insulating particles 4 are disposed on the surface of the conductive particles 32.
  • 50% or more of the total number of the second insulating particles 4 is arranged on the surface of the conductive particles 32 so as not to contact the first insulating particles 3.
  • the conductive particles 1 with insulating particles and the conductive particles 31 with insulating particles differ only in the conductive particles 2 and 32.
  • the conductive particle 32 includes the base particle 11 and a conductive portion 36 disposed on the surface of the base particle 11.
  • the conductive particles 22 have a core material 27, but the conductive particles 32 do not have a core material.
  • the conductive portion 36 has a first portion and a second portion that is thicker than the first portion.
  • the conductive particles 32 have a plurality of protrusions 37 on the surface. A portion excluding the plurality of protrusions 37 is the first portion in the conductive portion 36.
  • the plurality of protrusions 37 are the second portion in which the conductive portion 36 is thick.
  • the average particle diameter of the second insulating particles 4 is smaller than the average particle diameter of the first insulating particles 3, and the second insulating particles 4 50% or more of the total number of particles is arranged on the surfaces of the conductive particles 2, 22, and 32 so as not to contact the first insulating particles 3. Since the second insulating particles 4 are not in contact with the first insulating particles 3, the interval between the exposed surfaces of the conductive particles 2 is narrowed. For this reason, when the upper and lower electrodes are electrically connected using the conductive particles 1, 21, 31 with insulating particles, the electrodes adjacent in the lateral direction that should not be connected are electrically connected. Can be suppressed. That is, insulation reliability can be improved.
  • the first insulating particles can be prevented from being detached from the surface of the conductive particles.
  • the first insulating particles are hardly detached from the surface of the conductive particles due to an impact at the time of contact.
  • the first insulating particles are not intended. Since desorption is suppressed, it is possible to suppress electrical connection between adjacent electrodes, and to ensure sufficient insulation reliability.
  • the coverage Z which is an area of, is preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, still more preferably 50% or more, still more preferably 60% or more, and particularly preferably 70%. Above, most preferably 80% or more.
  • the coverage which is the total area of the portions covered with the first insulating particles and the second insulating particles occupying the entire surface area of the conductive particles, is obtained as follows.
  • the conductive particle coverage Z (%) of the conductive particles with insulating particles (attachment rate Z (%)) (Also called).
  • the said coverage is a total area (projected area) of the part coat
  • the coverage ratio is the surface of the conductive particles of the conductive particles with insulating particles in the observation image.
  • the total area of the first and second insulating particles in the circle of the outer peripheral edge portion of the surface of the conductive particles occupying the entire area of the outer peripheral edge circle (the hatched portion in FIG. 5A) (see FIG. 5 (b) shaded portion).
  • the average particle size of the second insulating particles is 9/10 or less of the average particle size of the first insulating particles. Preferably, it is 4/5 or less, more preferably 2/3 or less, and particularly preferably 1/2 or less.
  • the average particle diameter of the second insulating particles is preferably 1/30 or more, more preferably 1/20 or more, and more preferably 1/10 or more of the average particle diameter of the first insulating particles. More preferably.
  • the “average particle diameter” of the first and second insulating particles represents a number average particle diameter.
  • the average particle diameter of the first and second insulating particles can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
  • the second insulating particles may be disposed on the surface of the conductive particles so as to be in contact with the first insulating particles.
  • the number of the second insulating particles arranged on the surface of the conductive particles so as to be in contact with the first insulating particles is large.
  • 10% or more of the total number of the second insulating particles is arranged on the surface of the conductive particles so as to be in contact with the first insulating particles. Preferably it is.
  • the ratio X1 of the number of second insulating particles arranged on the surface of the conductive particles so as to come into contact with the first insulating particles is more preferably 20% or more, and further preferably 30% or more. .
  • the second insulating particles are in contact with the first insulating particles when the first insulating particles are detached during the conductive connection. Insulating particles are also easily detached. As a result, the conduction reliability is further enhanced.
  • the total number of second insulating particles indicates the number of second insulating particles that one conductive particle has.
  • the number of second insulating particles arranged on the surface of the conductive particles so as to be in contact with the first insulating particles is the number of the second insulating particles in contact with the conductive particles. Both the number and the number of second insulating particles not in contact with the conductive particles are included.
  • a method of surface-treating the first insulating particles so that the second insulating particles are easily attached, the first insulation A method of surface-treating the second insulating particles so that the conductive particles are likely to adhere, and the second insulating particles after the second insulating particles are attached to the surface of the first insulating particles
  • a method of attaching the first insulating particles to which the particles adhere to the surface of the conductive particles For example, there may be mentioned a method of attaching the first insulating particles to which the particles adhere to the surface of the conductive particles.
  • 50% or more of the total number of the second insulating particles should not be in contact with the first insulating particles on the surface of the conductive particles. Is arranged.
  • the ratio X2 of the number of the second insulating particles arranged on the surface of the conductive particles so as not to contact the first insulating particles is more preferably more than 50%, still more preferably 55% or more. More preferably, it is 60% or more, still more preferably 65% or more, particularly preferably 70% or more, and most preferably more than 80%.
  • the total number of second insulating particles indicates the number of second insulating particles that one conductive particle has.
  • the number of the second insulating particles arranged on the surface of the conductive particles so as not to contact the first insulating particles is the number of the second insulating particles in contact with the conductive particles. Both the number and the number of second insulating particles not in contact with the conductive particles are included.
  • the ratio X3 of the number of second insulating particles arranged on the surface of the conductive particles so as not to contact the first insulating particles and so as to contact the conductive particles is more preferably 70%. Above, more preferably 75% or more, particularly preferably 80% or more, preferably 100% or less. The ratio of the number may be 99% or less, 95% or less, or 90% or less.
  • the total number of second insulating particles indicates the number of second insulating particles that one conductive particle has.
  • a method of surface-treating the first insulating particles so that the second insulating particles are less likely to adhere, the first insulation A method of surface-treating the second insulating particles so that the conductive particles are less likely to adhere, and the second so that the second insulating particles are more likely to adhere to the conductive particles than the first insulating particles.
  • the average number Y1 is preferably 1 or more, more preferably 2 or more, further preferably 3 or more, particularly preferably 5 or more, most preferably 10 or more, preferably 100 or less, more preferably 50 or less. More preferably, it is 20 or less.
  • the average number Y1 may be less than 10.
  • the average number of the first insulating particles arranged on the surface of the conductive particles per one of the conductive particles is the number of the first insulating particles included in the one conductive particle. Is the average.
  • the second insulating particles arranged on the surface of the conductive particles per one of the conductive particles is preferably 1 or more, more preferably 4 or more, still more preferably 6 or more, particularly preferably 10 or more, most preferably 20 or more, preferably 1000 or less, more preferably 500 or less. More preferably, the number is 100 or less.
  • the average number of the second insulating particles arranged on the surface of the conductive particles per one of the conductive particles is the number of second insulating particles included in the one conductive particle. Is the average.
  • the ratio of the second insulating particles arranged on the surface of the conductive particles to the average number Y2 is preferably 0.001 or more, more preferably 0.00. 005 or more, more preferably 0.05 or more, preferably 1 or less, more preferably 0.5 or less.
  • the ratio (average number Y1 / average number Y2) may exceed 0.5.
  • the number of the first and second insulating particles arranged on the surface of the conductive particles is the number of the first and second insulating particles not in contact with the conductive particles. included.
  • the second insulating particles adhere to the surface of the conductive particles through a chemical bond.
  • the first particles are bonded to the surface of the conductive particles via a chemical bond. It is preferable that the insulating particles adhere. In addition, when the first insulating particles adhere to the surface of the conductive particles through chemical bonds, the insulation reliability of the connection structure is further increased.
  • the conductive particles preferably have protrusions on the outer surface of the conductive part.
  • the insulation reliability tends to decrease as the protrusions increase.
  • the conductive particles with insulating particles according to the present invention since the first and second insulating particles are provided, insulation reliability can be sufficiently ensured even if the protrusions are large.
  • the said electroconductive particle should just have an electroconductive part on the surface at least.
  • the conductive part is preferably a conductive layer.
  • the conductive particles may be base particles and conductive particles having a conductive layer disposed on the surface of the base particles, or may be metal particles whose entirety is a conductive portion.
  • the base particles and the conductive material disposed on the surface of the base particles are used. Conductive particles having a portion are preferred.
  • the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
  • the base particles may be core-shell particles.
  • the said base particle is a base particle except a metal particle, and it is more preferable that it is an inorganic particle or an organic inorganic hybrid particle except a resin particle, a metal particle.
  • the base material particles are preferably resin particles formed of a resin.
  • the conductive particles with insulating particles are compressed by placing the conductive particles with insulating particles between the electrodes and then pressing them.
  • the substrate particles are resin particles, the conductive particles are likely to be deformed during the pressure bonding, and the contact area between the conductive particles and the electrode is increased. For this reason, the conduction
  • the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Alkylene terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polysulfone, polyphenylene Oxide, polyacetal, polyimide, polyamideimide, polyether ether Tons, polyethersulfone, and polymers such as obtained by a variety of polymerizable monomer having an ethylene
  • the resin for forming the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferably a coalescence.
  • the monomer having the ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer. And a polymer.
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; acids such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate Atom
  • crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanurate, tri Lil
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
  • the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal
  • examples of inorganic substances for forming the substrate particles include silica and carbon black.
  • grains formed with the said silica For example, after hydrolyzing the silicon compound which has two or more hydrolysable alkoxysil groups, and forming a crosslinked polymer particle, it calcinates as needed.
  • grains obtained by performing are mentioned.
  • examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the substrate particles are metal particles
  • examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the substrate particles are preferably not metal particles.
  • the metal for forming the conductive part is not particularly limited. Furthermore, in the case where the conductive particles are metal particles that are conductive parts as a whole, the metal for forming the metal particles is not particularly limited. Examples of the metal include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, silicon, and these. And the like. Examples of the metal include tin-doped indium oxide (ITO) and solder. Especially, since the connection resistance between electrodes becomes still lower, an alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is preferable.
  • the melting point of the conductive part is preferably 300 ° C. or higher, more preferably 450 ° C. or higher.
  • the conductive part may be a conductive part that is not solder.
  • hydroxyl groups are present on the surface of the conductive part due to oxidation.
  • a hydroxyl group exists on the surface of a conductive portion formed of nickel by oxidation.
  • the first insulating particles can be attached to the surface of the conductive part having such a hydroxyl group (the surface of the conductive particles) through a chemical bond.
  • the second insulating particles can be attached to the surface of the conductive portion having such a hydroxyl group (the surface of the conductive particles) through a chemical bond.
  • the conductive layer may be formed of a single layer.
  • the conductive layer may be formed of a plurality of layers. That is, the conductive layer may have a stacked structure of two or more layers.
  • the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer, or an alloy layer containing tin and silver, and is a gold layer. Is more preferable.
  • the outermost layer is these preferred conductive layers, the connection resistance between the electrodes is further reduced.
  • the outermost layer is a gold layer, the corrosion resistance is further enhanced.
  • the method for forming the conductive layer on the surface of the substrate particles is not particularly limited.
  • a method for forming the conductive layer for example, a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating the surface of base particles with metal powder or a paste containing metal powder and a binder Etc.
  • the method by electroless plating is preferable.
  • the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
  • the average particle diameter of the conductive particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the contact area between the conductive particles and the electrodes is sufficiently large when the electrodes are connected using the conductive particles with insulating particles. And it becomes difficult to form aggregated conductive particles when the conductive layer is formed. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base material particles.
  • the “average particle size” of the conductive particles indicates a number average particle size.
  • the average particle diameter of the conductive particles can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
  • the thickness of the conductive layer is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.3 ⁇ m or less.
  • the thickness of the conductive layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed when connecting the electrodes. .
  • the thickness of the outermost conductive layer is preferably 0.001 ⁇ m or more, more preferably the thickness of the gold layer when the outermost layer is a gold layer. It is 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably 0.1 ⁇ m or less.
  • the thickness of the outermost conductive layer is not less than the above lower limit and not more than the above upper limit, the coating with the outermost conductive layer becomes uniform, corrosion resistance is sufficiently high, and the connection resistance between the electrodes is sufficiently high. Lower. Further, the thinner the gold layer when the outermost layer is a gold layer, the lower the cost.
  • the thickness of the conductive layer can be measured by observing the cross section of the conductive particles or the conductive particles with insulating particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the conductive particles preferably have protrusions on the outer surface of the conductive part, and the protrusions are preferably plural.
  • An oxide film is often formed on the surface of the electrode connected by the conductive particles with insulating particles.
  • the oxide film is effectively applied by the protrusions by placing conductive particles with insulating particles between the electrodes and pressing them. Can be eliminated. For this reason, an electrode and an electroconductive part contact more reliably and the connection resistance between electrodes becomes still lower.
  • the insulating particles between the conductive particles and the electrodes can be effectively eliminated by the protrusions of the conductive particles. For this reason, the conduction
  • the core substance is added to the dispersion of the base particle, and the core substance is accumulated on the base particle surface by, for example, van der Waals force.
  • a method of adding a core substance to a container containing base particles and causing the core substance to adhere to the surface of the base particles by mechanical action such as rotation of the container is preferable.
  • the conductive particles may have a first conductive layer on the surface of the base particle, and may have a second conductive layer on the first conductive layer.
  • a core substance may be attached to the surface of the first conductive layer.
  • the core substance is preferably covered with a second conductive layer.
  • the thickness of the first conductive layer is preferably 0.05 ⁇ m or more, and preferably 0.5 ⁇ m or less.
  • the conductive particles form a first conductive layer on the surface of the base particle, and then a core material is deposited on the surface of the first conductive layer, and then the first conductive layer and the core material are formed. It is preferably obtained by forming a second conductive layer on the surface.
  • the material constituting the core material there may be mentioned a conductive material and a non-conductive material.
  • the conductive material include conductive non-metals such as metals, metal oxides, and graphite, and conductive polymers.
  • the conductive polymer include polyacetylene.
  • the nonconductive material include silica, alumina, and zirconia. Among them, metal is preferable because of high conductivity.
  • the metal examples include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead.
  • examples thereof include alloys composed of two or more metals such as alloys, tin-copper alloys, tin-silver alloys, tin-lead-silver alloys, and tungsten carbide. Of these, nickel, copper, silver or gold is preferable.
  • the metal constituting the core substance may be the same as or different from the metal constituting the conductive part (conductive layer).
  • the shape of the core substance is not particularly limited.
  • the shape of the core substance is preferably a lump.
  • Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
  • the average diameter (average particle diameter) of the core substance is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the connection resistance between the electrodes is effectively reduced.
  • the “average diameter (average particle diameter)” of the core substance indicates a number average diameter (number average particle diameter).
  • the average diameter of the core material is obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope and calculating an average value.
  • the number of the protrusions per conductive particle is preferably 3 or more, more preferably 5 or more.
  • the upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle diameter of the conductive particles.
  • the average particle diameter of the second insulating particles is preferably 0.7 times or more, more preferably 1 time the average height of the protrusions. Above, preferably 5 times or less, more preferably 3 times or less.
  • the average height of the protrusions indicates the average value of the heights of the plurality of protrusions, and the height of the protrusions is on a line (dashed line L1 shown in FIG. 2) connecting the center of the conductive particles and the tips of the protrusions. Shows the distance from the imaginary line (broken line L2 shown in FIG. 2) of the conductive layer (on the outer surface of the spherical conductive particles assuming no protrusion) to the tip of the protrusion when it is assumed that there is no protrusion. . That is, in FIG. 2, the distance from the intersection of the broken line L1 and the broken line L2 to the tip of the protrusion is shown.
  • the first and second insulating particles are particles having insulating properties. Each of the first and second insulating particles is smaller than the conductive particles.
  • the first and second insulating particles can prevent a short circuit between adjacent electrodes. Specifically, when the conductive particles with a plurality of insulating particles come into contact with each other, the first and second insulating particles exist between the conductive particles in the conductive particles with a plurality of insulating particles. It is possible to prevent a short circuit between electrodes adjacent in the horizontal direction, not between the upper and lower electrodes.
  • the first and second insulating particles between the conductive portion and the electrode can be easily removed by pressurizing the conductive particles with insulating particles with two electrodes. .
  • protrusions are provided on the surface of the conductive particles, the first and second insulating particles between the conductive portion and the electrode can be more easily eliminated.
  • Examples of the material constituting the first and second insulating particles include an insulating resin and an insulating inorganic substance.
  • As said insulating resin the said resin quoted as resin for forming the resin particle which can be used as a base particle is mentioned.
  • As said insulating inorganic substance the said inorganic substance quoted as an inorganic substance for forming the inorganic particle which can be used as a base particle is mentioned.
  • the insulating resin that is the material of the first and second insulating particles include polyolefins, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, and thermoplastics. Examples include cross-linked resins, thermosetting resins, and water-soluble resins.
  • thermoplastic resin examples include vinyl polymers and vinyl copolymers.
  • thermosetting resin an epoxy resin, a phenol resin, a melamine resin, etc.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose. Of these, water-soluble resins are preferable, and polyvinyl alcohol is more preferable.
  • each of the first and second insulating particles is preferably an inorganic particle, and is preferably a silica particle. It is preferable.
  • examples of the inorganic particles include shirasu particles, hydroxyapatite particles, magnesia particles, zirconium oxide particles, and silica particles.
  • examples of the silica particles include pulverized silica and spherical silica. Spherical silica is preferably used.
  • the silica particles preferably have a functional group capable of chemical bonding such as a carboxyl group and a hydroxyl group on the surface, and more preferably have a hydroxyl group.
  • Inorganic particles are relatively hard, especially silica particles are relatively hard.
  • the surface of the conductive particles has a hard insulating property. There is a tendency for particles to be easily detached.
  • the conductive particles with insulating particles according to the present invention are used, the first insulating particles are removed during the kneading even if the hard first insulating particles are used. Even if they are separated, insulation reliability can be ensured as a result of the second insulating particles remaining.
  • the second insulating particles adhere to the surface of the first insulating particles through a chemical bond. It is preferable that the first insulating particles are attached to the surface of the conductive particles through a chemical bond.
  • This chemical bond includes a covalent bond, a hydrogen bond, an ionic bond, a coordination bond, and the like. Of these, a covalent bond is preferable, and a chemical bond using a reactive functional group is preferable.
  • Examples of the reactive functional group that forms the chemical bond include a vinyl group, (meth) acryloyl group, silane group, silanol group, carboxyl group, amino group, ammonium group, nitro group, hydroxyl group, carbonyl group, thiol group, Examples thereof include a sulfonic acid group, a sulfonium group, a boric acid group, an oxazoline group, a pyrrolidone group, a phosphoric acid group, and a nitrile group.
  • a vinyl group and a (meth) acryloyl group are preferable.
  • the insulating particles having a reactive functional group on the surface as the first insulating particles are preferably used.
  • the first insulating particles were subjected to a surface treatment using a compound having a reactive functional group. It is preferable to use the first insulating particles.
  • Examples of the reactive functional group that can be introduced on the surfaces of the first and second insulating particles include a (meth) acryloyl group, a glycidyl group, a hydroxyl group, a vinyl group, and an amino group.
  • the reactive functional group on the surface of the first and second insulating particles is at least one kind of reactivity selected from the group consisting of (meth) acryloyl group, glycidyl group, hydroxyl group, vinyl group and amino group. It is preferably a functional group.
  • Examples of the compound (surface treatment substance) for introducing the reactive functional group include a compound having a (meth) acryloyl group, a compound having an epoxy group, a compound having a vinyl group, and the like.
  • Examples of the compound (surface treatment substance) for introducing a vinyl group include a silane compound having a vinyl group, a titanium compound having a vinyl group, and a phosphate compound having a vinyl group.
  • the surface treatment substance is preferably a silane compound having a vinyl group.
  • Examples of the silane compound having a vinyl group include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and vinyltriisopropoxysilane.
  • a compound (surface treatment substance) for introducing a (meth) acryloyl group a silane compound having a (meth) acryloyl group, a titanium compound having a (meth) acryloyl group, and a phosphoric acid having a (meth) acryloyl group Compounds and the like.
  • the surface treatment substance is also preferably a silane compound having a (meth) acryloyl group.
  • silane compound having a (meth) acryloyl group examples include (meth) acryloxypropyltriethoxysilane, (meth) acryloxypropyltrimethoxysilane, (meth) acryloxypropyltridimethoxysilane, and the like.
  • Examples of the method for attaching the first and second insulating particles to the surfaces of the conductive particles and the conductive part include a chemical method and a physical or mechanical method.
  • Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method.
  • Examples of the physical or mechanical method include a spray drying method, a hybridization method, an electrostatic adhesion method, a spray method, a dipping method, and a vacuum deposition method.
  • the method of arranging the first and second insulating particles is a method other than the hybridization method.
  • the first insulating particles are not arranged on the surface of the conductive particles by the hybridization method.
  • the second insulating particles are preferably not arranged on the surface of the conductive particles by the hybridization method. Since the first insulating particles are more difficult to desorb, a method of arranging the first insulating particles on the surface of the conductive particles through a chemical bond is preferable. Since the second insulating particles are more difficult to desorb, a method of arranging the second insulating particles on the surface of the conductive particles through a chemical bond is preferable.
  • the conductive particles are put in 3 L of a solvent such as water, and the first and second insulating particles are gradually added while stirring. After sufficiently stirring, the conductive particles with insulating particles are separated and dried by a vacuum dryer or the like to obtain conductive particles with insulating particles.
  • a solvent such as water
  • the conductive part preferably has a reactive functional group capable of reacting with the first insulating particles on the surface.
  • the first insulating particles preferably have a reactive functional group capable of reacting with the conductive part on the surface. By introducing a chemical bond with these reactive functional groups, it becomes difficult for the first insulating particles to be unintentionally detached from the surface of the conductive particles. In addition, the insulation reliability and the insulation reliability against impact are further enhanced.
  • the conductive part has a reactive functional group capable of reacting with the second insulating particles on the surface.
  • the second insulating particles have a reactive functional group capable of reacting with the conductive portion on the surface. By introducing a chemical bond with these reactive functional groups, it becomes difficult for the second insulating particles to be unintentionally detached from the surface of the conductive particles. In addition, the insulation reliability and the insulation reliability against impact are further enhanced.
  • the reactive functional group an appropriate group is selected in consideration of reactivity.
  • the reactive functional group include a hydroxyl group, a vinyl group, and an amino group. Since the reactivity is excellent, the reactive functional group is preferably a hydroxyl group.
  • the conductive particles preferably have a hydroxyl group on the surface.
  • the conductive part preferably has a hydroxyl group on the surface.
  • the insulating particles preferably have a hydroxyl group on the surface.
  • the adhesion between the first and second insulating particles and the conductive particles is appropriately increased by the dehydration reaction.
  • Examples of the compound having a hydroxyl group include a P—OH group-containing compound and a Si—OH group-containing compound.
  • Examples of the compound having a hydroxyl group for introducing a hydroxyl group on the surface of the insulating particles include a P—OH group-containing compound and a Si—OH group-containing compound.
  • P—OH group-containing compound examples include acid phosphooxyethyl methacrylate, acid phosphooxypropyl methacrylate, acid phosphooxypolyoxyethylene glycol monomethacrylate, and acid phosphooxypolyoxypropylene glycol monomethacrylate. Only one type of P—OH group-containing compound may be used, or two or more types may be used in combination.
  • Si—OH group-containing compound examples include vinyltrihydroxysilane and 3-methacryloxypropyltrihydroxysilane.
  • said Si-OH group containing compound only 1 type may be used and 2 or more types may be used together.
  • insulating particles having a hydroxyl group on the surface can be obtained by a treatment using a silane coupling agent.
  • silane coupling agent include hydroxytrimethoxysilane.
  • the conductive material according to the present invention includes the conductive particles with insulating particles according to the present invention and a binder resin.
  • the conductive particles with insulating particles according to the present invention are dispersed in the binder resin, the first and second insulating particles are hardly detached from the surface of the conductive particles.
  • the conductive particles with insulating particles according to the present invention are preferably dispersed in a binder resin and used as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the binder resin is not particularly limited. In general, an insulating resin is used as the binder resin.
  • the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said binder resin, only 1 type may be used and 2 or more types may be used together.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
  • examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin.
  • examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, and heat stability.
  • Various additives such as an agent, a light stabilizer, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
  • the method for dispersing the conductive particles with insulating particles in the binder resin is not particularly limited, and a conventionally known dispersion method can be used.
  • Examples of a method for dispersing conductive particles with insulating particles in a binder resin include, for example, a method in which conductive particles with insulating particles are added to a binder resin and then kneaded and dispersed with a planetary mixer or the like.
  • Conductive particles with particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, then added to the binder resin, kneaded and dispersed with a planetary mixer, etc., and the binder resin is water or organic Examples include a method of adding conductive particles with insulating particles after diluting with a solvent or the like, and kneading and dispersing with a planetary mixer or the like.
  • the conductive material according to the present invention can be used as a conductive paste and a conductive film.
  • the conductive material according to the present invention is a conductive film
  • a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the conductive material according to the present invention is preferably a conductive paste.
  • the conductive paste is excellent in handleability and circuit fillability. Although a relatively large force is applied to the conductive particles with insulating particles when obtaining the conductive paste, the insulating particles are detached from the surface of the conductive particles due to the presence of the second insulating particles. Can be suppressed.
  • the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably 99.% or more. It is 99 weight% or less, More preferably, it is 99.9 weight% or less.
  • the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles with insulating particles are efficiently arranged between the electrodes, and the conduction reliability of the connection target member connected by the conductive material is further increased. Get higher.
  • the content of the conductive particles with insulating particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 40% by weight or less, more preferably 20%. % By weight or less, more preferably 15% by weight or less.
  • the content of the conductive particles with insulating particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.
  • connection structure By using the conductive particles with insulating particles described above, or by using a conductive material including the conductive particles with insulating particles and a binder resin, a connection structure can be obtained by connecting the connection target members. it can.
  • the connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first connection target member and the second connection target member, and the connection portion.
  • the first connection target member preferably has a first electrode on the surface.
  • the second connection object member preferably has a second electrode on the surface. It is preferable that the first electrode and the second electrode are electrically connected by the conductive particles in the conductive particles with insulating particles.
  • the connection portion itself is formed of conductive particles with insulating particles. That is, the first and second connection target members are electrically connected by the conductive particles in the conductive particles with insulating particles.
  • FIG. 4 is a cross-sectional view schematically showing a connection structure using the conductive particles 1 with insulating particles shown in FIG.
  • the connection structure 81 shown in FIG. 4 is a connection that connects the first connection target member 82, the second connection target member 83, and the first connection target member 82 and the second connection target member 83.
  • the connecting portion 84 is formed of a conductive material including the conductive particles 1 with insulating particles and a binder resin.
  • the conductive particles 1 with insulating particles are schematically shown for convenience of illustration. Instead of the conductive particles 1 with insulating particles, conductive particles 21 and 31 with insulating particles may be used.
  • the first connection target member 82 has a plurality of first electrodes 82a on the surface (upper surface).
  • the second connection target member 83 has a plurality of second electrodes 83a on the surface (lower surface).
  • the 1st electrode 82a and the 2nd electrode 83a are electrically connected by the electroconductive particle 2 in the electroconductive particle 1 with one or some insulating particle. Therefore, the first and second connection target members 82 and 83 are electrically connected by the conductive particles 2 in the conductive particles 1 with insulating particles.
  • the manufacturing method of the connection structure is not particularly limited.
  • a method of manufacturing a connection structure a method of placing the conductive material between a first connection target member and a second connection target member to obtain a laminate, and then heating and pressurizing the laminate Etc.
  • the pressurizing pressure is about 9.8 ⁇ 10 4 to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is about 120 to 220 ° C.
  • the first and second insulating particles 3 and 4 existing between the conductive particles 2 and the first and second electrodes 82a and 83a can be eliminated.
  • the first and second insulating particles 3 and 4 existing between the conductive particles 2 and the first and second electrodes 82a and 83a are melted. Or the surface of the conductive particles 2 is partially exposed.
  • some of the first and second insulating particles 3 and 4 are detached from the surface of the conductive particles 2 and the conductive particles.
  • the surface of 2 may be partially exposed. The portion where the surface of the conductive particle 2 is exposed contacts the first and second electrodes 82a and 83a, so that the first and second electrodes 82a and 83a are electrically connected through the conductive particle 2. it can.
  • connection target member examples include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as printed boards, flexible printed boards, glass epoxy boards, and glass boards.
  • the conductive material is in a paste form, and is preferably applied on the connection target member in a paste state.
  • the conductive particles with insulating particles and the conductive material are preferably used for connection of a connection target member that is an electronic component.
  • the connection target member is preferably an electronic component.
  • the conductive particles with insulating particles are preferably used for electrical connection of electrodes in an electronic component.
  • the conductive particles with insulating particles according to the present invention are particularly suitable for COG having a glass substrate and a semiconductor chip as connection target members, or FOG having a glass substrate and a flexible printed circuit board (FPC) as connection target members. Is done.
  • the conductive particles with insulating particles according to the present invention may be used for COG or FOG.
  • the first and second connection target members are preferably a glass substrate and a semiconductor chip, or a glass substrate and a flexible printed board.
  • the first and second connection target members may be a glass substrate and a semiconductor chip, or may be a glass substrate and a flexible printed board.
  • bumps are provided on a semiconductor chip used in a COG having a glass substrate and a semiconductor chip as connection target members.
  • the bump size is preferably an electrode area of 1000 ⁇ m 2 or more and 10,000 ⁇ m 2 or less.
  • the electrode space in the semiconductor chip provided with the bump (electrode) is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and still more preferably 10 ⁇ m or less.
  • the conductive particles with insulating particles according to the present invention are preferably used.
  • the electrode space is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode.
  • the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
  • Example 1 Electroless plating pretreatment process
  • resin particles Average particle size 3 ⁇ m formed from a copolymer resin of tetramethylolmethanetetraacrylate and divinylbenzene, alkali degreasing with sodium hydroxide aqueous solution, acid neutralization, and sensitizing in tin dichloride solution are performed. It was.
  • the resin particles were treated with an ion adsorbent for 5 minutes and then added to an aqueous palladium sulfate solution. Thereafter, dimethylamine borane was added for reduction treatment, filtration, and washing to obtain resin particles to which palladium was attached.
  • a nickel plating solution containing 10% by weight of nickel sulfate, 10% by weight of sodium hypophosphite, 4% by weight of sodium hydroxide and 20% by weight of sodium succinate was prepared.
  • the slurry adjusted to pH 5 was heated to 80 ° C., and then the nickel plating solution was continuously added dropwise to the slurry and stirred for 20 minutes to advance the plating reaction. After confirming that hydrogen was no longer generated, the plating reaction was completed.
  • a late nickel plating solution containing 20% by weight of nickel sulfate, 5% by weight of dimethylamine borane and 5% by weight of sodium hydroxide was prepared.
  • the late nickel plating solution was continuously added dropwise to the solution that had undergone the plating reaction with the previous nickel plating solution, and the plating reaction was allowed to proceed by stirring for 1 hour. In this way, a nickel layer was formed on the surface of the resin particles, and conductive particles A were obtained.
  • the nickel layer had a thickness of 0.1 ⁇ m.
  • Distilled water was added to the monomer composition so that the solid content was 10% by weight, and the mixture was stirred at 150 rpm and polymerized at 60 ° C. for 24 hours in a nitrogen atmosphere. After completion of the reaction, the mixture was freeze-dried to obtain first insulating particles (average particle diameter 400 nm) having P—OH groups derived from acid phosphooxypolyoxyethylene glycol methacrylate on the surface.
  • second insulating particles (average particle size 180 nm) were obtained in the same manner except that the stirring speed was changed to 300 rpm and the polymerization temperature was changed to 80 ° C.
  • the insulating particles obtained above were each dispersed in distilled water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
  • 10 g of the obtained conductive particles A were dispersed in 500 mL of distilled water, 3 g of an aqueous dispersion of first insulating particles was added, and the mixture was stirred at room temperature for 3 hours. Further, 2 g of an aqueous dispersion of second insulating particles was added and stirred at room temperature for 3 hours. After filtration through a 3 ⁇ m mesh filter, the product was further washed with methanol and dried to obtain conductive particles with insulating particles.
  • the conductive particles with insulating particles had a coating layer of insulating particles formed on the surface of the conductive particles having protrusions.
  • Example 2 to 4 and Comparative Examples 1 to 3 Conductive particles with insulating particles were obtained in the same manner as in Example 1 except that the addition amount of the aqueous dispersion of the first and second insulating particles was changed as shown in Table 1 below.
  • Coverage ratio Z which is the total area of the portions covered with the first and second insulating particles in the entire surface area of the conductive particles
  • the coverage which is the total projected area of the portions covered with the first and second insulating particles occupying the entire surface area of the conductive particles, was determined.
  • the average value of the 20 coverages was defined as the coverage Z.
  • the second insulating material disposed on the surface of the conductive particles so as not to contact the first insulating particles out of the total number of the second insulating particles.
  • the ratio X2 (%) of the number of the functional particles was determined.
  • the number ratio X2 was determined according to the following criteria.
  • the surface of the conductive particles so as not to contact the first insulating particles and to contact the conductive particles out of the total number of the second insulating particles.
  • the ratio X3 (%) of the number of the second insulating particles arranged above was determined.
  • the number ratio X3 was determined according to the following criteria.
  • the average number Y1 of the first insulating particles arranged on the surface of the conductive particles per conductive particle was determined.
  • the average number Y1 was determined according to the following criteria.
  • the average number Y2 of second insulating particles arranged on the surface of the conductive particles per conductive particle was determined.
  • the average number Y2 was determined according to the following criteria.
  • the average number Y1 of the first insulating particles arranged on the surface of the conductive particles per conductive particle is arranged on the surface of the conductive particles per conductive particle.
  • Ratio of the second insulating particles to the average number Y2 (average number Y1 / average number Y2)
  • the ratio (average number Y1 / average number Y2) to the average number Y2 of the second insulating particles arranged on the surface of the conductive particles was determined.
  • the ratio (average number Y1 / average number Y2) was determined according to the following criteria.
  • Ratio (average number Y1 / average number Y2) ratio is 0.005 or more and 0.5 or less
  • C Ratio The ratio of (average number Y1 / average number Y2) exceeds 1.
  • a transparent glass substrate on which an ITO electrode pattern with L / S of 30 ⁇ m / 30 ⁇ m was formed was prepared. Further, a semiconductor chip was prepared in which a copper electrode pattern having L / S of 30 ⁇ m / 30 ⁇ m was formed on the lower surface.
  • the obtained anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other.
  • a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 1 MPa is applied to form the anisotropic conductive paste layer. It hardened
  • the conductivity was determined according to the following criteria.
  • The ratio of the number of connection structures having a resistance value of 5 ⁇ or less is 80% or more.
  • The ratio of the number of connection structures having a resistance value of 5 ⁇ or less is 60% or more and less than 80%.
  • X The resistance value is 5 ⁇ or less. Less than 60% of the number of connection structures
  • Insulation between adjacent electrodes in the horizontal direction
  • conductivity evaluation the presence or absence of leakage between adjacent electrodes was evaluated by measuring resistance with a tester. Insulation was judged according to the following criteria.
  • The ratio of the number of connection structures having a resistance value of 10 8 ⁇ or more is 90% or more.
  • The ratio of the number of connection structures having a resistance value of 10 8 ⁇ or more is 80% or more and less than 90%.
  • the ratio of the number of connection structures having a value of 10 8 ⁇ or more is 60% or more and less than 80%.
  • X The ratio of the number of connection structures having a resistance value of 10 8 ⁇ or more is less than 60%. Show.

Abstract

Provided are conductive particles with insulating particles, which are capable of increasing insulation reliability in cases where electrodes are connected with each other using the conductive particles with insulating particles. Each conductive particle (1) with insulating particles according to the present invention is provided with: a conductive particle (2) that has a conducive part (12) at least on the surface; a plurality of first insulating particles (3) that are arranged on the surface of the conductive particle (2); and a plurality of second insulating particles (4) that are arranged on the surface of the conductive particle (2). The average particle diameter of the second insulating particles (4) is smaller than the average particle diameter of the first insulating particles (3). Not less than 50% of all the second insulating particles (4) are arranged on the surface of the conductive particle (2) so as not to be in contact with the first insulating particles (3).

Description

絶縁性粒子付き導電性粒子、導電材料及び接続構造体Conductive particles with insulating particles, conductive material, and connection structure
 本発明は、例えば、電極間の電気的な接続に用いることができる絶縁性粒子付き導電性粒子に関する。また、本発明は、上記絶縁性粒子付き導電性粒子を用いた導電材料及び接続構造体に関する。 The present invention relates to conductive particles with insulating particles that can be used for electrical connection between electrodes, for example. Moreover, this invention relates to the electrically-conductive material and connection structure using the said electroconductive particle with an insulating particle.
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。これらの異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。 Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known. In these anisotropic conductive materials, conductive particles are dispersed in a binder resin.
 上記異方性導電材料は、ICチップとフレキシブルプリント回路基板との接続、及びICチップとITO電極を有する回路基板との接続等に使用されている。例えば、ICチップの電極と回路基板の電極との間に異方性導電材料を配置した後、加熱及び加圧することにより、これらの電極を電気的に接続できる。 The anisotropic conductive material is used for connection between an IC chip and a flexible printed circuit board, connection between an IC chip and a circuit board having an ITO electrode, and the like. For example, after disposing an anisotropic conductive material between the electrode of the IC chip and the electrode of the circuit board, these electrodes can be electrically connected by heating and pressing.
 上記導電性粒子の一例として、下記の特許文献1には、導電性の金属表面を有する粒子と、上記導電性の金属表面を有する粒子の表面を被覆する絶縁性粒子とを備える絶縁性粒子付き導電性粒子が開示されている。特許文献1では、粒子径の異なる2種以上の絶縁性粒子を併用することで、大きな絶縁性粒子により被覆された隙間に小さな絶縁性粒子が入り込み、被覆密度が向上することが記載されている。 As an example of the conductive particle, Patent Document 1 below includes an insulating particle including a particle having a conductive metal surface and an insulating particle covering the surface of the particle having the conductive metal surface. Conductive particles are disclosed. Patent Document 1 describes that when two or more kinds of insulating particles having different particle diameters are used in combination, small insulating particles enter a gap covered with large insulating particles, thereby improving the coating density. .
特開2005-44773号公報JP 2005-44773 A
 特許文献1に記載の絶縁性粒子付き導電性粒子では、導電性の金属表面が絶縁性粒子により被覆されているため、上下の導電接続後に、接続されてはならない横方向に隣接する電極間の電気的な接続を抑えることができる。すなわち、導電接続された接続構造体における絶縁信頼性を高めることができる。また、粒子径の異なる2種以上の絶縁性粒子を併用して、大きな絶縁性粒子により被覆された隙間に小さな絶縁性粒子を入り込ませることで、被覆密度が高くなる結果、絶縁信頼性を高めることができる。但し、特許文献1では、小さな絶縁性粒子を、大きな絶縁性粒子により被覆された隙間に入り込ませることが記載されているにすぎない。 In the conductive particles with insulating particles described in Patent Document 1, the conductive metal surface is covered with insulating particles, and therefore, between the vertically adjacent electrodes that should not be connected after the upper and lower conductive connections. Electrical connection can be suppressed. That is, the insulation reliability in the conductively connected connection structure can be improved. In addition, by using two or more kinds of insulating particles having different particle diameters in combination, the small insulating particles are inserted into the gaps covered with the large insulating particles, thereby increasing the coating density, thereby increasing the insulation reliability. be able to. However, Patent Document 1 only describes that small insulating particles are allowed to enter a gap covered with large insulating particles.
 一方で、近年、電子部品の小型化が進行している。このため、電子部品における導電性粒子により接続される配線において、配線が形成されたライン(L)の幅と、配線が形成されていないスペース(S)の幅とを示すL/Sが小さくなってきている。このような微細な配線が形成されている場合に、従来の絶縁性粒子付き導電性粒子を用いて導電接続を行うと、絶縁信頼性を充分に確保することが困難である。 On the other hand, in recent years, electronic components have been downsized. For this reason, in the wiring connected by the conductive particles in the electronic component, L / S indicating the width of the line (L) in which the wiring is formed and the width of the space (S) in which no wiring is formed is reduced. It is coming. When such fine wiring is formed, if conductive connection is performed using conventional conductive particles with insulating particles, it is difficult to ensure sufficient insulation reliability.
 また、従来の絶縁性粒子付き導電性粒子では、導電接続前に、導電性粒子の表面から絶縁性粒子が意図せずに脱離しやすい。例えば、絶縁性粒子付き導電性粒子をバインダー樹脂中に分散させる際に、導電性粒子の表面から、絶縁性粒子が容易に脱離して、導電性粒子の表面が露出することがある。この結果、絶縁信頼性が低くなるという問題がある。 Moreover, in the conventional conductive particles with insulating particles, the insulating particles are easily detached from the surface of the conductive particles unintentionally before the conductive connection. For example, when the conductive particles with insulating particles are dispersed in the binder resin, the insulating particles may be easily detached from the surface of the conductive particles to expose the surface of the conductive particles. As a result, there is a problem that the insulation reliability is lowered.
 本発明の目的は、電極間を接続した場合に、絶縁信頼性を高めることができる絶縁性粒子付き導電性粒子、並びに該絶縁性粒子付き導電性粒子を用いた導電材料及び接続構造体を提供することである。 An object of the present invention is to provide conductive particles with insulating particles that can increase insulation reliability when electrodes are connected, and a conductive material and a connection structure using the conductive particles with insulating particles. It is to be.
 本発明の限定的な目的は、導電接続前などに衝撃が付与されても、導電性粒子の表面から絶縁性粒子が意図せずに脱離し難い絶縁性粒子付き導電性粒子、並びに該絶縁性粒子付き導電性粒子を用いた導電材料及び接続構造体を提供することである。 A limited object of the present invention is to provide conductive particles with insulating particles that are difficult to insulate from the surface of the conductive particles even if an impact is applied before the conductive connection, and the insulating property. It is to provide a conductive material and a connection structure using conductive particles with particles.
 本発明の広い局面によれば、導電部を少なくとも表面に有する導電性粒子と、前記導電性粒子の表面上に配置された複数の第1の絶縁性粒子と、前記導電性粒子の表面上に配置された複数の第2の絶縁性粒子とを備え、前記第2の絶縁性粒子の平均粒子径が、前記第1の絶縁性粒子の平均粒子径よりも小さく、前記第2の絶縁性粒子の全個数の内の50%以上が、前記第1の絶縁性粒子に接触しないように、前記導電性粒子の表面上に配置されている、絶縁性粒子付き導電性粒子が提供される。 According to a wide aspect of the present invention, conductive particles having at least a conductive portion on the surface, a plurality of first insulating particles disposed on the surface of the conductive particles, and on the surface of the conductive particles A plurality of second insulating particles arranged, wherein an average particle diameter of the second insulating particles is smaller than an average particle diameter of the first insulating particles, and the second insulating particles The conductive particles with insulating particles are provided on the surface of the conductive particles so that 50% or more of the total number of the conductive particles does not come into contact with the first insulating particles.
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記第2の絶縁性粒子の全個数の内の70%以上が、前記第1の絶縁性粒子に接触しないように、前記導電性粒子の表面上に配置されている。 In a specific aspect of the conductive particles with insulating particles according to the present invention, the 70% or more of the total number of the second insulating particles is not in contact with the first insulating particles. It is arrange | positioned on the surface of electroconductive particle.
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記第2の絶縁性粒子の全個数の内の50%以上が、前記第1の絶縁性粒子に接触しないようにかつ前記導電性粒子に接触するように、前記導電性粒子の表面上に配置されている。 In a specific aspect of the conductive particles with insulating particles according to the present invention, 50% or more of the total number of the second insulating particles does not contact the first insulating particles and It arrange | positions on the surface of the said electroconductive particle so that an electroconductive particle may be contacted.
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記導電性粒子の表面に、化学結合を介して、前記第1の絶縁性粒子が付着している。 In a specific aspect of the conductive particles with insulating particles according to the present invention, the first insulating particles are attached to the surface of the conductive particles through a chemical bond.
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記導電性粒子の表面に、化学結合を介して、前記第2の絶縁性粒子が付着している。 In a specific aspect of the conductive particles with insulating particles according to the present invention, the second insulating particles are attached to the surface of the conductive particles through a chemical bond.
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記第1の絶縁性粒子及び前記第2の絶縁性粒子がそれぞれ、前記導電性粒子の表面上に、ハイブリダイゼーション法により配置されていない。 In a specific aspect of the conductive particles with insulating particles according to the present invention, the first insulating particles and the second insulating particles are respectively disposed on the surfaces of the conductive particles by a hybridization method. It has not been.
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記導電性粒子が、前記導電部の外表面に突起を有する。 In a specific aspect of the conductive particles with insulating particles according to the present invention, the conductive particles have protrusions on the outer surface of the conductive part.
 本発明の広い局面によれば、上述した絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。 According to a wide aspect of the present invention, there is provided a conductive material including the conductive particles with insulating particles described above and a binder resin.
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材を接続している接続部とを備え、前記接続部が、上述した絶縁性粒子付き導電性粒子により形成されているか、又は前記絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料により形成されており、前記第1の電極と前記第2の電極とが、前記絶縁性粒子付き導電性粒子における前記導電性粒子により電気的に接続されている、接続構造体が提供される。 According to a wide aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, A connecting portion connecting the second connection target member, wherein the connecting portion is formed of the above-described conductive particles with insulating particles, or the conductive particles with insulating particles and a binder resin. A connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles in the conductive particles with insulating particles. Is provided.
 本発明に係る絶縁性粒子付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、上記導電性粒子の表面上に配置された複数の第1の絶縁性粒子と、上記導電性粒子の表面上に配置された第2の絶縁性粒子とを備えており、更に上記第2の絶縁性粒子の平均粒子径が上記第1の絶縁性粒子の平均粒子径よりも小さく、上記第2の絶縁性粒子の全個数の内の50%以上が、上記第1の絶縁性粒子に接触しないように、上記導電性粒子の表面上に配置されているので、本発明に係る絶縁性粒子付き導電性粒子を用いて電極間を接続した場合に、絶縁信頼性を高めることができる。 The conductive particles with insulating particles according to the present invention include conductive particles having at least a conductive portion on the surface, a plurality of first insulating particles disposed on the surface of the conductive particles, and the conductive particles. Second insulating particles disposed on the surface of the first insulating particles, and the average particle size of the second insulating particles is smaller than the average particle size of the first insulating particles. Since 50% or more of the total number of the insulating particles is arranged on the surface of the conductive particles so as not to contact the first insulating particles, the insulating particles according to the present invention are attached. Insulating reliability can be improved when the electrodes are connected using conductive particles.
図1は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。FIG. 1 is a cross-sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。FIG. 2 is a cross-sectional view showing conductive particles with insulating particles according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。FIG. 3 is a cross-sectional view showing conductive particles with insulating particles according to the third embodiment of the present invention. 図4は、図1に示す絶縁性粒子付き導電性粒子を用いた接続構造体を模式的に示す正面断面図である。FIG. 4 is a front cross-sectional view schematically showing a connection structure using the conductive particles with insulating particles shown in FIG. 図5は、被覆率の評価方法を説明するための模式図である。FIG. 5 is a schematic diagram for explaining a method for evaluating the coverage.
 以下、図面を参照しつつ、本発明の具体的な実施形態及び実施例を説明することにより本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments and examples of the present invention with reference to the drawings.
 (絶縁性粒子付き導電性粒子)
 図1に、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を断面図で示す。
(Conductive particles with insulating particles)
FIG. 1 is a sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention.
 図1に示す絶縁性粒子付き導電性粒子1は、導電性粒子2と、複数の第1の絶縁性粒子3と、複数の第2の絶縁性粒子4とを備える。 1 includes a conductive particle 2, a plurality of first insulating particles 3, and a plurality of second insulating particles 4. The conductive particles 1 with insulating particles shown in FIG.
 導電性粒子2は、導電部12を少なくとも表面に有する。第1の絶縁性粒子3は、導電性粒子2の表面上に配置されている。第2の絶縁性粒子4は、導電性粒子2の表面上に配置されている。 The conductive particles 2 have at least a conductive portion 12 on the surface. The first insulating particles 3 are disposed on the surface of the conductive particles 2. The second insulating particles 4 are disposed on the surface of the conductive particles 2.
 第2の絶縁性粒子4の全個数の内の50%以上が、第1の絶縁性粒子3に接触しないように、導電性粒子2の表面上に配置されている。第2の絶縁性粒子4の全てが、第1の絶縁性粒子3に接触しないように、導電性粒子2の表面上に配置されていてもよい。第2の絶縁性粒子4の一部が、第1の絶縁性粒子3に接触するように、導電性粒子2の表面上に配置されていてもよい。 50% or more of the total number of the second insulating particles 4 is arranged on the surface of the conductive particles 2 so as not to contact the first insulating particles 3. All of the second insulating particles 4 may be disposed on the surface of the conductive particles 2 so as not to contact the first insulating particles 3. A part of the second insulating particles 4 may be arranged on the surface of the conductive particles 2 so as to be in contact with the first insulating particles 3.
 複数の第1の絶縁性粒子3は、導電性粒子2の表面に接触しており、導電性粒子2の表面に付着している。複数の第1の絶縁性粒子3は、導電性粒子2における導電部12の外表面に接触しており、導電部12の外表面に付着している。複数の第2の絶縁性粒子4は、導電性粒子2の表面に接触しており、導電性粒子2の表面に付着している。複数の第2の絶縁性粒子4は、導電性粒子2における導電部12の外表面に接触しており、導電部12の外表面に付着している。 The plurality of first insulating particles 3 are in contact with the surface of the conductive particles 2 and are attached to the surface of the conductive particles 2. The plurality of first insulating particles 3 are in contact with the outer surface of the conductive part 12 in the conductive particle 2 and are attached to the outer surface of the conductive part 12. The plurality of second insulating particles 4 are in contact with the surface of the conductive particles 2 and are attached to the surface of the conductive particles 2. The plurality of second insulating particles 4 are in contact with the outer surface of the conductive portion 12 in the conductive particles 2 and are attached to the outer surface of the conductive portion 12.
 導電性粒子2は、基材粒子11と、基材粒子11の表面上に配置された導電部12とを有する。導電部12は導電層である。導電部12は、基材粒子11の表面を覆っている。導電性粒子2は、基材粒子11の表面が導電部12により被覆された被覆粒子である。導電性粒子2は表面に導電部12を有する。 The conductive particles 2 have base material particles 11 and conductive portions 12 arranged on the surface of the base material particles 11. The conductive part 12 is a conductive layer. The conductive part 12 covers the surface of the base particle 11. The conductive particle 2 is a coated particle in which the surface of the base particle 11 is coated with the conductive portion 12. The conductive particle 2 has a conductive portion 12 on the surface.
 第1の絶縁性粒子3及び第2の絶縁性粒子4はそれぞれ、絶縁性を有する材料により形成されている。第2の絶縁性粒子4の平均粒子径は、第1の絶縁性粒子3の平均粒子径よりも小さい。 The first insulating particles 3 and the second insulating particles 4 are each formed of an insulating material. The average particle diameter of the second insulating particles 4 is smaller than the average particle diameter of the first insulating particles 3.
 図2に、本発明の第2の実施形態に係る絶縁性粒子付き導電性粒子を断面図で示す。 FIG. 2 is a sectional view showing conductive particles with insulating particles according to the second embodiment of the present invention.
 図2に示す絶縁性粒子付き導電性粒子21は、導電性粒子22と、複数の第1の絶縁性粒子3と、複数の第2の絶縁性粒子4とを備える。 2 includes conductive particles 22, a plurality of first insulating particles 3, and a plurality of second insulating particles 4.
 導電性粒子22は、導電部26を少なくとも表面に有する。第1の絶縁性粒子3は、導電性粒子22の表面上に配置されている。第2の絶縁性粒子4は、導電性粒子22の表面上に配置されている。 The conductive particles 22 have at least a conductive portion 26 on the surface. The first insulating particles 3 are disposed on the surface of the conductive particles 22. The second insulating particles 4 are disposed on the surface of the conductive particles 22.
 第2の絶縁性粒子4の全個数の内の50%以上が、第1の絶縁性粒子3に接触しないように、導電性粒子22の表面上に配置されている。 50% or more of the total number of the second insulating particles 4 is arranged on the surface of the conductive particles 22 so as not to contact the first insulating particles 3.
 絶縁性粒子付き導電性粒子1と絶縁性粒子付き導電性粒子21とでは、導電性粒子2,22のみが異なる。導電性粒子22は、基材粒子11と、基材粒子11の表面上に配置された導電部26とを有する。導電性粒子22は、基材粒子11の表面上に複数の芯物質27を有する。導電部26は、基材粒子11と芯物質27とを被覆している。芯物質27を導電部26が被覆していることにより、導電性粒子22は表面に、複数の突起28を有する。芯物質27により導電部26の表面が隆起されており、複数の突起28が形成されている。 The conductive particles 1 with insulating particles and the conductive particles 21 with insulating particles differ only in the conductive particles 2 and 22. The conductive particle 22 includes the base particle 11 and a conductive portion 26 disposed on the surface of the base particle 11. The conductive particle 22 has a plurality of core substances 27 on the surface of the base particle 11. The conductive portion 26 covers the base particle 11 and the core material 27. By covering the core material 27 with the conductive portion 26, the conductive particles 22 have a plurality of protrusions 28 on the surface. The surface of the conductive portion 26 is raised by the core material 27, and a plurality of protrusions 28 are formed.
 図3に、本発明の第3の実施形態に係る絶縁性粒子付き導電性粒子を断面図で示す。 FIG. 3 is a sectional view showing conductive particles with insulating particles according to the third embodiment of the present invention.
 図3に示す絶縁性粒子付き導電性粒子31は、導電性粒子32と、複数の第1の絶縁性粒子3と、複数の第2の絶縁性粒子4とを備える。 3 includes conductive particles 32, a plurality of first insulating particles 3, and a plurality of second insulating particles 4.
 導電性粒子32は、導電部36を少なくとも表面に有する。第1の絶縁性粒子3は、導電性粒子32の表面上に配置されている。第2の絶縁性粒子4は、導電性粒子32の表面上に配置されている。 The conductive particles 32 have at least a conductive portion 36 on the surface. The first insulating particles 3 are disposed on the surface of the conductive particles 32. The second insulating particles 4 are disposed on the surface of the conductive particles 32.
 第2の絶縁性粒子4の全個数の内の50%以上が、第1の絶縁性粒子3に接触しないように、導電性粒子32の表面上に配置されている。 50% or more of the total number of the second insulating particles 4 is arranged on the surface of the conductive particles 32 so as not to contact the first insulating particles 3.
 絶縁性粒子付き導電性粒子1と絶縁性粒子付き導電性粒子31とでは、導電性粒子2,32のみが異なる。導電性粒子32は、基材粒子11と、基材粒子11の表面上に配置された導電部36とを有する。導電性粒子22は芯物質27を有するが、導電性粒子32は芯物質を有さない。導電部36は、第1の部分と、該第1の部分よりも厚みが厚い第2の部分とを有する。導電性粒子32は表面に複数の突起37を有する。複数の突起37を除く部分が、導電部36における上記第1の部分である。複数の突起37は、導電部36の厚みが厚い上記第2の部分である。 The conductive particles 1 with insulating particles and the conductive particles 31 with insulating particles differ only in the conductive particles 2 and 32. The conductive particle 32 includes the base particle 11 and a conductive portion 36 disposed on the surface of the base particle 11. The conductive particles 22 have a core material 27, but the conductive particles 32 do not have a core material. The conductive portion 36 has a first portion and a second portion that is thicker than the first portion. The conductive particles 32 have a plurality of protrusions 37 on the surface. A portion excluding the plurality of protrusions 37 is the first portion in the conductive portion 36. The plurality of protrusions 37 are the second portion in which the conductive portion 36 is thick.
 絶縁性粒子付き導電性粒子1,21,31ではいずれも、第2の絶縁性粒子4の平均粒子径が第1の絶縁性粒子3の平均粒子径よりも小さく、第2の絶縁性粒子4の全個数の内の50%以上が、第1の絶縁性粒子3に接触しないように、導電性粒子2,22,32の表面上に配置されている。第2の絶縁性粒子4が第1の絶縁性粒子3に接触していないことによって、導電性粒子2の露出した表面の間隔が狭くなる。このため、絶縁性粒子付き導電性粒子1,21,31を用いて上下の電極間を電気的に接続すると、接続されてはならない横方向に隣接する電極間が電気的に接続されるのを抑制できる。すなわち、絶縁信頼性を高めることができる。なお、通常、導電接続時には、第1,第2の絶縁性粒子3,4の脱離に影響する大きな力が付与される結果、第1,第2の絶縁性粒子3,4が脱離して、露出した導電性粒子2,22,32が電極に接触する。 In any of the conductive particles 1, 21, 31 with insulating particles, the average particle diameter of the second insulating particles 4 is smaller than the average particle diameter of the first insulating particles 3, and the second insulating particles 4 50% or more of the total number of particles is arranged on the surfaces of the conductive particles 2, 22, and 32 so as not to contact the first insulating particles 3. Since the second insulating particles 4 are not in contact with the first insulating particles 3, the interval between the exposed surfaces of the conductive particles 2 is narrowed. For this reason, when the upper and lower electrodes are electrically connected using the conductive particles 1, 21, 31 with insulating particles, the electrodes adjacent in the lateral direction that should not be connected are electrically connected. Can be suppressed. That is, insulation reliability can be improved. Normally, during the conductive connection, a large force that affects the detachment of the first and second insulating particles 3 and 4 is applied. As a result, the first and second insulating particles 3 and 4 are detached. The exposed conductive particles 2, 22, 32 are in contact with the electrodes.
 さらに、導電接続前に、衝撃により、導電性粒子の表面から比較的大きな第1の絶縁性粒子が意図せずに脱離するのを効果的に防ぐこともできる。例えば、絶縁性粒子付き導電性粒子をバインダー樹脂中に分散させる際に、導電性粒子の表面から、第1の絶縁性粒子が脱離するのを抑制できる。さらに、複数の絶縁性粒子付き導電性粒子が接触したときに、接触時の衝撃により、導電性粒子の表面から第1の絶縁性粒子が脱離し難くなる。また、絶縁性粒子付き導電性粒子を用いて上下の電極間を電気的に接続して接続構造体を得ることにより、接続構造体に衝撃が加わっても、第1の絶縁性粒子の意図しない脱離が抑えられるので、隣接する電極間が電気的に接続されるのを抑制でき、十分な絶縁信頼性を確保できる。 Furthermore, it is possible to effectively prevent the relatively large first insulating particles from being unintentionally detached from the surface of the conductive particles by impact before the conductive connection. For example, when the conductive particles with insulating particles are dispersed in the binder resin, the first insulating particles can be prevented from being detached from the surface of the conductive particles. Furthermore, when a plurality of conductive particles with insulating particles come into contact with each other, the first insulating particles are hardly detached from the surface of the conductive particles due to an impact at the time of contact. Moreover, even if an impact is applied to the connection structure by electrically connecting the upper and lower electrodes using conductive particles with insulating particles to obtain a connection structure, the first insulating particles are not intended. Since desorption is suppressed, it is possible to suppress electrical connection between adjacent electrodes, and to ensure sufficient insulation reliability.
 絶縁信頼性及び衝撃に対する絶縁信頼性をより一層高める観点からは、上記導電性粒子の表面積全体に占める上記第1の絶縁性粒子と上記第2の絶縁性粒子とにより被覆されている部分の合計の面積である被覆率Zは、好ましくは20%以上、より好ましくは30%以上、より一層好ましくは40%以上、更に好ましくは50%以上、更に一層好ましくは60%以上、特に好ましくは70%以上、最も好ましくは80%以上である。 From the viewpoint of further increasing the insulation reliability and the insulation reliability against impact, the total of the portions covered with the first insulating particles and the second insulating particles occupying the entire surface area of the conductive particles. The coverage Z, which is an area of, is preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, still more preferably 50% or more, still more preferably 60% or more, and particularly preferably 70%. Above, most preferably 80% or more.
 上記導電性粒子の表面積全体に占める上記第1の絶縁性粒子と上記第2の絶縁性粒子とにより被覆されている部分の合計の面積である被覆率は、以下のようにして求められる。 The coverage, which is the total area of the portions covered with the first insulating particles and the second insulating particles occupying the entire surface area of the conductive particles, is obtained as follows.
 走査型電子顕微鏡(SEM)での観察により20個の絶縁性粒子付き導電性粒子を観察し、絶縁性粒子付き導電性粒子における導電性粒子の被覆率Z(%)(付着率Z(%)ともいう)を求める。上記被覆率は、導電性粒子の表面積に占める第1,第2の絶縁性粒子により被覆されている部分の合計の面積(投影面積)である。 By observing 20 conductive particles with insulating particles by observation with a scanning electron microscope (SEM), the conductive particle coverage Z (%) of the conductive particles with insulating particles (attachment rate Z (%)) (Also called). The said coverage is a total area (projected area) of the part coat | covered with the 1st, 2nd insulating particle which occupies the surface area of electroconductive particle.
 具体的には、上記被覆率は、絶縁性粒子付き導電性粒子を一方向から走査型電子顕微鏡(SEM)で観察した場合、観察画像における絶縁性粒子付き導電性粒子の導電性粒子の表面の外周縁部分の円内(図5(a)の斜線部分)の面積全体に占める、導電性粒子の表面の外周縁部分の円内における第1,第2の絶縁性粒子の合計の面積(図5(b)の斜線部分)を意味する。 Specifically, when the conductive particles with insulating particles are observed from one direction with a scanning electron microscope (SEM), the coverage ratio is the surface of the conductive particles of the conductive particles with insulating particles in the observation image. The total area of the first and second insulating particles in the circle of the outer peripheral edge portion of the surface of the conductive particles occupying the entire area of the outer peripheral edge circle (the hatched portion in FIG. 5A) (see FIG. 5 (b) shaded portion).
 導通信頼性、絶縁信頼性及び衝撃に対する絶縁信頼性をより一層高める観点からは、上記第2の絶縁性粒子の平均粒子径は、上記第1の絶縁性粒子の平均粒子径の9/10以下であることが好ましく、4/5以下であることがより好ましく、2/3以下であることが更に好ましく、1/2以下であることが特に好ましい。上記第2の絶縁性粒子の平均粒子径は、上記第1の絶縁性粒子の平均粒子径の1/30以上であることが好ましく、1/20以上であることがより好ましく、1/10以上であることが更に好ましい。 From the viewpoint of further improving the conduction reliability, the insulation reliability, and the insulation reliability against impact, the average particle size of the second insulating particles is 9/10 or less of the average particle size of the first insulating particles. Preferably, it is 4/5 or less, more preferably 2/3 or less, and particularly preferably 1/2 or less. The average particle diameter of the second insulating particles is preferably 1/30 or more, more preferably 1/20 or more, and more preferably 1/10 or more of the average particle diameter of the first insulating particles. More preferably.
 上記第1,第2の絶縁性粒子の「平均粒子径」はそれぞれ、数平均粒子径を示す。上記第1,第2の絶縁性粒子の平均粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The “average particle diameter” of the first and second insulating particles represents a number average particle diameter. The average particle diameter of the first and second insulating particles can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
 導通信頼性をより一層高める観点からは、第2の絶縁性粒子の内の少なくとも一部が、第1の絶縁性粒子に接触するように、導電性粒子の表面上に配置されていることが好ましい。導通信頼性をより一層高める観点からは、第1の絶縁性粒子に接触するように、導電性粒子の表面上に配置されている第2の絶縁性粒子の個数は、多い方が好ましい。導通信頼性を更に一層高める観点からは、第2の絶縁性粒子の全個数の内の10%以上が、第1の絶縁性粒子に接触するように、導電性粒子の表面上に配置されていることが好ましい。第1の絶縁性粒子に接触するように導電性粒子の表面上に配置されている第2の絶縁性粒子の個数の割合X1は、より好ましくは20%以上、更に好ましくは30%以上である。第1の絶縁性粒子に第2の絶縁性粒子が接触していると、導電接続時に、第1の絶縁性粒子の脱離に伴って、第1の絶縁性粒子に接触している第2の絶縁性粒子も脱離しやすくなる。この結果、導通信頼性がより一層高くなる。なお、第2の絶縁性粒子の全個数は、導電性粒子1個当たりが有する第2の絶縁性粒子の個数を示す。また、第1の絶縁性粒子に接触するように導電性粒子の表面上に配置されている第2の絶縁性粒子の個数には、導電性粒子に接触している第2の絶縁性粒子の個数と、導電性粒子に接触していない第2の絶縁性粒子の個数との双方が含まれる。 From the viewpoint of further improving the conduction reliability, at least a part of the second insulating particles may be disposed on the surface of the conductive particles so as to be in contact with the first insulating particles. preferable. From the viewpoint of further improving the conduction reliability, it is preferable that the number of the second insulating particles arranged on the surface of the conductive particles so as to be in contact with the first insulating particles is large. From the viewpoint of further improving the conduction reliability, 10% or more of the total number of the second insulating particles is arranged on the surface of the conductive particles so as to be in contact with the first insulating particles. Preferably it is. The ratio X1 of the number of second insulating particles arranged on the surface of the conductive particles so as to come into contact with the first insulating particles is more preferably 20% or more, and further preferably 30% or more. . When the second insulating particles are in contact with the first insulating particles, the second insulating particles are in contact with the first insulating particles when the first insulating particles are detached during the conductive connection. Insulating particles are also easily detached. As a result, the conduction reliability is further enhanced. The total number of second insulating particles indicates the number of second insulating particles that one conductive particle has. The number of second insulating particles arranged on the surface of the conductive particles so as to be in contact with the first insulating particles is the number of the second insulating particles in contact with the conductive particles. Both the number and the number of second insulating particles not in contact with the conductive particles are included.
 第1の絶縁性粒子に第2の絶縁性粒子を接触させる方法としては、第2の絶縁性粒子が付着しやすくなるように、第1の絶縁性粒子を表面処理する方法、第1の絶縁性粒子が付着しやすくなるように、第2の絶縁性粒子を表面処理する方法、並びに第2の絶縁性粒子を第1の絶縁性粒子の表面に付着させた後、第2の絶縁性粒子が付着した第1の絶縁性粒子を導電性粒子の表面に付着させる方法等が挙げられる。 As a method of bringing the second insulating particles into contact with the first insulating particles, a method of surface-treating the first insulating particles so that the second insulating particles are easily attached, the first insulation A method of surface-treating the second insulating particles so that the conductive particles are likely to adhere, and the second insulating particles after the second insulating particles are attached to the surface of the first insulating particles For example, there may be mentioned a method of attaching the first insulating particles to which the particles adhere to the surface of the conductive particles.
 絶縁信頼性及び衝撃に対する絶縁信頼性を高めるために、第2の絶縁性粒子の全個数の内の50%以上が、第1の絶縁性粒子に接触しないように、導電性粒子の表面上に配置されている。第1の絶縁性粒子に接触しないように導電性粒子の表面上に配置されている第2の絶縁性粒子の個数の割合X2は、より好ましくは50%を超え、より一層好ましくは55%以上、更に好ましくは60%以上、更に一層好ましくは65%以上、特に好ましくは70%以上、最も好ましくは80%を超える。なお、第2の絶縁性粒子の全個数は、導電性粒子1個当たりが有する第2の絶縁性粒子の個数を示す。また、第1の絶縁性粒子に接触しないように導電性粒子の表面上に配置されている第2の絶縁性粒子の個数には、導電性粒子に接触している第2の絶縁性粒子の個数と、導電性粒子に接触していない第2の絶縁性粒子の個数との双方が含まれる。 In order to increase the insulation reliability and the insulation reliability against impact, 50% or more of the total number of the second insulating particles should not be in contact with the first insulating particles on the surface of the conductive particles. Is arranged. The ratio X2 of the number of the second insulating particles arranged on the surface of the conductive particles so as not to contact the first insulating particles is more preferably more than 50%, still more preferably 55% or more. More preferably, it is 60% or more, still more preferably 65% or more, particularly preferably 70% or more, and most preferably more than 80%. The total number of second insulating particles indicates the number of second insulating particles that one conductive particle has. Further, the number of the second insulating particles arranged on the surface of the conductive particles so as not to contact the first insulating particles is the number of the second insulating particles in contact with the conductive particles. Both the number and the number of second insulating particles not in contact with the conductive particles are included.
 絶縁信頼性及び衝撃に対する絶縁信頼性を高めるために、第2の絶縁性粒子の全個数の内の50%以上が、第1の絶縁性粒子に接触しないようにかつ導電性粒子に接触するように、導電性粒子の表面上に配置されていることが好ましい。第1の絶縁性粒子に接触しないようにかつ導電性粒子に接触するように、導電性粒子の表面上に配置されている第2の絶縁性粒子の個数の割合X3は、より好ましくは70%以上、更に好ましくは75%以上、特に好ましくは80%以上、好ましくは100%以下である。上記個数の割合は、99%以下であってもよく、95%以下であってもよく、90%以下であってもよい。なお、第2の絶縁性粒子の全個数は、導電性粒子1個当たりが有する第2の絶縁性粒子の個数を示す。 In order to increase the insulation reliability and the insulation reliability against impact, 50% or more of the total number of second insulating particles should not contact the first insulating particles and contact the conductive particles. Furthermore, it is preferable to arrange | position on the surface of electroconductive particle. The ratio X3 of the number of second insulating particles arranged on the surface of the conductive particles so as not to contact the first insulating particles and so as to contact the conductive particles is more preferably 70%. Above, more preferably 75% or more, particularly preferably 80% or more, preferably 100% or less. The ratio of the number may be 99% or less, 95% or less, or 90% or less. The total number of second insulating particles indicates the number of second insulating particles that one conductive particle has.
 第1の絶縁性粒子に第2の絶縁性粒子を接触させない方法としては、第2の絶縁性粒子が付着しにくくなるように、第1の絶縁性粒子を表面処理する方法、第1の絶縁性粒子が付着しにくくなるように、第2の絶縁性粒子を表面処理する方法、第2の絶縁性粒子が第1の絶縁性粒子よりも導電性粒子に付着しやすくなるように、第2の絶縁性粒子を表面処理する方法等が挙げられる。 As a method for preventing the second insulating particles from coming into contact with the first insulating particles, a method of surface-treating the first insulating particles so that the second insulating particles are less likely to adhere, the first insulation A method of surface-treating the second insulating particles so that the conductive particles are less likely to adhere, and the second so that the second insulating particles are more likely to adhere to the conductive particles than the first insulating particles. And the like, and the like.
 導通信頼性、絶縁信頼性及び衝撃に対する絶縁信頼性をより一層高める観点からは、上記導電性粒子1個当たりの、上記導電性粒子の表面上に配置されている上記第1の絶縁性粒子の平均個数Y1は好ましくは1個以上、より好ましくは2個以上、更に好ましくは3個以上、特に好ましくは5個以上、最も好ましくは10個以上、好ましくは100個以下、より好ましくは50個以下、更に好ましくは20個以下である。上記平均個数Y1は、10個未満であってもよい。上記導電性粒子1個当たりの、上記導電性粒子の表面上に配置されている上記第1の絶縁性粒子の平均個数は、上記導電性粒子1個当たりが有する第1の絶縁性粒子の個数の平均である。 From the viewpoint of further improving the conduction reliability, the insulation reliability, and the insulation reliability against impact, the first insulating particles disposed on the surface of the conductive particles per one of the conductive particles. The average number Y1 is preferably 1 or more, more preferably 2 or more, further preferably 3 or more, particularly preferably 5 or more, most preferably 10 or more, preferably 100 or less, more preferably 50 or less. More preferably, it is 20 or less. The average number Y1 may be less than 10. The average number of the first insulating particles arranged on the surface of the conductive particles per one of the conductive particles is the number of the first insulating particles included in the one conductive particle. Is the average.
 導通信頼性、絶縁信頼性及び衝撃に対する絶縁信頼性をより一層高める観点からは、上記導電性粒子1個当たりの、上記導電性粒子の表面上に配置されている上記第2の絶縁性粒子の平均個数Y2は好ましくは1個以上、より好ましくは4個以上、更に好ましくは6個以上、特に好ましくは10個以上、最も好ましくは20個以上、好ましくは1000個以下、より好ましくは500個以下、更に好ましくは100個以下である。上記導電性粒子1個当たりの、上記導電性粒子の表面上に配置されている上記第2の絶縁性粒子の平均個数は、上記導電性粒子1個当たりが有する第2の絶縁性粒子の個数の平均である。 From the viewpoint of further improving the conduction reliability, the insulation reliability, and the insulation reliability against impact, the second insulating particles arranged on the surface of the conductive particles per one of the conductive particles. The average number Y2 is preferably 1 or more, more preferably 4 or more, still more preferably 6 or more, particularly preferably 10 or more, most preferably 20 or more, preferably 1000 or less, more preferably 500 or less. More preferably, the number is 100 or less. The average number of the second insulating particles arranged on the surface of the conductive particles per one of the conductive particles is the number of second insulating particles included in the one conductive particle. Is the average.
 本発明に係る導電性粒子において、上記導電性粒子1個当たりの、上記導電性粒子の表面上に配置されている上記第1の絶縁性粒子の平均個数Y1の、上記導電性粒子1個当たりの、上記導電性粒子の表面上に配置されている上記第2の絶縁性粒子の平均個数Y2に対する比(平均個数Y1/平均個数Y2)は、好ましくは0.001以上、より好ましくは0.005以上、更に好ましくは0.05以上、好ましくは1以下、より好ましくは0.5以下である。上記比(平均個数Y1/平均個数Y2)は、0.5を超えていてもよい。なお、上記導電性粒子の表面上に配置されている上記第1,第2の絶縁性粒子の個数には、導電性粒子に接触していない上記第1,第2の絶縁性粒子の個数も含まれる。 In the conductive particles according to the present invention, the average number Y1 of the first insulating particles arranged on the surface of the conductive particles per one of the conductive particles per one of the conductive particles. The ratio of the second insulating particles arranged on the surface of the conductive particles to the average number Y2 (average number Y1 / average number Y2) is preferably 0.001 or more, more preferably 0.00. 005 or more, more preferably 0.05 or more, preferably 1 or less, more preferably 0.5 or less. The ratio (average number Y1 / average number Y2) may exceed 0.5. The number of the first and second insulating particles arranged on the surface of the conductive particles is the number of the first and second insulating particles not in contact with the conductive particles. included.
 絶縁信頼性及び衝撃に対する絶縁信頼性をより一層高める観点からは、上記導電性粒子の表面に、化学結合を介して、上記第2の絶縁性粒子が付着していることが好ましい。 From the viewpoint of further improving the insulation reliability and the insulation reliability against impact, it is preferable that the second insulating particles adhere to the surface of the conductive particles through a chemical bond.
 衝撃により、導電性粒子の表面から第1の絶縁性粒子が意図せずに脱離するのをより一層抑制する観点からは、上記導電性粒子の表面に、化学結合を介して、上記第1の絶縁性粒子が付着していることが好ましい。また、上記導電性粒子の表面に、化学結合を介して、上記第1の絶縁性粒子が付着していると、接続構造体の絶縁信頼性がより一層高くなる。 From the viewpoint of further suppressing unintentional detachment of the first insulating particles from the surface of the conductive particles due to the impact, the first particles are bonded to the surface of the conductive particles via a chemical bond. It is preferable that the insulating particles adhere. In addition, when the first insulating particles adhere to the surface of the conductive particles through chemical bonds, the insulation reliability of the connection structure is further increased.
 電極間の導通信頼性を高める観点からは、上記導電性粒子は、上記導電部の外表面に突起を有することが好ましい。一般に、導電部の外表面に突起がある導電性粒子では、該突起が大きいほど、絶縁信頼性が低下する傾向がある。本発明に係る絶縁性粒子付き導電性粒子では、上記第1,第2の絶縁性粒子が備えられているので、たとえ突起が大きくても、絶縁信頼性を充分に確保できる。 From the viewpoint of enhancing the conduction reliability between the electrodes, the conductive particles preferably have protrusions on the outer surface of the conductive part. Generally, in conductive particles having protrusions on the outer surface of the conductive part, the insulation reliability tends to decrease as the protrusions increase. In the conductive particles with insulating particles according to the present invention, since the first and second insulating particles are provided, insulation reliability can be sufficiently ensured even if the protrusions are large.
 以下、絶縁性粒子付き導電性粒子における導電性粒子、第1の絶縁性粒子及び第2の絶縁性粒子の詳細を説明する。 Hereinafter, details of the conductive particles, the first insulating particles, and the second insulating particles in the conductive particles with insulating particles will be described.
 [導電性粒子]
 上記導電性粒子は、少なくとも表面に導電部を有していればよい。該導電部は導電層であることが好ましい。導電性粒子は、基材粒子と、基材粒子の表面上に配置された導電層を有する導電性粒子であってもよく、全体が導電部である金属粒子であってもよい。なかでも、コストを低減したり、導電性粒子の柔軟性を高くして、電極間の導通信頼性を高めたりする観点からは、基材粒子と、基材粒子の表面上に配置された導電部とを有する導電性粒子が好ましい。
[Conductive particles]
The said electroconductive particle should just have an electroconductive part on the surface at least. The conductive part is preferably a conductive layer. The conductive particles may be base particles and conductive particles having a conductive layer disposed on the surface of the base particles, or may be metal particles whose entirety is a conductive portion. Among these, from the viewpoint of reducing the cost and increasing the flexibility of the conductive particles to increase the conduction reliability between the electrodes, the base particles and the conductive material disposed on the surface of the base particles are used. Conductive particles having a portion are preferred.
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子はコアシェル粒子であってもよい。なかでも、上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。 Examples of the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles. The base particles may be core-shell particles. Especially, it is preferable that the said base particle is a base particle except a metal particle, and it is more preferable that it is an inorganic particle or an organic inorganic hybrid particle except a resin particle, a metal particle.
 上記基材粒子は、樹脂により形成された樹脂粒子であることが好ましい。絶縁性粒子付き導電性粒子を用いて電極間を接続する際には、絶縁性粒子付き導電性粒子を電極間に配置した後、圧着することにより絶縁性粒子付き導電性粒子を圧縮させる。基材粒子が樹脂粒子であると、上記圧着の際に導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の導通信頼性がより一層高くなる。 The base material particles are preferably resin particles formed of a resin. When connecting the electrodes using the conductive particles with insulating particles, the conductive particles with insulating particles are compressed by placing the conductive particles with insulating particles between the electrodes and then pressing them. When the substrate particles are resin particles, the conductive particles are likely to be deformed during the pressure bonding, and the contact area between the conductive particles and the electrode is increased. For this reason, the conduction | electrical_connection reliability between electrodes becomes still higher.
 上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が挙げられる。基材粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Various organic substances are suitably used as the resin for forming the resin particles. Examples of the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Alkylene terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polysulfone, polyphenylene Oxide, polyacetal, polyimide, polyamideimide, polyether ether Tons, polyethersulfone, and polymers such as obtained by a variety of polymerizable monomer having an ethylenically unsaturated group is polymerized with one or more thereof. Since the hardness of the base particles can be easily controlled within a suitable range, the resin for forming the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferably a coalescence.
 上記樹脂粒子を、エチレン性不飽和基を有する単量体を重合させて得る場合には、該エチレン性不飽和基を有する単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a monomer having an ethylenically unsaturated group, the monomer having the ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer. And a polymer.
 上記非架橋性の単量体としては、例えば、スチレン、α-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; acids such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate Atom-containing (meth) acrylates; Nitrile-containing monomers such as (meth) acrylonitrile; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and propyl vinyl ether; Vinyl acetates such as vinyl acetate, vinyl butyrate, vinyl laurate and vinyl stearate Esters; Unsaturated hydrocarbons such as ethylene, propylene, isoprene and butadiene; Halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride and chlorostyrene Is mentioned.
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレンジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanurate, tri Lil trimellitate, divinyl benzene, diallyl phthalate, diallyl acrylamide, diallyl ether, .gamma. (meth) acryloxy propyl trimethoxy silane, trimethoxy silyl styrene, include silane-containing monomers such as vinyltrimethoxysilane.
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
 上記基材粒子が金属を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ及びカーボンブラック等が挙げられる。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 In the case where the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal, examples of inorganic substances for forming the substrate particles include silica and carbon black. Although it does not specifically limit as the particle | grains formed with the said silica, For example, after hydrolyzing the silicon compound which has two or more hydrolysable alkoxysil groups, and forming a crosslinked polymer particle, it calcinates as needed. The particle | grains obtained by performing are mentioned. Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。但し、上記基材粒子は金属粒子ではないことが好ましい。 When the substrate particles are metal particles, examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium. However, the substrate particles are preferably not metal particles.
 上記導電部を形成するための金属は特に限定されない。さらに、導電性粒子が、全体が導電部である金属粒子である場合、該金属粒子を形成するための金属は特に限定されない。該金属としては、例えば、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。なかでも、電極間の接続抵抗がより一層低くなるので、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムが好ましい。上記導電部の融点は、好ましくは300℃以上、より好ましくは450℃以上である。上記導電部は、はんだではない導電部であってもよい。 The metal for forming the conductive part is not particularly limited. Furthermore, in the case where the conductive particles are metal particles that are conductive parts as a whole, the metal for forming the metal particles is not particularly limited. Examples of the metal include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, silicon, and these. And the like. Examples of the metal include tin-doped indium oxide (ITO) and solder. Especially, since the connection resistance between electrodes becomes still lower, an alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is preferable. The melting point of the conductive part is preferably 300 ° C. or higher, more preferably 450 ° C. or higher. The conductive part may be a conductive part that is not solder.
 なお、導電部の表面には、酸化により水酸基が存在することが多い。一般的に、ニッケルにより形成された導電部の表面には、酸化により水酸基が存在する。このような水酸基を有する導電部の表面(導電性粒子の表面)に、化学結合を介して、第1の絶縁性粒子を付着させることができる。また、このような水酸基を有する導電部の表面(導電性粒子の表面)に、化学結合を介して、第2の絶縁性粒子を付着させることもできる。 In many cases, hydroxyl groups are present on the surface of the conductive part due to oxidation. In general, a hydroxyl group exists on the surface of a conductive portion formed of nickel by oxidation. The first insulating particles can be attached to the surface of the conductive part having such a hydroxyl group (the surface of the conductive particles) through a chemical bond. In addition, the second insulating particles can be attached to the surface of the conductive portion having such a hydroxyl group (the surface of the conductive particles) through a chemical bond.
 上記導電層は、1つの層により形成されていてもよい。導電層は、複数の層により形成されていてもよい。すなわち、導電層は、2層以上の積層構造を有していてもよい。導電層が複数の層により形成されている場合には、最外層は、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層であることがより好ましい。最外層がこれらの好ましい導電層である場合には、電極間の接続抵抗がより一層低くなる。また、最外層が金層である場合には、耐腐食性がより一層高くなる。 The conductive layer may be formed of a single layer. The conductive layer may be formed of a plurality of layers. That is, the conductive layer may have a stacked structure of two or more layers. When the conductive layer is formed of a plurality of layers, the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer, or an alloy layer containing tin and silver, and is a gold layer. Is more preferable. When the outermost layer is these preferred conductive layers, the connection resistance between the electrodes is further reduced. Moreover, when the outermost layer is a gold layer, the corrosion resistance is further enhanced.
 上記基材粒子の表面に導電層を形成する方法は特に限定されない。導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。なかでも、導電層の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。 The method for forming the conductive layer on the surface of the substrate particles is not particularly limited. As a method for forming the conductive layer, for example, a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating the surface of base particles with metal powder or a paste containing metal powder and a binder Etc. Especially, since formation of a conductive layer is simple, the method by electroless plating is preferable. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
 上記導電性粒子の平均粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、好ましくは500μm以下、より好ましくは100μm以下、更に好ましくは50μm以下、特に好ましくは20μm以下である。導電性粒子の平均粒子径が上記下限以上及び上記上限以下であると、絶縁性粒子付き導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積を充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。 The average particle diameter of the conductive particles is preferably 0.5 μm or more, more preferably 1 μm or more, preferably 500 μm or less, more preferably 100 μm or less, still more preferably 50 μm or less, and particularly preferably 20 μm or less. When the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrodes is sufficiently large when the electrodes are connected using the conductive particles with insulating particles. And it becomes difficult to form aggregated conductive particles when the conductive layer is formed. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base material particles.
 上記導電性粒子の「平均粒子径」は、数平均粒子径を示す。導電性粒子の平均粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The “average particle size” of the conductive particles indicates a number average particle size. The average particle diameter of the conductive particles can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
 上記導電層の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは0.3μm以下である。導電層の厚みが上記下限以上及び上記上限以下であると、充分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が充分に変形する。 The thickness of the conductive layer is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, and even more preferably 0.3 μm or less. When the thickness of the conductive layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed when connecting the electrodes. .
 上記導電層が複数の層により形成されている場合に、最外層の導電層の厚みは、特に最外層が金層である場合の金層の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電層の厚みが上記下限以上及び上記上限以下であると、最外層の導電層による被覆が均一になり、耐腐食性が充分に高くなり、かつ電極間の接続抵抗が充分に低くなる。また、上記最外層が金層である場合の金層の厚みが薄いほど、コストが低くなる。 When the conductive layer is formed of a plurality of layers, the thickness of the outermost conductive layer is preferably 0.001 μm or more, more preferably the thickness of the gold layer when the outermost layer is a gold layer. It is 0.01 μm or more, preferably 0.5 μm or less, more preferably 0.1 μm or less. When the thickness of the outermost conductive layer is not less than the above lower limit and not more than the above upper limit, the coating with the outermost conductive layer becomes uniform, corrosion resistance is sufficiently high, and the connection resistance between the electrodes is sufficiently high. Lower. Further, the thinner the gold layer when the outermost layer is a gold layer, the lower the cost.
 上記導電層の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子又は絶縁性粒子付き導電性粒子の断面を観察することにより測定できる。 The thickness of the conductive layer can be measured by observing the cross section of the conductive particles or the conductive particles with insulating particles using, for example, a transmission electron microscope (TEM).
 導電性粒子は、導電部の外表面に突起を有することが好ましく、該突起は複数であることが好ましい。絶縁性粒子付き導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。導電部の表面に突起を有する絶縁性粒子付き導電性粒子を用いた場合には、電極間に絶縁性粒子付き導電性粒子を配置して圧着させることにより、突起により上記酸化被膜を効果的に排除できる。このため、電極と導電部とがより一層確実に接触し、電極間の接続抵抗がより一層低くなる。さらに、電極間の接続時に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性粒子を効果的に排除できる。このため、電極間の導通信頼性がより一層高くなる。 The conductive particles preferably have protrusions on the outer surface of the conductive part, and the protrusions are preferably plural. An oxide film is often formed on the surface of the electrode connected by the conductive particles with insulating particles. When conductive particles with insulating particles having protrusions on the surface of the conductive part are used, the oxide film is effectively applied by the protrusions by placing conductive particles with insulating particles between the electrodes and pressing them. Can be eliminated. For this reason, an electrode and an electroconductive part contact more reliably and the connection resistance between electrodes becomes still lower. Furthermore, when the electrodes are connected, the insulating particles between the conductive particles and the electrodes can be effectively eliminated by the protrusions of the conductive particles. For this reason, the conduction | electrical_connection reliability between electrodes becomes still higher.
 導電性粒子の表面に突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電層を形成する方法、基材粒子の表面上に、無電解めっきなどにより第1の導電層を形成した後、該第1の導電層上に芯物質を配置し、次に無電解めっきなどにより第2の導電層を形成する方法、並びに基材粒子の表面上に導電層を形成する途中段階で、芯物質を添加する方法等が挙げられる。 As a method of forming protrusions on the surface of the conductive particles, a method of forming a conductive layer by electroless plating after attaching a core substance to the surface of the base particles, electroless plating on the surface of the base particles After forming the first conductive layer by, for example, disposing the core material on the first conductive layer and then forming the second conductive layer by electroless plating or the like, and on the surface of the base particle And a method of adding a core substance in the middle of forming the conductive layer.
 基材粒子の表面に芯物質を付着させる方法としては、例えば、基材粒子の分散液中に、芯物質を添加し、基材粒子の表面に芯物質を、例えば、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。なかでも、付着させる芯物質の量を制御しやすいため、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法が好ましい。 As a method of attaching the core substance to the surface of the base particle, for example, the core substance is added to the dispersion of the base particle, and the core substance is accumulated on the base particle surface by, for example, van der Waals force. And a method of adding a core substance to a container containing base particles and causing the core substance to adhere to the surface of the base particles by mechanical action such as rotation of the container. Especially, since the quantity of the core substance to adhere is easy to control, the method of making a core substance accumulate and adhere on the surface of the base particle in a dispersion liquid is preferable.
 上記導電性粒子は、基材粒子の表面上に第1の導電層を有し、かつ該第1の導電層上に第2の導電層を有していてもよい。この場合に、第1の導電層の表面に芯物質を付着させてもよい。芯物質は第2の導電層により被覆されていることが好ましい。上記第1の導電層の厚みは、好ましくは0.05μm以上、好ましくは0.5μm以下である。導電性粒子は、基材粒子の表面上に第1の導電層を形成し、次に該第1の導電層の表面上に芯物質を付着させた後、第1の導電層及び芯物質の表面上に第2の導電層を形成することにより得られていることが好ましい。 The conductive particles may have a first conductive layer on the surface of the base particle, and may have a second conductive layer on the first conductive layer. In this case, a core substance may be attached to the surface of the first conductive layer. The core substance is preferably covered with a second conductive layer. The thickness of the first conductive layer is preferably 0.05 μm or more, and preferably 0.5 μm or less. The conductive particles form a first conductive layer on the surface of the base particle, and then a core material is deposited on the surface of the first conductive layer, and then the first conductive layer and the core material are formed. It is preferably obtained by forming a second conductive layer on the surface.
 上記芯物質を構成する物質としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ及びジルコニア等が挙げられる。なかでも、導電性が高くなるので、金属が好ましい。 As the material constituting the core material, there may be mentioned a conductive material and a non-conductive material. Examples of the conductive material include conductive non-metals such as metals, metal oxides, and graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene. Examples of the nonconductive material include silica, alumina, and zirconia. Among them, metal is preferable because of high conductivity.
 上記金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫-鉛合金、錫-銅合金、錫-銀合金、錫-鉛-銀合金及び炭化タングステン等の2種類以上の金属で構成される合金等が挙げられる。なかでも、ニッケル、銅、銀又は金が好ましい。上記芯物質を構成する金属は、上記導電部(導電層)を構成する金属と同じであってもよく、異なっていてもよい。 Examples of the metal include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead. Examples thereof include alloys composed of two or more metals such as alloys, tin-copper alloys, tin-silver alloys, tin-lead-silver alloys, and tungsten carbide. Of these, nickel, copper, silver or gold is preferable. The metal constituting the core substance may be the same as or different from the metal constituting the conductive part (conductive layer).
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。 The shape of the core substance is not particularly limited. The shape of the core substance is preferably a lump. Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
 上記芯物質の平均径(平均粒子径)は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の平均径が上記下限以上及び上限以下であると、電極間の接続抵抗が効果的に低くなる。 The average diameter (average particle diameter) of the core substance is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, more preferably 0.2 μm or less. When the average diameter of the core substance is not less than the above lower limit and not more than the upper limit, the connection resistance between the electrodes is effectively reduced.
 上記芯物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。芯物質の平均径は、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The “average diameter (average particle diameter)” of the core substance indicates a number average diameter (number average particle diameter). The average diameter of the core material is obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope and calculating an average value.
 上記導電性粒子1個当たりの上記の突起は、好ましくは3個以上、より好ましくは5個以上である。上記突起の数の上限は特に限定されない。突起の数の上限は導電性粒子の粒子径等を考慮して適宜選択できる。 The number of the protrusions per conductive particle is preferably 3 or more, more preferably 5 or more. The upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle diameter of the conductive particles.
 絶縁信頼性及び衝撃に対する絶縁信頼性をより一層高める観点からは、上記第2の絶縁性粒子の平均粒子径は、上記突起の平均高さの好ましくは0.7倍以上、より好ましくは1倍以上、好ましくは5倍以下、より好ましくは3倍以下である。 From the viewpoint of further increasing the insulation reliability and the insulation reliability against impact, the average particle diameter of the second insulating particles is preferably 0.7 times or more, more preferably 1 time the average height of the protrusions. Above, preferably 5 times or less, more preferably 3 times or less.
 上記突起の平均高さは、複数の突起の高さの平均値を示し、突起の高さは、導電性粒子の中心と突起の先端とを結ぶ線(図2に示す破線L1)上における、突起が無いと想定した場合の導電層の仮想線(図2に示す破線L2)上(突起が無いと想定した場合の球状の導電性粒子の外表面上)から突起の先端までの距離を示す。すなわち、図2においては、破線L1と破線L2との交点から突起の先端までの距離を示す。 The average height of the protrusions indicates the average value of the heights of the plurality of protrusions, and the height of the protrusions is on a line (dashed line L1 shown in FIG. 2) connecting the center of the conductive particles and the tips of the protrusions. Shows the distance from the imaginary line (broken line L2 shown in FIG. 2) of the conductive layer (on the outer surface of the spherical conductive particles assuming no protrusion) to the tip of the protrusion when it is assumed that there is no protrusion. . That is, in FIG. 2, the distance from the intersection of the broken line L1 and the broken line L2 to the tip of the protrusion is shown.
 (第1,第2の絶縁性粒子)
 上記第1,第2の絶縁性粒子は、絶縁性を有する粒子である。上記第1,第2の絶縁性粒子はそれぞれ、導電性粒子よりも小さい。絶縁性粒子付き導電性粒子を用いて電極間を接続すると、上記第1,第2の絶縁性粒子により、隣接する電極間の短絡を防止できる。具体的には、複数の絶縁性粒子付き導電性粒子が接触したときに、複数の絶縁性粒子付き導電性粒子における導電性粒子間には上記第1,第2の絶縁性粒子が存在するので、上下の電極間ではなく、横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で絶縁性粒子付き導電性粒子を加圧することにより、導電部と電極との間の上記第1,第2の絶縁性粒子を容易に排除できる。導電性粒子の表面に突起が設けられている場合には、導電部と電極との間の上記第1,第2の絶縁性粒子をより一層容易に排除できる。
(First and second insulating particles)
The first and second insulating particles are particles having insulating properties. Each of the first and second insulating particles is smaller than the conductive particles. When the electrodes are connected using conductive particles with insulating particles, the first and second insulating particles can prevent a short circuit between adjacent electrodes. Specifically, when the conductive particles with a plurality of insulating particles come into contact with each other, the first and second insulating particles exist between the conductive particles in the conductive particles with a plurality of insulating particles. It is possible to prevent a short circuit between electrodes adjacent in the horizontal direction, not between the upper and lower electrodes. In addition, when connecting the electrodes, the first and second insulating particles between the conductive portion and the electrode can be easily removed by pressurizing the conductive particles with insulating particles with two electrodes. . When protrusions are provided on the surface of the conductive particles, the first and second insulating particles between the conductive portion and the electrode can be more easily eliminated.
 上記第1,第2の絶縁性粒子を構成する材料としては、絶縁性の樹脂、及び絶縁性の無機物等が挙げられる。上記絶縁性の樹脂としては、基材粒子として用いることが可能な樹脂粒子を形成するための樹脂として挙げた上記樹脂が挙げられる。上記絶縁性の無機物としては、基材粒子として用いることが可能な無機粒子を形成するための無機物として挙げた上記無機物が挙げられる。 Examples of the material constituting the first and second insulating particles include an insulating resin and an insulating inorganic substance. As said insulating resin, the said resin quoted as resin for forming the resin particle which can be used as a base particle is mentioned. As said insulating inorganic substance, the said inorganic substance quoted as an inorganic substance for forming the inorganic particle which can be used as a base particle is mentioned.
 上記第1,第2の絶縁性粒子の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。 Specific examples of the insulating resin that is the material of the first and second insulating particles include polyolefins, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, and thermoplastics. Examples include cross-linked resins, thermosetting resins, and water-soluble resins.
 上記ポリオレフィン類としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂が好ましく、ポリビニルアルコールがより好ましい。 Examples of the polyolefins include polyethylene, ethylene-vinyl acetate copolymer, and ethylene-acrylic ester copolymer. Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate. Examples of the block polymer include polystyrene, styrene-acrylate copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof. Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers. As said thermosetting resin, an epoxy resin, a phenol resin, a melamine resin, etc. are mentioned. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose. Of these, water-soluble resins are preferable, and polyvinyl alcohol is more preferable.
 圧着時の上記第1,第2の絶縁性粒子の脱離性をより一層高める観点からは、上記第1,第2の絶縁性粒子はそれぞれ、無機粒子であることが好ましく、シリカ粒子であることが好ましい。 From the viewpoint of further enhancing the detachability of the first and second insulating particles during the pressure bonding, each of the first and second insulating particles is preferably an inorganic particle, and is preferably a silica particle. It is preferable.
 上記無機粒子としては、シラス粒子、ハイドロキシアパタイト粒子、マグネシア粒子、酸化ジルコニウム粒子及びシリカ粒子等が挙げられる。上記シリカ粒子としては、粉砕シリカ、球状シリカが挙げられる。球状シリカを用いることが好ましい。また、シリカ粒子は表面に、例えばカルボキシル基、水酸基等の化学結合可能な官能基を有することが好ましく、水酸基を有することがより好ましい。無機粒子は比較的硬く、特にシリカ粒子は比較的硬い。このような硬い絶縁性粒子を備える絶縁性粒子付き導電性粒子を用いた場合には、絶縁性粒子付き導電性粒子とバインダー樹脂とを混練する際に、導電性粒子の表面から、硬い絶縁性粒子が脱離しやすい傾向がある。これに対して、本発明に係る絶縁性粒子付き導電性粒子を用いた場合には、硬い第1の絶縁性粒子を用いたとしても、上記混練の際に、第1の絶縁性粒子が脱離しても、第2の絶縁性粒子が残存する結果、絶縁信頼性を確保できる。 Examples of the inorganic particles include shirasu particles, hydroxyapatite particles, magnesia particles, zirconium oxide particles, and silica particles. Examples of the silica particles include pulverized silica and spherical silica. Spherical silica is preferably used. The silica particles preferably have a functional group capable of chemical bonding such as a carboxyl group and a hydroxyl group on the surface, and more preferably have a hydroxyl group. Inorganic particles are relatively hard, especially silica particles are relatively hard. When the conductive particles with insulating particles including such hard insulating particles are used, when the conductive particles with insulating particles and the binder resin are kneaded, the surface of the conductive particles has a hard insulating property. There is a tendency for particles to be easily detached. On the other hand, when the conductive particles with insulating particles according to the present invention are used, the first insulating particles are removed during the kneading even if the hard first insulating particles are used. Even if they are separated, insulation reliability can be ensured as a result of the second insulating particles remaining.
 上記第1の絶縁性粒子の表面に、化学結合を介して、上記第2の絶縁性粒子が付着していることが好ましい。上記導電性粒子の表面に、化学結合を介して、上記第1の絶縁性粒子が付着していることが好ましい。この化学結合には、共有結合、水素結合、イオン結合及び配位結合等が含まれる。なかでも、共有結合が好ましく、反応性官能基を用いた化学的結合が好ましい。 It is preferable that the second insulating particles adhere to the surface of the first insulating particles through a chemical bond. It is preferable that the first insulating particles are attached to the surface of the conductive particles through a chemical bond. This chemical bond includes a covalent bond, a hydrogen bond, an ionic bond, a coordination bond, and the like. Of these, a covalent bond is preferable, and a chemical bond using a reactive functional group is preferable.
 上記化学結合を形成する反応性官能基としては、例えば、ビニル基、(メタ)アクリロイル基、シラン基、シラノール基、カルボキシル基、アミノ基、アンモニウム基、ニトロ基、水酸基、カルボニル基、チオール基、スルホン酸基、スルホニウム基、ホウ酸基、オキサゾリン基、ピロリドン基、リン酸基及びニトリル基等が挙げられる。中でも、ビニル基、(メタ)アクリロイル基が好ましい。 Examples of the reactive functional group that forms the chemical bond include a vinyl group, (meth) acryloyl group, silane group, silanol group, carboxyl group, amino group, ammonium group, nitro group, hydroxyl group, carbonyl group, thiol group, Examples thereof include a sulfonic acid group, a sulfonium group, a boric acid group, an oxazoline group, a pyrrolidone group, a phosphoric acid group, and a nitrile group. Among these, a vinyl group and a (meth) acryloyl group are preferable.
 第1の絶縁性粒子の脱離をより一層抑制し、接続構造体における絶縁信頼性をより一層高める観点からは、上記第1の絶縁性粒子として、反応性官能基を表面に有する絶縁性粒子を用いることが好ましい。絶縁性粒子の脱離をより一層抑制し、接続構造体における絶縁信頼性をより一層高める観点からは、上記第1の絶縁性粒子として、反応性官能基を有する化合物を用いて表面処理された第1の絶縁性粒子を用いることが好ましい。また、絶縁信頼性をより一層高める観点からは、上記第2の絶縁性粒子として、反応性官能基を表面に有する絶縁性粒子を用いることが好ましい。絶縁信頼性をより一層高める観点からは、上記第2の絶縁性粒子として、反応性官能基を有する化合物を用いて表面処理された第2の絶縁性粒子を用いることが好ましい。 From the viewpoint of further suppressing the detachment of the first insulating particles and further improving the insulation reliability in the connection structure, the insulating particles having a reactive functional group on the surface as the first insulating particles. Is preferably used. From the viewpoint of further suppressing the detachment of the insulating particles and further improving the insulation reliability in the connection structure, the first insulating particles were subjected to a surface treatment using a compound having a reactive functional group. It is preferable to use the first insulating particles. Further, from the viewpoint of further increasing the insulation reliability, it is preferable to use insulating particles having reactive functional groups on the surface as the second insulating particles. From the viewpoint of further increasing the insulation reliability, it is preferable to use second insulating particles that have been surface-treated using a compound having a reactive functional group as the second insulating particles.
 上記第1,第2の絶縁性粒子の表面に導入可能な上記反応性官能基としては、(メタ)アクリロイル基、グリシジル基、水酸基、ビニル基及びアミノ基等が挙げられる。上記第1,第2の絶縁性粒子が表面に有する上記反応性官能基は、(メタ)アクリロイル基、グリシジル基、水酸基、ビニル基及びアミノ基からなる群から選択された少なくとも1種の反応性官能基であることが好ましい。 Examples of the reactive functional group that can be introduced on the surfaces of the first and second insulating particles include a (meth) acryloyl group, a glycidyl group, a hydroxyl group, a vinyl group, and an amino group. The reactive functional group on the surface of the first and second insulating particles is at least one kind of reactivity selected from the group consisting of (meth) acryloyl group, glycidyl group, hydroxyl group, vinyl group and amino group. It is preferably a functional group.
 上記反応性官能基を導入するための化合物(表面処理物質)としては、(メタ)アクリロイル基を有する化合物、エポキシ基を有する化合物及びビニル基を有する化合物等が挙げられる。 Examples of the compound (surface treatment substance) for introducing the reactive functional group include a compound having a (meth) acryloyl group, a compound having an epoxy group, a compound having a vinyl group, and the like.
 ビニル基を導入するための化合物(表面処理物質)としては、ビニル基を有するシラン化合物、ビニル基を有するチタン化合物、及びビニル基を有するリン酸化合物等が挙げられる。上記表面処理物質は、ビニル基を有するシラン化合物であることが好ましい。上記ビニル基を有するシラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン及びビニルトリイソプロポキシシラン等が挙げられる。 Examples of the compound (surface treatment substance) for introducing a vinyl group include a silane compound having a vinyl group, a titanium compound having a vinyl group, and a phosphate compound having a vinyl group. The surface treatment substance is preferably a silane compound having a vinyl group. Examples of the silane compound having a vinyl group include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and vinyltriisopropoxysilane.
 (メタ)アクリロイル基を導入するための化合物(表面処理物質)としては、(メタ)アクリロイル基を有するシラン化合物、及び(メタ)アクリロイル基を有するチタン化合物、及び(メタ)アクリロイル基を有するリン酸化合物等が挙げられる。上記表面処理物質は、(メタ)アクリロイル基を有するシラン化合物であることも好ましい。上記(メタ)アクリロイル基を有するシラン化合物としては、(メタ)アクリロキシプロピルトリエトキシシラン、(メタ)アクリロキシプロピルトリメトキシシラン及び(メタ)アクリロキシプロピルトリジメトキシシラン等が挙げられる。 As a compound (surface treatment substance) for introducing a (meth) acryloyl group, a silane compound having a (meth) acryloyl group, a titanium compound having a (meth) acryloyl group, and a phosphoric acid having a (meth) acryloyl group Compounds and the like. The surface treatment substance is also preferably a silane compound having a (meth) acryloyl group. Examples of the silane compound having a (meth) acryloyl group include (meth) acryloxypropyltriethoxysilane, (meth) acryloxypropyltrimethoxysilane, (meth) acryloxypropyltridimethoxysilane, and the like.
 上記導電性粒子及び上記導電部の表面に第1,第2の絶縁性粒子を付着させる方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション法、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。ただし、ハイブリダイゼーション法では、第1,第2の絶縁性粒子の脱離が生じやすくなる傾向があるので、上記第1,第2の絶縁性粒子を配置する方法は、ハイブリダイゼーション法以外の方法であることが好ましい。第1の絶縁性粒子は、導電性粒子の表面上に、ハイブリダイゼーション法により配置されていないことが好ましい。第2の絶縁性粒子は、導電性粒子の表面上に、ハイブリダイゼーション法により配置されていないことが好ましい。第1の絶縁性粒子がより一層脱離し難くなることから、導電性粒子の表面に、化学結合を介して第1の絶縁性粒子を配置する方法が好ましい。第2の絶縁性粒子がより一層脱離し難くなることから、導電性粒子の表面に、化学結合を介して第2の絶縁性粒子を配置する方法が好ましい。 Examples of the method for attaching the first and second insulating particles to the surfaces of the conductive particles and the conductive part include a chemical method and a physical or mechanical method. Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method. Examples of the physical or mechanical method include a spray drying method, a hybridization method, an electrostatic adhesion method, a spray method, a dipping method, and a vacuum deposition method. However, since the hybridization method tends to cause the detachment of the first and second insulating particles, the method of arranging the first and second insulating particles is a method other than the hybridization method. It is preferable that It is preferable that the first insulating particles are not arranged on the surface of the conductive particles by the hybridization method. The second insulating particles are preferably not arranged on the surface of the conductive particles by the hybridization method. Since the first insulating particles are more difficult to desorb, a method of arranging the first insulating particles on the surface of the conductive particles through a chemical bond is preferable. Since the second insulating particles are more difficult to desorb, a method of arranging the second insulating particles on the surface of the conductive particles through a chemical bond is preferable.
 上記導電性粒子の表面及び上記導電部の表面に第1,第2の絶縁性粒子を付着させる方法の一例としては、以下の方法が挙げられる。 As an example of a method of attaching the first and second insulating particles to the surface of the conductive particles and the surface of the conductive part, the following method may be mentioned.
 先ず、水などの溶媒3L中に、導電性粒子を入れ、撹拌しながら、第1,第2の絶縁性粒子を徐々に添加する。十分に撹拌した後、絶縁性粒子付き導電性粒子を分離し、真空乾燥機などにより乾燥して、絶縁性粒子付き導電性粒子を得る。 First, the conductive particles are put in 3 L of a solvent such as water, and the first and second insulating particles are gradually added while stirring. After sufficiently stirring, the conductive particles with insulating particles are separated and dried by a vacuum dryer or the like to obtain conductive particles with insulating particles.
 上記導電部は表面に、上記第1の絶縁性粒子と反応可能な反応性官能基を有することが好ましい。上記第1の絶縁性粒子は表面に、導電部と反応可能な反応性官能基を有することが好ましい。これらの反応性官能基により化学結合を導入することで、導電性粒子の表面から第1の絶縁性粒子が意図せずに脱離し難くなる。また、絶縁信頼性及び衝撃に対する絶縁信頼性がより一層高くなる。上記導電部は表面に、上記第2の絶縁性粒子と反応可能な反応性官能基を有することが好ましい。上記第2の絶縁性粒子は表面に、導電部と反応可能な反応性官能基を有することが好ましい。これらの反応性官能基により化学結合を導入することで、導電性粒子の表面から第2の絶縁性粒子が意図せずに脱離し難くなる。また、絶縁信頼性及び衝撃に対する絶縁信頼性がより一層高くなる。 The conductive part preferably has a reactive functional group capable of reacting with the first insulating particles on the surface. The first insulating particles preferably have a reactive functional group capable of reacting with the conductive part on the surface. By introducing a chemical bond with these reactive functional groups, it becomes difficult for the first insulating particles to be unintentionally detached from the surface of the conductive particles. In addition, the insulation reliability and the insulation reliability against impact are further enhanced. It is preferable that the conductive part has a reactive functional group capable of reacting with the second insulating particles on the surface. It is preferable that the second insulating particles have a reactive functional group capable of reacting with the conductive portion on the surface. By introducing a chemical bond with these reactive functional groups, it becomes difficult for the second insulating particles to be unintentionally detached from the surface of the conductive particles. In addition, the insulation reliability and the insulation reliability against impact are further enhanced.
 上記反応性官能基として、反応性を考慮して適宜の基が選択される。上記反応性官能基としては、水酸基、ビニル基及びアミノ基等が挙げられる。反応性に優れているので、上記反応性官能基は水酸基であることが好ましい。上記導電性粒子は表面に、水酸基を有することが好ましい。上記導電部は表面に、水酸基を有することが好ましい。上記絶縁性粒子は表面に、水酸基を有することが好ましい。 As the reactive functional group, an appropriate group is selected in consideration of reactivity. Examples of the reactive functional group include a hydroxyl group, a vinyl group, and an amino group. Since the reactivity is excellent, the reactive functional group is preferably a hydroxyl group. The conductive particles preferably have a hydroxyl group on the surface. The conductive part preferably has a hydroxyl group on the surface. The insulating particles preferably have a hydroxyl group on the surface.
 絶縁性粒子の表面と導電性粒子の表面とに水酸基がある場合には、脱水反応により第1,第2の絶縁性粒子と導電性粒子との付着力が適度に高くなる。 When there are hydroxyl groups on the surface of the insulating particles and the surface of the conductive particles, the adhesion between the first and second insulating particles and the conductive particles is appropriately increased by the dehydration reaction.
 上記水酸基を有する化合物としては、P-OH基含有化合物及びSi-OH基含有化合物等が挙げられる。絶縁性粒子の表面に水酸基を導入するための水酸基を有する化合物としては、P-OH基含有化合物及びSi-OH基含有化合物等が挙げられる。 Examples of the compound having a hydroxyl group include a P—OH group-containing compound and a Si—OH group-containing compound. Examples of the compound having a hydroxyl group for introducing a hydroxyl group on the surface of the insulating particles include a P—OH group-containing compound and a Si—OH group-containing compound.
 上記P-OH基含有化合物の具体例としては、アシッドホスホオキシエチルメタクリレート、アシッドホスホオキシプロピルメタクリレート、アシッドホスホオキシポリオキシエチレングリコールモノメタクリレート及びアシッドホスホオキシポリオキシプロピレングリコールモノメタクリレート等が挙げられる。上記P-OH基含有化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 Specific examples of the P—OH group-containing compound include acid phosphooxyethyl methacrylate, acid phosphooxypropyl methacrylate, acid phosphooxypolyoxyethylene glycol monomethacrylate, and acid phosphooxypolyoxypropylene glycol monomethacrylate. Only one type of P—OH group-containing compound may be used, or two or more types may be used in combination.
 上記Si-OH基含有化合物の具体例としては、ビニルトリヒドロキシシラン、及び3-メタクリロキシプロピルトリヒドロキシシラン等が挙げられる。上記Si-OH基含有化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 Specific examples of the Si—OH group-containing compound include vinyltrihydroxysilane and 3-methacryloxypropyltrihydroxysilane. As for the said Si-OH group containing compound, only 1 type may be used and 2 or more types may be used together.
 例えば、水酸基を表面に有する絶縁性粒子は、シランカップリング剤を用いた処理により得ることができる。上記シランカップリング剤としては、例えば、ヒドロキシトリメトキシシラン等が挙げられる。 For example, insulating particles having a hydroxyl group on the surface can be obtained by a treatment using a silane coupling agent. Examples of the silane coupling agent include hydroxytrimethoxysilane.
 (導電材料)
 本発明に係る導電材料は、本発明に係る絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む。本発明に係る絶縁性粒子付き導電性粒子をバインダー樹脂中に分散させる際には、導電性粒子の表面から第1,第2の絶縁性粒子が脱離し難い。本発明に係る絶縁性粒子付き導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。
(Conductive material)
The conductive material according to the present invention includes the conductive particles with insulating particles according to the present invention and a binder resin. When the conductive particles with insulating particles according to the present invention are dispersed in the binder resin, the first and second insulating particles are hardly detached from the surface of the conductive particles. The conductive particles with insulating particles according to the present invention are preferably dispersed in a binder resin and used as a conductive material. The conductive material is preferably an anisotropic conductive material.
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂としては、一般的には絶縁性の樹脂が用いられる。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The binder resin is not particularly limited. In general, an insulating resin is used as the binder resin. Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said binder resin, only 1 type may be used and 2 or more types may be used together.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin. Examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin. Examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 上記導電材料は、上記絶縁性粒子付き導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 In addition to the conductive particles with insulating particles and the binder resin, the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, and heat stability. Various additives such as an agent, a light stabilizer, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
 上記バインダー樹脂中に上記絶縁性粒子付き導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ特に限定されない。バインダー樹脂中に絶縁性粒子付き導電性粒子を分散させる方法としては、例えば、バインダー樹脂中に絶縁性粒子付き導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法、絶縁性粒子付き導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法、並びにバインダー樹脂を水又は有機溶剤等で希釈した後、絶縁性粒子付き導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法等が挙げられる。 The method for dispersing the conductive particles with insulating particles in the binder resin is not particularly limited, and a conventionally known dispersion method can be used. Examples of a method for dispersing conductive particles with insulating particles in a binder resin include, for example, a method in which conductive particles with insulating particles are added to a binder resin and then kneaded and dispersed with a planetary mixer or the like. Conductive particles with particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, then added to the binder resin, kneaded and dispersed with a planetary mixer, etc., and the binder resin is water or organic Examples include a method of adding conductive particles with insulating particles after diluting with a solvent or the like, and kneading and dispersing with a planetary mixer or the like.
 本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。 The conductive material according to the present invention can be used as a conductive paste and a conductive film. When the conductive material according to the present invention is a conductive film, a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.
 本発明に係る導電材料は、導電ペーストであることが好ましい。導電ペーストは取り扱い性及び回路充填性に優れている。導電ペーストを得る際には絶縁性粒子付き導電性粒子に比較的大きな力が付与されるものの、上記第2の絶縁性粒子の存在によって導電性粒子の表面から絶縁性粒子が脱離するのを抑制できる。 The conductive material according to the present invention is preferably a conductive paste. The conductive paste is excellent in handleability and circuit fillability. Although a relatively large force is applied to the conductive particles with insulating particles when obtaining the conductive paste, the insulating particles are detached from the surface of the conductive particles due to the presence of the second insulating particles. Can be suppressed.
 上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に絶縁性粒子付き導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の導通信頼性がより一層高くなる。 In 100% by weight of the conductive material, the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably 99.% or more. It is 99 weight% or less, More preferably, it is 99.9 weight% or less. When the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles with insulating particles are efficiently arranged between the electrodes, and the conduction reliability of the connection target member connected by the conductive material is further increased. Get higher.
 上記導電材料100重量%中、上記絶縁性粒子付き導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは40重量%以下、より好ましくは20重量%以下、更に好ましくは15重量%以下である。絶縁性粒子付き導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。 In 100% by weight of the conductive material, the content of the conductive particles with insulating particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 40% by weight or less, more preferably 20%. % By weight or less, more preferably 15% by weight or less. When the content of the conductive particles with insulating particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.
 (接続構造体)
 上述した絶縁性粒子付き導電性粒子を用いて、又は該絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
(Connection structure)
By using the conductive particles with insulating particles described above, or by using a conductive material including the conductive particles with insulating particles and a binder resin, a connection structure can be obtained by connecting the connection target members. it can.
 上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1の接続対象部材と第2の接続対象部材とを接続している接続部とを備え、該接続部が上述した絶縁性粒子付き導電性粒子により形成されているか、又は該絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料(異方性導電材料など)により形成されている接続構造体であることが好ましい。上記第1の接続対象部材は表面に第1の電極を有することが好ましい。上記第2の接続対象部材は表面に第2の電極を有することが好ましい。上記第1の電極と上記第2の電極とが、上記絶縁性粒子付き導電性粒子における上記導電性粒子により電気的に接続されていることが好ましい。上述した絶縁性粒子付き導電性粒子を用いた場合には、接続部自体が絶縁性粒子付き導電性粒子によって形成される。すなわち、第1,第2の接続対象部材が絶縁性粒子付き導電性粒子における導電性粒子により電気的に接続される。 The connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first connection target member and the second connection target member, and the connection portion. Is formed of the conductive particles with insulating particles described above, or a connection structure formed of a conductive material (such as an anisotropic conductive material) containing the conductive particles with insulating particles and a binder resin. Preferably there is. The first connection target member preferably has a first electrode on the surface. The second connection object member preferably has a second electrode on the surface. It is preferable that the first electrode and the second electrode are electrically connected by the conductive particles in the conductive particles with insulating particles. When the conductive particles with insulating particles described above are used, the connection portion itself is formed of conductive particles with insulating particles. That is, the first and second connection target members are electrically connected by the conductive particles in the conductive particles with insulating particles.
 図4は、図1に示す絶縁性粒子付き導電性粒子1を用いた接続構造体を模式的に示す断面図である。 FIG. 4 is a cross-sectional view schematically showing a connection structure using the conductive particles 1 with insulating particles shown in FIG.
 図4に示す接続構造体81は、第1の接続対象部材82と、第2の接続対象部材83と、第1の接続対象部材82と第2の接続対象部材83とを接続している接続部84とを備える。接続部84は、絶縁性粒子付き導電性粒子1とバインダー樹脂とを含む導電材料により形成されている。図4では、図示の便宜上、絶縁性粒子付き導電性粒子1は略図的に示されている。絶縁性粒子付き導電性粒子1にかえて、絶縁性粒子付き導電性粒子21,31を用いてもよい。 The connection structure 81 shown in FIG. 4 is a connection that connects the first connection target member 82, the second connection target member 83, and the first connection target member 82 and the second connection target member 83. Part 84. The connecting portion 84 is formed of a conductive material including the conductive particles 1 with insulating particles and a binder resin. In FIG. 4, the conductive particles 1 with insulating particles are schematically shown for convenience of illustration. Instead of the conductive particles 1 with insulating particles, conductive particles 21 and 31 with insulating particles may be used.
 第1の接続対象部材82は表面(上面)に、複数の第1の電極82aを有する。第2の接続対象部材83は表面(下面)に、複数の第2の電極83aを有する。第1の電極82aと第2の電極83aとが、1つ又は複数の絶縁性粒子付き導電性粒子1における導電性粒子2により電気的に接続されている。従って、第1,第2の接続対象部材82,83が絶縁性粒子付き導電性粒子1における導電性粒子2により電気的に接続されている。 The first connection target member 82 has a plurality of first electrodes 82a on the surface (upper surface). The second connection target member 83 has a plurality of second electrodes 83a on the surface (lower surface). The 1st electrode 82a and the 2nd electrode 83a are electrically connected by the electroconductive particle 2 in the electroconductive particle 1 with one or some insulating particle. Therefore, the first and second connection target members 82 and 83 are electrically connected by the conductive particles 2 in the conductive particles 1 with insulating particles.
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例として、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10~4.9×10Pa程度である。上記加熱の温度は、120~220℃程度である。 The manufacturing method of the connection structure is not particularly limited. As an example of a method of manufacturing a connection structure, a method of placing the conductive material between a first connection target member and a second connection target member to obtain a laminate, and then heating and pressurizing the laminate Etc. The pressurizing pressure is about 9.8 × 10 4 to 4.9 × 10 6 Pa. The heating temperature is about 120 to 220 ° C.
 上記積層体を加熱及び加圧する際に、導電性粒子2と第1,第2の電極82a,83aとの間に存在していた第1,第2の絶縁性粒子3,4を排除できる。例えば、上記加熱及び加圧の際には、導電性粒子2と第1,第2の電極82a,83aとの間に存在していた第1,第2の絶縁性粒子3,4が溶融したり、変形したりして、導電性粒子2の表面が部分的に露出する。なお、上記加熱及び加圧の際には、大きな力が付与されるので、導電性粒子2の表面から一部の第1,第2の絶縁性粒子3,4が脱離して、導電性粒子2の表面が部分的に露出することもある。導電性粒子2の表面が露出した部分が、第1,第2の電極82a,83aに接触することにより、導電性粒子2を介して第1,第2の電極82a,83aを電気的に接続できる。 When the laminate is heated and pressurized, the first and second insulating particles 3 and 4 existing between the conductive particles 2 and the first and second electrodes 82a and 83a can be eliminated. For example, during the heating and pressurization, the first and second insulating particles 3 and 4 existing between the conductive particles 2 and the first and second electrodes 82a and 83a are melted. Or the surface of the conductive particles 2 is partially exposed. It should be noted that since a large force is applied during the heating and pressurization, some of the first and second insulating particles 3 and 4 are detached from the surface of the conductive particles 2 and the conductive particles. The surface of 2 may be partially exposed. The portion where the surface of the conductive particle 2 is exposed contacts the first and second electrodes 82a and 83a, so that the first and second electrodes 82a and 83a are electrically connected through the conductive particle 2. it can.
 上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記導電材料はペースト状であり、ペーストの状態で接続対象部材上に塗布されることが好ましい。上記絶縁性粒子付き導電性粒子及び導電材料は、電子部品である接続対象部材の接続に用いられることが好ましい。上記接続対象部材は電子部品であることが好ましい。上記絶縁性粒子付き導電性粒子は、電子部品における電極の電気的な接続に用いられることが好ましい。 Specific examples of the connection target member include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as printed boards, flexible printed boards, glass epoxy boards, and glass boards. The conductive material is in a paste form, and is preferably applied on the connection target member in a paste state. The conductive particles with insulating particles and the conductive material are preferably used for connection of a connection target member that is an electronic component. The connection target member is preferably an electronic component. The conductive particles with insulating particles are preferably used for electrical connection of electrodes in an electronic component.
 本発明に係る絶縁性粒子付き導電性粒子は、特にガラス基板と半導体チップとを接続対象部材とするCOG、又はガラス基板とフレキシブルプリント基板(FPC)とを接続対象部材とするFOGに好適に使用される。本発明に係る絶縁性粒子付き導電性粒子は、COGに用いられてもよく、FOGに用いられてもよい。本発明に係る接続構造体では、上記第1,第2の接続対象部材が、ガラス基板と半導体チップとであるか、又はガラス基板とフレキシブルプリント基板とであることが好ましい。上記第1,第2の接続対象部材は、ガラス基板と半導体チップとであってもよく、ガラス基板とフレキシブルプリント基板とであってもよい。 The conductive particles with insulating particles according to the present invention are particularly suitable for COG having a glass substrate and a semiconductor chip as connection target members, or FOG having a glass substrate and a flexible printed circuit board (FPC) as connection target members. Is done. The conductive particles with insulating particles according to the present invention may be used for COG or FOG. In the connection structure according to the present invention, the first and second connection target members are preferably a glass substrate and a semiconductor chip, or a glass substrate and a flexible printed board. The first and second connection target members may be a glass substrate and a semiconductor chip, or may be a glass substrate and a flexible printed board.
 ガラス基板と半導体チップとを接続対象部材とするCOGで使用される半導体チップには、バンプが設けられていることが好ましい。該バンプサイズは1000μm以上、10000μm以下の電極面積であることが好ましい。該バンプ(電極)が設けられた半導体チップにおける電極スペースは好ましくは30μm以下、より好ましくは20μm以下、更に好ましくは10μm以下である。このようなCOG用途に、本発明に係る絶縁性粒子付き導電性粒子は好適に用いられる。ガラス基板とフレキシブルプリント基板とを接続対象部材とするFOGで使用されるFPCでは、電極スペースは好ましくは30μm以下、より好ましくは20μm以下である。 It is preferable that bumps are provided on a semiconductor chip used in a COG having a glass substrate and a semiconductor chip as connection target members. The bump size is preferably an electrode area of 1000 μm 2 or more and 10,000 μm 2 or less. The electrode space in the semiconductor chip provided with the bump (electrode) is preferably 30 μm or less, more preferably 20 μm or less, and still more preferably 10 μm or less. For such COG applications, the conductive particles with insulating particles according to the present invention are preferably used. In the FPC used in the FOG using a glass substrate and a flexible printed circuit as a connection target member, the electrode space is preferably 30 μm or less, more preferably 20 μm or less.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, and a tungsten electrode. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited only to the following examples.
 (実施例1)
 (無電解めっき前処理工程)
 テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子(平均粒子径3μm)10gについて、水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、二塩化スズ溶液におけるセンシタイジングを行った。
(Example 1)
(Electroless plating pretreatment process)
About 10 g of resin particles (average particle size 3 μm) formed from a copolymer resin of tetramethylolmethanetetraacrylate and divinylbenzene, alkali degreasing with sodium hydroxide aqueous solution, acid neutralization, and sensitizing in tin dichloride solution are performed. It was.
 上記樹脂粒子を、イオン吸着剤により5分間処理し、次に硫酸パラジウム水溶液に添加した。その後、ジメチルアミンボランを加えて還元処理し、ろ過し、洗浄することにより、パラジウムが付着された樹脂粒子を得た。 The resin particles were treated with an ion adsorbent for 5 minutes and then added to an aqueous palladium sulfate solution. Thereafter, dimethylamine borane was added for reduction treatment, filtration, and washing to obtain resin particles to which palladium was attached.
 (芯物質複合化工程)
 パラジウム触媒が付与された樹脂粒子10gをイオン交換水300mLに分散させ、分散液を作製した。分散液に金属ニッケル粒子(平均粒子径50nm)1gを3分間かけて添加し、金属ニッケル粒子が付着した樹脂粒子を作製した。
(Core material compounding process)
10 g of resin particles provided with a palladium catalyst were dispersed in 300 mL of ion-exchanged water to prepare a dispersion. 1 g of metallic nickel particles (average particle size 50 nm) was added to the dispersion over 3 minutes to prepare resin particles to which the metallic nickel particles adhered.
 (無電解ニッケルめっき工程)
 次に、イオン交換水500mLにコハク酸ナトリウムを溶解させたコハク酸ナトリウム1重量%溶液を調製した。この溶液に金属ニッケル粒子とパラジウムが付着された樹脂粒子10gを加え、混合し、スラリーを調製した。スラリーに硫酸を添加し、スラリーのpHを5に調整した。
(Electroless nickel plating process)
Next, a 1% by weight sodium succinate solution in which sodium succinate was dissolved in 500 mL of ion exchange water was prepared. 10 g of resin particles having metallic nickel particles and palladium attached thereto were added to this solution and mixed to prepare a slurry. Sulfuric acid was added to the slurry, and the pH of the slurry was adjusted to 5.
 ニッケルめっき液として、硫酸ニッケル10重量%、次亜リン酸ナトリウム10重量%、水酸化ナトリウム4重量%及びコハク酸ナトリウム20重量%を含む前期ニッケルめっき溶液を調製した。pH5に調整された上記スラリーを80℃に加温した後、スラリーに前期ニッケルめっき溶液を連続的に滴下し、20分間攪拌することによりめっき反応を進行させた。水素が発生しなくなったことを確認し、めっき反応を終了した。 As a nickel plating solution, a nickel plating solution containing 10% by weight of nickel sulfate, 10% by weight of sodium hypophosphite, 4% by weight of sodium hydroxide and 20% by weight of sodium succinate was prepared. The slurry adjusted to pH 5 was heated to 80 ° C., and then the nickel plating solution was continuously added dropwise to the slurry and stirred for 20 minutes to advance the plating reaction. After confirming that hydrogen was no longer generated, the plating reaction was completed.
 次に、硫酸ニッケル20重量%、ジメチルアミンボラン5重量%及び水酸化ナトリウム5重量%を含む後期ニッケルめっき溶液を調製した。前期ニッケルめっき溶液によるめっき反応を終えた溶液に、後期ニッケルめっき液を連続的に滴下し、1時間攪拌することによりめっき反応を進行させた。このようにして、樹脂粒子の表面にニッケル層を形成し、導電性粒子Aを得た。なお、ニッケル層の厚みは0.1μmであった。 Next, a late nickel plating solution containing 20% by weight of nickel sulfate, 5% by weight of dimethylamine borane and 5% by weight of sodium hydroxide was prepared. The late nickel plating solution was continuously added dropwise to the solution that had undergone the plating reaction with the previous nickel plating solution, and the plating reaction was allowed to proceed by stirring for 1 hour. In this way, a nickel layer was formed on the surface of the resin particles, and conductive particles A were obtained. The nickel layer had a thickness of 0.1 μm.
 (絶縁性粒子の作製工程)
 4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、メタクリル酸グリシジル45mmol、メタクリル酸メチル380mmol、ジメタクリル酸エチレングリコール13mmol、アシッドホスホオキシポリオキシエチレングリコールメタクリレート0.5mmol、及び2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}1mmolを含むモノマー組成物を入れた。該モノマー組成物を固形分が10重量%となるように蒸留水を添加した後、150rpmで攪拌し、窒素雰囲気下60℃で24時間重合を行った。反応終了後、凍結乾燥して、アシッドホスホオキシポリオキシエチレングリコールメタクリレートに由来するP-OH基を表面に有する第1の絶縁性粒子(平均粒子径400nm)を得た。
(Process for producing insulating particles)
A 1000 mL separable flask equipped with a four-neck separable cover, a stirring blade, a three-way cock, a condenser tube, and a temperature probe, glycidyl methacrylate 45 mmol, methyl methacrylate 380 mmol, dimethacrylate ethylene glycol 13 mmol, acid phosphooxypolyoxyethylene A monomer composition containing 0.5 mmol of glycol methacrylate and 1 mmol of 2,2′-azobis {2- [N- (2-carboxyethyl) amidino] propane} was added. Distilled water was added to the monomer composition so that the solid content was 10% by weight, and the mixture was stirred at 150 rpm and polymerized at 60 ° C. for 24 hours in a nitrogen atmosphere. After completion of the reaction, the mixture was freeze-dried to obtain first insulating particles (average particle diameter 400 nm) having P—OH groups derived from acid phosphooxypolyoxyethylene glycol methacrylate on the surface.
 また、上記の撹拌速度を300rpm、重合温度を80℃に変更したこと以外は同様の方法で、第2の絶縁性粒子(平均粒子径180nm)を得た。 Further, second insulating particles (average particle size 180 nm) were obtained in the same manner except that the stirring speed was changed to 300 rpm and the polymerization temperature was changed to 80 ° C.
 (絶縁性粒子付き導電性粒子の作製工程)
 上記で得られた絶縁性粒子をそれぞれ超音波照射下で蒸留水に分散させ、絶縁性粒子の10重量%水分散液を得た。得られた導電性粒子A10gを蒸留水500mLに分散させ、第1の絶縁性粒子の水分散液3gを添加し、室温で3時間攪拌した。さらに、第2の絶縁性粒子の水分散液2gを添加し、室温で3時間攪拌した。3μmのメッシュフィルターで濾過した後、更にメタノールで洗浄、乾燥し、絶縁性粒子付き導電性粒子を得た。
(Process for producing conductive particles with insulating particles)
The insulating particles obtained above were each dispersed in distilled water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles. 10 g of the obtained conductive particles A were dispersed in 500 mL of distilled water, 3 g of an aqueous dispersion of first insulating particles was added, and the mixture was stirred at room temperature for 3 hours. Further, 2 g of an aqueous dispersion of second insulating particles was added and stirred at room temperature for 3 hours. After filtration through a 3 μm mesh filter, the product was further washed with methanol and dried to obtain conductive particles with insulating particles.
 走査型電子顕微鏡(SEM)により観察したところ、絶縁性粒子付き導電性粒子は、突起を有する導電性粒子の表面に、絶縁性粒子による被覆層が形成されていた。 When observed with a scanning electron microscope (SEM), the conductive particles with insulating particles had a coating layer of insulating particles formed on the surface of the conductive particles having protrusions.
 (実施例2~4及び比較例1~3)
 第1,第2の絶縁性粒子の水分散液の添加量を下記の表1に示すように変更したこと以外は実施例1と同様にして、絶縁性粒子付き導電性粒子を得た。
(Examples 2 to 4 and Comparative Examples 1 to 3)
Conductive particles with insulating particles were obtained in the same manner as in Example 1 except that the addition amount of the aqueous dispersion of the first and second insulating particles was changed as shown in Table 1 below.
 (評価)
 (1)導電性粒子の表面積全体に占める第1,第2の絶縁性粒子により被覆されている部分の合計の面積である被覆率Z
(Evaluation)
(1) Coverage ratio Z, which is the total area of the portions covered with the first and second insulating particles in the entire surface area of the conductive particles
 SEMでの観察により、20個の絶縁性粒子付き導電性粒子を観察した。導電性粒子の表面積全体に占める第1,第2の絶縁性粒子により被覆されている部分の合計の投影面積である被覆率を求めた。20個の被覆率の平均値を被覆率Zとした。 20 conductive particles with insulating particles were observed by SEM observation. The coverage, which is the total projected area of the portions covered with the first and second insulating particles occupying the entire surface area of the conductive particles, was determined. The average value of the 20 coverages was defined as the coverage Z.
 (2)第2の絶縁性粒子の全個数の内、第1の絶縁性粒子に接触しないように導電性粒子の表面上に配置されている第2の導電性粒子の個数の割合X2 (2) Of the total number of second insulating particles, the ratio X2 of the number of second conductive particles arranged on the surface of the conductive particles so as not to contact the first insulating particles
 得られた絶縁性粒子付き導電性粒子において、第2の絶縁性粒子の全個数の内、第1の絶縁性粒子に接触しないように導電性粒子の表面上に配置されている第2の絶縁性粒子の個数の割合X2(%)を求めた。該個数の割合X2を下記の基準で判定した。 In the obtained conductive particles with insulating particles, the second insulating material disposed on the surface of the conductive particles so as not to contact the first insulating particles out of the total number of the second insulating particles. The ratio X2 (%) of the number of the functional particles was determined. The number ratio X2 was determined according to the following criteria.
 [第2の絶縁性粒子の全個数の内、第1の絶縁性粒子に接触しないように導電性粒子の表面上に配置されている第2の絶縁性粒子の個数の割合X2の判定基準]
 A:個数の割合X2が70%以上
 B:個数の割合X2が50%以上、70%未満
 C:個数の割合X2が50%未満
[Criteria of the ratio X2 of the number of second insulating particles arranged on the surface of the conductive particles so as not to contact the first insulating particles among the total number of second insulating particles]
A: Number ratio X2 is 70% or more B: Number ratio X2 is 50% or more and less than 70% C: Number ratio X2 is less than 50%
 (3)第2の絶縁性粒子の全個数の内、第1の絶縁性粒子に接触しないようにかつ導電性粒子に接触するように、導電性粒子の表面上に配置されている第2の導電性粒子の個数の割合X3 (3) The second arranged on the surface of the conductive particles so as not to contact the first insulating particles and to contact the conductive particles out of the total number of the second insulating particles. Ratio of the number of conductive particles X3
 得られた絶縁性粒子付き導電性粒子において、第2の絶縁性粒子の全個数の内、第1の絶縁性粒子に接触しないようにかつ導電性粒子に接触するように、導電性粒子の表面上に配置されている第2の絶縁性粒子の個数の割合X3(%)を求めた。該個数の割合X3を下記の基準で判定した。 In the obtained conductive particles with insulating particles, the surface of the conductive particles so as not to contact the first insulating particles and to contact the conductive particles out of the total number of the second insulating particles. The ratio X3 (%) of the number of the second insulating particles arranged above was determined. The number ratio X3 was determined according to the following criteria.
 [第2の絶縁性粒子の全個数の内、第1の絶縁性粒子に接触しないようにかつ導電性粒子に接触するように、導電性粒子の表面上に配置されている第2の絶縁性粒子の個数の割合X3の判定基準]
 A:個数の割合X3が65%以上
 B:個数の割合X3が50%以上、65%未満
 C:個数の割合X3が50%未満
[Second insulating property disposed on the surface of the conductive particles so as not to contact the first insulating particles and to contact the conductive particles out of the total number of the second insulating particles. Criteria for the ratio X3 of the number of particles]
A: Number ratio X3 is 65% or more B: Number ratio X3 is 50% or more and less than 65% C: Number ratio X3 is less than 50%
 (4)導電性粒子1個当たりの、導電性粒子の表面上に配置されている第1の絶縁性粒子の平均個数Y1 (4) The average number Y1 of the first insulating particles arranged on the surface of the conductive particles per one conductive particle
 得られた絶縁性粒子付き導電性粒子において、導電性粒子1個当たりの、導電性粒子の表面上に配置されている第1の絶縁性粒子の平均個数Y1を求めた。該平均個数Y1を下記の基準で判定した。 In the obtained conductive particles with insulating particles, the average number Y1 of the first insulating particles arranged on the surface of the conductive particles per conductive particle was determined. The average number Y1 was determined according to the following criteria.
 [導電性粒子1個当たりの、導電性粒子の表面上に配置されている第1の絶縁性粒子の平均個数Y1の判定基準]
 A:平均個数Y1が10個以上、100個以下
 B:平均個数Y1が3個以上、10個未満
 C:平均個数Y1が3個未満
[Criteria for determining the average number Y1 of the first insulating particles arranged on the surface of the conductive particles per conductive particle]
A: Average number Y1 is 10 or more and 100 or less B: Average number Y1 is 3 or more and less than 10 C: Average number Y1 is less than 3
 (5)導電性粒子1個当たりの、導電性粒子の表面上に配置されている第2の絶縁性粒子の平均個数Y2 (5) Average number Y2 of second insulating particles arranged on the surface of the conductive particles per conductive particle
 得られた絶縁性粒子付き導電性粒子において、導電性粒子1個当たりの、導電性粒子の表面上に配置されている第2の絶縁性粒子の平均個数Y2を求めた。該平均個数Y2を下記の基準で判定した。 In the obtained conductive particles with insulating particles, the average number Y2 of second insulating particles arranged on the surface of the conductive particles per conductive particle was determined. The average number Y2 was determined according to the following criteria.
 [導電性粒子1個当たりの、導電性粒子の表面上に配置されている第2の絶縁性粒子の平均個数Y2の判定基準]
 A:平均個数Y2が20個以上、1000個以下
 B:平均個数Y2が6個以上、20個未満
 C:平均個数Y2が6個未満
[Criteria for Average Number Y2 of Second Insulating Particles Disposed on the Surface of Conductive Particles per Conductive Particle]
A: Average number Y2 is 20 or more and 1000 or less B: Average number Y2 is 6 or more and less than 20 C: Average number Y2 is less than 6
 (6)導電性粒子1個当たりの、導電性粒子の表面上に配置されている第1の絶縁性粒子の平均個数Y1の、導電性粒子1個当たりの、導電性粒子の表面上に配置されている第2の絶縁性粒子の平均個数Y2に対する比(平均個数Y1/平均個数Y2)
 得られた絶縁性粒子付き導電性粒子において、導電性粒子1個当たりの、導電性粒子の表面上に配置されている第1の絶縁性粒子の平均個数Y1の、導電性粒子1個当たりの、導電性粒子の表面上に配置されている第2の絶縁性粒子の平均個数Y2に対する比(平均個数Y1/平均個数Y2)を求めた。該比(平均個数Y1/平均個数Y2)を下記の基準で判定した。
(6) The average number Y1 of the first insulating particles arranged on the surface of the conductive particles per conductive particle is arranged on the surface of the conductive particles per conductive particle. Ratio of the second insulating particles to the average number Y2 (average number Y1 / average number Y2)
In the obtained conductive particles with insulating particles, the average number Y1 of the first insulating particles arranged on the surface of the conductive particles per one conductive particle, per one conductive particle. The ratio (average number Y1 / average number Y2) to the average number Y2 of the second insulating particles arranged on the surface of the conductive particles was determined. The ratio (average number Y1 / average number Y2) was determined according to the following criteria.
 [比(平均個数Y1/平均個数Y2)の判定基準]
 A:比(平均個数Y1/平均個数Y2)の比が0.005以上、0.5以下
 B:比(平均個数Y1/平均個数Y2)の比が0.5を超え、1以下
 C:比(平均個数Y1/平均個数Y2)の比が1を超える
[Criteria for ratio (average number Y1 / average number Y2)]
A: Ratio (average number Y1 / average number Y2) ratio is 0.005 or more and 0.5 or less B: Ratio (average number Y1 / average number Y2) ratio exceeds 0.5 and 1 or less C: Ratio The ratio of (average number Y1 / average number Y2) exceeds 1.
 (7)導通性(上下の電極間)
 得られた絶縁性粒子付き導電性粒子を含有量が10重量%となるように、三井化学社製「ストラクトボンドXN-5A」に添加し、分散させ、異方性導電ペーストを得た。
(7) Conductivity (between upper and lower electrodes)
The obtained conductive particles with insulating particles were added to “Strectbond XN-5A” manufactured by Mitsui Chemicals so as to have a content of 10% by weight, and dispersed to obtain an anisotropic conductive paste.
 L/Sが30μm/30μmであるITO電極パターンが上面に形成された透明ガラス基板を用意した。また、L/Sが30μm/30μmである銅電極パターンが下面に形成された半導体チップを用意した。 A transparent glass substrate on which an ITO electrode pattern with L / S of 30 μm / 30 μm was formed was prepared. Further, a semiconductor chip was prepared in which a copper electrode pattern having L / S of 30 μm / 30 μm was formed on the lower surface.
 上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、1MPaの圧力をかけて異方性導電ペースト層を185℃で硬化させて、接続構造体を得た。 The obtained anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 1 MPa is applied to form the anisotropic conductive paste layer. It hardened | cured at 185 degreeC and the connection structure was obtained.
 得られた20個の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通性を下記の基準で判定した。 The connection resistance between the upper and lower electrodes of the 20 connection structures obtained was measured by the 4-terminal method. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. The conductivity was determined according to the following criteria.
 [導通性の判定基準]
 ○:抵抗値が5Ω以下の接続構造体の個数の割合が80%以上
 △:抵抗値が5Ω以下の接続構造体の個数の割合が60%以上、80%未満
 ×:抵抗値が5Ω以下の接続構造体の個数の割合が60%未満
[Conductivity criteria]
○: The ratio of the number of connection structures having a resistance value of 5Ω or less is 80% or more. Δ: The ratio of the number of connection structures having a resistance value of 5Ω or less is 60% or more and less than 80%. X: The resistance value is 5Ω or less. Less than 60% of the number of connection structures
 (8)絶縁性(横方向に隣り合う電極間)
 上記(7)導通性の評価で得られた20個の接続構造体において、隣接する電極間のリークの有無を、テスターで抵抗を測定することにより評価した。絶縁性を下記の基準で判定した。
(8) Insulation (between adjacent electrodes in the horizontal direction)
In the 20 connection structures obtained in the above (7) conductivity evaluation, the presence or absence of leakage between adjacent electrodes was evaluated by measuring resistance with a tester. Insulation was judged according to the following criteria.
 [絶縁性の判定基準]
 ○○:抵抗値が10Ω以上の接続構造体の個数の割合が90%以上
 ○:抵抗値が10Ω以上の接続構造体の個数の割合が80%以上、90%未満
 △:抵抗値が10Ω以上の接続構造体の個数の割合が60%以上、80%未満
 ×:抵抗値が10Ω以上の接続構造体の個数の割合が60%未満
 結果を下記の表1に示す。
[Insulation criteria]
○○: The ratio of the number of connection structures having a resistance value of 10 8 Ω or more is 90% or more. ○: The ratio of the number of connection structures having a resistance value of 10 8 Ω or more is 80% or more and less than 90%. The ratio of the number of connection structures having a value of 10 8 Ω or more is 60% or more and less than 80%. X: The ratio of the number of connection structures having a resistance value of 10 8 Ω or more is less than 60%. Show.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1…絶縁性粒子付き導電性粒子
 2…導電性粒子
 3…第1の絶縁性粒子
 4…第2の絶縁性粒子
 11…基材粒子
 12…導電部
 21…絶縁性粒子付き導電性粒子
 22…導電性粒子
 26…導電部
 27…芯物質
 28…突起
 31…絶縁性粒子付き導電性粒子
 32…導電性粒子
 36…導電部
 37…突起
 81…接続構造体
 82…第1の接続対象部材
 82a…第1の電極
 83…第2の接続対象部材
 83a…第2の電極
 84…接続部
DESCRIPTION OF SYMBOLS 1 ... Conductive particle with insulating particle 2 ... Conductive particle 3 ... 1st insulating particle 4 ... 2nd insulating particle 11 ... Base particle 12 ... Conductive part 21 ... Conductive particle with insulating particle 22 ... Conductive particle 26 ... conductive portion 27 ... core substance 28 ... protrusion 31 ... conductive particle with insulating particle 32 ... conductive particle 36 ... conductive portion 37 ... protrusion 81 ... connection structure 82 ... first connection target member 82a ... 1st electrode 83 ... 2nd connection object member 83a ... 2nd electrode 84 ... connection part

Claims (9)

  1.  導電部を少なくとも表面に有する導電性粒子と、
     前記導電性粒子の表面上に配置された複数の第1の絶縁性粒子と、
     前記導電性粒子の表面上に配置された複数の第2の絶縁性粒子とを備え、
     前記第2の絶縁性粒子の平均粒子径が、前記第1の絶縁性粒子の平均粒子径よりも小さく、
     前記第2の絶縁性粒子の全個数の内の50%以上が、前記第1の絶縁性粒子に接触しないように、前記導電性粒子の表面上に配置されている、絶縁性粒子付き導電性粒子。
    Conductive particles having at least a conductive portion on the surface;
    A plurality of first insulating particles disposed on a surface of the conductive particles;
    A plurality of second insulating particles disposed on the surface of the conductive particles,
    The average particle diameter of the second insulating particles is smaller than the average particle diameter of the first insulating particles;
    Conductivity with insulating particles, wherein 50% or more of the total number of the second insulating particles is disposed on the surface of the conductive particles so as not to contact the first insulating particles. particle.
  2.  前記第2の絶縁性粒子の全個数の内の70%以上が、前記第1の絶縁性粒子に接触しないように、前記導電性粒子の表面上に配置されている、請求項1に記載の絶縁性粒子付き導電性粒子。 The 70% or more of the total number of the second insulating particles is arranged on the surface of the conductive particles so as not to contact the first insulating particles. Conductive particles with insulating particles.
  3.  前記第2の絶縁性粒子の全個数の内の50%以上が、前記第1の絶縁性粒子に接触しないようにかつ前記導電性粒子に接触するように、前記導電性粒子の表面上に配置されている、請求項1又は2に記載の絶縁性粒子付き導電性粒子。 50% or more of the total number of the second insulating particles is disposed on the surface of the conductive particles so as not to contact the first insulating particles and to contact the conductive particles. Conductive particles with insulating particles according to claim 1 or 2.
  4.  前記導電性粒子の表面に、化学結合を介して、前記第1の絶縁性粒子が付着している、請求項1~3のいずれか1項に記載の絶縁性粒子付き導電性粒子。 The conductive particles with insulating particles according to any one of claims 1 to 3, wherein the first insulating particles are attached to the surfaces of the conductive particles through chemical bonds.
  5.  前記導電性粒子の表面に、化学結合を介して、前記第2の絶縁性粒子が付着している、請求項1~4のいずれか1項に記載の絶縁性粒子付き導電性粒子。 The conductive particles with insulating particles according to any one of claims 1 to 4, wherein the second insulating particles are attached to the surfaces of the conductive particles through chemical bonds.
  6.  前記第1の絶縁性粒子及び前記第2の絶縁性粒子がそれぞれ、前記導電性粒子の表面上に、ハイブリダイゼーション法により配置されていない、請求項1~5のいずれか1項に記載の絶縁性粒子付き導電性粒子。 The insulation according to any one of claims 1 to 5, wherein each of the first insulating particles and the second insulating particles is not arranged on the surface of the conductive particles by a hybridization method. Conductive particles with conductive particles.
  7.  前記導電性粒子が、前記導電部の外表面に突起を有する、請求項1~6のいずれか1項に記載の絶縁性粒子付き導電性粒子。 The conductive particles with insulating particles according to any one of claims 1 to 6, wherein the conductive particles have protrusions on an outer surface of the conductive portion.
  8.  請求項1~7のいずれか1項に記載の絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む、導電材料。 A conductive material comprising the conductive particles with insulating particles according to any one of claims 1 to 7 and a binder resin.
  9.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と、前記第2の接続対象部材を接続している接続部とを備え、
     前記接続部が、請求項1~7のいずれか1項に記載の絶縁性粒子付き導電性粒子により形成されているか、又は前記絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料により形成されており、
     前記第1の電極と前記第2の電極とが、前記絶縁性粒子付き導電性粒子における前記導電性粒子により電気的に接続されている、接続構造体。
    A first connection object member having a first electrode on its surface;
    A second connection target member having a second electrode on its surface;
    The first connection target member, and a connection portion connecting the second connection target member,
    The connection portion is formed of the conductive particles with insulating particles according to any one of claims 1 to 7, or formed of a conductive material including the conductive particles with insulating particles and a binder resin. Has been
    The connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles in the conductive particles with insulating particles.
PCT/JP2013/068116 2012-07-03 2013-07-02 Conductive particles with insulating particles, conductive material, and connection structure WO2014007238A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380032489.4A CN104380392B (en) 2012-07-03 2013-07-02 The electroconductive particle of tape insulation particle, conductive material and connection structural bodies
KR1020147029846A KR102095826B1 (en) 2012-07-03 2013-07-02 Conductive particles with insulating particles, conductive material, and connection structure
JP2013535614A JP6480661B2 (en) 2012-07-03 2013-07-02 Method for producing conductive particles with insulating particles, method for producing conductive material, and method for producing connection structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012149212 2012-07-03
JP2012149213 2012-07-03
JP2012-149213 2012-07-03
JP2012-149212 2012-07-03

Publications (1)

Publication Number Publication Date
WO2014007238A1 true WO2014007238A1 (en) 2014-01-09

Family

ID=49881993

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/068115 WO2014007237A1 (en) 2012-07-03 2013-07-02 Conductive particles with insulating particles, conductive material, and connection structure
PCT/JP2013/068116 WO2014007238A1 (en) 2012-07-03 2013-07-02 Conductive particles with insulating particles, conductive material, and connection structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068115 WO2014007237A1 (en) 2012-07-03 2013-07-02 Conductive particles with insulating particles, conductive material, and connection structure

Country Status (5)

Country Link
JP (4) JP6480660B2 (en)
KR (2) KR102095826B1 (en)
CN (2) CN104395967B (en)
TW (2) TWI607458B (en)
WO (2) WO2014007237A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187984A (en) * 2014-03-10 2015-10-29 積水化学工業株式会社 Conductive particles with insulating particles, conductive materials and connection structure
WO2017138483A1 (en) * 2016-02-10 2017-08-17 日立化成株式会社 Insulated coated conductive particles, anisotropic conductive adhesive and connected structure
WO2019194135A1 (en) * 2018-04-04 2019-10-10 積水化学工業株式会社 Conductive particles having insulating particles, conductive material, and connection structure
WO2019194133A1 (en) * 2018-04-04 2019-10-10 積水化学工業株式会社 Conductive particles having insulating particles, production method for conductive particles having insulating particles, conductive material, and connection structure
WO2019194134A1 (en) * 2018-04-04 2019-10-10 積水化学工業株式会社 Conductive particles having insulating particles, production method for conductive particles having insulating particles, conductive material, and connection structure

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201533960A (en) * 2014-02-21 2015-09-01 Long Time Tech Co Ltd Silicon carbon composite electrode material and method of preparing the same
JP6431411B2 (en) * 2014-03-10 2018-11-28 積水化学工業株式会社 Conductive particles with insulating particles, conductive material, and connection structure
CN105900180B (en) * 2014-06-05 2018-07-06 积水化学工业株式会社 The manufacturing method of conductive paste, connection structural bodies and connection structural bodies
JP6592235B2 (en) * 2014-10-02 2019-10-16 積水化学工業株式会社 Conductive particles with insulating particles, method for producing conductive particles with insulating particles, conductive material, and connection structure
JP2016135563A (en) * 2015-01-23 2016-07-28 コニカミノルタ株式会社 Inkjet head and inkjet recording device
EP3047973A3 (en) * 2015-01-23 2016-09-07 Konica Minolta, Inc. Inkjet head, method of producing inkjet head, and inkjet recording device
JP6610117B2 (en) * 2015-09-18 2019-11-27 コニカミノルタ株式会社 Connection structure, inkjet head, inkjet head manufacturing method, and inkjet recording apparatus
KR102422589B1 (en) * 2017-01-27 2022-07-18 쇼와덴코머티리얼즈가부시끼가이샤 Insulated conductive particle, anisotropic conductive film, manufacturing method of anisotropic conductive film, bonded structure, and manufacturing method of bonded structure
JP7287275B2 (en) * 2017-04-28 2023-06-06 株式会社レゾナック ADHESIVE COMPOSITION AND METHOD FOR MANUFACTURING CONNECTED BODY

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044773A (en) * 2003-07-07 2005-02-17 Sekisui Chem Co Ltd Particles having electrically conductive coating, anisotropically conductive material, and electrically conductive connection structure
JP2005187637A (en) * 2003-12-25 2005-07-14 Sekisui Chem Co Ltd Anisotropically electroconductive adhesive, top/bottom conductive material for liquid crystal display device and liquid crystal display device
JP2010086665A (en) * 2008-09-29 2010-04-15 Sekisui Chem Co Ltd Insulation coated conductive particle, anisotropic conductive material, and connection structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2748705B2 (en) * 1991-02-14 1998-05-13 日立化成工業株式会社 Circuit connection members
JP3869785B2 (en) * 2002-10-25 2007-01-17 積水化学工業株式会社 Insulating coating conductive fine particles and conductive connection structure
CN100437838C (en) * 2003-07-07 2008-11-26 积水化学工业株式会社 Coated conductive particle, anisotropic conductive material, and conductive connection structure
JP4313664B2 (en) * 2003-12-11 2009-08-12 積水化学工業株式会社 Protruding conductive particles, coated conductive particles, and anisotropic conductive material
JP2006269296A (en) * 2005-03-24 2006-10-05 Sekisui Chem Co Ltd Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material
KR100819524B1 (en) * 2007-01-25 2008-04-07 제일모직주식회사 Insulated conductive particle and anisotropic conductive film using the same
WO2010001900A1 (en) * 2008-07-01 2010-01-07 日立化成工業株式会社 Circuit connection material and circuit connection structure
JP5548053B2 (en) * 2010-07-02 2014-07-16 積水化学工業株式会社 Conductive particles with insulating particles, method for producing conductive particles with insulating particles, anisotropic conductive material, and connection structure
KR101321636B1 (en) * 2010-07-02 2013-10-23 세키스이가가쿠 고교가부시키가이샤 Conductive particle with insulative particles attached thereto, anisotropic conductive material, and connecting structure
JP5703149B2 (en) * 2011-07-06 2015-04-15 積水化学工業株式会社 Conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP5667555B2 (en) * 2011-12-12 2015-02-12 株式会社日本触媒 Conductive fine particles and anisotropic conductive material containing the same
JP5667557B2 (en) * 2011-12-14 2015-02-12 株式会社日本触媒 Conductive fine particles and anisotropic conductive materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044773A (en) * 2003-07-07 2005-02-17 Sekisui Chem Co Ltd Particles having electrically conductive coating, anisotropically conductive material, and electrically conductive connection structure
JP2005187637A (en) * 2003-12-25 2005-07-14 Sekisui Chem Co Ltd Anisotropically electroconductive adhesive, top/bottom conductive material for liquid crystal display device and liquid crystal display device
JP2010086665A (en) * 2008-09-29 2010-04-15 Sekisui Chem Co Ltd Insulation coated conductive particle, anisotropic conductive material, and connection structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187984A (en) * 2014-03-10 2015-10-29 積水化学工業株式会社 Conductive particles with insulating particles, conductive materials and connection structure
WO2017138483A1 (en) * 2016-02-10 2017-08-17 日立化成株式会社 Insulated coated conductive particles, anisotropic conductive adhesive and connected structure
JPWO2017138483A1 (en) * 2016-02-10 2018-12-20 日立化成株式会社 Insulating coated conductive particles, anisotropic conductive adhesive, and connection structure
WO2019194135A1 (en) * 2018-04-04 2019-10-10 積水化学工業株式会社 Conductive particles having insulating particles, conductive material, and connection structure
WO2019194133A1 (en) * 2018-04-04 2019-10-10 積水化学工業株式会社 Conductive particles having insulating particles, production method for conductive particles having insulating particles, conductive material, and connection structure
WO2019194134A1 (en) * 2018-04-04 2019-10-10 積水化学工業株式会社 Conductive particles having insulating particles, production method for conductive particles having insulating particles, conductive material, and connection structure
JP7284703B2 (en) 2018-04-04 2023-05-31 積水化学工業株式会社 Conductive particles with insulating particles, conductive materials and connection structures

Also Published As

Publication number Publication date
KR102095826B1 (en) 2020-04-01
CN104380392A (en) 2015-02-25
JP6480661B2 (en) 2019-03-13
TWI635517B (en) 2018-09-11
JP2018029072A (en) 2018-02-22
KR20150028224A (en) 2015-03-13
JP6480660B2 (en) 2019-03-13
TWI607458B (en) 2017-12-01
JP6470810B2 (en) 2019-02-13
KR102076066B1 (en) 2020-02-11
CN104395967B (en) 2017-05-31
TW201403628A (en) 2014-01-16
KR20150028764A (en) 2015-03-16
CN104395967A (en) 2015-03-04
TW201405589A (en) 2014-02-01
CN104380392B (en) 2016-11-23
JP6475805B2 (en) 2019-02-27
WO2014007237A1 (en) 2014-01-09
JPWO2014007237A1 (en) 2016-06-02
JPWO2014007238A1 (en) 2016-06-02
JP2018029071A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6470810B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6188456B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6009933B2 (en) Conductive particles, conductive materials, and connection structures
WO2012043472A1 (en) Conductive particles, anisotropic conductive material and connection structure
WO2013108740A1 (en) Conductive particles, conductive material and connection structure
JP5636118B2 (en) Conductive particles, conductive materials, and connection structures
WO2013108843A1 (en) Conductive particles, conductive material and connection structure
JP6084868B2 (en) Conductive particles, conductive materials, and connection structures
JP6276351B2 (en) Conductive particles, conductive materials, and connection structures
WO2013108842A1 (en) Conductive particles, conductive material and connection structure
JP6431411B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6151990B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6687408B2 (en) Conductive particle powder, method for producing conductive particle powder, conductive material and connection structure
JP6478308B2 (en) Conductive particles, conductive materials, and connection structures
JP6577723B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6200318B2 (en) Conductive particles, conductive materials, and connection structures
JP6441555B2 (en) Conductive particles, conductive materials, and connection structures
JP6066734B2 (en) Conductive particles, conductive materials, and connection structures

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013535614

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147029846

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813682

Country of ref document: EP

Kind code of ref document: A1