JP6592235B2 - Conductive particles with insulating particles, method for producing conductive particles with insulating particles, conductive material, and connection structure - Google Patents

Conductive particles with insulating particles, method for producing conductive particles with insulating particles, conductive material, and connection structure Download PDF

Info

Publication number
JP6592235B2
JP6592235B2 JP2014204122A JP2014204122A JP6592235B2 JP 6592235 B2 JP6592235 B2 JP 6592235B2 JP 2014204122 A JP2014204122 A JP 2014204122A JP 2014204122 A JP2014204122 A JP 2014204122A JP 6592235 B2 JP6592235 B2 JP 6592235B2
Authority
JP
Japan
Prior art keywords
particles
conductive
insulating
insulating particles
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014204122A
Other languages
Japanese (ja)
Other versions
JP2016076304A (en
Inventor
茂雄 真原
茂雄 真原
敬三 西岡
敬三 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2014204122A priority Critical patent/JP6592235B2/en
Publication of JP2016076304A publication Critical patent/JP2016076304A/en
Application granted granted Critical
Publication of JP6592235B2 publication Critical patent/JP6592235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導電性粒子の表面上に絶縁性粒子が配置されている絶縁性粒子付き導電性粒子及び絶縁性粒子付き導電性粒子の製造方法に関する。また、本発明は、上記絶縁性粒子付き導電性粒子を用いた導電材料及び接続構造体に関する。   The present invention relates to conductive particles with insulating particles in which insulating particles are arranged on the surface of conductive particles, and a method for producing conductive particles with insulating particles. Moreover, this invention relates to the electrically-conductive material and connection structure using the said electroconductive particle with an insulating particle.

異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。これらの異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。   Anisotropic conductive materials such as anisotropic conductive pastes and anisotropic conductive films are widely known. In these anisotropic conductive materials, conductive particles are dispersed in a binder resin.

上記異方性導電材料は、ICチップとフレキシブルプリント回路基板との接続、及びICチップとITO電極を有する回路基板との接続等に使用されている。例えば、ICチップの電極と回路基板の電極との間に異方性導電材料を配置した後、加熱及び加圧することにより、これらの電極を電気的に接続できる。   The anisotropic conductive material is used for connection between an IC chip and a flexible printed circuit board, connection between an IC chip and a circuit board having an ITO electrode, and the like. For example, after disposing an anisotropic conductive material between the electrode of the IC chip and the electrode of the circuit board, these electrodes can be electrically connected by heating and pressing.

上記導電性粒子の一例として、下記の特許文献1には、導電性の金属表面を有する粒子と、上記導電性の金属表面を有する粒子の表面を被覆する絶縁性粒子とを備える絶縁性粒子付き導電性粒子が開示されている。特許文献1では、粒子径の異なる2種以上の絶縁性粒子を併用することで、大きな絶縁性粒子により被覆された隙間に小さな絶縁性粒子が入り込み、被覆密度が向上することが記載されている。   As an example of the conductive particle, Patent Document 1 below includes an insulating particle including a particle having a conductive metal surface and an insulating particle covering the surface of the particle having the conductive metal surface. Conductive particles are disclosed. Patent Document 1 describes that when two or more kinds of insulating particles having different particle diameters are used in combination, small insulating particles enter a gap covered with large insulating particles, thereby improving the coating density. .

また、下記の特許文献2,3には導電層を少なくとも表面に有する導電性粒子と、上記導電性粒子の表面上に配置された複数の絶縁性粒子とを備える絶縁性粒子付き導電性粒子が開示されている。   Further, in Patent Documents 2 and 3 below, conductive particles with insulating particles comprising conductive particles having at least a conductive layer on the surface and a plurality of insulating particles arranged on the surface of the conductive particles are provided. It is disclosed.

特許文献2では、上記導電性粒子の表面積全体に占める上記絶縁性粒子により被覆されている部分の面積である被覆率は60%以上、95%以下である。特許文献3では、上記導電部の外表面が防錆処理されており、上記導電性粒子の表面積全体に占める上記絶縁性粒子により被覆されている部分の面積である被覆率は60%以上である。   In patent document 2, the coverage which is the area of the part coat | covered with the said insulating particle which occupies for the whole surface area of the said electroconductive particle is 60% or more and 95% or less. In Patent Document 3, the outer surface of the conductive part is rust-proofed, and the coverage, which is the area of the portion covered with the insulating particles in the entire surface area of the conductive particles, is 60% or more. .

特開2005−44773号公報JP 2005-44773 A 特開2013−16414号公報JP 2013-16414 A 特開2014−29857号公報JP 2014-29857 A

本発明者らは、従来の絶縁性粒子付き導電性粒子では、かなり高い絶縁信頼性が求められる場合に、絶縁信頼性が充分に高められないという課題があることを見出した。   The present inventors have found that the conventional conductive particles with insulating particles have a problem that the insulation reliability cannot be sufficiently improved when a considerably high insulation reliability is required.

本発明の目的は、導電接続後に、導通信頼性を高く維持しつつ、絶縁信頼性を高めることができる絶縁性粒子付き導電性粒子及び絶縁性粒子付き導電性粒子の製造方法を提供することである。また、本発明の目的は、上記絶縁性粒子付き導電性粒子を用いた導電材料及び接続構造体を提供することである。   An object of the present invention is to provide a conductive particle with insulating particles and a method for producing conductive particles with insulating particles, which can increase the insulation reliability while maintaining high conduction reliability after conductive connection. is there. Another object of the present invention is to provide a conductive material and a connection structure using the conductive particles with insulating particles.

本発明の広い局面によれば、導電部を少なくとも表面に有する導電性粒子と、前記導電性粒子の表面上に配置された複数の絶縁性粒子とを備え、前記導電性粒子の表面積全体に占める前記絶縁性粒子により被覆されている面積である被覆率が60%以上であり、前記複数の絶縁性粒子の内の少なくとも一部が互いに、面接触しているか、又は、前記複数の絶縁性粒子が、前記導電性粒子の表面上で、粒子を膨潤処理することで形成されている、絶縁性粒子付き導電性粒子が提供される。   According to a wide aspect of the present invention, the method includes conductive particles having at least a conductive portion on a surface and a plurality of insulating particles disposed on the surface of the conductive particles, and occupies the entire surface area of the conductive particles. The coverage, which is the area covered with the insulating particles, is 60% or more, and at least some of the plurality of insulating particles are in surface contact with each other, or the plurality of insulating particles However, conductive particles with insulating particles, which are formed by swelling the particles on the surface of the conductive particles, are provided.

本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記複数の絶縁性粒子の内の少なくとも一部が互いに、面接触している。   In a specific aspect of the conductive particles with insulating particles according to the present invention, at least some of the plurality of insulating particles are in surface contact with each other.

本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記複数の絶縁性粒子が、前記導電性粒子の表面上で、粒子を膨潤処理することで形成されている。   In a specific aspect of the conductive particles with insulating particles according to the present invention, the plurality of insulating particles are formed by swelling the particles on the surface of the conductive particles.

本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記複数の絶縁性粒子の全個数の内の少なくとも30個数%以上が互いに、面接触している。   In a specific aspect of the conductive particles with insulating particles according to the present invention, at least 30% by number or more of the total number of the plurality of insulating particles are in surface contact with each other.

本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記被覆率が85%を超える。   In a specific aspect of the conductive particles with insulating particles according to the present invention, the coverage is greater than 85%.

本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記複数の絶縁性粒子が、複数の第1の絶縁性粒子と、前記第1の絶縁性粒子よりも50nm以上、500nm以下大きい平均粒子径を有する複数の第2の絶縁性粒子とを含む。   In a specific aspect of the conductive particles with insulating particles according to the present invention, the plurality of insulating particles are a plurality of first insulating particles and 50 nm or more and 500 nm or less than the first insulating particles. A plurality of second insulating particles having a large average particle diameter.

本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記導電性粒子が、前記導電部の外表面に複数の突起を有する。   On the specific situation with the electroconductive particle with an insulating particle which concerns on this invention, the said electroconductive particle has several protrusion on the outer surface of the said electroconductive part.

本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記絶縁性粒子の平均粒子径が、前記突起の平均高さの1倍以下である。   On the specific situation with the electroconductive particle with an insulating particle which concerns on this invention, the average particle diameter of the said insulating particle is 1 time or less of the average height of the said processus | protrusion.

本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記突起の平均高さが、100nm以上である。   On the specific situation with the electroconductive particle with an insulating particle which concerns on this invention, the average height of the said processus | protrusion is 100 nm or more.

本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記絶縁性粒子の平均粒子径が、前記突起の平均高さの0.1倍以上、1倍以下である。   On the specific situation with the electroconductive particle with an insulating particle which concerns on this invention, the average particle diameter of the said insulating particle is 0.1 time or more and 1 time or less of the average height of the said processus | protrusion.

本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記絶縁性粒子の平均粒子径の前記導電性粒子の粒子径に対する比が1/1000以上、1/3以下である。   In a specific aspect of the conductive particles with insulating particles according to the present invention, a ratio of an average particle size of the insulating particles to a particle size of the conductive particles is 1/1000 or more and 1/3 or less.

本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記導電性粒子の表面に、化学結合を介して、前記絶縁性粒子が付着している。   On the specific situation with the electroconductive particle with an insulating particle which concerns on this invention, the said insulating particle has adhered to the surface of the said electroconductive particle through a chemical bond.

本発明の広い局面によれば、上述した絶縁性粒子付き導電性粒子の製造方法であって、前記複数の絶縁性粒子を、前記導電性粒子の表面上で、粒子を膨潤処理することで形成する、絶縁性粒子付き導電性粒子の製造方法が提供される。   According to a wide aspect of the present invention, there is provided a method for producing the conductive particles with insulating particles described above, wherein the plurality of insulating particles are formed by swelling the particles on the surface of the conductive particles. A method for producing conductive particles with insulating particles is provided.

本発明の広い局面によれば、上述した絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。   According to a wide aspect of the present invention, there is provided a conductive material including the conductive particles with insulating particles described above and a binder resin.

本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材を接続している接続部とを備え、前記接続部が、上述した絶縁性粒子付き導電性粒子により形成されているか、又は前記絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料により形成されており、前記第1の電極と前記第2の電極とが、前記絶縁性粒子付き導電性粒子における前記導電性粒子により電気的に接続されている、接続構造体が提供される。   According to a wide aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, A connecting portion connecting the second connection target member, wherein the connecting portion is formed of the above-described conductive particles with insulating particles, or the conductive particles with insulating particles and a binder resin. A connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles in the conductive particles with insulating particles. Is provided.

本発明に係る絶縁性粒子付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、上記導電性粒子の表面上に配置された複数の絶縁性粒子とを備え、上記導電性粒子の表面積全体に占める上記絶縁性粒子により被覆されている面積である被覆率が60%以上であり、上記複数の絶縁性粒子の内の少なくとも一部が互いに、面接触しているか、又は、上記複数の絶縁性粒子が、上記導電性粒子の表面上で、粒子を膨潤処理することで形成されているので、導電接続を行った後に、絶縁信頼性を高めることができる。   The conductive particles with insulating particles according to the present invention include conductive particles having at least a conductive part on a surface thereof, and a plurality of insulating particles arranged on the surface of the conductive particles. The coverage which is the area covered with the insulating particles in the entire surface area is 60% or more, and at least some of the plurality of insulating particles are in surface contact with each other, or the plurality Since the insulating particles are formed by swelling the particles on the surface of the conductive particles, the insulation reliability can be improved after conducting the conductive connection.

本発明に係る絶縁性粒子付き導電性粒子の製造方法は、複数の絶縁性粒子を、導電性粒子の表面上で、粒子を膨潤処理することで形成するので、被覆率を効果的に高めることができ、更に得られる絶縁性粒子付き導電性粒子を用いて導電接続を行うことにより、導通信頼性を高く維持しつつ、絶縁信頼性を高めることができる。   In the method for producing conductive particles with insulating particles according to the present invention, the plurality of insulating particles are formed by swelling the particles on the surface of the conductive particles, so that the coverage rate is effectively increased. In addition, by conducting conductive connection using the obtained conductive particles with insulating particles, the insulation reliability can be enhanced while maintaining high conduction reliability.

図1は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。FIG. 1 is a cross-sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。FIG. 2 is a cross-sectional view showing conductive particles with insulating particles according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。FIG. 3 is a cross-sectional view showing conductive particles with insulating particles according to the third embodiment of the present invention. 図4は、本発明の第4の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。FIG. 4 is a sectional view showing conductive particles with insulating particles according to the fourth embodiment of the present invention. 図5は、図1に示す絶縁性粒子付き導電性粒子を用いた接続構造体を模式的に示す正面断面図である。FIG. 5 is a front cross-sectional view schematically showing a connection structure using the conductive particles with insulating particles shown in FIG. 1. 図6(a)及び(b)は、被覆率の評価方法を説明するための模式図である。FIGS. 6A and 6B are schematic views for explaining a method for evaluating the coverage.

以下、本発明の詳細を説明する。   Details of the present invention will be described below.

(絶縁性粒子付き導電性粒子)
以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
(Conductive particles with insulating particles)
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。なお、各実施形態における異なる部分構成は、適宜置き換えて、組み合わせることが可能である。   FIG. 1 is a cross-sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention. Note that different partial configurations in the respective embodiments can be appropriately replaced and combined.

図1に示す絶縁性粒子付き導電性粒子1は、導電性粒子2と、複数の絶縁性粒子3とを備える。   A conductive particle 1 with insulating particles shown in FIG. 1 includes conductive particles 2 and a plurality of insulating particles 3.

導電性粒子2は、導電部12を少なくとも表面に有する。導電部12の外表面は防錆処理されていることが好ましい。   The electroconductive particle 2 has the electroconductive part 12 at least on the surface. It is preferable that the outer surface of the electroconductive part 12 is rust-proofed.

絶縁性粒子3は、導電性粒子2の表面上に配置されている。複数の絶縁性粒子3は、導電性粒子2の表面に接触しており、導電性粒子2の表面に付着している。複数の絶縁性粒子3は、導電性粒子2における導電部12の外表面に接触しており、導電部12の外表面に付着している。導電性粒子2の表面積全体に占める絶縁性粒子3により被覆されている部分の面積である被覆率は60%以上である。   The insulating particles 3 are disposed on the surface of the conductive particles 2. The plurality of insulating particles 3 are in contact with the surface of the conductive particles 2 and are attached to the surface of the conductive particles 2. The plurality of insulating particles 3 are in contact with the outer surface of the conductive part 12 in the conductive particle 2 and are attached to the outer surface of the conductive part 12. The coverage, which is the area of the portion covered with the insulating particles 3 occupying the entire surface area of the conductive particles 2, is 60% or more.

複数の絶縁性粒子3は、導電性粒子2の表面上で、粒子を膨潤処理することで形成されている。複数の絶縁性粒子3の内の少なくとも一部が互いに、点接触ではなく、面接触している。複数の絶縁性粒子3の全個数の内の少なくとも一部の個数が互いに、面接触している。   The plurality of insulating particles 3 are formed by swelling the particles on the surface of the conductive particles 2. At least some of the plurality of insulating particles 3 are not in point contact with each other but in surface contact. At least some of the total number of the plurality of insulating particles 3 are in surface contact with each other.

導電性粒子2は、基材粒子11と、基材粒子11の表面上に配置された導電部12とを有する。導電部12は導電層である。導電部12は、基材粒子11の表面を覆っている。導電性粒子2は、基材粒子11の表面が導電部12により被覆された被覆粒子である。導電性粒子2は表面に導電部12を有する。   The conductive particle 2 includes a base particle 11 and a conductive portion 12 disposed on the surface of the base particle 11. The conductive part 12 is a conductive layer. The conductive part 12 covers the surface of the base particle 11. The conductive particle 2 is a coated particle in which the surface of the base particle 11 is coated with the conductive portion 12. The conductive particle 2 has a conductive portion 12 on the surface.

絶縁性粒子3は、絶縁性を有する材料により形成されている。絶縁性粒子3の粒子径は、導電性粒子2の粒子径よりも小さい。   The insulating particles 3 are made of an insulating material. The particle diameter of the insulating particles 3 is smaller than the particle diameter of the conductive particles 2.

図2は、本発明の第2の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。   FIG. 2 is a cross-sectional view showing conductive particles with insulating particles according to the second embodiment of the present invention.

図2に示す絶縁性粒子付き導電性粒子21は、導電性粒子22と、複数の絶縁性粒子23とを備える。   The conductive particles 21 with insulating particles shown in FIG. 2 include conductive particles 22 and a plurality of insulating particles 23.

導電性粒子22は、導電部26を少なくとも表面に有する。導電部26の外表面は防錆処理されている。絶縁性粒子23は、導電性粒子22の表面上に配置されている。導電性粒子22の表面積全体に占める絶縁性粒子23により被覆されている部分の面積である被覆率は60%以上である。   The electroconductive particle 22 has the electroconductive part 26 at least on the surface. The outer surface of the conductive portion 26 is rust-proofed. The insulating particles 23 are disposed on the surface of the conductive particles 22. The coverage, which is the area of the portion covered with the insulating particles 23 occupying the entire surface area of the conductive particles 22, is 60% or more.

絶縁性粒子付き導電性粒子1と絶縁性粒子付き導電性粒子21とでは、導電性粒子2,22と、絶縁性粒子3,23とが異なる。   In the conductive particles 1 with insulating particles and the conductive particles 21 with insulating particles, the conductive particles 2 and 22 and the insulating particles 3 and 23 are different.

導電性粒子22は、基材粒子11と、基材粒子11の表面上に配置された導電部26とを有する。導電性粒子22は、基材粒子11の表面上に複数の芯物質27を有する。導電部26は、基材粒子11と芯物質27とを被覆している。芯物質27を導電部26が被覆していることにより、導電性粒子22は表面に、複数の突起28を有する。芯物質27により導電部26の表面が隆起されており、複数の突起28が形成されている。   The conductive particle 22 includes the base particle 11 and a conductive portion 26 disposed on the surface of the base particle 11. The conductive particle 22 has a plurality of core substances 27 on the surface of the base particle 11. The conductive portion 26 covers the base particle 11 and the core material 27. By covering the core material 27 with the conductive portion 26, the conductive particles 22 have a plurality of protrusions 28 on the surface. The surface of the conductive portion 26 is raised by the core material 27, and a plurality of protrusions 28 are formed.

複数の絶縁性粒子23は、導電性粒子22の表面上で、粒子を膨潤処理することで形成されている。複数の絶縁性粒子23の内の少なくとも一部が互いに、点接触ではなく、面接触している。   The plurality of insulating particles 23 are formed by swelling the particles on the surface of the conductive particles 22. At least some of the plurality of insulating particles 23 are not in point contact with each other but in surface contact.

図3は、本発明の第3の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。   FIG. 3 is a cross-sectional view showing conductive particles with insulating particles according to the third embodiment of the present invention.

図3に示す絶縁性粒子付き導電性粒子31は、導電性粒子32と、複数の絶縁性粒子33とを備える。   The conductive particles 31 with insulating particles shown in FIG. 3 include conductive particles 32 and a plurality of insulating particles 33.

導電性粒子32は、導電部36を少なくとも表面に有する。絶縁性粒子33は、導電性粒子32の表面上に配置されている。導電性粒子32の表面積全体に占める絶縁性粒子33により被覆されている部分の面積である被覆率は60%以上である。   The electroconductive particle 32 has the electroconductive part 36 at least on the surface. The insulating particles 33 are disposed on the surface of the conductive particles 32. The coverage, which is the area of the portion covered with the insulating particles 33 in the entire surface area of the conductive particles 32, is 60% or more.

絶縁性粒子付き導電性粒子1と絶縁性粒子付き導電性粒子31とでは、導電性粒子2,32と、絶縁性粒子3,33とのみが異なる。   In the conductive particles 1 with insulating particles and the conductive particles 31 with insulating particles, only the conductive particles 2 and 32 and the insulating particles 3 and 33 are different.

導電性粒子32は、基材粒子11と、基材粒子11の表面上に配置された導電部36とを有する。導電性粒子22は芯物質27を有するが、導電性粒子32は芯物質を有さない。導電部36は、第1の部分と、該第1の部分よりも厚みが厚い第2の部分とを有する。導電性粒子32は表面に複数の突起37を有する。複数の突起37を除く部分が、導電部36における上記第1の部分である。複数の突起37は、導電部36の厚みが厚い上記第2の部分である。   The conductive particle 32 includes the base particle 11 and a conductive portion 36 disposed on the surface of the base particle 11. The conductive particles 22 have a core material 27, but the conductive particles 32 do not have a core material. The conductive portion 36 has a first portion and a second portion that is thicker than the first portion. The conductive particles 32 have a plurality of protrusions 37 on the surface. A portion excluding the plurality of protrusions 37 is the first portion in the conductive portion 36. The plurality of protrusions 37 are the second portion in which the conductive portion 36 is thick.

複数の絶縁性粒子33は、導電性粒子32の表面上で、粒子を膨潤処理することで形成されている。複数の絶縁性粒子33の内の少なくとも一部が互いに、点接触ではなく、面接触している。   The plurality of insulating particles 33 are formed by swelling the particles on the surface of the conductive particles 32. At least some of the plurality of insulating particles 33 are not in point contact with each other but in surface contact.

図4は、本発明の第4の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。   FIG. 4 is a sectional view showing conductive particles with insulating particles according to the fourth embodiment of the present invention.

図4に示す絶縁性粒子付き導電性粒子41は、導電性粒子2と、複数の絶縁性粒子43とを備える。絶縁性粒子43は、導電性粒子2の表面上に配置されている。   The conductive particle 41 with insulating particles shown in FIG. 4 includes the conductive particles 2 and a plurality of insulating particles 43. The insulating particles 43 are disposed on the surface of the conductive particles 2.

複数の絶縁性粒子43は、導電性粒子2の表面上で、粒子を膨潤処理することで形成されている。複数の絶縁性粒子43の内の少なくとも一部が互いに、点接触ではなく、面接触している。   The plurality of insulating particles 43 are formed by swelling the particles on the surface of the conductive particles 2. At least some of the plurality of insulating particles 43 are not in point contact with each other but in surface contact.

複数の絶縁性粒子43は、複数の第1の絶縁性粒子43Aと、第1の絶縁性粒子43Aよりも50nm以上、500nm以下大きい平均粒子径を有する複数の第2の絶縁性粒子43Bとを含む。絶縁性粒子付き導電性粒子41では、平均粒子径が異なる第1,第2の絶縁性粒子43A,43Bが用いられている。   The plurality of insulating particles 43 includes a plurality of first insulating particles 43A and a plurality of second insulating particles 43B having an average particle diameter that is 50 nm or more and 500 nm or less larger than the first insulating particles 43A. Including. In the conductive particles 41 with insulating particles, first and second insulating particles 43A and 43B having different average particle diameters are used.

絶縁性粒子付き導電性粒子1,21,31,41ではいずれも、導電性粒子2,22,32の表面積全体に占める絶縁性粒子3,23,33,43により被覆されている部分の面積である被覆率は60%以上である。さらに、複数の絶縁性粒子3,23,33,43は、導電性粒子2,22,32の表面上で、粒子を膨潤処理することで形成されているか、又は、複数の絶縁性粒子3の内の少なくとも一部が互いに、面接触している。絶縁性粒子付き導電性粒子を用いて上下の電極間を電気的に接続すると、接続されてはならない横方向に隣接する電極間が電気的に接続されるのを抑制できる。すなわち、絶縁信頼性を高めることができる。なお、通常、導電接続時には、絶縁性粒子の脱離に影響する大きな力が付与される結果、絶縁性粒子が脱離して、露出した導電性粒子2,22,32が電極に接触する。複数の絶縁性粒子3,23,33,43は、導電性粒子2,22,32の表面上で、粒子を膨潤処理することで形成されているか、又は、複数の絶縁性粒子3の内の少なくとも一部が互いに、面接触しているので、導電接続時に付与される力によって、導電性粒子2,22,32と電極との間の絶縁性粒子3,23,33,43が複数まとまってとれやすい。このため、導通信頼性を高く維持することができる。   In each of the conductive particles 1, 21, 31, 41 with insulating particles, the area of the portion covered with the insulating particles 3, 23, 33, 43 occupying the entire surface area of the conductive particles 2, 22, 32 is Some coverage is 60% or more. Furthermore, the plurality of insulating particles 3, 23, 33, 43 are formed by swelling the particles on the surfaces of the conductive particles 2, 22, 32, or the plurality of insulating particles 3 At least some of them are in surface contact with each other. When the upper and lower electrodes are electrically connected using the conductive particles with insulating particles, it is possible to suppress electrical connection between the electrodes adjacent in the lateral direction that should not be connected. That is, insulation reliability can be improved. Normally, at the time of conductive connection, a large force that affects the detachment of the insulating particles is applied. As a result, the insulating particles are detached and the exposed conductive particles 2, 22, and 32 are in contact with the electrodes. The plurality of insulating particles 3, 23, 33, 43 are formed by swelling the particles on the surfaces of the conductive particles 2, 22, 32, or the plurality of insulating particles 3, Since at least some of them are in surface contact with each other, a plurality of insulating particles 3, 23, 33, 43 between the conductive particles 2, 22, 32, and the electrode are gathered together by the force applied during the conductive connection. Easy to take. For this reason, conduction reliability can be maintained high.

本発明では、複数の絶縁性粒子が、導電性粒子の表面上で、粒子を膨潤処理することで形成されていてもよい。この場合には、絶縁性粒子が互いに面接触又は近接した状態となりやすく、意図しない絶縁性粒子の脱離を防ぐことができ、絶縁信頼性を高めることができる。   In the present invention, a plurality of insulating particles may be formed by swelling the particles on the surface of the conductive particles. In this case, the insulating particles are likely to be in surface contact with each other or close to each other, so that unintended insulating particles can be prevented from being detached, and insulation reliability can be improved.

本発明では、複数の絶縁性粒子の内の少なくとも一部が互いに、面接触していてもよい。この場合には、絶縁性粒子が互いに面接触していることで、意図しない絶縁性粒子の脱離を防ぐことができ、絶縁信頼性を高めることができる。また、この場合に、衝突等によって複数の絶縁性粒子を互いに面接触させた後に、導電性粒子の表面上に配置してもよい。   In the present invention, at least some of the plurality of insulating particles may be in surface contact with each other. In this case, since the insulating particles are in surface contact with each other, unintentional detachment of the insulating particles can be prevented, and insulation reliability can be improved. In this case, a plurality of insulating particles may be brought into surface contact with each other by collision or the like and then disposed on the surface of the conductive particles.

絶縁信頼性及び衝撃に対する絶縁信頼性をより一層高める観点からは、上記導電性粒子の表面積全体に占める上記絶縁性粒子により被覆されている部分の面積である被覆率は、好ましくは65%以上、より好ましくは70%以上、より一層好ましくは70%を超え、更に好ましくは75%以上、更に一層好ましくは80%以上、特に好ましくは85%以上、最も好ましくは85%を超える。導通信頼性をより一層高める観点からは、上記被覆率は好ましくは99%以下、より好ましくは98%以下、更に好ましくは95%以下である。   From the viewpoint of further increasing the insulation reliability and the insulation reliability against impact, the coverage, which is the area of the portion covered with the insulating particles in the entire surface area of the conductive particles, is preferably 65% or more, More preferably 70% or more, still more preferably more than 70%, still more preferably 75% or more, still more preferably 80% or more, particularly preferably 85% or more, and most preferably more than 85%. From the viewpoint of further improving the conduction reliability, the coverage is preferably 99% or less, more preferably 98% or less, and still more preferably 95% or less.

上記導電性粒子の表面積全体に占める上記絶縁性粒子により被覆されている部分の面積である被覆率は、以下のようにして求められる。   The coverage, which is the area of the portion covered with the insulating particles occupying the entire surface area of the conductive particles, is obtained as follows.

走査型電子顕微鏡(SEM)での観察により、例えば20個の絶縁性粒子付き導電性粒子を観察し、絶縁性粒子付き導電性粒子における導電性粒子の被覆率(%)(付着率(%)ともいう)を求める。上記被覆率は、導電性粒子の表面積に占める絶縁性粒子により被覆されている部分の合計の面積(投影面積)である。   By observation with a scanning electron microscope (SEM), for example, 20 conductive particles with insulating particles are observed, and the coverage of conductive particles in the conductive particles with insulating particles (%) (attachment rate (%)) (Also called). The said coverage is a total area (projected area) of the part coat | covered with the insulating particle which occupies for the surface area of electroconductive particle.

具体的には、上記被覆率は、絶縁性粒子付き導電性粒子を一方向から走査型電子顕微鏡(SEM)で観察した場合、観察画像における絶縁性粒子付き導電性粒子の導電性粒子の表面の外周縁部分の円内(図6(a)の斜線部分)の面積全体に占める、導電性粒子の表面の外周縁部分の円内における絶縁性粒子の合計の面積(図6(b)の斜線部分)を意味する。   Specifically, when the conductive particles with insulating particles are observed from one direction with a scanning electron microscope (SEM), the coverage ratio is the surface of the conductive particles of the conductive particles with insulating particles in the observation image. The total area of the insulating particles in the circle of the outer peripheral edge portion of the surface of the conductive particles occupying the entire area in the circle of the outer peripheral edge portion (the hatched portion in FIG. 6A) (the hatched line in FIG. 6B) Part).

導通信頼性及び絶縁信頼性をより一層高める観点からは、互いに面接触している絶縁性粒子において、1つの絶縁性粒子の表面積中の他の絶縁性粒子に面接触している表面積は好ましくは0.5%以上、より好ましくは1%以上、更に好ましくは5%以上、好ましくは40%以下、より好ましくは30%以下である。面接触している表面積には、他の絶縁性粒子と面接触していない絶縁性粒子は考慮されない。   From the viewpoint of further improving the conduction reliability and the insulation reliability, in the insulating particles in surface contact with each other, the surface area in surface contact with other insulating particles in the surface area of one insulating particle is preferably It is 0.5% or more, more preferably 1% or more, still more preferably 5% or more, preferably 40% or less, more preferably 30% or less. Insulating particles that are not in surface contact with other insulating particles are not considered in the surface area in surface contact.

複数の絶縁性粒子の全個数の内の少なくとも30個数%以上が互いに、面接触していることが好ましい。面接触している絶縁性粒子の個数の割合は、より好ましくは40個数%以上、更に好ましくは50個数%以上、好ましくは100個数%以下である。面接触している絶縁性粒子の個数の割合が高いほど、被覆率を効果的に高めることができ、絶縁信頼性を効果的に高めることができる。   It is preferable that at least 30% by number or more of the total number of the plurality of insulating particles are in surface contact with each other. The ratio of the number of insulating particles in surface contact is more preferably 40% by number or more, further preferably 50% by number or more, and preferably 100% by number or less. The higher the ratio of the number of insulating particles in surface contact, the higher the coverage ratio and the higher the insulation reliability.

上記複数の絶縁性粒子が、複数の第1の絶縁性粒子と、上記第1の絶縁性粒子よりも50nm以上、500nm以下大きい平均粒子径を有する複数の第2の絶縁性粒子とを含んでいてもよい。このような粒子径が異なる2種以上の絶縁性粒子を用いることで、被覆率を効果的に高めることができ、絶縁信頼性を効果的に高めることができる。   The plurality of insulating particles include a plurality of first insulating particles and a plurality of second insulating particles having an average particle diameter larger by 50 nm or more and 500 nm or less than the first insulating particles. May be. By using two or more kinds of insulating particles having different particle diameters, the coverage can be effectively increased, and the insulation reliability can be effectively increased.

導通信頼性、絶縁信頼性及び衝撃に対する絶縁信頼性をより一層高める観点からは、上記絶縁性粒子の平均粒子径Aの上記導電性粒子の粒子径Bに対する比(平均粒子径A/粒子径B)は好ましくは1/1000以上、より好ましくは1/100以上、好ましくは1/3以下、より好ましくは1/10以下である。   From the viewpoint of further improving the conduction reliability, the insulation reliability, and the insulation reliability against impact, the ratio of the average particle diameter A of the insulating particles to the particle diameter B of the conductive particles (average particle diameter A / particle diameter B ) Is preferably 1/1000 or more, more preferably 1/100 or more, preferably 1/3 or less, more preferably 1/10 or less.

上記導電性粒子及び上記絶縁性粒子の粒子径は、上記導電性粒子及び上記絶縁性粒子が真球状である場合には直径を意味し、上記導電性粒子及び上記絶縁性粒子が真球状以外の形状である場合には最大径を意味する。平均粒子径は、任意の粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。   The particle diameter of the conductive particles and the insulating particles means a diameter when the conductive particles and the insulating particles are spherical, and the conductive particles and the insulating particles are other than spherical. In the case of a shape, it means the maximum diameter. The average particle diameter is preferably obtained by observing 50 arbitrary particles with an electron microscope or an optical microscope and calculating an average value.

絶縁信頼性及び衝撃に対する絶縁信頼性をより一層高める観点からは、上記導電性粒子の表面に、化学結合を介して、上記絶縁性粒子が付着していることが好ましい。   From the viewpoint of further increasing the insulation reliability and the insulation reliability against impact, it is preferable that the insulating particles adhere to the surface of the conductive particles through a chemical bond.

電極間の導通信頼性を高める観点からは、上記導電性粒子は、上記導電部の外表面に複数の突起を有することが好ましい。一般に、導電部の外表面に突起がある導電性粒子では、該突起が大きいほど、絶縁信頼性が低下する傾向がある。本発明に係る絶縁性粒子付き導電性粒子では、上記絶縁性粒子が備えられているので、たとえ突起が大きくても、絶縁信頼性を充分に確保できる。   From the viewpoint of enhancing the conduction reliability between the electrodes, the conductive particles preferably have a plurality of protrusions on the outer surface of the conductive part. Generally, in conductive particles having protrusions on the outer surface of the conductive part, the insulation reliability tends to decrease as the protrusions increase. In the conductive particles with insulating particles according to the present invention, since the insulating particles are provided, insulation reliability can be sufficiently ensured even if the protrusions are large.

導通信頼性をより一層高める観点からは、導電性粒子は、上記導電部の外表面に突起を有することが好ましい。導通信頼性をより一層高める観点からは、上記突起の平均高さは好ましくは10nm以上、より好ましくは50nm以上、好ましくは200nm以下、より好ましくは150nm以下である。   From the viewpoint of further improving the conduction reliability, the conductive particles preferably have protrusions on the outer surface of the conductive part. From the viewpoint of further improving the conduction reliability, the average height of the protrusions is preferably 10 nm or more, more preferably 50 nm or more, preferably 200 nm or less, more preferably 150 nm or less.

導通信頼性及び絶縁信頼性をより一層高める観点からは、上記絶縁性粒子の平均粒子径が、上記突起の平均高さの好ましくは0.1倍以上であることが好ましく、0.3倍以上であることがより好ましく、1倍以下であることが好ましく、1倍未満であることがより好ましく、0.9倍以下であることが更に好ましく、0.8倍以下であることが特に好ましい。   From the viewpoint of further improving the conduction reliability and the insulation reliability, the average particle diameter of the insulating particles is preferably 0.1 times or more, preferably 0.3 times or more of the average height of the protrusions. More preferably, it is 1 times or less, more preferably less than 1 time, still more preferably 0.9 times or less, and particularly preferably 0.8 times or less.

上記絶縁性粒子の平均粒子径は、複数の絶縁性粒子の平均値を示す。上記突起の平均高さは、複数の突起の高さの平均値を示す。上記突起の高さは、導電性粒子の中心と突起の先端とを結ぶ線(図2に示す破線L1)上における、突起が無いと想定した場合の導電層の仮想線(図2に示す破線L2)上(突起が無いと想定した場合の球状の導電性粒子の外表面上)から突起の先端までの距離を示す。すなわち、図2においては、破線L1と破線L2との交点から突起の先端までの距離を示す。   The average particle diameter of the insulating particles indicates an average value of a plurality of insulating particles. The average height of the protrusions indicates an average value of the heights of the plurality of protrusions. The height of the protrusion is the imaginary line of the conductive layer (the broken line shown in FIG. 2) when it is assumed that there is no protrusion on the line connecting the center of the conductive particles and the tip of the protrusion (broken line L1 shown in FIG. 2). L2) Indicates the distance from the top (on the outer surface of the spherical conductive particles assuming no projection) to the tip of the projection. That is, in FIG. 2, the distance from the intersection of the broken line L1 and the broken line L2 to the tip of the protrusion is shown.

以下、絶縁性粒子付き導電性粒子における導電性粒子、絶縁性粒子の詳細を説明する。   Hereinafter, the details of the conductive particles and the insulating particles in the conductive particles with insulating particles will be described.

[導電性粒子]
上記導電性粒子は、少なくとも表面に導電部を有していればよい。該導電部は導電層であることが好ましい。導電性粒子は、基材粒子と、基材粒子の表面上に配置された導電層を有する導電性粒子であってもよく、全体が導電部である金属粒子であってもよい。なかでも、コストを低減したり、導電性粒子の柔軟性を高くして、電極間の導通信頼性を高めたりする観点からは、基材粒子と、基材粒子の表面上に配置された導電部とを有する導電性粒子が好ましい。
[Conductive particles]
The said electroconductive particle should just have an electroconductive part on the surface at least. The conductive part is preferably a conductive layer. The conductive particles may be base particles and conductive particles having a conductive layer disposed on the surface of the base particles, or may be metal particles whose entirety is a conductive portion. Among these, from the viewpoint of reducing the cost and increasing the flexibility of the conductive particles to increase the conduction reliability between the electrodes, the base particles and the conductive material disposed on the surface of the base particles are used. Conductive particles having a portion are preferred.

上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子又は有機無機ハイブリッド粒子であることが好ましい。上記基材粒子は、コアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。   Examples of the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles. The substrate particles are preferably substrate particles excluding metal particles, and are preferably resin particles or organic-inorganic hybrid particles. The base particles may be core-shell particles. The core may be an organic core, and the shell may be an inorganic shell.

上記基材粒子は、樹脂により形成された樹脂粒子であることが好ましい。絶縁性粒子付き導電性粒子を用いて電極間を接続する際には、絶縁性粒子付き導電性粒子を電極間に配置した後、圧着することにより絶縁性粒子付き導電性粒子を圧縮させる。基材粒子が樹脂粒子であると、上記圧着の際に導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の導通信頼性が高くなる。   The substrate particles are preferably resin particles formed of a resin. When connecting the electrodes using the conductive particles with insulating particles, the conductive particles with insulating particles are compressed by placing the conductive particles with insulating particles between the electrodes and then pressing them. When the substrate particles are resin particles, the conductive particles are likely to be deformed during the pressure bonding, and the contact area between the conductive particles and the electrode is increased. For this reason, the conduction | electrical_connection reliability between electrodes becomes high.

上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が挙げられる。導電材料に適した任意の圧縮時の物性を有する樹脂粒子を設計及び合成することができ、かつ基材粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を複数有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。   Various organic materials are suitably used as the resin for forming the resin particles. Examples of the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Alkylene terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polysulfone, polyphenylene Oxide, polyacetal, polyimide, polyamideimide, polyether ether Ketones, polyether sulfones, and polymers such as obtained by a variety of polymerizable monomer having an ethylenically unsaturated group is polymerized with one or more thereof. Resin for forming the resin particles can be designed and synthesized, and the hardness of the base particles can be easily controlled within a suitable range, which is suitable for conductive materials and having physical properties at the time of compression. Is preferably a polymer obtained by polymerizing one or more polymerizable monomers having a plurality of ethylenically unsaturated groups.

上記樹脂粒子を、エチレン性不飽和基を有する単量体を重合させて得る場合には、該エチレン性不飽和基を有する単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。   When the resin particles are obtained by polymerizing a monomer having an ethylenically unsaturated group, the monomer having the ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer. And a polymer.

上記非架橋性の単量体としては、例えば、スチレン、α−メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。   Examples of the non-crosslinkable monomer include styrene monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; oxygen such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate (Meth) acrylates; nitrile-containing monomers such as (meth) acrylonitrile; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether; vinyl acids such as vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stearate Esters; Unsaturated hydrocarbons such as ethylene, propylene, isoprene and butadiene; Halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride and chlorostyrene Is mentioned.

上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ−(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。   Examples of the crosslinkable monomer include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanure And silane-containing monomers such as triallyl trimellitate, divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, γ- (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane It is done.

上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、及び非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。   The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.

上記基材粒子が金属粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合には、上記基材粒子の材料である無機物としては、シリカ及びカーボンブラック等が挙げられる。上記無機物は金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。   When the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal particles, examples of the inorganic material that is a material of the substrate particles include silica and carbon black. The inorganic substance is preferably not a metal. The particles formed from the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle | grains obtained by performing are mentioned. Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.

上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。但し、上記基材粒子は金属粒子ではないことが好ましい。   When the substrate particles are metal particles, examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium. However, the substrate particles are preferably not metal particles.

上記導電部を形成するための金属は特に限定されない。さらに、導電性粒子が、全体が導電部である金属粒子である場合、該金属粒子を形成するための金属は特に限定されない。該金属としては、例えば、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、タングステン、モリブデン、ケイ素及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。なかでも、電極間の接続抵抗をより一層低くすることができるので、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムが好ましい。上記導電部の融点は、好ましくは300℃以上、より好ましくは450℃以上である。上記導電部は、はんだではない導電部であってもよい。     The metal for forming the conductive part is not particularly limited. Furthermore, in the case where the conductive particles are metal particles that are conductive parts as a whole, the metal for forming the metal particles is not particularly limited. Examples of the metal include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, tungsten, and molybdenum. , Silicon and alloys thereof. Examples of the metal include tin-doped indium oxide (ITO) and solder. Especially, since the connection resistance between electrodes can be made still lower, an alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is preferable. The melting point of the conductive part is preferably 300 ° C. or higher, more preferably 450 ° C. or higher. The conductive part may be a conductive part that is not solder.

上記導電部を構成する金属に錆が生じやすいほど、上記被膜による被覆効果が顕著に得られる。ニッケル、銅又はスズにより形成された導電部では、導電部の外表面に錆が比較的生じやすい。このような導電部の外表面を被膜で被覆することにより、導電部の外表面に錆が生じるのを効果的に抑制できる。上記被膜による被覆効果が効果的に得られるので、上記導電部は、ニッケル、銅又は錫を含んでいてもよい。   As the metal constituting the conductive part is more likely to be rusted, the coating effect by the coating is more remarkable. In the conductive part formed of nickel, copper or tin, rust is relatively easily generated on the outer surface of the conductive part. By covering the outer surface of such a conductive part with a film, it is possible to effectively suppress rust from being generated on the outer surface of the conductive part. Since the covering effect by the said film is acquired effectively, the said electroconductive part may contain nickel, copper, or tin.

なお、導電部の表面には、酸化により水酸基が存在することが多い。一般的に、ニッケルにより形成された導電部の表面には、酸化により水酸基が存在する。このような水酸基を有する導電部の表面(導電性粒子の表面)に、化学結合を介して、絶縁性粒子を付着させることができる。   In many cases, hydroxyl groups are present on the surface of the conductive portion by oxidation. In general, a hydroxyl group exists on the surface of a conductive portion formed of nickel by oxidation. Insulating particles can be attached to the surface of the conductive part having such a hydroxyl group (the surface of the conductive particles) through a chemical bond.

上記導電層は、1つの層により形成されていてもよい。導電層は、複数の層により形成されていてもよい。すなわち、導電層は、2層以上の積層構造を有していてもよい。導電層が複数の層により形成されている場合には、最外層は、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層であることがより好ましい。最外層がこれらの好ましい導電層である場合には、電極間の接続抵抗がより一層低くなる。また、最外層が金層である場合には、耐腐食性がより一層高くなる。   The conductive layer may be formed of a single layer. The conductive layer may be formed of a plurality of layers. That is, the conductive layer may have a stacked structure of two or more layers. When the conductive layer is formed of a plurality of layers, the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer, or an alloy layer containing tin and silver, and is a gold layer. Is more preferable. When the outermost layer is these preferred conductive layers, the connection resistance between the electrodes is further reduced. Moreover, when the outermost layer is a gold layer, the corrosion resistance is further enhanced.

粒子の表面上に導電部を形成する方法は特に限定されない。導電部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを粒子の表面にコーティングする方法等が挙げられる。なかでも、導電部の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。   The method for forming the conductive portion on the surface of the particle is not particularly limited. Examples of the method for forming the conductive part include a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating the surface of particles with metal powder or a paste containing metal powder and a binder. Can be mentioned. Especially, since formation of an electroconductive part is simple, the method by electroless plating is preferable. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.

上記導電性粒子の平均粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、好ましくは100μm以下、より好ましくは20μm以下、更に好ましくは5μm以下である。導電性粒子の平均粒子径が上記下限以上及び上記上限以下であると、絶縁性粒子付き導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。   The average particle diameter of the conductive particles is preferably 0.5 μm or more, more preferably 1 μm or more, preferably 100 μm or less, more preferably 20 μm or less, and even more preferably 5 μm or less. When the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrodes is sufficiently large when the electrodes are connected using the conductive particles with insulating particles. And it becomes difficult to form aggregated conductive particles when the conductive layer is formed. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base material particles.

上記導電性粒子の「平均粒子径」は、数平均粒子径を示す。導電性粒子の平均粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。   The “average particle size” of the conductive particles indicates a number average particle size. The average particle diameter of the conductive particles can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.

導電部の厚みは、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは20nm以上、特に好ましくは50nm以上、好ましくは1000nm以下、より好ましくは800nm以下、更に好ましくは500nm以下、特に好ましくは400nm以下、最も好ましくは300nm以下である。導電部の厚みは、導電部が多層(上記第1,第2の導電部など)である場合には、多層の導電部(第1,第2の導電部)の合計の厚みである。導電部全体の厚みが上記下限以上であると、導電性粒子の導電性がより一層良好になる。導電部全体の厚みが上記上限以下であると、基材粒子と導電部との熱膨張率の差が小さくなり、基材粒子から金属層が剥離し難くなる。   The thickness of the conductive part is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more, particularly preferably 50 nm or more, preferably 1000 nm or less, more preferably 800 nm or less, still more preferably 500 nm or less, particularly preferably 400 nm. Hereinafter, it is most preferably 300 nm or less. The thickness of the conductive portion is the total thickness of the multilayer conductive portions (first and second conductive portions) when the conductive portion is a multilayer (such as the first and second conductive portions). When the thickness of the entire conductive portion is not less than the above lower limit, the conductivity of the conductive particles is further improved. When the thickness of the entire conductive part is less than or equal to the above upper limit, the difference in thermal expansion coefficient between the base particle and the conductive part is small, and the metal layer is difficult to peel from the base particle.

上記導電部が多層である場合に、最外層の導電部の厚みは、好ましくは1nm以上、より好ましくは10nm以上、好ましくは500nm以下、より好ましくは100nm以下である。上記最外層の導電部の厚みが上記下限以上及び上記上限以下であると、最外層の導電部による被覆を均一にでき、耐腐食性が充分に高くなり、かつ電極間の接続抵抗が充分に低くなる。また、上記最外層が内層の導電部よりも高価である場合に、最外層の厚みが薄いほど、コストが低くなる。   When the conductive part is a multilayer, the thickness of the conductive part of the outermost layer is preferably 1 nm or more, more preferably 10 nm or more, preferably 500 nm or less, more preferably 100 nm or less. When the thickness of the conductive portion of the outermost layer is not less than the above lower limit and not more than the above upper limit, the coating with the conductive portion of the outermost layer can be made uniform, corrosion resistance is sufficiently high, and connection resistance between the electrodes is sufficiently high Lower. In addition, when the outermost layer is more expensive than the inner-layer conductive portion, the thinner the outermost layer, the lower the cost.

上記導電部の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子又は絶縁性粒子付き導電性粒子の断面を観察することにより測定できる。   The thickness of the said electroconductive part can be measured by observing the cross section of electroconductive particle or electroconductive particle with an insulating particle using a transmission electron microscope (TEM), for example.

導電性粒子は、導電部の外表面に複数の突起を有することが好ましい。絶縁性粒子付き導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。導電部の表面に突起を有する絶縁性粒子付き導電性粒子を用いた場合には、電極間に絶縁性粒子付き導電性粒子を配置して圧着させることにより、突起により上記酸化被膜を効果的に排除できる。このため、電極と導電部とがより一層確実に接触し、電極間の接続抵抗がより一層低くなる。さらに、電極間の接続時に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性粒子を効果的に排除できる。このため、電極間の導通信頼性がより一層高くなる。   The conductive particles preferably have a plurality of protrusions on the outer surface of the conductive portion. An oxide film is often formed on the surface of the electrode connected by the conductive particles with insulating particles. When conductive particles with insulating particles having protrusions on the surface of the conductive part are used, the oxide film is effectively applied by the protrusions by placing conductive particles with insulating particles between the electrodes and pressing them. Can be eliminated. For this reason, an electrode and an electroconductive part contact more reliably and the connection resistance between electrodes becomes still lower. Furthermore, when the electrodes are connected, the insulating particles between the conductive particles and the electrodes can be effectively eliminated by the protrusions of the conductive particles. For this reason, the conduction | electrical_connection reliability between electrodes becomes still higher.

上記突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電部を形成する方法、並びに基材粒子の表面に無電解めっきにより導電部を形成した後、芯物質を付着させ、更に無電解めっきにより導電部を形成する方法等が挙げられる。上記突起を形成する他の方法としては、基材粒子の表面上に、第1の導電部を形成した後、該第1の導電部上に芯物質を配置し、次に第2の導電部を形成する方法、並びに基材粒子の表面上に導電部を形成する途中段階で、芯物質を添加する方法等が挙げられる。   As a method for forming the protrusions, after a core substance is attached to the surface of the base particle, a conductive part is formed by electroless plating, and a conductive part is formed by electroless plating on the surface of the base particle. Thereafter, a method of attaching a core substance and further forming a conductive portion by electroless plating can be used. As another method for forming the protrusion, a first conductive part is formed on the surface of the base particle, and then a core substance is disposed on the first conductive part, and then the second conductive part. And a method of adding a core substance in the middle of forming a conductive part on the surface of the base particle.

上記基材粒子の表面上に芯物質を配置する方法としては、例えば、基材粒子の分散液中に、芯物質を添加し、基材粒子の表面に芯物質を、例えば、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。なかでも、付着させる芯物質の量を制御しやすいため、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法が好ましい。   As a method of disposing the core substance on the surface of the base particle, for example, the core substance is added to the dispersion of the base particle, and the core substance is applied to the surface of the base particle, for example, van der Waals force. And a method in which a core substance is added to a container containing base particles, and a core substance is attached to the surface of the base particles by mechanical action such as rotation of the container. . Especially, since the quantity of the core substance to adhere is easy to control, the method of making a core substance accumulate and adhere on the surface of the base particle in a dispersion liquid is preferable.

上記芯物質の材料としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ及びジルコニア等が挙げられる。なかでも、導電性を高めることができるので、金属が好ましい。上記芯物質は金属粒子であることが好ましい。   Examples of the material of the core substance include a conductive substance and a non-conductive substance. Examples of the conductive material include conductive non-metals such as metals, metal oxides, and graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene. Examples of the nonconductive material include silica, alumina, and zirconia. Among them, metal is preferable because conductivity can be increased. The core substance is preferably metal particles.

上記金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫−鉛合金、錫−銅合金、錫−銀合金、錫−鉛−銀合金及び炭化タングステン等の2種類以上の金属で構成される合金等が挙げられる。なかでも、ニッケル、銅、銀又は金が好ましい。上記芯物質を構成する金属は、上記導電部(導電層)を構成する金属と同じであってもよく、異なっていてもよい。   Examples of the metal include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, and cadmium, and tin-lead. Examples include alloys composed of two or more metals such as alloys, tin-copper alloys, tin-silver alloys, tin-lead-silver alloys, and tungsten carbide. Of these, nickel, copper, silver or gold is preferable. The metal constituting the core substance may be the same as or different from the metal constituting the conductive part (conductive layer).

上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。   The shape of the core material is not particularly limited. The shape of the core substance is preferably a lump. Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.

上記芯物質の平均径(平均粒子径)は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の平均径が上記下限以上及び上限以下であると、電極間の接続抵抗が効果的に低くなる。   The average diameter (average particle diameter) of the core substance is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, more preferably 0.2 μm or less. When the average diameter of the core substance is not less than the above lower limit and not more than the upper limit, the connection resistance between the electrodes is effectively reduced.

上記芯物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。芯物質の平均径を細孔電気抵抗法コールターカウンター マルチサイザー4(ベックマンコールター社製)によって測定し、数平均粒子径を算出することにより求められる。   The “average diameter (average particle diameter)” of the core substance indicates a number average diameter (number average particle diameter). The average diameter of the core substance is determined by measuring the number average particle diameter by measuring with a pore electrical resistance method Coulter counter Multisizer 4 (manufactured by Beckman Coulter).

上記導電性粒子1個当たりの上記の突起は、好ましくは3個以上、より好ましくは5個以上である。上記突起の数の上限は特に限定されない。突起の数の上限は導電性粒子の粒子径等を考慮して適宜選択できる。   The number of the protrusions per conductive particle is preferably 3 or more, more preferably 5 or more. The upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle diameter of the conductive particles.

上記導電部の外表面は防錆処理されていることが好ましい。上記防錆処理は、上記導電部の外表面の腐食を抑える。上記防錆処理は特に限定されない。上記防錆処理として、従来公知の防錆処理を行うことが可能である。   The outer surface of the conductive part is preferably rust-proofed. The rust prevention treatment suppresses corrosion of the outer surface of the conductive part. The said rust prevention process is not specifically limited. As the rust prevention treatment, a conventionally known rust prevention treatment can be performed.

導電層に錆を生じ難くするために、上記導電部の外表面は、炭素数6〜22のアルキル基を有する化合物(以下、化合物Aともいう)により防錆処理されていることが好ましい。上記アルキル基の炭素数が6未満であると、導電層の表面に錆が生じやすくなる。上記アルキル基の炭素数が22を超えると、絶縁性粒子付き導電性粒子の導電性が低くなる。絶縁性粒子付き導電性粒子の導電性をより一層高める観点からは、上記化合物Aにおける上記アルキル基の炭素数は16以下であることが好ましい。上記アルキル基は直鎖構造を有していてもよく、分岐構造を有していてもよい。上記アルキル基は、直鎖構造を有することが好ましい。   In order to make it difficult for rust to occur in the conductive layer, it is preferable that the outer surface of the conductive part is subjected to a rust prevention treatment with a compound having an alkyl group having 6 to 22 carbon atoms (hereinafter also referred to as compound A). Rust tends to occur on the surface of the conductive layer when the alkyl group has less than 6 carbon atoms. When carbon number of the said alkyl group exceeds 22, the electroconductivity of the electroconductive particle with an insulating particle will become low. From the viewpoint of further increasing the conductivity of the conductive particles with insulating particles, the alkyl group in the compound A preferably has 16 or less carbon atoms. The alkyl group may have a linear structure or a branched structure. The alkyl group preferably has a linear structure.

上記化合物Aは、炭素数6〜22のアルキル基を有していれば特に限定されない。上記化合物Aは、炭素数6〜22のアルキル基を有するリン酸エステル又はその塩、炭素数6〜22のアルキル基を有する亜リン酸エステル又はその塩、炭素数6〜22のアルキル基を有するアルコキシシラン、炭素数6〜22のアルキル基を有するアルキルチオール、及び炭素数6〜22のアルキル基を有するジアルキルジスルフィドからなる群より選択される少なくとも1種であることが好ましい。すなわち、上記炭素数6〜22のアルキル基を有する化合物Aは、リン酸エステル又はその塩、亜リン酸エステル又はその塩、アルコキシシラン、アルキルチオール及びジアルキルジスルフィドからなる群から選択された少なくとも1種であることが好ましい。これらの好ましい化合物Aの使用により、導電層に錆をより一層生じ難くすることができる。錆を更に一層生じ難くする観点からは、上記化合物Aは、上記リン酸エステル又はその塩、亜リン酸エステル又はその塩及びアルコキシシランからなる群から選択された少なくとも1種であることが好ましく、上記リン酸エステル又はその塩及び亜リン酸エステル又はその塩の内の少なくとも1種であることがより好ましい。上記化合物Aは、1種のみが用いられてもよく、2種以上が併用されてもよい。   The compound A is not particularly limited as long as it has an alkyl group having 6 to 22 carbon atoms. The compound A has a phosphate ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof, a phosphite ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof, and an alkyl group having 6 to 22 carbon atoms. It is preferably at least one selected from the group consisting of alkoxysilanes, alkylthiols having an alkyl group having 6 to 22 carbon atoms, and dialkyl disulfides having an alkyl group having 6 to 22 carbon atoms. That is, the compound A having an alkyl group having 6 to 22 carbon atoms is at least one selected from the group consisting of phosphate esters or salts thereof, phosphite esters or salts thereof, alkoxysilanes, alkylthiols, and dialkyl disulfides. It is preferable that By using these preferable compounds A, it is possible to further prevent rust from being generated in the conductive layer. From the viewpoint of making rust more difficult to occur, the compound A is preferably at least one selected from the group consisting of the phosphate ester or a salt thereof, a phosphite ester or a salt thereof and an alkoxysilane, More preferably, the phosphoric acid ester or a salt thereof and a phosphorous acid ester or a salt thereof are at least one of them. As for the said compound A, only 1 type may be used and 2 or more types may be used together.

上記化合物Aは、導電部と反応可能な反応性官能基を有することが好ましい。上記化合物Aは、絶縁性粒子と反応可能な反応性官能基を有することが好ましい。導電性粒子の表面に、化学結合を介して絶縁性粒子が付着していることが好ましい。上記反応性官能基の存在により、及び上記化学結合により、導電層に錆がより一層生じ難くなり、かつ導電性粒子の表面から絶縁性粒子が意図せずにより一層脱離し難くなる。   The compound A preferably has a reactive functional group capable of reacting with the conductive part. The compound A preferably has a reactive functional group capable of reacting with insulating particles. It is preferable that the insulating particles are attached to the surface of the conductive particles through chemical bonds. Due to the presence of the reactive functional group and the chemical bond, rust is more unlikely to be generated in the conductive layer, and the insulating particles are more difficult to be detached from the surface of the conductive particles unintentionally.

上記炭素数6〜22のアルキル基を有するリン酸エステル又はその塩としては、例えば、リン酸ヘキシルエステル、リン酸ヘプチルエステル、リン酸モノオクチルエステル、リン酸モノノニルエステル、リン酸モノデシルエステル、リン酸モノウンデシルエステル、リン酸モノドデシルエステル、リン酸モノトリデシルエステル、リン酸モノテトラデシルエステル、リン酸モノペンタデシルエステル、リン酸モノヘキシルエステルモノナトリウム塩、リン酸モノヘプチルエステルモノナトリウム塩、リン酸モノオクチルエステルモノナトリウム塩、リン酸モノノニルエステルモノナトリウム塩、リン酸モノデシルエステルモノナトリウム塩、リン酸モノウンデシルエステルモノナトリウム塩、リン酸モノドデシルエステルモノナトリウム塩、リン酸モノトリデシルエステルモノナトリウム塩、リン酸モノテトラデシルエステルモノナトリウム塩及びリン酸モノペンタデシルエステルモノナトリウム塩等が挙げられる。上記リン酸エステルのカリウム塩を用いてもよい。   Examples of the phosphoric acid ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof include, for example, phosphoric acid hexyl ester, phosphoric acid heptyl ester, phosphoric acid monooctyl ester, phosphoric acid monononyl ester, phosphoric acid monodecyl ester, Monoundecyl phosphate, monododecyl phosphate, monotridecyl phosphate, monotetradecyl phosphate, monopentadecyl phosphate, monohexyl phosphate monosodium salt, monoheptyl phosphate monosodium Salts, monooctyl phosphate monosodium salt, monononyl phosphate monosodium salt, monodecyl phosphate monosodium salt, monoundecyl phosphate monosodium salt, monododecyl phosphate monosodium salt, Phosphate mono tridecyl ester monosodium salt, phosphate acid mono tetradecyl ester monosodium salt and phosphoric acid mono pentadecyl ester monosodium salt. You may use the potassium salt of the said phosphate ester.

上記炭素数6〜22のアルキル基を有する亜リン酸エステル又はその塩としては、例えば、亜リン酸ヘキシルエステル、亜リン酸ヘプチルエステル、亜リン酸モノオクチルエステル、亜リン酸モノノニルエステル、亜リン酸モノデシルエステル、亜リン酸モノウンデシルエステル、亜リン酸モノドデシルエステル、亜リン酸モノトリデシルエステル、亜リン酸モノテトラデシルエステル、亜リン酸モノペンタデシルエステル、亜リン酸モノヘキシルエステルモノナトリウム塩、亜リン酸モノヘプチルエステルモノナトリウム塩、亜リン酸モノオクチルエステルモノナトリウム塩、亜リン酸モノノニルエステルモノナトリウム塩、亜リン酸モノデシルエステルモノナトリウム塩、亜リン酸モノウンデシルエステルモノナトリウム塩、亜リン酸モノドデシルエステルモノナトリウム塩、亜リン酸モノトリデシルエステルモノナトリウム塩、亜リン酸モノテトラデシルエステルモノナトリウム塩及び亜リン酸モノペンタデシルエステルモノナトリウム塩等が挙げられる。上記亜リン酸エステルのカリウム塩を用いてもよい。   Examples of the phosphite ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof include, for example, hexyl phosphite ester, heptyl phosphite ester, monooctyl phosphite ester, monononyl phosphite ester, Phosphoric acid monodecyl ester, phosphorous acid monoundecyl ester, phosphorous acid monododecyl ester, phosphorous acid monotridecyl ester, phosphorous acid monotetradecyl ester, phosphorous acid monopentadecyl ester, phosphorous acid monohexyl Ester monosodium salt, phosphorous acid monoheptyl ester monosodium salt, phosphorous acid monooctyl ester monosodium salt, phosphorous acid monononyl ester monosodium salt, phosphorous acid monodecyl ester monosodium salt, phosphorous acid monoun Decyl ester monosodium salt, phosphorous acid Dodecyl ester monosodium salt, phosphorous acid mono-tridecyl ester monosodium salt, phosphorous acid mono-tetradecyl ester monosodium salt and phosphorous acid mono-pentadecyl ester monosodium salt. You may use the potassium salt of the said phosphite.

上記炭素数6〜22のアルキル基を有するアルコキシシランとしては、例えば、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ノニルトリメトキシシラン、ノニルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ウンデシルトリメトキシシラン、ウンデシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、トリデシルトリメトキシシラン、トリデシルトリエトキシシラン、テトラデシルトリメトキシシラン、テトラデシルトリエトキシシラン、ペンタデシルトリメトキシシラン及びペンタデシルトリエトキシシラン等が挙げられる。   Examples of the alkoxysilane having an alkyl group having 6 to 22 carbon atoms include hexyltrimethoxysilane, hexyltriethoxysilane, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, and nonyltri. Methoxysilane, nonyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, undecyltrimethoxysilane, undecyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, tridecyltrimethoxysilane, tridecyltriethoxy Examples include silane, tetradecyltrimethoxysilane, tetradecyltriethoxysilane, pentadecyltrimethoxysilane, and pentadecyltriethoxysilane.

上記炭素数6〜22のアルキル基を有するアルキルチオールとしては、例えば、ヘキシルチオール、ヘプチルチオール、オクチルチオール、ノニルチオール、デシルチオール、ウンデシルチオール、ドデシルチオール、トリデシルチオール、テトラデシルチオール、ペンタデシルチオール及びヘキサデシルチオール等が挙げられる。上記アルキルチオールは、アルキル鎖の末端にチオール基を有することが好ましい。   Examples of the alkyl thiol having an alkyl group having 6 to 22 carbon atoms include hexyl thiol, heptyl thiol, octyl thiol, nonyl thiol, decyl thiol, undecyl thiol, dodecyl thiol, tridecyl thiol, tetradecyl thiol, pentadecyl. Examples include thiol and hexadecyl thiol. The alkyl thiol preferably has a thiol group at the end of the alkyl chain.

上記炭素数6〜22のアルキル基を有するジアルキルジスルフィドとしては、例えば、ジヘキシルジスルフィド、ジヘプチルジスルフィド、ジオクチルジスルフィド、ジノニルジスルフィド、ジデシルジスルフィド、ジウンデシルジスルフィド、ジドデシルジスルフィド、ジトリデシルジスルフィド、ジテトラデシルジスルフィド、ジペンタデシルジスルフィド及びジヘキサデシルジスルフィド等が挙げられる。   Examples of the dialkyl disulfide having an alkyl group having 6 to 22 carbon atoms include dihexyl disulfide, diheptyl disulfide, dioctyl disulfide, dinonyl disulfide, didecyl disulfide, diundecyl disulfide, didodecyl disulfide, ditridecyl disulfide, ditetradecyl disulfide. Examples include decyl disulfide, dipentadecyl disulfide, and dihexadecyl disulfide.

(絶縁性粒子)
上記絶縁性粒子は、絶縁性を有する粒子である。上記絶縁性粒子は、導電性粒子よりも小さい。絶縁性粒子付き導電性粒子を用いて電極間を接続すると、上記絶縁性粒子により、隣接する電極間の短絡を防止できる。具体的には、複数の絶縁性粒子付き導電性粒子が接触したときに、複数の絶縁性粒子付き導電性粒子における導電性粒子間には上記絶縁性粒子が存在するので、上下の電極間ではなく、横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で絶縁性粒子付き導電性粒子を加圧することにより、導電部と電極との間の上記絶縁性粒子を容易に排除できる。導電性粒子の表面に突起が設けられている場合には、導電部と電極との間の上記絶縁性粒子をより一層容易に排除できる。
(Insulating particles)
The insulating particles are particles having insulating properties. The insulating particles are smaller than the conductive particles. When the electrodes are connected using conductive particles with insulating particles, the insulating particles can prevent a short circuit between adjacent electrodes. Specifically, when the conductive particles with a plurality of insulating particles are in contact with each other, the insulating particles are present between the conductive particles in the conductive particles with a plurality of insulating particles. In addition, a short circuit between electrodes adjacent in the lateral direction can be prevented. Note that the insulating particles between the conductive portion and the electrode can be easily excluded by pressurizing the conductive particles with insulating particles with two electrodes when connecting the electrodes. When the protrusion is provided on the surface of the conductive particle, the insulating particle between the conductive portion and the electrode can be more easily removed.

本発明では、複数の絶縁性粒子を、導電性粒子の表面上で、粒子を膨潤処理することで形成することが好ましい。   In the present invention, the plurality of insulating particles are preferably formed by swelling the particles on the surface of the conductive particles.

膨潤処理する粒子は、例えば、膨潤処理前の絶縁性粒子である。膨潤処理の方法としては、シード重合法等が挙げられる。   The particles to be swollen are, for example, insulating particles before the swelling treatment. Examples of the swelling method include a seed polymerization method.

具体的な製造方法としては、以下の製造方法が挙げられる。架橋剤を含まないモノマーをソープフリー重合などの手法を使って重合し、膨潤処理前の絶縁性粒子を作製する。その後、導電性粒子を分散した分散液に膨潤処理前の絶縁性粒子を入れ、撹拌することで導電性粒子の表面を膨潤処理前の絶縁性粒子で被覆する。被覆された導電性粒子の分散液に、乳化されたモノマーを更に滴下しながら撹拌することで、絶縁性粒子が乳化モノマーを取り込み膨潤する。膨潤が終了した時点で、分散液の温度を上昇させ、重合反応を行って膨潤処理した絶縁性粒子により被覆された導電性粒子を作製する。   Specific manufacturing methods include the following manufacturing methods. Monomers that do not contain a crosslinking agent are polymerized using a technique such as soap-free polymerization to produce insulating particles before swelling treatment. Thereafter, the insulating particles before the swelling treatment are put into the dispersion liquid in which the conductive particles are dispersed, and the surfaces of the conductive particles are coated with the insulating particles before the swelling treatment by stirring. The insulating particles take in the emulsified monomer and swell by stirring while further dropping the emulsified monomer into the dispersion of the coated conductive particles. When the swelling is completed, the temperature of the dispersion is increased, and a polymerization reaction is performed to produce conductive particles covered with the insulating particles subjected to the swelling treatment.

上記絶縁性粒子を構成する材料としては、絶縁性の樹脂、及び絶縁性の無機物等が挙げられる。上記絶縁性の樹脂としては、基材粒子として用いることが可能な樹脂粒子を形成するための樹脂として挙げた上記樹脂が挙げられる。上記絶縁性の無機物としては、基材粒子として用いることが可能な無機粒子を形成するための無機物として挙げた上記無機物が挙げられる。   Examples of the material constituting the insulating particles include an insulating resin and an insulating inorganic substance. As said insulating resin, the said resin quoted as resin for forming the resin particle which can be used as a base particle is mentioned. As said insulating inorganic substance, the said inorganic substance quoted as an inorganic substance for forming the inorganic particle which can be used as a base particle is mentioned.

上記絶縁性粒子の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。   Specific examples of the insulating resin that is the material of the insulating particles include polyolefins, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked thermoplastic resins, heat Examples thereof include curable resins and water-soluble resins.

上記ポリオレフィン類としては、ポリエチレン、エチレン−酢酸ビニル共重合体及びエチレン−アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン−アクリル酸エステル共重合体、SB型スチレン−ブタジエンブロック共重合体、及びSBS型スチレン−ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂が好ましく、ポリビニルアルコールがより好ましい。   Examples of the polyolefins include polyethylene, ethylene-vinyl acetate copolymer, and ethylene-acrylic acid ester copolymer. Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate. Examples of the block polymer include polystyrene, styrene-acrylic acid ester copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof. Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers. As said thermosetting resin, an epoxy resin, a phenol resin, a melamine resin, etc. are mentioned. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose. Of these, water-soluble resins are preferable, and polyvinyl alcohol is more preferable.

圧着時の上記絶縁性粒子の脱離性をより一層高める観点からは、上記絶縁性粒子は、無機粒子であることが好ましく、シリカ粒子であることが好ましい。   From the viewpoint of further improving the detachability of the insulating particles at the time of pressure bonding, the insulating particles are preferably inorganic particles, and are preferably silica particles.

上記無機粒子としては、シラス粒子、ハイドロキシアパタイト粒子、マグネシア粒子、酸化ジルコニウム粒子及びシリカ粒子等が挙げられる。上記シリカ粒子としては、粉砕シリカ、球状シリカが挙げられる。球状シリカを用いることが好ましい。また、シリカ粒子は表面に、例えばカルボキシル基、水酸基等の化学結合可能な官能基を有することが好ましく、水酸基を有することがより好ましい。無機粒子は比較的硬く、特にシリカ粒子は比較的硬い。このような硬い絶縁性粒子を備える絶縁性粒子付き導電性粒子を用いた場合には、絶縁性粒子付き導電性粒子とバインダー樹脂とを混練する際に、導電性粒子の表面から、硬い絶縁性粒子が脱離しやすい傾向がある。これに対して、本発明に係る絶縁性粒子付き導電性粒子を用いた場合には、硬い絶縁性粒子を用いたとしても、混練後に、絶縁性粒子の残存率が高くなる結果、絶縁信頼性を確保できる。   Examples of the inorganic particles include shirasu particles, hydroxyapatite particles, magnesia particles, zirconium oxide particles, and silica particles. Examples of the silica particles include pulverized silica and spherical silica. Spherical silica is preferably used. The silica particles preferably have a functional group capable of chemical bonding such as a carboxyl group and a hydroxyl group on the surface, and more preferably have a hydroxyl group. Inorganic particles are relatively hard, especially silica particles are relatively hard. When the conductive particles with insulating particles including such hard insulating particles are used, when the conductive particles with insulating particles and the binder resin are kneaded, the surface of the conductive particles has a hard insulating property. There is a tendency for particles to be easily detached. On the other hand, when the conductive particles with insulating particles according to the present invention are used, even if hard insulating particles are used, the insulating particles have a high residual rate after kneading, resulting in insulation reliability. Can be secured.

導電層に錆を生じ難くするために、上記絶縁性粒子の外表面は、炭素数6〜22のアルキル基を有する化合物Aにより防錆処理されていることが好ましい。該化合物Aの好ましい化合物Aは、上記導電部の外表面を防錆処理するために用いる好ましい化合物Aと同様である。   In order to make it difficult to cause rust in the conductive layer, the outer surface of the insulating particles is preferably subjected to a rust prevention treatment with the compound A having an alkyl group having 6 to 22 carbon atoms. A preferable compound A of the compound A is the same as the preferable compound A used for the antirust treatment of the outer surface of the conductive part.

上記導電性粒子の表面に、化学結合を介して、上記絶縁性粒子が付着していることが好ましい。この化学的結合には、共有結合、水素結合、イオン結合及び配位結合等が含まれる。なかでも、共有結合が好ましく、反応性官能基を用いた化学的結合が好ましい。   It is preferable that the insulating particles adhere to the surface of the conductive particles through chemical bonds. This chemical bond includes a covalent bond, a hydrogen bond, an ionic bond, a coordination bond, and the like. Of these, a covalent bond is preferable, and a chemical bond using a reactive functional group is preferable.

上記化学的結合を形成する反応性官能基としては、例えば、ビニル基、(メタ)アクリロイル基、シラン基、シラノール基、カルボキシル基、アミノ基、アンモニウム基、ニトロ基、水酸基、カルボニル基、チオール基、スルホン酸基、スルホニウム基、ホウ酸基、オキサゾリン基、ピロリドン基、リン酸基及びニトリル基等が挙げられる。中でも、ビニル基、(メタ)アクリロイル基が好ましい。   Examples of the reactive functional group that forms the chemical bond include a vinyl group, (meth) acryloyl group, silane group, silanol group, carboxyl group, amino group, ammonium group, nitro group, hydroxyl group, carbonyl group, and thiol group. Sulfonic acid group, sulfonium group, boric acid group, oxazoline group, pyrrolidone group, phosphoric acid group and nitrile group. Among these, a vinyl group and a (meth) acryloyl group are preferable.

絶縁性粒子の脱離をより一層抑制し、接続構造体における絶縁信頼性をより一層高める観点からは、上記絶縁性粒子として、反応性官能基を表面に有する絶縁性粒子を用いることが好ましい。絶縁性粒子の脱離をより一層抑制し、接続構造体における絶縁信頼性をより一層高める観点からは、上記絶縁性粒子として、反応性官能基を有する化合物を用いて表面処理された絶縁性粒子を用いることが好ましい。   From the viewpoint of further suppressing the detachment of the insulating particles and further increasing the insulation reliability in the connection structure, it is preferable to use insulating particles having reactive functional groups on the surface as the insulating particles. From the viewpoint of further suppressing the detachment of the insulating particles and further increasing the insulation reliability in the connection structure, the insulating particles surface-treated with a compound having a reactive functional group as the insulating particles. Is preferably used.

上記絶縁性粒子の表面に導入可能な上記反応性官能基としては、(メタ)アクリロイル基、グリシジル基、水酸基、ビニル基及びアミノ基等が挙げられる。上記絶縁性粒子が表面に有する上記反応性官能基は、(メタ)アクリロイル基、グリシジル基、水酸基、ビニル基及びアミノ基からなる群から選択された少なくとも1種の反応性官能基であることが好ましい。   Examples of the reactive functional group that can be introduced on the surface of the insulating particles include a (meth) acryloyl group, a glycidyl group, a hydroxyl group, a vinyl group, and an amino group. The reactive functional group on the surface of the insulating particles is at least one reactive functional group selected from the group consisting of a (meth) acryloyl group, a glycidyl group, a hydroxyl group, a vinyl group, and an amino group. preferable.

上記反応性官能基を導入するための化合物(表面処理物質)としては、(メタ)アクリロイル基を有する化合物、エポキシ基を有する化合物及びビニル基を有する化合物等が挙げられる。   Examples of the compound (surface treatment substance) for introducing the reactive functional group include a compound having a (meth) acryloyl group, a compound having an epoxy group, a compound having a vinyl group, and the like.

ビニル基を導入するための化合物(表面処理物質)としては、ビニル基を有するシラン化合物、ビニル基を有するチタン化合物、及びビニル基を有するリン酸化合物等が挙げられる。上記表面処理物質は、ビニル基を有するシラン化合物であることが好ましい。上記ビニル基を有するシラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン及びビニルトリイソプロポキシシラン等が挙げられる。   Examples of the compound (surface treatment substance) for introducing a vinyl group include a silane compound having a vinyl group, a titanium compound having a vinyl group, and a phosphate compound having a vinyl group. The surface treatment substance is preferably a silane compound having a vinyl group. Examples of the silane compound having a vinyl group include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and vinyltriisopropoxysilane.

(メタ)アクリロイル基を導入するための化合物(表面処理物質)としては、(メタ)アクリロイル基を有するシラン化合物、及び(メタ)アクリロイル基を有するチタン化合物、及び(メタ)アクリロイル基を有するリン酸化合物等が挙げられる。上記表面処理物質は、(メタ)アクリロイル基を有するシラン化合物であることも好ましい。上記(メタ)アクリロイル基を有するシラン化合物としては、(メタ)アクリロキシプロピルトリエトキシシラン、(メタ)アクリロキシプロピルトリメトキシシラン及び(メタ)アクリロキシプロピルトリジメトキシシラン等が挙げられる。   As a compound (surface treatment substance) for introducing a (meth) acryloyl group, a silane compound having a (meth) acryloyl group, a titanium compound having a (meth) acryloyl group, and a phosphoric acid having a (meth) acryloyl group Compounds and the like. The surface treatment substance is also preferably a silane compound having a (meth) acryloyl group. Examples of the silane compound having a (meth) acryloyl group include (meth) acryloxypropyltriethoxysilane, (meth) acryloxypropyltrimethoxysilane, (meth) acryloxypropyltridimethoxysilane, and the like.

上記導電性粒子及び上記導電部の表面に上記絶縁性粒子を付着させる方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション法、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。ただし、ハイブリダイゼーション法では、絶縁性粒子の脱離が生じやすくなる傾向があるので、上記絶縁性粒子を配置する方法は、ハイブリダイゼーション法以外の方法であることが好ましい。絶縁性粒子は、導電性粒子の表面上に、ハイブリダイゼーション法により配置されていないことが好ましい。絶縁性粒子がより一層脱離し難くなることから、導電性粒子の表面に、化学結合を介して絶縁性粒子を配置する方法が好ましい。   Examples of a method for attaching the insulating particles to the surfaces of the conductive particles and the conductive part include a chemical method and a physical or mechanical method. Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method. Examples of the physical or mechanical method include a spray drying method, a hybridization method, an electrostatic adhesion method, a spray method, a dipping method, and a vacuum deposition method. However, since the hybridization method tends to cause the detachment of the insulating particles, the method for arranging the insulating particles is preferably a method other than the hybridization method. The insulating particles are preferably not arranged on the surface of the conductive particles by the hybridization method. Since the insulating particles are more difficult to be detached, a method in which the insulating particles are arranged on the surface of the conductive particles through a chemical bond is preferable.

上記導電性粒子の表面及び上記導電部の表面に絶縁性粒子を付着させる方法の一例としては、以下の方法が挙げられる。   The following method is mentioned as an example of the method of attaching insulating particles to the surface of the said electroconductive particle and the surface of the said electroconductive part.

先ず、水などの溶媒3L中に、導電性粒子を入れ、撹拌しながら、絶縁性粒子を徐々に添加する。十分に撹拌した後、絶縁性粒子付き導電性粒子を分離し、真空乾燥機などにより乾燥して、絶縁性粒子付き導電性粒子を得る。   First, the conductive particles are put in 3 L of a solvent such as water, and the insulating particles are gradually added while stirring. After sufficiently stirring, the conductive particles with insulating particles are separated and dried by a vacuum dryer or the like to obtain conductive particles with insulating particles.

上記導電部は表面に、上記絶縁性粒子と反応可能な反応性官能基を有することが好ましい。上記絶縁性粒子は表面に、導電部と反応可能な反応性官能基を有することが好ましい。これらの反応性官能基により化学結合を導入することで、導電性粒子の表面から絶縁性粒子が意図せずに脱離し難くなる。また、絶縁信頼性及び衝撃に対する絶縁信頼性がより一層高くなる。   The conductive part preferably has a reactive functional group capable of reacting with the insulating particles on the surface. The insulating particles preferably have a reactive functional group capable of reacting with the conductive part on the surface. By introducing a chemical bond with these reactive functional groups, it becomes difficult for the insulating particles to be unintentionally detached from the surface of the conductive particles. In addition, the insulation reliability and the insulation reliability against impact are further enhanced.

上記反応性官能基として、反応性を考慮して適宜の基が選択される。上記反応性官能基としては、水酸基、ビニル基及びアミノ基等が挙げられる。反応性に優れているので、上記反応性官能基は水酸基であることが好ましい。上記導電性粒子は表面に、水酸基を有することが好ましい。上記導電部は表面に、水酸基を有することが好ましい。上記絶縁性粒子は表面に、水酸基を有することが好ましい。   As the reactive functional group, an appropriate group is selected in consideration of reactivity. Examples of the reactive functional group include a hydroxyl group, a vinyl group, and an amino group. Since the reactivity is excellent, the reactive functional group is preferably a hydroxyl group. The conductive particles preferably have a hydroxyl group on the surface. The conductive part preferably has a hydroxyl group on the surface. The insulating particles preferably have a hydroxyl group on the surface.

絶縁性粒子の表面と導電性粒子の表面とに水酸基がある場合には、脱水反応により絶縁性粒子と導電性粒子との付着力が適度に高くなる。   When there are hydroxyl groups on the surface of the insulating particles and the surface of the conductive particles, the adhesion force between the insulating particles and the conductive particles is appropriately increased by the dehydration reaction.

上記水酸基を有する化合物としては、P−OH基含有化合物及びSi−OH基含有化合物等が挙げられる。絶縁性粒子の表面に水酸基を導入するための水酸基を有する化合物としては、P−OH基含有化合物及びSi−OH基含有化合物等が挙げられる。   Examples of the compound having a hydroxyl group include a P—OH group-containing compound and a Si—OH group-containing compound. Examples of the compound having a hydroxyl group for introducing a hydroxyl group on the surface of the insulating particles include a P—OH group-containing compound and a Si—OH group-containing compound.

上記P−OH基含有化合物の具体例としては、アシッドホスホオキシエチルメタクリレート、アシッドホスホオキシプロピルメタクリレート、アシッドホスホオキシポリオキシエチレングリコールモノメタクリレート及びアシッドホスホオキシポリオキシプロピレングリコールモノメタクリレート等が挙げられる。上記P−OH基含有化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。   Specific examples of the P-OH group-containing compound include acid phosphooxyethyl methacrylate, acid phosphooxypropyl methacrylate, acid phosphooxypolyoxyethylene glycol monomethacrylate, and acid phosphooxypolyoxypropylene glycol monomethacrylate. As for the said P-OH group containing compound, only 1 type may be used and 2 or more types may be used together.

上記Si−OH基含有化合物の具体例としては、ビニルトリヒドロキシシラン、及び3−メタクリロキシプロピルトリヒドロキシシラン等が挙げられる。上記Si−OH基含有化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。   Specific examples of the Si-OH group-containing compound include vinyltrihydroxysilane and 3-methacryloxypropyltrihydroxysilane. As for the said Si-OH group containing compound, only 1 type may be used and 2 or more types may be used together.

例えば、水酸基を表面に有する絶縁性粒子は、シランカップリング剤を用いた処理により得ることができる。上記シランカップリング剤としては、例えば、ヒドロキシトリメトキシシラン等が挙げられる。   For example, insulating particles having a hydroxyl group on the surface can be obtained by a treatment using a silane coupling agent. Examples of the silane coupling agent include hydroxytrimethoxysilane.

導電性粒子の表面及び絶縁性粒子の表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。導電性粒子の表面と絶縁性粒子の表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。導電性粒子の表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミンなどの高分子電解質を介して絶縁性粒子の表面の官能基と化学結合していても構わない。   The surface of the conductive particles and the surface of the insulating particles may each be coated with a compound having a reactive functional group. The surface of the conductive particles and the surface of the insulating particles may not be directly chemically bonded, but may be indirectly chemically bonded by a compound having a reactive functional group. After introducing a carboxyl group into the surface of the conductive particle, the carboxyl group may be chemically bonded to a functional group on the surface of the insulating particle through a polymer electrolyte such as polyethyleneimine.

(導電材料)
本発明に係る導電材料は、本発明に係る絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む。本発明に係る絶縁性粒子付き導電性粒子をバインダー樹脂中に分散させる際には、導電性粒子の表面から絶縁性粒子が脱離し難い。本発明に係る絶縁性粒子付き導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
(Conductive material)
The conductive material according to the present invention includes the conductive particles with insulating particles according to the present invention and a binder resin. When the conductive particles with insulating particles according to the present invention are dispersed in the binder resin, the insulating particles are not easily detached from the surface of the conductive particles. The conductive particles with insulating particles according to the present invention are preferably dispersed in a binder resin and used as a conductive material. The conductive material is preferably an anisotropic conductive material. The conductive material is preferably used for electrical connection of electrodes. The conductive material is preferably a circuit connection material.

上記バインダー樹脂は特に限定されない。上記バインダー樹脂としては、一般的には絶縁性の樹脂が用いられる。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。   The binder resin is not particularly limited. In general, an insulating resin is used as the binder resin. Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said binder resin, only 1 type may be used and 2 or more types may be used together.

上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン−酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体の水素添加物、及びスチレン−イソプレン−スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン−ブタジエン共重合ゴム、及びアクリロニトリル−スチレンブロック共重合ゴム等が挙げられる。   Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin. Examples of the thermoplastic resin include polyolefin resins, ethylene-vinyl acetate copolymers, and polyamide resins. Examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated product of a styrene block copolymer. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.

上記導電材料は、上記絶縁性粒子付き導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。   In addition to the conductive particles with insulating particles and the binder resin, the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, and heat stability. Various additives such as an agent, a light stabilizer, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.

本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。   The conductive material according to the present invention can be used as a conductive paste and a conductive film. When the conductive material according to the present invention is a conductive film, a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.

本発明に係る導電材料は、導電ペーストであることが好ましい。導電ペーストは取り扱い性及び回路充填性に優れている。導電ペーストを得る際には絶縁性粒子付き導電性粒子に比較的大きな力が付与されるものの、上記絶縁性粒子における上記被覆率が高いため、導電性粒子における絶縁性粒子の残存率を高めることができる。   The conductive material according to the present invention is preferably a conductive paste. The conductive paste is excellent in handleability and circuit fillability. Although a relatively large force is imparted to the conductive particles with insulating particles when obtaining the conductive paste, the coverage of the insulating particles is high, so that the residual rate of the insulating particles in the conductive particles is increased. Can do.

上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に絶縁性粒子付き導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の導通信頼性がより一層高くなる。   In 100% by weight of the conductive material, the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably 99.% or more. It is 99 weight% or less, More preferably, it is 99.9 weight% or less. When the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles with insulating particles are efficiently arranged between the electrodes, and the conduction reliability of the connection target member connected by the conductive material is further increased. Get higher.

上記導電材料100重量%中、上記絶縁性粒子付き導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは40重量%以下、より好ましくは20重量%以下、更に好ましくは15重量%以下である。絶縁性粒子付き導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。   In 100% by weight of the conductive material, the content of the conductive particles with insulating particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 40% by weight or less, more preferably 20%. % By weight or less, more preferably 15% by weight or less. When the content of the conductive particles with insulating particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.

(接続構造体)
上述した絶縁性粒子付き導電性粒子を用いて、又は該絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
(Connection structure)
By using the conductive particles with insulating particles described above, or by using a conductive material including the conductive particles with insulating particles and a binder resin, a connection structure can be obtained by connecting the connection target members. it can.

上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1の接続対象部材と第2の接続対象部材とを接続している接続部とを備え、該接続部が上述した絶縁性粒子付き導電性粒子により形成されているか、又は該絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料(異方性導電材料など)により形成されている接続構造体であることが好ましい。上記第1の接続対象部材は表面に第1の電極を有することが好ましい。上記第2の接続対象部材は表面に第2の電極を有することが好ましい。上記第1の電極と上記第2の電極とが、上記絶縁性粒子付き導電性粒子における上記導電性粒子により電気的に接続されていることが好ましい。上述した絶縁性粒子付き導電性粒子を用いた場合には、接続部自体が絶縁性粒子付き導電性粒子によって形成される。すなわち、第1,第2の接続対象部材が絶縁性粒子付き導電性粒子における導電性粒子により電気的に接続される。   The connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first connection target member and the second connection target member, the connection portion A connection structure formed of the above-described conductive particles with insulating particles or a conductive material (such as an anisotropic conductive material) containing the conductive particles with insulating particles and a binder resin. Preferably there is. The first connection target member preferably has a first electrode on the surface. The second connection object member preferably has a second electrode on the surface. It is preferable that the first electrode and the second electrode are electrically connected by the conductive particles in the conductive particles with insulating particles. When the conductive particles with insulating particles described above are used, the connection portion itself is formed of conductive particles with insulating particles. That is, the first and second connection target members are electrically connected by the conductive particles in the conductive particles with insulating particles.

図5は、図1に示す絶縁性粒子付き導電性粒子1を用いた接続構造体を模式的に示す断面図である。   FIG. 5 is a cross-sectional view schematically showing a connection structure using the conductive particles 1 with insulating particles shown in FIG.

図5に示す接続構造体81は、第1の接続対象部材82と、第2の接続対象部材83と、第1の接続対象部材82と第2の接続対象部材83とを接続している接続部84とを備える。接続部84は、絶縁性粒子付き導電性粒子1とバインダー樹脂とを含む導電材料により形成されている。図5では、図示の便宜上、絶縁性粒子付き導電性粒子1は略図的に示されている。絶縁性粒子付き導電性粒子1にかえて、絶縁性粒子付き導電性粒子21,31,41を用いてもよい。   The connection structure 81 shown in FIG. 5 is a connection that connects the first connection target member 82, the second connection target member 83, and the first connection target member 82 and the second connection target member 83. Part 84. The connecting portion 84 is formed of a conductive material including the conductive particles 1 with insulating particles and a binder resin. In FIG. 5, for convenience of illustration, the conductive particles 1 with insulating particles are schematically shown. Instead of the conductive particles 1 with insulating particles, conductive particles 21, 31, 41 with insulating particles may be used.

第1の接続対象部材82は表面(上面)に、複数の第1の電極82aを有する。第2の接続対象部材83は表面(下面)に、複数の第2の電極83aを有する。第1の電極82aと第2の電極83aとが、1つ又は複数の絶縁性粒子付き導電性粒子1における導電性粒子2により電気的に接続されている。従って、第1,第2の接続対象部材82,83が絶縁性粒子付き導電性粒子1により電気的に接続されている。   The first connection target member 82 has a plurality of first electrodes 82a on the surface (upper surface). The second connection target member 83 has a plurality of second electrodes 83a on the surface (lower surface). The 1st electrode 82a and the 2nd electrode 83a are electrically connected by the electroconductive particle 2 in the electroconductive particle 1 with one or some insulating particle. Therefore, the first and second connection target members 82 and 83 are electrically connected by the conductive particles 1 with insulating particles.

上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例として、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10〜4.9×10Pa程度である。上記加熱の温度は、120〜220℃程度である。 The manufacturing method of the connection structure is not particularly limited. As an example of a method of manufacturing a connection structure, a method of placing the conductive material between a first connection target member and a second connection target member to obtain a laminate, and then heating and pressurizing the laminate Etc. The pressure of the said pressurization is about 9.8 * 10 < 4 > -4.9 * 10 < 6 > Pa. The temperature of the said heating is about 120-220 degreeC.

上記積層体を加熱及び加圧する際に、導電性粒子2と第1,第2の電極82a,83aとの間に存在していた絶縁性粒子3を排除できる。例えば、上記加熱及び加圧の際には、導電性粒子2と第1,第2の電極82a,83aとの間に存在していた絶縁性粒子3が溶融したり、変形したりして、導電性粒子2の表面が部分的に露出する。なお、上記加熱及び加圧の際には、大きな力が付与されるので、導電性粒子2の表面から一部の絶縁性粒子3が脱離して、導電性粒子2の表面が部分的に露出することもある。導電性粒子2の表面が露出した部分が、第1,第2の電極82a,83aに接触することにより、導電性粒子2を介して第1,第2の電極82a,83aを電気的に接続できる。   When the laminate is heated and pressed, the insulating particles 3 existing between the conductive particles 2 and the first and second electrodes 82a and 83a can be eliminated. For example, during the heating and pressurization, the insulating particles 3 existing between the conductive particles 2 and the first and second electrodes 82a and 83a are melted or deformed, The surface of the conductive particle 2 is partially exposed. It should be noted that since a large force is applied during the heating and pressurization, a part of the insulating particles 3 is detached from the surface of the conductive particles 2 and the surface of the conductive particles 2 is partially exposed. Sometimes. The portion where the surface of the conductive particle 2 is exposed contacts the first and second electrodes 82a and 83a, so that the first and second electrodes 82a and 83a are electrically connected through the conductive particle 2. it can.

上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記導電材料はペースト状であり、ペーストの状態で接続対象部材上に塗布されることが好ましい。上記絶縁性粒子付き導電性粒子及び導電材料は、電子部品である接続対象部材の接続に用いられることが好ましい。上記接続対象部材は電子部品であることが好ましい。上記絶縁性粒子付き導電性粒子は、電子部品における電極の電気的な接続に用いられることが好ましい。   Specific examples of the connection target member include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as printed boards, flexible printed boards, glass epoxy boards, and glass boards. The conductive material is in a paste form, and is preferably applied on the connection target member in a paste state. The conductive particles with insulating particles and the conductive material are preferably used for connection of a connection target member that is an electronic component. The connection target member is preferably an electronic component. The conductive particles with insulating particles are preferably used for electrical connection of electrodes in an electronic component.

上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、銀電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。   Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a silver electrode, a molybdenum electrode, and a tungsten electrode. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.

以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited only to the following examples.

(実施例1)
(1)導電性粒子の作製
ジビニルベンゼン重合体粒子(平均粒子径3μm)を用意した。上記重合体粒子をエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に重合体粒子を添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に重合体粒子を添加し、パラジウムが付着された重合体粒子を得た。
Example 1
(1) Production of conductive particles Divinylbenzene polymer particles (average particle diameter of 3 μm) were prepared. The polymer particles were etched and washed with water. Next, polymer particles were added to 100 mL of a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash | cleaned. Polymer particles were added to a 0.5 wt% dimethylamine borane solution at pH 6 to obtain polymer particles to which palladium was attached.

パラジウムが付着された重合体粒子をイオン交換水300mL中で3分間攪拌し、分散させ、分散液を得た。次に、ニッケル粒子スラリー(芯物質であるニッケル粒子の平均粒子径200nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された重合体粒子を得た。   The polymer particles to which palladium was attached were stirred and dispersed in 300 mL of ion exchange water for 3 minutes to obtain a dispersion. Next, 1 g of nickel particle slurry (average particle diameter of nickel particles as the core material of 200 nm) was added to the dispersion over 3 minutes to obtain polymer particles to which the core material was adhered.

芯物質が付着された重合体粒子を用いて、無電解めっき法により、重合体粒子の表面に、ニッケル層を形成した。ニッケル層の外表面に複数の突起を有する導電性粒子を作製した。なお、ニッケル層の厚さは0.1μmであった。複数の突起の平均高さは250nmであった。さらに、得られた導電性粒子を防錆処理して、防錆処理された導電性粒子Aを得た。   A nickel layer was formed on the surface of the polymer particles by electroless plating using the polymer particles to which the core substance was attached. Conductive particles having a plurality of protrusions on the outer surface of the nickel layer were produced. The nickel layer had a thickness of 0.1 μm. The average height of the plurality of protrusions was 250 nm. Furthermore, the obtained electroconductive particle was rust-proofed and the electroconductive particle A by which the anti-rust process was carried out was obtained.

(絶縁性粒子の作製工程)
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、メタクリル酸グリシジル40重量部、メタクリル酸メチル380重量部、アシッドホスホオキシポリオキシエチレングリコールメタクリレート9.8重量部、及び2,2’−アゾビス{2−[N−(2−カルボキシエチル)アミジノ]プロパン}11重量部を含むモノマー組成物を入れた。該モノマー組成物を固形分が10重量%となるように蒸留水を添加した後、300rpmで攪拌し、窒素雰囲気下80℃で24時間重合を行った。反応終了後、凍結乾燥して、アシッドホスホオキシポリオキシエチレングリコールメタクリレートに由来するP−OH基を表面に有する膨潤処理前の絶縁性粒子Bを得た。
(Process for producing insulating particles)
A 1000 mL separable flask equipped with a four-neck separable cover, a stirring blade, a three-way cock, a cooling tube, and a temperature probe was charged with 40 parts by weight of glycidyl methacrylate, 380 parts by weight of methyl methacrylate, and acid phosphooxypolyoxyethylene glycol methacrylate 9 A monomer composition containing 8 parts by weight and 11 parts by weight of 2,2′-azobis {2- [N- (2-carboxyethyl) amidino] propane} was added. Distilled water was added to the monomer composition so that the solid content was 10% by weight, and the mixture was stirred at 300 rpm and polymerized at 80 ° C. for 24 hours in a nitrogen atmosphere. After completion of the reaction, freeze drying was performed to obtain insulating particles B before swelling treatment having P—OH groups derived from acid phosphooxypolyoxyethylene glycol methacrylate on the surface.

(膨潤処理用乳化モノマーの作製工程)
300mlビーカーにメタクリル酸グリシジル4重量部と、メタクリル酸メチル34重量部と、ジメタクリル酸エチレングリコール4重量部と、開始剤(和光純薬工業社製「V−50」)1.0重量部と、乳化剤としてポリオキシエチレンラウリルエーテル(花王社製「エマルゲン106」)2重量部と蒸留水100重量部とを配合し、超音波照射機を使用して十分乳化させて、乳化液を得た。
(Producing process of emulsion monomer for swelling treatment)
In a 300 ml beaker, 4 parts by weight of glycidyl methacrylate, 34 parts by weight of methyl methacrylate, 4 parts by weight of ethylene glycol dimethacrylate, 1.0 part by weight of an initiator (“V-50” manufactured by Wako Pure Chemical Industries, Ltd.) As an emulsifier, 2 parts by weight of polyoxyethylene lauryl ether (“Emulgen 106” manufactured by Kao Corporation) and 100 parts by weight of distilled water were blended and sufficiently emulsified using an ultrasonic irradiator to obtain an emulsion.

(絶縁性粒子付き導電性粒子の作製工程)
上記で得られた膨潤処理前の絶縁性粒子Bを超音波照射下で蒸留水に分散させ、絶縁性粒子の10重量%水分散液を得た。得られた導電性粒子A10gを蒸留水500mLに分散させ、絶縁性粒子の水分散液5gを添加し、室温で3時間攪拌した。得られた分散液に、上記で得られた乳化液3gを5時間で徐々に滴下し、さらに10時間攪拌することで膨潤処理を行った。その後、スリーワンモーターで十分に攪拌しながら80℃まで昇温し、80℃で5時間保持して、上記モノマーを重合させた。メッシュフィルターでろ過した後、更にメタノールで洗浄、乾燥し、絶縁性粒子付き導電性粒子を得た。
(Process for producing conductive particles with insulating particles)
The insulating particles B before swelling treatment obtained above were dispersed in distilled water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles. 10 g of the obtained conductive particles A were dispersed in 500 mL of distilled water, 5 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 3 hours. To the obtained dispersion, 3 g of the emulsion obtained above was gradually added dropwise over 5 hours, followed by further stirring for 10 hours to perform a swelling treatment. Then, it heated up to 80 degreeC, fully stirring with a three-one motor, and hold | maintained at 80 degreeC for 5 hours, and the said monomer was polymerized. After filtration with a mesh filter, the product was further washed with methanol and dried to obtain conductive particles with insulating particles.

走査型電子顕微鏡(SEM)により観察したところ、絶縁性粒子付き導電性粒子では、突起を有する導電性粒子の表面に、絶縁性粒子による被覆層が形成され、絶縁性粒子により被覆されている面積の被覆率は85%であり、絶縁性粒子の全個数のうち、83%が面接触していた。   When observed with a scanning electron microscope (SEM), in the conductive particles with insulating particles, a coating layer of insulating particles is formed on the surface of the conductive particles having protrusions, and the area covered with the insulating particles The covering ratio was 85%, and 83% of the total number of insulating particles was in surface contact.

(実施例2〜8及び比較例1〜5)
絶縁性粒子の平均粒子径を下記の表1に示すように設定したこと、芯物質であるニッケル粒子の平均粒子径をかえて突起の平均高さを下記の表1に示すように設定したこと、並びに絶縁性粒子の添加量をかえて上記被覆率を下記の表1に示すように設定したこと以外は実施例1と同様にして、絶縁性粒子付き導電性粒子を得た。
(Examples 2-8 and Comparative Examples 1-5)
The average particle diameter of the insulating particles was set as shown in Table 1 below, and the average particle diameter of the nickel particles as the core material was changed to set the average height of the protrusions as shown in Table 1 below. In addition, conductive particles with insulating particles were obtained in the same manner as in Example 1 except that the coverage was changed as shown in Table 1 below by changing the addition amount of the insulating particles.

(実施例9)
膨潤処理前の絶縁性粒子として、ゾルゲル法により作製されたシリカ粒子(平均粒子径50nm)を準備した。シランカップリング剤を用いてシリカ粒子の表面にビニル基を導入した。4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、蒸留水500ml、上記のビニル基を導入したシリカ粒子0.1g、メタクリル酸メチル38mmol、ジメタクリル酸エチレングリコール1.3mmol、アシッドホスホオキシポリオキシエチレングリコールメタクリレート0.05mmol、及び2,2’−アゾビス{2−[N−(2−カルボキシエチル)アミジノ]プロパン}0.1mmolを含むモノマー組成物を入れ、超音波照射機で十分乳化した後、300rpmで攪拌し、窒素雰囲気下80℃で24時間重合を行った。反応終了後、凍結乾燥して、アシッドホスホオキシポリオキシエチレングリコールメタクリレートに由来するP−OH基を表面に有するシリカ粒子含有ポリマーコーティング絶縁性粒子Cを得た。
Example 9
As insulating particles before the swelling treatment, silica particles (average particle size 50 nm) prepared by a sol-gel method were prepared. Vinyl groups were introduced on the surface of the silica particles using a silane coupling agent. To a 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, condenser and temperature probe, 500 ml of distilled water, 0.1 g of silica particles introduced with the above vinyl group, 38 mmol of methyl methacrylate, Monomer composition comprising ethylene glycol methacrylate 1.3 mmol, acid phosphooxypolyoxyethylene glycol methacrylate 0.05 mmol, and 2,2′-azobis {2- [N- (2-carboxyethyl) amidino] propane} 0.1 mmol The product was put in, sufficiently emulsified with an ultrasonic irradiation machine, stirred at 300 rpm, and polymerized at 80 ° C. for 24 hours in a nitrogen atmosphere. After completion of the reaction, the resultant was freeze-dried to obtain silica particle-containing polymer-coated insulating particles C having P—OH groups derived from acid phosphooxypolyoxyethylene glycol methacrylate on the surface.

得られた絶縁性粒子Cを用いたこと、金属ニッケル粒子の平均粒子径をかえて突起の平均高さを下記の表1に示すように設定したこと、並びに絶縁性粒子の添加量をかえて上記被覆率を下記の表1に示すように設定したこと以外は実施例1と同様にして、絶縁性粒子付き導電性粒子を得た。   Using the obtained insulating particles C, changing the average particle diameter of the metallic nickel particles, setting the average height of the protrusions as shown in Table 1 below, and changing the addition amount of the insulating particles Except having set the said coverage as shown in following Table 1, it carried out similarly to Example 1, and obtained the electroconductive particle with an insulating particle.

(実施例10)
膨潤処理前の絶縁性粒子として、粒子径が異なるゾルゲル法により作製されたシリカ粒子(平均粒子径100nm)を準備した。この膨潤処理前の絶縁性粒子を用いたこと以外は実施例9と同様にして、アシッドホスホオキシポリオキシエチレングリコールメタクリレートに由来するP−OH基を表面に有するシリカ粒子含有ポリマーコーティング絶縁性粒子を得た。
(Example 10)
As insulating particles before the swelling treatment, silica particles (average particle size of 100 nm) prepared by a sol-gel method having different particle sizes were prepared. A silica particle-containing polymer-coated insulating particle having P-OH groups derived from acid phosphooxypolyoxyethylene glycol methacrylate on the surface was obtained in the same manner as in Example 9 except that this insulating particle before swelling treatment was used. Obtained.

得られた絶縁性粒子を用いたこと、金属ニッケル粒子の平均粒子径をかえて突起の平均高さを下記の表1に示すように設定したこと、並びに絶縁性粒子の添加量をかえて上記被覆率を下記の表1に示すように設定したこと以外は実施例1と同様にして、絶縁性粒子付き導電性粒子を得た。   Using the obtained insulating particles, changing the average particle diameter of the metallic nickel particles, setting the average height of the protrusions as shown in Table 1 below, and changing the addition amount of the insulating particles Conductive particles with insulating particles were obtained in the same manner as in Example 1 except that the coverage was set as shown in Table 1 below.

(評価)
(1)導電性粒子の表面積全体に占める絶縁性粒子により被覆されている部分の合計の面積である被覆率
SEMでの観察により、20個の絶縁性粒子付き導電性粒子を観察した。導電性粒子の表面積全体に占める絶縁性粒子により被覆されている部分の合計の投影面積である被覆率を求めた。20個の被覆率の平均値を被覆率とした。
(Evaluation)
(1) Coverage ratio, which is the total area of the portions covered with insulating particles in the entire surface area of the conductive particles. By observation with SEM, 20 conductive particles with insulating particles were observed. The coverage, which is the total projected area of the portion covered with insulating particles occupying the entire surface area of the conductive particles, was determined. The average value of the 20 coverages was taken as the coverage.

(2)複数の絶縁性粒子の全個数の内の互いに、面接触している絶縁性粒子の個数の割合、及び互いに面接触している絶縁性粒子において、1つの絶縁性粒子の表面積中の他の絶縁性粒子に面接触している表面積の割合
SEMでの観察により、20個の絶縁性粒子付き導電性粒子を観察した。導電性粒子を上方から観察した時の導電性粒子1個当たりの絶縁性粒子数、および互いに面接触している絶縁性粒子数をカウントしその割合を評価した。また、導電性粒子1個を上面から観察した時の20個の絶縁性粒子を無作為に観察し、接触無しの粒子は0%、1面接触の粒子は15%、2面接触の粒子は30%、3面接触の粒子は45%、4面接触の粒子は60%、5面接触の粒子は75%としてカウントし、その値を平均化することで、上記の割合を評価した。
(2) The ratio of the number of insulating particles in surface contact with each other out of the total number of insulating particles, and the insulating particles in surface contact with each other, in the surface area of one insulating particle Ratio of surface area in surface contact with other insulating particles Twenty conductive particles with insulating particles were observed by SEM observation. The number of insulating particles per conductive particle when the conductive particles were observed from above and the number of insulating particles in surface contact with each other were counted and the ratio was evaluated. In addition, 20 insulating particles when one conductive particle is observed from the top surface are randomly observed, 0% for non-contact particles, 15% for one-surface contact particles, and two-surface contact particles. 30%, 3 surface contact particles were counted as 45%, 4 surface contact particles were counted as 60%, and 5 surface contact particles were counted as 75%, and the above values were evaluated by averaging the values.

(3)凝集状態
得られた絶縁性粒子付き導電性粒子を含有量が10重量%となるように、三井化学社製「ストラクトボンドXN−5A」に添加し、分散させ、異方性導電ペーストを得た。
(3) Aggregation state The resulting conductive particles with insulating particles are added to and dispersed in “Strectbond XN-5A” manufactured by Mitsui Chemicals so that the content is 10% by weight, and an anisotropic conductive paste. Got.

得られた異方性導電ペーストを25℃で72時間保管した。保管後に、異方性導電ペーストにおいて凝集した絶縁性粒子付き導電性粒子が沈降しているか否かを評価した。凝集状態を下記の基準で判定した。   The obtained anisotropic conductive paste was stored at 25 ° C. for 72 hours. After storage, it was evaluated whether or not the conductive particles with insulating particles aggregated in the anisotropic conductive paste were settled. The aggregation state was determined according to the following criteria.

[凝集状態の判定基準]
○:凝集した導電性粒子が沈降していない
△:小さな凝集した導電性粒子がわずかに沈降している
×:凝集した導電性粒子が多く沈降している
[Judgment criteria for aggregation state]
○: Aggregated conductive particles are not settled Δ: Small agglomerated conductive particles are slightly settled ×: Many aggregated conductive particles are settled

(4)導通性(上下の電極間)
得られた絶縁性粒子付き導電性粒子を含有量が10重量%となるように、三井化学社製「ストラクトボンドXN−5A」に添加し、分散させ、異方性導電ペーストを得た。
(4) Conductivity (between upper and lower electrodes)
The obtained conductive particles with insulating particles were added to “Strectbond XN-5A” manufactured by Mitsui Chemicals Co., Ltd. so as to have a content of 10% by weight, and dispersed to obtain an anisotropic conductive paste.

L/Sが20μm/20μmであるIZO電極パターンが上面に形成された透明ガラス基板を用意した。また、L/Sが20μm/20μmである金電極パターンが下面に形成された半導体チップを用意した。   A transparent glass substrate having an IZO electrode pattern with L / S of 20 μm / 20 μm formed on the upper surface was prepared. Further, a semiconductor chip having a gold electrode pattern with L / S of 20 μm / 20 μm formed on the lower surface was prepared.

上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、3MPaの圧力をかけて異方性導電ペースト層を185℃で硬化させて、接続構造体を得た。   On the transparent glass substrate, the obtained anisotropic conductive paste was applied to a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 3 MPa is applied to form the anisotropic conductive paste layer. It hardened | cured at 185 degreeC and the connection structure was obtained.

得られた20個の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通性を下記の基準で判定した。   The connection resistances between the upper and lower electrodes of the 20 connection structures obtained were each measured by the 4-terminal method. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. The conductivity was determined according to the following criteria.

[導通性の判定基準]
○○:抵抗値が5Ω以下の接続構造体の個数の割合が90%以上
○:抵抗値が5Ω以下の接続構造体の個数の割合が80%以上、90%未満
△:抵抗値が5Ω以下の接続構造体の個数の割合が60%以上、80%未満
×:抵抗値が5Ω以下の接続構造体の個数の割合が60%未満
[Conductivity criteria]
○○: The ratio of the number of connection structures having a resistance value of 5Ω or less is 90% or more ○: The ratio of the number of connection structures having a resistance value of 5Ω or less is 80% or more and less than 90% Δ: The resistance value is 5Ω or less The ratio of the number of connection structures of 60% or more and less than 80% ×: The ratio of the number of connection structures having a resistance value of 5Ω or less is less than 60%

(5)絶縁性(横方向に隣り合う電極間)
上記(4)導通性の評価で得られた20個の接続構造体において、隣接する電極間のリークの有無を、テスターで抵抗を測定することにより評価した。絶縁性を下記の基準で判定した。
(5) Insulation (between adjacent electrodes in the horizontal direction)
In the 20 connection structures obtained by the above (4) conductivity evaluation, the presence or absence of leakage between adjacent electrodes was evaluated by measuring resistance with a tester. Insulation was judged according to the following criteria.

[絶縁性の判定基準]
○○:抵抗値が10Ω以上の接続構造体の個数の割合が90%以上
○:抵抗値が10Ω以上の接続構造体の個数の割合が80%以上、90%未満
△:抵抗値が10Ω以上の接続構造体の個数の割合が70%以上、80%未満
×:抵抗値が10Ω以上の接続構造体の個数の割合が70%未満
[Insulation criteria]
○○: The ratio of the number of connection structures having a resistance value of 10 8 Ω or more is 90% or more. ○: The ratio of the number of connection structures having a resistance value of 10 8 Ω or more is 80% or more and less than 90%. The ratio of the number of connection structures having a value of 10 8 Ω or more is 70% or more and less than 80% ×: The ratio of the number of connection structures having a resistance value of 10 8 Ω or more is less than 70%

Figure 0006592235
Figure 0006592235

1…絶縁性粒子付き導電性粒子
2…導電性粒子
3…絶縁性粒子
11…基材粒子
12…導電部
21…絶縁性粒子付き導電性粒子
22…導電性粒子
23…絶縁性粒子
26…導電部
27…芯物質
28…突起
31…絶縁性粒子付き導電性粒子
32…導電性粒子
33…絶縁性粒子
36…導電部
37…突起
41…絶縁性粒子付き導電性粒子
43…絶縁性粒子
43A…第1の絶縁性粒子
43B…第2の絶縁性粒子
81…接続構造体
82…第1の接続対象部材
82a…第1の電極
83…第2の接続対象部材
83a…第2の電極
84…接続部
DESCRIPTION OF SYMBOLS 1 ... Conductive particle with insulating particle 2 ... Conductive particle 3 ... Insulating particle 11 ... Base material particle 12 ... Conductive part 21 ... Conductive particle with insulating particle 22 ... Conductive particle 23 ... Insulating particle 26 ... Conductive Part 27 ... Core substance 28 ... Protrusions 31 ... Conductive particles with insulating particles 32 ... Conductive particles 33 ... Insulating particles 36 ... Conducting part 37 ... Protrusions 41 ... Conductive particles with insulating particles 43 ... Insulating particles 43A ... 1st insulating particle 43B ... 2nd insulating particle 81 ... Connection structure 82 ... 1st connection object member 82a ... 1st electrode 83 ... 2nd connection object member 83a ... 2nd electrode 84 ... Connection Part

Claims (13)

導電部を少なくとも表面に有する導電性粒子と、
前記導電性粒子の表面上に配置された複数の絶縁性粒子とを備え、
前記導電性粒子の表面積全体に占める前記絶縁性粒子により被覆されている面積である被覆率が60%以上であり、
前記複数の絶縁性粒子の内の少なくとも一部が互いに、面接触している、絶縁性粒子付き導電性粒子。
Conductive particles having at least a conductive portion on the surface;
A plurality of insulating particles disposed on the surface of the conductive particles,
The coverage, which is the area covered by the insulating particles in the entire surface area of the conductive particles, is 60% or more,
It said plurality of at least a portion of the insulating particles to each other, you are in surface contact, the insulating particles with the conductive particles.
前記複数の絶縁性粒子の全個数の内の少なくとも30個数%以上が互いに、面接触している、請求項1に記載の絶縁性粒子付き導電性粒子。 The conductive particles with insulating particles according to claim 1, wherein at least 30% by number or more of the total number of the plurality of insulating particles are in surface contact with each other. 前記被覆率が85%を超える、請求項1又は2に記載の絶縁性粒子付き導電性粒子。 The conductive particles with insulating particles according to claim 1 or 2 , wherein the coverage ratio exceeds 85%. 前記複数の絶縁性粒子が、複数の第1の絶縁性粒子と、前記第1の絶縁性粒子よりも50nm以上、500nm以下大きい平均粒子径を有する複数の第2の絶縁性粒子とを含む、請求項1〜のいずれか1項に記載の絶縁性粒子付き導電性粒子。 The plurality of insulating particles include a plurality of first insulating particles and a plurality of second insulating particles having an average particle diameter that is 50 nm or more and 500 nm or less larger than the first insulating particles. The electroconductive particle with an insulating particle of any one of Claims 1-3 . 前記導電性粒子が、前記導電部の外表面に複数の突起を有する、請求項1〜のいずれか1項に記載の絶縁性粒子付き導電性粒子。 Wherein the conductive particles have a plurality of projections on the outer surface of the conductive portion, the insulating particles with conductive particles according to any one of claims 1-4. 前記絶縁性粒子の平均粒子径が、前記突起の平均高さの1倍以下である、請求項に記載の絶縁性粒子付き導電性粒子。 The conductive particles with insulating particles according to claim 5 , wherein an average particle diameter of the insulating particles is not more than 1 times an average height of the protrusions. 前記突起の平均高さが、100nm以上である、請求項又はに記載の絶縁性粒子付き導電性粒子。 The conductive particles with insulating particles according to claim 5 or 6 , wherein the average height of the protrusions is 100 nm or more. 前記絶縁性粒子の平均粒子径が、前記突起の平均高さの0.1倍以上、1倍以下である、請求項のいずれか1項に記載の絶縁性粒子付き導電性粒子。 The conductive particles with insulating particles according to any one of claims 5 to 7 , wherein an average particle diameter of the insulating particles is 0.1 to 1 times the average height of the protrusions. 前記絶縁性粒子の平均粒子径の前記導電性粒子の粒子径に対する比が1/1000以上、1/3以下である、請求項1〜のいずれか1項に記載の絶縁性粒子付き導電性粒子。 The conductivity with insulating particles according to any one of claims 1 to 8 , wherein a ratio of an average particle size of the insulating particles to a particle size of the conductive particles is 1/1000 or more and 1/3 or less. particle. 前記導電性粒子の表面に、化学結合を介して、前記絶縁性粒子が付着している、請求項1〜のいずれか1項に記載の絶縁性粒子付き導電性粒子。 Wherein the surface of the conductive particles, through chemical bonds, the insulating particles are adhered, insulating particles with the conductive particles according to any one of claims 1-9. 請求項1〜10のいずれか1項に記載の絶縁性粒子付き導電性粒子の製造方法であって、
前記複数の絶縁性粒子を、前記導電性粒子の表面上で、粒子を膨潤処理することで形成する、絶縁性粒子付き導電性粒子の製造方法。
It is a manufacturing method of the electroconductive particle with an insulating particle of any one of Claims 1-10 , Comprising:
The method for producing conductive particles with insulating particles, wherein the plurality of insulating particles are formed by swelling the particles on the surface of the conductive particles.
請求項1〜10のいずれか1項に記載の絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む、導電材料。 And insulating particles with conductive particle according to any one of claims 1-10, and a binder resin, conductive material. 第1の電極を表面に有する第1の接続対象部材と、
第2の電極を表面に有する第2の接続対象部材と、
前記第1の接続対象部材と、前記第2の接続対象部材を接続している接続部とを備え、
前記接続部が、請求項1〜10のいずれか1項に記載の絶縁性粒子付き導電性粒子により形成されているか、又は前記絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料により形成されており、
前記第1の電極と前記第2の電極とが、前記絶縁性粒子付き導電性粒子における前記導電性粒子により電気的に接続されている、接続構造体。
A first connection object member having a first electrode on its surface;
A second connection target member having a second electrode on its surface;
The first connection target member, and a connection portion connecting the second connection target member,
The connection portion is formed of the conductive particles with insulating particles according to any one of claims 1 to 10 , or formed of a conductive material including the conductive particles with insulating particles and a binder resin. Has been
The connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles in the conductive particles with insulating particles.
JP2014204122A 2014-10-02 2014-10-02 Conductive particles with insulating particles, method for producing conductive particles with insulating particles, conductive material, and connection structure Active JP6592235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014204122A JP6592235B2 (en) 2014-10-02 2014-10-02 Conductive particles with insulating particles, method for producing conductive particles with insulating particles, conductive material, and connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014204122A JP6592235B2 (en) 2014-10-02 2014-10-02 Conductive particles with insulating particles, method for producing conductive particles with insulating particles, conductive material, and connection structure

Publications (2)

Publication Number Publication Date
JP2016076304A JP2016076304A (en) 2016-05-12
JP6592235B2 true JP6592235B2 (en) 2019-10-16

Family

ID=55951536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014204122A Active JP6592235B2 (en) 2014-10-02 2014-10-02 Conductive particles with insulating particles, method for producing conductive particles with insulating particles, conductive material, and connection structure

Country Status (1)

Country Link
JP (1) JP6592235B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102180143B1 (en) * 2017-12-29 2020-11-17 국도화학 주식회사 Anisotropic conductive film, display device comprising the same and/or semiconductor device comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4387175B2 (en) * 2003-07-07 2009-12-16 積水化学工業株式会社 Coated conductive particles, anisotropic conductive material, and conductive connection structure
CN104395967B (en) * 2012-07-03 2017-05-31 积水化学工业株式会社 The electroconductive particle of tape insulation particle, conductive material and connection structural bodies
JP6188456B2 (en) * 2012-07-03 2017-08-30 積水化学工業株式会社 Conductive particles with insulating particles, conductive material, and connection structure

Also Published As

Publication number Publication date
JP2016076304A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP6475805B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6188456B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP5850806B2 (en) Conductive particles with insulating particles and connection structure
JP6084850B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6453032B2 (en) Conductive particles, conductive materials, and connection structures
JP2019021635A (en) Conductive particle, conductive material and connection structure
JP6431411B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6151990B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6084866B2 (en) Conductive particles, conductive materials, and connection structures
JP6564302B2 (en) Conductive particles with insulating particles, method for producing conductive particles with insulating particles, conductive material, and connection structure
JP6438186B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6357347B2 (en) Conductive particles, conductive materials, and connection structures
JP6592235B2 (en) Conductive particles with insulating particles, method for producing conductive particles with insulating particles, conductive material, and connection structure
JP6577723B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6397316B2 (en) Conductive particles, conductive materials, and connection structures
JP6739894B2 (en) Conductive particles, conductive material and connection structure
JP6357348B2 (en) Conductive particles with insulating particles, conductive material, and connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190920

R151 Written notification of patent or utility model registration

Ref document number: 6592235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151