WO2014002840A1 - 固体高分子形燃料電池用の触媒及びその製造方法 - Google Patents

固体高分子形燃料電池用の触媒及びその製造方法 Download PDF

Info

Publication number
WO2014002840A1
WO2014002840A1 PCT/JP2013/066798 JP2013066798W WO2014002840A1 WO 2014002840 A1 WO2014002840 A1 WO 2014002840A1 JP 2013066798 W JP2013066798 W JP 2013066798W WO 2014002840 A1 WO2014002840 A1 WO 2014002840A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
manganese
cobalt
fuel cell
platinum
Prior art date
Application number
PCT/JP2013/066798
Other languages
English (en)
French (fr)
Inventor
石田 稔
耕一 松谷
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to EP13809878.5A priority Critical patent/EP2866287B1/en
Priority to US14/400,424 priority patent/US10454113B2/en
Priority to CN201380033528.2A priority patent/CN104412431B/zh
Priority to KR1020157001123A priority patent/KR101705998B1/ko
Publication of WO2014002840A1 publication Critical patent/WO2014002840A1/ja
Priority to US16/580,154 priority patent/US10903503B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a catalyst for a polymer electrolyte fuel cell.
  • the present invention relates to a catalyst useful for use in a cathode (air electrode) of a polymer electrolyte fuel cell.
  • Fuel cells in particular polymer electrolyte fuel cells, are highly expected as next-generation power generation systems, and have the advantages of lower operating temperatures and compactness than other types of fuel cells. And from these merits, it is regarded as promising as a power source for home and automobile.
  • a polymer electrolyte fuel cell has a laminated structure including a hydrogen electrode and an air electrode, and a solid polymer electrolyte membrane sandwiched between these electrodes.
  • a hydrogen-containing fuel is supplied to the hydrogen electrode, and oxygen or air is supplied to the air electrode, and electric power is taken out by oxidation and reduction reactions that occur at each electrode.
  • a mixture of a catalyst and a solid electrolyte for promoting an electrochemical reaction is generally applied to both electrodes.
  • a platinum catalyst supporting a noble metal, particularly platinum, as a catalyst metal has been widely used. This is because platinum as a catalyst metal has high activity in promoting the electrode reaction in both the fuel electrode and the hydrogen electrode.
  • the alloy catalyst published so far has not yet been sufficiently studied from the viewpoint of practical application for polymer electrolyte fuel cells.
  • a high initial activity is required for practical use for a polymer electrolyte fuel cell, but conventional alloy catalysts have a problem of poor initial performance because oxygen 4-electron reduction performance is not sufficient. there were.
  • the property required for the practical use of the polymer electrolyte fuel cell includes durability, that is, a sustained property of catalytic activity.
  • durability that is, a sustained property of catalytic activity.
  • the catalyst cannot avoid a decrease in activity (deactivation) that occurs with the passage of time, it can be said that increasing the time until deactivation is essential for the practical use of fuel cells.
  • the cathode catalyst of a polymer electrolyte fuel cell is used under severe conditions such as being exposed to a strong acidic atmosphere and a water vapor atmosphere at a relatively high temperature of about 80 ° C., and further subjected to a high potential load. Improvement of durability performance has been a major issue for practical application.
  • the present invention provides an alloy catalyst for a polymer electrolyte fuel cell obtained by alloying platinum and another metal, with improved initial activity and durability, and a method for producing the same.
  • the present inventors have made a ternary catalyst in which various metals are added to a Pt—Co catalyst and conducted a screening test to examine its activity. The possibility of exhibiting more activity than the Co catalyst was found. On the other hand, the present inventors have confirmed that even in the case of an alloy catalyst to which manganese is added in this examination process, no activity improvement is observed in some cases. Therefore, as a result of examining this factor, it is necessary to set the composition ratio of each additive metal (Co, Mn) in the optimum range for the Pt—Co—Mn ternary catalyst, and the structure of the catalyst particles is Co—. It has been found that sufficient activity is not exhibited when the Mn alloy phase is present. Then, the present inventors conceived that the present invention is excellent in initial activity by setting a certain limit on the Co—Mn alloy phase in the catalyst particles.
  • the present invention relates to a solid polymer fuel cell catalyst in which catalyst particles comprising platinum, cobalt, and manganese are supported on a carbon powder carrier, and the composition ratio (molar ratio) of platinum, cobalt, and manganese in the catalyst particles.
  • the catalyst particles are composed of platinum, cobalt, and manganese, and the composition ratio of cobalt and manganese, which are additive elements with respect to platinum, is limited within a certain range. It has two characteristics of suppressing the content of the Co—Mn alloy phase. In the following, these features will be described first.
  • the Pt—Co—Mn ternary catalyst may comprise a catalyst phase in which the Pt phase may partially remain, but the alloy phase in which the metals are basically alloyed with each other. Is the subject.
  • a Mn—Pt alloy phase MnPt 3
  • Co—Pt alloy phase CoPt 3
  • MnCo Mn—Co alloy phase
  • the present inventors examined the influence of each alloy phase on the catalyst activity.
  • the initial activity is greatly reduced and the effect of adding manganese disappears.
  • the active species of the Pt—Co—Mn ternary catalyst are Mn—Pt alloy phase and Co—Pt alloy phase, and the added Mn and Co are not alloyed with Pt. This is probably because active species are hardly formed when the Mn—Co alloy phase is formed.
  • the peak intensity of the Co—Mn alloy in the X-ray diffraction analysis of the catalyst particles is regulated.
  • X-ray diffraction analysis is used to define the abundance of the Mn—Co alloy phase. While X-ray diffraction analysis is a relatively simple analysis method, the state of catalyst particles can be accurately measured. This is because it has quantitativeness by setting an appropriate reference peak.
  • the peak ratio indicating the abundance of the Mn—Co alloy phase is set to 0.15 or less because, as described above, the Mn—Co alloy phase has an undesirable effect on the catalyst activity. It is for clarifying. Therefore, this peak ratio may be zero, and is rather preferable.
  • the peaks derived from these two alloy phases are the synthesis of the peak of the Mn—Pt alloy phase and the peak of the Co—Pt alloy phase and are difficult to separate. Therefore, it is preferable to determine the composite peak intensity as confirmation of the formation of these alloy phases.
  • a preferable upper limit of the peak intensity ratio is about 0.23.
  • a Pt—Co—Mn ternary catalyst having excellent initial activity can be obtained by setting the composition ratio of cobalt and manganese and regulating the Mn—Co alloy phase as described above.
  • the fuel cell catalyst preferably has excellent durability.
  • the cause of deterioration of the Pt—Co—Mn ternary catalyst is the disappearance of the metal (cobalt, manganese) from the catalyst particles due to electrochemical dissolution.
  • a catalyst for a fuel cell is an electrode component and is exposed to an electrochemical reaction, the base metals cobalt and manganese are ionized and dissolved over time and disappear from the catalyst.
  • cobalt and manganese are dissolved while diffusing to the particle surface inside the catalyst particles, and the composition ratio of cobalt and manganese in the catalyst particles varies.
  • the durability can be improved by making the cobalt concentration and manganese concentration on the surface of the catalyst particles lower than the cobalt concentration and manganese concentration in the central part.
  • the platinum concentration on the surface of the catalyst particle high, that is, in a state of a core / shell structure, the surface of the catalyst particle can be strengthened against electrochemical dissolution, and the decrease in activity can be suppressed.
  • This reduction in cobalt concentration and manganese concentration on the catalyst particle surface does not necessarily require that the surface be pure platinum.
  • a difference in concentration between the cobalt concentration and the manganese concentration may be generated between the two.
  • the catalyst particles preferably have an average particle diameter of 2 to 20 nm. This is because if it is less than 2 nm, long-term activity sustainability cannot be clearly obtained, and if it exceeds 20 nm, the initial activity of the catalyst cannot be sufficiently obtained.
  • the carbon powder as the carrier is preferably a carbon powder having a specific surface area of 250 to 1200 m 2 / g. By setting it to 250 m 2 / g or more, the area to which the catalyst adheres can be increased, so that the catalyst particles can be dispersed in a high state and the effective surface area can be increased.
  • the electrode On the other hand, if it exceeds 1200 m 2 / g, the electrode This is because the proportion of ultra-fine pores (less than about 20 mm) in which the ion exchange resin is difficult to enter during the formation increases and the utilization efficiency of the catalyst particles decreases.
  • the catalyst according to the present invention preferably has a catalyst particle loading density of 30 to 70% in consideration of performance as an electrode of a polymer electrolyte fuel cell.
  • the loading density refers to the ratio of the mass of catalyst particles supported on the carrier (the total mass of platinum, cobalt, and manganese supported) to the total mass of the catalyst.
  • the basic process is in accordance with a general method for producing an alloy catalyst.
  • a metal that becomes catalyst particles is supported on a support, and is appropriately dried and then heat-treated to form an alloy of the supported metal. I do.
  • the catalyst according to the present invention is required to suppress the formation of the Mn—Co alloy phase in the catalyst particles.
  • the catalyst metal loading step in the catalyst metal loading step, first, it is essential to prepare a catalyst on which only platinum is supported and to support cobalt and manganese on this catalyst.
  • For supporting the catalyst metal it is general and efficient to simultaneously support the constituent metal on the support (see the example of Patent Document 1). In such simultaneous support, the Mn—Co alloy phase is formed. It is formed exceeding the specified value of the present invention.
  • the platinum catalyst is first prepared (manufactured) and the formation of the Mn-Co alloy phase is suppressed by supporting cobalt and manganese separately, it is not clear, but by doing so, platinum, cobalt, platinum and This is considered to be because alloying with manganese is facilitated and formation of the Mn—Pt alloy phase (MnPt 3 ) and the Co—Pt alloy phase (CoPt 3 ) is given priority.
  • a conventional platinum catalyst manufacturing method may be prepared.
  • a commercially available platinum catalyst may be used.
  • a platinum catalyst is produced by bringing a platinum salt solution into contact with a support (impregnation, dropping) and then reducing treatment to form platinum particles.
  • ⁇ Cobalt and manganese are supported on the platinum catalyst by a general method.
  • a metal salt solution of cobalt and manganese is brought into contact with the platinum catalyst, and reduction treatment is performed to deposit cobalt and manganese in a metal state in the vicinity of the platinum particles.
  • As the metal salt solution of cobalt cobalt chloride hexahydrate, cobalt nitrate, cobalt acetate tetrahydrate, etc. can be used.
  • As the metal salt solution of manganese manganese chloride tetrahydrate, manganese nitrate hexahydrate, acetic acid Manganese tetrahydrate can be used.
  • the order of contact between the platinum catalyst and the metal salt solution at this time is not particularly limited, and any one of the metal salt solutions may be contacted first, or a mixed solution of cobalt and manganese metal salt solutions.
  • a platinum catalyst may be contacted.
  • the concentration and amount of the metal salt solution should be set so that the supported amount of cobalt and manganese is the ratio set within the above-described range of the composition ratio of cobalt and manganese while taking the supported amount of platinum catalyst into consideration. It ’s fine.
  • the supported amount of cobalt and manganese is about 1.5 to 5 times that of cobalt with respect to the set composition ratio, For manganese, it is better to add about 1.5 to 3 times.
  • heat treatment is performed to alloy each metal.
  • the heat treatment temperature for alloying is set to 700 to 1100 ° C.
  • Heat treatment at less than 700 ° C. results in a catalyst having poor activity due to insufficient alloying, particularly the formation of Mn—Pt alloy phase and Co—Pt alloy phase.
  • the higher the heat treatment temperature the easier the alloying proceeds and the formation of the Mn—Pt alloy phase and the Co—Pt alloy phase is promoted.
  • the heat treatment above 1100 ° C. may cause the catalyst particles to become coarse. And this is the upper limit because it becomes difficult in terms of equipment.
  • This heat treatment is preferably performed in a non-oxidizing atmosphere, particularly preferably in a reducing atmosphere (hydrogen gas atmosphere or the like).
  • the catalyst that has undergone the above heat treatment process has catalyst particles in which the Mn—Co alloy phase is reduced and the formation of the Mn—Pt alloy phase and the Co—Pt alloy phase is promoted, and the Pt—Co—Mn ternary system having excellent initial activity. It becomes a catalyst.
  • This catalyst can ensure durability by making the cobalt and manganese concentrations on the surface of the catalyst particles lower than the particle center.
  • the step of reducing the cobalt and manganese concentrations on the surface of the catalyst particles is to bring the heat-treated catalyst into contact with the oxidizing solution at least once. Thereby, cobalt and manganese on the surface of the catalyst particles can be eluted, and the concentration of cobalt and manganese can be lowered only on the surface.
  • the oxidizing solution is preferably a solution of sulfuric acid, nitric acid, phosphorous acid, potassium permanganate, hydrogen peroxide, hydrochloric acid, chloric acid, hypochlorous acid, chromic acid, or the like.
  • the concentration of these oxidizing solutions is preferably 0.1 to 1 mol / L, and the catalyst is preferably immersed in the solution.
  • the contact time is preferably 1 to 10 hours, and the treatment temperature is preferably 40 to 90 ° C.
  • the oxidizing solution treatment may be repeated not only when the catalyst is brought into contact with the oxidizing solution once, but also multiple times. Moreover, when performing acid treatment in multiple times, you may change the kind of solution for every process.
  • the polymer solid oxide fuel cell catalyst according to the present invention adopts the form of a ternary catalyst in which Mn is added to the Pt—Co catalyst, while limiting the constituent ratio of cobalt and manganese. Furthermore, by specifying the alloy phase in the catalyst particles, the initial activity is excellent. Moreover, by making the concentration of cobalt and manganese on the surface of the catalyst particles lower than the central portion, the electrochemical dissolution of the catalyst metal can be suppressed and the durability can be ensured.
  • First embodiment A plurality of Pt—Co—Mn ternary catalysts having different composition ratios of catalytic metals were produced, their properties were investigated, and catalytic activity was evaluated.
  • the basic steps of catalyst production are as follows.
  • [Supporting catalytic metal] A commercially available platinum catalyst was prepared and loaded with cobalt and manganese. As the platinum catalyst used, 5 g (2.325 g (11.92 mmol) of platinum catalyst in terms of platinum) of 46.5 mass% platinum supported on carbon fine powder (specific surface area of about 900 m 2 / g) was prepared. The platinum catalyst was immersed in a metal salt solution in which cobalt chloride (CoCl 2 .6H 2 O) and manganese chloride (MnCl 2 .4H 2 O) were dissolved in 100 mL of ion-exchanged water, and stirred with a magnetic stirrer.
  • cobalt chloride CoCl 2 .6H 2 O
  • MnCl 2 .4H 2 O manganese chloride
  • the catalyst carrying the catalyst metal was subjected to heat treatment for alloying.
  • the heat treatment was performed in 100% hydrogen gas at a heat treatment temperature of 900 ° C. for 30 minutes.
  • a Pt—Co—Mn ternary catalyst was produced by this alloying heat treatment.
  • the amount of each metal salt added is adjusted to change the composition ratio of the catalyst metal.
  • the composition ratio of each metal is 1: 0.39: 0.04 (Example 1), 1: 0.26: 0.13 (Example 2), 1 : 0.13: 0.25 (Example 3), 1: 0.06: 0.33 (Example 4), 1: 0.38: 0 (no addition of Mn, Comparative Example 1), 1: 0.
  • Six types of catalysts of 02: 0.39 (Comparative Example 2) were produced.
  • a platinum-cobalt-manganese Pt—Co—Mn ternary catalyst was produced by simultaneously carrying platinum, cobalt, and manganese in the catalyst metal loading step.
  • 5 g of a carbon support (specific surface area of about 900 m 2 / g) is prepared, and this is added to a predetermined amount of Pt dinitrodiamine nitric acid solution (Pt (NO 2 ) 2 (NH 3 ) 2 ), cobalt chloride (CoCl 2 ⁇ 6H 2 O).
  • manganese chloride (MnCl 2 .4H 2 O) was immersed in a metal salt solution dissolved in 100 mL of ion-exchanged water, and stirred with a magnetic stirrer. Then, 500 mL of a sodium borohydride (SBH) solution having a concentration of 1% by mass was dropped into this solution and stirred for reduction treatment, and platinum, cobalt, and manganese were supported on the carbon support. Then, it filtered, wash
  • SBH sodium borohydride
  • the X-ray diffraction analysis was performed on the Pt—Co—Mn ternary catalysts of Examples, Comparative Examples and Conventional Examples produced above, and the constitution of the catalyst particles was examined.
  • FIG. 1 shows an X-ray diffraction pattern of each catalyst.
  • the Pt—Co—Mn ternary catalyst of each Example exhibits good initial activity when based on the Pt—Co catalyst. However, it is not necessary to add manganese. If the composition ratio is too large as in Comparative Example 2, the initial activity is lower than that of the Pt—Co catalyst. Further, regarding the configuration of the catalyst particles, the conventional example in which a large amount of the Co—Mn phase is generated is inferior in initial activity even if the composition ratio of Pt, Co, and Mn is appropriate. From this, it has been confirmed that it is not sufficient to appropriately set the composition ratio of each catalyst metal, and it is necessary to define the composition of the alloy phase.
  • Second Embodiment Here, for a Pt—Co—Mn ternary catalyst, an effect of improving durability by improving the surface composition of catalyst particles by acidic solution treatment was confirmed.
  • the catalyst after the heat treatment was used in a 0.2 mol / L sulfuric acid aqueous solution at 80 ° C. for 2 hours. After the treatment, it was filtered, washed and dried. Thereafter, it was treated in a 1.0 mol / L nitric acid aqueous solution (dissolved oxygen content 0.01 cm 3 / cm 3 (STP conversion)) at 70 ° C. for 2 hours, and then filtered, washed and dried (the catalyst after this acidic solution treatment). (Example 5).
  • a durability test was performed on this catalyst to evaluate the durability.
  • a cathode electrode air electrode
  • an accelerated deterioration test was performed in which the cathode cell potential was swept with a triangular wave, and the power generation characteristics after deterioration were measured.
  • the accelerated deterioration is caused by cleaning the surface of the catalyst particles by sweeping between 200-650 mV at a sweep rate of 40 mV / s for 20 hours and then sweeping between 200-650 mV at a sweep rate of 100 mV / s for 24 hours.
  • Mass Activity was measured about the catalyst after deterioration. Evaluation after this accelerated deterioration test was also performed for Comparative Example 1 (Pt—Co catalyst) (Comparative Example 3). The results are shown in Table 2.
  • Example 3 the temperature of the alloying heat treatment was examined in the production process of the Pt—Co—Mn ternary catalyst.
  • heat treatment temperatures were 500 ° C., 700 ° C., 900 ° C. (Example 3), 1100 ° C., and a catalyst was produced. Evaluated. The results are shown in Table 3.
  • FIG. 3 shows an X-ray diffraction pattern of each catalyst.
  • the present invention it is possible to achieve both improvement in durability and improvement in initial power generation characteristics as an electrode catalyst for a polymer electrolyte fuel cell.
  • the present invention contributes to the widespread use of fuel cells, and as a basis for solving environmental problems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明は、白金、コバルト、マンガンからなる触媒粒子が炭素粉末担体上に担持されてなる固体高分子形燃料電池用触媒において、前記触媒粒子の白金、コバルト、マンガンの構成比(モル比)が、Pt:Co:Mn=1:0.06~0.39:0.04~0.33であり、前記触媒粒子についてのX線回折分析において、2θ=27°近傍に現れるCo-Mn合金のピーク強度比が、2θ=40°近傍に現れるメインピークを基準として0.15以下であることを特徴とする固体高分子形燃料電池用触媒である。この触媒は、2θ=32°近傍に現れるCoPt合金のピーク及びMnPt合金のピーク比が、メインピークを基準として0.14以上となっていることが特に好ましい。

Description

固体高分子形燃料電池用の触媒及びその製造方法
 本発明は、固体高分子形燃料電池用の触媒に関する。特に、固体高分子形燃料電池のカソード(空気極)での使用に有用な触媒に関する。
 燃料電池、特に、固体高分子形燃料電池は、次世代の発電システムとして大いに期待されるものであり、他形式の燃料電池と比較して動作温度が低く、かつコンパクトであるという利点がある。そして、これらのメリットから、家庭用、自動車用の電源として有望視されている。固体高分子形燃料電池は、水素極及び空気極と、これらの電極に挟持される固体高分子電解質膜とからなる積層構造を有する。そして、水素極へは水素を含む燃料が、空気極へは酸素又は空気がそれぞれ供給され、各電極で生じる酸化、還元反応により電力を取り出すようにしている。また両電極は、電気化学的反応を促進させるための触媒と固体電解質との混合体が一般に適用されている。
 上記の電極を構成する触媒として、触媒金属として貴金属、特に、白金を担持させた白金触媒が従来から広く用いられている。触媒金属としての白金は、燃料極及び水素極の双方における電極反応を促進させる上で高い活性を有するからである。
 ところで、近年、触媒コストの低減のため白金使用量を低減しつつ触媒活性を確保するため、触媒金属として白金と他の金属との合金を適用する合金触媒についての検討例が増えている。特に、白金とコバルトとの合金を触媒粒子とするPt-Co触媒は、白金使用量を低減しながらも白金触媒以上の活性を発揮し得るものとして知られている。また、前記Pt-Co触媒を更に改良するため、第3の合金元素を合金化する3元系合金触媒も報告されている(特許文献1)
特開2011-150867号公報
 しかしながら、本発明者等によると、これまで公表された合金触媒は、固体高分子形燃料電池用の実用化の観点から見ると、いまだ十分な検討がなされているものではない。特に、固体高分子形燃料電池用の実用化のためには、高い初期活性が要求されるが、従来の合金触媒は、酸素の4電子還元性能が十分ではないため、初期性能に劣る問題があった。
 また、固体高分子形燃料電池の実用化のために要求される特性としては、初期活性に加えて、耐久性、即ち、触媒活性の持続特性が挙げられる。触媒は、時間経過と共に生じる活性低下(失活)を避けることができないが、失活までの時間を増大させることは燃料電池の実用化に向けて必須といえる。特に、固体高分子形燃料電池のカソード触媒は、80℃程度の比較的高温下で、強い酸性雰囲気並びに水蒸気雰囲気に晒され、更に高電位負荷を受けるという厳しい条件下にて使用されるため、耐久性能の向上は実用化に向けて大きな課題となっていた。
 このように、近年の燃料電池の普及が現実的なものとなっていることを考えれば、合金触媒については初期活性及び耐久性の更なる改善が必要といえる。そこで本発明は、白金と他の金属とを合金化した固体高分子形燃料電池用の合金触媒について、初期活性、耐久性がより改善されたもの、及び、その製造方法を提供する。
 本発明者等は、上記目的を達成すべく、Pt-Co触媒に各種の金属を添加した3元系触媒を試作しその活性を検討するスクリーニング試験を行い、その結果、マンガン添加により従来のPt-Co触媒以上の活性を発揮する可能性を見出した。その一方、本発明者等は、この検討過程でマンガンを添加した合金触媒であっても、場合によっては活性向上が認められないことを確認した。そこで、この要因について検討した結果、Pt-Co-Mn3元系触媒について、各添加金属(Co、Mn)の構成比を最適な範囲に設定する必要があることと共に、触媒粒子の構造としてCo-Mn合金相が存在すると十分な活性が発揮されないことを見出した。そして、この触媒粒子中のCo-Mn合金相について一定の制限を設定することで初期活性に優れるとして本発明に想到した。
 即ち、本発明は、白金、コバルト、マンガンからなる触媒粒子が炭素粉末担体上に担持されてなる固体高分子形燃料電池用触媒において、前記触媒粒子の白金、コバルト、マンガンの構成比(モル比)が、Pt:Co:Mn=1:0.06~0.39:0.04~0.33であり、前記触媒粒子についてのX線回折分析において、2θ=27°近傍に現れるCo-Mn合金のピーク強度比が、2θ=40°近傍に現れるメインピークを基準として0.15以下であることを特徴とする固体高分子形燃料電池用触媒である。
 以下、本発明についてより詳細に説明する。上記の通り、本発明に係る触媒は、触媒粒子が白金、コバルト、マンガンで構成され、白金に対する添加元素であるコバルト、マンガンの構成比を一定の範囲内に制限すること、及び、触媒粒子中のCo-Mn合金相の含有量を抑制することの2つの特徴を有する。以下ではこれらの特徴についてまず説明する。
 コバルト、マンガンの構成比を、Pt:Co:Mn=1:0.06~0.39:0.04~0.33とするのは、Pt-Co触媒以上の初期活性を発揮させるためである。Pt-Co触媒に第3の金属元素としてマンガンを添加するのは、酸素分子の4電子還元機能を向上させることで触媒活性を高めるためである。そのため、マンガンはある程度の添加が要求されるが、過剰添加は却って活性を低下させる。コバルト、マンガンの構成比が上記範囲を逸脱すると、従来のPt-Co触媒触媒と同等程度或いはそれ以下の活性となるため構成比の設定が必要となる。尚、コバルト、マンガンの構成比のより好ましい範囲は、Pt:Co:Mn=1:0.06~0.26:0.13~0.33であり、この範囲で最大の初期活性を示す。
 但し、マンガンは単に添加すれば良いというわけではなく、触媒粒子を構成する他の構成元素(白金、コバルト)との関係において所定の存在形態にあることが要求される。即ち、Pt-Co-Mn3元系触媒における触媒粒子を構成する金属相としては、部分的にPt相が残存している可能性はあるが、基本的に各金属が相互に合金化した合金相が主体となる。この合金相としては、Mn-Pt合金相(MnPt)、Co-Pt合金相(CoPt)、Mn-Co合金相(MnCo)が考えられる。これらの合金相の種類、存在量は、触媒の製造工程により相違すると考えられる。
 本発明者等は、各合金相の触媒活性に対する影響を検討したところ、触媒粒子中にMn-Co合金相が存在する場合、初期活性が大きく低下しマンガン添加の効果が消失する。この要因については明確ではないが、Pt-Co-Mn3元系触媒の活性種はMn-Pt合金相、Co-Pt合金相であると推察され、添加したMn及びCoがPtと合金化せずにMn-Co合金相となった場合、活性種が形成され難くなるためと考えられる。本発明ではMn-Co合金相の存在量を制限するため、触媒粒子についてのX線回折分析における、Co-Mn合金のピーク強度を規制する。
 Mn-Co合金相の存在量規定のためにX線回折分析の結果を用いるのは、X線回折分析は比較的簡易な分析方法でありながら、触媒粒子の状態を正確に測ることができ、適切な基準ピークの設定により定量性も有するからである。ここで、本発明に係るPt-Co-Mn3元系触媒のX線回折分析においては、基準ピークとして、2θ=40°~41°で現れるメインピーク(Pt、MnPt、CoPtの合成ピーク)を用いる。そして、本発明で規制するMn-Co合金相のピークは。2θ=27°近傍、33°近傍、43°近傍、52°近傍、76°近傍で現れるが、本発明で用いるMn-Co合金相のピークとしては、2θ=27°近傍のピークを用いるのが好ましい。
 Mn-Co合金相の存在量を示すピーク比を0.15以下とするのは、上記の通りMn-Co合金相は触媒活性に好ましくない影響を及ぼすことから、好適な触媒を得るための上限を明確にするためである。従って、このピーク比は0であっても良く、むしろ好ましい。
 また、触媒粒子を構成する合金相の分布に関し、上記の通りMn-Co合金相を低減させた分、Mn-Pt合金相(MnPt)及びCo-Pt合金相(CoPt)を形成させたものが好ましい。これらの合金相は、酸素分子の4電子還元作用を有し活性向上に寄与する。X線回折分析では、これらの合金相はいずれも2θ=24°、32°、41°付近に現れるが、2θ=32°近傍で現れるピークにより判定するのが好ましい。この2つの合金相に由来するピークは、Mn-Pt合金相のピークとCo-Pt合金相ピークとの合成であり分離が困難である。そこで、これらの合金相形成の確認としてこの合成ピーク強度に判断することが好ましい。そして、好ましいピーク強度は、2θ=32°近傍で現れるピーク強度が、2θ=40°~41°で現れるメインピークを基準として0.14以上であるものが好ましい。尚、このピーク強度比の好ましい上限値は、0.23程度となる。
 以上説明した、コバルト及びマンガンの構成比の設定、及び、Mn-Co合金相の規制により初期活性に優れたPt-Co-Mn3元系触媒を得ることができる。ここで、既に述べたように、燃料電池触媒においては耐久性も優れたものが好ましい。
 本発明者等によれば、Pt-Co-Mn3元系触媒の劣化の要因としては、触媒粒子からの金属(コバルト、マンガン)の電気化学的溶解による消失が挙げられる。燃料電池用の触媒は、電極の構成部材あり電気化学的反応に晒されることから、卑金属であるコバルト、マンガンは経時的にイオン化して溶解して触媒から消失する。かかる電気化学的溶解の過程では、触媒粒子内部でコバルト、マンガンが粒子表面へと拡散しつつ溶解し、触媒粒子中のコバルト、マンガンの構成比の変動が生じる。
 本発明においては、触媒粒子の表面のコバルト濃度及びマンガン濃度が、中心部のコバルト濃度及びマンガン濃度よりも低くすることで耐久性を向上させることができる。このように触媒粒子表面の白金濃度が高い状態、いわばコア/シェル構造の状態とすることで、触媒粒子表面を電気化学的溶解に対して強化し、活性低下を抑制することができる。この触媒粒子表面についてのコバルト濃度及びマンガン濃度の低減(触媒粒子表面についての白金濃度の富化)は、必ずしも表面を純白金にすることを要求するものではなく、触媒粒子の表面と中心部との間に、コバルト濃度及びマンガン濃度の濃度差が生じていれば良い。
 触媒粒子は、平均粒径2~20nmのものが好ましい。2nm未満は長時間の活性持続特性が明確に得られなくなるからであり、20nmを超えると触媒の初期活性が十分に得られなくなるからである。また、担体である炭素粉末は、比表面積が250~1200m/gの炭素粉末を適用するのが好ましい。250m/g以上とすることで、触媒が付着する面積を増加させることができるので触媒粒子を高い状態で分散させ有効表面積を高くすることができる一方、1200m/gを超えると、電極を形成する際にイオン交換樹脂の浸入しにくい超微細孔(約20Å未満)の存在割合が高くなり触媒粒子の利用効率が低くなるからである。
 尚、本発明に係る触媒は、固体高分子形燃料電池の電極としての性能を考慮し、触媒粒子の担持密度を30~70%とするのが好ましい。ここでの担持密度とは、担体に担持させる触媒粒子質量(担持させた白金、コバルト、マンガンの合計質量)の触媒全体の質量に対する比をいう。
 次に、本発明に係る固体高分子形燃料電池の触媒の製造方法について説明する。本発明に係る触媒の製造にあたっては、基本的工程は一般的な合金触媒の製造方法に準じ、担体に触媒粒子となる金属を担持し、適宜に乾燥した後に熱処理を行い担持した金属の合金化を行う。但し、本発明に係る触媒は、触媒粒子中でMn-Co合金相が形成するのを抑制することが要求される。
 この触媒粒子中の合金相の調整について、本発明では、触媒金属の担持工程において、まず、白金のみが担持された触媒を用意し、これにコバルト及びマンガンを担持することを必須とする。触媒金属の担持には、構成金属を担体に同時に担持することが一般的でありまた効率的でもあるが(特許文献1の実施例を参照)、このような同時担持ではMn-Co合金相が本発明の規定値を超えて形成される。白金触媒をまず用意し(製造し)、別途コバルト及びマンガンを担持することでMn-Co合金相の形成が抑制される要因は明確ではないが、このようにすることで白金とコバルト、白金とマンガンとの合金化が容易となり、Mn-Pt合金相(MnPt)及びCo-Pt合金相(CoPt)の形成が優先されるためと考える。
 白金触媒の準備については、従来の白金触媒の製造方法によるものを用意すれば良い。市販の白金触媒を利用しても良い。通常、白金触媒は担体に白金塩溶液を接触(含浸、滴下)させた後、還元処理して白金粒子を形成して製造される。
 白金触媒へのコバルト及びマンガンの担持も、それ自体は一般的な方法による。白金触媒にコバルト及びマンガンの金属塩溶液を接触させ、還元処理して白金粒子の近傍に金属状態のコバルト及びマンガンを析出させる。コバルトの金属塩溶液としては塩化コバルト6水和物、硝酸コバルト、酢酸コバルト4水和物等が使用でき、マンガンの金属塩溶液としては塩化マンガン4水和物、硝酸マンガン6水和物、酢酸マンガン4水和物等が使用できる。このときの白金触媒と金属塩溶液の接触の順序は、特に限定されることはなく、いずれかの金属塩溶液を先に接触させても良いし、コバルト、マンガンの金属塩溶液の混合液と白金触媒とを接触させても良い。
 尚、コバルト及びマンガンの担持量は、白金触媒の担持量を考慮しつつ、上記のコバルト及びマンガンの構成比の範囲内で設定した比率となるように、金属塩溶液の濃度及び量を設定すれば良い。但し、触媒粒子表面の白金濃度の富化のため、後述の酸処理を行う場合には、コバルト及びマンガンの担持量を、設定した構成比に対して、コバルトでは1.5~5倍程度、マンガンでは1.5~3倍程度では上乗せすると良い。
 白金触媒へのコバルト及びマンガンの担持後は、必要に応じて乾燥した後、熱処理して各金属を合金化する。ここで合金化のための熱処理温度は700~1100℃とする。700℃未満の熱処理では合金化、特に、Mn-Pt合金相とCo-Pt合金相の形成が不十分であり活性に乏しい触媒となる。また、熱処理温度は高いほど合金化が進行しやすく、Mn-Pt合金相とCo-Pt合金相の形成も促進されるが、1100℃を超える熱処理は、触媒粒子の粗大化が懸念されること、及び、設備的にも困難となることからこれを上限とした。この熱処理は非酸化性雰囲気で行うのが好ましく、特に還元雰囲気(水素ガス雰囲気等)で行うのが好ましい。
 上記熱処理工程を経た触媒は、Mn-Co合金相が低減されMn-Pt合金相及びCo-Pt合金相の形成が促進された触媒粒子を備え、初期活性に優れたPt-Co-Mn3元系触媒となる。この触媒は、触媒粒子の表面のコバルト及びマンガン濃度を粒子中心よりも低くすることで耐久性を確保することができる。
 この触媒粒子表面のコバルト及びマンガン濃度の減少の工程は、熱処理後の触媒を少なくとも1回酸化性溶液に接触させるものである。これにより、触媒粒子表面のコバルト及びマンガンを溶出させ、表面のみコバルト及びマンガンの濃度を下げることができる。この酸化性溶液としては、硫酸、硝酸、亜リン酸、過マンガン酸カリウム、過酸化水素、塩酸、塩素酸、次亜塩素酸、クロム酸等の溶液が好ましい。これらの酸化性溶液の濃度は、0.1~1mol/Lとするのが好ましく、溶液に触媒を浸漬するのが好ましい。
 酸化性溶液処理の条件としては、接触時間は、1~10時間が好ましく、処理温度は、40~90℃が好ましい。尚、酸化性溶液処理は、触媒を酸化性溶液に1回接触させる場合のみならず、複数回繰り返し行っても良い。また、複数回の酸処理を行う場合には、処理ごとに溶液の種類を変更しても良い。
 以上説明したように本発明に係る高分子固体電解質型燃料電池用の触媒は、Pt-Co触媒にMnを添加する3元系触媒の形態を採用しつつ、コバルト及びマンガンの構成比率を限定し、更に、触媒粒子中の合金相を特定することで初期活性に優れたものとなっている。また、触媒粒子表面のコバルト及びマンガンの濃度を中心部よりも低くすることで、触媒金属の電気化学的溶解を抑制して耐久性を確保することができる。
実施例1~4、比較例1、2、従来例の各触媒のX線回折パターン。 TEM/EDXによる実施例5の触媒粒子のPt、Co、Mnの濃度分布。 熱処理温度による各触媒のX線回折パターン。
第1実施形態:触媒金属の構成比の異なる複数のPt-Co-Mn3元系触媒を製造し、その性状を調査すると共に、触媒活性の評価を行った。触媒製造の基本工程は下記の通りである。
[触媒金属の担持] 
 市販の白金触媒を用意しこれにコバルト、マンガンを担持した。使用した白金触媒は、炭素微粉末(比表面積約900m/g)を担体とする白金担持率46.5質量%の白金触媒を5g(白金換算で2.325g(11.92mmol)用意した。この白金触媒を、塩化コバルト(CoCl・6HO)と塩化マンガン(MnCl・4HO)をイオン交換水100mLに溶解させた金属塩溶液に浸漬し、マグネティックスターラーにて攪拌した。そして、この溶液に濃度1質量%の水素化ホウ素ナトリウム(SBH)溶液500mLを滴下し攪拌して還元処理し、白金触媒にコバルト、マンガンを担持した。その後、ろ過・洗浄・乾燥した。
[触媒金属の担持] 
 触媒金属を担持した触媒について合金化のための熱処理を行った。本実施形態では、100%水素ガス中で熱処理温度を900℃として30分の熱処理を行った。この合金化熱処理によりPt-Co-Mn3元系触媒を製造した。
 尚、本実施形態では、白金触媒浸漬するコバルト、マンガンの金属塩溶液ついて、各金属塩の添加量を調整して触媒金属の構成比を変化させている。本実施形態では、各金属の構成比(Pt:Co:Mn)として、1:0.39:0.04(実施例1)、1:0.26:0.13(実施例2)、1:0.13:0.25(実施例3)、1:0.06:0.33(実施例4)、1:0.38:0(Mn添加なし、比較例1)、1:0.02:0.39(比較例2)の6種類の触媒を製造した。
従来例:ここでは、触媒金属の担持工程について、白金、コバルト、マンガンを同時に担持することでPt-Co-Mn3元系触媒を製造した。炭素担体(比表面積約900m/g)を5g用意し、これを所定量のPtジニトロジアミン硝酸溶液(Pt(NO(NH)、塩化コバルト(CoCl・6HO)、塩化マンガン(MnCl・4HO)をイオン交換水100mLに溶解させた金属塩溶液に浸漬し、マグネティックスターラーにて攪拌した。そして、この溶液に濃度1質量%の水素化ホウ素ナトリウム(SBH)溶液500mLを滴下し攪拌して還元処理し、炭素担体に白金、コバルト、マンガンを担持した。その後、ろ過・洗浄・乾燥し、水素気流下900℃にて30分熱処理することで合金化させた。
 以上製造した各実施例、比較例及び従来例のPt-Co-Mn3元系触媒についてX線回折分析を行い、触媒粒子の構成を検討した。X線回折装置は、JEOL製JDX-8030を用いた。試料は微粉末状にしてガラス製セルに入れ、X線源としてCu(kα線)、管電圧40kV、管電流30mA,2θ=20~90°までスキャン速度7°/min、ステップ角度0.1°で行った。
 図1は、各触媒のX線回折パターンを示す。図1から、全ての触媒で見られる2θ=40°付近に現れるピークは、金属Pt、MnPt、CoPtの合成ピークである。そして、実施例1~4、比較例2についての2θ=32°付近(32~34°)のピークは、金属Ptに影響されないMnPtとCoPtとの合成ピークである。一方、従来例においては、各実施例・比較例にはほとんど見られないピークが2θ=27°付近で見られるが、これはCo-Mn合金に由来するものと考えられる。
 次に、各実施例・比較例及び従来例のPt-Co-Mn3元系触媒について、初期性能試験を行った。この性能試験は、Mass Activityを測定することにより行った。実験には単セルを用い、プロトン伝導性高分子電解質膜を電極面積5cm×5cm=25cm2のカソード及びアノード電極で挟み合わせた膜/電極接合体(Membrane Electrode Assembly、MEA)を作製し評価した。前処理として、水素流量=1000mL/min、酸素流量=1000mL/min、セル温度=80℃、アノード加湿温度=90℃、カソード加湿温度=30℃の条件にて電流/電圧曲線を引いた。その後、本測定として、Mass Activityを測定した。試験方法は0.9Vでの電流値(A)を測定し、電極上に塗布したPt重量からPt1gあたりの電流値(A/g-Pt)を求めてMass Activityを算出した。表1にその結果を示す。尚、表1には、図1の各触媒のX線回折パターンから算出したCo-Mn合金(2θ=27°近傍)のピーク強度比、MnPtとCoPt(2θ=32°近傍)のピーク強度比も示している。
Figure JPOXMLDOC01-appb-T000001
 表1から、各実施例のPt-Co-Mn3元系触媒は、Pt-Co触媒を基準としたときいずれも良好な初期活性を発揮する。但し、マンガンは添加すれば良いというわけではなく、比較例2のように添加量が多すぎる構成比となると、Pt-Co触媒よりも低い初期活性となる。また、触媒粒子の構成についてみると、Co-Mn相が多く生成した従来例は、Pt、Co、Mnの構成比を適切にしても初期活性が劣る。このことから、各触媒金属の構成比を適切するのみでは不十分であり、合金相の構成についても規定することが必要であることが確認された。
第2実施形態:ここでは、Pt-Co-Mn3元系触媒について、酸性溶液処理による触媒粒子の表面組成改良による耐久性向上効果の確認を行った。第1実施形態の実施例2(Pt:Co:Mn=1:0.26:0.13)の触媒について、熱処理後の触媒を、0.2mol/Lの硫酸水溶液中80℃にて2時間処理した後、濾過・洗浄・乾燥した。その後1.0mol/Lの硝酸水溶液(溶存酸素量0.01cm/cm(STP換算))中70℃にて2時間処理した後、濾過・洗浄・乾燥した(この酸性溶液処理後の触媒を実施例5とする)。
 そして、処理後の触媒について触媒粒子における元素分析を行った。元素分析は、TEM/EDXにより触媒粒子断面についてライン分析を行い0.2nmの等間隔でPt、Co、Mnの含有量を測定し、粒子表面と粒子中心部の組成を比較した。この分析結果を図2に示すが、酸溶液処理後の触媒粒子は、その表面近傍(最外表面から深さ1~1.5nmの領域)において、コバルト及ぶマンガンの検出強度が極めて低くなっている。これにより、この触媒では、触媒粒子表層はPtに富み、粒子中心部はCo、Mnを含む合金から形成されることが確認された。
 次に、この触媒について耐久試験を行い、耐久性を評価した。耐久試験は、触媒からカソード電極(空気極)を製造して燃料電池を構成し、カソードのセル電位を三角波で掃引する加速劣化試験を行い、劣化後の発電特性を測定した。加速劣化は、200-650mVの間を掃引速度40mV/sで20時間掃引して触媒粒子表面をクリーニングし、その後、200-650mVの間を掃引速度100mV/sで24時間掃引させて劣化させ、劣化後の触媒についてMass Activityを測定した。この加速劣化試験後の評価は、比較例1(Pt-Co触媒)についても行った(比較例3)。この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、従来のPt-Co触媒は、加速劣化試験により触媒活性が低下しているが、実施例5のPt-Co-Mn3元系触媒は、劣化後も良好な活性を示した。この触媒粒子の表面と中心との間に白金濃度差を有する触媒は、耐久性に優れることが確認された。
第3実施形態:ここでは、Pt-Co-Mn3元系触媒の製造工程において、合金化熱処理の温度について検討を行った。実施例3(Pt:Co:Mn=1:0.13:0.25)について、熱処理温度を500℃、700℃、900℃(実施例3)、1100℃として触媒を製造し、その初期活性を評価した。その結果を表3に示す。また、図3に各触媒のX線回折パターンを示す。
Figure JPOXMLDOC01-appb-T000003
 表3から、有効な初期活性を得るためには、700℃以上の熱処理が必要であることが確認された。この点、図3のX線回折パターンから、熱処理温度が高温になるほど2θ=32°付近のMnPt、CoPtのピーク強度が鋭く明瞭になっている。触媒活性に有用なMnPt、CoPtの合金相形成のために熱処理温度を高温とすることが好ましいことがここからも確認できる。
 本発明によれば、固体高分子形燃料電池の電極触媒として、耐久性の改善と初期発電特性の改善の双方を達成することができる。本発明は、燃料電池の普及に資するものであり、ひいては環境問題解決の基礎となるものである。

Claims (8)

  1.  白金、コバルト、マンガンからなる触媒粒子が炭素粉末担体上に担持されてなる固体高分子形燃料電池用触媒において、
     前記触媒粒子の白金、コバルト、マンガンの構成比(モル比)が、Pt:Co:Mn=1:0.06~0.39:0.04~0.33であり、
     前記触媒粒子についてのX線回折分析において、2θ=27°近傍に現れるCo-Mn合金のピーク強度比が、2θ=40°近傍に現れるメインピークを基準として0.15以下であることを特徴とする固体高分子形燃料電池用触媒。
  2.  触媒粒子についてのX線回折分析において、2θ=32°近傍に現れるCoPt合金のピーク及びMnPt合金のピーク比が、2θ=40°近傍に現れるメインピークを基準として0.14以上である請求項1記載の固体高分子形燃料電池用触媒。
  3.  触媒粒子は、その表面のコバルト濃度及びマンガン濃度が、その中心部のコバルト濃度及びマンガン濃度よりも低いものである請求項1又は請求項2記載の固体高分子形燃料電池用触媒。
  4.  触媒粒子の担持密度は、30~70%である請求項1~請求項3のいずれかに記載の固体高分子形燃料電池用の触媒。
  5.  請求項1~請求項4のいずれか1項に記載の固体高分子形燃料電池用触媒の製造方法であって、
     炭素粉末担体上に白金粒子が担持されてなる白金触媒に、コバルト及びマンガンを担持する工程と、前記工程によりコバルト及びマンガンが担持された白金触媒を700~1100℃で熱処理する工程と、を含む固体高分子形燃料電池用触媒の製造方法。
  6.  熱処理後の触媒を少なくとも1回酸化性溶液に接触させ、触媒粒子表面のコバルト及びマンガンを溶出させる工程を含む請求項5記載の固体高分子形燃料電池用触媒の製造方法。
  7.  酸化性溶液は、硫酸、硝酸、亜リン酸、過マンガン酸カリウム、過酸化水素、塩酸、塩素酸、次亜塩素酸、クロム酸である請求項6記載の固体高分子形燃料電池用触媒の製造方法。
  8.  酸化性溶液との接触処理は、処理温度を40~90℃とし、接触時間を1~10時間とする請求項6又は請求項7記載の固体高分子形燃料電池用触媒の製造方法。
PCT/JP2013/066798 2012-06-25 2013-06-19 固体高分子形燃料電池用の触媒及びその製造方法 WO2014002840A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13809878.5A EP2866287B1 (en) 2012-06-25 2013-06-19 Catalyst for solid polymer fuel cell and method for producing same
US14/400,424 US10454113B2 (en) 2012-06-25 2013-06-19 Catalyst for solid polymer fuel cell and method for producing same
CN201380033528.2A CN104412431B (zh) 2012-06-25 2013-06-19 固体高分子型燃料电池用催化剂及其制造方法
KR1020157001123A KR101705998B1 (ko) 2012-06-25 2013-06-19 고체 고분자형 연료 전지용 촉매 및 그 제조 방법
US16/580,154 US10903503B2 (en) 2012-06-25 2019-09-24 Catalyst for solid polymer fuel cell and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-141752 2012-06-25
JP2012141752A JP5152942B1 (ja) 2012-06-25 2012-06-25 固体高分子形燃料電池用の触媒及びその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/400,424 A-371-Of-International US10454113B2 (en) 2012-06-25 2013-06-19 Catalyst for solid polymer fuel cell and method for producing same
US16/580,154 Division US10903503B2 (en) 2012-06-25 2019-09-24 Catalyst for solid polymer fuel cell and method for producing same

Publications (1)

Publication Number Publication Date
WO2014002840A1 true WO2014002840A1 (ja) 2014-01-03

Family

ID=47890618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066798 WO2014002840A1 (ja) 2012-06-25 2013-06-19 固体高分子形燃料電池用の触媒及びその製造方法

Country Status (7)

Country Link
US (2) US10454113B2 (ja)
EP (1) EP2866287B1 (ja)
JP (1) JP5152942B1 (ja)
KR (1) KR101705998B1 (ja)
CN (1) CN104412431B (ja)
TW (1) TWI506844B (ja)
WO (1) WO2014002840A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6778472B2 (ja) * 2015-02-12 2020-11-04 国立大学法人東京工業大学 白金合金粉末及びその製造方法
JP6352955B2 (ja) 2016-01-08 2018-07-04 トヨタ自動車株式会社 燃料電池用電極触媒、及び燃料電池用電極触媒の製造方法
JP6741545B2 (ja) * 2016-10-10 2020-08-19 田中貴金属工業株式会社 固体高分子形燃料電池用の触媒及びその製造方法
CN106784878A (zh) * 2017-01-17 2017-05-31 刘芳芳 一种Mn‑石墨烯结合型燃料电池催化剂的制备方法
KR102265105B1 (ko) 2017-04-19 2021-06-15 다나카 기킨조쿠 고교 가부시키가이샤 고체 고분자형 연료 전지용 촉매 및 그 제조 방법
TWI696493B (zh) * 2017-09-27 2020-06-21 日商田中貴金屬工業股份有限公司 固態高分子型燃料電池用觸媒及其製造方法
KR102600857B1 (ko) 2018-08-22 2023-11-10 다나카 기킨조쿠 고교 가부시키가이샤 고체 고분자형 연료 전지용 촉매 및 고체 고분자형 연료 전지용 촉매의 선정 방법
US20220205117A1 (en) 2019-04-12 2022-06-30 Furuya Metal Co., Ltd. Water electrolysis catalyst for fuel cell anode, anode catalyst composition, and membrane electrode assembly
JP7063376B1 (ja) 2020-12-22 2022-05-09 田中貴金属工業株式会社 酸素還元反応用のコアシェル触媒及び触媒の設計方法
CN112331867B (zh) * 2021-01-11 2021-04-02 国家电投集团氢能科技发展有限公司 用于燃料电池的催化剂及其制造方法、燃料电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135642A (ja) * 1990-09-26 1992-05-11 Tanaka Kikinzoku Kogyo Kk 白金合金触媒とその製造方法
JP2011150867A (ja) * 2010-01-21 2011-08-04 Toyota Motor Corp 燃料電池用3元系電極触媒の製造方法、及びそれを用いた固体高分子型燃料電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939640B2 (en) * 2001-09-21 2005-09-06 E. I. Dupont De Nemours And Company Anode electrocatalysts for coated substrates used in fuel cells
US7635533B2 (en) * 2002-02-27 2009-12-22 Symyx Solutions, Inc. Fuel cell electrocatalyst of Pt-Mn-Co
JP5082187B2 (ja) * 2003-10-06 2012-11-28 日産自動車株式会社 固体高分子型燃料電池用電極触媒粒子の製造方法
US7622217B2 (en) * 2005-10-12 2009-11-24 3M Innovative Properties Company Fuel cell nanocatalyst
US20070254206A1 (en) * 2006-01-17 2007-11-01 Gillan Edward G Methods for production of metals on carbon nitride powders and composites and their use as catalysts in fuel cell electrochemistry
JP5283499B2 (ja) * 2006-03-29 2013-09-04 株式会社キャタラー 燃料電池用導電性カーボン担体、燃料電池用電極触媒、及びこれを備えた固体高分子型燃料電池
TWI368537B (en) * 2007-11-19 2012-07-21 Ind Tech Res Inst Highly dispersed carbon supported metal catalyst and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135642A (ja) * 1990-09-26 1992-05-11 Tanaka Kikinzoku Kogyo Kk 白金合金触媒とその製造方法
JP2011150867A (ja) * 2010-01-21 2011-08-04 Toyota Motor Corp 燃料電池用3元系電極触媒の製造方法、及びそれを用いた固体高分子型燃料電池

Also Published As

Publication number Publication date
TW201409813A (zh) 2014-03-01
EP2866287B1 (en) 2018-05-02
JP2014007050A (ja) 2014-01-16
TWI506844B (zh) 2015-11-01
US10454113B2 (en) 2019-10-22
US20200036014A1 (en) 2020-01-30
KR101705998B1 (ko) 2017-02-10
EP2866287A4 (en) 2015-12-23
JP5152942B1 (ja) 2013-02-27
CN104412431A (zh) 2015-03-11
US20150125783A1 (en) 2015-05-07
CN104412431B (zh) 2017-06-06
EP2866287A1 (en) 2015-04-29
KR20150028300A (ko) 2015-03-13
US10903503B2 (en) 2021-01-26

Similar Documents

Publication Publication Date Title
JP5152942B1 (ja) 固体高分子形燃料電池用の触媒及びその製造方法
JP6053223B2 (ja) 固体高分子形燃料電池用の触媒及びその製造方法
JP5531125B1 (ja) 固体高分子形燃料電池用の触媒及びその製造方法
JP6949108B2 (ja) 固体高分子形燃料電池用の触媒及びその製造方法
KR102339556B1 (ko) 고체 고분자형 연료 전지용 촉매 및 그 제조 방법
KR20200113333A (ko) 산소 환원 반응용 백금계 합금 촉매, 이의 제조방법 및 이를 포함한 연료전지
JP2000003712A (ja) 高分子固体電解質型燃料電池用触媒
KR20230104225A (ko) 산소 환원 반응용의 코어쉘 촉매 및 촉매의 설계 방법
US11239473B2 (en) Catalyst for solid polymer fuel cells and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809878

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14400424

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013809878

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157001123

Country of ref document: KR

Kind code of ref document: A